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Abstract
Neural machine translation models often con-
tain large target vocabularies. The calculation
of logits, softmax and beam search is compu-
tationally costly over so many classes. We
investigate the use of locality sensitive hash-
ing (LSH) to reduce the number of vocabulary
items that must be evaluated and explore the re-
lationship between the hashing algorithm, trans-
lation speed and quality. Compared to prior
work, our LSH-based solution does not require
additional augmentation via word-frequency
lists or alignments. We propose a training pro-
cedure that produces models, which, when com-
bined with our LSH inference algorithm in-
crease translation speed by up to 87% over the
baseline, while maintaining translation quality
as measured by BLEU. Apart from just using
BLEU, we focus on minimizing search errors
compared to the full softmax, a much harsher
quality criterion.

1 Introduction

The computation of the output logit, softmax and
beam search (the output layer) are some of the most
compute-intensive tasks in current Neural Machine
Translation (NMT) models, often taking the major-
ity of inference time for many models, on many
hardware architectures, especially in deployment
settings. This is mainly due to the large vocabu-
lary size relative to other dimensions in the model.
Methods that reduce the effective vocabulary size
can have a major impact on inference speed. Vo-
cabulary selection is one such method.

However, a known downside of vocabulary se-
lection methods is the risk of search errors if the
desired output token ŷt is not a member of the re-
duced vocabulary V , forcing the beam search to
choose a sub-optimal token. Even when the impact
of such search errors on BLEU is minimal, search
errors caused by lexical shortlisting degrade human
judgements of quality (Domhan et al., 2022).

∗These authors contributed equally to this work.

Figure 1: Search errors vs. decrease in BLEU for all
experiments in the paper. We vary the two main hy-
perparameters of our LSH implementation: number of
hash functions and the size k of our selected vocabulary
subset. 60% of sentences have a search error before we
observe a 1 BLEU point degradation.

The degradation in human judgement is less sur-
prising if we inspect Figure 1 which shows that
translation quality, as measured by BLEU, is re-
silient to search errors caused by LSH. Only when
over 60% of translations exhibit search errors is
there significant BLEU degradation.

We examine vocabulary selection using Locality
Sensitive Hashing (LSH), and evaluate specifically
in the context of Neural Machine Translation. We
introduce an LSH-based vocabulary selection algo-
rithm and compatible models such that:1

1. the models have translation quality that is bet-
ter than or comparable to the baseline model;

2. the LSH-based vocabulary selection algorithm
introduces minimal search errors across a
number of models and language pairs, includ-
ing no search errors at all for certain configu-
rations;

3. inference is up to 87% faster than the baseline.
1We release code in Marian; see Section 7.1 for details.

https://github.com/marian-nmt/marian
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2 Methods of vocabulary selection

The output layer for a target vocabulary V , per-
forms the following computations:

p(yt|y1:t−1, x; θ) = softmax(Wh+ b)

ŷt = argmax p(yt|y1:t−1, x; θ),

(1)

where W ∈ R|V |×d is the weight matrix, b ∈
R|V | is the bias vector, h ∈ Rd, d is the hid-
den dimension size of the decoder state, and
p(yt|y1:t−1, x; θ) ∈ R|V | is the softmax probabili-
ties. This is computationally expensive due to the
target vocabulary size, |V |.

Vocabulary selection create a small subset, V ⊂
V . This will reduce the size of weight matrix, W ,
and bias vector, b, where |V | ≪ |V |, W ∈ R|V |×d

and b ∈ R|V |.
Equation 1 is then replaced with the more effi-

cient Equation 2 which uses W and b instead.

p(yt|y1:t−1, x; θ) = softmax(Wh+ b)

ŷt = argmax p(yt|y1:t−1, x; θ),

(2)

The aim is now to find the subset, V , such that
ŷt = ŷt.

Depending on the method, vocabulary selection
(and therefore construction of V , W and b) can
be static or happen dynamically per sentence (or
batch), per decoder time step, or even per individual
decoder hypothesis.

