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Abstract
This paper describes SYSTRAN submissions
to the WMT 2021 terminology shared task.
We participate in the English-to-French trans-
lation direction with a standard Transformer
neural machine translation network that we en-
hance with the ability to dynamically include
terminology constraints, a very common in-
dustrial practice. Two state-of-the-art termi-
nology insertion methods are evaluated based
(i) on the use of placeholders complemented
with morphosyntactic annotation and (ii) on
the use of target constraints injected in the
source stream. Results show the suitability of
the presented approaches in the evaluated sce-
nario where terminology is used in a system
trained on generic data only.

1 Introduction

The high quality obtained by out-of-the-box neural
machine translation (NMT) systems (Bojar et al.,
2016) has boosted the adoption of automatic trans-
lation by the industry and invigorated the research
and development on domain adaption and integra-
tion of technology in human translation workflows.
For instance, combination with translation mem-
ories (Bulte and Tezcan, 2019; Xu et al., 2020;
Pham et al., 2020), terminology handling (Hasler
et al., 2018; Dinu et al., 2019; Michon et al., 2020;
Bergmanis and Pinnis, 2021), interactive transla-
tion (Peris and Casacuberta, 2019), post-editing
modelling (Chatterjee et al., 2020) or dynamic
adaptation (Farajian et al., 2017) are all different
techniques to make machine translation part of real-
life localization workflow.

Terminology resources with all their sophisti-
cation have been the core building bricks and a
continuous challenge to acquire in volume (Senel-
lart et al., 2003) for rule-based engines. At the
other extreme, they have been reduced to corpus or
aligned “phrase pairs” (Schwenk et al., 2008) for
Statistical Machine Translation approaches, miss-
ing most of their intrinsic linguistic properties. In

contrast, neural machine translation operates on
word and sentence representations in a continuous
space so, on the one hand, it has access to deep
actual linguistic knowledge (Conneau et al., 2018)
and demonstrates a huge ability to generalize. But
on the other hand, results are more difficult to inter-
pret (Koehn and Knowles, 2017), and subsequently
the translation process is far more complicated to
control. Therefore, as for several other linguistic
annotations, the challenge is how terminological
information can be “passed” to the model. From a
human perspective, even though presentation and
usage of dictionaries have evolved from ontology
(as found in paper dictionary) to corpus-based pre-
sentation, looking up terms in a dictionary is the
ultimate point of reference for validating the cor-
rect term for a specific domain and context.

Inline with the conditions of the WMT 2021
terminology shared task, we present English-to-
French NMT engines built from abundant generic
(out-of-domain) training data. We evaluate several
methods to enhance translation engines with the
ability to integrate terminology as a quick way to
dynamically specialize a translation to a particu-
lar domain, which in this case considers the new
COVID-19 domain and the large efforts for trans-
lation of critical information regarding pandemic
handling and infection prevention strategies. In-
domain resources are limited to word- and phrase-
level terminology entries created to guide profes-
sional translators to ensure both accuracy and con-
sistency in translations. Our generic systems make
only use of terminologies at inference time.

The remainder of the paper is organized as fol-
lows: Section 2 gives details of several terminology
injection approaches considered in this work. In
addition, we outline a grammatical error correction
network that is applied over French translation hy-
potheses. The experimental framework is presented
in Section 3. Results are discussed in Section 4.
Finally, we draw conclusions in Section 5.
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2 Terminology Injection

Terminology is typically defined as the technical
or special terms used in a business, art, science, or
special subject. A high quality asset maintained by
language specialists as part of a translation project.
It allows to guarantee language consistency, cer-
tify translation accuracy and define constraints to
human translation.

In recent years there has been significant work
proposing methods to integrate such external spe-
cialized terminologies into NMT models, each
showing different levels of performance when fac-
ing terminology injection issues, mainly inference
overhead and generalization power.

In this section we describe the two main methods
employed for this shared task and illustrate the par-
ticularities of each on a common scenario using two
English-French terminology entries: Coronavirus
↝ Coronavirus and pneumonia↝ pneumonie, in
the following translation:

Coronavirus can cause pneumonia
Les coronavirus peuvent causer des pneumonies

Table 1 illustrates training examples of each ter-
minology injection methods evaluated in this work.
First row shows the base configuration where no
terminology is employed.

