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Abstract
This paper presents our work in WMT 2021
Quality Estimation (QE) Shared Task. We par-
ticipated in all of the three sub-tasks, including
Sentence-Level Direct Assessment (DA) task,
Word and Sentence-Level Post-editing Effort
task and Critical Error Detection task, in all
language pairs. Our systems employ the frame-
work of Predictor-Estimator, concretely with
a pre-trained XLM-Roberta as Predictor and
task-specific classifier or regressor as Estima-
tor. For all tasks, we improve our systems by
incorporating post-edit sentence or additional
high-quality translation sentence in the way
of multitask learning or encoding it with pre-
dictors directly. Moreover, in zero-shot set-
ting, our data augmentation strategy based on
Monte-Carlo Dropout brings up significant im-
provement on DA sub-task. Notably, our sub-
missions achieve remarkable results over all
tasks.

1 Introduction

Quality Estimation (QE) focuses on estimating the
quality of machine translation (MT) system output
when no ground truth reference is available (Specia
et al., 2018). QE covers wide range of tasks includ-
ing word-level, sentence-level and document-level.
It has wide range of applications in MT quality
check and post-editing effort estimation.

In WMT2021 Quality Estimation shared task1,
there are three sub tasks — Sentence-Level Direct
Assessment task, Word and Sentence-Level Post-
editing Effort task and Critical Error Detection task.
Each sub task involves several language pairs. Our
team participated in all the above three tasks over
all language pairs. We summarized our main con-
tributions as follow:

• We employ Predictor-Estimator architecture
(Kim et al., 2017b; Kim and Lee, 2016) which

* Indicates equal contribution.
1http://www.statmt.org/wmt21/quality-estimation-

task.html

is a two-stage model consisting of a word pre-
diction model trained from large-scale paral-
lel corpora, and a estimation model trained
from quality-annotated QE data. Different
from the original Predictor-Estimator model
in (Kim et al., 2017a), we use pre-trained
XLM-Roberta large as predictor instead of
RNN-based model to achieve better QE fea-
tures, and use task-specific classifier or regres-
sor as quality estimator.

• We extend PE assisted QE (PEAQE) (Kepler
et al., 2019; Wang et al., 2020) by integrating
real PE or addtional high-quality translation
in the way of multitask learning or directly
encoding it with predictor.

• We explore data augmentation method based
on Monte Carlo (MC) dropout (Gal and
Ghahramani, 2016) to enhance the perfor-
mance of zero-shot language pairs in Direct
Assessment(DA) task.

Our methods achieve impressive performance
on both word and sentence level tasks. Specifi-
cally, we peak the top-1 on sentence-level DA over
English-German and English-Japanese pairs. For
word and sentence-level post-editing effort task,
our submissions of the majority language pairs ob-
tain the best Pearson’s correlation or Matthews cor-
relation coefficient. We also win the first place in
critical error detection task in English-Chinese and
English-Japanese.

We will describe the tasks, datasets, and our
methods for DA task, post-editing task, and critical
error detection task in section 2, section 3, and
section 4 respectively. Section 5 presents details
of our experimental setup and results, with a brief
discussion and conclusion in the end.
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2 Sentence-Level Direct Assessment Task

2.1 Task Description

The sentence-level Direct Assessment task focuses
on estimating sentence-level translation quality
scores which are annotated with Direct Assessment
(DA) scores by professional translators. The origi-
nal DA scores are in scale of 0-100. The scores are
then standardised using the z-score by rater. The
goal is to estimate a z-standardised DA score for
each translation sentence.

Sentence-level DA task is evaluated by Pearson’s
correlation between the predicted score and the
gold human annotated z-standardised DA score.
The system is assessed from two aspects: single
language pair and multilingual track which takes all
languages into account, including zero-shot pairs,
calculating the averaged Pearson correlation over-
all.

