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Abstract

This paper presents the BJTU-Toshiba joint
submission for WMT 2022 quality estimation
shared task. We only participate in Task 1
(quality prediction) of the shared task, focusing
on the sentence-level MQM prediction. The
techniques we experimented with include the
integration of monolingual language models
and the pre-finetuning of pre-trained represen-
tations. We tried two styles of pre-finetuning,
namely Translation Language Modeling and
Replaced Token Detection. We demonstrate
the competitiveness of our system compared
to the widely adopted XLM-RoBERTa base-
line. Our system is also the top-ranking system
on the Sentence-level MQM Prediction for the
English-German language pair1.

1 Introduction

Machine translation Quality Estimation (QE) aims
to evaluate the quality of machine translation auto-
matically without reference. Compared with com-
monly used machine translation metrics such as
BLEU (Papineni et al., 2002), QE can be applica-
ble to the case where references are unavailable. It
has a wide range of applications in post-editing and
quality control for machine translation.

This paper introduces in detail the joint submis-
sion of Beijing Jiaotong University and Toshiba
(China) Corporation to the quality estimation
shared task in the 7th Conference on Machine
Translation (WMT22), and we mainly focus on the
Task 1: quality prediction. This year, the quality
prediction task consists of two annotations (DA and
MQM) and two levels (sentence-level and word-
level), and we only participate in the Sentence-
level MQM prediction, of which the goal is to pre-
dict the MQM score (Freitag et al., 2021) for each
source-target sentence pair. Three language pairs
are involved: English-German, Chinese-English

1Our codes are openly available at the public repository
https://github.com/HuihuiChyan/AwesomeQE.

Figure 1: The three QE architectures we adopted.

and English-Russian, with roughly 10K-20k train-
ing pairs provided for each direction.

Our system is mainly based on the ensemble of
multiple pre-trained models, both monolingual and
multilingual. The monolingual models receive only
the target sequence to perform regression (only es-
timating the target fluency). The multilingual mod-
els receive both the source and target sequence to
perform regression. We also use in-domain paral-
lel data to pre-finetune the pre-trained models, to
adapt their representations to the target language
and domain. We try two styles of pre-finetuning,
namely Translation Language Model (TLM) and
Replaced Token Detection (RTD). The translation
language model is to predict the random masked
tokens based on the concatenation of source-target
pairs. The RTD is to first randomly replace some
tokens by another generator, then to detect which
token is replaced. Different models are ensembled
to get further improvement.
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Direction Model Type Input Spearman Pearson

En-De

mBERT multilingual understanding src-tgt 0.3621 0.3484
XLM multilingual understanding src-tgt 0.3692 0.3682
XLMR-large multilingual understanding src-tgt 0.4548 0.4235

mBART multilingual encoder-decoder src-tgt 0.3890 0.3946
OpusMT multilingual encoder-decoder src-tgt 0.3981 0.4184

BERT-base monolingual understanding tgt 0.4620 0.4381
BERT-large monolingual understanding tgt 0.4963 0.4574
Electra-base monolingual understanding tgt 0.5069 0.4654
Electra-large monolingual understanding tgt 0.5413 0.4974

Zh-En

XLM multilingual understanding src-tgt 0.2503 0.1494
XLMR-large multilingual understanding src-tgt 0.2614 0.1083
mBERT multilingual understanding src-tgt 0.2661 0.1439

mBART multilingual encoder-decoder src-tgt 0.2332 0.1021
OpusMT multilingual encoder-decoder src-tgt 0.2353 0.1196

Electra-base monolingual understanding tgt 0.2337 0.1412
BERT-large monolingual understanding tgt 0.2425 0.1149
Roberta-large monolingual understanding tgt 0.2523 0.0969
Deberta-large monolingual understanding tgt 0.2514 0.1024
Deberta-v3-large monolingual understanding tgt 0.2714 0.1486
Electra-large monolingual understanding tgt 0.2829 0.1475

En-Ru

mBERT multilingual understanding src-tgt 0.3897 0.3744
XLM multilingual understanding src-tgt 0.4281 0.4143
XLMR-large multilingual understanding src-tgt 0.4502 0.4144

mBART multilingual encoder-decoder src-tgt 0.4174 0.4137
OpusMT multilingual encoder-decoder src-tgt 0.4207 0.3884

BERT-base monolingual understanding tgt 0.4686 0.3964
BERT-large monolingual understanding tgt 0.4899 0.4280
Roberta-large monolingual understanding tgt 0.5175 0.4265

Table 1: Experiment results on the DEV set of multilingual and monolingual baselines. Results are presented in an
ascending order with respect to the spearman’s ranking correlation coefficient.