2.1 Placeholders
Our first method incorporates non-terminal tokens
into NMT systems, which require modifying the
pre-and post-processing of the data, and training
the system with data that contains the same place-
holders which occur in the test sets (Crego et al.,
2016; Michon et al., 2020). Following our exam-
ple, source and translation terms appearing in the
sentence pair are replaced by placeholders adapted
to cover a wider variety of cases, and to control
morphology to allow generalization power.

The method presented in Michon et al. (2020)
allows handling very challenging cases concerning
homographs. This is, words (or phrases) that shar-
ing the same form (i.e. spread) can occur with mul-
tiple meanings or different grammatical functions
(verb or noun). The method predicts the part-of-
speech of the target placeholder. Thus, solving the
source homograph.

Given that the vast majority of the terminology
released for this shared task consists of nouns (sin-
gle words or phrases) we decided to use a simpli-
fied version of the method that only considers using
noun placeholders.

Row mrk in Table 1 illustrates the use of place-
holders for our previous training example. Each
word form detected as terminology is replaced by
two placeholders: The first indicates the part-of-
speech of the terminology (in this work always
a noun ’N’) followed by a unique identifier; the
second indicates the set of features conveying the
morphology of the noun (masc/fem and sing/plur).

To predict the target morphology of the each
term, the NMT model may find it useful to have
access to the source word form. Thus, in a second
version of the method we incorporate the terminol-
ogy word form (Coronaviruses and pneumonia) in
the source stream. We denote this version mrk+.
It is worth to notice that this second version only
improves on the previous when the incorporated
source term has sufficiently occurred in training.

Note also that Michon et al. (2020) do not require
linguistic information in inference since ambigu-
ities are not resolved in the source placeholders.
In contrast, our implementation uses SpaCy1 to
obtain part-of-speeches and morphology features
of input streams.

Target-side streams of methods mrk and mrk+,
require post-processing to replace target-side place-
holders by the final word forms. In practice, for
each source-target term pair we encode all possible
inflections of the source and target word labelled
with the corresponding inflection type (placehold-
ers). Not only does this analysis enable to lexically
match any inflected form of the source term, but
it can also produce any inflected form of the trans-
lation term, ensuring full flexibility in the inflec-
tion choice made by the neural network. Table 2
illustrates target word forms for the terminology
pneumonia↝ pneumonie.

2.2 Learning to apply constraints

This approach tackles the same problem by learn-
ing a copy behaviour of terminology at training
time (Song et al., 2019; Dinu et al., 2019; Bergma-
nis and Pinnis, 2021). The NMT model is trained
to incorporate terminology translations when they
are provided as additional input in the source sen-
tence. Terminology translations are inserted as
inline annotations, expecting the model to learn
that such additional words must be copied in the
target hypothesis. The authors insert terminology
translations in the source sentence either by ap-
pending the target term to its source version, or by

1https://spacy.io/

https://spacy.io/
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Placeholders (tgt) Word form
<N> <fem_sing> pneumonie
<N> <fem_plur> pneumonies

Table 2: Target word forms and associated placeholders
for the term entry pneumonia↝ pneumonie.

directly replacing the original term with the target
one. Example in row app of Table 1 illustrates the
append alternative presented in Dinu et al. (2019).

The approach uses a generic NMT architecture
which learns to use an external terminology pro-
vided at run-time, thus, showing no inference over-
head. However, similarly to the preceding ap-
proach, it lacks generalization power as it simply
"copies" the term found in the terminology base
injected in the source sentence, irrespective of the
target hypothesis context. Dinu et al. (2019) argue
that in some cases the approach exhibits the ability
to inflect translation terms.

Finally, a second version of the method is also
illustrated in Table 1, denoted as app+. The target
term is injected using its lemma form. Thus, forc-
ing the NMT model to produce the right inflection
of the term observed in the source stream. In the
example, pneumonie must be inflected in its plural
form, pneumonies. Tokens <b>, <i> and <e> are
used to inform the model of the source and target
terminology boundaries. Note that, in contrast to
placeholder methods, no additional post-processing
is required.

2.3 Grammatical Error Correction

As previously stated, placeholder methods allow
larger generalization power thanks to the flexibility
of the inflection mechanism employed in the trans-
lation workflow. However, morphology choices

made by the network do not take into account the
actual word forms, which was observed to result
in a higher number of inflection errors (Michon
et al., 2020). To alleviate this problem we add a
correction module that performs over the resulting
translation hypotheses.

