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Abstract

Non-autoregressive (NAR) machine transla-
tion has recently received significant devel-
opments, and now achieves comparable qual-
ity with autoregressive (AR) models on some
benchmarks, while providing an efficient alter-
native to AR inference. However, while AR
translation is often used to implement multi-
lingual models that benefit from transfer be-
tween languages and from improved serving
efficiency, multilingual NAR models remain
relatively unexplored. Taking Connectionist
Temporal Classification (CTC) as an example
NAR model and IMPUTER as a semi-NAR
model, we present a comprehensive empirical
study of multilingual NAR. We test its capabil-
ities with respect to positive transfer between
related languages and negative transfer under
capacity constraints. As NAR models require
distilled training sets, we carefully study the
impact of bilingual versus multilingual teach-
ers. Finally, we fit a scaling law for multilin-
gual NAR to determine capacity bottlenecks,
which quantifies its performance relative to the
AR model as the model scale increases.

1 Introduction

Non-autoregressive (NAR) models generate output
tokens in parallel instead of sequentially, reduc-
ing potentially expensive inference dependencies.
They rely on sequence-level knowledge distillation
to reach the quality of autoregressive (AR) models
(Gu et al., 2018). As the notion of NAR has ex-
panded to include semi-NAR models that generate
their outputs in multiple steps, with each step gen-
erating several tokens non-autoregressively (Lee
et al., 2018; Ghazvininejad et al., 2019), we have
begun to see NAR matching the quality of AR (Sa-
haria et al., 2020). Prior works have benchmarked
NAR models for machine translation (MT) on a
number of language pairs, but with very few ex-
ceptions, the NAR models under test have been
bilingual as opposed to multilingual.

Multilingual MT models (Dong et al., 2015; Fi-
rat et al., 2017; Johnson et al., 2017), translating
between multiple languages, have two major advan-
tages. First, they offer better parameter efficiency
than bilingual models via multi-tasking. Second,
they are able to transfer knowledge from high-
resource languages to low-resource ones. There-
fore they have become an attractive solution for
expanding the language coverage of AR MT (Aha-
roni et al., 2019; Fan et al., 2021; Siddhant et al.,
2022). The capability of multilingual modeling is
a major feature of the AR regime, and it is one that
we should seek to maintain in NAR models.

However, it is unclear to what extent the benefits
of multilingual AR models transfer to NAR model-
ing (Caruana, 1997; Arivazhagan et al., 2019). Do
related languages help each other as easily (pos-
itive transfer)? Do unrelated languages interfere
with one another more (negative transfer)? Fur-
thermore, NAR modeling raises a new issue of
multilingual distillation. To retain the training-time
efficiency of multilingual modeling, it is crucial
that NAR works well with multilingual teachers;
otherwise, the prospect of training many bilingual
teachers would greatly increase the effective train-
ing cost. It may actually be the case that multilin-
gual teachers are better suited than bilingual ones,
as the effective capacity reduction may result in less
complex (Zhou et al., 2019) and less multi-modal
outputs (Gu et al., 2018).

We present an empirical study of multilingual
NAR modeling. Taking CTC (Libovický and
Helcl, 2018) as our canonical NAR method, and
IMPUTER (Saharia et al., 2020) as our canonical
semi-NAR model, we study how they respond to
multilinguality through a series of “stress-tests”,
first in a six-language scenario designed to em-
phasize negative transfer (§4), and then in two-
language scenarios designed to emphasize posi-
tive transfer under data resource constraints (§5).
Lastly, we fit a scaling law for our six-language sce-
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nario to measure the potential of increasing model
sizes (§6). The main findings can be summarized
as follows:

1. Multilingual NAR models work equally well
whether datasets are distilled from bilingual
or multilingual teachers.

2. Multilingual NAR models do benefit from
positive transfer in scenarios that encourage
it; however, in comparison to AR models, they
suffer more from negative transfer and benefit
less from positive transfer.

