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Abstract
This paper describes our work in the WMT
2021 Machine Translation using Terminolo-
gies Shared Task. We participate in the shared
translation terminologies task in English to
Chinese language pair. To satisfy terminol-
ogy constraints on translation, we use a ter-
minology data augmentation strategy based on
Transformer model. We used tags to mark
and add the term translations into the matched
sentences. We created synthetic terms using
phrase tables extracted from bilingual corpus
to increase the proportion of term translations
in training data. Detailed pre-processing and
filtering on data, in-domain finetuning and en-
semble method are used in our system. Our
submission obtains competitive results in the
terminology-targeted evaluation.

1 Introduction

Terminology is important for domain-specific ma-
chine translation. Each domain has its own termi-
nology, which represents the important and core
concepts in the domain. In the workflow of human
translation, terminology is an effective method to
integrate the knowledge of human translator into
machine translations (Wuebker et al., 2016; Cheng
et al., 2016; Álvaro Peris et al., 2017).

One line of approach is “hard constraint”.
The terminology is ensured to appear in the trans-
lation by adding constraints in beam search de-
coding (Hokamp and Liu, 2017; Post and Vilar,
2018). However, the enforcement of terminology
constraints tends to reduce the fluency of transla-
tion (Hasler et al., 2018), especially when there
are multiple constraints or the constraint is noisy
(Susanto et al., 2020). Another line of approach
is“soft constraint”. Training data is augmented
with placeholders or additional terminology trans-
lations (Arthur et al., 2016; Song et al., 2019; Dinu
et al., 2019; Chen et al., 2020; Ailem et al., 2021a).

The above methods assume that the terminology
translations are good ones. However, in industry

or real world the terminology translations may be
noisy (Li et al., 2020). And in the human trans-
lation workflows the terminology constraints usu-
ally need to be applied hierarchically according to
priority. In these scenarios one source term will
have more than one translation. Therefore, we are
happy to participate in this task and develop the
method to deal with 1-to-many term translations
in neural machine translation systems.

The structure of the paper is as follows. Sec-
tion 2 describes the dataset, data pre-processing
and selection. We introduce details of our system
in Section 3. The experiment settings, terminolo-
gies used in training and main results are intro-
duced in Section 4. Finally, we conclude our work
in Section 5.

2 Data

2.1 Data Source
For this task, we utilize parallel data from En-
glish to Chinese language provided in WMT2021:
ParaCrawl v7.1, News Commentary v16, Wiki Ti-
tles v3, UN Parallel Corpus V1.0, CCMT Corpus
and WikiMatrix. In addition, we also require Chi-
nese monolingual data from News crawl and News
Commentary corpora for back translation.

2.2 Data Pre-processing
For all datasets, we tokenize English text with
Moses1 and the Chinese text with Jieba2 tokenizer.
We create a joint source and target BPE vocab
(Sennrich et al., 2016) with 40k merge operations
using filtered bilingual dataset as described in Sec-
tion 2.3, resulting in a vocabulary with size of 63K
words.

2.3 Data Selection
According to the previous works (Li et al., 2019;
Sun et al., 2019), we selected data for training with

1https://github.com/moses-smt/mosesdecoder
2https://github.com/fxsjy/jieba
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Source
Those most at risk of COVID-19 infection and serious complications are the elderly
and those with weakened immune systems or underlying health conditions like card-
iovascular disease, diabetes, hypertension, chronic respiratory disease, and cancer.

Constraint
diabetes 糖尿病
infection 传染病 |感染
chronic respiratory disease 慢性呼吸道疾病 |慢性呼吸系统疾病

Match

Those most at risk of COVID-19 <term tgt="传染病 |感染"> infection </term> and
serious complications are the elderly and those with weakened immune systems or
underlying health conditions like cardiovascular disease , <term tgt="糖尿病">
diabetes </term> , hypertension , <term tgt="慢性呼吸道疾病 |慢性呼吸系统
疾病"> chronic respiratory disease </term>, and cancer .

