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Abstract

In this paper, we describe our NAIST-NICT-
TIT submission to the WMT22 general ma-
chine translation task. We participated in this
task for the English↔ Japanese language pair.
Our system is characterized as an ensemble of
Transformer big models, k-nearest-neighbor
machine translation (kNN-MT) (Khandelwal
et al., 2021), and reranking.

In our translation system, we construct the
datastore for kNN-MT from back-translated
monolingual data and integrate kNN-MT into
the ensemble model. We designed a reranking
system to select a translation from the n-best
translation candidates generated by the trans-
lation system. We also use a context-aware
model to improve the document-level consis-
tency of the translation.

1 Introduction

We participated in the WMT22 general ma-
chine translation task in two language direc-
tions, English-to-Japanese (En-Ja) and Japanese-
to-English (Ja-En). We built our system on an
ensemble of Transformer big models, k-nearest-
neighbor machine translation (kNN-MT) (Khan-
delwal et al., 2021), and reranking. Figure 1 shows
an overview of our system.

Our translation system is a combination of
kNN-MT and an ensemble of four Transformer
big models. We train each of the Transformer
NMT models using a different random seed, and
pick one model as kNN-MT. A notable point about
our system is that we construct the datastore for
kNN-MT from back-translated monolingual data
rather than reusing training data. We found that us-
ing back-translated data improves translation per-
formance compared with using a parallel training
corpus for the datastore.

Our reranker is designed to select the transla-
tion from the n-best translation candidates gener-
ated by the translation system. The reranker com-
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Figure 1: System overview.

putes the weighted sum of each translation candi-
date across multiple models and selects the trans-
lation candidate with the highest score. We used
k-best batch MIRA (Cherry and Foster, 2012) to
select the weights for the model scores that maxi-
mize the BLEU score of the development set.

2 Corpora and Preprocessing

For the training data, we used all the provided
bilingual parallel data: JParaCrawl v3 (Morishita
et al., 2020), News Commentary v16 (Tiedemann,
2012), Wiki Titles v3, WikiMatrix, Japanese-
English Subtitle Corpus (Pryzant et al., 2018), The
Kyoto Free Translation Task Corpus, and TED
Talks. As the English translation of the Japanese-
English Subtitle Corpus is only available in lower-
case, we trained a Moses truecaser (Koehn et al.,
2007) using the other corpora to add capitalization
into the subtitle corpus. After truecasing, the first
letter of each sentence was capitalized using de-
truecasing to produce sentence-cased English text
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to match the casing in the other corpora. We
cleaned the data by removing duplicate lines and
applying language filtering. As much of the train-
ing data was crawled from the internet, we used
fasttext (Joulin et al., 2016a,b) to predict the lan-
guage of each sentence and removed the sentences
that were not predicted to be the correct language.
This has the effect of reducing the noise of the
dataset by removing sentences with garbage to-
kens. We tokenized the text into subword units
using a joint vocabulary size of 64,000, a char-
acter coverage of 99.98%, and byte fallback us-
ing sentencepiece (Kudo and Richardson, 2018).
After subword segmentation, all sentences shorter
than 1 token or longer than 250 tokens were re-
moved. We also removed all sentences where the
number of tokens in one language was more than
double the number of tokens in the translation, i.e
the ratio of tokens between the source and target
is >2.0. After filtering, 27,784,519 sentence pairs
remained for training.

3 Translation System

3.1 Base Model

Our translation model is based on the Transformer
big architecture (Vaswani et al., 2017) with an
FFN size of 8,192 implemented in FAIRSEQ (Ott
et al., 2019). The hyperparameters for our transla-
tion models are shown in Table 1.

3.2 kNN-MT

kNN-MT (Khandelwal et al., 2021) extends the
decoder of a trained machine translation model us-
ing the k-nearest-neighbor search algorithm, and
retrieves the cached translation examples. The
method consists of two steps, datastore creation,
which creates key-value translation memory, and
generation, which calculates an output probabil-
ity distribution based on the nearest neighbors of
cached translation memory.

Datastore creation The typical NMT model is
composed of an encoder that encodes the source
sentence X and a decoder that generates target
tokens Y = (y1, y2, . . . , yI). Each target to-
ken yi is generated based on its output probability
P (yi|X, y<i). kNN-MT caches parallel text D in
a datastore represented as key-value memory M.
The value is a token yi that comes from a target
sentence in a parallel corpus, and the key is its in-
termediate vector hi of each time step computed

Translation Model

Architecture Transformer big with FFN size
of 8,192

Optimizer Adam (β1 = 0.9, β2 =
0.98, ϵ = 1× 10−8)

Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3
Gradient Clipping 1.0
Label Smoothing ϵls = 0.1
Mini-batch Size 512,000 tokens
Number of Updates 80,000 steps
Averaging Save checkpoint for every