3. The scaling law demonstrates that this trend
continues as model size increases.

Our extensive analysis on outputs from the NAR
models suggest that they still struggle to generate
“valid” tokens with desired output length. Further-
more, our results indicate that scaling up the NAR
models is not going to close the gap to multilingual
AR, but our analysis points to promising directions
for future work throughout the paper.

2 Non-Autoregressive Multilingual NMT

Let, Dl = (x, y) ∈X × Y denote the bilingual cor-
pus of a language pair, l. Given an input sequence x
of length T ′, an AR model (Bahdanau et al., 2015;
Vaswani et al., 2017) predicts the target y with
length T sequentially based on the conditional dis-
tribution p(yt ∣ y<t, x1∶T ′ ; θ). NAR models assume
conditional independence in the output token space;
that is, they model p(yt ∣ x1∶T ′ ;φ). Due to this con-
ditional independence assumption, training NAR
models directly on the true target distribution leads
to degraded performance (Gu et al., 2018). Hence,
NAR models are typically trained with sequence-
level knowledge distillation (Kim and Rush, 2016)
to reduce the modeling difficulty.

2.1 Non-Autoregressive NMT with CTC
In this work, we focus on NAR modelling via
CTC (Graves et al., 2006) due to its superior per-
formance on NAR generation and the flexibility
of variable length prediction (Libovický and Helcl,
2018; Saharia et al., 2020; Gu and Kong, 2021).

CTC models an alignment a that provides a map-
ping between a sequence of predicted and target
tokens. Alignments can be constructed by inserting
special blank tokens ("_") and token repetitions into
the target sequence. The alignment is monotonic
with respect to the target sequence and is always

the same length as the source sequence x. How-
ever, in MT, the target sequence y can be longer
than the source sequence x. This is handled via
upsampling the source sequence x, to s times its
original length. An alignment is valid only if when
collapsed, i.e., merging repeated tokens and remov-
ing blank tokens, it results in the original target
sequence. The CTC loss marginalizes over all pos-
sible valid alignments Γ(y) compatible with the
target y and is defined as:

p(y ∣ x) = ∑
a∈Γ(y)

∏
1≤t′≤T ′

p(at′ ∣ x1∶T ′ ;φ).

Note that each alignment token at′ is modeled inde-
pendently. This conditional independence allows
CTC to predict the single most likely alignment
non-autoregressively at inference time, which can
then be efficiently collapsed to an output sequence.
This same independence assumption enables effi-
cient minimization of the CTC loss via dynamic
programming (Graves et al., 2006). While CTC
enforces monotonicity between the target and the
predictions, it does not require any cross- or self-
attention layers inside the model to be monotonic.
Hence, CTC should still be able to model language
pairs with different word orders between the source
and the target sequence. Following Saharia et al.
(2020), we train encoder-only CTC models, using
a stack of self-attention layers to map the source
sequence directly to the alignments.

2.2 Iterative Decoding with Imputer
IMPUTER (Saharia et al., 2020) extends NAR
CTC modeling by iterative refinement (Lee et al.,
2018). At each inference step, it conditions on
a previous partially generated alignment to emit
a new alignment. While IMPUTER, like CTC,
generates all tokens at each inference step, only
a subset of these tokens is selected to generate
a partial alignment, similar to iterative masking
approaches (Ghazvininejad et al., 2019). This is
achieved during training via marginalizing over
partial alignments as follows:

p(y ∣ x) = ∑
a∈Γ(a)

p(a ∣ aMask, x;φ),

where aMask is a partially masked input-alignment.
At training time, the aMask alignment is generated
using a CTC model trained on the same dataset,
and its masked positions are selected randomly.
This training procedure enables IMPUTER to it-
eratively refine a partial alignment over multiple
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TGT WORD ORDER SIZE SCRIPT DIFFERENCE WHITE SPACE AVG. SRC LENGTH AVG. TGT LENGTH