Tag & Mask

Those most at risk of COVID-19 <S> [MASK] <C>传染病 [SEP]感染 </C> and
serious complications are the elderly and those with weakened immune systems or
underlying health conditions like cardiovascular disease , <S> [MASK] <C>糖尿病
</C> , hypertension , <S> [MASK] [MASK] [MASK] <C>慢性呼吸道疾病 [SEP]
慢性呼吸系统疾病 </C> , and cancer .

Target
COVID - 19感染和严重并发症风险最高的是老年人、免疫力低下者或患有心
血管疾病、糖尿病、高血压、慢性呼吸道疾病和癌症等基础性疾病的人群。

Table 1: Illustration of the terminology data augmentation.

the following schemes:

• Remove the texts of over 120 tokens.

• Remove bitexts with length ratios greater
than 3.

• Remove texts with special HTML tags.

• Remove duplicate bitexts.

• Remove texts with fastText-langid (Joulin
et al., 2016b,a), which is an open-source tool
for text-based language identification.

• Remove Chinese sentences when the propor-
tion of Chinese tokens is less than 0.8.

3 System Overview

In this section, we will describe the details about
the model and techniques of our work. First, we
will introduce the terminology data augmentation
strategy to improve terminology translation accu-
racy. Then, different transformer model architec-
tures we adopted in the paper will be depicted. Fi-
nally, we will introduce several strategies to train
our models for performance improvement.

3.1 Terminology Learning
We use a terminology data augmentation strategy
to encourage neural machine translation (NMT) to
satisfy terminology constraints. The key point of
term translation idea is that when multiple possi-
ble terms are encountered, the NMT model is pre-

ferred copying the correct terms, and the terms are
correctly placed in the output sentence. Encour-
aged by the work (Chen et al., 2020; Ailem et al.,
2021b), we use tags to specify the term constraints
in the source sentence. We have given an exam-
ple in the Table 1. A Source sentence could have
more than one terms. Each term could have mul-
tiple Constraint. The source term is indicated as
tag <S>, and the pair <C> </C> is used to label
target term. Tag [SEP] is used to separate multi-
ple possible target terminologies, when there are
1-m term constraints. Following the work (Ailem
et al., 2021b) we mask the source tokens of a term
to strengthen the learning of target term tokens. In
table 1, term source tokens are marked in red, and
the term target tokens are in blue. Tag & Mask
shows an example. <S> indicates term constraint
"infection", but the token "infection" is masked
with [MASK]. "infection" ’s translations " 传染
病" and " 感染" are enclosed by <C> and </C>,
separated by [SEP].

The official term table is small. We extract a
phrase table from the bilingual training data and
filter it as synthetic terms. More details are de-
scribed in Section 4.2.

3.2 Model Architecture

In our systems, we adopt three different model
architectures with Transformer (Vaswani et al.,
2017):



853

• BIG Transformer is the Transformer-Base
model (Vaswani et al., 2017) with 4096 feed-
forward network (FFN) width and 16 atten-
tion heads.

• DEEP Transformer (Sun et al., 2019) is
Transformer-Base model with 20 encoder lay-
ers.

• LARGE Transformer (Ng et al., 2019) is
Transformer-Base model with 8192 FNN in-
ner width.

We use 6 decoder layers for all models. Our
models are implemented with open-source toolkit
Fairseq (Ott et al., 2019).

3.3 Optimization Strategies

To further improve the translation performance,
several common strategies are used to train our
models such as Back Translation, Finetuning and
Ensemble. The strategies are performed basi-
cally sequentially. We use the terminology data
augmentation on back translation and fine-tuning
datasets to train models.

3.3.1 Back Translation
Back translation is a data augmentation technique
to incorporate monolingual data into NMT model.
Similar to previous work (Edunov et al., 2018),
we use back translation to improve the model per-
formance. We first train a Chinese-to-English
Transformer-Deep NMT model based on bilingual
training dataset. The NMT model is applied to
translate Chinese monolingual corpus to English.
The pseudo parallel corpus is used to train models
together with the bilingual training dataset.

3.3.2 Finetuning
Previous study (Sun et al., 2019) demonstrate that
fine-tuning a model on in-domain data effectively
improve the model performance. For the term
translation task, two fine-tuning datasets are used
in our works. We use two kinds of finetuning
datasets to train the model sequentially.