We use a correction module based on Gec-
tor (Omelianchuk et al., 2020) with a pretrained
multilingual BERT to correct grammatically incor-
rect French words. The model predicts grammati-
cal features for each word in the translated sentence,
allowing only for 3 types of edits:

• Transformation of gender/number

le [Fem]→ la
le [Plur]→ les

• transformation of tense/person of verbs

avez [3_Plur]→ avons
avez [Ind_Imp]→ aviez

• Elision

le [ELISION]→ l’

Table 9 in Appendix B illustrates the vocabulary
of tags considered by the model. Once the model
predicts whether a word needs to be corrected (and
which correction), the final word form is found
using a dictionary and the predicted tag. Table 3
illustrates examples of translation hypotheses pro-
duced by the NMT model (Hyp) predicted tags for
each word (Pred) and corrected hypotheses (Corr).
Tag ✓ is used to indicate that no transformation is
required.

ba
se Coronaviruses can cause pneumonia

Les coronavirus peuvent causer des pneumonies

m
rk <N#1> <masc_plur> can cause <N#2> <fem_sing>

Les <N#1> <masc_plur> peuvent causer des <N#2> <fem_plur>

m
rk

+ <N#1> Coronaviruses <masc_plur> can cause <N#2> pneumonia <fem_sing>
Les <N#1> <masc_plur> peuvent causer des <N#2> <fem_plur>

ap
p <b> Coronaviruses <i> coronavirus <e> can cause <b> pneumonia <i> pneumonies <e>

Les coronavirus peuvent causer des pneumonies

ap
p+ <b> Coronaviruses <i> coronavirus <e> can cause <b> pneumonia <i> pneumonie <e>

Les coronavirus peuvent causer des pneumonies

Table 1: Examples of training streams for the same sentence pair using terms Coronaviruses ↝ Coronavirus and
pneumonia↝ pneumonie according to each injection method evaluated in this work.
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Hyp ... le épidémie rapidement propagée aux villes ...
Pred ... ELISION ✓ ✓ ✓ ✓ ✓ ...
Corr ... l’ épidémie rapidement propagée aux villes ...
Hyp ... avec le fièvre à peu près ...
Pred ... ✓ Fem_Sing ✓ ✓ ✓ ✓ ...
Corr ... avec la fièvre à peu près ...
Hyp ... atteintes à la mise en quarantaines ...
Pred ... ✓ ✓ ✓ ✓ ✓ Fem_Sing ...
Corr ... atteintes à la mise en quarantaine ...
Hyp ... cas de COVID-19 confirmées en laboratoire ...
Pred ... ✓ ✓ ✓ Masc_Plur_Past_Part ✓ ✓ ...
Corr ... cas de COVID-19 confirmés en laboratoire ...

Table 3: Examples of word edits performed by the correction model.

3 Experimental Framework

3.1 Corpora

Table 7 in Appendix A provides some statistics
on the parallel corpora employed for training our
models. It is important to note that all corpora
used are out-of-domain. We first filtered out longer
sentences and sentences with a significant differ-
ence in the number of words between the source
and the corresponding translation. All data is pre-
processed using the OpenNMT tokenizer2.

In order to train our correction (GeC) model
with additional data, we also use the monolingual
(French) corpora made available for the shared task.
See Table 8 in Appendix A for detailed statistics of
monolingual data.

3.2 Terminology

Table 4 illustrates some examples of the terminol-
ogy entries released by the organisers of the shared
task.

English French
contagious contagieux
active cases cas actifs

confirmed cases cas confirmés

Table 4: English-French terminology examples.

We note that most terminology entries are com-
posed of several words. Indeed 54.8% of terms are
groups of two words, 22.3% contains more than
three words and only 22.9% are single words as
measured in the source side.

