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Abstract

This paper presents Adam Mickiewicz Univer-
sity’s (AMU) submissions to the constrained
track of the WMT 2022 General MT Task. We
participated in the Ukrainian ↔ Czech trans-
lation directions. The systems are a weighted
ensemble of four models based on the Trans-
former (big) architecture. The models use
source factors to utilize the information about
named entities present in the input. Each of
the models in the ensemble was trained using
only the data provided by the shared task or-
ganizers. A noisy back-translation technique
was used to augment the training corpora. One
of the models in the ensemble is a document-
level model, trained on parallel and synthetic
longer sequences. During the sentence-level
decoding process, the ensemble generated the
n-best list. The n-best list was merged with the
n-best list generated by a single document-level
model which translated multiple sentences at a
time. Finally, existing quality estimation mod-
els and minimum Bayes risk decoding were
used to rerank the n-best list so that the best hy-
pothesis was chosen according to the COMET
evaluation metric. According to the automatic
evaluation results, our systems rank first in both
translation directions.

1 Introduction

We describe Adam Mickiewicz University’s sub-
missions to the constrained track of the WMT 2022
General MT Task. We participated in the Ukrainian
↔ Czech translation directions – a low-resource
translation scenario between closely related lan-
guages.

The data provided by the shared task organizers
was thoroughly cleaned and filtered, as described
in section 2.

The approach described in section 3 is based
on combining various MT enhancement methods,

*AN and GP contributed equally.
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including transfer learning from a high-resource
language pair (Aji et al., 2020; Zoph et al., 2016),
noisy back-translation (Edunov et al., 2018), NER-
assisted translation (Modrzejewski et al., 2020),
document-level translation, model ensembling,
quality-aware decoding (Fernandes et al., 2022),
and on-the-fly domain adaptation (Farajian et al.,
2017).

The results leading to the final submissions are
presented in section 4. Additionally, we performed
a statistical significance test with paired bootstrap
resampling (Koehn, 2004), comparing the baseline
solution with the final submission on the test set
reference translations released by the shared task
organizers. According to the automatic evaluation
results based on COMET (Rei et al., 2020) scores,
our systems rank first in both translation directions.

2 Data

In the initial stage of system preparation, the
sentence-level data was cleaned and filtered us-
ing the OpusFilter (Aulamo et al., 2020) toolkit.
With the use of the toolkit, language detection
filtering based on fastText (Joulin et al., 2016)
was performed, duplicates were removed, and
heuristics based on sentence length were applied.
In particular, we removed sentence pairs with a
length ratio over 3 and long sentences (> 200
words). Then, using Moses (Koehn et al., 2007)
pre-processing scripts, punctuation was normalized
and non-printing characters removed. Finally, the
text was tokenized into subword units using Senten-
cePiece (Kudo and Richardson, 2018) with the uni-
gram language model algorithm (Kudo, 2018). For
Ukrainian→Czech and Czech→Ukrainian models
trained from scratch, we used separate vocabular-
ies for the source and the target language. Each
vocabulary consisted of 32,000 units.

We used concatenated data from the Flores-
101 (Goyal et al., 2022) benchmark (flores101-dev,
flores101-devtest) for our development set, as pro-
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Data type Sentences Corpora

Monolingual cs
available 448,528,116 News crawl, Europarl v10, News Commentary, Common

Crawl, Extended Common Crawl, Leipzig Corporaused 59,999,553

Monolingual uk
available 70,526,415 News crawl, UberText Corpus, Leipzig Corpora, Legal

Ukrainianused 59,152,329

Parallel cs-uk
available 12,630,806

OPUS, WikiMatrix, ELRC – EU acts in Ukrainian
used 8,623,440

Table 1: Statistics of the total available corpora and the corpora used for system training after filtering.

vided by the task organizers.
Table 1 shows statistics for the total available

corpora in the constrained track and the corpora
used for system training after filtering.

3 Approach

We used the Marian (Junczys-Dowmunt et al.,
2018) toolkit for all of our experiments. Our
model architecture follows the Transformer
(big) (Vaswani et al., 2017) settings. For all model
training, we used 4x NVIDIA A100 80GB GPUs.

3.1 Transfer Learning

For our initial experiments, we used transfer learn-
ing (Aji et al., 2020; Zoph et al., 2016) from the
high-resource Czech→English language pair. We
used only the parallel data provided by the or-
ganizers to train the model in this direction. In
this case, we created a single joint vocabulary
for three languages (Czech, English, Ukrainian),
consisting of 32,000 units. The Czech→English
model was fine-tuned for the Ukrainian→Czech
and Czech→Ukrainian language directions. Our
later experiments showed that there were no gains
in translation quality compared with models trained
from scratch using separate vocabularies for source
and target languages – the upside was that the mod-
els took less time to converge during training.

