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Abstract

This paper presents our submissions to WMT
22 shared task in the Unsupervised and Very
Low Resource Supervised Machine Translation
tasks. The task revolves around translating be-
tween German ↔ Upper Sorbian (de ↔ hsb),
German ↔ Lower Sorbian (de ↔ dsb) and Up-
per Sorbian ↔ Lower Sorbian (hsb ↔ dsb) in
a both unsupervised and supervised manner.
For the unsupervised system, we trained an
unsupervised phrase-based statistical machine
translation (UPBSMT) system on each pair in-
dependently. We pretrained a German-Slavic
mBART model on the following languages Pol-
ish (pl), Czech (cs), German (de), Upper Sor-
bian (hsb), and Lower Sorbian (dsb). We then
fine-tuned our mBART on the synthetic par-
allel data generated by the (UPBSMT) model
along with authentic parallel data (de ↔ pl, de
↔ cs). We further fine-tuned our unsupervised
system on authentic parallel data (hsb ↔ dsb,
de ↔ dsb, de ↔ hsb) to submit our supervised
low-resource system.

1 Introduction

Like most machine learning approaches, data can
be considered the most important component of the
recipe for modeling a solution for a given problem.
Neural machine translation relies heavily on a large
amount of training data to correctly model two lan-
guages and learn the mapping between them to
produce semantically and syntactically right trans-
lations. However, machine translation is not avail-
able for the majority of the 7000 languages spoken
on the earth. This is due to the fact that parallel cor-
pora are scarce or non-existent. There have been
several proposals to alleviate the issue of small
amounts of parallel data such as pivot translation,
multilingual training, and semi-supervised training
which resulted in an acceptable performance.
Unsupervised machine translation became the go-
to solution when lacking parallel data. The WMT
2022 Unsupervised MT Task focuses on two very

low-resource languages: Upper Sorbian (HSB) and
Lower Sorbian (DSB). Upper and Lower Sorbian
are minority languages spoken in the federal states
of Saxony and Brandenburg in Eastern Germany.
With just 30,000 and 7,000 native speakers, work-
ing on these languages is an extreme low-resource
task, with little prospect of ever approaching the
number of resources available for languages with
millions of speakers. However, because they are
western Slavic languages, the Sorbian languages
can benefit from Czech and Polish data (Libovický
and Fraser, 2021).
In this paper, we describe our systems for translat-
ing between German ↔ Upper Sorbian (de ↔ hsb),
German ↔ Lower Sorbian (de ↔ dsb), and Upper
Sorbian ↔ Lower Sorbian (hsb ↔ dsb) in a both
unsupervised and supervised manner.
We approach the task by combining two novel
approaches for unsupervised machine translation.
Influenced by (Artetxe et al., 2019), we start by
developing unsupervised phrase-based statistical
machine translation systems (UPBSMT) for all lan-
guage pairs independently. In contrast to (Artetxe
et al., 2019), (Lample and Conneau, 2019) relies
on pre-training an XLM model on the source and
target language to capture the translation signal
instead of using (UPBSMT). Instead, we benefit
from both the pre-training and UPBSMT. So, we
pre-train an mBART model (Liu et al., 2020) on
Polish, Czech, Upper Sorbian, Lower Sorbian, and
German from scratch as we mentioned earlier that
pl and cs are similar to dsb and hsb. We then fine-
tune mBART on synthetic parallel data (de),(de ↔
hsb) and (hsb ↔ dsb) along with authentic parallel
data (de ↔ pl, de ↔ cs).
We group pl, cs, dsb, hsb under one token slavic
while feeding it to the encoder. For our low-
resource submission, we fine-tune the unsupervised
model on the authentic parallel data provided by
the task between (de ↔ hsb),(de ↔ dsb), and (hsb
↔ dsb).
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Our unsupervised approach scored the highest
BLEU in all directions except (de ↔ dsb) direction.