2https://github.com/OpenNMT/Tokenizer

3.3 NMT Engines
All our NMT engines follow the Transformer archi-
tecture (Vaswani et al., 2017) implemented by the
OpenNMT-tf3 toolkit (Klein et al., 2017). More
precisely, we use: Word embedding size: 1024;
Number of layers: 6; Number of heads in multi-
head self-attention layer: 16; Inner dimension of
feedforward layer: 4096; Dropout rate: 0.1; In ad-
dition, we use shared embeddings for both the input
and output layers. The encoder and decoder use
the same BPE units (Sennrich et al., 2016) learned
from source and target corpora. We train our MT
models using Noam schedule (Vaswani et al., 2017)
with 4000 warm-up iterations. To balance between
the domains of the training corpora, we use the
following sampling distribution over the training
corpora:

λα(d) =
q
α
d

nd

∑
d=1

q
α
d

, (1)

where qd is the size of dth corpora, the scalar α ∈
[0,+∞] changes the sampling distribution as low
α upsamples small corpora and downsamples large
corpora while high α favors large corpora over
small corpora. In the training of our MT systems,
we use α = 0.5. Learning is performed over 8
GPUs during 300K steps with a batch size of 32K
tokens per step. During training, we filtered out
sentences larger than 250 tokens. We applied label
smoothing to the cross-entropy loss with a rate of
0.1. Resulting models are built after averaging the
last ten checkpoints of the training process. In
inference, we apply a length penalty rate of 0.6.

3https://github.com/OpenNMT/OpenNMT-tf

https://github.com/OpenNMT/Tokenizer
https://github.com/OpenNMT/OpenNMT-tf
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3.4 Training NMT
Terminology injection approaches implemented for
this evaluation rely on NMT models with the ability
to translate input streams with target terms (app
and app+) and using placeholders (mrk and mrk+).
Thus, a key step for our models is the availability
of training data with such annotations.

To identify terminology pairs in our training
database we :

• Analyse English and French using SpaCy
to produce part-of-speeches, morphology fea-
tures, noun phrases and lemmas. Only NPs
(single words or phrases) are considered.

• Word align English and French parallel cor-
pora using the fast_align4 toolkit (Dyer
et al., 2013).

Terminology pairs are only considered when En-
glish and French sides consist of noun phrases and
when words in a term are only aligned to words in
its counterpart.

Words of the terminology entries identified are
replaced by the corresponding tokens (depending
on the approach). See Table 1 for examples of
sentence pairs with terminology entries. We make
sure that a given sentence pair does not exceed 5
terminology entries.

3.5 Training GeC
We used all available French corpora to train our
GeC network. To include errors in the French
streams we replace some words by any inflection
of its base form (lemma). The resulting corpora is
then tokenized using wordpiece and passed to the
BERT language model for embedding. Error detec-
tion and tagging are then performed by the network
from subword embeddings. Grammatical features,
part-of-speeches and lemmas are performed by the
SpaCy toolkit. Table 3 illustrates examples of
word error correction by our model.

3.6 Terms with Multiple Translations
Note that terms released by the shared task organ-
isers may have multiple translation options (i.e.
quarantine ↝ quarantaine/mise en quarantaine).
Thus, the right translation must be predicted and
injected in the translation hypothesis.

The translation workflow implemented for this
evaluation considers the injection of each transla-
tion option into the input sentence. This is, when

4https://github.com/clab/fast_align

a matched term is built with n different transla-
tion options, the original input sentence is copied
n times and each translation is injected into one
copy. Once all copies have been translated, the
one showing the lowest perplexity is selected as
measured by the pretrained BERT French language
model detailed in section 2.3.

4 Results

Table 5 indicates BLEU5 (Post, 2018) accuracy re-
sults of our NMT systems implementing different
terminology injection methods before (second col-
umn) and after (third column) grammatical error
correction.

System NMT +corr

base 44.9 44.8
mrk 42.3 42.7
mrk+ 44.9 45.1
app 45.9 46.0
app+ 45.9 45.9

Table 5: BLEU score of our NMT systems before
(NMT) and after the correction model (+corr) mea-
sured over the development set.

As it can be seen, the methods that learn to apply
constraints (app and app+) obtain the best perfor-
mance. Overall, the GeC model succeeds in fixing
grammatically incorrect French words. However, a
benefit barely reflected by BLEU.

We now evaluate the performance of matching
terminology entries over the development input
sentences. Note that the same matching method
is always applied, detailed in Section 2.1, where
input sentences are matched against all possible
inflections of source terms. Table 6 illustrates the
accuracy of recognized terms. 73 percent of the
unrecognized terms are verbs which we choose to
not process. We recognized also 234 terms that are
not highlighted in the development set (FP), most
of them do not interfere with translations.