We restrict our overview of the concept of vocab-
ulary selection to the case where the original soft-
max layer remains largely unmodified except for
sub-selection. Methods that require complex struc-
tural reformulations of the softmax layer during
training like hierarchical softmax (Morin and Ben-
gio, 2005), adaptive softmax (Grave et al., 2016)
or binary code prediction (Oda et al., 2017) are
outside the scope of this work.

In-depth overviews of past and current vocab-
ulary selection methods are provided by L’Hostis
et al. (2016), Shi and Knight (2017), and more
recently Domhan et al. (2022). We only repeat
concepts that are either common or required to dif-
ferentiate our work from previous approaches.

2.1 Word frequency-based methods
For simplicity’s sake, when describing word
frequency-based methods, we assume that vocab-

ulary identifiers correspond to frequency rank (ac-
cording to a training corpus or other reference cor-
pus) and hence the top-K first items in a vocabulary
list are the top-K most frequent words/segments
from the training corpus. The choice of K deter-
mines a static subset Vf of V where |Vf | = K.
Then V = Vf and the parameters W, b of the soft-
max output layer are sub-selected accordingly.

Word frequency-based vocabulary selection is
not a viable method on its own — the quality degra-
dation is simply too large to be acceptable (Shi and
Knight, 2017) — but it constitutes an important
common back-bone for several of the more accu-
rate methods discussed below as it is an easy way
to include common segments like function words,
punctuation, etc. in the output vocabulary.

2.2 Word alignment-based methods
Word alignment-based vocabulary selection (Jean
et al., 2015a) has been part of the NMT toolbox
since the earliest competitive NMT systems. Jean
et al. (2015b) first introduce the concept in essen-
tially the form it is widely being used today2 in their
submission to the WMT15 shared task (Bojar et al.,
2015). Later work (Mi et al., 2016; L’Hostis et al.,
2016; Shi and Knight, 2017) rediscover mostly the
same setup or confirm it to be one of the strongest
methods amongst a number of other approaches.

Given a source sentence x1:m and a word-
alignment dictionary with alignment probabilities
between source and target segments pa(y|x), this
method creates Va =

⋃
t∈1:m Va(xt), where for

instance Va(xt) = {y ∈ V : pa(y|xt) ≥ p} for
a given threshold p. Other criteria for construct-
ing Va(xt) are possible: such as K ′ most probable
aligned target words or combinations of multiple
criteria.

Finally, the alignment-based method is typically
combined with the frequency-based method as
V = Vf ∪ Va. Word alignment thus extends and
refines the target word-frequency method by map-
ping source sentence context to plausible target lan-
guage vocabulary candidates (ranked or selected
by translation probability). Note, that Va is con-
structed dynamically once per source sentence or
batch which forces a dynamic construction of V .

2.3 Earlier LSH-based approaches
Locality Sensitive Hashing (LSH) as a way to accel-
erate the computation of inner products has been

2See submissions to the recent shared tasks on efficient
NMT (Hayashi et al., 2019; Heafield et al., 2020, 2021).
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investigated as early as 2014 (Vijayanarasimhan
et al.) for handling large vocabularies and remains
an active area of research for more general neural
network training (see e.g. Chen et al., 2020).

Previous work on using LSH in NMT (Shi and
Knight, 2017; Shi et al., 2018) takes an approach
that is analogous to the alignment-based methods
in the sense that a static vocabulary based on word
frequency is extended with target vocabulary items
that are plausible in the dynamic context of the
decoded sentence. However, instead of mapping
source segments to target segments via alignment
dictionary look-up, the decoder hypothesis state
vector h is used to find set Vl(h) of the k target
vocabulary items y with the corresponding output
layer embedding vector wy most similar to h. As
before, the static word-frequency based vocabu-
lary set is merged with the contextual set to form
V (h) = Vf ∪ Vl(h). Note however, that V now
depends dynamically on each decoder state h.

The specifics of how similarity between the vec-
tors is defined determine the speed and accuracy of
the method. The output layer itself can be seen as
a similarity function (inner product with softmax
normalization) that has perfect accuracy but is least
interesting in terms of speed.

Shi and Knight (2017) and Shi et al. (2018) use
Winner-Take-All (WTA; Yagnik et al., 2011) hash-
ing with banding to approximate the output layer.
However, the type of similarity as expressed via
WTA hashing seems to result in fairly low accu-
racy and therefore needs to be merged with several
thousand most frequent vocabulary items to remain
competitive in terms of translation quality com-
pared to the full vocabulary.

