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Abstract

We present the joint contribution of IST and Un-
babel to the WMT 2022 Shared Task on Quality
Estimation (QE). Our team participated on all
three subtasks: (i) Sentence and Word-level
Quality Prediction; (ii) Explainable QE; and
(iii) Critical Error Detection. For all tasks we
build on top of the COMET framework, connect-
ing it with the predictor-estimator architecture
of OPENKIWI, and equipping it with a word-
level sequence tagger and an explanation extrac-
tor. Our results suggest that incorporating refer-
ences during pretraining improves performance
across several language pairs on downstream
tasks, and that jointly training with sentence
and word-level objectives yields a further boost.
Furthermore, combining attention and gradient
information proved to be the top strategy for
extracting good explanations of sentence-level
QE models. Overall, our submissions achieved
the best results for all three tasks for almost all
language pairs by a considerable margin.1

1 Introduction

Quality Estimation (QE) is the task of automati-
cally assigning a quality score to a machine trans-
lation output without depending on reference trans-
lations (Specia et al., 2018). In this paper, we de-
scribe the joint contribution of Instituto Superior
Técnico (IST) and Unbabel to the WMT22 Quality
Estimation shared task (Zerva et al., 2022), where
systems were submitted to three tasks: (i) Sentence
and Word-level Quality Prediction; (ii) Explainable
QE; and (iii) Critical Error Detection.

This year, we leverage the similarity between the
tasks of MT evaluation and QE and bring together
the strengths of two frameworks, COMET (Rei
et al., 2020), which has been originally devel-
oped for reference-based MT evaluation, and
OPENKIWI (Kepler et al., 2019), which has been
developed for word-level and sentence-level QE.

∗Equal contribution. � ricardo.rei@unbabel.com
1https://github.com/Unbabel/COMET

Namely, we implement some of the features of
the latter, as well as other new features, into the
COMET framework. The result is COMETKIWI,
which links the predictor-estimator architecture
with COMET training-style, and incorporates word-
level sequence tagging.

Given that some language pairs (LPs) in the test
set were not present in the training data, we aimed
at developing QE systems that achieve good multi-
lingual generalization and that are flexible enough
to account for unseen languages through few-shot
training. To do so, we start by pretraining our QE
models on Direct Assessments (DAs) annotations
from the previous year’s Metrics shared task as it
was shown to be beneficial in our previous submis-
sion (Zerva et al., 2021). Then we fine-tune our
models with the data made available by the shared
task.2 We experimented with different pretrained
multilingual transformers as the backbones of our
models, and we developed new explainability meth-
ods to interpret them. We describe our systems and
their training strategies in Section 3. Overall, our
main contributions are:

• We combine the strengths of COMET and
OPENKIWI, leading to COMETKIWI, a model
that adopts COMET training features useful
for multilingual generalization along with the
predictor-estimator architecture of OPENKIWI.

• Following our previous work (Zerva et al., 2021),
we show the importance of pretraining QE mod-
els on annotations from the Metrics shared task.

• We show that we can improve results for new
LPs with only 500 examples without harming
correlations for other LPs.

• We propose a new interpretability method that
uses attention and gradient information along

2For zero-shot LPs we use 500 training examples which
means we turn it into a few-shot setting. The only exception
is English→Yoruba which was kept zero-shot.

ricardo.rei@unbabel.com
https://github.com/Unbabel/COMET
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with a head-level scalar mix module that further
refines the relevance of attention heads.

Our submitted systems achieve the best mul-
tilingual results on all tracks by a consider-
able margin: for sentence-level DA our system
achieved a 0.572 Spearman correlation (+7% than
the second best system); for word-level our sys-
tem achieved a 0.341 MCC score (+2.4% than the
second best system); and for Explainable QE our
system achieved 0.486 R@K score (+10% than the
second best system). The official results for all LPs
are presented in Table 6 in the appendix.

2 Background

Quality Estimation. QE systems are usually de-
signed according to the granularity in which pre-
dictions are made, such as sentence and word-level.
In sentence-level QE, the goal is to predict a single
quality score ŷ ∈ R given the whole source and
its translation as input. Word-level QE works in
a lower granularity level, with the goal of predict-
ing binary quality labels ŷi ∈ {OK, BAD} for all
1 ≤ i ≤ n machine-translated words, indicating
whether that word is a translation error or not.