EN-KK SOV 150K 3 3 26.7 20.0

EN-DE SVO/SOV 4.6M 7 3 25.7 24.3
EN-PL SVO 5M 7 3 16.2 14.6
EN-HI SOV 8.6M 3 3 18.3 19.8

EN-JA SOV 17.9M 3 7 21.4 25.9
EN-RU Free 33.5M 3 3 23.2 21.5
EN-FR SVO 38.1M 7 3 29.2 32.8

Table 1: Details on training data used. Target word orders are the ones that are dominating within the language
according to (Dryer and Haspelmath, 2013), but there may be sentence-specific variations. English follows pre-
dominantly SVO (Subject-Verb-Object) order. Size is measured as the number of parallel sentences in the training
data. Source (Src) and Target (Tgt) length are averaged across sentences after word-based tokenization.

decoding steps at inference time — consuming its
own alignments as input to the next iteration. With
k > 1 decoding steps, the IMPUTER becomes semi-
autoregressive, requiring k times more inference
passes than pure CTC models.

IMPUTER differs from Conditional Masked Lan-
guage Modeling (CMLM) (Ghazvininejad et al.,
2019) in that it uses the CTC loss instead of the
standard cross-entropy loss, removing the need for
explicit output length prediction. Also, IMPUTER

is an encoder-only model that makes one predic-
tion per source token, just like CTC. The cross-
attention component from encoder-decoder is re-
placed by a simple sum between the embeddings
of the source sequence and the input alignment
(aMask) before the first self-attention layer.1

2.3 Multilingual Modeling

Multilingual AR and NAR models are trained on
datasets from multiple language pairs, {Dl}

L
l=1. We

prepend each source sequence with the desired tar-
get language tag (<2tgt>) and generate a shared
vocabulary across all languages (Johnson et al.,
2017). The models encode this tag as any other
token, and uses it to guide the generation of the
output sequence in the desired target language.

2.4 Efficiency

Inference We refrain from wallclock inference
time measurements since these are dependent on
implementation, low-level optimization and ma-
chines (Dehghani et al., 2021). We instead com-
pare generation speed in terms of the number of to-
kens that get generated per iterationNgen (Kreutzer
et al., 2020), which is < 1 for AR models,2 T for

1We experimented with an encoder-decoder variant of IM-
PUTER but it did not change the overall output quality in
multilingual scenarios or otherwise.

21 for greedy search, < 1 to account for scoring and expan-
sion of multiple hypotheses in beam search.

fully non-autoregressive models like CTC and T
k

for iterative semi-autoregressive models like IM-
PUTER. While the potential for faster inference
motivates our interest in NAR, our core contri-
bution is a comparison of multilingual modeling
capabilities; therefore, we do not measure infer-
ence speed experimentally.

Training At training time, NAR models are less
efficient than AR models because their quality de-
pends on distillation (Gu and Kong, 2021). Extra
cost is incurred to train a teacher model (usually
AR) and to use it to decode the training set.

Multilinguality Multilingual models multi-task
over language pairs, so that a single multilin-
gual model can replace several bilingual models.
Thanks to transfer across languages, model size
needs to be increased less than m-fold for model-
ing m language pairs.

Considering all of the above factors, an ideal
model needs only a few iterations (decoder passes
or steps), requires no teacher or a cheap teacher,
and covers several languages, while incurring the
smallest drop in quality compared to less efficient
models. CTC is desirable as it uses only one pass,
while IMPUTER gives up some efficiency to im-
prove quality. Both require a teacher, but we can
try to reduce the cost by training fewer teachers.

3 Experimental Setup

Data We perform our main experiments on six
language pairs, translating from English into WMT-
14 German (DE) (Bojar et al., 2014), WMT-15
French (FR) (Bojar et al., 2015), WMT-19 Russian
(RU) (Barrault et al., 2019), WMT-20 Japanese
(JA), WMT-20 Polish (PL) (Barrault et al., 2020)
and Samanantar Hindi (HI) (Ramesh et al., 2021).
The lower-resourced WMT-19 English-Kazakh
(KK) (Barrault et al., 2019) is used for an additional
transfer experiment in Section 5. The properties
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of the datasets are listed in Table 1. Target word
order and writing script notably differ across these
languages, so we focus on translating into these
languages as this is a more challenging direction.
A shared sub-word vocabulary of 32k is trained
with SentencePiece (Kudo and Richardson, 2018),
with the number of sub-words allocated for each
language being proportional to its data size.