2.4 Selection as binary classification

L’Hostis et al. (2016) and more recently Domhan
et al. (2022) propose to approach the vocabulary
selection problem as a per target vocabulary item
binary classification problem where each of |V | bi-
nary classifiers decides if the corresponding target
vocabulary item should be included in the sentence-
level (or batch-level) target vocabulary.

L’Hostis et al. (2016) train a suite of |V | binary
SVM classifiers which are learned independently
from the neural model. The set of words in the
source sentence serves as a sparse bag-of-words
feature set.

Domhan et al. (2022) train their "neural vocab-
ulary selection" model jointly with the translation

model via a multi-objective cost function. They
construct z = σ(maxpool(WH + b)) where H ∈
Rd×m is the hidden encoder context, W ∈ R|V |×d,
b ∈ R|V | and z ∈ R|V |.

Generally, for both methods, given the binary
classifier zy corresponding to the vocabulary entry
y, we have V = {y ∈ V : zy(x1:m) ≥ λ} where
λ is the decision threshold for including y in V .
V is constructed dynamically once per sentence
and both methods do not need to be merged with
the word-frequency-based vocabulary list Vf . The
threshold λ seems to be sufficient to control for
speed versus accuracy trade-offs.

3 Our LSH-based method

Our work contrasts with prior research on LSH for
NMT by Shi and Knight (2017); Shi et al. (2018)
in that:

1. We use SimHash hash instead of WTA hash.

2. We do not need to expand the LSH vocabulary
subset V by merging with a static list of the
most frequent words.

3. We do not need to merge V across batch and
beam entries.

4. We create V by finding the top-k small-
est Hamming distances, rather than banding
hashes and Cuckoo lookups.

5. Our target vocabulary is smaller than most
experiments in the above works which exper-
imented with target vocabulary sizes of 66k,
50k, 40k and 25k. We believe larger vocab-
ularies are unnecessary as a result of the use
of sub-word units (Sennrich et al., 2016) and
their variants. We use sub-word units while
the above works do not.

6. We are concerned with search errors intro-
duced by vocabulary selection as well as with
translation quality degradation. Quality met-
rics are often insensitive to errors caused by
deviation from an otherwise unfiltered vocab-
ulary.

3.1 SimHash for Softmax approximation

Prior research on the application of LSH for NMT
by Shi and Knight (2017); Shi et al. (2018) relies
on WTA hashing. We found SimHash (Charikar,
2002) to result in much lower search error.
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For a random normal vector r ∈ Rd and an
input vector v (of the same size as r), SimHash
introduces the following hash function Hr:

Hr(v) =

{
1 if v · r ≥ 0
0 if v · r < 0

which maps v to a single bit. The above is general-
ized to c bits by generating and applying c different
random vectors and concatenating the results. This
can be simplified via multiplying with a projection
matrix R ∈ Rd×c and the same dimension-wise
mapping to bits of the result.3 We call this function
HR(v) : Rd → {0, 1}c and use it to obtain the LSH
representation of v. Further, D(HR(u),HR(v)) de-
notes the bit-wise Hamming distance between the
hashed binary representations of vectors u, v.

SimHash has been designed in such a way that
for two vectors u, v for which the angle θ(u, v)
between these vectors is small, the Hamming dis-
tance D over their hashed binary vectors should
be small as well.4 Naturally, the cosine similarity
cos (θ(u, v)) will be high for such cases.

It is this property which allows us to apply a
series of transformations and approximations to
find a promising candidate for the most probable
vocabulary item î for a decoder state vector h (and
the output layer parameters W and b) using fast
Hamming distance computation:

î = argmax
i∈V

softmax
i

(Wh+ b) (3)

= argmax
i∈V

wi · h+ bi (4)

≈ argmax
i∈V

wi · h (5)

≈ argmax
i∈V

cos (θ(wi, h)) (6)

≈ argmax
i∈V

cos
(
D(HR(wi),HR(h))

π

c

)
(7)

= argmin
i∈V

D(HR(wi),HR(h)). (8)

In every step above which leads with ≈, we in-
troduce a new approximation to the previous step,
potentially reducing the accuracy of the search for

3Following the LSH implementation in FAISS, we use a
Gaussian random rotation matrix R ∈ Rd×c. If c ≥ d, FAISS
constructs a matrix R ∈ Rc×c composed of c orthonormal
column vectors via QR factorization and then drops rows until
we have R ∈ Rd×c.

