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Abstract

This paper describes AISP-SJTU’s partici-
pation in WMT 2022 shared general MT
task. In this shared task, we participated in
four translation directions: English→Chinese,
Chinese→English, English→Japanese and
Japanese→English. Our systems are based
on the Transformer architecture with sev-
eral novel and effective variants, including
network depth and internal structure. In
our experiments, we employ data filtering,
large-scale back-translation, knowledge distil-
lation, forward-translation, iterative in-domain
knowledge finetune and model ensemble. The
constrained systems achieve 48.8, 29.7, 39.3
and 22.0 case-sensitive BLEU scores on
EN→ZH, ZH→EN, EN→JA and JA→EN, re-
spectively.

1 Introduction

We participate in the WMT 2022 shared general
MT task, including English↔Chinese(EN↔ZH)
and English↔Japanese(EN↔JA). All of our sys-
tems are built with constrained data sets.

For model architectures, we exploit several
Transformer variants including transformer-DLCL
(Wang et al., 2019), transformer-ODE (Bei Li,
2021), transformer-RPR (Shaw et al., 2018),
transformer-Coda (Zheng et al., 2021).

In this year’s translation tasks, we mainly em-
ploy data filtering (Zhou et al., 2021; Zeng et al.,
2021), large-scale back-translation (Sennrich et al.,
2015; Lample et al., 2017), knowledge distillation,
forward-translation, in-domain knowledge finetune
and model ensemble to improve the final model’s
performance.

For the synthetic data generation, we first ex-
ploit large-scale back-translation (Sennrich et al.,
2015) method to leverage the target-side monolin-
gual data and the knowledge distillation (Kim and
Rush, 2016) to leverage the source-side of bilingual
data. To use the source-side monolingual data, we

explore forward-translation by ensemble models
to get general domain synthetic data.Furthermore,
several data augmentation methods are applied to
improve the model robustness, including different
token-level noise and different sampling methods.

We mainly use three training strategies in the
training phase, including the warmup strategy (He
et al., 2016) to adjust the learning rate in training,
different sampling methods (Holtzman et al., 2019)
and the Graduated Label Smoothing (Wang et al.,
2020).

In the fine-tuning stage, the test set is clustered
into seven categories, and then use the TFIDF-
Ngram algorithm (Ramos et al., 2003) to search for
similar bilingual and monolingual data in all data
according to these seven domains. The monolin-
gual data is then generated using forward transla-
tion to generate pseudo-data, and finally fine-tuned
together with the searched bilingual data.

We pay more attention to the differences be-
tween different models in this year. We compute
Self-BLEU (Zhu et al., 2018) from the translations
of the models on the valid set to quantify the di-
versity among different models. To be precise, we
use the translation of one model as the hypothesis
and the translations of other models as references
to calculate an average BLEU score. A lower Self-
BLEU means this model is more different from
other models.

For ensemble method in every category, the self-
BLEU scores of the models are calculated to rep-
resent their differences from other models, and ac-
cording to the self-BLEU scores of the model, the
distribution weight when they perform ensemble is
calculated through the Softmax-Temperature (Zhu
et al., 2018; Cheng et al., 2017). Now seven do-
main ensemble models are obtained, then use the
model for each domain to predict the test set of the
corresponding domain separately.

This paper is structured as follows: Sec. 2 de-
scribes the novel model architectures. We introduce
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our system and training strategy in detail in Sec.
3. Experimental settings and results are shown in
Sec. 4. We conduct analytical experiments in Sec.
5. Finally, we conclude our work in Sec. 6.

2 Model Architectures

2.1 Model Configurations

As the number of model parameters increases, the
model’s performance is better, so deeper and wider
architectures are used in our system. However, the
training of the deep model is unstable, and the loss
is not easy to converge. Recent studies (Liu et al.,
2020a; Huang et al., 2020) show that the unstable
training problem of Post-Norm Transformer can
be mitigated by modifying initialization of the net-
work and the successfully converged Post-Norm
models generally outperform Pre-Norm counter-
parts. We adopt the Admin initialization method
(Liu et al., 2020b) in our training flows to stabi-
lize the training of deep Post-Norm Transformer.
Our experiments have shown that the Post-Norm
model has a good diversity compared to the Pre-
Norm model and slightly outperform the Pre-Norm
model.

