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Abstract

For real-life applications, it is crucial that end-
to-end spoken language translation models per-
form well on continuous audio, without rely-
ing on human-supplied segmentation. For on-
line spoken language translation, where models
need to start translating before the full utterance
is spoken, most previous work has ignored the
segmentation problem. In this paper, we com-
pare various methods for improving models’
robustness towards segmentation errors and dif-
ferent segmentation strategies in both offline
and online settings and report results on transla-
tion quality, flicker and delay. Our findings on
five different language pairs show that a simple
fixed-window audio segmentation can perform
surprisingly well given the right conditions.1

1 Introduction

End-to-end spoken language translation (SLT) has
seen considerable advances in recent years. To ap-
ply these findings to real online and offline SLT
settings, we need to be able to process continu-
ous audio input. However, most previous work
on end-to-end SLT makes use of human-annotated,
sentence-like gold segments both at training and
test time which are not available in real-life set-
tings. Unfortunately, SLT models that were trained
on such gold segments often suffer a noticeable
quality loss when applied to artificially split au-
dio segments (Zhang et al., 2021; Tsiamas et al.,
2022b). This also highlights that a good segmenta-
tion is more important for SLT than for automatic
speech recognition (ASR) because we need to split
the audio into “translatable units”. For a cascade
system, a segmenter/punctuator can be inserted
between the ASR and machine translation (MT)
model (Cho et al., 2017) in order to create suitable
segments for the MT model. However for end-to-

1We publicly release our code and model outputs
here: https://github.com/ZurichNLP/window_
audio_segmentation
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Figure 1: Visualisation of the different audio segmenta-
tion methods studied in this paper.

end SLT systems, it is still not clear how to best
translate continuous input.

Solving this problem is very much an active re-
search field that has mainly been tackled from two
sides: (1) improving SLT models to be more robust
towards segmentation errors (Gaido et al., 2020; Li
et al., 2021; Zhang et al., 2021) and (2) developing
strategies to split streaming audio into segments
that resemble the training data more closely (Gaido
et al., 2021; Tsiamas et al., 2022b). Both types of
approaches were successfully used in recent years
for the IWSLT offline SLT shared task (Ansari et al.,
2020; Anastasopoulos et al., 2021, 2022) to trans-
late audio without gold segmentations. However,
they have not yet been tested systematically in the
online SLT setup where translation starts before
the full utterance is spoken. Recent editions of
the IWSLT simultaneous speech translation shared
task focused more on evaluation using the gold seg-
mentation rather than unsegmented audio (Anasta-
sopoulos et al., 2021, 2022). Segmenting stream-
ing audio is especially interesting in online SLT
because aside from effects on translation quality,
different segmentations can also influence the delay
(or latency) of the generated translation.

In this paper, we aim to fill this gap and
focus on the end-to-end online SLT setup. We
suspect that there is an interplay between more
robust models and better segmentation strategies

https://github.com/ZurichNLP/window_audio_segmentation
https://github.com/ZurichNLP/window_audio_segmentation
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and that an isolated comparison may not be
informative enough. Consequently, we explore
different combinations of these two approaches
for two different SLT models and present results
in five language pairs. Figure 1 shows the four
segmentation methods we study in this work (see
also Section 3.3). Our experiments follow the
popular retranslation approach (Niehues et al.,
2016, 2018; Arivazhagan et al., 2020a,b) where
a partial segment is retranslated every time new
audio becomes available. Retranslation has the
advantage of being a simple approach to online
SLT, which can use a standard MT inference
engine. As a side-effect, the previous translation
can change in later retranslations and the resulting
“flicker” (i.e. sudden translation changes in the
output of previous time steps) is also considered in
our evaluation of different strategies.

Our main contributions are:

• We explore various combinations of segmen-
tation strategies and robustness-finetuning ap-
proaches for translating unsegmented audio in
an online SLT setup.

• We find that the advantage of dedicated au-
dio segmentation models over a fixed-window
approach becomes much smaller if the trans-
lation model is context-aware, and merging
translations of overlapping windows can per-
form comparatively to the gold segmentation.

• We discuss issues with the evaluation of delay
in an existing evaluation toolkit for retrans-
lation when different segmentations are used
and show how these can be mitigated.

2 Related Work

In recent years, the IWSLT shared task organisers
have stopped providing gold segmented test sets
for the offline speech translation task which has
lead to increased research focus on audio segmen-
tation (Ansari et al., 2020; Anastasopoulos et al.,
2021, 2022). One obvious strategy to segment au-
dio is to create fixed windows of the same duration,
but previous research has mostly relied on more
elaborate methods. Typically, methods with voice
activity detection (VAD) (Sohn et al., 1999) were
employed to identify natural breaks in the speech
signal. However, VAD models do not guarantee
breaks that align with complete utterances and can

produce segments that are too long or too short
which is why hybrid approaches that also consider
the length of the predicted utterance can be helpful
(Potapczyk and Przybysz, 2020; Gaido et al., 2021;
Shanbhogue et al., 2022). Most recently, Tsia-
mas et al. (2022b) finetune a wav2vec 2.0 model
(Baevski et al., 2020) to predict gold segmentation-
like utterance boundaries, an approach which out-
performs several alternative segmentation methods
and was widely adopted in the 2022 IWSLT offline
SLT shared task (Tsiamas et al., 2022a; Pham et al.,
2022; Gaido et al., 2022).

