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Abstract

This paper introduces WeChat’s participation
in WMT 2022 shared biomedical translation
task on Chinese→English. Our systems are
based on the Transformer(Vaswani et al., 2017),
and use several different Transformer struc-
tures to improve the quality of translation.
In our experiments, we employ data filter-
ing, data generation, several variants of Trans-
former, fine-tuning and model ensemble. Our
Chinese→English system, named Summer,
achieves the highest BLEU score among all
submissions.

1 Introduction

This article describes the WeChat’s participation
in WMT 2022 shared biomedical translation task
on Chinese→English. We improve the translation
quality of the system by increasing the diversity
of model structure and data, fine-tuning the model
with in-domain data, inserting tags at the beginning
of each source sentence and selecting models with
high diversity and good performance for ensemble.

For model architectures, our system adopt BIG
and DEEP Transformer models which contain 10-
layer and 20-layer encoders, 10240 and 4096 filter
sizes, respectively, with TRANSFORMER-BIG
setting (Vaswani et al., 2017). In order to increase
the diversity of the model, we use structures such
as Average Attention Transformer (AAN) (Zhang
et al., 2018) and Mixed-AAN Transformer archi-
tecture (Zeng et al., 2021) in the decoder part.

For data generation, we use back-
translation (Sennrich et al., 2016a), knowledge
distillation (Kim and Rush, 2016), and forward-
translation (Zeng et al., 2021) to improve data
quality. And we use some data augmentation
methods to improve the model robustness, such
as adding synthetic noise and dynamic top-p
sampling (Zeng et al., 2021). Furthermore,
according to the different sources of the corpora,

we add tags at the beginning of the source sentence
to perform domain adaptation.

For fine-tuning, we use in-domain bilingual cor-
pus to fine-tune models from the general domain
to the biomedical domain, and use target denois-
ing (Meng et al., 2020) to improve the diversity of
models and mitigate training-generation discrep-
ancy.

For model ensemble, we use Self-BLEU (Zhu
et al., 2018) to evaluate the similarity between mod-
els. We take the prediction of one model as the
reference and use the prediction of the other model
to calculate the BLEU score. The higher the Self-
BLEU score, the lower the diversity of the models.

In the remainder of this paper, we start with
presenting the data strategy in Section 2. Then we
describe our system details in Section 3. Section
4 presents the experimental results. Finally, we
conclude our work in Section 5.

2 Data

In this section, we introduce the details of bilingual
and monolingual data used in this shared task.

2.1 Bilingual Corpus

Our baseline model is trained with out-of-domain
(OOD) data from WMT 2022 shared task on
general machine translation1. Additionally, we
use in-house data (depicted in Table 1 as OOD-
IN-HOUSE) to improve performance of baseline
model. With regard to in-domain data, firstly, we
use the in-domain bilingual corpus provided by
the WMT 2022 shared biomedical translation task2

(depicted in Table 1 as IND-BIO). And we use the
Champollion3 tool to align the sentences in the cor-
pus. Then, we collect in-domain Chinese→English

1https://statmt.org/wmt22/translation-task.html
2https://github.com/biomedical-translation-

corpora/corpora
3http://champollion.sourceforge.net/
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(depicted in Table 1 as IND-TAUS) sentence pairs
from TAUS4.

2.2 Monolingual Corpus

The out-of-domain monolingual corpora are col-
lected from WMT 2022 shared task on general
machine translation and the in-house monolingual
data. With regard to in-domain data, the English
part of the bilingual corpus in other languages pro-
vided by the WMT 2022 shared biomedical trans-
lation task is used as in-domain monolingual data.

3 System overview

In this section, we introduce the details of our sys-
tem used in the WMT 2022 shared biomedical
translation task. Our system adopts data filtering,
data generation, model architectures, fine-tuning
and ensemble.

3.1 Data Filtering

For data filtering, we use the following rules for
bilingual corpus:

• Normalize punctuation with Moses scripts on
both English and Chinese.

• Filter out sentence pairs that are the same at
the source and target.

• Filter out sentence pairs whose source sen-
tence’s language recognition result is different
from the original language.

• Filter out sentence pairs with a source-to-
target length ratio greater than 1:3.

• Filter out the sentences longer than 150 words
or exceed 40 characters in a single word.

Besides these rules, we use fast-align5 to filter out
the sentence pairs with low alignment scores. We
also filter out sentence pairs in which English sen-
tences contain Chinese characters.

3.2 Data Generation

In this section, we introduce the approaches
of data generation in our system, including
back-translation, knowledge distillation, forward-
translation, synthetic noise and tagging.

