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Abstract

Starting from last year, WMT human evalu-
ation has been performed within the Multi-
dimensional Quality Metrics (MQM) frame-
work, where human annotators are asked to
identify error spans in translations, alongside
an error category and a severity. In this pa-
per, we describe our submission to the WMT
2022 Metrics Shared Task, where we propose
using the same paradigm for automatic evalua-
tion: we present the MATESE metrics, which
reframe machine translation evaluation as a
sequence tagging problem. Our submission
also includes a reference-free metric, denom-
inated MATESE-QE. Despite the paucity of
the openly available MQM data, our metrics
obtain promising results, showing high levels
of correlation with human judgements, while
also enabling an evaluation that is interpretable.
Moreover, MATESE-QE can also be employed
in settings where it is infeasible to curate refer-
ence translations manually.

1 Introduction and Related Work

For many years, Machine Translation (MT) has
mainly been evaluated using untrained evaluation
techniques, such as BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005) and CHRF
(Popović, 2015), which rely heavily on lexical-level
matching of either token, or character, n-grams.
Unfortunately, these metrics present two major
drawbacks: i) it is not possible to carry out the eval-
uation without manually-curated references and,
most importantly, ii) the evaluation is too depen-
dent on the surface form of the translation, and its
reference. More recently, attempts have been made
to address these problems using machine-learned
metrics, which have shown better correlations with
human judgements (Mathur et al., 2020). More
specifically, last year’s WMT Metrics Shared Task
saw C-SPECPN (Takahashi et al., 2021), BLEURT-

201 and COMET-MQM_2021 (Rei et al., 2021)
emerge as distinctly better than the other partici-
pants (Freitag et al., 2021b). These metrics con-
sist of regression models trained to mimic hu-
man annotators by directly assigning quality scalar
scores to candidate translations. In detail, COMET-
MQM_2021 is based on the Estimator architecture
introduced by Rei et al. (2020), where features ex-
tracted from the embeddings of the source sentence,
candidate translation, and reference translation are
passed to a feed-forward regressor; C-SPEC first
concatenates the embeddings derived from paired
inputs of candidate-source and candidate-reference,
and then passes the resulting vector to a multi-layer
perceptron; BLEURT, instead, feeds the candidate
translation and its reference to Rebalanced mBERT
(Chung et al., 2021), and regresses on the rep-
resentation provided by the [CLS] token. More-
over, BLEURT and C-SPEC add automatically-
generated negative pairs to the standard training
data: BLEURT applies random token perturbations,
while C-SPEC uses Word Attribute Transfer to re-
place words in the translations. Although undoubt-
edly effective, regression metrics have the major
drawback of not being interpretable, meaning that
users are not able to gauge the quality of assess-
ments that are returned, which is of paramount
importance for an evaluation metric.

Recently, Freitag et al. (2021a) have proposed
a shift in the standard practices for human ma-
chine translation evaluation, employing the Multi-
dimensional Quality Metrics framework (Lommel
et al., 2014, MQM), and moving away from Di-
rect Assessments (Graham et al., 2013, DA), which
were computed via requiring (even non-expert) an-
notators to assign a scalar value to a candidate
translation, given a reference. Furthermore, Fre-
itag et al. (2021a) pointed out the limitations of
non-professional Direct Assessments, also show-

1BLEURT-20 is the retrained version of the previous year’s
BLEURT submission (Sellam et al., 2020).
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ing their unreliability compared to MQM. Indeed,
differently from Direct Assessments, annotators
who follow the MQM guidelines look at the source
sentence rather than the reference, and are expected
to tag the spans of the candidate translations that
contain errors,2 together with their error category
(e.g., Fluency/Grammar, Fluency/Punctuation
or Style/Awkward) and severity (e.g., Major or
Minor), which, combined, determine the score as-
sociated with the error span. Finally, a scalar qual-
ity score for the entire sentence is derived from the
various annotated spans.

In this work, we introduce the MATESE and
MATESE-QE metrics, reframing the evaluation of
machine-translated text as a sequence tagging prob-
lem based on the MQM framework, in an attempt
to develop metrics that are interpretable, while also
displaying high levels of correlation with human
judgements.

