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Abstract

This paper presents our submissions to the
WMT2021 Shared Task on Quality Estima-
tion, Task 1 Sentence-Level Direct Assess-
ment. While top-performing approaches uti-
lize massively multilingual Transformer-based
language models which have been pre-trained
on all target languages of the task, the re-
sulting insights are limited, as it is unclear
how well the approach performs on languages
unseen during pre-training; more problemati-
cally, these approaches do not provide any so-
lutions for extending the model to new lan-
guages or unseen scripts—arguably one of the
objectives of this shared task. In this work,
we thus focus on utilizing massively multilin-
gual language models which only partly cover
the target languages during their pre-training
phase. We extend the model to new languages
and unseen scripts using recent adapter-based
methods and achieve on par performance or
even surpass models pre-trained on the respec-
tive languages.

1 Introduction

In Machine Translation (MT), the Quality Estima-
tion (QE) task attempts to characterize the quality
of a translation, without the availability of a (gold-
label) reference translation. The introduction of a
QE system would consequently allow for the au-
tomatic analysis of machine-translated sentences
without costly human reference translation, with
numerous applications, such as: the selection of
candidate translations, the estimation of human
editing effort, or the detection of low-quality or
misleading translations (Kepler et al., 2019). How-
ever, in order to acquire training data, professional
human translators are required to score the trans-
lation quality of many examples, making labeled
data difficult to obtain, especially for low-resource
languages. This highlights the importance of cross-
lingual zero-shot transfer of QE systems, one of
the objectives of the WMT21 shared task (Specia

et al., 2021), which introduces zero-shot evaluation
sets of four new language pairs.

Previous approaches have predominantly fo-
cused on languages for which training data is
available, such as the QE task at WMT20. The
best results were obtained by fine-tuning massively
multilingual Transformer-based language models
(Vaswani et al., 2017) such as multilingual BERT
(mBERT) (Devlin et al., 2019) or XLM-R (Con-
neau et al., 2020) (Specia et al., 2020; Ranasinghe
et al., 2020b; Sun et al., 2020a; Nakamachi et al.,
2020, inter alia), on the target QE tasks. These
supervised methods considerably outperform un-
supervised methods (Zhao et al., 2020; Fomicheva
et al., 2020c; Sun et al., 2020a; Zhao et al., 2021;
Song et al., 2021) even in zero-shot settings (Sun
et al., 2020a). However, analyzing the applicabil-
ity of fine-tuning multilingual models on the target
language pairs that are covered during pre-training
considerably limits the generated insights. They
are only applicable to the ∼100 languages covered
during pre-training, excluding the remaining ma-
jority of languages as the “curse-of-multilinguality”
(Conneau et al., 2020) prohibits the over 7000 lan-
guages in the world (Joshi et al., 2020) to be repre-
sented within a single model

In this work, we thus aim to address these limita-
tions by utilizing multilingual language models that
only cover a subset of the target languages. Here
we focus on mBERT which—in contrast to XLM-
R—has not seen the languages Sinhala, Pashto,
and Khmer, all part of the WMT21 shared task. As
the script of Sinhala and Khmer are not included
in the mBERT vocabulary, it is impossible for
the corresponding tokenizer to correctly tokenize
text in those languages. Following Pfeiffer et al.
(2020b, 2021b) we thus propose an adapter-based
approach to extend mBERT to new languages and
new scripts.

Our contributions are as follows: 1) we ana-
lyze adapter-based supervised approaches for QE
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and demonstrate their competitive performance
compared to full model fine-tuning, both in su-
pervised as well as zero-shot settings; 2) we use
recent adapter based methods to extend mBERT
to unseen languages and scripts, achieving consid-
erable performance gains over standard mBERT
for unseen languages; 3) we demonstrate competi-
tive performance of our adapted mBERT approach
compared to XLM-R, which has seen the respec-
tive languages during pre-training. We release our
code and adapters at https://github.com/
Aaronsom/wmt21-qe-tudarmstadt/.

2 Method

We describe our adapter-based approaches for su-
pervised QE and the extension to unseen languages.