4See Charikar (2002) for details. In short, the probability
that the hash values for two vectors u, v match is given as
Pr(Hr(u) = Hr(v)) = 1 − θ(u,v)

π
. When hashing to bit

vectors of length c, the Hamming distance between these bit
vectors D(HR(u),HR(v)) approximates θ(u,v)

π
c.

î. When moving from Equation 4 to Equation 5, we
drop the bias term bi as it cannot be easily incorpo-
rated in the search in Hamming space. For models
with large values in the bias vector b, this will inad-
vertently lead to search errors. The easy solution to
this problem is to drop the bias term during training
as well. More on this in Section 5.1.

In Equation 6 we ignore the magnitude of the
vectors. This seems to not matter much for the
search and we leave investigating the effects or
potential mitigation for future work.5

Equation 7 sees the introduction of the SimHash
LSH as we approximate the angle θ via the Ham-
ming distance. Finally, in Equation 8 we can find
the most promising vocabulary candidate by di-
rectly minimizing the Hamming distance; note that
we flipped from argmax to argmin.

3.2 Integrating LSH with beam search

In Section 2, we categorized methods of vocabulary
selection by how and when they construct the set
of subselected vocabulary V .

Before translation begins, the output embedding
weights W are hashed once using the SimHash
function HR(W ) to create a set L ∈ {0, 1}|V |×c

of LSH keys, one for each target vocabulary entry
from V :

L = {l1, . . . , l|V |} = HR(W ). (9)

Similar to the other LSH-based methods from
Section 2.3, we construct V (h) dynamically for
every decoder state h. During each decoding step
the same hash function is applied to the decoder
state h to obtain a hashed binary query q ∈ {0, 1}c:

q = HR(h).

If the transformations in Equation 3 to Equa-
tion 8 were exact, we would only need to find the
vocabulary candidate i corresponding to key li ∈ L
with the lowest Hamming distance from the query
q (in the case of greedy decoding). However, all
the approximations lead to search errors and we in-
vestigate a set of k best scoring candidates. This set

5The magnitudes of decoder states and weight vectors
probably do not vary a lot. However, decoder states h would
be normalized to norm

√
d via layer normalization at no ad-

ditional computational cost if we dropped the affine transfor-
mation after layer normalization. The weight vectors of the
output layer could be normalized to unit length after each
parameter update during training or via weight normalization
(Salimans and Kingma, 2016).
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#sentences
Dataset de-en fr-en es-en

Europarl (Train) 1,920,209 2,007,723 1,965,734
dev2006 (Dev) 2,000 2,000 2,000
nc-dev2007 (Test) 1057 1,057 1,057

Table 1: Data used for training, validation and testing.

is our per decoder state vocabulary subset V (h):

V (h) = argmin
V ′⊂V
|V ′|=k

∑
i∈V ′

D(q, li).

In cases where there are more than k elements that
would qualify based on their Hamming distance,
we retrieve only the first k found. Note, this con-
cludes our construction of V and unlike Shi et al.
(2018), we do not need to extend V with a large
word-frequency list.

Next, for every decoder state h, W ∈ R|V |×d

and b ∈ R|V | are subselected from the output layer
parameters W and b, respectively, by restricting en-
tries to those corresponding to vocabulary indices
in V . W and b replace W and b in calculating soft-
max and the best output token, ŷt, replacing the
standard output layer computation in Equation 1
with Equation 2.

The number of hashes per input vector c and the
number of target vocabulary to keep k are hyperpa-
rameters in our LSH implementation.

4 Experimental Setup

We train a model with 6-layer Trans-
former (Vaswani et al., 2017) encoder with
6-layer SSRU (Kim et al., 2019) decoder, trained
using Marian (Junczys-Dowmunt et al., 2018)
and using the same toolkit for inference. This is
a strong and realistic model for production MT
environments which balances translation quality
and efficiency.

