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Abstract

This paper describes our submission to the
Word-Level AutoCompletion Shared Task of
the WMT 2022. We participate in the pair
of languages, English–German, in both ways.
We propose a segment-based interactive ma-
chine translation approach whose central core
is a machine translation (MT) model that pre-
dicts the complete translation from the context
provided by the task and picks the word we
were trying to autocomplete from there. We
show with this approach that it is possible to
use the MT models in the autocompletion task
by performing minor changes at the decoding
step and obtaining good accuracy.

1 Introduction

Machine translation (MT) has significantly im-
proved in recent years with the emergence of neural
machine translation (NMT), but it still cannot as-
sure high-quality translations for all tasks (Toral,
2020). For those scenarios with rigorous translation
quality requirements, it is critical for professional
translators to manually validate the translations gen-
erated by the NMT system. The computer-aided
translation (CAT) tools show up to improve the vali-
dation and editing process carried out by translators.
Researchers approached CAT tools from many di-
rections with the aim of reducing the human effort
of correcting the automatic translations. Among
CAT tools such as translation memory (Zetzche,
2007), augmented translation (Lommel, 2018) and
terminology management (Verplaetse and Lam-
brechts, 2019); we can find autocompletion tools,
which help professional translators by providing
new partial translations according to the validated
parts they have supplied to the system.

Word level autocompletion (WLAC) (Li et al.,
2021) is a new shared task introduced in WMT22.
Its aim is to complete a target word given a source
sentence, a sequence of characters typed by the

human translator and a translation context. Four
types of context are possible:

Zero-contex: no context is given.

Suffix: a sequence of translated words located af-
ter the word to autocomplete.

Prefix: a sequence of translated words located
prior to the word to autocomplete.

Bi-contex: A combination of the suffix and the
prefix type. That is, there is a sequence of
translated words located after the word to auto-
complete, and a sequence of translated words
located prior to the word to autocomplete.

Note that, in all cases, the word to autocomplete
is not necessarily consecutive to these contexts.

We have experimented with a similar CAT tool
from the interactive machine translation (IMT)
framework. In this field of research, the transla-
tion is generated in a collaborative process between
the human translator and the MT model. Among
the different approaches, the segment-based IMT
(Domingo et al., 2017; Peris et al., 2017) proto-
col presents certain similarities with WLAC: at
each step, the user validates sequences of translated
words—the context—and makes a correction—the
word to autocomplete.

Therefore, in this work we have approached
WLAC as a simplification of segment-based IMT,
using the context as the validated segments and
the typed characters as the word correction; and
limiting the process to the first iteration. This has
allowed us to tackle WLAC by training a conven-
tional NMT model and adapting it at the decoding
step.

2 Segment-based interactive machine
translation

Segment-based IMT establishes a framework in
which a human translator works together with
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SOURCE (x): Una versión traducida de un texto.
REFERENCE (y): A translated version of a text.

ITER-0 (f̃ ) ( )
(ŷ) A written version of a story.
(f̃ ) (A) (version of a)

ITER-1 (s) t
(ŷ) A translated version of a document.
(f̃ ) (A translated version of a)

ITER-2 (s) t
(ŷ) A translated version of a text.

FINAL (ŷ ≡ y) A translated version of a text.

(a) Segment-based IMT session.

cl s cr
A t version of a
A translated version of a

(b) WLAC session.

Figure 1: Examples of a segment-based IMT session to translate a sentence from Spanish to English; and a WLAC
session for predicting a word for a source sentence, a translation context, and a human-typed character sequence.

the MT system to produce the final translation.
This collaboration starts with the system propos-
ing an initial translation hypothesis yI1 of length
I . Then, the user reviews this hypothesis and vali-
dates those sequence of words which they consider
to be correct (f̃1, . . . , f̃N ; where N is the number
of non-overlapping validated segments). After that,
they are able to merge two consecutive segments
f̃i, f̃i+1 into a new one. Finally, they correct a
word—which introduces a new one-word validated
segment, f̃i, which is inserted in f̃N1 . This correc-
tion can also consist in a partially typed word f̃ ′i , in
which case the system would complete it as part of
its prediction.