Accuracy FN FP
0.97 0.03 0.21

Table 6: Matching rates of terminology entries mea-
sured over the development set. FN and FP scores stand
respectively for false negatives (terms not identified)
and false positives (wrong terminology identifications).

5https://github.com/mjpost/sacrebleu

https://github.com/clab/fast_align
https://github.com/mjpost/sacrebleu
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5 Conclusions

We presented SYSTRAN English-to-French sub-
missions to WMT 2021 terminology shared task.
All our systems follow the Transformer network ar-
chitecture enhanced with the ability to dynamically
include terminology constraints. Several terminol-
ogy injection methods were evaluated, showing
their ability to effectively injecting terms while pro-
ducing highly accurate translations.
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A Corpora Statistics

We experiment with English-French corpora made
available via the shared task organisers6 (Tiede-
mann, 2012), corresponding to texts from: News
commentaries (news), European Parliament pro-
ceedings (epps), United Nations official records
and documents (unpc), web crawling (ccrawl,
pcrawl and giga), In addition we also used the
next monolingual French data sets: News Com-
mentary 2019 (news.19) and News Commentary
2020 (news.20).

Table 7 shows statistics of the parallel corpora
used for learning NMT models. Statistics com-
puted after a lightly tokenization (to split-off punc-
tuation). Data sets were previously filtered to dis-
card very long sentences (> 80 words) and with
very different number of tokens on either side (fer-
tility > 6 words).

Corpus Sents (M)
Words (M) Vocab (K)

En Fr En Fr
news 0.2 4.4 5.5 70 75
epps 1.5 41.3 47.7 111 127
ccrawl 1.4 28.6 33.2 486 496
giga 9.4 212.2 259.9 1467 1376
unpc 11.8 256.7 330.3 739 622
pcrawl 92.2 1898.6 2237.2 8110 7757

Table 7: Statistics of parallel corpora used for training
NMT. Number of sentences and words are given in mil-
lions, and vocabularies in thousands.

6Freely available from http://opus.nlpl.eu
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Table 8 shows statistics of the monolingual
(French) corpora used for learning our GeC model.
Statistics computed after a lightly tokenization (to
split-off punctuation).

Corpus Sents (M) Words (M) Vocab (K)
news.19 10.2 247.9 955
news.20 9.3 232.5 912

Table 8: Statistics of monolingual corpora used for
training GeC. Number of sentences and words are
given in millions, and vocabularies in thousands.