4https://taus-corona-corpus.s3.amazonaws.com/en-
zh.txt.gz

5https://github.com/clab/fast_align

3.2.1 Back-Translation
Back-translation (Hoang et al., 2018) is the most
commonly used data augmentation method in neu-
ral machine translation. Following the previous
work (Edunov et al., 2018), we use following strate-
gies to generate back translations to improve the
diversity the training data:

• Beam search: We use beam search to generate
the pseudo corpus with beam size setting to 4.

• Dynamic top-p sampling: Following the
work (Zeng et al., 2021), at each decoding
step, we select a word from the smallest set
whose cumulative probability exceeds p, with
p varying from 0.9 to 0.95 during the data
generation process.

3.2.2 Knowledge Distillation
For knowledge distillation (Kim and Rush, 2016;
Wang et al., 2021), we use the corpus generated
from the teacher models to train the student models.

3.2.3 Forward-Translation
For forward-translation, we use an ensemble model
to generate forward translations with the source-
language monolingual corpus as input.

3.2.4 Synthetic Noise
For synthetic noise, we add different noises at the
source side of the pseudo corpus to improve the
diversity of the data and improve the robustness of
the model:

• Randomly replace some source tokens with
< unk >.

• Randomly delete some tokens from the source
sentence.

• Randomly swap the two tokens in the source
sentence in the specify window.

3.2.5 Tagging
For tagging, inspired by (Johnson et al., 2017),
we insert a tag at the beginning of each source
sentence to denote its type: < BT > for the
back-translation data, < NOISE > for the syn-
thetic noise data, < REAL > for the ground-truth
bilingual corpus and < FT > for the forward-
translation data. Furthermore, we insert a tag at
the second position of each sentence to denote
its domain: < BIO > for the in-domain data,
< NEWS > for the data from WMT22 general
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LANGUAGE OOD-NEWS OOD-IN-HOUSE IND-BIO IND-TAUS
bilingual corpus 30.6M 90M 89K 0.4M
monolingual corpus 220M 50M 6.9M –

Table 1: Data used for training the system, where OOD-NEWS is the out-of-domain data provided by WMT22
general translation task. OOD-IN-HOUSE is the out-of-domain data collected from in-house corpus. IND-BIO is
the in-domain data provided by WMT22 shared biomedical translation task. And IND-TAUS is the in-domain data
collected manually (not from MEDLINE, as depicted in 2.1). M denotes million and K denotes thousand.

translation task and < INHOUSE > for the data
from our in-house corpus. At inference time, we
always use the < REAL > and < BIO > tag.

3.3 Model Architectures
In this section, we introduce the model architec-
tures used by our system, including Transformer
(Big/Deep), Average Attention Transformer (AAN)
and Mixed Average Attention Transformer (Mixed-
AAN) (Zeng et al., 2021).

3.3.1 Transformer
Our baseline models are Big- and Deep-
Transformer (Vaswani et al., 2017) models. In our
experiments, we use multiple model configurations
with 20-layer and 30-layer encoders for deep mod-
els and 10-layers encoders for big models, and use
6-layers decoders for all models. The hidden size
is set to 1024 and the filtering size is set from 4096
to 10240.

3.3.2 Average Attention Transformer
To increase the diversity between models, we
adopt Average Attention Transformer (Zhang et al.,
2018), where the average attention is used to re-
place self-attention in the decoder. AAN summa-
rizes the historical information of previous posi-
tions by means of cumulative average, which in-
creases diversity with almost no harm to the quality
of the model.

3.3.3 Mixed-AAN Transformers
Following the previous work (Zeng et al., 2021),
we adopt the Mixed-AAN Transformers to further
improve the diversity and quality of models. In
this experiment, we only use two architectures of
Mixed-AAN:

• Self-first: In the decoder part, we use self-
attention as the first layer, and then use aver-
age attention and self-attention alternately.

• AAN-first: In the decoder part, we use average
attention as the first layer, and then use self-
attention and average attention alternately.

3.4 Fine-tuning

For fine-tuning, we mainly use the in-domain data
provided by WMT22 shared biomedical transla-
tion task for domain adaption (Luong and Man-
ning, 2015; Li et al., 2019). In order to prevent
the model from overfitting, as well as to improve
the diversity of the model after domain transfer,
we adopt target denoising (Meng et al., 2020). We
add synthetic noise at the decoder inputs during
fine-tuning. Therefore, with target denoising, the
model becomes more robust. The method of adding
synthetic noise is described in Section 3.2.4.