2.1 Task Formulation
We model QE as a regression task. The Trans-
former receives as input both the source sentence
and the translation hypothesis and is trained to pre-
dict the quality score for the sentence pair. For
this, we take the final contextualized representa-
tion of the special [CLS]-token produced by the
Transformer and feed it into a multi-layer regres-
sion head to compute the predicted quality f(s, t):

f(s, t) = W2 · (tanh(W1 · r[CLS](s, t))) (1)

with W1 ∈ Rh×h, W2 ∈ R1×h, tanh is the hy-
perbolic tangent, h is the hidden dimension of
the Transformer, and r[CLS](s, t) is the output
representation of the [CLS]-token for the source-
translation input pair s, t. We train the model using
mean squared error.

2.2 Adapters
Adapters are randomly initialized weights, newly
introduced at every layer of the pre-trained Trans-
former model. During fine-tuning, only the adapter
weights (and the regression head) are updated while
the remaining model weights are kept frozen.

Houlsby et al. (2019) propose a feed-forward
bottleneck adapter architecture consisting of a
down-projection, a non-linearity, and finally an up-
projection, both after the multi-attention as well as
after the feed-forward component at every Trans-
former layer. We use the adapter architecture pro-
posed by Pfeiffer et al. (2021a) which achieves on
par results while reducing the number of trainable
parameters of Houlsby et al. (2019) by only placing

adapters after the feed-forward component (see Fig-
ure 1a). Adapters at layer l are defined as follows:

al(hl, rl) = Ul · (ReLU(Dl · hl)) + rl (2)

where Dl ∈ Rb
h
r c×h, Ul ∈ Rh×bhr c, ReLU is the

rectified linear unit, hl is the hidden input represen-
tation, rl is the residual after the fully-connected
layer, and r is the reduction factor—a hyperparam-
eter that decides how much the adapter compresses
the hidden representation.

2.3 Extending to Unseen Languages
While both XLM-R and mBERT have been pre-
trained on a large number of languages, XLM-R
has seen all languages appearing in the WMT21
dataset, while mBERT has not been pre-trained
on Sinhala, Khmer, and Pashto. Further, the
scripts of Sinhala and Khmer are not covered by
mBERT’s vocabulary. We thus follow Pfeiffer et al.
(2020b, 2021b) to extend both the latent Trans-
former as well as input embedding representations
to the respective languages, using adapter-based
approaches.

Language Adapters. Language adapters (LAs)
(Pfeiffer et al., 2020b) are trained to encode idiosyn-
cratic, language-specific information, and trans-
form the underlying multilingual model’s latent
representations to better align with the respective
languages. Correspondingly, they are trained mono-
lingually using the masked language modeling
(MLM) objective on unlabeled textual data in the
target language.

Extending to unseen scripts. Word piece tok-
enizers can (arguably inadequately (Rust et al.,
2021)) tokenize unseen languages that are writ-
ten in seen scripts, with a fall-back character-level
tokenization. Unfortunately, these tokenizers fail
for unseen scripts, as even character-level tokens
are not part of the vocabulary, leaving the tokenizer
only with instantiating unknown placeholder to-
kens (UNKs) as alternatives. Consequently, even
by extending the overall capacity of the language
model using language adapters, the model will not
be able to adequately represent the respective lan-
guages. To extend the model to unseen scripts, we
learn a new language-specific tokenizer and train
a new embedding matrix, initialized with lexically
overlapping tokens of the original embedding ma-
trix, and random initialization for the remaining

https://github.com/Aaronsom/wmt21-qe-tudarmstadt/
https://github.com/Aaronsom/wmt21-qe-tudarmstadt/
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(a) Pfeiffer adapter architecture
used by us. Each adapter com-
prises of an down- and up-
projection and is inserted after
the feed-forward layer within
each Transformer layer.
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(b) Task adapters for QE with
multiple language adapters for
the multilingual input. The in-
put parts are passed through the
respective language adapter be-
fore the entire representation is
passed to the task adapter.
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Embeddings
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(c) Extra monolingual embed-
dings for scripts and languages
not included in the multilingual
embeddings alongside the mul-
tilingual embeddings. The input
embedding is chosen depending
on the input language.