Transformers. The multi-head attention mech-
anism is the key component in transformers, be-
ing responsible for contextualizing the informa-
tion within and across input sentences (Vaswani
et al., 2017). Concretely, given as input a matrix
Q ∈ Rn×d containing d-dimensional representa-
tions for n queries, and matrices K,V ∈ Rm×d

for m keys and values, the scaled dot-product at-
tention at a single head is computed as:

att(Q,K,V ) = π

(
QK⊤
√
d

)
︸ ︷︷ ︸
Z∈Rn×m

V ∈ Rn×d. (1)

The π transformation maps rows to distributions,
with softmax being the most common choice,
π(Z)ij = softmax(zi)j . Multi-head attention is
computed by evoking Eq. 1 in parallel for each
head h:

headh(Q,K,V ) = att(QWQ
h ,KWK

h ,V W V
h ),

where WQ
h , WK

h , W V
h are learnable linear trans-

formations. Finally, the output of the multi-head
attention module at the ℓ-th layer is a set of hidden
states Hℓ ∈ Rn×d formed via the concatenation of

[cls] target [sep] source [eos]

Pre-trained Encoder

Scalar Mix

[cls] First Piece Select.

Feed Forward Feed Forward

Sentence score
ŷ ∈ R

Word labels
ŷi ∈ {OK, BAD}

Figure 1: General architecture of COMETKIWI for
sentence-level (left part) and word-level QE (right part).

all hℓ,1, ...,hℓ,H heads in that layer followed by a
learnable linear transformation WO:

Hℓ = concat(hℓ,1, ...,hℓ,H)WO.

The hidden states are further refined through
position-wise feed-forward blocks and residual con-
nections to obtain a final representation: Hℓ =
FFN(Hℓ) +Hℓ. Transformers with only encoder-
blocks, such as BERT (Devlin et al., 2019) and
XLM (Conneau et al., 2020), have only the encoder
self-attention, and thus m = n.

3 Implemented Systems

The overall architecture of our models is shown
in Figure 1. The machine translated sentence t =
⟨t1, ..., tn⟩ and its source sentence counterpart s =
⟨s1, ..., sm⟩ are concatenated and passed as input to
the encoder, which produces d-dimensional hidden
state vectors H0, ...,HL for each layer 0 ≤ ℓ ≤ L,
where Hi ∈ R(n+m)×d, where ℓ = 0 corresponds
to the embedding layer. Next, all hidden states are
fed to a scalar mix module (Peters et al., 2018) that
learns a weighted sum of the hidden states of each
layer of the encoder, producing a new sequence of
aggregated hidden states Hmix as follows:

Hmix = λ

L∑
ℓ=0

βℓHℓ, (2)

where λ is a scalar trainable parameter, β ∈ △L,
is given by β = sparsemax(ϕ) using a sparse
transformation (Martins and Astudillo, 2016), with
ϕ ∈ RL as learnable parameters and △L := {β ∈
RL : 1⊤β = 1,β ≥ 0}3.

3As it has been shown in (Rei et al., 2022) not all layers are
relevant and thus, using sparsemax we learn to ignore layers
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For sentence-level models, the hidden state of
the first token (<cls>) is used as sentence repre-
sentation Hmix,0 ∈ Rd, which, in turn, is passed
to a 2-layered feed-forward module in order to get
a sentence score prediction ŷ ∈ R. For word-level
models, we first retrieve the hidden state vectors
associated with the first word piece of each ma-
chine translated token, and then pass them to a
linear projection to get word-level predictions ŷi ∈
{OK, BAD}, ∀1≤i≤n. Moreover, attention matrices
A1,1, ...,AL,H for all layers and heads are also re-
covered as a by-product of the forward propagation.

Pretraining on Metrics Data. Every year, the
WMT News Translation shared task organizers col-
lect human judgments in the form of DAs. The col-
lective corpora of 2017, 2018, and 2019 contain 24
LPs and a total of 657k samples with source, target,
reference, and DA score. We follow our experi-
ments from last year (Zerva et al., 2021) and start
by pretraining our QE models on this data using the
learning objective proposed by UniTE (Wan et al.,
2022), which incorporates reference translations
into training and thus acts as data augmentation.

Setting pretrained transformers as encoders.
We follow the recent trend (Kepler et al., 2019;
Ranasinghe et al., 2020) and experiment with
three different pretrained multilingual transform-
ers as the encoder layer of our models: XLM-
R Large (Conneau et al., 2020),4 InfoXLM
Large (Chi et al., 2021),5 and RemBERT (Chung
et al., 2021).6 XLM-R and InfoXLM consist of
24 encoder blocks with 16 attention heads each,
whereas RemBERT has 32 encoder blocks with 18
attention heads each.

3.1 Task 1: Quality prediction

After the pretraining phase, we adapt our models to
the released QE data using source and translation
(i.e., in this phase we do not include references) to
the different type of quality assessments provided,
namely, DA and HTER7 from the MLQE-PE cor-
pus (Fomicheva et al., 2022) and Multidimensional
Quality Metrics (MQM) annotations from WMT
2020 and 2021 (Freitag et al., 2021a,b).

that do not help in the task at hands
4https://huggingface.co/xlm-roberta-large
5https://huggingface.co/microsoft/

infoxlm-large
6https://huggingface.co/google/rembert
7HTERs are available only for word-level subtasks.