2 MATESE Metrics

Inspired by the novel MQM evaluation framework,
our work aims at employing a similar paradigm for
automatic evaluation. We propose the MATESE

metrics which, given a candidate translation and its
reference (or source, for MATESE-QE), assign a
label to each token of the candidate. These labels
identify error spans, together with their severity,
chosen among Major and Minor. Finally, in order
to associate a score with the entire tagged sentence,
we follow a weighting scheme similar to the one
presented by Freitag et al. (2021a) for MQM-based
human evaluation: we assign a score to an entire
error span based on its severity, i.e., −5 and −1 for
Major and Minor, respectively. The score assigned
to a translation is the sum of the scores assigned
to its error spans, with a minimum total score of
−25. Following Freitag et al. (2021a), we compute
a corpus-level score by averaging the scores of the
sentences in the corpus. Although human MQM
annotators are asked to report a maximum of 5
errors per translation,3 we decided to let our metrics
detect as many errors as they can find; nevertheless,
in order to keep our scores in the same range as
those computed on gold MQM annotations, we set
a minimum score of −25, which is equal to the

2In a few cases, the source sentence might also be an-
notated. An example of this is with omission errors, where
annotators report the spans of the source sentence which are
missing from the candidate translation.

3This holds only for the MQM guidelines released by Fre-
itag et al. (2021a).

MATESE metric

CandidateReference

In the square team, this song is the motto of every team member.
Major Minor

This song was the motto of
every member of the unit.

In the square team, this
song is the motto of every

team member.

Figure 1: Example of the annotation returned by the
MATESE metrics, given a candidate translation and its
reference. The final score of the translation is −6, that
is the sum of −5 and −1, assigned to the Major and
Minor errors, respectively.

sum of 5 Major errors. Figure 1 shows an example
of the annotations returned by our metrics.

2.1 Data pre-processing

According to the MQM guidelines, mistranslated
spans are tagged with an error category and a sever-
ity. To reduce the granularity of the annotations,
we apply some transformations to the original data,
which we report below:

1. We discard annotations of the
Non-translation category, since they
are weighted −25 by Freitag et al. (2021a),
and would have required a special treatment,
but are too scarce (< 0.1% of the whole data)
for the model to learn how to assign them;

2. We discard annotations referring to either
Accuracy/Omission or Source error cate-
gories, since in these cases the annotation
might be in the source sentence, while our
models are trained to tag the candidate trans-
lation only;

3. We discard annotations of errors with
Neutral severity, since they are highly sub-
jective and do not participate in the computa-
tion of the final quality score (Freitag et al.,
2021a);

4. We replace Critical severity labels with
Major, in order to make the English→Russian
dataset conform to the rest of the data;

5. We discard all the MQM error categories,
leaving only information about error sever-
ity. While we believe error categorization to
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Figure 2: Distribution of the number of error spans
over sentences in both training and test data of WMT
2021 Metrics Shared Task, after the pre-processing we
described in Section 2.1.

be of great importance, we decided to remove
it because of the limited availability of train-
ing data and to avoid making the classification
problem too sparse.

Furthermore, in the MQM data released by Fre-
itag et al. (2021a), every sentence has been anno-
tated 3 times, each one by a different rater. In order
to yield a single sample per sentence and maximize
the number of annotations, we merge the annota-
tions of the different raters into a single annotated
sentence;4 in the case when there is even only a
partial overlap between two annotated spans, we
discard the one associated with the Minor error in
favor of the Major, or pick one or the other ran-
domly if they have the same severity. We decided
to keep Majors over Minors because Freitag et al.
(2021a) obtained almost the same ranking of MT
systems when considering only Major errors, com-
pared to the full MQM score.

2.2 Hypothesis and Target Span Hit metrics
Typically, MT evaluation metrics’ quality is as-
sessed through their correlations with human judge-
ments. Nevertheless, our novel formulation of MT
evaluation as a sequence tagging problem allows
us to estimate the quality of our metrics also via
the produced error spans. Specifically, we are in-
terested in determining how well our metrics are
able to flag, even partially, a true error span, re-
gardless of its severity or length. However, existing
span-level metrics, such as Span Precision, Span

4Therefore, in our merged sentences the number of error
spans per translation can be greater than 5. Figure 2 reports
the distribution of error spans in our entire data.