2.2 Dataset

For each language, 7000, 1000 and 1000 sen-
tence pairs are provided officially as training, de-
velopment and test20 set before releasing another
1000 for the real blind test21, including high-
resource English-German (En-De) and English-
Chinese (En-Zh), medium-resource Romanian-
English (Ro-En) and Estonian-english (Et-En), low-
resource Sinhalese-English (Si-En) and Nepalese-
English (Ne-En), as well as Russian-English (Ru-
En). Besides, 4 language pairs — English-Czech
(En-Cz), English-Japanese (En-Ja), Pashto-English
(Ps-En) and Khmer-English (Km-En), are only of-
fered blind test (1000), without training data.

2.3 Implemented Systems

The systems for DA employ Predictor-Estimator
architecture. Following previous sota works
(Fomicheva et al., 2020; Moura et al., 2020; Rei
et al., 2020), we use a pre-trained XLM-Roberta
(XLM-R)(Conneau et al., 2019) model as a pre-
dictor due to its impressive performance on cross-
lingual downstream tasks.

Practically, we concatenate source(SRC) and
target(MT) sentences in the format [CLS] SRC
[EOS] [SEP] MT [EOS] following XLM-R
usage, and take the embedding of pooled output
of [CLS] token as features of a sentence pair. For
Estimator, we simply stack two-layer FFN, taking
the [CLS] feature generated above as the input to
predict sentence-level DA scores.

2.3.1 PE Assisted Sentence-Level DA
Prediction

Inspired by the Pseudo-PE techniques (Kepler et al.,
2019; Wang et al., 2020), we take full use of post-
editing sentences provided in Post-editing Effort
task through multitask learning. The model jointly
learns to score (SRC, MT) pair in a regression
task, and distinguish between translations and post-
edited sentences — which is the better translation
in a classification task. In inference stage, the
model only conducts regression task to predict DA
score, as post-editing sentences are not available
for blind test set.

The regression task applies loss function as:

Lreg = (φ(Es,t)− Yhuman)
2 (1)

where Es,t is the embedding of sentence pair
(source, mt), φ is the regressor taking them as input,
through a two-layer FFN to compute DA score, and
Yhuman is the Z-normalized DA score annotated
by human.

The classification task forces the model to cap-
ture more expressive cross-lingual sentence rep-
resentation which is paramount for DA score. In
implementation, we get the model to learn which
is the pair with better translation between embed-
ding of concatenated source and target Es,t and
embedding of concatenated source and PE Es,p.
We splice two vectors in random order and apply
two stacked FFN layers to compute classification
result, in which 0 means the former pair is the
better (i.e. the former contains PE), 1 means the
former is the worse and 2 means translation and
post-edit are exactly the same. Equation (2) gives
the loss function for the classification task, where
M is the number of classes (M = 3), Y is the
binary indicator (0, 1, 2) if class label c is the cor-
rect classification for observations, P is the model
predicted probabilities that the observation is of
classes.

Lcls = −
M−1∑
c=0

Yc log(Pc) (2)

2.3.2 Data Augmentation for Zero-shot
Languages

Instead of directly applying the multilingual DA
model trained on other 7 language pairs to zero-
shot languages, we exploit a data augmentation
strategy based on MC dropout to improve the per-
formance. Specifically, we compute the expecta-
tion and variance for the set of estimated DA scores
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of zero-shot languages obtained by performing N
(N=30) stochastic forward passes through the well-
trained but dropout-perturbed QE model. In order
to control the uncertainty introduced by the dis-
turbance, we only retain dropout in estimator and
last two layers in XLM-R. We take variance as
an indicator to detect observations with less un-
certainty and use expectation as DA score label.
Then, we mix the generated zero-shot DA data
with randomly selected non-zero-shot training set
to fine-tune the model. Experiments show that our
data augmentation is effective to improve the per-
formance, achieving better Pearson correlation.