3.1.1 Sentence-level quality prediction
For the sentence-level QE task we consider a multi-
task setting (using sentence scores alongside su-
pervision from OK/BAD tags) and the sentence-
level only setting, with supervision only from the
sentence-level quality assessment y. We found
that adding the word-level supervision was benefi-
cial for models built on top of InfoXLM. For the
sentence-level supervision we used both DA and
MQM scores. In this multi-task setting we use a
combined loss as described in Eq. 5:

Lsent(θ) =
1

2
(y − ŷ(θ))2 (3)

Lword(θ) = − 1

n

n∑
i=1

wyi log pθ(yi) (4)

L(θ) = λsLsent(θ) + λwLword(θ), (5)

where w ∈ R2 represents the class weights given
for OK and BAD tags, and λs, λw are used to weigh
the combination of the sentence and word-level
losses, respectively. Note that λs = 1 and λw = 0
yields a fully sentence-level model.

Few-shot language adaptation. Since in this
shared task submissions are tested on 5 LPs for
which there is no official training data (km-en, ps-
en, en-ja, en-cs, en-yo), we experimented with few-
shot adaptation using half of the data released in
the official development set. The official develop-
ment set has 1K examples for each language pair
(except en-yo for which there is no available data).
To perform few-shot language adaptation we split
the data into two halves: one for fine-tuning and
another for validation.

Ensembling models. For our final submission
for Direct Assessments we combine six multilin-
gual systems using different hyperparameters by
computing an weighted average of their outputs,
where the weights for each language pair were
tuned with Optuna (Akiba et al., 2019). The major
difference between the ensembled models comes
from the underlying encoder and whether or not
they used word-level supervision. Three models
of our final ensemble use word-level supervision
while the other three use only sentence-level super-
vision. Regarding the encoder, three models use
InfoXLM, two models use RemBERT and a single
model uses XLM-R.

Our final submission for MQM predictions was
an ensemble of eleven multilingual systems, which

https://huggingface.co/xlm-roberta-large
https://huggingface.co/microsoft/infoxlm-large
https://huggingface.co/microsoft/infoxlm-large
https://huggingface.co/google/rembert
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combined the six systems used in the DA ensemble
as well as five additional systems. For these ad-
ditional systems, we made two major adjustments
to the fine-tuning process. First, we filtered the
DA data to the languages that were included in the
MQM LPs, namely ru-en, en-zh, and en-de. Sec-
ond, we incorporated the MQM data into the fine-
tuning process, either as an additional fine-tuning
step after fine-tuning on the language-filtered DA
data, or by concatenating the DA and MQM data
together. All additional systems used word-level
supervision in addition to sentence-level and used
InfoXLM as encoder.

3.1.2 Word-level quality prediction

Similarly, for the word-level QE tasks we experi-
mented with both the multi-task setting and word-
labels only (λs = 0 and λw = 1). Overall, we
found that adding the sentence-level supervision
was beneficial, especially for the languages pairs
included in the test-set. Nonetheless, for some LPs,
ignoring sentence-level supervision showed supe-
rior performance. Due to the mix of high-, mid- and
low-resource languages in the data, the distribution
of OK and BAD tags differs substantially between
LPs leading to inconsistent performance in terms
of MCC (see Table 5 in the appendix). To mitigate
this, for the word-level subtask, we prepend a lan-
guage prefix token to the beginning of the source
and target segments during training and testing.

Pretraining on post-edit corpora. Extending
the pretraining on Metrics data, we pretrain the
word-level models on two corpora that include
both word-level labels and sentence (HTER) scores,
namely QT21 (Specia et al., 2017) and APEQuest
(Ive et al., 2020). We compute the sentence-level
score, using translation edit rate (TER) (Snover
et al., 2006) between the target and the correspond-
ing post-edited sentence.

Ensembling models. For word-level we fol-
lowed a similar ensembling technique used for
sentence-level, namely we combine multiple sys-
tems trained with different hyperparameters, en-
coders and pre-training setups. In the case of word-
level predictions however, we need to resolve how
to aggregate multiple predictions into OK/BAD
tags. We use Optuna (Akiba et al., 2019) to choose
how to weight and combine the models based on
performance for each language pair on our internal
test-set and we compare three different approaches:

1. A naive “best-only” approach: we identify the
best model for each LP and use its predictions.

2. We ensemble the logits of each model: for each
input segment we compute an ensembles of log-
its as

∑
i∈Mwivi, where M is the set of mod-

els, wi is the weight of each model and vi the
model logit vector. We use Optuna to find the
optimal weight wi for each model in each LP.