2 Related Work

The earliest approach on Unsupervised Machine
Translation was introduced by (Ravi and Knight,
2011) where they frame the MT task as a decipher-
ment task, treating the target language as cipher
text of English. Their method is essentially the
same approach taken by cryptanalysts and epigra-
phers when they use the source texts. They started
by estimating the word translation probabilities us-
ing a devised Iterative EM algorithm, due to the
huge consumption of memory since they operate
on large-scale vocabularies. Followed by that, they
propose a novel approach based on Bayesian De-
cipherment that outperformed the previous EM ap-
proach in all aspects. After that they build an n-
gram translation table that was used to estimate an
IBM Model 3 translation model, the highest BLEU
(Papineni et al., 2002) score achieved was 19.3 on
the Spanish-English OPUS subtitles data.
(Artetxe et al., 2019) provide a two-step solution
to unsupervised machine translation. For step one,
they start by building an UPBSMT system between
source and target languages. Resulting in two
translation models: source-to-target and target-to-
source models. Using these models, they back-
translate target monolingual data using the target-
to-source model to generate ( ˆsrc, trg) pairs that
will be used to train the source-to-target neural
model. Similarly, they back-translate the source
monolingual using the source-to-target model to
generate (src, ˆtrg) pairs that will be used to train
the target-to-source neural model.
The second step is training two neural models,
source-to-target and target-to-source, using the syn-
thetic data generated from step 1 using iterative
back-translation. The first iteration relies solely on
data generated by UPBSMT, the following itera-
tions substitute a percentage of synthetic data gen-
erated by UPBSMT by back-translated data from
the neural model in the reverse direction. Until
the whole training data is back-translated from the
reverse model. In contrast, (Lample and Conneau,
2019) starts by pre-training an XLM encoder on
Masked Language Modeling (MLM) task on the
source and target languages.
After pre-training, they initialize an encoder-
decoder model using the pre-trained XLM encoder.
Their training step is composed of three tasks :

1. Denoising Auto encoding.

2. Cross Domain (Back-translation).

3. Adversarial Loss.

In our work, we combine the two methods. But in-
stead of using neural iterative back-translation, we
add authentic parallel data from related languages.

3 Approach

Inspired by (Artetxe et al., 2019) and (Lample and
Conneau, 2019), we adapted a mixed approach to
mitigate the weaknesses and combine the advan-
tages of both methods. (Artetxe et al., 2019) use
UPBSMT as an explicit initial translation signal to
train two translation models from scratch on a trans-
lation task. But, UPBSMT’s output is noisy and the
translation model is trained from scratch without
any denoising pre-training objective. In contrast,
(Lample and Conneau, 2019) pre-trains an XLM
encoder on MLM task and then use it to initialize a
seq2seq model which will be trained to translate in
an unsupervised manner as we discussed in Section
2. Although (Lample and Conneau, 2019) didn’t
train the translation model from scratch, they relied
solely on the three training tasks discussed earlier
to capture the cross-lingual translation signal in
contrast to (Artetxe et al., 2019) who used an ex-
plicit cross-lingual translation signal.
We combine the best of both worlds by using UPB-
SMT as our initial translation signal to fine-tune a
pre-trained mBART model on a multilingual trans-
lation task.

3.1 Unsupervised Phrase-based Statistical
Machine Translation

We followed (Artetxe et al., 2018) approach to
build an unsupervised phrase-based statistical ma-
chine translation system between the following
pairs : (de → dsb), (de → hsb), (dsb → de),
(hsb → de), (hsb → dsb) and (dsb → hsb).
Using the above models, we back-translated mono-
lingual data of lang1 to ˆlang2 which will be used
to train the reverse direction model as following :

1. de translated by (de → dsb) model, produc-
ing ( ˆdsb, de) pairs to train the (dsb → de)
neural direction.