Base FT We use all the previous English →
Chinese development and test dataset as fine tun-
ing corpus, including WMT2017 development
data, WMT2017 test data, WMT2018 test data,
WMT2019 test data and WMT2020 test data.

In-domain FT To use in-domain dataset to fine
tune the model, we perform data selection on
out-of-domain corpus based on in-domain n-gram
match. The key idea is to select sentence pairs
from the large out-of-domain corpus that are sim-
ilar to the in-domain data. We use the bilin-
gual training data as the out-of-domain corpus and
WMT2021 term development dataset as the in-
domain corpus. We extract 1-3grams from the in-
domain and out-of-domain dataset. After exclude
the ngrams from the out-of-domain data, the left
in-domain ngrams are applied to match relevant
sentence from the bilingual training.

In our work, we use source and target to select
in-domain dataset respectively and finally the two
sets are combined to train the model.

3.3.3 Ensemble
Model ensemble is an effective strategy widely
used in real-world tasks. At each step of transla-
tion prediction, it combines the predicted proba-
bilities of different models. We use the log-avg
strategy to ensemble the different NMT models.
The model diversity is an important factor for en-
semble. We have trained three Transformer mod-
els with different architectures including the vari-
ants of Transformer-BIG, Transformer-DEEP and
Transformer-LARGE.

4 Experiments

4.1 Setups
Our models are implemented in Fairseq Library3.
All the single models are trained based on 4
NVIDIA P100-PCIe GPUs, each with 16 GB
memory. The models are optimized with Adam
algorithm (Kingma and Ba, 2015) with β1 = 0.9
and β2 = 0.98. We set max learning rate to
0.001 when training a single model from scratch
and 0.0007 when fine-tuning the model. The batch
size is set to 2048 tokens per GPU. The ‘update-
freq’ parameter in Fairseq is set to 16 when train-
ing a single model from scratch and 4 when fine-
tuning the model. The dropout (Gal and Ghahra-
mani, 2016) probabilities are set to 0.1 in all ex-
periments. We select the checkpoint with the
best BLEU score on development set as the fi-
nal checkpoint in each training. Evaluation of re-
sults focus on translation accuracy and term trans-
lation consistency. We evaluate translation accu-
racy with SacreBLEU (Post, 2018), which is a

3https://github.com/pytorch/fairseq
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System Model BLEU Exact-Match
Accuracy

Window Overlap
Accuracy (2/3) 1-TERm Score

Baseline NMT LARGE 37.8 65.89 16.52/16.30 36.48

Data Selection

BIG 36.09 71.28 15.82/16.57 30.08
DEEP 35.85 74.76 17.01/17.62 29.74
LARGE 36.17 69.23 14.94/15.33 30.91
+Ensemble 38.22 74.52 17.47/17.56 33.00

+Back Translation

BIG 37.72 73.92 17.28/17.71 33.33
DEEP 37.74 73.92 17.55/18.05 33.85
LARGE 37.50 72.36 15.97/16.53 32.68
+Ensemble 39.39 75.60 17.87/18.62 33.90

+Base FT

BIG 38.12 71.86 17.57/18.14 34.68
DEEP 38.17 72.72 17.32/18.18 33.74
LARGE 40.97 72.95 17.26/18.40 38.03
+Ensemble 41.43 75.72 18.91/19.89 38.17

+In-domain FT

BIG 39.12 71.63 17.09/17.71 36.25
DEEP 38.33 73.08 17.48/18.25 34.60
LARGE 41.11 72.72 17.04/18.24 38.48
+Ensemble 41.71 76.68 18.88/19.88 39.05

Table 2: Evaluation results on the WMT2021 English → Chinese development set.

case-sensitive detokenized BLEU. Terminology-
targeted metrics (Anastasopoulos et al., 2021)
is used to term translation consistency, includ-
ing exact-match accuracy, window overlap met-
ric and terminology-biased Translation Edit Rate
(TERm)4. The exact-match accuracy is defined as
the ratio between the number of matched source
terms and the total number of source terms. The
window overlap metric is to evaluate the position
accuracy of each target term in translation. The
TERm, a metric based on TER (Snover et al.,
2006), focuses on penalizing errors related to ter-
minology tokens.