3. We ensemble the predicted tags of each model:
for each input segment we compute an ensem-
bles of tags as α

∑
i∈Mwici, where ci is the

predicted class and α is the weight given for the
BAD class. We use Optuna to find the optimal
weights wi for each model and the optimal BAD

weight α for each LP.

In the final submission we combine five mod-
els for the post-edit originated LPs: a RemBERT
based model, an InfoXLM based model pretrained
on APEQuest and QT21, and three checkpoints that
are based on InfoXLM but use different parameters
for the BAD/OK weights and learning rate that were
found via Optuna. For MQM we also combine
five models, but this time instead of choosing three
checkpoints based on optimising weights and learn-
ing rate, we use three different checkpoints with
different training data mix on the relevant DA LPs,
as this seemed to impact the performance on MQM
word-level more than the weight ratios. Refer to §4
and Table 3 for more details.

3.2 Task 2: Explainable QE
The goal of the Explainable QE task is to iden-
tify machine translation errors without relying on
word-level label information. In other words, it can
be cast as an unsupervised word-level quality esti-
mation problem, where explanations can be seen
as highlights, representing the relevance of input
words w.r.t. the model’s prediction via continuous
scores, aiming at identifying tokens that were not
properly translated.

Several explainability methods can be used to ex-
tract highlights from a sentence-level model, such
as post-hoc (Ribeiro et al., 2016; Arras et al., 2016)
or inherently interpretable methods (Lei et al.,
2016; Guerreiro and Martins, 2021). In our submis-
sion, we opted to use attention-based methods as
they achieved the best results in the previous con-
strained track of the Explainable QE shared task
(Fomicheva et al., 2021). Concretely, we take in-
spiration in the method developed by Treviso et al.
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Direct Assessment

Encoder km-en ps-en en-ja en-cs en-mr ru-en ro-en en-zh en-de et-en si-en ne-en avg.

Baseline (Zerva et al., 2021)
XLM-R 0.615 0.601 0.295 0.535 0.419 0.703 0.828 0.513 0.500 0.806 0.565 0.793 0.598

Pretrained models
InfoXLM 0.619 0.603 0.328 0.510 0.462 0.731 0.829 0.554 0.516 0.803 0.561 0.777 0.608
RemBERT 0.600 0.621 0.338 0.525 0.447 0.680 0.818 0.487 0.491 0.810 0.525 0.747 0.591
XLM-R 0.610 0.579 0.325 0.503 0.405 0.715 0.832 0.541 0.514 0.782 0.540 0.740 0.591

Sentence-level only
XLM-R 0.628 0.591 0.350 0.531 0.551 0.761 0.859 0.577 0.568 0.800 0.565 0.796 0.631
InfoXLM 0.629 0.623 0.348 0.515 0.574 0.747 0.858 0.586 0.551 0.828 0.568 0.790 0.635
RemBERT 0.634 0.631 0.346 0.570 0.564 0.754 0.862 0.534 0.531 0.822 0.550 0.782 0.632

Few-shot Language Adaptation
XLM-R 0.650 0.619 0.352 0.551 0.546 0.753 0.852 0.571 0.554 0.813 0.562 0.798 0.635
InfoXLM 0.641 0.650 0.367 0.549 0.549 0.751 0.855 0.591 0.565 0.824 0.563 0.803 0.642
RemBERT 0.625 0.641 0.367 0.568 0.563 0.756 0.857 0.540 0.527 0.824 0.568 0.796 0.636

Sentence + word-level training
InfoXLM 0.617 0.586 0.344 0.532 0.572 0.761 0.865 0.586 0.579 0.829 0.576 0.804 0.637
RemBERT 0.634 0.628 0.356 0.564 0.571 0.762 0.860 0.541 0.553 0.826 0.564 0.799 0.638

Few-shot Language Adaptation
InfoXLM 0.643 0.632 0.335 0.557 0.560 0.766 0.860 0.575 0.582 0.833 0.578 0.809 0.644
RemBERT 0.644 0.645 0.356 0.567 0.568 0.759 0.856 0.545 0.552 0.835 0.561 0.804 0.641

Final Ensemble
Ensemble 6x 0.664 0.669 0.380 0.591 0.593 0.782 0.871 0.597 0.593 0.845 0.588 0.820 0.666

Table 1: Results for sentence-level QE in terms of Spearman correlation for DA.