Evaluation Metrics Translation quality is evalu-
ated with BLEU (Papineni et al., 2002) as calcu-
lated by Sacrebleu (Post, 2018) with default tok-
enization (“13a”) except for EN-JA, where we use
character-level tokenization. 3

Architecture We train the IMPUTER model us-
ing the same setup as described in Saharia et al.
(2020): We follow their base model with dmodel =
512, dhidden = 2048, nheads = 8, nlayers = 12, and
pdropout = 0.1. AR models follow Transformer-
base (Vaswani et al., 2017) and have similar pa-
rameter counts. We train both models using Adam
with learning rate of 0.0001. We train CTC mod-
els with a batch size of 2048 and 8192 sentences
for 300K steps for the bilingual and multilingual
models respectively. We train the IMPUTER us-
ing CTC loss using a Bernoulli masking policy for
next 300K steps with a batch size of 1024 and 2048
sentences for the bilingual and multilingual models
respectively. We upsample the source sequence
by a factor of 2 for all our experiments.4 We pick
the best checkpoint based on validation BLEU
for bilingual models, and the last checkpoint for
multilingual models, following Arivazhagan et al.
(2019).

Distillation We apply sequence-level knowledge
distillation (Kim and Rush, 2016) from AR teacher
models as widely used in NAR generation (Gu
et al., 2018). Specifically, when training the NAR
models, we replace the reference sequences during
training with translation outputs from Transformer-
Big AR teacher model with a beam width of four.
We also report the quality of the AR teacher mod-
els, both bilingual and multilingual. The configura-
tions for training the big AR teacher models also
follow Vaswani et al. (2017).

3SacreBLEU (short) signatures: nrefs:1∣case:mixed∣eff:no∣
tok:13a,char∣smooth:exp∣version:2.0.0

4We do not vary the upsampling ratio due to small differ-
ence in the performance of the resulting NAR models (see
Table 6, Gu and Kong (2021)).

4 Negative Transfer Scenario

Our main experiment compares bilingual, multi-
lingual, AR and NAR models for the six high-
resource languages from Table 1. These lan-
guages are typologically diverse, and they each
have enough data so that we do not expect them to
benefit substantially from joint modeling. We use
this challenging scenario to test the impact of mul-
tilingual teachers, and to measure each paradigm’s
ability to model several unrelated languages. Re-
sults are shown in Table 2.

4.1 Multilingual Teacher Comparison
Inspecting the AR teacher models (rows 1 and 2
of Table 2) confirms the negative transfer that we
aimed to design: multilingual teachers have sub-
stantially reduced BLEU compared to bilingual
teachers. How much is this drop in quality affecting
NAR students? First of all, we see that bilingual
CTC models trained from the multilingual teacher
(5) do not reflect the entirety of this drop when
compared to training with the bilingual teacher (4):
An average teacher gap of −1.8 BLEU is causing
−1.1 drop for the corresponding students.5 The
comparison becomes more interesting as we shift
to multilingual students: multilingual CTC (8, 9)
does not suffer at all from having a multilingual
teacher (average BLEU gap of −0.1), and mul-
tilingual IMPUTER (10, 11) likewise suffers very
little (−0.3). These three results taken together
suggest that datasets distilled from multilingual
models are likely simpler, but easier to model non-
autoregressively by the multilingual NAR models,
which makes up for the teacher’s lower BLEU. Our
analysis in Section 4.3 supports this hypothesis.

We hope that highly multilingual models, trained
with similar target language pairs to enhance posi-
tive transfer (Tan et al., 2019), are even better suited
to serve as teachers for multilingual NAR models,
which we leave to future work.