1,000 steps and take an average
of last 10 checkpoints

Length Penalty 1.0
Beam Size 10

Reranker Model

Architecture Transformer big with FFN size
of 8,192

Optimizer Adam (β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−8)

Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3
Position Embeddings SHAPE (K = 512)
Gradient Clipping 1.0
Label Smoothing ϵls = 0.1
Mini-batch Size 512,000 tokens
Number of Updates 80,000 steps
Averaging Save checkpoint for every

2,000 steps and take an average
of last 10 checkpoints

Table 1: Hyperparameters of our translation and
reranker models.

by the decoder. The datastore is formulated as fol-
lows:

M = {(hi, yi), ∀yi ∈ Y | (X,Y ) ∈ D}. (1)

In our model, we use the 1024-dimensional vector
representation from the decoder before it is passed
to the final feed-forward network as the key hi.

We use FAISS (Johnson et al., 2019), which is
a toolkit for kNN search, to represent the datas-
tore and search for the nearest neighbors. We use
the OPQMatrix vector transform, IndexIVFPQ in-
dex, and IndexFlatL2 index as the coarse quan-
tizer. The hyperparameters of our search index are
shown in Table 2.

Generation During decoding, kNN-MT gener-
ates output probabilities by computing the linear
interpolation between the kNN and MT probabil-
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Type Value

Shape of OPQ matrix R1024×1024

Number of clusters (IVF) 65,536
Number of sub-vectors (PQ) 64
Number of clusters to search 64
Number of top-k neighbors 16

Table 2: Hyperparameters of our search index.

ity distributions,

P (yi|X, y<i, θ) = λpkNN(yi|X, y<i, θ)

+ (1− λ)pMT(yi|X, y<i, θ),
(2)

where λ is a hyperparameter for weighting each
probability and θ represents the trained weight pa-
rameters and we set λ = 0.4

The k-nearest-neighbor keys N are converted
into a distribution over the vocabulary pkNN by ap-
plying softmax function.

pkNN(yi|X, y<i, θ)

∝
∑

(kj ,vj)∈N

1yi=vj exp

(
−||kj − hi||22

τ

)
, (3)

where kj and vj are the top-j neighbor key and
value respectively and τ is a hyperparameter that
represents the temperature of softmax and we set
τ = 100.

3.3 Back-Translated Monolingual Datastore
Our kNN-MT system uses back-translated mono-
lingual data for the datastore instead of bilingual
corpora. This method allows us to use mono-
lingual resources without any additional training.
First, we use the bilingual corpora to train a
target-to-source translation model, which is then
used to back-translate the monolingual corpora.
The back-translated synthetic source sentences are
then passed through the source-to-target model,
which generates the intermediate vectors for each
decoding time step to fill the datastore.

The monolingual data for English was taken
from News Commentary v16 (Tiedemann, 2012),
Europarl v10, Leipzig’s news corpora (2018-
2020), news-typical (2016), newscrawl and
newscrawl-public (2018), web and web-public
(2018-2020), and the largest available size of
wikipedia corpus from each year for a total of over
26 million sentences. The monolingual data for

Japanese English

# of sentences 15,051,874 26,237,110
# of tokens 396,647,042 690,734,548

Table 3: Monolingual data statistics.

Japanese includes News Commentary v16 (Tiede-
mann, 2012), and all Leipzig news, newscrawl,
web, web-public, and wikipedia corpora from
2014 to 2021, totaling over 15 million sentences.

We preprocessed the monolingual data much
the same way as the bilingual data, removing du-
plicate lines and using fasttext to filter out sen-
tences where the predicted language did not match
the target language. The text was tokenized into
subword units using the model trained on the bilin-
gual corpora. In order to reduce the time for the
back-translation, sentences with more than 200 to-
kens were removed from the monolingual data.
Table 3 shows the monolingual data statistics af-
ter preprocessing. Note that the number of tokens
is equal to the size of the resulting kNN datastore
for each target language.

3.4 kNN-MT with Ensemble Model

We integrate kNN-MT into the ensemble model.
We train Transformer big models with different
random seeds, just as we would build a normal
ensemble model. Because the kNN search is too
computationally expensive, we randomly pick a
model instance and use it for the search as follows:

P (yi|X, y<i, θ1, . . . , θM )

= λpkNN(yi|X, y<i, θ1)

+
1− λ

M

M∑
m=1

pMT(yi|X, y<i, θm), (4)

where M is the number of model instances for the
ensemble, and we set M = 4.