(2021), which consists of scaling attention weights
by the ℓ2-norm of value vectors (Kobayashi et al.,
2020) and finding the attention heads with the best
performance on the dev set, and propose two new
modifications:

• Attention × GradNorm: Following the findings
of Chrysostomou and Aletras (2022), we decided
to extract explanations that consider both atten-
tion and gradient information. More precisely,
we scale the attention weights by the ℓ2-norm of
the gradient of value vectors:

Aℓ,h

∥∥∇Vℓ,h

∥∥
2
. (6)

• Head Mix: We reformulate the scalar mix mod-
ule (Eq. 2) to consider different weights for repre-
sentations coming from different attention heads
as follows:

Hmix = λ
L∑

ℓ=0

βℓ

H∑
h=1

γℓ,hhℓ,h, (7)

where the layer mix coefficients β ∈ △L are
given by β = π(ϕ), and the head mix coeffi-
cients γℓ ∈ △H are given by γℓ = π(θℓ). λ ∈ R,
ϕ ∈ RL and θ ∈ RL×H are learnable parame-
ters. We experimented both with dense (π as
softmax) and sparse (π as sparsemax, Martins

and Astudillo 2016) transformations. After train-
ing, the Head Mix coefficients can help to find
attention heads with high validation performance,
which is helpful for explaining zero-shot LPs.

Furthermore, since all of our sentence-level mod-
els use subword tokenization, to get explanations
for an entire word we follow Treviso et al. (2021)
and sum the scores of its word pieces.

Ensembling explanations. In our final submis-
sions we average the explanation scores of different
attention heads and layers to create a final explainer.
We decided which heads and layers to aggregate
together by looking at their performance on the dev
set, selecting the top-5 with the highest explainabil-
ity score.

3.3 Task 3: Critical Error Detection
Critical translations are defined as translations
with strongly semantic deviations from the orig-
inal source sentence, with the potential to lead
to negative impacts in critical applications. The
goal of this task is to predict sentence-level scores
indicating whether a translation contains a criti-
cal error. Since the evaluation metrics automati-
cally account for different binarization thresholds
to separate good translations from bad ones, for this
task we employed a single sentence-level InfoXLM
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model from Task 1 that was trained on DA data.
Moreover, we participated only in the constrained
setting, meaning that we did not trained our sys-
tems specifically for this task. Therefore, our goal
for this task was to validate whether our QE system
from Task 1 was able to detect and differentiate
translations with critical errors.

4 Experimental Results

As we have seen in Section 3, for our experiments
we split the provided development sets into two
equal size halves creating a new internal devset and
an internal testset. The resulting sets contain ≈ 500
segments per language pair for both DA and MQM,
word and sentence-level. As for baselines we used
our submitted systems from previous shared tasks:
for Task 1 we used the M1M-ADAPT (Zerva et al.,
2021), and for Task 2 we used the Attn × Norm
explainer (Treviso et al., 2021). The official results
for Task 1 and Task 2 are shown in Table 6.

4.1 Quality Estimation
Sentence-level submissions were evaluated using
the Spearman’s rank correlation. Pearson’s correla-
tion, MAE, and RMSE were also used as secondary
metrics, but here we report only Spearman corre-
lation since it was the primary metric used to rank
systems. Word-level submission were evaluated
using MCC, F1-OK, and F1-BAD, but we report
only MCC as it was considered the main metric.
The submitted systems were independently eval-
uated on in-domain and zero-shot LPs for direct
assessments and MQM.

Direct Assessments. Results for sentence-level
DAs can be seen in Table 1. The results show that
the training strategies employed in COMETKIWI,
namely (i) pretraining models using Metrics data
and (ii) incorporating references into training, lead
to a correlation close to our best system from last
year while disregarding the data from the MLQE-
PE corpus. When fine-tuning on MLQE-PE data,
we get overall improvements of ∼ 4%, and fur-
ther fine-tuning on new LPs gives ∼ 1% overall
improvement. Still, for the unseen LPs (km-en, ps-
en, en-ja, en-cs), we got improvements between
2-3% with just 500 samples. Among the three
backbone transformers, we noticed that InfoXLM
is the one that leads to a higher Spearman corre-
lation (+1.7% than XLM-R and RemBERT). Fur-
thermore, including word-level supervision always
maintains or improves the results, especially for

MQM

System (fine-tuned on) en-de en-ru zh-en avg.

Sentence-level only
DA 0.529 0.534 0.215 0.426
DA + MQM 0.531 0.552 0.250 0.444
DA (3 LPs) + MQM 0.538 0.550 0.262 0.450

Sentence + word-level training
DA 0.525 0.557 0.217 0.433
DA (3 LPs) 0.560 0.561 0.222 0.448
DA + MQM 0.540 0.568 0.262 0.457
DA (3 LPs) + MQM 0.553 0.569 0.268 0.463
DA (3 LPs) concat. MQM 0.578 0.547 0.278 0.468

Final Ensemble
Ensemble 11x 0.568 0.556 0.223 0.449

Table 2: Results for sentence-level QE in terms of Spear-
man correlation for MQM.