4.2 Multilingual Student Comparison
Returning to the “Bilingual Models” section of Ta-
ble 2 with AR-big teachers, we can see that we
have reproduced the results of Saharia et al. (2020):
Bilingual CTC (4) performs well for a fully NAR
method, but does not reach AR quality (3). IM-
PUTER (6) ably closes the gap with AR, surpassing

5As the quality of CTC generated alignments from the
multi-AR-big is worse than the alignments generated from the
CTC with the AR-big teacher, we do not train IMPUTER on
CTC-generated alignments from the multi-AR-big models.
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MODEL TEACHER Ngen EN-FR EN-DE EN-PL EN-RU EN-HI EN-JA AVG.

Teachers
(1) AR-big < 1 38.8 29.0 21.4 27.2 34.6 35.4 31.1
(2) multi-AR-big 38.5 27.0 21.6 25.3 32.6 33.6 29.3

Bilingual Models

(3) AR-base < 1 38.2 27.6 21.2 26.2 33.8 34.8 30.3

(4)
CTC

AR-big
T

35.7 25.2 18.0 21.4 31.6 31.6 27.3
(5) multi-AR-big 35.1 24.0 17.7 20.8 30.8 28.9 26.2

(6) IMPUTER AR-big T
8 38.5 27.2 21.2 25.6 32.0 32.0 29.4

Multilingual Models

(7) multi-AR-base < 1 35.2 24.8 19.7 23.2 30.8 31.2 27.5

(8)
CTC

AR-big
T

31.6 20.5 13.0 17.7 28.2 28.1 23.2
(9) multi-AR-big 31.2 20.5 13.7 18.0 27.8 27.5 23.1

(10)
IMPUTER

AR-big T
8

34.4 22.8 14.9 21.3 29.9 29.6 25.5
(11) multi-AR-big 34.1 21.2 16.4 21.7 29.9 27.9 25.2

Table 2: Test BLEU scores for multilingual and bilingual AR and NAR models and their teachers.

or coming within 0.4 BLEU of the AR-base mod-
els on 3/6 language pairs, with the largest gap in
performance for the distant EN-JA. Does this story
hold as we move to multilingual NAR students?

To understand each model’s multilingual capa-
bilities, we can compare its bilingual performance
to its multilingual performance. Comparing bilin-
gual AR-base (3) to its multilingual counterparts
(7) gives us a baseline average drop of −2.8 BLEU,
confirming that this is indeed a difficult multilin-
gual scenario that leads to negative transfer. Com-
paring bilingual CTC (4) to multilingual CTC (8)
with AR-big teachers, we see an average drop of
−4.1. This larger drop indicates that CTC suffers
more from negative interference than its AR coun-
terpart. We hypothesize that CTC models need
more capacity than AR models to achieve similar
multilingual performance, motivating our scaling
law experiments in Section 6.

Performing the same bilingual-to-multilingual
comparison for IMPUTER (6 vs. 10) shows a similar
−3.9 average drop due to negative transfer. So
although IMPUTER is indeed better than CTC (2
BLEU), it does not seem to be better suited for
multilingual modeling in this difficult scenario.

4.3 How do the bilingual and the
multilingual distilled datasets differ?

Table 3 summarizes different statistics for the orig-
inal (R) and distilled datasets from both multilin-
gual (M ) and bilingual (B) AR teacher models.

We report the number of types and average se-
quence length (in tokens) for the target side of
the dataset. We compute the complexity of the
dataset based on probabilities from a statistical
word aligner (Zhou et al., 2019). The FRS (Talbot
et al., 2011) score represents the average fuzzy re-
ordering score over all the sentence pairs for the
respective language pair as measured in Xu et al.
(2021), with higher values suggesting that the target
is more monotonic with the source sequence. We
also report BLEU for the distilled datasets relative
to the original training references.