3 Word and Sentence-Level Post-editing
Effort Task

3.1 Task description

Word-Level QE estimates the translation quality
by producing a sequence of tags for source and tar-
get. For target sentences(MT), each token is tagged
as either OK or BAD, each gap between two words
is tagged as BAD if one or more missing words
should have been there, and OK otherwise. So
the number of total tags for each target sentence is
2N + 1, where N is the number of tokens in the
target sentence. For source sentences(SRC), tokens
are tagged as OK if they were correctly translated,
and BAD otherwise. The number of total tags for
each source sentence isM , whereM is the number
of tokens in the source sentence. The evaluation
metrics of the word-level task is the Matthews Cor-
relation Coefficient (MCC).
Sentence-Level QE predicts the Human Transla-
tion Error Rate (HTER). HTER is the ratio between
the number of edits (insertions / deletions / replace-
ments) needed and the reference translation length.
The evaluation metrics of the sentence-level task is
Pearson’s correlation metric.

3.2 Dataset

The dataset in these task provides the same source
and translation as DA task, with an extra post-
edit sentence for each observation and task-specific
token-level and sentence-level labels. Besides, we
generate addition-translation sentence (AMT) for
each source sentence by using well-trained ma-
chine translation systems. The motivation here is
to add an additional criterion which is in the same
language as the provided translation sentence. We
suppose that to detect the difference between two
sentence in the same language is a simpler task for

model. There are some important label properties
to highlight:

• The number of BAD tags and OK tags is im-
balanced, especially for GAP tags.

• AMT’s BLEU score is significantly lower than
MT taking post-edits as reference. Its average
HTER is higher than MT. It indicates that the
generated AMT is less closer to post-edits
than MT.

3.3 Method
The systems for QE shared task2 also em-
ploy Predictor-Estimator architecture(Kim et al.,
2017b).
Predictor. Similar to Task1, we use pre-trained
XLM-Roberta (XLM-R) model as predictor af-
ter fine-tuning it with mask language modeling
task(Devlin et al., 2018) using the provided source
and PE sentences. In order to improve the perfor-
mance, refers to approach in (Wang et al., 2020),
we concatenate SRC, MT, AMT sentences together
in the format of [BOS] SRC [EOS] [SEP]
MT [EOS] [SEP] AMT [EOS].

We notate the predictor as f ; SRC, MT and AMT
text as X and Y and Z, corresponding features as
Hx, Hy, Hz respectively:

Hx, Hy, Hz = f(X,Y, Z), (3)

Estimator. We utilise 4 independent 2-layers
FFN including binary three classification tasks
to predict SRC word tags, MT/AMT word tags,
MT/AMT gap tags respectively, and a regression
task to predict HTER score of MT/AMT. All pre-
dictions are obtained by performing specific trans-
formations φ. We define the predicted logits of
SRC word, MT word, MT gap, AMT word, AMT
gap as ˆVxw, ˆVyw, V̂yg, ˆVzw, V̂zg; and HTER pre-
dicted score of MT and AMT as V̂yh, V̂zh. The
estimator can be described as:

ˆVxw = φxw(Hx),

ˆVyw = φw(Hy),

ˆVzw = φw(Hz),

V̂yg = φg(fcat(Hy, ˆVyw)),

V̂zg = φg(fcat(Hz, ˆVzw)),

V̂yh = φh(fgap(fcat(Hy, ˆVyw, V̂yg))),

V̂zh = φh(fgap(fcat(Hz, ˆVzw, V̂zg))),

(4)

where fcat is the concatenate method in the last
dimension, fgap is the global average pooling in
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the second dimension ignoring padding tokens in a
batch just like (Lin et al., 2013) 3.2.

Loss. We prepend and append two special
<pad> labels to the original word label sequence,
append a special <pad> label to the original gap la-
bel sequence during training, but loss of the padded
labels is not computed. For all classification tasks,
to deal with the problem of imbalance between OK
and BAD number, we use weighted cross entropy
as the loss function, and the weight is calculated
as wi =

N∑
Ci

, where wi is the inverse of the pro-
portion of the instance with class Ci. For sentence-
level HTER score loss, we use mean squared error
(MSE) as the loss function. We define the tags of
SRC word, MT word, MT gap, AMT word, AMT
gap as Vxw, Vyw, Vyg, Vzw, Vzg; and HTER score
of MT and AMT as Vyh, Vzh.