In the square team, this song is the motto of every team member 

Figure 3: An example of evaluation with the Hypothe-
sis and Target Span Hit metrics. The turquoise line —
(below) and amber line — (above) represent the hypoth-
esis and target annotation, respectively. HSH = 2/3 (2
out of 3 spans are hit), TSH = 2/2 (2 out of 2 spans
are hit).

Recall and Span F1, focus on exact overlaps be-
tween predicted spans and target ones. Moreover,
correlations with MQM scores paint only a partial
picture, since the final score assigned to a trans-
lation depends only on the number of error spans
(with their severity), but not on their position in the
sentence. For instance, if a system flagged a span
as a Major error, but the target annotation had a
different span tagged as Major, the MQM scores
would be identical despite the tagging error.

To address these issues, we introduce the Hy-
pothesis Span Hit (HSH) and Target Span Hit
(TSH) metrics: HSH represents the percentage of
predicted error spans that are also, at least partially,
true; instead, TSH represents the percentage of true
error spans that the metric has predicted, even par-
tially. An example of their assessments is given in
Figure 3.

Formal definition Let us consider a candi-
date translation c as a sequence of tokens
(c1, c2, . . . , cn); moreover, let us define an error
span s as a set of contiguous tokens in c, e.g.,
{c1, c2, c3}, and an error annotation A as a set of
disjoint error spans, i.e., that satisfies

⋂
s′∈A s′ = ∅.

Furthermore, we define the Span Hit Indicator as

SHI(s,A) = I(s ∩ σ(A) ̸= ∅)

where σ(A) =
⋃

s′∈A s′, i.e., the set of all tokens
in annotation A. In simpler terms, SHI(s,A) is 1
if at least one of the tokens in s belongs to the set
of all tokens of the error spans in A.

Finally, let us take two error annotations: Ah rep-
resents the hypothesis spans produced by a model,
while At represents the target spans that c was orig-
inally annotated with. We define the Hypothesis
Span Hit and Target Span Hit metrics as follows:

HSH(Ah, At) =

∑
sh∈Ah

SHI(sh, At)

|Ah|

TSH(At, Ah) =

∑
st∈At

SHI(st, Ah)

|At|
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Both metrics are defined as the average number
of span hits of one error annotation with respect
to the other. To compute the metrics for an entire
dataset we employ micro-averaging, i.e., we con-
catenate all hypotheses into a single one, do the
same for the targets, and then measure Span Hit
metrics on the newly-created pair of hypothesis
and target. We avoid averaging the single results
because the number of spans varies widely across
samples (Figure 2).

3 Experimental Setup

In this Section, we describe the different architec-
tures we experiment with, the data for training and
evaluation, and the metrics we use to measure per-
formances.

3.1 Architectures

Since it is rather convenient to have a single model
capable of evaluating text in multiple languages, we
leverage multilingual pre-trained models like XLM-
RoBERTa (Conneau et al., 2020) and mBART (Liu
et al., 2020). In order to compare the performances
of multilingual models with their English-only
counterparts, we also experiment with RoBERTa
(Liu et al., 2019).5

Encoder-only models XLM-RoBERTa and
RoBERTa models consist of only the encoder
part of the standard Transformer architecture
(Vaswani et al., 2017). The input we provide to
the encoder models is the concatenation of the
candidate translation and its reference (or source,
for MATESE-QE), separated by a </s> token.
Furthermore, we add two randomly-initialized
encoder layers on top of the last layer, as well
as a classification head. Due to computational
constraints, we keep the embedding layer frozen.

Encoder-decoder model When experimenting
with mBART, we feed the reference translation
(or the source, for MATESE-QE) to the encoder,
and the candidate to the decoder, so as to main-
tain similarity with the pre-training process. We
highlight that we do not use the decoder autore-
gressively; instead, following the standard practice
for sequence classification with encoder-decoder
models, we force the candidate to be processed all
at once, and collect the contextualized embeddings

5RoBERTa can be employed only for reference-based eval-
uation, and with language pairs that have English as target
language: in our case, this is only Chinese→English.

at the last layer. On top of the decoder, we add two
randomly-initialized encoder layers, and a classifi-
cation head. As with the encoder-only models, due
to computational constraints the embedding layer
is frozen.