4.2 Terminologies
In order to increase the proportion of term trans-
lations in training data, we extract phrase tables
from bilingual training corpus to create synthetic
term translations. First, we use FastAlign (Dyer
et al., 2013) to generate word alignments. Sec-
ond, based on the word alignments we extract a
phrase table by using moses (Koehn et al., 2007)
with default settings. We use count-based prun-
ing (Zens et al., 2012) and fastText-langid (Joulin
et al., 2016b,a) to filter the phrase table. The count

4https://github.com/mahfuzibnalam/terminology
_evaluation

threshold is set to 200. Finally, the term table for
the terminology data augmentation is obtained by
combining the English → Chinese term table from
WMT2021 and the filtered phrase table. The tar-
get terms corresponding to the same source term
are separated by ‘|’. The term table contains 1-to-
1 and 1-to-many term pairs. The term information
with tags will be added into source sentences when
they match, as shown in Table 1. 15.4% of the
training sentences with the term information. We
have used only the official terms from WMT 2021
for the test and dev datasets.

4.3 Results

Table 2 shows the English → Chinese transla-
tion results on WMT2021 terminologies develop-
ment dataset, including BLEU, exact-match accu-
racy, window overlap accuracy (2/3) and 1-TERm
Score. We train multiple single models in each set-
tings and report the best BLEU scores in Table 2.
The baseline is the LARGE transformer model us-
ing the bilingual training data. Our models using
terminology data augmentation are called Term
model. Ensemble models of each step consist of
3 single models: BIG, DEEP and LARGE mod-
els. As shown in Table 2, the LARGE Term model
using the bilingual dataset boosts the exact-match
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accuracy from 65.89 to 69.23. Under each setting,
the performance of the ensemble Term models is
higher than that of the best single Term model by
a BLEU score of 0.46 to 2.05. After adding back
translation, we improved the BLEU score to 39.39
and the exact-match accuracy to 75.6 on ensemble
models. The base FT can achieve 2 BLEU and 4.3
1-TERm score improvements on ensemble mod-
els. After applying In-domain FT, We achieve 0.96
exact-match accuracy and 0.88 1-TERm score im-
provements on ensemble models.

Considering the effectiveness of fine-tuning, we
use WMT2021 development data to fine tune the
model after completing 100 steps. In our final
submission, we selected sentences with the higher
probability from the translations of the ensemble
Term model and the ensemble NMT model.

5 Conclusion

This paper presents the submissions by Alibaba
for WMT 2021 English to Chinese translation ter-
minologies task. We have applied a terminology
data augmentation method to integrate term trans-
lations into NMT systems. We also used a series of
data filtering strategies, fine-tuning and ensemble
methods to improve the system performance. Ex-
perimental results show the method can improve
terminologies translation performance.

6 Acknowledgments

This work is supported by National Key R&D
Program of China (2018YFB1403202).

References
Melissa Ailem, Jinghsu Liu, and Raheel Qader. 2021a.

Encouraging neural machine translation to satisfy
terminology constraints. CoRR, abs/2106.03730.

Melissa Ailem, Jinghsu Liu, and Raheel Qader.
2021b. Encouraging neural machine translation
to satisfy terminology constraints. arXiv preprint
arXiv:2106.03730.

Antonios Anastasopoulos, Laurent Besacier, James
Cross, Matthias Gallé, Philipp Koehn, Vassilina
Nikoulina, et al. 2021. On the evaluation of ma-
chine translation for terminology consistency. arXiv
preprint arXiv:2106.11891.

Philip Arthur, Graham Neubig, and Satoshi Nakamura.
2016. Incorporating discrete translation lexicons
into neural machine translation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1557–1567, Austin,
Texas. Association for Computational Linguistics.