Apart from improving automatic audio segmen-
tation methods, previous research has also focused
on making SLT models more robust toward seg-
mentation errors. Gaido et al. (2020) and Zhang
et al. (2021) both explore context-aware end-to-
end SLT models and show that context can help to
better translate VAD-segmented utterances. Sim-
ilarly, training on artificially truncated data can
be beneficial to segmentation robustness in cas-
caded setups (Li et al., 2021) but also in end-to-end
models (Gaido et al., 2020). While this approach
can introduce misalignments between source audio
and target text, such misalignments in the training
data are not necessarily harmful to SLT models as
Ouyang et al. (2022) recently showed in an evalua-
tion of the MuST-C dataset (Di Gangi et al., 2019).

Both of these approaches – improving auto-
matic segmentation and making models more ro-
bust toward segmentation errors – can be combined.
For example, Papi et al. (2021) show that contin-
ued finetuning on artificial segmentation can help
narrow the gap between hybrid segmentation ap-
proaches and manual segmentation. However, a
combination of both methods is not always equally
beneficial. Gaido et al. (2022) repeat Papi et al.
(2021)’s analysis with the segmentation model pro-
posed by Tsiamas et al. (2022b) and show that for
this segmentation strategy, continued finetuning on
resegmented data does not lead to an improvement
in translation quality.

In our work, we aim to extend these efforts
and test various combinations of segmentation and
model finetuning strategies. We are especially inter-
ested in fixed-window segmentations which have
largely been ignored in SLT research but are attrac-
tive from a practical point of view because they
do not require an additional model to perform seg-
mentation. To the best of our knowledge, we are
the first to perform such an extensive segmentation-
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train test

# talks # segments # talks # segments

en-de 2,043 229,703 27 2,641

es-en 378 36,263 15 996
fr-en 250 30,171 11 1,041
it-en 221 24,576 11 979
pt-en 279 30,855 11 1,022

multi 1,128 121,865 48 4038

Table 1: Overview of dataset statistics. The last row
shows the total numbers for the multilingual model on
es-en, fr-en, it-en and pt-en combined.

focused analysis for online SLT, considering delay,
flicker and translation quality for the evaluation.

3 Experiment Setup

3.1 Data

We run experiments with TED talk data in five dif-
ferent language pairs where the task is to translate
a TED talk as an incoming stream without having
any gold sentence segmentation.

For English-to-German, we use the data from
the MuST-C corpus (Di Gangi et al., 2019) version
1.02. This dataset is built from TED talk audio with
human-annotated transcriptions and translations.
For testing, we use the “tst-COMMON” test set.
For Spanish-, French-, Italian- and Portuguese-to-
English, we use the data from the mTEDx corpus
(Salesky et al., 2021)3. This dataset is also based on
TED talks and provides human annotated transcrip-
tions and translations of the audio files. For testing,
we use the “iwslt2021” test set from the IWSLT
2021 multilingual speech translation shared task
(Anastasopoulos et al., 2021). The dataset statistics
can be seen in Table 1.

3.2 Spoken Language Translation Models

We base all our experiments on the joint speech-
and text-to-text model (Tang et al., 2021a,b,c) re-
leased by Meta AI. For the English-German ex-
periments, we use the model provided by Tang
et al. (2021b)4 and for the other language pairs, we
use the multilingual model provided by Tang et al.
(2021a)5. We refer to these models as the original

2https://ict.fbk.eu/must-c/
3http://www.openslr.org/100
4https://github.com/facebookresearch/

fairseq/blob/main/examples/speech_text_
joint_to_text/docs/ende-mustc.md

5https://github.com/facebookresearch/
fairseq/blob/main/examples/speech_text_
joint_to_text/docs/iwslt2021.md

models. These models are trained on full segments
that mostly comprise one sentence:

And like with all powerful technology, this brings
huge benefits, but also some risks.

To investigate the effects of different segmenta-
tion strategies combined with segmentation-robust
models, we finetune three different variants based
on each model. In each case, the finetuning data is
augmented with artificially segmented data, but no
segments cross the boundaries between the individ-
ual TED talks.