In our experiments, we use multiple model
configurations with 24/30-layer encoders to build
deeper models, and the decoder layers are all 6, and
the hidden layer size of all models is 4096. Note
that all model configurations above apply to the
following variant models.

In addition, We use Transformer-ODE as the
baseline model.

2.2 Transformer-RPR

According to the research of (Shaw et al., 2018),
adding relative position representation to the self-
attention mechanism is used to characterize the
distance relationship of elements in the sequence,
which can further improve the performance of the
machine translation performance. So we incorpo-
rate relative position representation (RPR) into the
self-attention mechanism on both the Transformer
encoder and decoder side. Preliminary experiments
demonstrate that only relative key information is
enough, and we set the relative window size to 8.

2.3 Transformer-Coda

At the heart of the Transformer architecture is the
Multi-Head Attention (MHA) mechanism which
models pairwise interactions between the elements
of the sequence. Despite its massive success, the

current framework ignores interactions among dif-
ferent heads, leading to the problem that many of
the heads are redundant in practice, which underuti-
lizes the capacity of the model. To improve param-
eter efficiency, according to the research of (Zheng
et al., 2021), we adopt cascaded head-colliding
attention (CODA) which explicitly models the in-
teractions between attention heads through a hier-
archical variational distribution.

2.4 Transformer-DLCL

From the perspective of improving the residual net-
work structure, we introduce the DLCL(Dynamic
Linear Combination of Layers) method to solve the
problem of gradient disappearance or explosion in
deep model training. According to the research of
(Wang et al., 2019), this DLCL method can effec-
tively improve the performance of deep models.

2.5 Transformer-ODE

According to the research of (Bei Li, 2021), resid-
ual networks are an Euler discretization of solutions
to Ordinary Differential Equations (ODE), and a
residual block of layers in Transformer can be de-
scribed as a higher-order solution to ODE. Inspired
by this work, we adopt ODE to relieve the prob-
lem of gradient disappearance or explosion in deep
model training.

3 System Overview

3.1 Data Filtering

For ZH-EN and JA-EN language pairs, the filtering
rules are as follows:

* Filter out sentences which are longer than 120
words or contain a long word with over 40
characters.

* The word ratio between the source and the
target sentence must not exceed 1:3 or 3:1.

* Filter out the sentences that have invalid Uni-
code characters or HTML tags.

* Filter out the duplicated sentence pairs.

* The number of punctuation difference be-
tween the source and the target sentence must
not exceed 5.

* The number of digit difference between the
source and the target sentence must not exceed
3.
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* Filter out sentence pairs in which English sen-
tence has Chinese or Japanese characters.

Besides these rules, several models are trained
with constrained corpus for filtering corpus:

* Filter the bilingual corpus with semantic
matching models.

* Filter the bilingual corpus with word align
models (Dyer et al., 2013) .

* Filter out incomplete English sentences by a
discriminative model.

* Filter out incomplete Japanese sentences by a
discriminative model.

* Filter out classical Chinese and ancient poetry
sentences by a discriminative model.

The monolingual corpus is also filtered with
the above rules and models which are suitable for
monolingual data. All the above rules and models
are applied to synthetic parallel corpus as well.

3.2 Data Augmentation
In the field of NLP text classification, (Wei and
Zou, 2019) proposed EDA technology, which can
further improve the performance of the model. In-
spired by this work, we introduce three operations
of synonym replacement, random swap, and ran-
dom deletion to generate new data. Here we call
it Aug. Specifically, we choose 15% of sentence
pairs to add noise and keep the remaining 85% of
sentence pairs unchanged. For a chosen pair, we
keep the target sentence unchanged, and perform
the following three operations on the source sen-
tence:

* 30% probability of synonym replacement.

* 50% probability of random swap.

* 20% probability of random deletion.

3.3 General Domain Synthetic Data
Generation

In this section, we describe our methods for con-
structing general domain synthetic data. The
general domain synthetic data is generated via
large-scale back-translation, forward-translation
and knowledge distillation to enhance the models’
performance for all domains. In the following sec-
tions, we elaborate the above techniques in detail.

3.3.1 Back-Translation
Back-translation is the most commonly used data
augmentation technique to make good use of the
target side monolingual data in NMT (Hoang et al.,
2018). Previous work (Edunov et al., 2018) has
shown that Different generation strategies have dif-
ferent effects on the quality of generated pseudo-
data. After these efforts, we employ the following
three generation strategies.