The datasets distilled from the bilingual AR
models (B) are shorter, less complex, have reduced
lexical diversity (in number of types) and are more
monotonic compared to the original corpora (R),
which corroborates findings from prior work (Zhou
et al., 2019; Xu et al., 2021). One exception is EN-
JA, where the distilled translations are slightly less
monotonic than the original references. Moving to
multilingual teachers (M ), the resulting datasets
have further reduced types, are shorter and less
complex than those distilled from bilingual teach-
ers. In particular, their monotonicity increased
(FRS) for the more distant language pairs, EN-
JA and EN-HI. As shown in Xu et al. (2021) and
Voita et al. (2021), reduced lexical diversity and re-
ordering complexity can help bilingual NAR mod-
els to learn better alignments between source and
target, improving the translation quality of the out-
puts. More work is needed to better understand



182

PROPERTY R B M

EN-FR

# TYPES 522K 430K 396K
AVG. LENGTH 32.8 31.2 29.2
COMPLEXITY 1.529 1.167 0.944
FRS 0.463 0.541 0.536
BLEU (Train) - 40.8 37.8

EN-DE

# TYPES 812K 616K 573K
AVG. LENGTH 24.3 23.4 22.2
COMPLEXITY 1.243 0.819 0.709
FRS 0.490 0.606 0.605
BLEU (Train) - 35.0 26.4

EN-PL

# TYPES 636K 516K 503K
AVG. LENGTH 14.6 13.4 12.7
COMPLEXITY 1.435 0.942 0.591
FRS 0.590 0.678 0.695
BLEU (Train) - 26.3 22.0

EN-RU

# TYPES 636K 516K 503K
AVG. LENGTH 21.5 20.5 19.5
COMPLEXITY 1.083 0.882 0.819
FRS 0.640 0.719 0.716
BLEU (Train) - 43.2 40.0

EN-HI

# TYPES 346K 200K 185K
AVG. LENGTH 19.8 18.8 17.8
COMPLEXITY 1.438 1.256 1.138
FRS 0.347 0.363 0.366
BLEU (Train) - 34.6 28.0

EN-JA

# TYPES 547K 440K 402K
AVG. LENGTH 25.9 23.5 22.2
COMPLEXITY 1.541 1.369 1.338
FRS 0.344 0.337 0.340
BLEU (Train) - 35.9 30.6

Table 3: Comparison of datasets (1M samples) distilled
from bilingual (B) or multilingual (M ) AR models

the sweet-spot between the quality and complexity
trade-off of the multilingual and bilingual distilled
datasets for multilingual NAR modeling.

4.4 Which translation errors are made?

In this section, we analyze quantitatively how the
output quality of NAR models differs across lan-
guage pairs when trained in isolation (bilingual) or
with other language pairs (multilingual).

Figure 1: Brevity penalty scores for bilingual (-B) and
multilingual (-M) models, the closer to 1 the better.

Effect of Length Figure 1 shows the brevity
penalty (BP) scores (Papineni et al., 2002) for
all languages. EN-PL and EN-JA have lowest BP
scores across the board, meaning that their trans-
lations are shorter than the references. Manual
inspection reveals that this could be attributed to
the subject pronouns being dropped in both of these
target languages. Multilingual modeling results in
shorter outputs relative to bilingual models for both
AR and NAR models and most language pairs.
While IMPUTER models tend to have fewer issues
with output length compared to CTC models, they
still lag behind AR models, suggesting that the
length might need to be controlled explicitly for
these language pairs (Gu and Kong, 2021).

Invalid Words CTC frequently generates in-
valid words, i.e. tokens that are not present in
the target side of the bitext but are being composed
from multiple sub-words. These sub-words repre-
sent alternative translations that the model fails to
distinguish. In the Hindi example below, the in-
valid (or made-up) word in the sentence is marked
in red. The correct word should be jhrFl� as the
dependent vowel “ F” can only be used once.

Hindi: iss� g}AmFZ mEhlAao\ ko jhrFFl�
D� e\ s� m� EÄ EmlF h{\।

English: This has relieved the rural women
from the poisonous smoke.