• prefix: This model is finetuned on a 50-50
mix of original segments and synthetically
created prefixes (i.e. sentences where the end
is arbitrarily chopped off). Finetuning on pre-
fixes should help for translating artificially
segmented audio where the segment stops in
the middle of an utterance. We create pre-
fixes of the original segments by randomly
sampling a new duration for an audio segment
and using the length ratio to extract the cor-
responding target text. An example for a pre-
fixed version of the original segment can be
seen here:

And like with all

• context: This model is finetuned on a mix
of original segments and synthetically created
longer segments. Context was already shown
to help with segmentation errors by Zhang
et al. (2021). This model should be able to
translate segments that consist of multiple ut-
terances. For each segment in the original
training set, we randomly either use the origi-
nal segment (50% of the time) or an extended
segment created by prepending the previous
segment (25% of the time) or the 2 previous
segments (also 25% of the time). We then add
context-prefixed segments for each of these
(possibly-extended) segments, by truncating
the last concatenated segment. An example
for a context-prefixed version of the original
segment can be seen here:

We work every day to generate those kinds of
technologies, safe and useful. And like with all
powerful technology, this brings huge benefits,

• windows: This model is finetuned on a 50-
50 mix of original segments and windows of
random duration. We split the audio into win-
dows by starting at the beginning of the audio

https://ict.fbk.eu/must-c/
http://www.openslr.org/100
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_text_joint_to_text/docs/ende-mustc.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_text_joint_to_text/docs/ende-mustc.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_text_joint_to_text/docs/ende-mustc.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_text_joint_to_text/docs/iwslt2021.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_text_joint_to_text/docs/iwslt2021.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_text_joint_to_text/docs/iwslt2021.md
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and then sampling the duration of the first win-
dow. The end of this window then becomes
the start of the next window and we repeat this
process until we reach the end of a TED talk.
For every such window, we extract the cor-
responding target text from the time-aligned
gold segment(s) via length ratios. This mir-
rors the conditions at inference time with a
fixed-window segmentation where a segment
can start and end anywhere in an utterance and
can also comprise multiple utterances. The
segment durations are sampled uniformly be-
tween 10 and 30 seconds. Note that this model
will see the qualitatively poorest data out of all
finetuned models because both the end of the
segment and the beginning depend on length
ratios which can introduce alignment errors.
An example for a window version of the origi-
nal segment can be seen here:

or death diagnosis without the help of artificial
intelligence. We work every day to generate those
kinds of technologies, safe and useful. And like
with all powerful technology, this brings huge
benefits, but also some risks. I don’t know how
this debate ends, but what I’m sure of, is that the
game

All models are trained from the original check-
point for an additional 20k steps and the last two
checkpoints are averaged if more than one is saved.
We do this finetuning by continuing training with
the config file of the original model. For the
English→German MuST-C model, we train on the
audio as well as the corresponding phoneme se-
quences based on the transcript, however, we do
not use additional parallel text data during finetun-
ing. For the multilingual mTEDx model, we only
train on data for the selected language pairs and
only on audio (no phoneme sequences) because
this model was already finetuned on the spoken
language translation task. The validation sets only
contain gold segments and all models stop train-
ing due to the step limit before early stopping is
triggered.

3.3 Segmentation Strategies
We consider four different inference-time segmen-
tation strategies in our experiments, visualised in
Figure 1:

• gold: These are human annotated segmenta-
tion boundaries that are released as part of the
MuST-C and mTEDx data. This segmenta-
tion can be viewed as an oracle segmentation

even though it may not necessarily be the best
segmentation for all models. Using the gold
segmentation in practice is unrealistic, espe-
cially in the online setting where there would
be no time for a human to segment the audio
before translation.

• SHAS: This segmentation method was re-
cently proposed by Tsiamas et al. (2022b).
The authors finetune a pretrained wav2vec 2.0
model (Baevski et al., 2020) on the gold seg-
mentations and train it to predict probabilities
for segmentation boundaries. SHAS can be
used both in offline and online setups using
different algorithms to determine the segmen-
tation boundaries based on the model’s proba-
bilities. Since we perform our experiments
in an online setup, we use the pSTREAM
algorithm to identify segments with SHAS.
We set the maximum segment length to 18
seconds which the authors reported as best-
performing.

• fixed: This is a simple approach that splits the
audio stream into independent fixed windows
of a given duration. In our experiments, we
use durations of 26 seconds, which performed
best in experiments by Tsiamas et al. (2022b).

• merged: Similarly to above, we consider
fixed-size windows for this segmentation strat-
egy but here we construct overlapping win-
dows. We use a duration of 15 seconds6 and
shift the window with a stride of 2 seconds at
a time. The translations of these overlapping
windows are merged before the next window
is translated (see Section 3.5).

3.4 Retranslation
We employ a retranslation strategy (Niehues et al.,
2016, 2018; Arivazhagan et al., 2020a,b) for our
end-to-end SLT experiments. This means that we
retranslate the incoming audio at fixed time inter-
vals. In our experiments, we retranslate every 2
seconds to be consistent with the 2-second stride
from the merging windows approach. Because of
such retranslations of the full audio segment —
from the start of the segment up to the current time
step — the SLT model may correct translation mis-
takes from earlier time steps. This means that the

6We found empirically that this works better than a dura-
tion of 26 seconds as for fixed-windows, with both increased
translation quality and reduced flicker (see Appendix B).
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final translation of a complete segment reaches the
quality of offline translation. However, if these up-
dated partial translations are presented to users and
there are changes to previously translated text, this
may be hard to follow. Therefore, it is important
to not only evaluate the quality of the translations
and the delay but also how often previously trans-
lated words are changed which is termed “flicker”.
Typically, when delay improves there will be more
flicker because translating sooner means a higher
chance of errors that need to be corrected in the
next retranslation.