Figure 1: The architecture additions to the Transformer architecture: (a) Adapters; (b) Language and task adapters
with multilingual input; (c) Extra monolingual embeddings alongside multilingual embeddings.

unseen tokens (Pfeiffer et al., 2021b). Here, lan-
guage adapters are trained together with the new
embedding matrix, while the pre-trained Trans-
former weights are frozen. Similar to standard
LAs, these components are trained monolingually
using the MLM objective on unlabeled textual data
in the target language.

Task Adapters. For target task fine-tuning we
stack task-specific adapters on top of the pre-
trained LAs. For most tasks, sentences of only
one language are passed through the model, while
for QE the original sentence in the source language
and the translation of the target language are simul-
taneously passed through the model. The tokens of
the respective languages are thus passed through
their respective LA. The subsequent task adapter is
shared between the two languages (see Figure 1b).
For cross-lingual transfer, the LAs of the training
languages are replaced with the LAs of the evalua-
tion languages. For this reason, not only the trans-
former weights but also the LAs are frozen during
training and only the task adapters are fine-tuned
on the target task. For languages with scripts not
covered during pre-training, the new embedding
matrix is used. The embedding representations are
subsequently concatenated (see Figure 1c).

3 Data

The sentence-level direct assessment task of
WMT21 builds upon the data of WMT20 task 1
(Fomicheva et al., 2020a). The WMT20 dataset
consists of seven language pairs ranging from
the high-resource English–German (En-De) and
English–Chinese (En-Zh), to the medium-resource
Romanian–English (Ro-En), Estonian–English (Et-
En) and Russian-English (Ru-En), and the low-
resource Sinhalese–English (Si-En) and Nepalese–
English (Ne-En). For each pair, sentences in the
source language are sampled from Wikipedia (or
in the case of Russian, from Wikipedia and Red-
dit), translated with fairseq (Ott et al., 2019) to
the target language, and then annotated by at least
three professional translators with Direct Assess-
ment (DA) (Guzmán et al., 2019). The DA scores
are z-normalized for each annotator and averaged
to form the final score. For each of the seven lan-
guage pairs, the dataset contains 7000 training pairs
and 1000 test and dev pairs.

The WMT21 dataset extends the WMT20
dataset by providing new test sets—with unpub-
lished labels—consisting of 1000 sentences for
each language pair of the WMT20 dataset. In
addition, they provide testsets for four new lan-
guage pairs for zero-shot evaluation, each compris-
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ing of 1000 sentence pairs with unpublished labels:
English–Czech (En-Cs), English–Japanese (En-Ja),
Pashto–English (Ps-En), Khmer–English (Km-En).

4 Experiments

We describe our experimental setup along with the
training and implementation details.

Training & Model Hyperparameters. We ini-
tialize our models with mBERT and XLM-R (both
large and base-sized). We use a reduction factor r
of 8 for our task adapters. Language adapters use
r = 2 and have been trained on Wikipedia articles
of the respective language. The additional embed-
dings for Khmer and Sinhala contain 10k tokens
each and have been fine-tuned together with the
respective LAs on the Wikipedia data.

We fine-tune our models using AdamW
(Loshchilov and Hutter, 2019) with a linear learn-
ing rate schedule without warm-up. We simulate
early stopping by storing the checkpoint with the
best dev set performance—evaluating every 500
steps. For all models, we use a learning rate of
1e-4 and a batch size of 8. We train each model
for 8k steps. Hyperparameters have been chosen
based on the WMT20 dev set performance. We
have chosen the above hyperparameters from the
following values ranges: learning rate {5e-5, 1e-4,
2e-4, 5e-4}, batch size {4, 8, 16, 32, 96}, reduc-
tion factor r for the task adapters {4, 8, 16}, and
training steps {2k, 3k, 5k, 8k, 10k}.

Implementation Details. To train adapters, we
use the AdapterHub framework (Pfeiffer et al.,
2020a) which builds upon the Hugging Face Trans-
formers library (Wolf et al., 2020). In each batch
we samples examples from only one language pair.

Experimental Setup. We evaluate the perfor-
mance of our QE models using Pearson correlation
between the predicted quality and the actual label
(Specia et al., 2020).