InfoXLM. In contrast, RemBERT does not seem
to benefit from this signal. We suspect that, for
this task, the benefit of word-level supervision is
not higher because the word-level information is
coming from post-editions, which are conceptually
different from DA annotations.

MQM. Results for sentence-level MQM systems
are shown in Table 2. The results show that the two
main techniques used for adapting to MQM data,
filtering DA data to the three MQM LPs and using
MQM data for fine-tuning, improved Spearman cor-
relations for all LPs over the pure DA baseline, for
both sentence-level and multi-task systems. How-
ever, these techniques improved certain LPs more
than others, so combining them together improved
multilingual scores even further. Overall, we no-
ticed that our results for MQM data have a high
variance. To mitigate this, we concatenated the
DA and MQM datasets together for a single fine-
tuning, resulting in our best individual system on
our internal test set. Due to these peculiarities in
the MQM LPs, we decided to ensemble systems
tuned on both DA and MQM data. Our final ensem-
ble did not have as strong results as the individual
systems on our internal test set, yet, it showed su-
perior performance upon submission to codalab
leader-board.

Word-level. For the word-level task we tuned
models separately for the LPs that consisted of post-
edit-derived word tags and the ones consisting of
MQM-derived word tags; we report the Matthew’s
correlation coefficient (MCC) in Table 3. We ex-
perimented with multi-tasking by adding sentence-
level supervision to the word-level task and found
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Post-edit MQM

Method en-cs en-ja en-mr km-en ps-en avg. en-de en-ru zh-en avg.

Baseline (Zerva et al., 2021) 0.272 0.154 0.326 0.427 0.348 0.305 0.176 0.177 0.065 0.139

InfoXLM as encoder
Word-level 0.351 0.183 0.337 0.443 0.372 0.337 - - - -

+ Sentence-level 0.410 0.230 0.368 0.436 0.369 0.363 0.294 0.256 0.399 0.316
+ LP prefix 0.371 0.202 0.391 0.512 0.411 0.377 0.259 0.440 0.211 0.303
+ APEQuest & QT21 0.414 0.245 0.372 0.494 0.389 0.383 0.246 0.382 0.209 0.279
+ tuned class-weights 0.389 0.218 0.421 0.499 0.391 0.384 0.285 0.404 0.172 0.287

DA (3LPs) + MQM - - - - - - 0.265 0.367 0.360 0.331
RemBERT as encoder
Word + sentence-level 0.353 0.163 0.303 0.443 0.369 0.326 0.262 0.309 0.147 0.240

+ LP prefix 0.384 0.257 0.375 0.460 0.370 0.369 0.288 0.356 0.297 0.313

Ensemble “best-only” 0.414 0.245 0.421 0.512 0.411 0.401 0.300 0.382 0.360 0.347
Ensemble logits 0.438 0.257 0.445 0.547 0.430 0.423 0.325 0.443 0.296 0.355
Ensemble tags 0.432 0.253 0.429 0.537 0.423 0.415 0.313 0.446 0.408 0.389

Table 3: Results for word-level QE in terms of MCC for the post-edit and MQM LPs. Note that in each row, we use
models trained separately on the MQM and non-MQM LPs.

that it boosts performance especially for the out-
of-English translations. For the non-MQM LPs we
used the HTER scores as sentence level targets as
we found they lead to significantly higher corre-
lations. We can also see that using the sentence-
mix and the language prefix boosted the perfor-
mance for all LPs, both in the MQM and post-edit
originated LPs. Overall, the results show further
improvements when we use the HTER scores of
APEQuest and QT21 as additional pretraining data,
but only for specific LPs. These findings merit fur-
ther investigation, since the directionality of the
LPs seems to have impacted our experiments. Fi-
nally, ensembling led to better results across all
languages. Ensembling the logits led to better re-
sults for the post-edit originated LPs, while word-
level ensembling helped more the MQM-originated
LPs. Yet, in the submitted versions we found that
the difference in performance between the three en-
sembling methods yielded similar results, with only
1-2% difference, while in the averaged multilingual
versions these differences were even smaller, vary-
ing less than 0.1%.

4.2 Explainable QE
Since the explanations are given as continuous
scores, they are evaluated against the ground-truth
word-level labels in terms of the Area Under the
Curve (AUC), Average Precision (AP), and Recall
at Top-K (R@K) metrics only on the subset of
translations that contain errors. Although R@K
was considered the main metric for this task, we
optimized internally for the average of all three
metrics. The results are shown in Table 4.