The model is trained under the multi-task learn-
ing framework by summing up the loss of all sub-
tasks with specific weights:

loss =
∑

τ∈{xw,yw,yg,zw,zg}

λτ logP (Vτ |X,Y, Z)+

∑
τ∈{hy,hz}

λτ

√∑
(Vτ − V̂τ )2,

(5)

where xw, yw, yg, zw, zg represents for classifica-
tion tasks, hy, hz represents for regression tasks,
λ is the weight of loss for a specific task. The
multi-task framework can improve the overall per-
formance.

4 Critical Error Detection

4.1 Task Description
This is a new QE task focusing on predicting
sentence-level binary scores indicating whether
or not a translation contains (at least one) criti-
cal error. The key point is to identify whether the
translation will lead to misleading or more serious
consequences, e.g. the translation involves criti-
cal mistranslation, hallucination or critical content
deletion. Only binary prediction (whether or not
any critical error contained) is required. The evalu-
ation metrics of this task is also the MCC.

4.2 Dataset
The dataset contains 4 languages which are English-
German, English-Chinese, English-Czech, English-
Japenese. 7000 training, 1000 validation, and 1000
blind test sentence pairs are available for each lan-
guage. Ground truth label has two classes, NOT
means no catastrophic error, and ERR means at

Language Baseline +Multitask +Ensemble
En-De 0.490 0.552 0.547
En-Zh 0.494 0.502 0.519
Ro-En 0.886 0.897 0.902
Et-En 0.798 0.805 0.814
Ne-En 0.776 0.789 0.801
Si-En 0.648 0.677 0.675
Ru-En 0.761 0.787 0.787

Average 0.693 0.716 0.721

Table 1: Pearson correlation between prediction of our
system and human DA judgement of non-zero-shot lan-
guage pairs on test20 set.

Language Baseline +AugData +All
En-De 0.481 / 0.584
En-Zh 0.523 / 0.583
Ro-En 0.878 / 0.901
Et-En 0.775 / 0.808
Ne-En 0.810 / 0.858
Si-En 0.564 / 0.581
Ru-En 0.753 / 0.787
En-Cz 0.546 0.557 0.573
En-Ja 0.297 0.349 0.364
Ps-En 0.592 0.622 0.622

Km-En 0.661 0.653 0.659
Multilingual 0.621 / 0.665

Table 2: Pearson correlation between prediction of our
system and human DA judgement on test21 set.

least one catastrophic error in the translation. It is
noticed that the number of NOT and ERR tag is
imbalanced.

4.3 Methods

Similar as the above two tasks, our baseline system
takes pre-trained XLM-R as predictor, stacked FFN
layers as binary classifier. We also experimented
with replacing XLM-R by mBART (Liu et al.,
2020) and replacing FFN layers with TextCNN,
Bi-LSTM and other types of network.

Based on the intuition that the semantic differ-
ence between two monolingual sentences are easier
to distinguish than that of two cross-lingual sen-
tences, we propose to incorporate a “good” MT of
the source sentence into (src. mt) pair during train-
ing, so that the auxiliary information provided by
the “good” MT can help the model to directly com-
pare mt with MT+src, instead of only depending on
cross-lingual src. With consideration of expensive
overhead of manual translation, we assume that au-
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Score Method En-Zh En-DE Ru-En Ro-En Et-En Si-En Ne-En
baseline(dev) 0.3013 0.4910 0.4475 0.5381 0.5997 0.6062 0.5899

Pearsonr +AMT(dev) 0.3481 0.6003 0.5387 0.8479 0.7832 0.8031 0.6902
+Ensemble(dev) 0.3772 0.6678 0.5704 0.8914 0.8249 0.8573 0.7849