4 Reranker

Our reranker selects one of the n-best translation
candidates from the translation system. Similar to
other rerankers, it computes the weighted sum of
multiple model scores for each translation candi-
date and selects the candidate with the maximum
score. We used the average log-likelihoods of the
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Figure 2: Context-aware model (context length ℓ = 2).

words in each document as the model scores:

D̂ = argmax
Y T
t=1

{∑
k

wk

∑T
t=1

∑|Yt|
i=1 Lk(yt,i)∑
t |Yt|

}
,

(5)

where D denotes a set of document translations,
which consists of T translations (D = Y T

t=1), and
Yt is the t-th translation in the document. yt,i de-
notes the i-th token in the translation Yt, in which
the number of tokens is |Yt|. Lk(yt,i) denotes the
log-likelihood of the token yt,i scored by the k-th
model, and wk is the weight of the k-th model.

The weights of the model scores were trained to
maximize the BLEU score of the development set.
We used k-best batch MIRA (Cherry and Foster,
2012) to optimize the weights.

4.1 Reranking Models
A characteristic of our reranker is the use of
context-aware model scores, which are the log-
likelihoods calculated per document of the test (or
development) set. By taking the context into con-
sideration during scoring, we expected to improve
the consistency of the translation throughout each
document.

We use an N-to-N translation model of Tiede-
mann and Scherrer (2017) as the context-aware
model, which translates multiple concatenated
sentences. Figure 2 illustrates the context-aware
model in which the context length is two sentences
(ℓ = 2). The model computes the log-likelihood
of the target translation Yt using preceding ℓ sen-
tences; that is,

Lk(yt,i) = log pk(yt,i|Xt
t−ℓ, Y

t
t−ℓ), (6)

where pk(·) denotes the likelihood computed by
the k-th model, and Xt

t−ℓ and Y t
t−ℓ denote the

source sentences and their translations from t − ℓ
to t, respectively.

We used five models in total: the score from our
translation system, and a combination of source-

to-target and target-to-source translation and left-
to-right (L2R) and right-to-left (R2L) decoding di-
rections.

We trained the R2L models by reversing the or-
der of the target tokens. Although the order is the
same during scoring, we reversed the target tokens
after concatenating multiple sentences. Therefore,
the sentence order of the target side becomes (Yt,
Yt−1, Yt−2). Note that the scoring sentence is the
last sentence (Yt−2), and the R2L models score
sentences later than the L2R models.

4.2 Training and Reranking

We used only the parallel corpora described in
Section 2 and trained Transformer big models
(Vaswani et al., 2017) with an FFN size of 8,192
for reranking. However, the trained models were
sentence-wise models because we did not use doc-
ument information in the training corpora. To ap-
ply the sentence-wise models to the N-to-N trans-
lation, we modified it using the following tech-
niques.

• We did not use sentence separators (e.g.,
‘[SEP]’ between sentences) because the
sentence-wise models did not include such
separators.

In the reranking task, we know the target to-
kens in advance, and we can easily identify
the tokens for the target sentence, which we
are scoring, without the separators.

• In the N-to-N translation, we had to score
long translations because we simply concate-
nated multiple sentences during inference us-
ing a sentence-wise model which was not
aware of the concatenated sentences. To learn
appropriate models for long translations from
sentences, we used the shifted absolute po-
sition embeddings (SHAPE) (Kiyono et al.,
2021) to make a model invariant to absolute
positions. The maximum shift was 512.

For the hyperparameters for the reranking mod-
els, we used the same setting as Kiyono et al.
(2020) (Table 1).

To search for the best translations while consid-
ering context, we applied the beam search method
to search for the translations that satisfied Eq. (5).
We used a beam width of 10.
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En-Ja Ja-En

Single Model 23.17 24.67
+ Ensemble 23.82 25.41
+ kNN-MT 24.43 25.16
+ kNN-MT with Ensemble 24.72 25.84

Table 4: Ablation study of our translation system on
newstest 2020 (BLEU %).

Datastore En-Ja Ja-En

No Datastore (w/o kNN-MT) 23.17 24.67
Training Data 22.76 24.79
BT Monolingual Data 24.43 25.16

Table 5: Comparison of the kNN-MT datastore on new-
stest 2020 (BLEU %)

5 Results

5.1 Translation System

Ablation Study To validate the effectiveness of
our translation system, we performed an ablation
experiment. Table 4 shows the experimental result
on newstest 2020. Note that this experiment does
not use a reranker system, and we evaluated the
1-best translation. The result shows that both en-
semble and kNN-MT are effective, and combining
them further improves translation performance.

kNN-MT Datastore As noted in Section 3.3,
our kNN-MT datastore uses different data than
the training corpus. We evaluated the transla-
tion performance of kNN-MT on a single Trans-
former model without ensemble. Table 5 shows
the comparison of the kNN-MT datastore evalu-
ated on newstest 2020. In the table, ‘No Data-
store’ indicates that kNN-MT is not used, and
‘Training Data’ and ‘BT Monolingaul Data’ indi-
cate that the datastore is constructed from train-
ing data and back-translated monolingual data, re-
spectively. As shown in the table, our ‘BT Mono-
lingual Data’ datastore outperforms the datastore
constructed from the training data, despite its
smaller size.