2 Methods

2.1 Architecture

In this work, we perform massive comparison be-
tween the multilingual models and monolingual
models on QE. Our backbone network is based on
several multilingual understanding models, includ-
ing Multilingual BERT (Devlin et al., 2018), XLM
(Lample and Conneau, 2019), XLM-RoBERTa
(Ruder et al., 2019), etc. Meanwhile, we inte-
grate several monolingual models, including BERT,
RoBERTa (Liu et al., 2020b), DeBERTa (He et al.,
2021b), DeBERTa-v3 (He et al., 2021a), Electra
(Clark et al., 2020), etc. We also perform esti-

mation on multilingual encoder-decoder models,
including Multilingual BART (Liu et al., 2020a)
and OpusMT (Tiedemann and Thottingal, 2020)2.

For multilingual understanding models, we feed
the concatenation of src (source sentence) and tgt
(machine translated sentence) to the model, and
take the first output hidden state for regression.
For monolingual understanding models, we simply
feed the tgt to the model, and take the first output
hidden state for regression. For encoder-decoder

2To be specific, we use the released models from
https://huggingface.co/Helsinki-NLP/opus-mt-en-de,
https://huggingface.co/Helsinki-NLP/opus-mt-zh-en, and
https://huggingface.co/Helsinki-NLP/opus-mt-en-ru for
En-De, Zh-En and En-Ru, respectively
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Figure 2: The two different pre-finetuning schemes. Notice for RTD, some masked tokens may be restored correctly
by the generator, and we only detect the mismatched tokens.

style models, we feed the src to the encoder, the tgt
to the decoder, and take the last hidden state corre-
sponding to the last token of the tgt for regression.
All three architectures are depicted in Figure 1.

As shown in Table 1, the monolingual baselines
can surpass the multilingual baselines in all direc-
tions. Although the alignment information is ab-
sent, estimation can still be performed solely on the
target text to estimate the fluency. In this year, the
MQM prediction data are actually the submissions
from the translation evaluation task, therefore most
tgts are roughly correct translations aligned with
the source sentence, and most translation errors
are very subtle. Therefore, it would be easier for
the model to estimate the fluency instead of the
alignment. With the help of powerful monolingual
models, we are able to achieve higher estimation
accuracy based solely on the target input.

2.2 Adaptative Pre-finetuning
Fine-tuning pre-trained language models on
domain-relevant unlabeled data has become a com-
mon strategy to adapt the pretrained parameters to
downstream tasks (Gururangan et al., 2020). Pre-
vious works also demonstrate the necessity of pre-
finetuning when performing QE on pretrained mod-
els (Kim et al., 2019; Hu et al., 2020). In this work,
we perform two methods to pre-finetune the pre-

trained models, namely Translation Language Mod-
eling (TLM) (Lample and Conneau, 2019) and Re-
placed Token Detection (RTD) (Clark et al., 2020),
as shown in Figure 2.

The TLM simply takes the concatenation of par-
allel sentence pairs as input, and perform masked
language modeling. Therefore, when predicting
the masked tokens in one side, the model could
utilize its context in the parallel side, learning the
bilingual alignment.

On the contrary, instead of masking, RTD cor-
rupts the input by replacing some tokens with sam-
ples from the output of a smaller masked language
model (Specifically, we use the first 1/3 layers of
the pre-trained model to initilize the generator).
Then the model is trained as a discriminator that
predicts for every token whether it is an original
or a replacement, learning to distinguish real input
tokens from plausible replacements.

Compared with TLM, RTD mainly has three
benefits: 1) The corruption procedure solves a mis-
match in MLM (or TLM) where the network sees
artificial [MASK] tokens during pre-training but
not when being fine-tuned on downstream tasks.
2) The loss is calculated on all tokens instead of a
subset, therefore improving the pre-finetuning effi-
ciency. 3) The mismatch produced by a language
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model is more subtle than random masking or re-
placement, therefore the pre-finetuning naturally
fits the final objective, whitch is to detect subtle
semantic mismatch.

