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Abstract

We develop two new metrics that build on top
of the COMET architecture. The main contri-
bution is collecting a ten-times larger corpus
of human judgements than COMET and inves-
tigating how to filter out problematic human
judgements. We propose filtering human judge-
ments where human reference is statistically
worse than machine translation. Furthermore,
we average scores of all equal segments evalu-
ated multiple times. The results comparing au-
tomatic metrics on source-based DA and MQM-
style human judgement show state-of-the-art
performance on a system-level pair-wise sys-
tem ranking. We release both of our metrics for
public use.1

1 Introduction

Automatic metrics for machine translation (MT)
evaluation are commonly used as the primary tool
for comparing the translation quality of MT sys-
tems, often without evaluating systems with the
human judgement that can be expensive and time-
consuming (Marie et al., 2021). Therefore, study-
ing and developing metrics that correlate well with
human judgement is critical.

There is an increasing effort in the evaluation
of automatic MT metrics, leading with the annual
evaluation of metrics at the WMT conference (Fre-
itag et al., 2021b,a; Kocmi et al., 2021; Mathur
et al., 2020b). Most research has focused on com-
paring segment-level or system-level correlations
between absolute metric scores and human judge-
ments. However, Mathur et al. (2020a) emphasize
that this scenario is not identical to the everyday
use of metrics, where instead, researchers and prac-
titioners use automatic scores to compare pairs of
systems. For example, when claiming a new state-
of-the-art, evaluating different model architectures,

1https://github.com/MicrosoftTranslator/
MS-Comet

and deciding whether to publish results or deploy
new production systems.

In this work, we focus on training automatic
metric based on COMET architecture (Rei et al.,
2020) utilizing a large internal trainset of human
segment-level judgements. Additionally, we evalu-
ate the metrics in a pair-wise system-level evalua-
tion against human judgement.

We develop two metrics: MS-COMET intended
for reference-based evaluating systems, while MS-
COMET-QE is designed for quality estimation or
source-based evaluation. We use the suffix "-22"
to differentiate the models from potential future
releases.

2 Related work

There are two main categories of automatic MT
metrics: (1) string-based metrics and (2) metrics
using pretrained models. The former compares the
coverage of various substrings between the human-
generated reference and MT translations, this group
includes metrics such as ChrF (Popović, 2015),
BLEU (Papineni et al., 2002), or TER (Snover et al.,
2006). String-based methods largely depend on the
quality of reference translations. However, their
advantage is that their performance is predictable
as it can easily diagnose which substrings affect
the score the most.

The latter category of pretrained methods con-
sists of metrics that usually use pretrained models
to evaluate the quality of MT translations given
the source sentence, the human reference, or both.
Evaluation metrics from this category includes
COMET (Rei et al., 2020), BLEURT (Sellam et al.,
2020), or BERTScore (Zhang* et al., 2020). They
are not strictly dependent on the reference quality
(for example, they can better evaluate synonyms
or paraphrases), and many studies (Freitag et al.,
2021b; Mathur et al., 2020b; Kocmi et al., 2021)
showed their superiority over string-based metrics.
On the other hand, their performance is influenced

https://github.com/MicrosoftTranslator/MS-Comet
https://github.com/MicrosoftTranslator/MS-Comet
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by the data on which they have been trained, which
may introduce bias, and the pretrained models
present a black-box problem where it is challeng-
ing to diagnose potential unexpected behavior of
the metric.

A separate category of automatic metrics is
whether they need a human reference for evalu-
ation. Automatic metrics that calculate scores with-
out the need for reference (quality estimation) open
the possibility of evaluating monolingual testsets
that can be tailored for a specific domain without
the need to build expensive human references.

We build our metric with the architecture of
COMET (Rei et al., 2020).2 It uses the Estima-
tor model which uses pretrained language models
XLM-RoBERTa to encode source, MT hypothesis
and reference in the same cross-lingual space. The
model is then fine-tuned on human judgement data.
We use the identical hyper-parameters as COMET.

3 Human Judgement Trainset

For training our models, we use a mix of public and
internal data that we further denoise by filtering out
potentially problematic human judgements.

We use the same human judgments data used
to train the COMET model, i.e. WMT 2017-2019
(Barrault et al., 2019; Bojar et al., 2018, 2017).
To test the quality of metrics, we use WMT 2020
(Barrault et al., 2020), WMT 2021 (Akhbardeh
et al., 2021) and MQM 2021 (Freitag et al., 2021b).
Furthermore, we submitted our model to WMT
Metrics Shared Task 2022.