The system’s reacts to this user feedback by gen-
erating a sequence of new translation segments
ĝN
1 = ĝ1, . . . , ĝN ; where each ĝn is a subsequence

of words in the target language. This sequence com-
plements the user’s feedback to conform the new
hypothesis:

{
ŷI1 = f̃1, ĝ1, . . . , f̃

′
i ĝi, . . . , f̃N , ĝN if f̃ ′i ∈ f̃N1

ŷI1 = f̃1, ĝ1, . . . , f̃N , ĝN otherwise
(1)

The word probability expression for the words
belonging to a validated segment f̃n was formalized
by Peris et al. (2017) as:

p(yin+i′ | yin+i′−1
1 , xJ1 , f

N
1 ; Θ) = y>in+i′pin+i′ ,

1 ≤ i′ ≤ l̂n
(2)

where ln is the size of the non-validated segment
generated by the system, which is computed as

follows:

l̂n = arg max
0≤ln≤L

1

lN + 1

in+ln+1∑
i′=in+1

log p(yi′ | yi′−1
1 , xJ

1 ; Θ)

(3)

3 Approach

Given a source sentence xJ1 , a sequence of
typed characters sK1 = s1, . . . , sK and a con-
text c = {cl, cr}, where cl = cl1, . . . , clS
and cr = cr1, . . . , crR; WLAC aims to au-
tocomplete sK1 to conform the word wW

1 =
s1, . . . , sK , wK+1, . . . , wW . If we consider the
context as the sequence of segments validated by
the user (f̃N1 = cl, cr) and the sequence sK1 as the
partially-typed word correction (which would be
inserted in f̃N1 as a new one-word validated seg-
ment; leading to f̃N1 = cl, s

K
1 , cr), we can view

WLAC as a simplification of segment-based IMT.
With that in mind, we can rewrite Eq. (1) as:

ŷI1 = cl, ĝ1, s
K
1 ĝ2, cr, ĝ3 (4)

which, knowing that the prediction of the partially-
typed correction corresponds to the first word of
ĝ2, can be rewritten as:

ŷI1 = cl, ĝ1, s
K
1 wW

K+1, ĝ
′
2, cr, ĝ3 (5)

Therefore, we can obtain the autocompleted
word (wW

1 = sK1 wW
K+1) by performing a single

step of the segment-based IMT protocol, discard-
ing the rest of the translation prediction.

Figure 1 illustrates an example of segment-based
IMT compared to the WLAC task for the same case.
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In the segment-based IMT (Fig. 1a) example, at it-
eration 0, the system generates an incorrect first
hypothesis. The, at iteration 1, the user validates
a sequence of segments and types the first char-
acter of the word ‘translated’ to help the system
fulfill the sequence of words between the first two
segments. After that, the system generates a new
translation with all the validated segments and the
human-typed character sequence. The system re-
peats this process at the second iteration, ending
with a correct translation. The WLAC (Fig. 1b)
example simplifies the case that happens at iter-
ation 1. Although we have the same source sen-
tence, validated segments (left and right context)
and human-typed character sequence, in this case,
the system only has to find one word between the
two segments instead of generating the whole sen-
tence.

4 Experimental setup

In this section, we present the details of our experi-
mental session.

4.1 Evaluation
The WLAC 22 shared task selected accuracy as the
automatic metric with which to report the evalua-
tion of the different systems1. This metric is com-
puted as the total number of correctly predicted
words normalized by the total number of words to
complete:

Acc = Nmatch/Nall (6)

where Nmatch is the number of predicted words
that are identical to the human desired word, and
Nall is the total number of testing words.

4.2 Corpora
We conducted our experiments using the En-
glish–German corpus provided by the organizers,
which is a version of the WMT14’s dataset, prepro-
cessed by Stanford NLP Group. We saved 2000
sentences to use as validation, which we processed
with the provided script2 in order to create the sim-
ulated data. Table 1 presents the data statistics.

4.3 Systems
Our MT systems were trained using OpenNMT-py
(Klein et al., 2017). We made use of two different

1A human evaluation was also performed.
2https://github.com/lemaoliu/WLAC/raw/

main/scripts/generate_samples.py.