* Sampling Top-K: At each time step, the model
generates the probability that each word in
the dictionary is likely to be the next word,
which we randomly draw from a sample of k
= 10 most likely candidates in this distribution.
Afterwards, words are generated at the next
time step based on the previously selected
words.

* Sampling Top-P: Top-P Sampling (Nucleus
sampling) is to preset a probability limit p-
value, and then arrange all possible words
from high to low according to the probabil-
ity, and select words in turn. Stop when the
cumulative probability of a word is greater
than or equal to the p-value, and then sample
from the already selected words to generate
the next word. In our experiments, p is set to
0.9.

* Beam Search: Generate target translation by
beam search with beam size 5.

Besides, we also use Tagged Back-Translation
(Caswell et al., 2019) in En→Zh, Zh→En, En→Ja
and Ja→En.

3.3.2 Forward-Translation
Forward translation refers to the generation of
pseudo-data using source-side monolingual data
(Sennrich et al., 2015). We use the ensemble model
to generate high-quality forward translation data,
which can greatly improve the robustness and per-
formance of the model. Forward translation pro-
vides steady improvements on all four tracks we
competed.

3.3.3 Knowledge Distillation
Knowledge Distillation (KD) has been proven to
be a powerful technique for NMT (Kim and Rush,
2016; Wang et al., 2020) to transfer knowledge
from the teacher model to student model. Specif-
ically, we use an integrated teacher model to gen-
erate target-side pseudo-data from the source side
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Domains Zh EN JA
CLIENT 345 364 0

conversational 0 0 502
ecommerce 518 515 453

medicals 277 1454 0
news 505 1910 505
social 503 0 0

t1 0 279 191
t3 0 14343 305

voa 0 19 0

Table 1: The distribution of the blind test sentences in
different domains.

of bilingual data. Likewise, Knowledge Distilla-
tion has steadily improved on all four tracks we
participated in.

3.4 In-domain Finetune

Domain adaption (Luong and Manning, 2015)
plays an important role in improving the transla-
tion performance. Different from the single domain
(news) in previous years, the blind test of this year
has shifted to a multi-domain. Firstly, we extract
the domain information of every sentence from the
"doc" tag in the XML files. The distribution of the
blind test sentences in different domains is shown
in Table 1. Secondly, we build 1-gram, 2-gram,
3-gram, 4-gram vocab for every domain and adopt
the TF-IDF algorithm to extract fine-tuning data for
each domain from the whole training set. Thirdly,
we finetune the models for each domain using the
corresponding domain data, 90% of which is used
for training and 10% for validation. Finally, the
models of each domain are ensembled and gener-
ate translation results of the test sentence in the
corresponding domain.

3.5 Softmax-T Self-BLEU based Ensemble

After we get numerous fine-tuned models, we need
to integrate them for better results. We improve
on the traditional Self-BLEU method (Zhu et al.,
2018). First, we calculate the Self-BLEU score of
each model in each domain, and then obtain the
weight score assigned to each model in each do-
main through the Softmax-Temperature (Zhu et al.,
2018; Cheng et al., 2017). Finally, we use the mod-
els of the respective domains to integrate according
to the assigned weight scores to generate data for
the respective domains.

4 Experiments and Results

4.1 Settings

All our models are implemented based on fairseq
1.0.0. All the models are carried out on 8 NVIDIA
V100 GPUs, each of which has 32 GB memory. We
use the Adam optimizer with β1 = 0.9, β2 = 0.98.
We use an initial learning rate of 0.001 and use a
warm-up strategy during the training phase. We
use warm-up step = 4000. The max token is set
to 3500 tokens per GPU and we set the “update-
freq” parameter in Fairseq to 8. The value of the
parameter Dropout is set to 0.3, and the value of
Relu-Dropout is set to 0.1. We use the officially
required sacreBleu to calculate all our models.

4.2 Dataset

The statistics of all training data is shown in Ta-
ble 2. For each language pair, the bilingual data
is the combination of all parallel data released by
WMT22. For monolingual data, we select data
from News Crawl, Common Crawl and Extended
Common Crawl, and the amount of data after pro-
cessing is shown in Table 2.

