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Abstract

The machine translation efficiency task chal-
lenges participants to make their systems faster
and smaller with minimal impact on transla-
tion quality. How much quality to sacrifice
for efficiency depends upon the application, so
participants were encouraged to make multi-
ple submissions covering the space of trade-
offs. In total, there were 76 submissions from 5
teams. The task covers GPU, single-core CPU,
and multi-core CPU hardware tracks as well as
batched throughput or single-sentence latency
conditions. Submissions showed hundreds of
millions of words can be translated for a dollar,
average latency is 3.5–25 ms, and models fit in
7.5–900 MB.

1 Introduction

The efficiency task complements the collocated
news task by challenging participants to make their
machine translation systems computationally effi-
cient. This is the fifth edition of the task, expanding
upon previous editions (Heafield et al., 2021, 2020;
Hayashi et al., 2019; Birch et al., 2018).

Participants built English→German machine
translation systems following a constrained data
condition. The data condition follows the con-
strained 2021 Workshop on Machine Translation
news translation task. This year, to reduce the
barrier to entry, organisers provided an ensemble
of teacher systems, as well as cleaned data and
distilled output from the teacher ensemble. Partic-
ipants were required to use the provided teacher
systems, but were free to distil additional data from
the constrained condition. The SentencePiece vo-
cabulary used by the teachers was also made avail-
able.

For translation quality measurement, we use the
news-focused WMT22 dataset, and the systems are
ranked according to the COMET (Rei et al., 2020)
automatic metric. We also evaluate systems on
BLEU and chrF for additional reference.

Throughput Latency
CPU-ALL GPU CPU-1 GPU

CUNI 1 1 1 1
ECNU 1 1 1 1
Edinburgh 15 11 15 11
HuaweiTSC 5 5
RoyalFlush 6

Table 1: Number of systems submitted by each partici-
pant for the different hardware and batching conditions.
CPU-ALL refers to the 36-core hardware setting.

Submissions are made as Docker containers so
we can consistently measure their performance in
terms of quality, speed, memory usage, and disk
space. We run the containers in three different
hardware environments: one GPU, one CPU core,
and multiple CPU cores. Systems were tested for
throughput by providing 1 million sentences up-
front to allow batching and parallelization. We also
tested for latency with a program that drip-feeds
one input sentence, waits for the translation, and
then provides the next input sentence. There were
four conditions in total: GPU throughput, GPU
Latency, 1 CPU Core Latency, and 36 CPU cores
throughput. We did not measure latency in a multi-
core CPU setting because the test hardware has 36
cores and overhead for 36 threads is larger than the
cost of arithmetic for the small tensors in optimized
models. We also did not measure throughput on a
single CPU core as we found that setting to be a
somewhat unrealistic real world scenario.

Participants were free to choose which condi-
tions to participate in. The condition was passed to
the Docker container as command line arguments.
Table 1 shows the five participants and the number
of systems they submitted to each of the conditions.

Machine translation is used in a range of settings
where users might choose different trade-offs be-
tween quality and efficiency. For example, a high-
frequency trading system might prefer the lowest
latency at the expense of quality given that the out-
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put will only be read by a machine. Conversely,
in a post-editing scenario the personnel costs out-
weigh many computational costs. Therefore there
is not a single best system, but a range of options
that trade between quality and efficiency.

We emphasize the Pareto frontier: the fastest
systems at each level of quality, or the smallest
systems at each level of quality. To explore the
Pareto frontier, participants were encouraged to
make multiple submissions covering the range of
trade-offs. In total, 76 combinations of models,
hardware, and batching were benchmarked.

2 Hardware

We chose modern hardware to encourage exploit-
ing new hardware features. The GPU is an NVidia
A100 from the Oracle Cloud BM.GPU4.8 in-
stance. The instance has eight GPUs and we limited
Docker to using only one GPU. The GPU machine
has an AMD EPYC 7542 CPU with all cores al-
lowed.