We use SentencePiece (Kudo and Richardson,
2018) with 32,000 tokens for all models, shared
between both source and target language.

We use the FAISS (Johnson et al., 2019) im-
plementation of SimHash hash described in Sec-
tion 3.1.

We trained with four translation directions
(German-English, English-German, Spanish-
English, and French-English) Europarl cor-
pus (Koehn, 2005), validated on the held out
development set from the same corpus (‘dev2006’)

and tested on the out-of-domain New Commentary
test set (‘nc-dev2007’). See Table 1 for data set
sizes. Results are reported for German-English
in Section 5, results for other language pairs are
available in the Appendix 7.2.

We use a two stage training procedure. In the
first stage, we train a translation model directly on
the parallel data. We create a synthetic parallel
corpus by translating the source side of the parallel
corpus with the initial model. The original source
is paired with these translations to form the syn-
thetic corpus for stage two. For the second stage
of training, we then consider two cases: (1) where
the 2nd stage model topology is identical (i.e. the
original model and the new model both have or
lack the output bias) and (2) where there is some
change in model topology.

For case (1), we use self-training: the first-stage
model are fine-tuned using the synthetic corpus.
For case (2): we use sequence-level knowledge
distillation: new models are distilled (Hinton et al.,
2015) by training from scratch on the synthetic
corpus. By abuse of terminology, in both scenarios,
we call the first-stage model the teacher, and the
fine-tuned or distilled model the student.

Translation quality was measured using Sacre-
BLEU (Post, 2018). We define search errors as the
number of lines changed in the translation output
when vocabulary selection is applied.

We measure the time taken to do inference on
one core of a 12 core Intel Xeon CPU, on a PC
with 16GB RAM, running Ubuntu 20.04 within a
WSL2 hypervisor.

For short listing, we create a candidate list of tar-
get sub-word translations for each source sub-word
by using word alignments obtained from FastAl-
ign (Dyer et al., 2013). A shortlist of target sub-
words is created before the translation of each sen-
tence to constrain the possible output sub-words.

5 Results and analysis

Table 2 shows results on the full teacher-student
training procedure, compared to the baseline,
teacher, and lexical shortlisting. Our proposed
method maintains the same translation quality as
greedy search, with a 57% to 80% speedup. By
contrast, shortlisting has search errors in 12% to
25% of sentences, with a speedup of between 67%
to 74%.
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de-en fr-en es-en

speed ↑ BLEU ↑ search
error

↓ speed ↑ BLEU ↑ search
error

↓ speed ↑ BLEU ↑ search
error

↓

Teacher 2.84 28.9 2.73 31.0 2.72 40.5
Student 2.71 (-5%) 29.9 2.91 (+7%) 31.9 3.01 (+11%) 42.2

Student w/ shortlist (baseline) 4.76 (+68%) 29.6 25% 4.69 (+72%) 31.8 12% 4.73 (+74%) 42.0 17%
Student w/ LSH (this work) 4.46 (+57%) 29.9 0% 4.92 (+80%) 31.9 0% 5.08 (+87%) 42.2 0%

Table 2: Translation speed (sent./sec.), quality (BLEU) and search error for the teacher model, student model with
full vocabulary, student model with the shortlist, and student model with LSH vocabulary selection. Hyperparameters
chosen for lowest possible search error. Models trained with no bias and with label smoothing, and use a beam size
of 1.

Baseline Using LSH
Model BLEU ↑ BLEU ↑ search error ↓

With bias 28.9 0.1 100%
With bias LS 29.7 0.0 100%

No bias 29.1 29.1 7%
No bias LS 29.2 29.2 6%

Table 3: Translation quality (BLEU) for baseline teacher
models, and when using LSH (k = 1024, c = 2048).

In order to understand the contributions of differ-
ent aspects of the method, we perform additional
experiments for analysis.

5.1 The effect of output bias

While the softmax of Equation 1 is dependent on
the output bias b as well as output weights W , there
is no easy way to include the bias b in the hashed
representation of L in Equation 9. To see what ef-
fect this omission by the LSH hashing function has
on translation, we will train and evaluate models
with and without the output bias.

