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Abstract

The neural machine translation approach has
gained popularity in machine translation be-
cause of its context analysing ability and its
handling of long-term dependency issues. We
have participated in theWMT21 shared task of
similar language translation on a Tamil-Telugu
pair with the team name: CNLP-NITS. In this
task, we utilized monolingual data via pre-
train word embeddings in transformer model
based neural machine translation to tackle
the limitation of parallel corpus. Our model
has achieved a bilingual evaluation understudy
(BLEU) score of 4.05, rank-based intuitive
bilingual evaluation score (RIBES) score of
24.80 and translation edit rate (TER) score of
97.24 for both Tamil-to-Telugu and Telugu-to-
Tamil translations respectively.

1 Introduction

Machine translation (MT) works as an interface
that handles language ambiguity concerns via auto-
matic translation between two different languages.
Neural machine translation (NMT) attains state-of-
the-art results for both high and low-resource lan-
guage pairs translation (Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015; Luong et al.,
2015; Pathak et al., 2018; Pathak and Pakray, 2018;
Laskar et al., 2019; Laskar et al., 2020a). The
NMT utilizes an artificial neural network to pre-
dicts the likelihood of a sequence of words. But
NMT requires a sizeable parallel corpus to get ef-
fective MT output, challenging for low-resource
pair translation. In this WMT21 shared task, we
have participated on a similar language pair transla-
tion task of Tamil–Telugu pair using NMT.We aim
to utilize similarity features among such a similar
language pair and monolingual data to overcome
the less availability of parallel corpus. The trans-
former model (Vaswani et al., 2017) based NMT
is considered in this work, since it outperforms

RNN based NMT. Moreover, NMT performance
can be enhanced utilizing monolingual data (Weng
et al., 2019; Wu et al., 2019; Ramachandran et al.,
2017; Variš and Bojar, 2019; Qi et al., 2018). To
evaluate the performance of our system’s output,
WMT21 organizer used standard evaluation met-
rics, namely, BLEU (Papineni et al., 2002), RIBES
(Isozaki et al., 2010) and TER (Snover et al., 2006)
which are reported in Section 4.

2 Related Work

There are limited works on the Tamil–Telugu pair
(Chakravarthi et al., 2021). The literature sur-
vey found similar works on Indian similar lan-
guage pairs, such as Hindi–Nepali (Laskar et al.,
2019) and Hindi–Marathi (Laskar et al., 2020b) at
WMT19 and WMT20. Both (Laskar et al., 2020b,
2019) used transformer model based NMT. More-
over, Ramachandran et al. (2017); Variš and Bojar
(2019); Qi et al. (2018) pre-trained methods are in-
corporated in NMT to utilize advantage of mono-
lingual data for low-resource pairs translation. In
this work, GloVe (Pennington et al., 2014) pre-
trained word embeddings are used in transformer
model (Vaswani et al., 2017) based NMT for both
Tamil-to-Telugu and Telugu-to-Tamil translation.

3 System Description

Our system mainly consists of the following parts:
data preprossessing, model training and testing.
These have been described in the following sub-
sections. The dataset description is presented in
Section 3.1. For our system, we have used the
OpenNMT-py toolkit (Klein et al., 2017) for the
data preprocessing, training and testing.
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Corpus Type Sentences Tokens SourceTamil Telugu

Parallel
Train 40147 588919 625308

WMT21 OrganizerValidation 1261 25443 25844
Test 1735 33911 35895

Monolingual Tamil 31542481 488507451 IndicNLPTelugu 47877462 574131374

Table 1: Dataset Statistics

3.1 Dataset
The parallel corpus for Tamil-Telugu pair is pro-
vided by the WMT21 organizer1. It consists of
40147, 1261, 1735 sentence pairs for train, vali-
dation and test set. Apart from this, we also col-
lected Monolingual data from the IndicNLP2 cor-
pus. It consists of 31542481 Tamil sentences and
47877462 Telugu sentences. This monolingual
corpus is specifically used for deriving pretrained
embeddings to use in the model. The dataset statis-
tics are described in the table 1.