The CPU-only condition used a dual-socket
Intel Xeon Gold 6354 from Oracle Cloud
BM.Optimized3.36 with a total of 36 cores.
For the single-core CPU track, we reserved
the entire machine then ran Docker with
-cpuset-cpus=0. In the 36-core CPU track,
participants were free to configure their own CPU
sets and affinities.

The Oracle Cloud machines are bare metal
servers, meaning there was no shared tenancy, no
virtualization, and the test machines were otherwise
quiescent.

3 Input Text

To amortize loading time, avoid starving highly par-
allel submissions, and reduce the ability to cheat,
we benchmark systems on 1 million sentences of
input. The test set is hidden inside these 1 mil-
lion sentences, shuffled with filler sentences. Many
filler sentences are drawn from parallel corpora to
check that systems are in fact translating all sen-
tences, though we do not consider scores on noisy
corpora reliable enough to report. The composition
of this set changes each year and is decided after
the submission deadline.

The filler data was gathered from parallel cor-
pora and gender bias challenge sets: WMT news
test sets from 2008 through 2022 (Akhbardeh et al.,
2021), the additional test inputs in WMT 2021,
Khresmoi summary test v2 (Dušek et al., 2017),

Corpus Sentences

WMT 08–19 32,477
WMT 20 under 150 tokens 1,416
WMT 20 sentence split 2,048
WMT 21 sentence split 1,096
WMT 21 inc. additional tests 14,938
WMT 22 2,037
Khresmoi Summary Test v2 1,000
IWSLT 2019 2,278
SimpleGen 2,664
WinoMT 3,888
TED 2020 v1 293,562
Tilde RAPID 2019 663,922

Total 1,021,326
Deduplicated 1,000,000

Table 2: Summary of corpora used for the input text.

IWSLT 2019 (Jan et al., 2019), SimpleGen (Ren-
duchintala et al., 2021), WinoMT (Stanovsky et al.,
2019), TED 2020 (Reimers and Gurevych, 2020),
and Tilde RAPID 2019 (Rozis and Skadin, š, 2017).
We limit sentence lengths to 150 space-separated
tokens. Because WMT 2020 includes excessively
long segments that are actually concatenated sen-
tences, we also added sentence split versions of
WMT 2020 and WMT 2021, though the differ-
ence on WMT 2021 was minor. Source sentences
were concatenated, deduplicated, and shuffled. The
Tilde RAPID corpus was clipped to make a total of
1 million deduplicated lines. Counts are shown in
Table 2.

Input text and tools to extract test sets from
system outputs are available at https://data.
statmt.org/wmt22/efficiency-task/
wmt22-testdata.tar.xz.

The input file is 1,000,000 lines, consisting of
19,926,744 space-separated words, or 124,186,772
bytes of English text in UTF-8. This is a mean
of 19.9 words per sentence and is comparable to
the previous year (Heafield et al., 2021). Teams
were responsible for their own tokenization and
detokenization; for this they were permitted to use
the SentencePiece vocabulary provided with the
teacher system, or to implement an alternative. We
provided raw UTF-8 English input text with one
sentence per line.

https://data.statmt.org/wmt22/efficiency-task/wmt22-testdata.tar.xz
https://data.statmt.org/wmt22/efficiency-task/wmt22-testdata.tar.xz
https://data.statmt.org/wmt22/efficiency-task/wmt22-testdata.tar.xz


102

4 Metrics

4.1 Resources
Time was measured with wall (real) time reported
by time and CPU time reported by the kernel for
the process group. We do not measure loading
time because it is small compared to translating 1
million sentences, some tools load lazily, and it is
easily gamed by padding loading time.

Peak RAM consumption was measured using
memory.max_usage in bytes from the kernel
for the CPU and by polling nvidia-smi for the
GPU. Swap was disabled.