The first column in Table 3 compares the trans-
lation quality between models with and without
output bias, based on BLEU scores. Models with
output bias and training with label smoothing (LS)
of 0.1 improve translation quality.

Column two and three in Table 3 show the con-
sequences of applying LSH with the output vocabu-
lary size of k = 1024 and the number of hashes set
to c = 2048 to the baseline models. LSH causes
overwhelming search errors in models with output
biases, leading to catastrophic collapse in BLEU.
This is unsurprising as the LSH does not take the
bias into account when computing similarity. On
the other hand, models without output bias are not
hugely affected by LSH. Between 2% to 7% of the
translations suffer from search errors but this has a
negligible affect on translation quality.

Model Beam 1 Beam 4

Teacher with bias 28.9 29.9
+ Student no bias 29.1 29.9
+ Student no bias LS 29.6 30.4

Teacher with bias LS 29.7 30.3
+ Student no bias 28.7 29.3
+ Student no bias LS 29.6 30.2

Teacher no bias 29.1 29.8
+ Student no bias 30.1 30.9
+ Student no bias LS 30.2 30.8

Teacher no bias LS 29.2 29.9
+ Student no bias 30.0 30.4
+ Student no bias LS 29.9 30.5

Table 4: Translation quality of distilled models on held-
out test set (BLEU) with different beam widths.

Based on these results, further experiments with
LSH only use models without output bias.

5.2 Comparison with lexical shortlisting

Figure 2: Comparison of translation speed (sent./sec.)
vs search error between LSH and lexical shortlisting.
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Beam 1 Beam 4

speed ↑ BLEU ↑ search
error

↓ speed ↑ BLEU ↑ search
error

↓

Teacher model 2.84 29.2 1.52 29.9
Student model 2.71 (-5%) 29.9 1.47 (-3%) 30.5

LSH 3.94 (+39%) 29.9 0% 2.01 (+32%) 30.5 13%

Table 5: Translation speed (sent./sec.), quality (BLEU) and search error for student model (trained and distilled with
label smoothing, without bias). Compared with teacher without bias or label smoothing. LSH is using parameters
1024-best vocab items, and a hash size of 2048.

Figure 2 shows the translation speed / search
error trade-off for LSH and lexical shortlisting
for various hyperparameter settings. For short-
listing, We experimented with |Vf | = 100 and
|Va| = 10, 25, 50, 75 and 100. We have not ob-
served significant changes for larger |Va|. The
methods were applied to a model trained, then dis-
tilled with no output bias and with layer normal-
ization. Our training procedure and LSH inference
algorithm is not only faster than shortlisting but
also result in less search errors.

5.3 LSH in teacher-student training
The Hamming distance of the hash vectors in Equa-
tion 7 is used in an approximate similarity measure
between the decoder state h and each embedding
vector corresponding to vocabulary items in V . We
would like to increase this similarity for the correct
output and decrease it for incorrect output at each
time step. Kim and Rush (2016) demonstrated that
knowledge distillation create student models with a
more peaked distribution, i.e. the probability mass
is concentrated around only few vocabulary words.
This likely carries over into the space of Hamming
distances, separating similar vector pairs from dis-
similar ones, a potentially useful phenomenon that
the search can take advantage of. See also Sec-
tion 5.6 for similar considerations on the effects of
label smoothing.

Figure 3 shows the trade-off between the LSH
top-k versus search errors, for teacher models with-
out and with output bias, and student models with-
out bias, respectively. Similarly, Figure 4 shows
the trade-off with the number of hashes c used in
LSH. These plots also show that:

1. teacher-student training significantly reduces
LSH search errors,

2. teacher models with label smoothing have
lower search errors,

3. student models without label smoothing have
lower search errors,

4. all student models converges to minimal, or
even zero, search errors with increased top-k.

5.4 Translation speed vs hash size
Predictably, translation speed increases if the LSH
parameters decreases. For example, Figure 5 shows
the translation speed when the number of hashes
are varied. At very low hash counts, the systems of-
ten output lengthy sentences with repetitive gibber-
ish, lowering speed. Of course, this has a negative
impact on search errors and translation quality.