In addition to publicly available data, we use
a set of internal data, described in Kocmi et al.
(2021) plus newer data collected over the last year.
All our internal data are collected with the use of
expert annotators. We use a mix of human judge-
ment methods: source-based Direct Assessment
(srcDA) (Graham et al., 2013; Federmann, 2018),
contrastive Direct Assessment (contrDA, which
asks users to rate pairs of system outputs), and
SQM presented at WMT General MT 2022 (which
uses labeled scale). All collected labels are on a
scale of 0-100, where the interface structure is the
main difference for human annotators.

We use internal testsets for human judgements
that have been translated with a tandem of two pro-
fessional translators, following findings of Freitag

2To differentiate models, we are going to use COMET
to reference Rei et al. (2020) models from ours labeled as
MS-COMET

Langs. Domains Segments

All available data 6.53 M
Removed low-quality 0.79 M
Removed WMT refDA 0.35 M
Removed by averaging 2.12 M

MS-COMET 111 15 2.06 M
MS-COMET-QE 113 15 3.43 M
COMET 13 1 0.66 M

Table 1: The statistics of the training corpora and the
effect of filtering in terms of unique languages on the
target side, unique domains, and count of training seg-
ments used to train MS-COMET, MS-COMET-QE, and
original COMET.

et al. (2020) that high-quality reference plays an
essential role in automatic evaluation.

In contrast to publicly available data that uses
only the News domain, we use a mix of fifteen
domains (news, conversation, legal, medical, social,
e-commerce, tech, finance, and others). The news
domain is the largest domain utilizing at least half
of human judgements. Our collection of human
judgement data covers 113 languages in contrast to
13 on which COMET is trained. A complete list
of all supported languages and counts of human
judgement for the largest translation directions are
in Appendix A.

Reference-less metric MS-COMET-QE is
trained using all training data and removing
reference translations. Additionally, many human
judgments are evaluated on data that are missing
human reference, which is the reason for having
more training data for MS-COMET-QE.

3.1 Using raw scores instead of z-scores

The z-score has been introduced (Graham et al.,
2013) to resolve an issue with different strategies
annotators may apply when judging systems. For
example, an overly strict annotator may harshly
penalize a system from which he annotated more
segments. We partly avoid this problem in our
data via a better sampling technique. We sample
uniformly from each evaluated system in a way
that each annotator evaluates the same number of
sentences from each system. Therefore, different
strategies should penalize all systems similarly.

As Knowles (2021) pointed out that z-score stan-
dardization of human judgements normalizes away
both inter-annotator and system quality differences,
and since we do not have a mechanism to avoid nor-
malizing away system quality differences. There-
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fore, we decided to use raw scores (0-100) instead
of the z-score standardized counterpart.

Using raw scores has the benefit that it gives final
scores some meaning. For low-quality languages,
we may expect scores in the lower range (0-50),
while for high-quality languages, the scores gener-
ally can be higher. Z-scores only do not represent
any meaning. However, we do not advocate us-
ing our metric in an absolute fashion or comparing
quality across languages.

However, we want to point out that we have seen
only minor improvement when training metrics
using raw scores in contrast to z-scores. Therefore,
this decision is mainly on a pragmatic layer.

3.2 Professional annotators only

Freitag et al. (2021a) discuss that the quality of
crowd-based human judgement is suboptimal, and
human evaluation should focus on expert annota-
tors. Professional annotators collect our internal
human labels. However, data from WMT are col-
lected in two different setups when one uses crowd-
workers.

The language pairs that are from English or
not containing English are collected with semi-
professional to professional annotators and using
source-based DA, which avoids reference bias. On
the other hand, all into English language pairs are
collected with crowd-workers with reference-based
DA. For this reason, we decided to remove all
WMT reference-based DA human judgement from
our datasets, and therefore, we use only internal
into-English human assessments.

3.3 Averaging same human judgement

In our data, many human judgment campaigns eval-
uate identical triplets (source, hypothesis, refer-
ence) in different campaigns. This happens when
we compare identical baseline system across dif-
ferent campaigns or when a candidate system from
the earlier campaign is later evaluated as a baseline
system.

We notice that human scores fluctuate every time
each triplet is evaluated. We have decided to av-
erage scores for all identical triplets to normalize
the noise and balance the trainset. Averaging equal
scores improved the performance of the metric.

We also experimented with taking a median of
the scores, but the results have been a bit worse
than averaging.