Participants were instructed to separate their
Docker images into model and code files so that
models could be measured separately from the rel-
atively noisy size of code and libraries. A model
was defined as “everything derived from data: all
model parameters, vocabulary files, BPE config-
uration if applicable, quantization parameters or
lookup tables where applicable, and hyperparam-
eters like embedding sizes.” Code could include
“simple rule-based tokenizer scripts and hard-coded
model structure that could plausibly be used for an-
other language pair.” They were also permitted to
use standard compression tools such as xz to com-
press models; decompression time was excluded in
results. We report size of the model directory cap-
tured before the model ran. We also measured the
total size of the Docker image (after compressing
with xz).

4.2 Quality
Translation quality is measured on the WMT
2022 news test set. The automatic met-
rics are COMET (Rei et al., 2020) from
unbabel-comet version 1.1.3 with
the pretrained model wmt20-comet-da,
BLEU from sacrebleu (Post, 2018)
nrefs:1|case:mixed|eff:no|tok:13a
|smooth:exp|version:2.3.1, and chrF
also from sacrebleu.

5 Results

The results of the task evaluation for the latency
scenario are presented in Table 3, and those for
throughput are presented in Table 4. Results are
separated by the different hardware conditions and
within each hardware setting the results are ordered
by their COMET score, which is shown to have
closer correspondence to human evaluation as com-
pared to BLEU and ChrF (Freitag et al., 2021).

Figure 1 shows the trade-off between quality and
speed of batched translation submissions separated
by hardware environment. Each plot shows the
Pareto frontier as a black staircase to highlight the
best combinations of quality and speed. While
GPU systems (Figure 1a) achieve higher through-
put compared to CPU systems (Figure 1b), this
ignores pricing differences between these compute
options. In Figure 2, we combine GPU and 36 Core
CPU speed by using Oracle Cloud pricing. Despite
the less expensive per-hour pricing of CPU, GPU
is cheaper for throughput-oriented tasks that allow
batching.

The all-hardware latency Pareto frontier is
shown in Figure 3. This year all participants sub-
mitted systems to the latency task. This year, for
the first time, the semi-autoregressive GPU system
by RoyalFlush dominates the lower quality settings
of the latency Pareto frontier, with Edinburgh GPU
systems having won on some higher quality sys-
tems.

Model sizes at rest on disk appear in Figures 4a.
Participants were allowed to compress their mod-
els using their own tools and standard tools like
xz. The Pareto frontier consists of almost entirely
Edinburgh submissions, with HuaweiTSC produc-
ing several systems on the lower quality settings,
due to their 4-bit compression models. Docker
image sizes, which include model and software,
appear in Figure 4b, where the Pareto frontier is
dominated by Edinburgh submissions. Conversely,
some others opted to optimize other metrics and
included large Linux installations. We compressed
all docker images with xz before measuring.

Memory (RAM) consumption appears in Fig-
ure 5. GPU memory consumption reflects batch
size and some participants set a large batch size
to maximize speed. Optimizing speed for multi-
socket CPU machines implies having a copy of the
model in RAM close to each socket, so memory
consumption is larger beyond simply having tempo-
rary space for more batches. Finally, participants
may have sorted the entire 118 MB input file in
RAM to form batches of equal length sentences.
RoyalFlush is the clear winner on the GPU latency
RAM consumption, and HuaweiTSC is the winner
of CPU latency RAM consumption.

6 Conclusion

Using the highest quality system in this evalua-
tion, translating 124,186,772 characters took 283
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NVIDIA A100 GPU Latency
Automatic Seconds Disk MB RAM MB