Discussion. The results highlight several con-
trasts between explanations for DA and MQM
data: (i) while RemBERT is useful as an encoder
for DA data (outperforms InfoXLM in 3 out of 5
LPs), it is outperformed by InfoXLM for all MQM
LPs; (ii) the Head Mix component improves per-
formance for DA, but it does not impact signifi-
cantly the scores for MQM; and (iii) the Sparse
Head Mix generally outperforms the Soft Head
Mix for DA, but the trend flips for MQM. On
what comes to the explainability methods, the base-
line method (Attn × Norm – scaling the attention
weights by the ℓ2-norm of value vectors), which ob-
tained the best results in last year’s Explainable QE
shared task, is outperformed by our new method
(Attn × GradNorm) for both DA and MQM data.
Moreover, ensembling explanations from differ-
ent heads brings further consistent improvements
across the board for all LPs. For the zero-shot set-
ting (en-yo), we build an ensemble of explanations
by using the heads that were more common among
the ensembles for all other LPs. This approach
might be worth researching further, since it is pos-
sible to study the Head Mix coefficients to select
good-performing attention heads.

5 Official Results

We present the official results of our submissions
alongside the results from other competitors in Sec-
tion B for all three tasks. For sentence-level, our
submissions achieved the best results for 6/9 LPs.
For word-level, we obtained the best results for 5/9
LPs. For the explainable QE track, we obtained the
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Direct Assessment MQM

Method en-cs en-ja en-mr km-en ps-en avg. en-de en-ru zh-en avg.

Baseline (Treviso et al., 2021)† 0.602 0.510 0.428 0.636 0.633 0.562 0.529 0.552 0.450 0.510

InfoXLM as encoder
Attn × GradNorm 0.602 0.495 0.417 0.653 0.648 0.563 0.539 0.559 0.474 0.524

+ Soft Head Mix 0.600 0.495 0.426 0.656 0.653 0.566 0.532 0.563 0.467 0.521
+ Sparse Head Mix 0.604 0.503 0.421 0.658 0.660 0.569 0.541 0.551 0.454 0.515

Ensemble 0.641 0.521 0.440 0.669 0.667 0.588 0.580 0.603 0.505 0.563
+ Soft Head Mix 0.621 0.501 0.432 0.681 0.661 0.579 0.567 0.588 0.504 0.553
+ Sparse Head Mix 0.645 0.519 0.450 0.688 0.675 0.595 0.574 0.582 0.484 0.547

RemBERT as encoder
Attn × GradNorm 0.596 0.511 0.427 0.675 0.676 0.577 0.474 0.532 0.448 0.485

+ Soft Head Mix 0.588 0.538 0.430 0.658 0.654 0.574 0.473 0.529 0.455 0.486
+ Sparse Head Mix 0.588 0.534 0.428 0.658 0.652 0.572 0.470 0.530 0.443 0.481

Ensemble 0.609 0.551 0.443 0.702 0.685 0.598 0.516 0.554 0.506 0.525
+ Soft Head Mix 0.613 0.561 0.448 0.699 0.692 0.603 0.521 0.558 0.498 0.526
+ Sparse Head Mix 0.620 0.557 0.447 0.702 0.691 0.604 0.511 0.551 0.503 0.522

Table 4: Explainable QE task results in terms of the average of AUC, AP and R@K. †We used InfoXLM to compute
the results for the baseline.

best results for all but two LPs (km-en and ps-en).
Although the critical error detection task had no
other competitor for the constrained setting, our
submission vastly surpassed the organizers’ base-
line. We also obtained the best results for the mul-
tilingual settings (including and excluding en-yo)
for all tasks. Finally, when averaging the results for
all LPs, our submissions place on top for all tasks.

6 Conclusions and Future Work

We presented the joint contribution of IST and Un-
babel to the WMT 2022 QE shared task. We found
that incorporating references during pretraining im-
proves performance across several LPs on down-
stream tasks, and that jointly training with sentence
and word-level objectives yields a further boost.
For Task 1, our final submissions were ensembles
of models finetuned with different pretrained lan-
guage models as encoders, boosting the results
when compared to the previous year submission.
For Task 2, we take inspiration on the literature
of explainability and propose to use gradient infor-
mation in tandem with attention weights, and to
further refine the impact of attention heads towards
the prediction via the Head Mix component. Be-
sides leading to better explainability performance
for some LPs, this strategy is potentially useful
to identify good attention heads at inference time
for zero-shot LPs, and deserves more investigation.
Overall, our submissions achieved the best results
for all tasks (including Task 3) for almost all LPs
by a considerable margin.

One of the challenges of leveraging big ensem-
bles is the burdensome weight of parameters and
inference time. For future work we will extend our
recent work, COMETINHO (Rei et al., 2022) and
explore how to effectively distill large ensembles
into small and more practical QE systems.
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A Data Information

The data used for finetuning our QE systems is
shown in Table 5. For DA data, we split the orig-
inal development set to generate a new dev/test
split, therefore the reported numbers in the table
correspond to this “internal” dev split.