We evaluate our adapter approaches in an ALL

and a leave-one-out zero-shot setup (ZERO). In the
ALL setup, we train a model on all seven language
pairs with training data available and then evaluate
the model on all eleven language pairs—the seven
pairs with training data and the four pairs without.
In the ZERO setting, for each of the seven language
pairs which have a training set, we train a model
with six of the pairs and then evaluate on the left-
out seventh pair.

We evaluate both the large-sized XLM-R with
adapters (denoted A-XLMRLARGE) and base-
sized mBERT and XLM-R with adapters (denoted
A-MBERT and A-XLMRBASE respectively). For
mBERT, we use both language adapters (+LA)
and additional embeddings for Sinhala and Khmer
(+EMB). We denote the setup with both as
A+LA+EMB-MBERT. We also consider adapter
ensembles for XLM-R. Here, we train five adapters
in the ALL setup using different random seeds. Dur-
ing the evaluation, we average the predictions of
the five adapters for the final prediction.

5 Results & Discussion

We present the Pearson correlation results for our
models on the WMT21 test set. The reported values
are obtained from the CodaLab competition.1

5.1 Language Extension Results

We present our results on the WMT21 test set for
our two setups. The results for the ALL setup where
we train with all seven pairs that have training data
and then evaluate the model on all eleven pairs, i.e.
the seven with training data and the four which are
zero-shot, are found in Table 1. The leave-one-out
ZERO results where we train on six of the seven
pairs with training data and then evaluate in a zero-
shot setup on the left-out pair are in Table 2.

We consider how our language extension meth-
ods improve the results for the unseen languages
Sinhala, Khmer, and Pashto. We first evaluate how
much we gain by representing input in the unseen
script with extra embeddings instead of simply re-
placing all by the [UNK]-token. For this, we com-
pare A-MBERT with A+EMB-MBERT. When we
train with the Si-En data in ALL, the additional em-
beddings only give a relatively small performance
boost of 0.04 points on top of already quite good
results. This is unexpected since half the input is
not correctly represented. We investigate this in
more detail in §5.2. In zero-shot (Table 2 for Si-En
and Table 1 for Km-En), the extra embeddings re-
sult in greatly improved results for Si-En by 0.25
points and by 0.05 points for Km-En.

Next, we compare models with and without
language adapters in both setups. For the lan-
guages seen by mBERT during pre-training, there
is little difference between A(+EMB)-MBERT
and A+LA(+EMB)-MBERT in both setups. This

1https://competitions.codalab.org/
competitions/33411

https://competitions.codalab.org/competitions/33411
https://competitions.codalab.org/competitions/33411
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Unseen Seen

Si-
En

Km-
En

Ps-
En

Ne-
En

Et-
En

Ro-
En

Ru-
En

En-
De

En-
Zh

En-
Cs

En-
Ja

A-MBERT 0.44 0.37 – – – – – – – – –
A+EMB-MBERT 0.48 0.42 0.22 0.73 0.68 0.84 0.63 0.36 0.50 0.41 0.24
A+LA+EMB-MBERT 0.51 0.49 0.50 0.74 0.68 0.84 0.64 0.33 0.48 0.47 0.23

A-XLMRBASE 0.52 0.57 0.53 0.71 0.68 0.82 0.68 0.33 0.49 0.45 0.27
A-XLMRLARGE 0.56 0.62 0.59 0.80 0.78 0.87 0.73 0.47 0.54 0.54 0.33
A-XLMRLARGEENSEMBLE 0.57 0.64 0.61 0.83 0.79 0.89 0.76 0.43 0.56 0.55 0.32

Table 1: Pearson correlation results of the ALL setup for trained results for the seven pairs with training set and
zero-shot results for the four pairs without. We group the language pairs in those unseen and seen by mBERT
during pre-training and we mark the zero-shot results of the pairs without training set with italic. We report the
results for our adapters with mBERT, XLM-R (base), and XLM-R (large). For mBERT, we extend the model with
language adapters (+LA) and additional embeddings for Sinhala and Khmer (+EMB)

Unseen Seen

Si-En Ne-En Et-En Ro-En Ru-En En-De En-Zh

A-MBERT 0.03 – – – – – –
A+EMB-MBERT 0.28 0.63 0.63 0.76 0.55 0.41 0.43
A+LA+EMB-MBERT 0.46 0.64 0.65 0.75 0.54 0.37 0.39