3.2 Data Preprocessing
The OpenNMT-py toolkit is used to preprocess the
parallel data and then generates a vocabulary of
size: 50002 for the source-target sentences by tok-
enizing and indexing in a dictionary. It was done
in both ways independently, considering Tamil as
source and Telugu as target and thenwith Telugu as
source and Tamil as the target to train models for
both ways for translation in either direction. We
have used GloVe (Pennington et al., 2014) to pre-
train on the monolingual corpora to obtain word
vectors. These word vectors are specifically used
in the form of word embeddings in the transformer
model during the training process.

3.3 System Training
After the data preprocessing, the pre-trained em-
beddings and parallel dataset are used for training
our model for both Tamil-to-Telugu and Telugu-to-
Tamil. We have adopted a transformer model to
implement both of the trained models separately.
The transformer model consists of a self-attention
mechanism, encoder, and decoder layers. The self-
attention comes into play, where the relevancy of
one word to other words of the sentence is repre-
sented as an attention vector that contains the con-
text between words in that sentence. Multiple such

1http://statmt.org/wmt21/similar.html
2https://indicnlp.ai4bharat.org/corpora/

attention vectors are calculated, and the weighted
average is taken so that the interactions with other
words are captured properly rather than their value.
More specifically, the embeddings are converted
into three spaces: query, key, and value. The dot
product of its query vector and all the key vectors
are calculated for every embedding. Since the hid-
den state of the previous embedding is not needed
in calculating the current embedding’s hidden state,
the self-attention can be done in parallel for all em-
beddings. Thus, it can be run in parallel for all em-
beddings simultaneously. This speeds up the train-
ing and translation process a lot. Now, the target
sentences are passed to the decoder layers similarly
to the encoders and then passed to the self-attention
block. The difference is that in attention layers, the
next word of the target sentence is masked so that
the word will be predicted using previous results
for learning. It is called a masked multi-head at-
tention block. The attention vectors thus produced
and the outputs from the encoder layers are then
passed to another attention block called encoder-
decoder attention block. The attention vectors for
every word in the sentences are the output. Then
we pass it through a feed-forward network for mak-
ing output acceptable for further layers.
Our transformer model consists of six layers for
both encoders and decoders and eight attention
heads. We used adam optimizer with a learning
rate 0.001 and a drop-out of 0.1 for normalization.
The rest of the parameters were selected as the de-
fault configuration of the toolkit. This configura-
tion is used for both models, the Tamil-to-Telugu
and vice versa.

3.4 System Testing

The obtained trained models are used in system
testing, where the test data is used to obtain the
predicted translation for both Tamil-to-Telugu and
vice-versa independently.

http://statmt.org/wmt21/similar.html
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Translation System Type BLEU RIBES TER
Tamil to Telugu Primary 4.05 24.80 97.24
Telugu to Tamil Primary 4.05 24.80 97.24

Table 2: Our System results for Tamil-Telugu pair at WMT21

4 Result

Our system’s outputs were submitted to the orga-
nizer for evaluation. Consequently, the results of
the shared task on ”Similar Language Translation”
were announced separately for Tamil-to-Telugu3
and Telugu-to-Tamil4. The ranking of the systems
is mainly based on BLEU score, while the RIBES
and TER scores are also given. Our team name is
CNLP-NITS. For the Tamil-to-Telugu translation
system, we achieved 4th rank with a BLEU score
of 4.05 and 6th rank with a BLEU score of 4.05
for the Telugu-to-Tamil translation. The results of
our system are reported in the Table 2. The system
performance is identical for both translation direc-
tions. We need to perform a human evaluation in
future work to identify the test set and predicted
output are identical or not.

5 Conclusion and Future Work

This work reports our system description along
with results, which we have participated in the
WMT19 shared task of similar language pair:
Tamil-Telugu. Both direction of translations, trans-
former model based NMT is used and utilized
monolingual data through pre-trained word em-
beddings. We will investigate multilingual NMT
approach in future to improve such low-resource
translation quality.
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