Direction Model Spearman Pearson

En-De

XLM-R-large 0.4548 0.4235
w/ TLM 0.5084↑ 0.4959
w/ RTD 0.5109↑ 0.5024

BERT-large 0.4963 0.4574
w/ TLM 0.5033↑ 0.4593
w/ RTD 0.5127↑ 0.4704

Electra-large 0.5413 0.4974
w/ TLM 0.4748↓ 0.4396
w/ RTD 0.5220↓ 0.4871

Ensemble 0.5809 0.5313

Zh-En

XLM-R-large 0.2614 0.1083
w/ TLM 0.2590↓ 0.1167
w/ RTD 0.2888↑ 0.1332

mBERT 0.2661 0.1439
w/ TLM 0.2912↑ 0.1360
w/ RTD 0.2649↓ 0.1254

Deberta-v3-large 0.2714 0.1486
w/ TLM 0.2561↓ 0.1227
w/ RTD 0.3076↑ 0.1787

Electra-large 0.2829 0.1475
w/ TLM 0.2361↓ 0.1051
w/ RTD 0.2493↓ 0.1190

Ensemble 0.3231 0.1692

En-Ru

XLM-R-large 0.4502 0.4144
w/ TLM 0.4956↑ 0.3963
w/ RTD 0.5092↑ 0.3954

BERT-large 0.4986 0.3964
w/ TLM 0.5030↑ 0.4189
w/ RTD 0.5170↑ 0.4453

Roberta-large 0.5175 0.4265
w/ TLM 0.5129↓ 0.3979
w/ RTD 0.5321↑ 0.4171

Ensemble 0.5799 0.4544

Table 2: Experiment results on the DEV set of different
pre-finetuning methods and ensemble result.

Both methods are performed on millions of paral-
lel sentence pairs. We firstly train a BERT-based do-
main classifier to select the in-domain parallel data.

Direction Model Input Spearman

Zh-En
Deberta-v3-large tgt 0.2892
Deberta-v3-large src-tgt 0.3076↑

En-Ru
Roberta-large tgt 0.5245
Roberta-large src-tgt 0.5321↑

Table 3: Experiment results on the DEV set of pre-
finetuned models with bilingual or monolingual input.

Here we use the parallel data from the general trans-
lation task of WMT223, which contains roughly 20
million pairs for Zh-En and En-De, and 10 mil-
lion for En-Ru. Specifically, the sentence pairs in
the QE training set are deemed as in-domain data,
and we randomly sample the same size of data as
the general-domain data, and the BERT model is
fine-tuned on them as a binary classifier. After that,
we select roughly 1 million sentence pairs for each
direction.

Notice that for monolingual models we also per-
form TLM with bilingual input, expecting to intro-
duce further gain with the help of extra information.

As shown in Table 2, both TLM and RTD can
improve the estimation accuracy significantly. The
multilingual pre-trained model is trained on hun-
dreds of languages simultaneously without any
cross-lingual supervision. The monolingual pre-
trained model is trained only on the target language.
Therefore, adaptation is necessary for both models
to solve the language and domain mismatch. Also,
the RTD outperforms TLM in most cases, verify-
ing that RTD is more suitable as the pre-finetuning
scheme for QE task. Since QE is also targeted at de-
tecting mismatched and disfluent tokens, therefore
RTD is more in line with the QE objective.

We also found that after the pre-finetuning step,
it would be helpful to feed the bilingual input to
the monolingual models, as shown in Table 3. Al-
though monolingual models did not see any text
from the source language during pre-training, the
knowledge between different languages is trans-
ferrable (Artetxe et al., 2020), therefore the fine-
tuned model on the target side can also be used to
model the semantics of the source side. Besides,
subword segmentation also enables the model to
represent sequences from unseen language.

The only exception is on Electra, where pre-
finetuning brings degradation in all cases. It is pos-
sibly because we use the released generator instead

3https://www.statmt.org/wmt22/translation-task.html
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of using the first few layers to initialize a generator,
but it is still confusing why their released generator
(which is also used to perform replacement during
pre-training stage) would lead to degradation.

2.3 Model Ensemble

Till now, we have obtained different QE models
trained with different data and strategies, which can
capture different information from the same text.
While previous work resort to statistical learning
methods to perform model ensemble (Kepler et al.,
2019), we think their methods might be overfitting.
Therefore, we simple take the average of different
predictions (normalized between 0 and 1) as the
ensemble result. More specifically, we try different
combinations of all available predictions (which
are all listed in the Table 2), and make submissions
based on the best ensemble result on the DEV set.
The performance gain compared to single model is
significant as can be seen in Table 2.

3 Conclusion

In this paper, we present our WMT22 QE shared
task submission to the sentence-level MQM predic-
tion. We perform massive comparison and demon-
strate the effectiveness of monolingual language
model. We verify that the pre-trained models can
be further improved on target language and target
domain via pre-finetuning, and we propose differ-
ent strategies to pre-finetune the model.

As the machine translation has been developing
rapidly, the translation errors current MT system
makes have also become more than shallow dis-
alignment. While MT systems are mostly trained
with massive parallel data, using the same amount
of parallel data to train another QE model seems
inefficient, and the monolingual knowledge con-
tained in monolingual models can be more helpful
than we expected. While previous work mainly
rely on the semantic alignment to perform QE, we
think it might be a better option to rely more on
monolingual fluency in real applications.
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