A+XLMRBASE 0.51 0.67 0.63 0.68 0.56 0.33 0.38
A+XLMRLARGE 0.55 0.79 0.75 0.81 0.66 0.43 0.56

Table 2: Pearson correlation results of the leave-one-out ZERO setup for zero-shot results of the seven language
pairs with training set. We report the results for our adapters with mBERT and XLM-R (base & large). For mBERT,
we extend the model with language adapters (+LA) and additional embeddings for Sinhala and Khmer (+EMB)

aligns with the findings by Pfeiffer et al. (2020b)
and suggests that language adapters are less helpful
for seen languages. For the three pairs with un-
seen languages, the language adapters can greatly
improve the performance. In zero-shot situations
(Table 2 for Si-En and Table 1 for the other two),
we gain 0.18 points for Si-En, 0.07 for Km-En, and
0.28 points for Ps-En. Similar to extra embeddings,
when we train with the Si-En data in ALL, we only
gain 0.03 points more with language adapters.

Finally, we compare mBERT with lan-
guage adapters and additional embeddings
(A+LA+EMB-MBERT) to a base-sized XLM-R
A-XLMRBASE. This comparison is not ideal
due to the differences in pre-training between the
Transformers—training set, selected languages,
etc.—but we can assume that for the unseen
languages, XLM-R serves as an estimated upper
bound for the performance. For seen language
pairs (i.e., not Si-En, Km-En, and Ps-En), both
methods perform comparably. For unseen lan-
guages, our adapter-based extensions to mBERT
close the gap to XLM-R for most languages,
except for Km-En where there is still a noticeable
performance difference.

Si-
En

Ne-
En

Et-
En

Ro-
En

Ru-
En

En-
De

En-
Zh

Avg

A-MBS+T 0.54 0.68 0.69 0.85 0.63 0.42 0.43 0.61
A-MBT 0.52 0.52 0.61 0.70 0.58 0.40 0.38 0.53
A-MBS 0.19 0.53 0.56 0.63 0.60 0.33 0.30 0.45

Table 3: Pearson correlation for mBERT with
adapters (A-MB)—without language extensions—on
the WMT20 test set trained with all pairs where we use
both source and translation (S+T), only the translation
(T), or only the source (S) during training. Evaluation
is performed with both source and translation.

5.2 Analysis of Results on Trained Pairs

For the three unseen languages, we achieve large
performance gains in zero-shot scenarios. How-
ever, while we witness large performance gains in
zero-shot scenarios of the adapter-based methods,
the difference considerably smaller when training
data in the target language is available. Intuitively,
we would expect a larger boost, considering half
the input is in an unknown language and mostly not
encoded. However, these results align with previ-
ous findings. Sun et al. (2020b) show for WMT19
and WMT18 that training with only the translation
still results in strong results—77-100% of the per-
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Si-En Ne-En Et-En Ro-En Ru-En En-De En-Zh Avg

A+LA+EMB-MBERTALL 0.59 0.69 0.71 0.85 0.65 0.44 0.43 0.62
BERGAMOT-LATTE (mBERT) 0.53 0.69 0.70 0.85 0.65 0.42 0.45 0.61
A-XLMRBASEALL 0.59 0.67 0.70 0.81 0.68 0.41 0.41 0.61

A-XLMRLARGEALL 0.65 0.75 0.78 0.88 0.75 0.48 0.46 0.68
A-XLMRLARGEENSEMBLE 0.66 0.79 0.80 0.89 0.77 0.47 0.47 0.69
TransQuest (XLM-R) 0.65 0.76 0.76 0.89 0.75 0.44 0.46 0.67
BERGAMOT-LATTE (XLM-R) 0.67 0.78 0.80 0.89 0.78 0.50 0.49 0.70
TransQuest (best) 0.68 0.82 0.82 0.91 0.81 0.55 0.54 0.72
BERGAMOT-LATTE (best) 0.68 0.81 0.83 0.91 0.80 0.54 0.53 0.72