2. de translated by (de → hsb) model, produc-
ing (ĥsb, de) pairs to train the (hsb → de)
neural direction.
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3. dsb translated by (dsb → de) model, produc-
ing (d̂e, dsb) pairs to train the (de → dsb)
neural direction.

4. hsb translated by (hsb → de) model, produc-
ing (d̂e, hsb) pairs to train the (de → hsb)
neural direction.

5. dsb translated by (dsb → hsb) model, produc-
ing (ĥsb, dsb) pairs to train the (hsb → dsb)
neural direction.

6. hsb translated by (hsb → dsb) model, pro-
ducing ( ˆdsb, hsb) pairs to train the (dsb →
hsb) neural direction.

3.2 German-Slavic mBART pre-training

Since Lower and Upper Sorbian are West-Slavic
languages, their direct cousins in the West-Slavic
family tree are Polish (pl) and Czech (cs). Polish
and Czech are high-resource languages with a large-
scale availability of both monolingual and parallel
data. We pre-trained mBART model (Liu et al.,
2020) from scratch on denoising auto-encoding
objective on Polish (pl), Czech (cs), Upper Sorbian
(hsb), Lower Sorbian (dsb), German (de).

3.3 mBART fine-tuning

Using the generated synthetic parallel data pro-
duced from UPBSMT step discussed in Section
3.1 along with authentic (pl → de) and (cs →
de) from OPUS (Tiedemann, 2012). We fine-
tuned our German-Slavic mBART on translation on
(pl → de), (cs → de), (de ↔ dsb), (de ↔ hsb),
(hsb ↔ dsb). Taking advantage of the similarity
between (pl, cs, dsb, hsb), we grouped those lan-
guages under one language token (slavic) which
is fed to the encoder of our mBART. This approach
constructs our unsupervised submission.
For the low-resource submission, we further fine-
tuned the resulted model on authentic parallel data
provided by the task.

4 Experiments

In this section, we describe our experimental setup
and results. Readers can refer to our GitHub Repos-
itory 1 for training scripts, checkpoints, hyper-
paramters etc.

1https://github.com/ahmadshapiro/WMT22

4.1 Data Pre-processing

We follow (Artetxe et al., 2019) cleaning approach
as following :

1. normalize-punctuation.perl script from
Moses library to normalize punctuations.

2. remove-non-printing-char.perl script
from Moses library to remove non-printing
characters.

3. Tokenizing using Moses Tokenizer.

4. Deduplication.

5. Cleaning by length, with minimum and maxi-
mum of 3 and 80 words respectively.

Language Datasets Sentences

Polish (pl)
europarl-v10

news-crawl 2018 to 2021
Total

706,047
12,653,333
13,359,380

Czech (cs)

europarl v10
news-commentry v14-16
news-crawl 2007 to 2021

Total

669,676
825,841

109,599,883
111,095,400

German (de)

europarl v10
news-commentry v14-16
news-crawl 2007 to 2021

Total

2,107,971
1,259,790

428,057,920
431,425,681

Upper Sorbian (hsb)

Witaj (2020)
Sorbian-Insitute (2020)

Task Data (2022)
Total

222,027
339,822
436,579
998,428

Lower Sorbian (dsb)

Task Data (2021)
Task Data (2022)

Task Data : Wiki (2022)
Total

145,198
66,407
8,814

220,419

Table 1: Monolingual Data sets used in our experiments

4.2 Unsupervised Statistical Machine
Translation Data

We use monolingual data of German, Upper Sor-
bian and Lower Sorbian stated in Table 1. We
used a 20MILL random sample from the German
monolingual data. The output of the UPBSMT is
synthetic parallel data that will be used to fine-tune
the pre-trained mBART on the unsupervised trans-
lation task. The number of synthetic parallel data
is shown in Table 2.