3.2 Noisy Back-Translation

We used models created by the transfer learn-
ing approach to produce synthetic training data
through noisy back-translation (Edunov et al.,
2018). Specifically, we applied Gumbel noise to
the output layer and sampled from the full model
distribution. We used monolingual data available
in the constrained track, which included all ~59M
Ukrainian sentences after filtering and ~60M ran-
domly selected Czech sentences.

After training the model with concatenated par-
allel and back-translated corpora, we replaced the

training data with filtered parallel data and further
fine-tuned the model. We kept the same settings as
in the first training pass, training the model until it
converged on the development set.

3.3 NER-Assisted Translation

Translation in domains such as news, social or
conversational texts, and e-commerce is a special-
ized task, involving such challenges as localization,
product names, and mentions of people or events in
the content of documents. In such a case, it proved
helpful to use off-the-shelf solutions for recogniz-
ing named entities. For Czech, the Slavic BERT
model (Arkhipov et al., 2019) was used, with which
entities such as persons (PER), locations (LOC),
organizations (ORG), products (PRO), and events
(EVT) were tagged. Due to the lack of support
for the Ukrainian language in the Slavic BERT
model, the Stanza Named Entity Recognition mod-
ule (Qi et al., 2020) was used to detect entities
in the Ukrainian text, recognizing persons (PER),
locations (LOC), organizations (ORG), and mis-
cellaneous items (MISC). With these ready-made
solutions, the parallel and back-translated corpora
were tagged. The named entity categories were
then numbered to assign appropriate source factors
to words in the text, supporting the translation pro-
cess. The source factors were later transferred to
subwords in a trivial way.

Source factors (Sennrich and Haddow, 2016)
have previously been used to take into account var-
ious characteristics of words during the translation
process. For example, morphological information,
part-of-speech tags, and syntactic dependencies
have been added as input to neural machine trans-
lation systems to improve the translation quality.

In the same way, it is possible to add informa-
tion about named entities found in the text (Mod-
rzejewski et al., 2020), making it easier for the
model to translate them correctly. However, the
AMU machine translation system does not dis-
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Hlavní|p0 inspektor|p0 organizace|p0 RSPCA|p3 pro|p0 Nový|p2 Jižní|p2 Wales|p2
David|p1 O'Shannessy|p1 televizi|p0 ABC|p5 sdělil|p0 ,|p0 že|p0 dohled|p0 nad|p0
jatky|p0 a|p0 jejich|p0 kontroly|p0 by|p0 měly|p0 být|p0 v|p0 Austrálii|p2
samozřejmostí|p0 .|p0

_Hlavní|p0 _inspektor|p0 _organizace|p0 _R|p3 SP|p3 CA|p3 _pro|p0 _Nový|p2 _Jižní|p2
_Wales|p2 _David|p1 _O|p1 '|p1 S|p1 han|p1 ness|p1 y|p1 _televizi|p0 _A|p5 BC|p5
_sdělil|p0 ,|p0 _že|p0 _dohled|p0 _nad|p0 _ja|p0 tky|p0 _a|p0 _jejich|p0 _kontroly|p0
_by|p0 _měly|p0 _být|p0 _v|p0 _Austrálii|p2 _samozřejmost|p0 í|p0 .|p0

Figure 1: An example of a sentence tagged with NER source factors before and after subword encoding.

cs uk
Category train-bt train-parallel dev test train-bt train-parallel dev test
PER 33,633,602 1,545,658 747 306 30,778,893 1,623,370 827 478
LOC 24,552,404 1,954,319 1,191 454 18,178,736 1,912,604 1,197 771
ORG 29,380,436 1,997,685 566 314 24,117,485 2,221,371 544 606
MISC - - - - 4,140,394 893,867 168 76
PRO 5,452,326 1,104,860 172 59 - - - -
EVT 1,150,301 111,563 83 10 - - - -

Table 2: The number of recognized named entity categories in the training, development and test data. The training
data statistics are split into train-bt, which was created by noisy back-translation, and train-parallel, which is the
filtered parallel training data.

tinguish between inside-outside-beginning (IOB)
tags (Ramshaw and Marcus, 1995), treating the
named entity tag names as a whole. Specifically,
we introduce the following source factors:

• p0: source factor denoting a normal token,

• p1: source factor denoting the PER category,

• p2: source factor denoting the LOC category,

• p3: source factor denoting the ORG category,

• p4: source factor denoting the MISC category,

• p5: source factor denoting the PRO category,

• p6: source factor denoting the EVT category.