3.5 Window Merging Algorithm

One reason why a fixed-window segmentation
might underperform compared to other segmenta-
tions is that utterances are likely to be split up into
two or multiple segments which can introduce am-
biguities and result in disfluent translations. How-
ever, this problem can be reduced if the windows
are overlapping which is technically very easy to
do. With a retranslation approach, we can simply
shift the whole window by X seconds to obtain
overlapping translations.

To merge the resulting translations, we employ
a merging algorithm that was previously proposed
for a cascaded SLT setup (Sen et al., 2022). Their
merging window algorithm also works for end-to-
end SLT because it is not dependent on a tran-
script of the source audio. The algorithm identifies
the longest common substring (LCS) between the
growing translation of the output stream and the
translation of the current window. The current out-
put is formed by everything to the left of the LCS
coming from the output at the previous time step,
followed by the LCS and then everything to the
right of the LCS from the current translation out-
put. In this way, the translation of the input stream
is continuously extended.

The merging is controlled by a threshold that
defines the minimum required length of the LCS.
At every time step, this threshold is computed by:

threshold = |Tt| ∗ τ

Where Tt is the current window translation
length and τ is a ratio hyperparameter. If the LCS is
shorter than this minimum length, instead of merg-
ing the current translation with the output stream,
the window is backtracked to the left and a longer
window is translated. We backtrack 0.1 seconds at

a time for a maximum of three backtracks. Only
when a sufficiently long LCS is found or the maxi-
mum number of backtracks is reached, do we per-
form the merging operation. In our experiments,
we set the ratio τ to 0.4 which performed best in
the cascaded setup (Sen et al., 2022). If there are
multiple LCS (common substrings with the same
length), we merge at the last-occurring one.

3.6 Evaluation
For evaluation, we use SLTev7 (Ansari et al., 2021),
a toolkit that can evaluate translation quality, de-
lay and flicker in a retranslation SLT setup. We
explain below how the evaluation is adapted for
unsegmented input. Since we assume our input is
segmented at the talk level, we evaluate at the talk
level too.

For translation quality, SLTev internally reseg-
ments the translations and aligns the new segments
to the reference segments such that the word error
rate is minimised (Matusov et al., 2005). It is not
guaranteed that the new segments follow the sen-
tence boundaries and are perfectly aligned but, as
long as the introduced alignment errors are similar
for different segmentations, they can be compared.

For flicker, we cannot use the sentence-level
measure in SLTev because this is computed as an
average over all segment-level flicker scores, and
with different segmentations, this measure is not
comparable. However, the document-level measure
is evaluated independent of the segmentation and
this works well for our purpose.

For delay, we do not use the official implemen-
tation in SLTev because of the way it assigns times-
tamps to repeated tokens. To explain the problem,
consider the following example:

P 13.18 O
P 14.18 O horror,
P 15.18 O horror, terror, horror
C 16.18 O horror, horror, horror.

where we retranslate the newly available audio
every second and consequently get three partial
translations (P) and one final, complete translation
(C). In SLTev, every token is assigned the time
stamp of its type’s first occurrence. This results
in the following time stamp assignments with the
original implementation.

O horror , horror , horror .

13.18 14.18 14.18 14.18 14.18 14.18 16.18

7https://github.com/ELITR/SLTev

https://github.com/ELITR/SLTev
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All occurrences of “horror” and “,” are assigned
the timestamp 14.18 even though most of them
are not yet generated by that time. If we translate
longer segments that may be comprised of multiple
sentences, encountering tokens that were already
seen before becomes more and more likely. All of
those would be assigned the timestamp of the first
occurrence which favours longer segments (which
we take to the extreme with our merged windows
output stream). To solve this issue, we adapt the
delay computation and store the individual times-
tamps for all repeated tokens. For this, we also
need to be aware that previous content can change
with each retranslation (e.g. terror → horror). We
solve this following Arivazhagan et al. (2020b)’s
notation of content delay and only assign times-
tamps once the previous context has finalised:

O horror , horror , horror .

13.18 14.18 14.18 16.18 16.18 16.18 16.18

With these new timestamps, all possible segmen-
tations will receive the same delay if the translated
text is identical and longer segments are no longer
favoured in the SLTev delay calculation. However,
since we wait until the context has finalised before
we assign the time stamps, the new delay measure
is now also affected by flicker.

4 Results

4.1 Translation Quality
We compare the different SLT models on different
segmentations of the test sets and show the result-
ing translation quality of the complete segments
in terms of BLEU in Table 2. Note that we would
reach the same translation quality in an offline set-
ting because the final retranslation is a translation
of the full window, and in common with previous
work, translation quality of online SLT is only mea-
sured on the final retranslation. We also evaluate
with COMET (Rei et al., 2020) and report even
better results with the merging windows approach
but also find that COMET might be less reliable in
a streaming SLT setup due to resegmentation errors
(see Section D.1).