A+LA+EMB-MBERTZERO 0.54 0.57 0.65 0.77 0.53 0.44 0.33 0.55
A+XLMRBASEZERO 0.56 0.61 0.63 0.67 0.59 0.35 0.32 0.53

A+XLMRLARGEZERO 0.63 0.74 0.76 0.80 0.69 0.41 0.41 0.63
BERGAMOT-LATTE (zero-shot) 0.68 0.76 0.75 0.80 0.68 0.45 0.42 0.65

Table 4: Pearson correlation on the WMT20 test set for the ALL and ZERO setup. We group the results in the setups
in base-sized and large models. TransQuest and BERGAMOT-LATTE use fully fine-tuned models. TransQuest re-
sults are taken from (Ranasinghe et al., 2020b), BERGAMOT-LATTE from (Sun et al., 2020a)—their best models
are the winners of the WMT20 shared task and additionally use ensembles.

formance of training with the complete pair. We
are able to reproduce these findings for WMT20
in Table 3, and achieve similar results for Si-En
when passing only the English translation as in-
put to the model, compared to when training on
both inputs. However, when training with only the
(Sinhala) source, we witness the expected drop in
performance. It is likely that in the zero-shot setup,
the model cannot learn to exploit the statistical cues
that allow it to function without the source sentence.
Hence, we obtain more appropriate representations
with adapter-based methods where the language-
specific word-embedding representations result in
considerable performance gains.

5.3 Ensembles

Ensembles have been used in previous work with
great success (Ranasinghe et al., 2020a; Fomicheva
et al., 2020b; Nakamachi et al., 2020). With
an adapter ensemble, the underlying Transformer
weights are re-used resulting in a very parameter-
efficient setup—our ensemble with five adapters
adds only 6.5% more parameters on top of the large
XLM-R Transformer. However, our adapter ensem-
ble A-XLMRLARGEENSEMBLE only brings a slight
performance boost, smaller than the reported boost
by the ensembles of previous works. More work is
needed here to investigate why this is the case.

5.4 Comparison to Fully Fine-Tuned Models

We evaluate the general performance of adapters
for the QE task in comparison to fully fine-tuned
models. For this, we compare our models on

the WMT20 test set against the top submissions
of the WMT20 shared task in Table 4. We find
that they achieve competitive results with fully
fine-tuned models that do not employ additional
techniques like ensembles in both the ALL and
ZERO setups. Our highest-scoring submission, A-
XLMRLARGEENSEMBLE, places in the midfield for
the WMT21 competition.

5.5 Parameter Count

Adapters are considerably more parameter efficient
with respect to the number of fine-tuned parameters,
compared to fully fine-tuned models. The number
of adapter parameters is equivalent to only 1.3% of
the Transformer parameters for our models. This
makes adapters very lightweight for model shar-
ing or for loading multiple adapters on the same
GPU, e.g., for language adapters or for multiple
task adapters in a pipeline (Nguyen et al., 2021;
Rücklé et al., 2021). The extension for the unseen
languages for mBERT also adds only a small num-
ber of parameters: 2.4% for each language adapter
and 1.4% for each monolingual embedding.

6 Conclusion

In this work, we proposed the use of adapters to
fine-tune massively multilingual Transformers for
the sentence-level QE task. We demonstrated that
adapters are able to achieve competitive results
with fully fine-tuned models. However, as fully
fine-tuned approaches are limited to the languages
seen during pre-training, we have employed recent
language extension methods to integrate languages
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unseen by mBERT. We extended mBERT with
language adapters and monolingual embeddings
for Sinhala, Khmer, and Pashto. These methods
greatly improved the zero-shot performance of the
model and largely closed the gap to XLM-R which
has been pre-trained on all languages appearing in
WMT21. This demonstrates that our approach is
applicable, not only to languages seen during pre-
training, but also to unseen languages, even with
unseen scripts. This suggests that our method is
able to extend multilingual models to a wider range
of language not covered during pre-training.

We suggest that future shared tasks should con-
sider disentangling languages which massively
multilingual language models have been pre-
trained on, from those that are unseen during pre-
training, to more closely reflect realistic scenarios,
as the majority of languages cannot be represented
within a single model (Conneau et al., 2020).
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