Table 1: Statistics of the WLAC 2022 corpus. Avg.
stands for average, Run. for running, K for thousands
and M for millions.

Partition Characteristic De En

Training

Sentences 4M
Avg. Length 25 26
Run. Words 110M 116M
Vocabulary 1.6M 800K

Validation
Sentences 2000
Avg. Length 27 27
Run. Words 53K 53K

network architectures: recurrent neural network
(RNN) (Hochreiter and Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017).

The RNN model uses an encoder–decoder
architecture with long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
cells. We set the size of the encoder, decoder and
word embedding layers to 512. The encoder and
decoder models use a single hidden layer of the
same size. We used Adam (Kingma and Ba, 2014)
as the learning algorithm, with a learning rate of
0.0002 with a batch size of 10.

The Transformer model uses a word embedding
size of 512. The hidden and output layers were
set to 2048 and 512, respectively. Each multi-head
attention layer has eight heads, and we stacked six
encoder and decoder layers. We used Adam as the
learning algorithm, with a learning rate of 2.0, b1
of 0.9 and b2 of 0.998. We set the batch size to
4096 tokens.

Additionally, we made use of the byte pair en-
coding (BPE) (Sennrich et al., 2016) algorithm,
which was jointly trained on both languages of the
dataset, applying a maximum number of 10.000
merges.

Finally, we used our own implementation (based
on OpenNMT-py) of segment-based IMT, which we
adapted for WLAC. This implementation is openly
available3 for the benefit of the community.

5 Results

In this section we present our experimental re-
sults. We trained four different models, alternat-
ing between the RNN and Transformer architec-
tures and the use of the BPE algorithm on the En-

3https://github.com/PRHLT/OpenNMT-py/
tree/word-level_autocompletion.

https://github.com/lemaoliu/WLAC/raw/main/scripts/generate_samples.py
https://github.com/lemaoliu/WLAC/raw/main/scripts/generate_samples.py
https://github.com/PRHLT/OpenNMT-py/tree/word-level_autocompletion
https://github.com/PRHLT/OpenNMT-py/tree/word-level_autocompletion
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Table 2: Experimental results, measured in terms of ac-
curacy. Test values are taken from the official evalua-
tion. Best results from the validation set are denoted in
bold.

Partition Approach De–En En–De

Validation

RNN 0.568 0.535
RNN + BPE 0.554 0.498
Transformer 0.563 0.524

Transformer + BPE 0.586 0.534

Test Transformer + BPE 0.390 0.340

glish–German language pairs.
Prior to submitting our systems, we used the syn-

thetic validation dataset created from the provided
data (see Section 4.2). As reflected in Table 2, all
approaches yielded similar results. They correctly
completed the word the user was trying to type
around 60% of the time. Since the Transformer
+ BPE combination yielded a two points improve-
ment for De–En, and also achieved—together with
the RNN approach—the best results for En–De, we
selected this model for our submission.

Table 2 also contains the official accuracy scores
published by the organizers. For the blind test, our
system’s performance dropped near a 20%. While
we are waiting for the publication of the findings
to have a better understanding of the cause of this
drop, we suspect that it is related with the test set
being from a different domain than the training
data, which would have a considerable impact in
our MT model.

All in all, these results show that the segment-
based IMT methodology is a promising approach
to adapting an MT model to the WLAC task. More-
over, due to the shared task constrains, we trained
our systems using only the data provided by the
organizers. However, one of the benefits of our ap-
proach is that any MT system can be easily adapted
to be used for WLAC.

6 Conclusions

In this work, we have presented our submission
to WLAC shared task from WMT22. Our ap-
proach consisted in adapting the segment-based
IMT methodology to the WLAC task, which allows
us to use a conventional NMT model to tackle this
task by simply adapting it at the decoding step. We
tested some of the most used NMT architectures,
achieving very encouraging results.

As a future work, we would like to test our ap-

proach using a more robust NMT system, adapted
to the domain of the task to perform—instead of
training an ad hoc system, as we did in this work
due to the task restrictions.
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