Does SHAS perform best with the original
model (first column) as in previous work? When
the SLT model is just trained on gold data, SHAS
proves to be the best-performing segmentation out
of all automatic segmentations which is in line with
results by Tsiamas et al. (2022b) and Gaido et al.
(2022). As in previous studies, we also find that

original prefix context window

en-de

gold 25.4 25.5 25.2 25.5

SHAS 24.5 23.9 24.9 24.8
fixed 22.4 21.1 23.6 23.1

merged 24.8 23.8 25.3 22.8

es-en

gold 41.6 41.3 41.1 41.4

SHAS 40.2 40.3 40.7 41.0
fixed 35.0 36.9 39.6 38.4

merged 38.9 39.9 42.0 39.7

fr-en

gold 37.2 36.2 35.6 35.6

SHAS 36.2 36.1 35.8 36.1
fixed 31.0 32.0 34.5 32.9

merged 34.6 35.2 35.8 31.9

it-en

gold 27.0 28.7 28.8 29.0

SHAS 26.4 28.0 28.7 29.0
fixed 22.5 25.6 27.5 26.3

merged 25.3 27.4 29.2 27.6

pt-en

gold 30.6 29.5 28.7 29.1

SHAS 29.5 28.9 29.2 28.6
fixed 23.6 24.0 26.9 26.2

merged 26.6 27.4 28.1 24.3

Table 2: BLEU scores with different SLT models
(columns) and different audio segmentation methods
(rows). Best result for automatic segmentation scenario
marked in bold and green.

the original model shows a considerable drop in
BLEU when moving from the gold segmentation
to automatically split segments.

Is SHAS still the best-performing segmenta-
tion with the finetuned models? Finetuning with
alternative segmentations can offer strong improve-
ments for SHAS (+2.3) on it-en, with small im-
provements on es-en and en-de, but lower BLEU
on pt-en and fr-en. Similarly, Gaido et al. (2022)
found that SHAS did not benefit from finetuning on
resegmented data. However, for the two segmenta-
tion approaches based on fixed windows, finetuning
greatly reduces the gap to the gold segmentation.

This is especially noticeable when we finetune
on context and prefixes (third column). This con-
firms the finding by Zhang et al. (2021) that context-
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aware models can better translate artificially seg-
mented audio. When merging overlapping win-
dows, we consistently see an improvement over the
segmentation with non-overlapping fixed windows.
In three language pairs, this method outperforms
SHAS and in two the context-finetuned model even
improves over the gold segmentation.

Do training conditions need to match the seg-
mentation at inference time? Apart from the
context-aware finetuned model, we also finetuned
a model on fixed windows of random duration (last
column). This matches the fixed-window audio in-
put at inference time better because a segment can
start anywhere in an utterance, unlike the context-
based model where every training segment started
at the beginning of an utterance. Surprisingly, we
find that the model finetuned on windows of ran-
dom duration generally performs worse with the
merging window strategy than the context-based
model. This suggests that the training data for
this model contains more misalignments between
speech and translation because we extract both the
start and the end of the segment via length ratios.
This causes more flicker (see next Section) which
makes it harder to merge the translations at each
time step correctly. We leave extended experiments
where the alignments between speech and transla-
tion are computed via ASR or the SLT output of
the windows of random durations (as opposed to a
simple length ratio) to future work.

4.2 Flicker

As mentioned in the Introduction, translation qual-
ity is not the only important evaluation metric in an
online SLT scenario. When using a retranslation
approach, we also need to consider the flicker that
is caused by the model updating its translations
at every time step. We compute the flicker as de-
scribed in Section 3.6. The flicker scores for the
Spanish-to-English test set can be seen in Figure 2,
the same figures for the other language pairs are in
Appendix D. For the results shown here, we use an
output mask of 0. We show in Appendix C that our
findings also hold with larger output masks. We
show scores with and without biased beam search.

Biased beam search (Arivazhagan et al., 2020a)
is a modification to regular beam search that bi-
ases the probability distribution at the current time
step towards a token in a given prefix translation
at the same timestep. This can be used to stabilise
retranslation – the translation of the current prefix

is biased towards the translation of the previous
prefix, suppressing flicker. In our experiments, we
use the translation of the previous step as the prefix
with a beta parameter of 0.25 and mask the 5 last
tokens such that changes towards the end of the sen-
tence are still possible8. Biased beam search cannot
be applied directly to the merged window approach,
since it depends on an alignment between the trans-
lation of the current prefix and that of the previous
prefix. When translating using sliding windows,
the current and previous prefixes have different
start points, so their translations cannot be easily
aligned. We experimented with a way to reduce
flicker by merging on the last common substring
rather than the longest but this causes considerable
translation quality loss (see Appendix B).