3.5 Ensemble

After obtaining a variety of different models
through the above methods, we need to find the
best model combination to get the best result. In
general, the better the model performance and the
greater the diversity between models, the better
the performance for the model ensemble. To mea-
sure diversity, we use Self-BLEU (Zhu et al., 2018)
to evaluate the similarity between models. Over-
all, we select 6 models from 52 candidate models
for ensemble. All the candidate models are gener-
ated by different combinations of data and different
training strategies as described earlier.

4 Experiments

4.1 Settings

Our experiment is based on Fairseq 6. The single
models are carried out on 8 NVIDIA V100 / A100
GPUs. We adopt the Adam optimizer with β1 = 0.9,
β2 = 0.998. The batch-size is set to 4096 tokens,
and the “update-freq" is set to 4, and the warmup
step is set to 4000 and the learning rate is set to
0.0005.

4.2 Pre-processing and Post-processing

The Chinese sentences are segmented by a in-house
segmentation tool and English sentences are seg-

6https://github.com/pytorch/fairseq
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System BLEU
Baseline 34.57
+ IND-TAUS 35.65
+ IND-BIO 40.96
+ OOD-IN-HOUSE 41.88
+ Back-Translation 42.8
+ Knowledge Distillation 43.12
+ Forward-Translation 43.32
+ Multi BT 44.11

+ Finetune 44.96
+ Target denoise finetune 45.1

Baseline_TAG 34.48
+ IND-TAUS 35.62
+ IND-BIO 41.07
+ OOD-IN-HOUSE 42.14
+ Back-Translation 43.91
+ Knowledge Distillation 44.14
+ Forward-Translation 44.39
+ Multi BT 45.23

+ Finetune 45.43
+ Target denoise finetune 45.54

+ Ensemble 46.91⋆

Table 2: Translation performance on WMT21 biomedical translation task testset. ⋆ is the system we submitted.
Multi BT means the iterative back-translation (Hoang et al., 2018) which use with different part of data and different
generation strategies.

mented by the tokenizer toolkit in Moses7. We
normalize punctuation using Moses scripts on both
English and Chinese. For handling uppercase and
lowercase of the English letters, we add a special
token at the beginning of a word to denote upper-
case (_UU_) and title case (_U_). By this way to
reduce the size of the word list and reduce the dif-
ficulty of model training. For instance, "We are
together NOW." → "_U_ we are together _UU_
now.". We use BPE (Sennrich et al., 2016b) with
32K operations for all the languages.

With the regard of post-processing, we use deto-
kenizer.perl on the English translations provided in
Moses.

4.3 Results

The experimental results of Chinese→English on
WMT21 OK-aligned biomedical test set are shown
in Table 2.

Compared with the baseline model (Base-
line_TAG), the in-domain bilingual data (+IND-
BIO) provided by WMT22 shared biomedical

7http://www.statmt.org/moses/

translation task brings a huge improvement, with
6.5 point increase in BLEU score. After adding
the in-house out-of-domain corpus (+OOD-IN-
HOUSE), we further gain +1.1 BLEU. We further
obtain +1.8 BLEU by applying back-translation
(+Back-Translat), and +0.23 BLEU by using
knowledge distillation (+Knowledge Distillation),
and +0.25 BLEU by using forward-translation
(+ Forward-Transla). After using iterative back-
translation (Hoang et al., 2018) (+Multi BT) de-
scribed in Table 2, we further achieve improvement
of +0.84 BLEU.

Additionally, we can find that the model with
TAG was similar to the model without TAG in
early stage experiments. As the number of data cat-
egories and data domains increases, the model with
tags gradually demonstrates its advantages. Our
best single model (+Target denoise fine) achieves
45.54 BLEU score, and we finally achieve 46.91
BLEU score by model ensemble (+Ensemble).
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5 Conclusion

We introduce WeChat’s participation in WMT
2022 shared biomedical translation task on
Chinese→English. Our system is based on the
Transformer (Vaswani et al., 2017), and uses sev-
eral different Transformer structures such as Av-
erage Attention and Mixed-AAN to improve the
performance. We use several data augmentation
methods such as iterative back-translation, knowl-
edge distillation, forward-translation and synthetic
noise. We use tags to assist the model in domain
learning and use in-domain fine-tuning with target
denoising to domain transfer. Finally a Self-BLEU
based ensemble method is used for model ensem-
ble. Overall, our system achieves 46.91 BLEU
score on WMT21 OK-aligned biomedical test set,
and we achieve the highest BLEU score among all
submissions.
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