https://github.com/ahmadshapiro/WMT22
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Language Sentences

dsb → de 19,486,715

de → dsb 155,683

hsb → de 19,486,715

de → hsb 873,794

hsb → dsb 873,794

dsb → hsb 155,683

Table 2: Synthetic Parallel Data Generated by UPBSMT

4.3 mBART Pre-training
We pretrained mBART on 32 V100 GPUs from
scratch for less than 2 epochs (24hrs) on all mono-
lingual data from Table 1. We learned 32k BPE
codes using SentencePiece Library (Kudo and
Richardson, 2018) on the concatenation of all
monolingual data. This SentencePiece model will
be used for the rest of neural experiments involv-
ing mBART. The average valid perplexity for all
languages reached 4.16. We decided to stop train-
ing due to the time limit. All of our neural mod-
els were developed using FairSeq Framework (Ott
et al., 2019).

4.4 mBART Fine-tuning (Unsupervised
Submission)

We fine-tuned our pre-trained mBART on trans-
lation task using authentic parallel data of (pl-de,
cs-de) shown in Table 3 along with all synthetic par-
allel data shown in Table 2. We grouped (hsb, dsb,
pl, cs) under one token (slavic) which is passed to
mBART encoder as we discussed earlier in Section
3.3. The training was done on 27 V100 GPUs for
less than 1 epoch (24hrs).

4.5 mBART Fine-tuning (Low Resource
Submission)

We further fine-tuned mBART on authentic paral-
lel task data of (hsb-de, dsb-de, hsb-dsb) shown
in Table 3 for 3 epochs to submit our supervised
model.

5 Results

In this section, we present our results on the blind
test set of WMT 22 workshop.

5.1 Unsupervised Submission
Our approach scored the highest BLEU in all pairs
except the (de ↔ dsb) directions. This can be at-

Language Datasets Sentences

pl-de

DGT
JRC-Acquis

MultiParaCrawl
EUbookshop

Europarl
QED

12,375,574

cs-de

DGT
JRC-Acquis

MultiParaCrawl
EUbookshop

Europarl
QED

12,427,403

hsb-de

Task Data (2020)
Task Data (2021)
Task Data (2022)

Total

60,000
87,521
301,536
448,787

dsb-de Task Data (2022) 40,193

hsb-dsb Task Data (2022) 62,564

Table 3: Authentic Parallel Data sets from OPUS (Tiede-
mann, 2012) used in our experiments

tributed to the fact of having multiple errors in the
UPBSMT experiment on this specific pair. Due to
the time limit, we had to use the un-tuned/corrupted
models for this pair. In contrast, (de ↔ hsb) di-
rections models scored almost 18.0 BLEU score.
Surprisingly, this can reflect the importance of the
UPBSMT component in our experiments, since hsb
and dsb are hugely similar. But, due to an error in
the UPBSMT training, the former hugely outper-
formed the latter. Results are reported in Table 4.

Direction BLEU

dsb → de 4.0

de → dsb 1.2

hsb → de 18.0

de → hsb 17.9

hsb → dsb 35.9

dsb → hsb 44.2

Table 4: Unsupervised results on Blind Test data of
WMT22
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5.2 Low Resource Submission

As shown in Table 5, further fine-tuning on au-
thentic parallel data improved BLEU score in all
directions even the corrupted (de ↔ dsb) directions.
Our model was constantly improving through up-
dates, but we had to stop the training due to time
constraints. We didn’t use any low-resource tech-
niques such as back-translation, BPE dropout, etc.

Direction BLEU

dsb → de 39.4

de → dsb 48.2

hsb → de 47.5

de → hsb 51

hsb → dsb 66.6

dsb → hsb 65.8

Table 5: Supervised results on Blind Test data of
WMT22

6 Conclusion and Future Work

In this paper, we describe our submission to the
WMT 2022 shared task of Unsupervised and Very
Low Resource Supervised Machine Translation.
We combined the advantages and mitigated the
weaknesses of two novel unsupervised approaches
along with pre-training a German-Slavic mBART
model. Ablation studies for different components
of our approach are left for future work.
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