An example of a tagged sentence is shown in
Figure 1.

Models were trained in two settings: concatena-
tion and sum. In the first setting, the factor embed-
ding had a size of 16 and was concatenated with
the token embedding. In the second setting, the
factor embedding was equal to the size of the token
embedding (1024) and was summed with it.

As shown in Table 4, we observe an increase
in the string-based evaluation metrics (chrF and
BLEU) while COMET scores remain about the

same. This is in accordance with Amrhein and
Sennrich (2022), who show that COMET models
are not sufficiently sensitive to discrepancies in
named entities.

Table 2 presents the numbers of recognized
named entity categories in the training, develop-
ment and test data.

3.4 Document-Level Translation

Our work on document-level translation is based
on a simple data concatenation method, similar
to Junczys-Dowmunt (2019) and Scherrer et al.
(2019).

As our training data, we use parallel document-
level datasets (GNOME, KDE4, TED2020, QED),
as well as synthetically created data, concatenat-
ing random sentences to match the desired input
length. Specifically, we merge datasets created in
the following ways as a single, large dataset:

• Curr → Curr: sentence-level parallel data,

• Prev + Curr → Prev + Curr: previous sentence
given as a context,

• 50T → 50T: a fixed window of 50 tokens after
subword encoding,
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Netvrdím, že bakteriální celulóza jednou nahradí bavlnu, kůži, nebo jiné látky.
<SEP> Ale myslím, že by to mohl být chytrý a udržitelný přírůstek k našim stále
vzácnějším přírodním zdrojům. <SEP> Možná že se nakonec tyto bakterie neuplatní
v módě, ale jinde. <SEP> Zkuste si třeba představit, že si vypěstujeme lampu,
židli, auto, nebo třeba dům. <SEP> Má otázka tedy zní: Co byste si v budoucnu
nejraději vypěstovali vy?

Figure 2: An example document consisting of five sentences separated with <SEP> tags.

• 100T → 100T: a fixed window of 100 tokens
after subword encoding,

• 250T → 250T: a fixed window of 250 tokens
after subword encoding,

• 500T → 500T: a fixed window of 500 tokens
after subword encoding.

By concatenating such datasets, we allow the
model to gradually learn how to translate longer
input sequences. It is also capable of sentence-
level translation. To separate sentences from each
other, we introduced a <SEP> tag. An example of
a document-level input sequence is shown in Fig-
ure 2. All data used to train the document-level
model were tagged with NER source factors, in-
cluding the back-translated data.

3.5 Weighted Ensemble

We created a weighted ensemble of four best-
performing models. It consisted of the following
model types:

• (A) sentence-level models trained with NER
source factors (concat 16),

• (B) sentence-level model trained with NER
source factors (sum),

• (C) document-level model trained with NER
source factors (concat 16).

In this case, the document-level model was used
only for the sentence-level translation. The optimal
weights for each model were selected using a grid
search method. For the specific language pairs, we
used the following model and weight combinations:

• Czech → Ukrainian: 1.0 · (2×A) + 0.8 · (B) +
0.6 · (C),

• Ukrainian → Czech: 1.0 · (2×A) + 0.8 · (B) +
0.4 · (C).

3.6 Quality-Aware Decoding

Having the final model ensemble, we created an
n-best list containing 200 translations for each sen-
tence with beam search. Then we merged it with
a second n-best list containing 50 translations for
each sentence, created by a single document-level
model with document-level decoding. The idea
behind it was that the hypotheses produced by the
document-level decoding take into account the con-
text of surrounding sentences, which is not the case
with the ensemble. This enabled the use of quality-
aware decoding (Fernandes et al., 2022).

We applied a two-stage quality-aware decod-
ing mechanism: pruning hypotheses using a tuned
reranker (T-RR) and minimum Bayes risk (MBR)
decoding (Kumar and Byrne, 2002, 2004), as
shown in Figure 3.

Figure 3: A two-stage (T-RR → MBR) quality-aware
decoding process. 200 hypotheses generated by the
ensemble are merged with 50 hypotheses generated by
the document-level model. A tuned reranker is used to
prune the total number of hypotheses to 50, and these are
then used as input for minimum Bayes risk decoding.