3.2 Training and validation data

In order to perform our experiments employing all
the existing MQM data, we experiment using a
90/10 training/validation split of the concatenation
of the training set (which is the MQM data released
by Freitag et al. (2021a)) and the test sets of WMT
2021 Metrics Shared Task (Freitag et al., 2021b).

Moreover, to make a fair comparison between
the MATESE metrics and the ones submitted to the
aforementioned Shared Task, we also retrain our
systems using only the above-mentioned training
set, with the same split. We dub these systems
MATESE21 and MATESE-QE21.

In both settings, we use only English→German
and Chinese→English data. Moreover, we point
out that the split is performed on unique source
sentences: since each source sentence is translated
by multiple systems, our split avoids having trans-
lations of the same source sentence be present in
both the training and validation splits.

WMT Submission Training Split For our final
submission to the WMT 2022 Metrics Shared Task,
we include English→Russian data to the concate-
nation of the training and test sets of the WMT
2021 Metrics Shared Task. We split the whole data
5 times, each time taking 90% for training and 10%
for validation, and train 5 different systems (10 if
we also consider MATESE-QE). In our submission,
each score is the median prediction of the systems
trained on the 5 different data splits.

3.3 Evaluation metrics

The MATESE metrics tag the spans of a candi-
date translation that contain an error. Following
the BIO scheme (Ramshaw and Marcus, 1995), we
assign to each token a label in L = {O, B-Minor,
I-Minor, B-Major, I-Major}; a final score for the
annotated sentence is then obtained as the sum of
the individual spans’ scores. We can evaluate the
performances of our metrics according to the final
scores, as well as in terms of the produced annota-
tions: indeed, we use the scalar scores to rank trans-
lations and measure the correlations with human
judgements, and we measure the tagging accuracy
with respect to the gold annotations. In the latter
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O B-Minor I-Minor B-Major I-Major

EN→DE 818,945 32,667 37,897 8516 25,192
ZH→EN 1,053,663 33,633 48,333 33,996 76,984
EN→RU 343,449 614 1015 7271 3189
ALL 2,216,057 66,914 87,245 49,783 105,365

Table 1: Distribution of the token-level gold annotations
in the concatenation of the training and test sets of WMT
2021 Metrics Shared Task, after the pre-processing we
described in Section 2.1.

case, we rely on the standard classification metrics
of Precision, Recall and F1-score, computed using
TorchMetrics6 modules. More specifically, given
that our data is highly imbalanced (see Table 1),
we employ macro versions of these metrics and,
in particular, use the macro-F1 score to select the
best checkpoint of the models on the validation
set. Furthermore, in order to assess the span-level
error detection capabilities of our systems, we em-
ploy the Hypothesis and Target Span Hit metrics
as defined in Section 2.2.

4 Results

In this Section, we show the results obtained by
our metrics. Unless explicitly specified, all experi-
ments have been performed using reference-based
systems.

4.1 Architectures comparison

We can see the results of comparing the aforemen-
tioned architectures in Table 2. The best perform-
ing architecture is XLM-RLARGE, which attains the
highest F1-score, as a consequence of achieving
the best Recall. Considering the complexity of the
task, and the imbalance of the data, we conjecture
that the other architectures obtain high Precision
and low Recall scores because they are able to pre-
dict only the errors that are easier to detect, while
assigning Os more frequently. This is also con-
firmed by the TSH score which, ruling O labels out
of the computation, exacerbates the difference be-
tween different architectures, with XLM-RBASE and
mBART clearly failing to detect a higher number of
errors of the target annotation compared to XLM-
RLARGE. An additional interesting fact that emerges
from this comparison is that XLM-R architectures
perform better than mBART, with XLM-RBASE out-
performing it despite having less than half of its
parameters.