Team Variant COMET BLEU chrF Wall CPU Model Docker GPU

Edinburgh 6-1.base.wide-gpu 0.542 34.50 61.90 15051 15141 900 2316 37961
Edinburgh 12_1.large-gpu 0.541 34.10 61.60 14116 14186 624 2039 37555
Edinburgh 6-2.base-gpu 0.528 33.80 61.50 16548 16584 171 1587 37181
Edinburgh 12_1.base-gpu 0.518 33.90 61.40 13081 13118 225 1641 37211
RoyalFlush royalflush_hrt_e20d1_k2 0.512 33.80 61.50 6008 6051 345 869 2021
Edinburgh 6-1.base-gpu 0.507 33.50 61.10 12665 12698 159 1574 37175
RoyalFlush royalflush_hrt_e12d1_k2 0.498 33.90 61.40 5437 5472 259 781 1973
Edinburgh 8-4.tied.tiny-gpu 0.462 32.40 60.10 24126 24157 84 1500 37133
RoyalFlush royalflush_hrt_e20d1_k3 0.458 33.40 61.10 4706 4752 345 870 2021
Edinburgh 6-2.micro.4h-gpu 0.454 31.70 59.80 15003 15031 74 1489 37129
Edinburgh 6-2.tied.tiny-gpu 0.443 31.50 59.50 15236 15261 77 1492 37129
ECNU ecnu-mt 0.432 33.20 60.70 25306 25338 492 15680 4989
Edinburgh 6-2.micro.1h-gpu 0.432 31.30 59.20 14789 14817 73 1489 37129
RoyalFlush royalflush_hrt_e12d1_k3 0.430 33.30 60.90 4093 4129 257 783 1973
Edinburgh ib-6-2-tiny-gpu 0.388 31.10 59.40 12624 12653 81 1496 37133
RoyalFlush royalflush_hrt_e20d1_k4 0.376 33.00 60.80 4024 4064 343 866 2021
Edinburgh ib-12_1-tiny-gpu 0.373 31.90 59.80 10763 10793 99 1515 37141
RoyalFlush royalflush_hrt_e12d1_k4 0.342 32.60 60.30 3409 3443 259 783 1973
CUNI cuni-large-ende 0.250 30.80 59.10 8327 8410 856 1676 1875

1 Core Ice Lake CPU Latency
Automatic Seconds Disk MB RAM MB

Team Variant COMET BLEU chrF Wall CPU Model Docker CPU

Edinburgh 6-1.base.wide-cpu 0.517 33.90 61.50 79230 79234 162 212 2487
Edinburgh 12_1.large-cpu 0.516 33.70 61.30 51991 51995 121 171 1537
Edinburgh 12_1.base_efh_0.05 0.513 33.80 61.40 37183 37190 176 1176 1337
Edinburgh 6-2.base-cpu 0.509 33.30 61.00 18101 18102 32 82 542
Edinburgh 12_1.base_efh_0.05_ft8 0.507 33.50 61.20 14669 14679 156 217 1256
Edinburgh 6-1.base-cpu 0.496 33.10 60.90 13383 13385 29 79 533
Edinburgh 12_1.base-cpu 0.494 33.70 61.20 19100 19102 44 94 640
HuaweiTSC huawei.cpu.base.docker 0.485 34.00 61.10 15743 15741 40 112 254
HuaweiTSC huawei.cpu.sm.docker 0.455 32.90 60.30 9955 9954 22 94 162
Edinburgh 8-4.tied.tiny_efh_0.3_ft8 0.444 31.80 59.70 13360 13361 36 97 459
Edinburgh ib-12-4-micro-cpu 0.442 31.90 59.90 12071 12072 18 68 328
Edinburgh 8-4.tied.tiny-cpu 0.439 31.60 59.60 14090 14090 15 65 270
ECNU ecnu-mt 0.434 33.20 60.70 327823 327764 492 14469 4900
Edinburgh 6-2.micro.4h-cpu 0.418 30.90 59.20 8916 8917 13 63 247
HuaweiTSC huawei.cpu.t12.docker 0.417 32.20 59.70 7591 7590 15 87 122
Edinburgh 6-2.micro.1h-cpu 0.383 29.90 58.40 8632 8632 13 63 256
Edinburgh 6-2.tied.tiny-cpu 0.378 30.00 58.50 9371 9372 13 63 257
Edinburgh ib-6-3-tiny-cpu 0.372 30.40 58.80 9258 9258 15 65 302
Edinburgh 12_1.tiny_efh_0.5_ft8 0.371 30.00 58.50 6590 6592 30 91 374
HuaweiTSC huawei.cpu.t6.docker 0.315 30.20 58.30 5871 5870 11 84 100
CUNI cuni-large-ende 0.250 30.80 59.10 335787 335806 856 1676 4857
HuaweiTSC huawei.cpu.ex.docker 0.128 26.30 55.10 6286 6285 7 80 70