All(test) 0.3681 0.6531 0.5615 0.8623 0.8094 0.8690 0.7976
baseline(dev) 0.1991 0.3019 0.2904 0.4132 0.4173 0.3899 0.4027

SRCW +AMT(dev) 0.2895 0.4378 0.3991 0.6027 0.5204 0.5780 0.5109
+Ensemble(dev) 0.3128 0.4502 0.4277 0.6374 0.5396 0.6033 0.5576

All(test) 0.3098 0.4499 0.4258 0.6140 0.5490 0.6159 0.5450
baseline(dev) 0.1354 0.3988 0.3500 0.4980 0.4533 0.5393 0.4418

MTW +AMT(dev) 0.3346 0.4907 0.4331 0.6642 0.6006 0.7446 0.6721
+Ensemble(dev) 0.3726 0.5149 0.4479 0.6807 0.6177 0.8102 0.7007

All(test) 0.3536 0.5095 0.4507 0.6664 0.6058 0.8469 0.6741
baseline(dev) 0.0998 0.1987 0.2249 0.2856 0.2017 0.2844 0.3129

MTG +AMT(dev) 0.1799 0.3101 0.3481 0.4379 0.3119 0.5023 0.4001
+Ensemble(dev) 0.1822 0.3158 0.3725 0.4531 0.3280 0.5573 0.4490

All(test) 0.1719 0.2997 0.3877 0.4457 0.3115 0.6392 0.4027

Score Method En-Cs En-Jp Ps-En Km-En Multilingual
Pearsonr baseline(test) 0.2910 0.0999 0.3722 0.3571 0.5002

+Ensemble(test) 0.4750 0.2620 0.5343 0.4750 0.6314
SRCW baseline(test) 0.1981 0.1523 0.2344 0.3183 —-

+Ensemble(test) 0.3128 0.2166 0.3044 0.4101 —-
MTW baseline(test) 0.2107 0.1372 0.2789 0.3077 —-

+Ensemble(test) 0.3801 0.2581 0.4497 0.6364 —-
MTG baseline(test) 0.1149 0.0901 0.1342 0.2691 —-

+Ensemble(test) 0.2126 0.1523 0.2602 0.4190 —-

Table 3: Pearsonr correlation, MCC of words in SRC, MCC of words in MT and MCC of gaps in MT between
prediction of our system and labels. SRCW is SRC words MCC, MTW is MT words MCC, MTG is MT gaps
MCC, Test20 set is used as training set. Results of test set are from official leaderboard.

tomatic machine translation (AMT) of top commer-
cial machine translation tools can also be compe-
tent at this work. Practically, we apply Baidu Fanyi
2 and Google Translate 3 API, obtaining two cor-
responding AMTs given a source sentence. Then
we concatenate it with source and original machine
translation in the format of [CLS] SRC [EOS]
[SEP] MT [EOS] [SEP] AMT [EOS], fol-
lowed by encoding the concatenated triplet to the
predictor.

Voting-Based Ensemble. Finally, we ensemble
several models and take their majority voting as
prediction results.

5 Experimental Results

5.1 Task1: Sentence-level Direct Assessment

Experimental Settings Our system is imple-
mented with hugging face transformers package.
The pre-trained xlm-roberta-large model which has
approximately 550M parameters is taken as pre-

2https://fanyi.baidu.com/
3https://translate.google.com/

dictor. We train the predictor and the estimator
together on the multilingual QE DA dataset using
Adam(Kingma and Ba, 2015) as optimizer with
constant learning rate of 1e−6 and training batch
size of 16. The model is trained on a Nvidia Tesla
V100 GPU.