6https://github.com/Lightning-AI/metrics

P R F1 HSH TSH

XLM-RLARGE 47.38 38.40 41.72 57.73 46.08
XLM-RBASE 46.64 34.12 37.93 58.01 38.70
mBART 47.97 31.94 36.01 55.85 32.66

Table 2: Comparison of different architectures in terms
of Precision, Recall and F1-score in their macro ver-
sions; HSH and TSH are Hypothesis Span Hit and Tar-
get Span Hit metrics.

4.2 Monolingual-multilingual comparison
Table 3 reports the results of training the same
XLM-R model using a single language pair at a
time, or both. Moreover, we test whether an En-
glish language model like RoBERTa outperforms
XLM-R, when dealing with English-only data. Our
results show that training on the whole data is ben-
eficial to the task, with XLM-RALL obtaining a
higher Recall and Target Span Hit in both language
pairs, and an F1-score that is higher, or on par with,
its variants. Similarly to what happens with dif-
ferent architectures, we hypothesize that training
on more data enables the models to detect a wider
range of errors, even if the additional data is in a
different language. We do not record significant
differences in the results obtained by RoBERTa,
compared to XLM-RMONO on Chinese→English
data.

4.3 MATESE-QE

A desirable feature of evaluation metrics is to
function both in the presence and the absence of
humanly-curated references. To achieve this, we
investigate whether it is feasible to tag the errors in
the candidate translation by looking at the source
sentence only. Table 4 reports the results obtained
by the best architecture, i.e., XLM-RLARGE, trained
on both English→German and Chinese→English,
both when disposing of the reference sentence, and
not.

MATESE outperforms MATESE-QE in terms
of Recall, F1-score and Target Span Hit metrics.
Clearly, the information found in the reference is
easier to exploit, and the reference-based system
is able to detect a much wider range of errors. At
the same time, MATESE-QE proves to be a viable
alternative in the absence of manually-curated ref-
erences: it displays high levels of Precision and
Hypothesis Span Hit, which means that it outputs
predictions that are more accurate than those of
MATESE, even if only for the range of errors that
it is able to detect.

https://github.com/Lightning-AI/metrics
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EN→DE ZH→EN
P R F1 HSH TSH P R F1 HSH TSH

XLM-RALL 43.03 33.09 35.89 54.35 44.54 47.86 39.39 42.63 59.90 47.04
XLM-RMONO 43.98 30.64 33.52 56.56 39.67 50.85 38.51 42.77 63.51 44.38
RoBERTa – – – – – 51.49 37.91 42.41 64.33 42.81

Table 3: Model performances on monolingual and multilingual settings. XLM-RALL is trained and evaluated on
the concatenation of English→German (EN→DE) and Chinese→English (ZH→EN) datasets, while XLM-RMONO

stands for two different models, each one trained and evaluated on a single dataset. RoBERTa is an English language
model, and therefore can deal with ZH→EN data only.

P R F1 HSH TSH

MATESE 47.38 38.40 41.72 57.73 46.08
MATESE-QE 49.34 34.53 38.89 59.89 36.84

Table 4: Comparison of our reference-based
and reference-free systems, i.e., MATESE and
MATESE-QE, respectively. The only difference
between the two is that MATESE-QE uses the source
sentence in place of the reference.

4.4 Correlations with Human Judgements
Tables 5a and 5b report the correlations with
human judgements that our metrics attained
on newstest2021 (in-domain) and TED (out-of-
domain) test sets of last year’s WMT Metrics
Shared Task: w/ HT means that manually-curated
references have been scored together with system
outputs, while w/o HT means that those references
have been kept out of the evaluation. Aside from
our systems, i.e., MATESE21 and MATESE-QE21,
we also report two additional baselines: #1 WMT
and #2 WMT. These are the top-1 and top-2 results
reported by Freitag et al. (2021b) in the correspond-
ing tables (Tables 23, 24, 27 and 28). Since those
positions are held by different systems, we assign
each submission a unique symbol and report the
mapping in Appendix A.

Generally speaking, for in-domain settings, we
observe that, on English→German, MATESE21

and MATESE-QE21 achieve correlations on par
or better than the top-2 WMT 2021 submissions,
while on Chinese→English the results are slightly
worse. Interestingly, in out-of-domain settings,
we observe a sizeable drop in correlation on both
translation directions. We attribute this drop to the
very limited amount of training data, which prob-
ably hinders proper generalization capabilities to
out-of-domain settings. Finally, we observe that
MATESE-QE21 lags behind MATESE21 by a rela-
tively small margin.