3.4 Removing low-quality human judgements

In our human annotation campaigns, we often in-
clude human reference translation as another sys-
tem to measure how close MT systems are to hu-
man reference. However, scoring human references
can also be used as a sanity check for the quality of
campaigns or human references. Whenever we see
a campaign where human reference is worse than
the MT system, it suggests one of the following
three scenarios: human reference contains error
translations, human judgement is too noisy or mis-
leading, or the MT system performs better than
human translators. If we assume that MT systems
are not outperforming human translators, a lower
human reference score suggests either broken ref-
erence translation or a noisy campaign. Neither
of these two outcomes is desirable for fine-tuning
automatic metrics.

Therefore, we remove all campaigns contain-
ing human reference as an additional system,
where any of the systems is statistically signif-
icantly better than human translation under the
Mann–Whitney U test and alpha threshold of 5%.

4 Evaluation

Evaluation of automatic metrics is a challenging
task investigated in a yearly WMT Metrics shared
task (Freitag et al., 2021b). However, there is no
community-agreed testset or evaluation method for
comparing with humans that are considered gold
standards.

There are different dimensions how to evaluate
automatic MT metrics. Let’s summarize the main
differing points:

• Human annotation methods - source-based
direct assessment (DA) (Graham et al., 2013),
reference-based DA (Graham et al., 2013),
contrastive DA (Akhbardeh et al., 2021), Mul-
tidimensional Quality Metrics (MQM) (Fre-
itag et al., 2021a)

• Granularity of evaluation - evaluating cor-
relation with human on a segment-level or
system-level

• Correlation method - correlation of abso-
lute values (Pearson or Kendall-like, Mathur
et al., 2020b) or correlations in pairwise ap-
proach (pairwise accuracy, Kocmi et al., 2021;
Mathur et al., 2020a
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• Usage of unlabeled part of testset - human
judgment often evaluates only a subset of the
testset. Metrics can use the remaining unla-
belled segments (especially for system-level
setup)

• Normalize human behavior - use raw hu-
man scores or normalize them with z-score
standardization

• Evaluating human reference - if additional
human translated references should be eval-
uated like one of the systems (Freitag et al.,
2021b)

• Evaluating outlier systems - absolute value
correlations via Pearson are sensitive to out-
liers, therefore Mathur et al. (2020a) recom-
mends removing outlier systems from evalua-
tion.

The list is incomplete as there are other nuances,
such as removing outlier systems, using only sta-
tistically significant pairs of systems, underlying
quality of human judgement, etc.

Evaluating all combinations of approaches is
not reasonable. Therefore we mainly follow the
approach defined by Kocmi et al. (2021) and also
used by WMT Metrics 2021 (Freitag et al., 2021b).

Here is a list of constraints for the evaluation:

• We use only testsets produced by professional
annotators as described in Section 3.2. Thus,
we do not evaluate over reference-based DA.

• We focus on a system-level pairwise setup as
the important use-case for automatic metrics
(Kocmi et al., 2021). Thus we do not evaluate
absolute value correlations with humans. Fur-
thermore, this avoids the problem with outlier
systems.

• We use only segments that have been evalu-
ated by humans (unlabelled segments of test-
sets are not used).

• We use z-score normalization mainly to be
comparable with past work. However, we do
not consider z-score as a good standardization
approach.

• We do not remove additional human refer-
ences from the evaluation as metrics should
be able to evaluate any translation (not only
those produced with current MT systems).

LPs System pairs Method

WMT20 8 565 srcDA
WMT21 9 1000 srcDA
WMT21-contr 3 198 contrDA
MQM21-news 3 301 MQM
MQM21-ted 3 247 MQM

Table 2: The statistics of human judgement sets are used
for testing automatic metrics.

4.1 Evaluation methodology
We use system-level pairwise accuracy as intro-
duced by Kocmi et al. (2021), which evaluates how
often metric agrees on the ranking of two systems
with human rank:

Accuracy =
|sign(metric∆) = sign(human∆)|

|all system pairs|

We use implementation by Freitag et al. (2021b);
therefore, results on the MQM21 testset agree with
their findings. We use bootstrap resampling to cal-
culate which metrics are not significantly outper-
formed by the winning metric with an alpha thresh-
old of 0.05.

To test automatic metrics, we use publicly avail-
able data from different sources. You can find statis-
tics in Table 2.

• WMT20 and WMT21 - we use source-based
DA from Barrault et al. (2020) and Akhbardeh
et al. (2021)

• WMT21-contr - we use contrastive DA from
Akhbardeh et al. (2021). This is the only
source of truly pairwise human judgements,
where annotators see the outputs of two sys-
tems next to each other. We collect those pairs
of systems evaluated to each other.

• MQM21-news and MQM21-ted- we MQM
data from Freitag et al. (2021b), both testsets
evaluate same set of systems but over different
domains.