For generating pseudo-data, we use all source
monolingual to generate forward translation data
and all target monolingual to generate back-
translation data. Finally we use the source side
of bilingual data to generate knowledge distillation
data. We use the methods described in Sec. 3.1 to
filter bilingual and monolingual data.

4.3 Pre-processing and Post-processing

Before model training, we pre-process the training
data uniformly and customize the processing ac-
cording to the requirements of each model. Chinese
sentences are segmented by Jieba 1, and English,
we use Moses 2 for segmentation, and Japanese, we
use Mecab 3. Punctuation normalization is applied
in Chinese, English and Japanese data. Truecasing
is also applied for all the languages. For all the lan-
guages, we use byte pair encoding (BPE) with 40K
operations to do subword segmentation (Sennrich
et al., 2016).

For the post-processing, we apply de-tokenizing
and de-trucaseing on the translation results with
the scripts provided in Moses. And we use punctu-
ation normalization for the Chinese and Japanese
translations.

1https://github.com/fxsjy/jieba
2http://www.statmt.org/moses/
3https://github.com/taku910/mecab
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Data En→Zh Zh→En En→Ja Ja→En
Bilingual Data 25M 25M 26M 26M

Source Mono Data 15M 15M 10M 10M
Target Mono Data 45M 45M 20M 20M

Table 2: Statistics of all training data

System En→Zh Zh→En En→Ja Ja→En
Baseline 45.0 31.0 38.5 23.2

+Back Translation 46.5 33.6 39.5 27.9
+Knowledge Distillation 47.0 34.7 - -

+Forward Translation 47.4 35.0 40.2 28.2
+OurIndomainFinetune 47.5 - - 28.9

+NormalEnsemble 48.0 35.7 40.3 28.3
+OurEnsemble 48.1 35.9 40.4 28.4

Table 3: Case-sensitive BLEU scores(%) on the four directions newstest2020. OurEnsemble method outper-
form the NormalEnsemble. OurIndomainFinetune prove to be effective through validation in the news
domain. The final submitted system is a OurEnsemble of all models which are finetuned in each domain using
OurIndomainFinetune.

BASELINE-MODEL En→Zh Zh→En En→Ja Ja→En
Transformer 44.0 30.5 37.7 22.3

Transformer# 44.3 30.7 37.9 22.6
Transformer-RPR# 44.6 31.0 38.0 22.8
Transformer-Coda# 45.2 31.1 38.1 22.8
Transformer-DLCL# 45.3 31.3 38.2 23.0
Transformer-ODE# 45.0 31.0 38.5 23.2

Table 4: Case-sensitive BLEU scores (%) on the four translation directions newstest2020 for different architecture
in the baseline stage. The model with # indicates that the initialized strategy is ADMIN.

BASELINE-MODEL En→Zh Zh→En En→Ja Ja→En
Transformer# 44.3 30.7 37.9 22.6

Transformer-SourceAug# 44.8 31.1 38.2 23.0
Transformer-TargetAug# 44.6 30.6 37.9 22.5
Transformer-BothAug# 44.2 30.5 37.7 22.4

Table 5: Case-sensitive BLEU scores (%) on the four translation directions newstest2020 for different data aug-
mentation methods in the baseline stage.
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4.4 English→Chinese

The results of En→Zh on newstest2020 are shown
in Table 3. For the En→Zh task, there is a signif-
icant improvement in the valid set after adopting
our data filtering method. Our baseline score is
45.0. After applying large-scale Back-Translation,
we obtain +1.5 BLEU score on the baseline. We
further gain +0.5 BLEU score after applying knowl-
edge distillation and +0.4 BLEU from forward-
translation.

In preliminary experiments, we select all models
distilled from knowledge as our ensemble combi-
nations obtaining +0.6 BLEU score. On top of
that, We tried various combinations but couldn’t
get better results. After using our proposed ensem-
ble strategy, the BLEU score continue to improve
by 0.1, which saves a lot of manpower to select
models.

4.5 Chinese→English

The Zh→En task follows the same training proce-
dure as En→Zh. As shown in Table 3, we can ob-
serve that Back-Translation can improve 2.6 BLEU
from baseline. After this, knowledge distillation
brings a big improvement, which can increase the
BLEU scores from 33.6 to 34.7. Forward transla-
tion further boosts the BLEU score to 35.0. Like-
wise, our ensemble strategy saves a lot of man-
power while delivering a small BLEU boost, from
35.7 to 35.9.