5.5 Larger beam size
Table 5 shows translation quality when using a
larger beam which, as expected, is higher in all
cases than using beam width 1.

However, LSH vocabulary selection causes more
search errors for larger beam sizes. Figure 6 com-
pare the search errors for the same model using
beam width 1 and 4 by varying the LSH hyperpa-
rameters. The same conclusion can be drawn from
Table 5 (Beam 4).

A possible cause for this increased search error
is in the calculation of the softmax denominator.
The denominator for each beam is the sum of logits
in the beam. When using vocabulary selection,
the denominator is approximated by calculating it
only over a k-best subset of the logits. The softmax
probability would be distorted if the excluded logits
contain significant probability mass.

This is not an issue with beam size 1 as an ap-
proximation error in the denominator would change
the absolute probabilities but won’t affect the rela-
tive probabilities within the beam.

However, for beam size larger than one, probabil-
ities across different beams are compared. A logit
approximation error in this case would distort the
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(a) without output bias (b) with output bias

Figure 3: LSH k-best vs. search errors.

(a) without output bias
(b) with output bias

Figure 4: LSH #hashes vs. search errors.

(a) Without bias (b) With bias

Figure 5: Translation speed (sent./sec.) vs #hashes
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(a) Search error vs. #hashes (b) Search error vs. LSH k-best

Figure 6: Search error for beam size 1 & 4: teacher LS + student LS.

(a) teacher without output bias (b) teacher with output bias

Figure 7: LSH #hashes vs. search errors for teacher models, beam width 4.

comparison between vocabulary items in different
beam, leading to search errors.

5.6 Label smoothing
While label smoothing (Szegedy et al., 2016) can
improve translation quality—by spreading the prob-
ability over many output classes to avoid over-
fitting— models with label smoothing are detrimen-
tally affected by larger beam widths when LSH is
used. Figure 7 shows that both student and teacher
models have higher search errors when trained with
label smoothing. Since label smoothing distributes
a portion of the probability mass over the entire vo-
cabulary, the excluded logits will contain a larger
amount of the total probability mass, exacerbat-
ing the problem caused by the larger beam size.
Since label smoothing may also reduce informa-
tion transfer in knowledge distillation (Müller et al.,

2019), we recommend training students without la-
bel smoothing, especially when using larger beams.

5.7 Self-training vs distillation

Thus far, we have fined-tuned (’self-trained’) mod-
els where the second stage model is architecturally
identical to the first, otherwise we distilled a stu-
dent model from the first stage model.

For first stage models with no bias, Table 6
shows that fine-tuning result in better translation
quality than training from scratch with the synthetic
data.

However, the fine-tuned models have slightly
higher search errors, nevertheless both training
strategies result in models which have much lower
search errors than the original first stage model,
Figure 8.
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(a) no label smoothing (b) label smoothing 0.1

Figure 8: LSH Fine-tuned vs. distilled models. Both are teachers & student with no bias

Model Beam 1 Beam 4

Teacher no bias 29.1 29.8

+ Self-trained no bias 30.1 30.9
+ Self-trained no bias LS 30.2 30.8

+ Distilled no bias 29.3 29.9
+ Distilled no bias LS 29.5 30.5

Teacher no bias LS 29.2 29.9

+ Self-trained no bias 30.0 30.4
+ Self-trained no bias LS 29.9 30.5

+ Distilled no bias 29.5 30.3
+ Distilled no bias LS 29.8 30.3

Table 6: Translation quality of fine-tuned vs. distilled
models (BLEU).

6 Conclusion

We demonstrate that, with the proper training pro-
cedure, using locality sensitive hashing for vo-
cabulary selection can significantly boost transla-
tion speed while consistently producing negligible
search errors.

We make the following recommendations for use
in practice:

For existing models and greedy search, perhaps
where we may not know the exact training proce-
dure and model, we can create a model that works
with LSH vocabulary selection by distilling the
original model to a comparable model without out-
put bias. Using label smoothing in the distillation
can improve its translation quality if the original

model was not trained with it. There will be min-
imal search errors in using LSH while achieving
significant speed improvement.