B Vocabulary of GeC

Table 9 illustrates the vocabulary of tags considered
by our GeC model.
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Vocabulary Example
✓ Ø
<Gender=Masc_Number=Sing> chiennes→ chien
<Gender=Fem_Number=Sing> chiens→ chienne
ELISION le→ l’
<VerbForm=Inf> avons→ avoir
<Mood=Ind_Number=Sing_Person=3_Tense=Pres_VerbForm=Fin> avoir→ a
<Gender=Masc_Number=Plur> chienne→ chiens
<Gender=Masc_Number=Sing_Tense=Past_VerbForm=Part> avoir→ eu
<Number=Plur> homme→ hommes
<Gender=Fem_Number=Plur> chien→ chiennes
<Number=Sing> hommes→ homme
<Mood=Ind_Number=Plur_Person=3_Tense=Pres_VerbForm=Fin> avoir→ ont
<Gender=Masc_Number=Sing_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eu
<Tense=Pres_VerbForm=Part> avoir→ ayant
<Mood=Ind_Number=Sing_Person=3_Tense=Imp_VerbForm=Fin> avoir→ avait
<Gender=Masc> chienne→ chien
<Gender=Fem_Number=Sing_Tense=Past_VerbForm=Part> avoir→ eue
<Mood=Ind_Number=Sing_Person=3_Tense=Fut_VerbForm=Fin> avoir→ aura
<Gender=Fem_Number=Sing_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eue
<Gender=Masc_Number=Plur_Tense=Past_VerbForm=Part> avoir→ eus
<Mood=Ind_Number=Sing_Person=1_Tense=Pres_VerbForm=Fin> avoir→ ai
<Gender=Masc_Number=Plur_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eus
<Gender=Masc_Tense=Past_VerbForm=Part> avoir→ eu
<Mood=Ind_Number=Plur_Person=1_Tense=Pres_VerbForm=Fin> avoir→ avons
<Gender=Fem_Number=Plur_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eues
<Mood=Cnd_Number=Sing_Person=3_Tense=Pres_VerbForm=Fin> avoir→ aurais
<Gender=Fem_Number=Plur_Tense=Past_VerbForm=Part> avoir→ eues
<Mood=Ind_Number=Plur_Person=3_Tense=Fut_VerbForm=Fin> avoir→ auront
<Mood=Ind_Number=Plur_Person=3_Tense=Imp_VerbForm=Fin> avoir→ avaient
<Gender=Masc_NumType=Ord_Number=Sing> cents→ cent
<Mood=Ind_Number=Sing_Person=3_Tense=Past_VerbForm=Fin> avoir→ eut
<Gender=Fem_NumType=Ord_Number=Sing> cents→ cent
<Tense=Past_VerbForm=Part> avoir→ eu
<Mood=Ind_Number=Plur_Person=2_Tense=Pres_VerbForm=Fin> avoir→ avez
<Mood=Sub_Number=Sing_Person=3_Tense=Pres_VerbForm=Fin> avoir→ ait
<NumType=Ord_Number=Sing> cents→ cent
<Gender=Masc_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eu
<Gender=Fem> chien→ chienne
<Mood=Cnd_Number=Plur_Person=3_Tense=Pres_VerbForm=Fin> avoir→ auraient
<Gender=Masc_NumType=Card_Number=Plur> quatrième→ quatrièmes
<Gender=Masc_NumType=Ord_Number=Plur> cent→ cents
<Mood=Imp_Number=Plur_Person=2_Tense=Pres_VerbForm=Fin> avoir→ ayez
<Mood=Ind_Number=Sing_Person=1_Tense=Imp_VerbForm=Fin> avoir→ avais
<Gender=Fem_NumType=Ord_Number=Plur> cent→ cents
<Mood=Sub_Number=Plur_Person=3_Tense=Pres_VerbForm=Fin> avoir→ aient
<Mood=Ind_Number=Plur_Person=1_Tense=Fut_VerbForm=Fin> avoir→ aurons
<Mood=Ind_Number=Plur_Person=1_Tense=Imp_VerbForm=Fin> avoir→ avions
<Gender=Masc_NumType=Card_Number=Sing> premières→ premier
<Mood=Cnd_Number=Sing_Person=1_Tense=Pres_VerbForm=Fin> avoir→ aurais
<Mood=Ind_Number=Plur_Person=3_Tense=Past_VerbForm=Fin> avoir→ eurent
<Mood=Cnd_Number=Plur_Person=1_Tense=Pres_VerbForm=Fin> avoir→ aurais
<Mood=Ind_Number=Plur_Person=2_Tense=Fut_VerbForm=Fin> avoir→ aurez
<Mood=Ind_Number=Sing_Person=1_Tense=Fut_VerbForm=Fin> avoir→ aurai
<Number=Plur_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eus
<Number=Sing_Tense=Past_VerbForm=Part> avoir→ eu
<Mood=Sub_Number=Sing_Person=1_Tense=Pres_VerbForm=Fin> avoir→ aie
<Mood=Ind_Person=3_Tense=Pres_VerbForm=Fin> neiger→ neige
<Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eu
<Mood=Sub_Number=Sing_Person=3_Tense=Past_VerbForm=Fin> avoir→ eu
<Mood=Cnd_Number=Plur_Person=2_Tense=Pres_VerbForm=Fin> avoir→ auriez
<Number=Sing_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eu
<Mood=Imp_Number=Plur_Person=1_Tense=Pres_VerbForm=Fin> avoir→ ayons
<Number=Plur_Tense=Past_VerbForm=Part> avoir→ eus
<Mood=Ind_Number=Plur_Person=2_Tense=Imp_VerbForm=Fin> avoir→ aviez
<Mood=Imp_Tense=Pres_VerbForm=Fin> avoir→ aie
<Mood=Sub_Number=Plur_Person=1_Tense=Pres_VerbForm=Fin> avoir→ avons
<Mood=Ind_Number=Sing_Person=2_Tense=Imp_VerbForm=Fin> avoir→ avais
<Mood=Sub_Number=Plur_Person=2_Tense=Pres_VerbForm=Fin> avoir→ avez

Table 9: Vocabulary of tags of our GeC model.