EN→DE ZH→EN

w/o HT w/ HT TED w/o HT w/ HT TED

#1 WMT ‡0.938 ⊥0.823 ∥0.818 ∧0.834 ∧0.727 ∨0.421
#2 WMT †0.937 ⊥0.822 ⊥0.802 ∥0.628 ∥0.619 ⊤0.403

MATESE21 0.946 0.863 0.621 0.636 0.701 0.017
MATESE-QE21 0.910 0.806 0.584 0.502 0.600 0.056

(a) System-level Pearson correlations.

EN→DE ZH→EN

w/o HT w/ HT TED w/o HT w/ HT TED

#1 WMT ⊥0.267 ⊥0.256 ∧0.290 ⊥0.402 ⊥0.390 ∧0.248
#2 WMT ⊥0.266 ⊥0.254 ⊥0.285 ⊥0.401 ⊥0.388 ⊥0.241

MATESE21 0.323 0.310 0.271 0.358 0.346 0.257
MATESE-QE21 0.288 0.277 0.210 0.343 0.332 0.196

(b) Segment-level Kendall correlations.

Table 5: System- and segment-level correlations with
human judgements as measured in WMT 2021 Metrics
Shared Task (Freitag et al., 2021b). MATESE21 and
MATESE-QE21 are MATESE metrics that have been
re-trained using only the training set of the Shared Task.
A legend of the other symbols is found in Appendix A.

5 Conclusions

In this paper, we described our submission to the
WMT 2022 Metrics Shared Task: we presented
the MATESE metrics, a new way of automatically
assessing the quality of translations, putting for-
ward evaluation techniques that are interpretable,
while at the same time displaying high levels of
correlation with human judgements. Scores are in
the same ballpark of the best performing metrics
proposed in the WMT 2021 Metrics Shared Task.
Furthermore, the MATESE metrics can also be
used in the absence of humanly-curated references,
with MATESE-QE being slightly less accurate than
its reference-based counterpart, but still present-
ing encouraging levels of correlation with human
judgements. In future work, we plan to improve the
MATESE metrics to also detect the type of errors,
and not only their severity, in order to approximate
even better the MQM annotation process.
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Limitations

Poor generalization We expect the MATESE

metrics’ generalization capabilities to be hindered
by the narrow range of errors that they are trained
upon. Indeed, while the number of samples in the
datasets is relatively large (around 80K annotated
sentences), the number of unique sources is much
smaller (around 6K), because the annotations are
performed on the same source sentences translated
by multiple MT systems. In fact, we observe a drop
in performance in the out-of-domain setting, i.e.,
the TED dataset.

Computational requirements The MATESE

metrics require a non-negligible computational bud-
get, especially when compared to their untrained
alternatives, such as BLEU, METEOR or CHRF.
Given that the task we tackle is arguably challeng-
ing, and that we need semantically-rich representa-
tions of the analyzed sentences, we decided to rely
upon a large Transformer encoder, which makes
the evaluation computationally intensive. Unfortu-
nately, the comparison between XLM-RoBERTa
Large and its Base counterpart shows that a size-
able improvement is due to the increased size of
the model.
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Mateusz Krubiński, Erfan Ghadery, Marie-Francine
Moens, and Pavel Pecina. 2021a. Just ask! eval-
uating machine translation by asking and answering
questions. In Proceedings of the Sixth Conference on
Machine Translation, pages 495–506, Online. Asso-
ciation for Computational Linguistics.
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• ‡: cushLEPOR(LM) (Han et al., 2021);

• ⊥: C-SPEC and C-SPECpn (Takahashi et al.,
2021);

• ∧: tgt-regEMT and tgt-regEMT-baseline (Ste-
fanik et al., 2021);

• ∥: COMET-MQM_2021 and COMET-QE-
MQM_2021-src (Rei et al., 2021);

• ∨: TER (Snover et al., 2006);

• †: BLEU (Papineni et al., 2002);

• ⊤: MTEQA (Krubiński et al., 2021a,b).