To train a new model for use with greedy search,
a two stage procedure should also be used where
the second stage is fine-tuned on the output of
the first. Both stages should train models with-
out output bias. Again, the fine-tuned models can
be trained with label smoothing without affecting
the effectiveness of LSH.

LSH vocabulary selection introduce search er-
rors for larger beam sizes, especially when label
smoothing is used during fine-tuning. Therefore, if
using larger beams in inference, it is recommended
not to use label smoothing in the distillation or
fine-tuning step.
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7 Appendix

7.1 Practical Considerations

Here, we discuss some practical considerations for
use of the LSH decoding.

To train a Marian model without an output bias,
add the following switches.
Marian training command:6

--output-omit-bias

To train without label smoothing:

--label-smoothing 0

To use the LSH vocabulary selection during infer-
ence, execute marian-decoder with the following
switches:

--output-approx-knn [k] [c]

where [k] is the number of k-best vocabulary items
and [c] is the number of hashes to use.

7.2 Results for Additional Language Pairs

Model de-en fr-en es-en
With bias 28.9 31.0 40.5
With bias LS 29.7 31.4 41.3
No bias 29.1 31.3 41.0
No bias LS 29.2 31.2 41.1

Table 7: Baseline translation quality (BLEU) w/ & w/o
bias and w/ or w/o label smoothing.

Model de-en fr-en es-en

With bias-
0.1

100%
0.1

100%
0.0

100%

With bias LS-
0.0

100%
0.0

100%
0.0

100%

No bias-
29.1
7%

31.2
4%

41.0
2%

No bias LS-
29.2
6%

31.1
4%

41.1
2%

Table 8: Translation quality (BLEU) & search errors
(percentages) when using LSH (k = 1024, c = 2048).

6github.com/marian-nmt/marian

Beam 1 Beam 4
Model de-en fr-en es-en de-en fr-en es-en
Teacher with bias 28.9 31.0 40.5 29.9 31.6 41.4
+ Student no bias 29.1 31.3 40.1 29.9 31.8 40.9
+ Student no bias LS 29.6 31.6 41.4 30.4 32.5 42.0
Teacher with bias LS 29.7 31.4 41.3 30.3 32.4 42.2
+ Student no bias 28.7 31.2 40.8 29.3 31.8 41.3
+ Student no bias LS 29.6 31.5 41.0 30.2 32.1 41.9
Teacher no bias 29.1 31.3 41.0 29.8 31.8 41.5
+ Student no bias 30.1 31.4 41.8 30.9 32.1 42.2
+ Student no bias LS 30.2 32.2 41.8 30.8 32.4 42.5
Teacher no bias LS 29.2 31.2 41.1 29.9 32.3 41.8
+ Student no bias 30.0 32.5 41.9 30.4 32.8 42.3
+ Student no bias LS 29.9 31.9 42.2 30.5 32.8 42.7

Table 9: Translation quality of distilled models on held-
out test set (BLEU) with different beam widths.

Our results thus far have been on language pairs
with English as the target language. We trained and
finetuned English to German models, both without
output bias and label smoothing. Figure 17 shows
that LSH vocabulary selection works just as well
when German is the target language.

https://github.com/marian-nmt/marian
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(a) de-en (b) fr-en (c) es-en

Figure 9: LSH k-best vs. search errors for models without output bias.

(a) de-en (b) fr-en (c) es-en

Figure 10: LSH k-best vs. search errors for models with output bias.

(a) de-en (b) fr-en (c) es-en

Figure 11: LSH #hashes vs. search errors for models without output bias.

(a) de-en (b) fr-en (c) es-en

Figure 12: LSH #hashes vs. search errors for models with output bias.

(a) de-en (b) fr-en (c) es-en

Figure 13: Search errors vs. decrease in BLEU.
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(a) de-en (b) fr-en (c) es-en

Figure 14: LSH #hashes vs. search errors for teacher models without output bias using beam width of 4.

(a) de-en (b) fr-en (c) es-en

Figure 15: LSH #hashes vs. search errors for teacher models with output bias using beam width of 4.

(a) de-en
(b) fr-en (c) es-en

Figure 16: Comparison of translation speed (sent./sec.) vs search error between LSH and lexical shortlisting.

Figure 17: English-German results