Source Target Target
LP Samples Tokens Tokens OK / BAD

TRAIN
en-de 9000 147870 153656 0.84 / 0.16
en-mr 26000 690516 561371 0.90 / 0.10
en-zh 9000 148657 163308 0.65 / 0.35
et-en 9000 126877 185491 0.75 / 0.25
ne-en 9000 135205 181707 0.41 / 0.59
ro-en 9000 154538 167471 0.71 / 0.29
ru-en 9000 104423 132006 0.85 / 0.15
si-en 9000 141283 166914 0.42 / 0.58
en-de† 54681 1571090 1926444 0.90 / 0.10
en-ru† 15628 312185 354871 0.95 / 0.05
zh-en† 75327 134165 2789907 0.87 / 0.13

DEV
en-de 500 8262 8555 0.84 / 0.16
en-mr 500 13803 11216 0.91 / 0.09
en-zh 500 8422 9302 0.75 / 0.25
et-en 500 7081 10257 0.73 / 0.27
ne-en 500 7542 10247 0.38 / 0.62
ro-en 500 8550 9202 0.78 / 0.22
ru-en 500 5984 7511 0.84 / 0.16
si-en 500 7866 9415 0.41 / 0.59
en-cs 500 10302 9302 0.75 / 0.25
en-ja 500 10354 13287 0.73 / 0.27
km-en 495 9015 8843 0.45 / 0.55
ps-en 500 13463 12160 0.51 / 0.49
en-de† 503 10535 12454 0.96 / 0.04
en-ru† 503 10767 11911 0.91 / 0.09
zh-en† 509 980 19192 0.98 / 0.02

Table 5: DA and MQM (†) data for all LPs.

B Official Results

Critical Error Detection. Submissions for this
task were evaluated in terms of ranking using R@K
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and MCC as metrics. In Table 7, we report only
MCC scores as it was the main metric for this task.

QE and Explainable QE. Table 6 shows the offi-
cial results for sentence-level QE (top), word-level
QE (middle), and explainable QE (bottom).
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Direct Assessment MQM

Team en-cs en-ja en-mr en-yo km-en ps-en all all/yo en-ru en-de zh-en

Sentence-level QE
Baseline 0.560 0.272 0.436 0.002 0.579 0.641 0.415 0.497 0.333 0.455 0.164
Alibaba - - - - - - - - 0.505 0.550 0.347
NJUQE - - 0.585 - - - - - 0.474 0.635 0.296
Welocalize 0.563 0.276 0.444 - 0.623 - 0.448 0.506 - - -
joanne.wjy 0.635 0.348 0.597 - 0.657 0.697 - 0.587 - - -
HW-TSC 0.626 0.341 0.567 - 0.509 0.661 - - 0.433 0.494 0.369
Papago 0.636 0.327 0.604 0.121 0.653 0.671 0.502 0.571 0.496 0.582 0.325
IST-Unbabel 0.655 0.385 0.592 0.409 0.669 0.722 0.572 0.605 0.519 0.561 0.348

Word-level QE
Baseline 0.325 0.175 0.306 0.000 0.402 0.359 0.235 0.257 0.203 0.182 0.104
NJUQE - - 0.412 - 0.421 - - - 0.390 0.352 0.308
HW-TSC 0.424 0.258 0.351 - 0.353 0.358 - 0.218 0.343 0.274 0.246
Papago 0.396 0.257 0.418 0.028 0.429 0.374 0.317 0.343 0.421 0.319 0.351
IST-Unbabel 0.436 0.238 0.392 0.131 0.425 0.424 0.341 0.361 0.427 0.303 0.360

Explainable QE
Baseline 0.417 0.367 0.194 0.111 0.580 0.615 0.381 0.435 0.148 0.074 0.048
f.azadi - - - - 0.622 0.668 - - - - -
HW-TSC 0.536 0.462 0.280 - 0.686 0.715 - 0.535 0.313 0.252 0.220
IST-Unbabel 0.561 0.466 0.317 0.234 0.665 0.672 0.486 0.536 0.390 0.365 0.379

Table 6: Official results for sentence-level QE (top) in terms of Spearman’s correlation, word-level QE (middle) in
terms of MCC, and explainable QE (bottom) in terms of R@K. We estimated the numbers of en-yo for teams that
did not submit to en-yo directly but still submitted to all other LPs and to the multilingual (all) category.

Method en-de pt-en

Baseline 0.0738 -0.0013
InfoXLM finetuned on DAs 0.5641 0.7209

Table 7: Official results for the Critical Error Detection
task in terms of MCC.