Figure 2 reports the percentage of sequences
that include at least one invalid word in the test set.
CTC generates many invalid words compared to
both AR and IMPUTER, with multilingual model-
ing leading to an average increase in invalid words
by 37%. The shared vocabulary of the multilingual
model results in shorter sub-words, hence longer
sequences, and the conditionally independent gen-
eration leads to more clashing adjacent sub-words.6

6One might hope to alleviate this by increasing vocabulary
size, but preliminary experiments showed that an increased
vocabulary was less efficient in improving quality than increas-
ing overall model size, which is explored in Section 6.
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IMPUTER’s iterative decoding alleviates this for
some languages. Increasing the number of itera-
tions could help, but would also erode the efficiency
arguments that make NAR models attractive. As
pointed out by Xiao et al. (2022), better modeling
of target token dependencies is crucial to closing
the gap in translation quality to AR models.

Figure 2: % of outputs with invalid words for bilingual
(-B) and multilingual (-M) models, the lower the better.

5 Positive Transfer Scenario

In this section we present two experimental setups
designed to emphasize positive transfer, where lan-
guages are related and training data is limited.

English→{German, French} To isolate the ef-
fect of transfer via multilingual modelling, we relax
the capacity bottleneck and competition for param-
eters: We combine the two most related languages
(DE, FR) (Kudugunta et al., 2019, Figure 2) and
give them smaller, balanced training sets (1M sen-
tences). We compare bilingual and multilingual
AR and NAR models trained on this reduced data.

Table 4 shows that NAR models benefit from
training with multiple language pairs in this re-
laxed scenario — all models exhibit positive trans-
fer (in green). IMPUTER achieves higher positive
transfer than CTC for both languages, but lags be-
hind the AR multilingual model in EN-FR. How-
ever, for EN-FR the bilingual IMPUTER is already
ahead of the bilingual AR model by 0.4 BLEU.

MODEL EN-DE EN-FR

Bilingual Models

AR 22.8 27.7
CTC 21.5 26.5
IMPUTER 22.8 28.1

Multilingual Models
AR 24.3 +1.5 29.0 +1.3
CTC 22.1 +0.6 26.9 +0.4
IMPUTER 23.7 +1.3 28.5 +0.4

Table 4: Results on subsampled (1M) training data.

English→{Russian, Kazakh} Does this positive
transfer survive data imbalance? We test the perfor-
mance of the multilingual NAR model on the low-
resource task of translating English into Kazakh,
for which the size of clean training data is insuffi-
cient to train a bilingual AR model from scratch.
We instead distill translations from the publicly
available multilingual AR model, PRISM (Thomp-
son and Post, 2020). We then pair it with the higher-
resource but related language Russian to encourage
positive transfer to Kazakh. Given the huge dif-
ference in data sizes for Russian and Kazakh (see
Table 1), we sample training data from the two
languages based on the data size scaled by a tem-
perature value τ , p1/τ

l (Arivazhagan et al., 2019),
where, pl =

Dl

∑kDk
. We experiment with multiple

temperature values (1, 3, 5, 10, 20) and pick the
best value (τ = 5;p

1/τ
RU = 0.75, p

1/τ
KK = 0.25) based

on the performance on the validation set.

MODEL TEACHER EN-KK EN-RU

PRISM - 8.9 27.0

Bilingual Models
AR

PRISM
4.4 -

CTC 1.2 -
Multilingual Models
AR

PRISM
7.1 +2.7 26.0

CTC 2.8 +1.6 20.4

Table 5: Results on English→ Kazakh, Russian.

As can be seen in Table 5, both AR and
CTC show positive transfer when translating into
Kazakh when trained in combination with Rus-
sian. The multilingual CTC model is able to im-
prove over the bilingual CTC model, but the over-
all quality of the outputs is very low compared to
the teacher model (BLEU: -5.3). This experiment
showcases that current NAR models do not per-
form well on very low-resource language pairs and
might need further data augmentation (Song et al.,
2022) or transfer from other similar languages.7

6 Impact of Model Scale

We hypothesized in Section 4 that CTC might re-
quire more capacity than AR models. If we in-
crease the parameters for NAR models sufficiently,
could we reach AR quality? Scaling laws can char-
acterize the relationship between MT quality, the
cross-entropy loss and the number of parameters

7We do not train IMPUTER for KK as the quality of the
distilled dataset and alignments from CTC is very low.
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used for training the model (Ghorbani et al., 2021;
Gordon et al., 2021).