First, we tuned a reranker on the development
set, using as features NMT model scores, as well as
existing QE models based on TransQuest (Ranas-
inghe et al., 2020) and COMET (Rei et al., 2020),
which are based on Direct Assessment (DA) (Gra-
ham et al., 2013) scores or MQM (Lommel et al.,
2014) scores. Specifically, we used:

• model ensemble log-likelihood log pθ(y|x)
scores,
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• TransQuest QE model trained on DA scores
(monotransquest-da-multilingual),

• COMET QE model trained on MQM scores
(wmt21-comet-qe-mqm),

• COMET QE model trained on DA scores
(wmt21-comet-qe-da).

We tuned the feature weights to maximize the
COMET reference-based evaluation metric value
using MERT (Och, 2003).

After tuning the reranker, we used it to prune
the n-best list from 250 to 50 hypotheses per input
sentence. The resulting n-best list was used for
minimum Bayes risk decoding, using the COMET
reference-based metric as the utility function. Mini-
mum Bayes risk decoding seeks, from the set of hy-
potheses, the hypothesis with the highest expected
utility.

ŷMBR = argmax
y∈Ȳ

EY∼pθ(y|x)[u(Y, y)]︸ ︷︷ ︸
≈ 1

M

∑M
j=1 u(y

(j), y)

(1)

Equation 1 shows that the expectation can be ap-
proximated as a Monte Carlo sum using model
samples y(1), . . . , y(M) ∼ pθ(y|x). In practice, the
translation with the highest expected utility can be
chosen by comparing each hypothesis y ∈ Ȳ with
all other hypotheses in the set.

The described two-stage quality-aware decoding
process allowed us to further optimize our system
for the COMET evaluation metric, which has been
shown to have a high correlation with human judge-
ments (Kocmi et al., 2021).

3.7 Post-Processing
The final step involved post-processing. We applied
the following post-processing steps for each best
obtained translation:

• transfer of emojis from the source to the trans-
lation using word alignment based on SimA-
lign (Jalili Sabet et al., 2020),

• restoration of quotation marks appropriate for
a given language,

• restoration of capitalization (e.g. if the source
sentence was fully uppercased),

• restoration of punctuation, exclamation and
question marks (if a source sentence ends with

such a mark, we make the translation do like-
wise),

• replacement of three consecutive dots with an
ellipsis,

• restoration of bullet points and enumeration
(e.g. if the source sentence starts with a num-
ber or a bullet point),

• deletion of consecutively repeated words.

Approach Sim. score COMET chrF
Baseline - 0.8322 0.5263
Default 0.4 0.8316 0.5260
Best-334 0.19 0.8322 0.5259
Best-133 0.25 0.8323 0.5262

Table 3: Results of the on-the-fly adaptation method
on the development set. The default approach is based
on Farajian et al. (2017). However, only 11 sentence
pairs were found in this scenario. The experiments
denoted as best-334 and best-133 used the learning rate
values of 0.002 and 10 epochs. In our development set
containing 2009 sentence pairs, 334 matching sentences
were found in best-334 and 133 in best-133.

3.8 On-The-Fly Domain Adaptation

The General MT Task tests the MT system’s per-
formance on multiple domains. Therefore, we in-
vestigated the possibility of improving our transla-
tion system with the on-the-fly domain adaptation
method.

This experiment was based on Farajian et al.
(2017). Our idea was to retrieve similar sentences
from the training data for each input sentence and
to fine-tune the model on their translations. Af-
ter the translation of a single sentence is complete,
the model is reset to the original parameters. We
used Apache Lucene (McCandless et al., 2010) as
our translation memory to search for similar sen-
tences. We indexed all of the training data and
used the Marian dynamic adaptation feature. We
compared the translation quality with and without
the retrieved context. The experiments were car-
ried out with a different similarity score used to
choose similar sentence pairs for the fine-tuning
process. We empirically modified the learning rate
and the number of epochs to find optimal values
that improved the translation quality.

Table 3 shows the results of the aforementioned
experiments on the full development set. We found
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System uk→cs cs→uk
COMET chrF BLEU COMET chrF BLEU

Baseline (transformer-big) 0.8622 0.5229 24.29 0.7818 0.5175 22.64
+back-translation 0.9053 0.5309 25.41 0.8356 0.5280 23.14

+ner
concat 16 0.9003 0.5314 25.62 0.8362 0.5309 24.28
sum 0.8991 0.5323 25.87 0.8421 0.5302 23.91

+fine-tune
concat 16 0.9021 0.5344 25.94 0.8387 0.5330 24.51
sum 0.8990 0.5357 25.99 0.8456 0.5321 24.24