Guanhua Chen, Yun Chen, Yong Wang, and Vic-
tor O.K. Li. 2020. Lexical-constraint-aware neu-
ral machine translation via data augmentation. In
Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI-20,
pages 3587–3593. International Joint Conferences
on Artificial Intelligence Organization. Main track.

Shanbo Cheng, Shujian Huang, Huadong Chen, Xinyu
Dai, and Jiajun Chen. 2016. Primt: A pick-revise
framework for interactive machine translation. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1240–1249.

Georgiana Dinu, Prashant Mathur, Marcello Federico,
and Yaser Al-Onaizan. 2019. Training neural ma-
chine translation to apply terminology constraints.
CoRR, abs/1906.01105.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–648, Atlanta,
Georgia. Association for Computational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. arXiv preprint arXiv:1808.09381.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. Advances in neural information
processing systems, 29:1019–1027.

Eva Hasler, Adrià de Gispert, Gonzalo Iglesias, and
Bill Byrne. 2018. Neural machine translation decod-
ing with terminology constraints. In NAACL-HLT
(2), pages 506–512. Association for Computational
Linguistics.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. CoRR, abs/1704.07138.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016a. Fasttext. zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016b. Bag of tricks
for efficient text classification. arXiv preprint
arXiv:1607.01759.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

http://arxiv.org/abs/2106.03730
http://arxiv.org/abs/2106.03730
https://doi.org/10.18653/v1/D16-1162
https://doi.org/10.18653/v1/D16-1162
https://doi.org/10.24963/ijcai.2020/496
https://doi.org/10.24963/ijcai.2020/496
http://arxiv.org/abs/1906.01105
http://arxiv.org/abs/1906.01105
https://aclanthology.org/N13-1073
https://aclanthology.org/N13-1073
http://arxiv.org/abs/1704.07138
http://arxiv.org/abs/1704.07138
http://arxiv.org/abs/1704.07138
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


856

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the associ-
ation for computational linguistics companion vol-
ume proceedings of the demo and poster sessions,
pages 177–180.

Bei Li, Yinqiao Li, Chen Xu, Ye Lin, Jiqiang Liu, Hui
Liu, Ziyang Wang, Yuhao Zhang, Nuo Xu, Zeyang
Wang, et al. 2019. The niutrans machine trans-
lation systems for wmt19. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 257–266.

Huayang Li, Guoping Huang, Deng Cai, and Lemao
Liu. 2020. Neural machine translation with noisy
lexical constraints. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 28:1864–
1874.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Face-
book fair’s wmt19 news translation task submission.
arXiv preprint arXiv:1907.06616.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In Proceedings of the 7th Conference of the As-
sociation for Machine Translation in the Americas:
Technical Papers, pages 223–231.

Kai Song, Yue Zhang, Heng Yu, Weihua Luo, Kun
Wang, and Min Zhang. 2019. Code-switching for
enhancing NMT with pre-specified translation. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 449–459,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Meng Sun, Bojian Jiang, Hao Xiong, Zhongjun He,
Hua Wu, and Haifeng Wang. 2019. Baidu neural
machine translation systems for wmt19. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion (Volume 2: Shared Task Papers, Day 1), pages
374–381.

Raymond Hendy Susanto, Shamil Chollampatt, and
Liling Tan. 2020. Lexically constrained neural
machine translation with levenshtein transformer.
CoRR, abs/2004.12681.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Joern Wuebker, Spence Green, John DeNero, Saša
Hasan, and Minh-Thang Luong. 2016. Models and
inference for prefix-constrained machine translation.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 66–75, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Richard Zens, Daisy Stanton, and Peng Xu. 2012. A
systematic comparison of phrase table pruning tech-
niques. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 972–983.

Álvaro Peris, Miguel Domingo, and Francisco Casacu-
berta. 2017. Interactive neural machine translation.
Computer Speech & Language, 45:201–220.

https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/N19-1044
https://doi.org/10.18653/v1/N19-1044
http://arxiv.org/abs/2004.12681
http://arxiv.org/abs/2004.12681
https://doi.org/10.18653/v1/P16-1007
https://doi.org/10.18653/v1/P16-1007
https://doi.org/https://doi.org/10.1016/j.csl.2016.12.003