Results Table 1 shows the results on test20 set.
Our baseline is the system described in section
2.3. +multitask method is introduced in section
2.3.1. To achieve more competitive scores while
also maintain a relatively small number of param-
eters, we ensemble our result with MC dropout
approach, that is to run N (N=50) pass forwards
with dropout and take the expectation of the N
predictions as final answers. Table 2 presents the
experimental results on blind test21 set. The base-
line here is the same as Table 1 baseline. +AugData
is the approach mentioned in section 2.3.2. +All is
our final submitted result that integrates multi-task,
data augmentation and ensemble.

https://fanyi.baidu.com/
https://translate.google.com/
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Dataset Pre-trained Model Classification Layer AMT En-Zh En-De En-Cs En-Ja

Dev

baseline
FFN /

0.1873 0.4008 0.3974 0.2193
MBart 0.2317 0.3940 0.4112 0.2148

XLMR-Large 0.2989 0.4846 0.4537 0.2744

XLMR-Large
TextCNN

/
0.1820 0.2008 0.2139 0.1429

Bi-LSTM 0.2350 0.4279 0.4132 0.1981
RCNN 0.2045 0.3850 0.3463 0.2523

XLMR-Large FFN
BaiduTrans 0.3474 0.4623 0.4372 0.2948

GoogleTrans 0.2515 0.4732 0.4551 0.2724
Ensemble 0.3962 0.5104 0.4854 0.3542

Test Ensemble 0.3533 0.4899 0.4482 0.3184

Table 4: MCC of all language pairs over development(dev) set and test set.

5.2 Task2: Word and Sentence-Level
Post-editing Effort Task

Settings: The batch size in training stage is 8.
We use Adam as optimizer with learning rate of
2e−5. Each estimator FFN layer has a 0.1 dropout.
Loss weight are: (λyh = 2, λzh = 2, λxw = 4,
λyw = 1, λyg = 1, λzw = 1, λzg = 1) / 12. Our
model params is 560,944,640, disk footprint(in
bytes, without compression) is 2,243,954,093.

Results Table 3 shows the results on dev and
test21 set. Our baseline is the QE system with-
out AMT data. +AMT method is the QE system
with AMT data. In the experiments, we generate 3
different kinds of AMT data with the machine trans-
lation system trained for the WMT2021 Machine
Translation of News Shared Task, Baidu Fanyi 4

and Google Translate5. For each kind of AMT, we
run N (N=10) pass forward with dropout=0.1 using
the a unified model trained with all AMT together.
The expectations of 3N predictions of score and
token labels is taken as the final answers.

5.3 Task3: Critical Error Detection

Table 4 shows the results of our system on devel-
opment and blind test set. Experiments show that
the best results obtained when applying XLMR-
Large and FFN layer on development set. The
involvement of AMT also brings significant im-
provement over all language pairs. For ensemble
settings, we ensemble multiple models with dif-
ferent pre-trained models and classification layers
using voting-based method as introduced in section
4.3.

In order to solve the problem of label imbalance,

4https://fanyi.baidu.com/
5https://translate.google.com/

we also investigate different label weights when
computing cross-entropy loss. Due to the large
gap between the number of NOT and ERR labels
in the dataset, the weights(NOT:ERR) are clipped
as 1:6, 1:4, 1:5, 1:15 for enzh, ende, encs, enja.
Meanwhile, to better fit the data in the test set and
avoid over-fitting, we utilise dropout with rate of
0.1 and weight decay of 1e−5.

6 Conclusion

We present our work on WMT 2021 QE shared
task in this paper. For all the three tasks to esti-
mate sentence-level DA, token and sentence-level
post-edit effort and sentence-level critical error, we
employ predictor-estimator framework as our base-
line. To further boost performance, we investigate
the usage of additional high-quality translations.
For task1, we mainly focus on introducing post-
edits with multi-task learning. Also, the effect of
data augmentation method based on MC dropout is
studied here to improve the result of zero-shot pairs.
For task 2 and 3, we generate high-quality trans-
lations for each observation using multiple well-
trained machine translation systems. By directly
concatenating AMT with the original source and
target sentence then encoding it with pre-trained
predictor, we achieved remarkable results over all
language pairs and tasks. In future, we will con-
tinue to invest time and effort on studying the effect
of involving additional translations into QE tasks,
for example, how the additional translation quality
will affect QE performance, what the better ways
are to incorporate additional translations in.
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