+ensemble 0.9066 0.5376 26.36 0.8522 0.5373 24.85
+quality-aware 0.9874 0.5376 25.42 0.9238 0.5384 24.50
+post-processing 0.9883 0.5392 25.89 0.9240 0.5388 24.63

Document-level
sent-level dec. 0.8942 0.5326 25.47 0.8350 0.5289 23.92
doc-level dec. 0.8920 0.5324 25.44 0.8356 0.5297 23.78

Table 4: Results of COMET, chrF and BLEU automatic evaluation metrics on the concatenated datasets flores101-
dev and flores-101-devtest. ChrF and BLEU metrics were computed with sacreBLEU. Document-level model
evaluation includes added back-translation, NER source factors (concat 16) and fine-tuning.

System uk→cs cs→uk
COMET chrF BLEU COMET chrF BLEU

Baseline (transformer-big) 0.8315 0.5627 31.79 0.8008 0.5849 31.43
Final submission 1.0488 0.6066 37.03 0.9944 0.6153 34.74

Table 5: Results of COMET, chrF and BLEU automatic evaluation metrics on the test set. ChrF and BLEU metrics
were computed with sacreBLEU. The final submission results are statistically significant (p < 0.05).

that only a small number of sentences in the train-
ing data were similar to those present in the de-
velopment set. The results showed that tuning the
model on similar sentences from the training data
did not significantly improve translation quality. In
the end, we decided not to use this method in our
WMT 2022 submission.

4 Results

The results of our experiments are presented in
Table 4. We evaluated our models with the
COMET1 (Rei et al., 2020), chrF (Popović, 2015)
and BLEU (Papineni et al., 2002) automatic evalu-
ation metrics. ChrF and BLEU scores were com-
puted with the sacreBLEU23 (Post, 2018) tool. We
also include scores for the document-level model.
In this case, the scores include improvements added
by back-translation, NER source factors and fine-
tuning. The document-level evaluation was split
into sentence-level decoding and document-level
decoding. In the first scenario, the model translates

1COMET scores were computed with the
wmt20-comet-da model.

2BLEU signature: nrefs:1|case:mixed|eff:no|tok:13a
|smooth:exp|version:2.0.0

3chrF signature: nrefs:1|case:mixed|eff:yes|nc:6|nw:0
|space:no|version:2.0.0

a single sentence at a time, which is not different
from a sentence-level model. In the second sce-
nario, the model translates concatenated chunks of
at most 250 subword tokens at a time.

We found that the largest gain in the COMET
value was achieved due to the quality-aware decod-
ing method, at the cost of BLEU value. The chrF
value remained the same in the Ukrainian→Czech
translation direction, while it increased slightly in
the Czech→Ukrainian direction. As discussed in
section 3.3, the inclusion of NER source factors
helped the model with the translation of named en-
tities, which is not well reflected in the COMET
value, as this metric is not sufficiently sensitive
to discrepancies in named entities (Amrhein and
Sennrich, 2022).

Table 5 shows results for our final submissions
compared with the baseline. We performed a sta-
tistical significance test with paired bootstrap re-
sampling (Koehn, 2004), running 1000 resampling
trials to confirm that our submissions are statisti-
cally significant (p < 0.05).

5 Conclusions

We describe Adam Mickiewicz University’s
(AMU) submissions to the WMT 2022 General
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MT Task in the Ukrainian ↔ Czech translation di-
rections. Our experiments cover a range of MT
enhancement methods, including transfer learn-
ing, back-translation, NER-assisted translation,
document-level translation, weighted ensembling,
quality-aware decoding, and on-the-fly domain
adaptation. We found that using a combina-
tion of these methods on the test set leads to
a +0.22 (26.13%) increase in COMET scores in
the Ukrainian→Czech translation direction and a
+0.19 (24.18%) increase in the Czech→Ukrainian
direction, compared with the baseline model. Ac-
cording to the COMET automatic evaluation re-
sults, our systems rank first in both translation di-
rections.
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Lucene in Action. Manning Pubs Co Series. Man-
ning.

Maciej Modrzejewski, Miriam Exel, Bianka Buschbeck,
Thanh-Le Ha, and Alexander Waibel. 2020. Incorpo-
rating external annotation to improve named entity
translation in NMT. In Proceedings of the 22nd
Annual Conference of the European Association for
Machine Translation, pages 45–51, Lisboa, Portugal.
European Association for Machine Translation.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting on Association for Com-
putational Linguistics – Volume 1, ACL ’03, page
160–167, USA. Association for Computational Lin-
guistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.
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