Does the segmentation strategy matter for
flicker? From Figure 2, we can see that there are
big differences between the different segmentation
strategies. Fixed windows have the highest flicker
because there we translate the longest windows. If
something at the beginning of the window transla-
tion is changed, this will increase the flicker score
considerably. With biased beam search, the flicker
can be dramatically reduced. Merging overlapping
windows has a lower flicker than fixed windows
without biased beam search, both because the du-
ration of the windows is shorter and because the
merging algorithm prohibits changes to the left of
the longest common substring9. This segmentation
method even has lower flicker than SHAS when no
biased beam search is applied. With biased beam
search, SHAS performs mostly similar to the gold
segmentation which has the lowest flicker overall.

Does model finetuning help reduce flicker?
Prefix finetuning helps reduce flicker both with and
without biased beam search because the models see
incomplete sentences at training time and are less
likely to hallucinate to finish the sentence. Con-
text finetuning helps even more and we saw in the
outputs that this model has less of a tendency to
connect multiple sentences into a longer sentence
which can reduce flicker. The model finetuned on
windows shows an even higher flicker than the orig-
inal model for most segmentation strategies even
though it was designed to be able to translate seg-

8We do not show translation quality scores with biased
beam search because on average there is only a difference of
-0.006 BLEU.

9Reducing the window length to 15 seconds for the fixed
window segmentation reaches a flicker that is only slightly
higher than for merged windows but the translation quality
suffers considerably.
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Figure 2: Flicker values for the different segmentation strategies and SLT models on the Spanish-to-English test set.
The results are grouped by training strategy and each bar corresponds to a different segmentation strategy. We do
not apply biased beam search to the merged segmentation.
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Figure 3: Delay values for the different segmentation strategies and SLT models on the Spanish-to-English test set.
The results are grouped by training strategy and each bar corresponds to a different segmentation strategy.

ments that can start and end anywhere in a sentence.
As discussed in the previous section, we think this
increased flicker is an artefact of the automatically
generated training data which can be erroneous.

4.3 Delay

The final evaluation metric we consider is delay.
The results can be seen in Figure 3. Again, we show
results with and without biased beam search for the
gold, SHAS and fixed-window segmentation.

Does the segmentation strategy matter for de-
lay? Because our definition of delay is affected by
flicker as well (see Section 3.6), the fixed segmen-
tation without biased beam search not only has the
highest flicker but also the highest delay. In our
results, we can see that the high delay is caused
by the flicker because when we reduce flicker with
biased beam search the fixed segmentation has com-
parable delay to the gold and SHAS segmentations.
The merging windows approach has comparable
delay to the gold and SHAS segmentations with-

out biased beam search. Since we cannot apply
biased beam search reliably to the merging win-
dows approach without hurting translation quality,
the flicker cannot be reduced and therefore, the
merging windows approach has higher delay than
the other segmentation methods with biased beam
search. If delay could be defined independently of
flicker in a way that still works for comparing differ-
ent segmentations, the merging windows approach
would likely have similar delay also compared to
the outputs with biased beam search.

Does model finetuning help reduce delay? The
results are a bit mixed. For example, the context
model reduces delay for the gold segmentation but
increases it slightly for SHAS and more for the
fixed segmentation and the merging windows ap-
proach. In general, the choice of the model does
not seem to be as important for delay as for trans-
lation quality and to a lesser extent flicker. It is
possible that apparent effects only occur because
our definition of delay is affected by flicker.
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5 Discussion

Based on our results in Section 4, we believe that
fixed-window segmentation should not be disre-
garded in future SLT research on unsegmented au-
dio. Given the right setup with a context-aware
model and a merging window algorithm, this seg-
mentation can outperform current state-of-the-art
automatic segmentation models and in some cases
even the gold segmentation in terms of transla-
tion quality. Moreover, in an online SLT setup,
a fixed-window approach brings the additional ben-
efit that no dedicated segmentation model needs to
be loaded at inference time and run every time new
audio becomes available.

While there is currently no solution to bring
flicker down to biased beam search levels with-
out hurting quality (see Appendix B) or increasing
delay (see Appendix C), this should not be a reason
to disregard fixed-window segmentation as it opens
exciting opportunities for future research.

6 Conclusion

In this paper, we explored several combinations
of segmentation-robust finetuning and different au-
tomatic segmentation strategies in an online SLT
setup. We focus on a retranslation-based approach
to SLT and we run experiments on five different
language pairs based on two different SLT models.
Considering the evaluation of translation quality,
flicker and delay, we discuss several issues that
arise when comparing different segmentations and
propose a fix to an existing toolkit for evaluating
delay. Our results show that a simple fixed-window
segmentation can perform surprisingly well if an al-
gorithm is used for merging overlapping windows
and a context-aware SLT model is used. In terms
of translation quality, this segmentation performs
comparably to SHAS — the current state-of-the-art
segmentation method — and in some cases even
outperforms the gold segmentation, showing poten-
tial for future application to offline SLT. In terms
of flicker and delay, the results of the merging win-
dows approach are comparable to the other seg-
mentations if biased beam search is not enabled but
future work is needed to reduce flicker in the merg-
ing windows approach to similar levels as biased
beam search for other strategies without hurting
translation quality.

Ethical Considerations

In our work, we only use publicly available model
checkpoints, toolkits and datasets and do not collect
any additional data. Our experiments also do not
involve human annotators.