5.2 Context Length at Reranking

Table 6 shows the BLEU scores according to the
reranking method. ‘No Reranking’ indicates the
best translations output from the translation sys-
tem. ’Oracle’ always chooses the translation with
the highest sentence BLEU score from the n-best

newstest
Direction Reranking 2020 2021

En-Ja No Reranking 24.7 26.8

ℓ = 0 24.8 27.3
ℓ = 2 (submission) 24.9 27.4
ℓ = 4 25.0 27.3

Oracle 29.6 31.8

Ja-En No Reranking 25.6 22.5

ℓ = 0 25.5 22.7
ℓ = 2 (submission) 25.5 22.8
ℓ = 4 25.5 22.7

Oracle 29.8 25.7

Table 6: BLEU scores according to the reranking
method.

translation candidates and represents the output of
a perfect reranking system. The other cases indi-
cate the BLEU scores of our reranker of varying
context lengths ℓ.

The results show that our reranker improved the
BLEU scores from the ‘No Reranking’ case, ex-
cept for the case of Ja-En in newstest2020. How-
ever, the context length did not affect the BLEU
scores. (We submitted the case of ℓ = 2.) The
BLEU scores of the reranker were still lower than
that of ‘Oracle’, and future work will include
studying the context-aware models to improve it
further.

5.3 Placeholders

This year, the test set for the General MT task con-
tained a set of placeholder tags, which should be
output without translation. However, the provided
parallel corpora for the task did not contain these
special tokens. To solve this problem, we built a
training set with placeholders using the existing
parallel corpora.

We focused on the WikiTitles corpus, which is
a subset of the parallel corpora provided for the
General MT task. Most bitexts in WikiTitles are
named entities because the corpus was extracted
from Wikipedia titles. We substituted the parts that
matched the WikiTitles entries with the placehold-
ers.

In detail, we only extracted WikiTitles entries of
five characters or more in Japanese and 10 char-
acters or more in English from the parallel cor-
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Translation
Direction Placeholder (PLH) Source Base PLH

En-Ja #NAME# 3 2 3
#NUMBER# 2 1 2
#PRS_ORG# 55 52 55
#URL# 4 3 4

BLEU - 39.2 38.5

Ja-En #Organization1# 1 0 1
#Person# 1 1 1
#Product1# 116 79 116
#Product2# 42 26 40
#Product3# 7 4 7
#Product4# 2 2 2
#Product5# 2 2 2
#Product6# 2 2 2
#URL# 5 5 5
#URL1# 1 0 1

BLEU - 22.7 22.7

Table 7: Results of placeholder translation.

pora using the longest match, and substituted the
matched parts with the placeholders. (We used
only one placeholder type: ‘#PLACEHOLDER#’.)
Note that we excluded parallel sentences in Wiki-
Titles from the parallel corpora in advance. As a
result, we obtained additional 1.7 million parallel
sentences that contained the placeholders and used
them for training and fine-tuning.

During fine-tuning the translation system, we
set an unused token in the vocabulary to the place-
holder tag, and fine-tuned our translation models
with a combination of data from the original train-
ing data (without placeholders) and the new data
with the placeholders for two additional epochs
from the averaged checkpoints.

Our placeholder corpus contained only a sin-
gle placeholder tag instead of the rich variety
of tags contained in the test set. We resolved
this during the translation of the test set by first
replacing all placeholder tags with our place-
holder (#PLACEHOLDER#) before translation. Af-
ter translation, we identified and replaced our
#PLACEHOLDER# tag with the original tag from the
source sentence. In the case of multiple place-
holder tags in the same sentence, we preserved the
original order when converting them back into the
test placeholder tag set.

Table 7 shows the results of placeholder trans-
lation; that is, the number of placeholders and the
BLEU score for the wmttest2022 test set. ‘Base’
and ‘PLH’ indicate translation using the model
without/with fine-tuning on the placeholder cor-

pus, respectively. The ‘Base’ model failed to
translate some placeholders because it processed
the placeholders as strings and translated them
after subword segmentation. By contrast, the
‘PLH’ model translated the placeholders almost
perfectly. However, the model fine-tuned on the
placeholder corpus did not improve the BLEU
scores, and we submitted the result of the ‘Base’
model.

6 Conclusions

In this paper, we described our submission of the
joint team of NAIST, NICT, and TIT (NAIST-
NICT-TIT) to the WMT22 general MT task. We
participated in this task for the En ↔ Ja transla-
tion. Our system is built on an ensemble of Trans-
former big models, kNN-MT with using monolin-
gual data, and k-best batch MIRA reranker. We
would like to investigate each method and further
improve translation performance.
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