Table 3: Results of system evaluation on the latency task. Total time measured in seconds is equivalent to
microseconds/sentence because the input is 1 million sentences.
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NVIDIA A100 GPU Batch
Automatic Seconds Disk MB RAM MB

Team Variant COMET BLEU chrF Wall CPU Model Docker GPU

Edinburgh 6-1.base.wide-gpu 0.543 34.60 61.90 283 349 900 2316 37961
Edinburgh 12_1.large-gpu 0.540 34.10 61.60 217 262 624 2039 37555
Edinburgh 6-2.base-gpu 0.529 33.80 61.50 158 169 171 1587 37181
Edinburgh 12_1.base-gpu 0.517 33.90 61.50 156 172 225 1641 37211
Edinburgh 6-1.base-gpu 0.509 33.40 61.10 136 146 159 1574 37175
Edinburgh 8-4.tied.tiny-gpu 0.468 32.50 60.20 156 161 84 1500 37133
Edinburgh 6-2.micro.4h-gpu 0.456 31.90 59.90 125 128 74 1489 37129
Edinburgh 6-2.tied.tiny-gpu 0.443 31.50 59.50 130 134 77 1492 37129
ECNU ecnu-mt 0.432 33.20 60.70 23600 23643 492 15680 5719
Edinburgh 6-2.micro.1h-gpu 0.431 31.30 59.20 124 128 73 1489 37129
Edinburgh ib-6-2-tiny-gpu 0.392 31.10 59.50 127 132 81 1496 37133
Edinburgh ib-12_1-tiny-gpu 0.376 32.10 59.90 128 134 99 1515 37141
CUNI cuni-large-ende 0.237 30.80 59.10 1029 1115 856 1676 4179

36 Core Ice Lake CPU Batch
Automatic Seconds Disk MB RAM MB

Team Variant COMET BLEU chrF Wall CPU Model Docker CPU

Edinburgh 12_1.large-cpu 0.531 33.90 61.40 1864 65214 121 171 57879
Edinburgh 6-1.base.wide-cpu 0.529 34.10 61.60 3121 108057 162 212 77379
Edinburgh 12_1.base_efh_0.05 0.521 34.00 61.50 972 34532 176 1176 32754
Edinburgh 6-2.base-cpu 0.516 33.50 61.20 535 18982 32 82 24467
Edinburgh 12_1.base_efh_0.05_ft8 0.514 33.70 61.40 445 15571 156 217 22373
Edinburgh 12_1.base-cpu 0.510 34.00 61.40 656 23159 44 94 33434
Edinburgh 6-1.base-cpu 0.506 33.30 61.00 450 15795 29 79 23520
HuaweiTSC huawei.cpu.base.docker 0.496 34.10 61.30 562 36577 40 112 17513
Edinburgh 8-4.tied.tiny_efh_0.3_ft8 0.460 31.90 59.80 254 8909 36 97 16473
HuaweiTSC huawei.cpu.sm.docker 0.459 32.90 60.30 351 21437 22 94 12461
Edinburgh 8-4.tied.tiny-cpu 0.450 31.90 59.80 319 11041 15 65 13880
Edinburgh ib-12-4-micro-cpu 0.446 32.00 60.00 337 11781 18 68 16707
ECNU ecnu-mt 0.434 33.20 60.70 88463 2059785 492 14469 2103
Edinburgh 6-2.micro.4h-cpu 0.423 30.90 59.30 227 7925 13 63 11154
HuaweiTSC huawei.cpu.t12.docker 0.406 31.80 59.60 238 13532 15 87 5797
Edinburgh 6-2.micro.1h-cpu 0.394 30.00 58.50 223 7671 13 63 10526
Edinburgh 6-2.tied.tiny-cpu 0.390 30.30 58.50 244 8559 13 63 12804
Edinburgh ib-6-3-tiny-cpu 0.381 30.50 58.90 266 9280 15 65 13464
Edinburgh 12_1.tiny_efh_0.5_ft8 0.376 30.20 58.60 161 5531 30 91 11843
HuaweiTSC huawei.cpu.t6.docker 0.312 30.20 58.40 205 11147 11 84 7166
CUNI cuni-large-ende 0.237 30.80 59.10 8243 295751 856 1676 138539
HuaweiTSC huawei.cpu.ex.docker 0.131 26.20 55.20 211 11495 7 80 7458