Additionally, we combine all testsets to calcu-
late pairwise accuracy across all system pairs, sim-
ply by counting all system pairs where the metric
agrees with human overall evaluated system pairs
in all testsets.

4.2 Evaluated automatic metrics
We train two metrics MS-COMET trained with
human-produced references and MS-COMET-QE
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All WMT20 WMT21 WMT21-contr MQM21-news MQM21-ted
n 2311 ↓ 565 1000 198 301 247

MS-COMET-22 0.826 (1) 0.892 (1) 0.864 (1) 0.722 (2) 0.714 (4) 0.745 (3)
MS-COMET-QE-22 0.821 (2) 0.873 (2) 0.847 (2) 0.808 (1) 0.734 (2) 0.713 (6)
Bleurt 0.820 (3) 0.869 (3) 0.864 (1) 0.702 (3) 0.718 (3) 0.749 (2)
COMET 0.816 (4) 0.869 (3) 0.864 (1) 0.677 (5) 0.678 (5) 0.781 (1)
COMET-QE 0.800 (5) 0.848 (6) 0.839 (3) 0.692 (4) 0.774 (1) 0.652 (7)
BERTScore 0.790 (6) 0.853 (5) 0.836 (4) 0.722 (2) 0.621 (6) 0.721 (5)
chrF 0.770 (7) 0.857 (4) 0.793 (5) 0.702 (3) 0.621 (6) 0.713 (6)
BLEU 0.688 (8) 0.848 (6) 0.622 (7) 0.601 (7) 0.618 (7) 0.741 (4)
TER 0.669 (9) 0.766 (7) 0.657 (6) 0.616 (6) 0.585 (8) 0.636 (8)

Table 3: The main results for pairwise accuracy in a system-level setting. The bold scores represent metrics that are
not statistically different from the winning metric with a 0.05 alpha level. The numbers in brackets show the rank of
metrics. The “n” represents the number of system pairs in each evaluation.

trained only with sources and MT hypothesis.
We use identical hyper-parameters as the original
COMET model (Rei et al., 2020), and the models
are trained for precisely four epochs.

We compare our metrics to publicly available
metrics, and either have the highest correlation
with humans - COMET, BLEURT, and BERTScore
(Kocmi et al., 2021; Freitag et al., 2021a) or are
widely used in MT field (BLEU, ChrF, TER). We
use default parameters and models for each of them,
specifically:

For BLEU (Papineni et al., 2002), ChrF
(Popović, 2015), and TER (Snover et al., 2006), we
use SacreBLEU implementation https://github.
com/mjpost/sacrebleu/ (Post, 2018) version
2.0.1. We use the “mteval-v13a” tokenizer for all
language pairs except for Chinese and Japanese,
which use their separate tokenizer, as is recom-
mended.

For BERTScore (Zhang* et al., 2020), we
use https://github.com/Tiiiger/bert_score
version 0.3.11.

For BLEURT (Sellam et al., 2020), we use the
recommended model “bleurt-20” and implemen-
tation https://github.com/google-research/
bleurt.

For COMET (Rei et al., 2020), we use rec-
ommended model “wmt20-comet-da” and for
COMET-QE we use “wmt21-comet-qe-mqm”.
The implementation is https://github.com/
Unbabel/COMET in version 1.1.0.

5 Results

The results for the pairwise system-level scenario
are in Table 3. The results over 2311 system pairs

n 23595

MS-COMET-QE-22 0.597 (1)
COMET-QE 0.596 (2)
MS-COMET-22 0.594 (3)
Bleurt 0.593 (4)
COMET 0.586 (5)
BERTScore 0.567 (6)
chrF 0.557 (7)
TER 0.536 (8)
sentBLEU 0.535 (9)

Table 4: The results for pairwise accuracy in a segment-
level setting over WMT21-contr testset. The “n” repre-
sent a number of segment pairs used in the evaluation.

show that both our metrics outperform all other
state-of-the-art metrics, with only Bleurt not being
statistically worse than our metrics.

The results over individual testsets show that our
metrics are ranked among the top-performing met-
rics. Interestingly, MQM21-news domain seems
to be easier for Quality Estimation metrics, while
MQM21-ted shows the opposite direction. These
results are interesting as the underlying systems are
identical except for additional human reference.

Lastly, our metrics win in the WMT21-contr test-
set. This is the only genuinely pairwise testset
where annotators saw systems next to each other
while evaluating them.