We derive the relationship between BLEU and
the number of parameters for our AR and CTC
models directly from the scaling laws proposed by
Gordon et al. (2021) and Ghorbani et al. (2021) as
follows:

L(N) ≈ L0 + αn(1/N)
αk (Ghorbani et al., 2021)

BLEU(L) ≈ Ce−kL (Gordon et al., 2021)

BLEU(N) ≈ ae−b(1/N)
c

(this work)

where L is the test loss, {αn, αk, L0,C, k} are
fitted parameters from previous power laws, and
{a, b, c} are the collapsed fitted parameters of our
power law. Ghorbani et al. (2021)’s L0 corresponds
to the irreducible loss of the data (here: a).

Setup We train seven models with varying capac-
ity for AR and CTC models. The number of layers
and model sizes are varied as: (6, 128), (6, 256),
(12, 256), (12, 512),8 (24, 512), (12, 1024), (24,
1024). The feed-forward size is 4× the model size.
AR models have equal numbers of encoder and
decoder layers. The number of attention heads is
given by (8/(512/Model Size)). For a fair com-
parison, we train both AR and CTC models on dis-
tilled outputs from AR-big in Table 2. The evalu-
ation is conducted in the challenging six-language
negative-transfer scenario from Section 4, where ca-
pacity bottlenecks are likely to be most pronounced.
We report BLEU averaged across six languages.

Results Figure 3 shows the fitted parameters us-
ing the scaling law, which can almost perfectly
describe the relationship between the number of
parameters and the development BLEU (R2: 0.99).
We can see that CTC, even with many more param-
eters, do not come even close to the performance of
AR models and plateaus early at a BLEU of 26.7,
while AR models plateau at 30.8. By projecting
the curves out to 1 billion parameters, we show that
increasing the capacity of NAR is insufficient to
reach the quality of AR models.

7 Related Work

Multiple approaches with varying architectures
(Gu et al., 2018, 2019; Chan et al., 2020; Xu and
Carpuat, 2021), custom loss functions (Ghazvinine-
jad et al., 2020; Du et al., 2021) and training strate-
gies (Ghazvininejad et al., 2019; Qian et al., 2021)

8Size for experiments in Section 4.

Figure 3: BLEU versus number of parameters and fit-
ted power-law curves (R2 AR: 0.99, R2 CTC: 0.99).

have been used to enable parallel generation of
output tokens for MT with sequence-level knowl-
edge distillation as one of the key ingredient in the
training of NAR models. Both supervised, and
unsupervised (Sun et al., 2020) MT have benefitted
from training with multiple languages, especially
those that have tiny (Siddhant et al., 2020) to no
training data (Zhang et al., 2020). However, multi-
lingual modeling has not yet received any attention
in the NAR literature, which we explore in this
work. One limitation of our study is that we choose
one representative system for NAR and semi-NAR
modeling over the full breadth of NAR options.

8 Conclusion

Multilingual translation is a valuable feature of AR
models, therefore, we have tested NAR models
for that same capability. We focus on challenging
scenarios to discover potential weaknesses and to
identify areas for future work. In a relaxed set-
ting with little interference between languages and
balanced data, multilingual NAR models nicely
exhibit positive transfer, practically closing the gap
to AR models with a few decoding iterations. How-
ever, we do not see the same positive transfer in a
true low-resource scenario. Experiments in a six-
language scenario reveal that multilingual NAR
models suffer proportionally more from negative
interference than AR models. Our derived scaling
laws show that scaling up CTC model parameters
is not a sufficient remedy. Our analysis identified
two issues that hurt translation quality and worsen
with multilinguality, namely output length control
and the generation of invalid words. We have also
shown beneficial properties of using multilingual
teachers for distillation. We hope that this work
will serve as a call for increased focus on multilin-
gual modeling in NAR research.
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