Limitations

While we aim to evaluate on a number of language
pairs and with different automatic metrics, there are
still some open questions that we could not answer
in this work. First, we did not perform a human
evaluation and, therefore, it remains unclear how
distracting the different flicker and delay values
with different setups would be for a user. How-
ever, previous work by Macháček and Bojar (2020)
shows that character erasure - a metric related to
flicker - correlates with usability scores in a human
evaluation which suggests that this would also be
true for flicker. Second, the current implementa-
tion of SHAS can be used to simulate an online
setting but it still expects the full audio as input.
Consequently, we could not empirically compare
how long translation takes with different segmen-
tation methods in a real online setup. Third, our
experiments are limited to SLT using a retransla-
tion strategy. We leave further experiments with
simultaneous SLT models that use a policy to de-
cide at each time step whether to wait for further
input or to translate for the future.
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Ondřej Bojar, Roldano Cattoni, Fahim Dalvi, Nadir
Durrani, Marcello Federico, Christian Federmann,
Jiatao Gu, Fei Huang, Kevin Knight, Xutai Ma, Ajay
Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Eliz-
abeth Salesky, Xing Shi, Sebastian Stüker, Marco
Turchi, Alexander Waibel, and Changhan Wang.
2020. FINDINGS OF THE IWSLT 2020 EVAL-
UATION CAMPAIGN. In Proceedings of the 17th
International Conference on Spoken Language Trans-
lation, pages 1–34, Online. Association for Compu-
tational Linguistics.
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Appendix

A Further Finetuning Specifications

We finetune all models and translate with a sin-
gle NVIDIA Tesla V100 GPU. For the multi-
lingual mTEDx model, the additional parame-
ter load-speech-only needs to be added
to the official training script10. We use the
restore-file parameter to specify the check-
points of the original models from which continued
training should be initialised.

We will release all code (training scripts, trans-
lation scripts and evaluation modifications), the
finetuned model checkpoints and the outputs upon
publication.

B Experiments with Last Common
Subsequence

As a possible way of reducing flicker for the merg-
ing windows approach, we try merging on the last
common subsequence (longer than two tokens)
instead of the longest common subsequence. In
this way, we can maximise the finalised part of
the growing output translation and reduce flicker.
Figure 4 shows how the flicker increases for both
merging strategies when the window size increases.
With the original implementation that merges on
the longest common subsequence, the flicker in-
creases dramatically when the window size is in-
creased. For the modified merging algorithm that
merges on the last subsequence (longer than two to-
kens) the flicker increases only moderately with in-
creased window size and is in general much lower.
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window size
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Figure 4: Flicker values with the original model on the
English-to-German test set for different window sizes
when merging on the longest common subsequence
(blue) and the last common subsequence (orange).

10https://github.com/facebookresearch/
fairseq/blob/main/examples/speech_text_
joint_to_text/docs/iwslt2021.md

Based on these results, one might choose to
merge on the last sequence, however, this change
also affects the translation quality. Figure 5 shows
the BLEU scores of both merging methods with
different window sizes. Unfortunately, merging on
the last common subsequence performs continu-
ously worse than merging on the longest common
subsequence. If quality is the main focus, this
merging method is not advisable. These results
also show that a window size of 15 performs best
for the merging windows approach.
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Figure 5: BLEU scores with the original model on the
English-to-German test set for different window sizes
when merging on the longest common subsequence
(blue) and the last common subsequence (orange).

C Results with Output Mask

We also evaluate the four different segmentation
methods when an output mask is applied. This
means at every time step the output is truncated
from the right. The number of tokens that are re-
moved is defined by the mask size, i.e. a mask of
size 0 means no tokens are removed and a mask of
size 7 means seven tokens are removed. We com-
pute these results for Spanish-to-English without
biased beam search and the context-aware model
which showed the lowest flicker in general.
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Figure 6: Flicker with different output masks on the
Spanish-to-English test set. Results for all four segmen-
tation methods with the context-finetuned model.

https://github.com/facebookresearch/fairseq/blob/main/examples/speech_text_joint_to_text/docs/iwslt2021.md
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Figure 6 shows the flicker at different output
mask sizes. First of all, it can be noticed that
the fixed window segmentation has a continuously
higher flicker than all other segmentation methods
and that the flicker is still rather large even with
a mask of size 10. This suggests that most flicker
in the fixed-window segmentation does not occur
towards the end of the segments.

The merging windows approach consistently has
lower flicker than SHAS and with larger mask sizes
even lower flicker than the gold segmentation. With
a mask of size 10, the flicker is at 0.25 which is
comparable to the flicker of the original model with
fixed window segmentation where biased beam
search is enabled.
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output mask

4
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d
el
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gold shas fixed merged

Figure 7: Delay with different output masks on the
Spanish-to-English test set. Results for all four segmen-
tation methods with the context-finetuned model.