Although we focus on a system-level evaluation,
we evaluate how metrics perform in a segment-
level setting for completeness. We use the testset
WMT21-contr to calculate accuracies in the same
fashion as for system-level scenario, but taking

https://github.com/mjpost/sacrebleu/
https://github.com/mjpost/sacrebleu/
https://github.com/Tiiiger/bert_score
https://github.com/google-research/bleurt
https://github.com/google-research/bleurt
https://github.com/Unbabel/COMET
https://github.com/Unbabel/COMET
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pairs of segment annotations instead of system-
level scores. The segment-level results in Table 4
show that our metrics, COMET-QE, and Bleurt are
in the winning cluster outperforming other metrics.

6 Conclusion

We have investigated the training COMET model
with a larger corpus of human judgements covering
multiple domains and 113 languages.

We employed several steps of filtering low-
quality or repetitive human judgement.

With those data, we trained two metrics: MS-
COMET-22 and MS-COMET-QE-22, that outper-
form other current MT metrics on a pair-wise
system-level decision task.

We release the metrics for public use.
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jar, Marta R. Costa-jussà, Christian Federmann,
Yvette Graham, Roman Grundkiewicz, Barry Had-
dow, Matthias Huck, Eric Joanis, Tom Kocmi,
Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof
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A List of languages

Our collection of human judgements covers 113
languages, language variants, or writing systems.
Here is the complete list. Note that XLM-Roberta
does not support some languages:
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Bosnian, Bulgarian, Burmese, Catalan, Central
Kurdish, Chinese (Literary), Chinese (People’s
Republic of China), Chinese (Taiwan), Chinese
Yue, Chuvash, Classic Chinese (Simplified), Croa-
tian, Czech, Danish, Dari, Divehi, Dutch, En-
glish, Estonian, Faroese, Fijian, Filipino, Finnish,
French, French (Canada), Galician, Georgian,
German, Greek, Gujarati, Haitian Creole, He-
brew, Hindi, Hmong, Hungarian, Icelandic, In-
donesian, Inuktitut, Inuktitut (Latin), Inuinnaq-
tun, Irish, isiZulu, Italian, Japanese, Kannada,
Kazakh, Khmer, Kiswahili, Korean, Kurdish, Kyr-
gyz, Lao, Latvian, Lithuanian, Macedonian, Mala-
gasy, Malay, Malay Standard, Malayalam, Maltese,
Maori, Marathi, Mongolian, Mongolian (Cyril-
lic), Nepali, Norwegian, Odia, Otomi, Pashto, Per-
sian, Polish, Portuguese (Brazil), Portuguese (Por-
tugal), Punjabi, Romanian, Russian, Samoan, Ser-
bian (Cyrillic), Serbian (Latin), Slovak, Slovenian,
Somali, Spanish, Swedish, Tahitian, Tajik, Tajiki,
Tamil, Tatar, Telugu, Thai, Tibetan, Tigrinya, Ton-
gan, Turkish, Turkmen, Ukrainian, Upper Sorbian,
Urdu, Uyghur, Uzbek, Vietnamese, Welsh.

Furthermore, our human judgement data are not
balanced. In some translation directions, we have
more human-labeled data than in others. Table 5
shows the largest forty translation directions in our
training data corpus.
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Mono With ref

English - German 175k 103k
English - Chinese 117k 80k
English - Czech 93k 71k
English - Russian 92k 72k
English - French 66k 36k
Chinese - English 63k 33k
German - English 60k 28k
Japanese - English 57k 35k
English - Japanese 55k 30k
English - Spanish 54k 27k
English - Dutch 52k 27k
French - English 50k 32k
English - Italian 50k 24k
Spanish - English 48k 29k
English - Finnish 45k 38k
Italian - English 44k 25k
English - Polish 43k 23k
Korean - English 39k 25k
English - Portuguese 38k 22k
English - Turkish 37k 24k
English - Korean 36k 20k
Polish - English 35k 19k
Czech - English 35k 18k
English - Hindi 34k 18k
English - Arabic 34k 17k
Dutch - English 33k 19k
Arabic - English 32k 16k
Russian - English 32k 17k
English - Estonian 28k 21k
English - Lithuanian 27k 18k
Hindi - English 25k 15k
Greek - English 25k 15k
English - Swedish 24k 13k
Turkish - English 23k 14k
English - Danish 21k 11k
Portuguese - English 21k 12k
English - Romanian 21k 14k
Swedish - English 21k 8k
Romanian - English 21k 16k
English - Slovak 21k 12k

Table 5: The number of human judgement for the forty
largest translation directions. The counts represent data
on the final filtered training set, where “Mono” are
dataset counts for MS-COMET-QE and “With ref” are
for MS-COMET.