4.6 English→Japanese

The results of En→Ja on newstest2020 are shown
in Table 3. The bilingual training data is 31M in
total, and we filter it down to 26M sentence pairs
through the filtering rules and models described
earlier. Because newstest2020 has detailed results
of each step as a reference, we regard the new-
stest2021 as the valid set and the newstest2020 as
the test set during training. The 26 million bilin-
gual training data brings the baseline model to 38.5
BLEU score on newstest2020.

For the back translation, our training data con-
sists of three parts: 1) 26 million bilingual target
data, 2) Japanese monolingual data, 3) Bilingual
augmented data. In addition to the 26 million
bilingual target sentences, we sample 20 million
Japanese monolingual data from the combination
of News Crawl and Common Crawl. Then we
used the JA-EN ensemble model to generate the
hypotheses as the pseudo data set via the Top-k,

Top-p and beam search strategy. We randomly ex-
tract 2 million from the bilingual data, and add
noise to the source sentences as described in Sec
3.2. We improve BLEU by 1.0 with the synthetic
back translation training data.

And then, we merge knowledge distillation and
forward translation together. We extract 26 million
bilingual source sentences and 10 million source
monolingual data, and generate pseudo data using
the ensemble model of the back translation models.
We also use 2 million noised data like used in back
translation. We improve the BLEU score from 39.5
to 40.2.

In the ensemble stage, we observe that both of
the normal ensemble and our ensemble strategy
have only a very slight improvement.

4.7 Japanese→English

The Ja→En task follows the same training proce-
dure as En→Ja. From Table 3, we can observe that
back translation can improve the BLEU score from
23.2 to 27.9. The knowledge distillation and for-
ward translation further improve 0.3 BLEU score.
In this task, we verify the effectiveness of our in-
domain fine tuning method in the News domain. It
is worth mentioning that out in-domain fine tuning
method brings 0.7 BLEU after forward-translation.
For the comparability of the experiment, we still
ensemble models which are on the base of forward-
translation. We observe that both ensemble meth-
ods make results worse.

5 Analysis

To verify the effectiveness of our approach, we con-
duct analytical experiments on model variants, data
augmentation methods, and ensemble strategies in
this section.

5.1 Effects of Model Architecture

We conduct several experiments to validate the ef-
fectiveness of Transformer (Vaswani et al., 2017)
variants we used in the baseline stage and list re-
sults in Table 4. Here we take the En→Zh and
En→Ja models as examples to conduct the exper-
iments. The results in the Zh→En direction are
similar to En→Zh, and the results for the Ja→En
direction are similar to En→Ja.

As shown in Table 4, Transformer-DLCL
achieves the best performance in En→Zh direction,
and Transformer-ODE achieves the best perfor-
mance in En→Ja direction. For Admin (Liu et al.,
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2020b) initialization, Transformer#’s BLEU is 0.2
higher than Transformer in En→Zh and En→Ja di-
rections, so this verifies the effectiveness of Admin
initialization in deep models.

5.2 Effects of Data Augmentation
For data augmentation, we conduct several experi-
ments based on the Transformer# baseline model
in four directions. Specifically, we adopt three
methods detailed in Section 3.2:

* SourceAug Aug on the source text of the
sentence pair.

* TargetAug Aug on the target text of the
sentence pair.

* BothAug Aug on the source text and target
text of the sentence pair.

The experimental results are shown in Table 5.
Taking En→Zh direction as an example, the
SourceAug achieves a BLEU score of 44.8, Targe-
tAug achieves a BLEU score of 44.6, and BothAug
achieves 44.2. Results in other directions show the
same trend. Therefore, we operate on the source
text of sentence pairs in the data augmentation pro-
cess.

6 Conclusion

This paper summarizes the results of the shared
general MT task in the WMT 2022 produced
by the AISP-SJTU team. In this shared
task, we participated in four translation di-
rections: English→Chinese, Chinese→English,
English→Japanese and Japanese→English. We
investigate various novel Transformer based archi-
tectures to build MT systems. Our systems are
also built on several popular data augmentation
methods such as back-translation, knowledge distil-
lation, forward-translation and in-domain finetune.
In the future, we hope to explore more efficient
model architectures and data augmentation tech-
niques in MT systems. We hope that our practice
can facilitate research work and industrial applica-
tions.
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