However, this reduced flicker comes at the cost
of a higher delay because the masked tokens will
not be available at the time they are actually pro-
duced. This flicker-delay trade-off is well-known.
Figure 7 shows the increase in delay with larger
output masks. For the merging windows approach,
we see that the delay increases more than for SHAS
and the gold segmentation. Since our definition of
the delay measure is affected by flicker, these re-
sults are hard to interpret. Nevertheless, using an
output mask is a way to reduce flicker for the merg-
ing windows approach without reducing translation
quality but we need to accept a higher delay.

D Additional Results

D.1 Translation Quality with COMET
For completeness, we present performance results
measured with COMET (Rei et al., 2020) in Table
3. This is evaluated outside of SLTev but we use the
same resegmentation tool (Matusov et al., 2005) to
align the translations with the reference segments.
The results show similar patterns as with BLEU and

original prefix context window

en-de

gold -0.0589 -0.0801 -0.0659 -0.0696

SHAS -0.1762 -0.1934 -0.0835 -0.1418
fixed -0.3080 -0.3655 -0.1846 -0.1671

merged -0.1821 -0.2169 -0.0683 -0.1133

es-en

gold 0.3175 0.2864 0.2776 0.2981

SHAS 0.2145 0.2291 0.2784 0.2638
fixed -0.0339 0.0448 0.2637 0.2633

merged 0.2658 0.2736 0.3962 0.3642

fr-en

gold 0.1702 0.1380 0.1123 0.1078

SHAS 0.1147 0.1421 0.1742 0.134
fixed -0.1696 -0.1115 0.0777 0.0316

merged 0.0978 0.1066 0.2170 0.1109

it-en

gold 0.0566 0.0583 0.0704 0.0886

SHAS -0.012 0.0215 0.0915 0.0709
fixed -0.305 -0.2072 0.0142 -0.0408

merged -0.0536 -0.0066 0.1255 0.0619

pt-en

gold 0.0662 0.0234 -0.0130 -0.0048

SHAS -0.0108 -0.0104 -0.0085 -0.0085
fixed -0.2939 -0.2853 -0.0854 -0.0937

merged -0.0581 -0.0784 0.0276 -0.0554

Table 3: COMET scores with different SLT models
(columns) and different audio segmentation methods
(rows). Best result for automatic segmentation scenario
marked in bold and green.

the context model paired with the merging window
approach performs best among the automatic seg-
mentation approaches on all language pairs. This
approach even outperforms the gold segmentation
on three language pairs. Note however that evaluat-
ing resegmented text with COMET may have some
undesirable side-effects because the translated text
is not always split at correct segmentation bound-
aries, e.g. the first token of a segment often is glued
to the end of the previous segment.

We tested this with 200 gold segments for en-de
and manually corrected the resegmentation of the
original model output. While the BLEU score does
not change much with these corrections (24.70 vs.
24.73), the COMET score jumps from -0.1128 to
0.0467 which is a larger improvement than some
differences in Table 3. Since it is unclear if such
resegmentation errors occur equally often in all
our experiment setups, we only include the results
with BLEU in the main body of the paper. We hy-
pothesise that COMET has only seen well-formed
sentences at training time and consequently is less
reliable on such resegmented data. In the future,
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document-level neural evaluation metrics could be
better suited for evaluating translations of unseg-
mented or automatically segmented audio in SLT.

D.2 Flicker Results for Other Language Pairs
We present the same plots as in Section 4.2 for
English-to-German in Figure 8, French-to-English
in Figure 9, Italian-to-English in Figure 10 and
Portuguese-to-English in Figure 11. The results
follow the same patterns as the results for Spanish-
English discussed in Section 4.2:

• Fixed windows without biased beam search
have the highest flicker.

• For the language pairs into English, the merg-
ing windows approach has lower flicker than
SHAS if no biased beam search is used.

• Finetuning on context reduces flicker.

D.3 Delay Results for Other Language Pairs
We present the same plots as in Section 4.3
for English-to-German in Figure 12, French-to-
English in Figure 13, Italian-to-English in Figure
14 and Portuguese-to-English in Figure 15. The
results follow the same patterns as the results for
Spanish-English discussed in Section 4.3:

• Fixed windows without biased beam search
have the highest delay.

• The merging windows approach has compara-
ble delay to SHAS if no biased beam search
is used.

• Finetuning has less of an effect on delay than
on flicker.
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Figure 8: Flicker values for the different segmentation strategies and SLT models on the English-to-German test set.
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Figure 9: Flicker values for the different segmentation strategies and SLT models on the French-to-English test set.
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Figure 10: Flicker values for the different segmentation strategies and SLT models on the Italian-to-English test set.
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Figure 11: Flicker values for the different segmentation strategies and SLT models on the Portuguese-to-English test
set.
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Figure 12: Delay values for the different segmentation strategies and SLT models on the English-to-German test set.
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Figure 13: Delay values for the different segmentation strategies and SLT models on the French-to-English test set.
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Figure 14: Delay values for the different segmentation strategies and SLT models on the Italian-to-English test set.
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Figure 15: Delay values for the different segmentation strategies and SLT models on the Portuguese-to-English test
set.