Table 4: Results of system evaluation on the throughput task. Total time measured in seconds is equivalent to
microseconds/sentence because the input is 1 million sentences.
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Figure 1: Speed and quality of batched submissions. The staircase shows the Pareto frontier.
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Figure 4: COMET score of systems as a function of model size, and Docker image size. Sizes are reported after
compression with xz, and are shown on a logarithmic scale. Some participants did not seek to prune image size and
included large Linux installations.
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seconds on an A100 GPU that costs $3.05/hr in
a cloud. That is $0.002/million characters. By
comparison, Google Translate’s cost is $20/million
characters.1

In terms of translation throughput cost per $
spent, the GPU submissions are better value for
money, provided that enough sentences can be fed
to the GPU continuously.

The GPU latency track had been intended to
attract non-autoregressive machine translation sub-
missions in their ideal condition with a large GPU
and no batch to parallelize. For the first time
this year, we had a mix of autoregressive, semi-
autoregressive and non-autoregressive systems:

• CUNI submitted a fully non-autoregressive
system based on connectionist-temporal-
classification (CTC) networks (Helcl et al.,
2022).

• Edinburgh submitted bidirectional decoder
based semi-autoregressive system (Zhang
et al., 2020). This system generates two to-
kens at an autoregressive step at a time from
both sides of the sentences.

• RoyalFlush submitted a semi-autoregressive
system based on their novel hybrid regressive
translation framework (HRT). They first per-
form a coarse-grained autoregressive pass that
generates some words in the target sentence,
with gaps of up to several words in between.
Afterwards a second, non-autoregressive pass
fills in all the missing words.

The RoyalFlush system proves extremely well
suited to the GPU latency task, dominating the
pareto frontier in the lower quality setting, even
outperforming CPU systems, which have tradition-
ally won this task.

Finally, we note that in semi-autoregressive mod-
els and non-autoregressive models, a small drop
in BLEU results in a large drop in COMET com-
pared to an autoregressive system, as evidenced
by all teams who submitted any form of non-
autoregressive MT to the task. This corroborates
the findings of (Helcl et al., 2022) where the large
discrepancies between BLEU and COMET were
noted. We urge participants in future editions of
the task to examine manually the output of their
non-autoregressive systems.

1https://cloud.google.com/translate/
pricing

7 Future tasks

This year’s shared task had an increased number
of participants, likely due to the organisers provid-
ing the distilled data and therefore substantially
decreasing the computational cost to participants.
We intend to keep this format of the task for fu-
ture years, in the hopes of attracting even more
participants.

German is a high-resource language, which
raises the computational cost of participation. We
would be interested in also potentially includ-
ing a medium resource language for distillation
so that we can see if the methods that work on
high-resource languages generalize well to lower-
resource languages, or languages with more mor-
phological complexity.

Last year (Heafield et al., 2021) the organis-
ers suggested that an efficient training shared task
would be an interesting natural extension to the effi-
cient translation shared task, however it has proven
difficult to set up in practice: we are conscious
that the validity of such a task can be easily under-
mined by participants finding a favorable random
seed that fits the training data, or more egregiously
by including evaluation data in their training data.
We are looking for potential solutions to these prob-
lems and we are open to suggestions for next year’s
edition of the task.
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