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Abstract

In this paper, we describe our MISS sys-
tem that participated in the WMT21 news
translation task. We mainly participated in
the evaluation of the three translation di-
rections of English-Chinese and Japanese-
English translation tasks. In the systems sub-
mitted, we primarily considered wider net-
works, deeper networks, relative positional en-
coding, and dynamic convolutional networks
in terms of model structure, while in terms of
training, we investigated contrastive learning-
reinforced domain adaptation, self-supervised
training, and optimization objective switching
training methods. According to the final evalu-
ation results, a deeper, wider, and stronger net-
work can improve translation performance in
general, yet our data domain adaption method
can improve performance even more. In addi-
tion, we found that switching to the use of our
proposed objective during the finetune phase
using relatively small domain-related data can
effectively improve the stability of the model’s
convergence and achieve better optimal perfor-
mance.

1 Introduction

News translation (Bojar et al., 2017, 2018; Barrault
et al., 2019, 2020) is one of the most prominent
and appealing tasks in machine translation evalua-
tion (Wu et al., 2020b; Li et al., 2020c). Our MiSS
system took part in the WMT21 news translation
task, including English → Chinese (En → Zh),
Chinese→ English (Zh→ En), and Japanese→
English (Ja→ En) translation directions. We devel-
oped translation systems for this year’s submission
to investigate machine translation techniques from
two perspectives: model structure and model train-
ing. All of the data used by the submitted systems
is constrained. Due to a lack of training resources,
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the English->Japanese translation direction is only
investigated from the model structure perspective.

From the perspective of model structure, we
choose the Transformer (Vaswani et al., 2017; Li
et al., 2021c) model based on self-attention, which
is extensively utilized in neural machine translation
systems, as our basis (Zhang et al., 2020b; Li et al.,
2020d). On this strong foundation, we opt to simply
deepen the model by increasing the number of en-
coder layers or widen the model by increasing the
hidden size of the model to obtain a deeper or wider
model. When deepening or widening the model,
we found that there is no need for additional sophis-
ticated structure design (e.g., layer drop (Fan et al.,
2020) / sublayer drop (Li et al., 2021a)) or train-
ing strategy when there is adequate training data
available. In addition to Transformer architecture,
Wu et al. (2019) propose a dynamic convolution
structure that can perform competitively or better
to the self-attention structure. Follow the practice
in WMT20 (Wu et al., 2020a), we also applied the
dynamic convolution architecture as another basis.

According to our preliminary results on the de-
velopment set, domain has a significant impact on
performance, despite the fact that we are working
with the resource-rich En-Zh and En-Ja language
pairs. This year’s submissions are mostly con-
cerned with utilizing training approaches to miti-
gate the impact of domain differences. Specifically,
we first use data in all hybrid domains to train the
initial NMT model, and then, based on sentence em-
bedding model enhanced by contrastive learning,
the parallel/monolingual corpus is filtered monolin-
gually or cross-lingually, and the filtered domain-
related parallel corpus is used for further finetuning,
and the domain-related monolingual corpus is used
for in-domain back-translation enhancement. In
addition, we also adopted a self-supervised train-
ing method to train the model on the given source
text of the test set and its domain-related monolin-
gual text obtained by filtering. In self-supervised
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training, we combine our Data-dependent Gaus-
sian Prior Objective (D2GPo) objective (Li et al.,
2020b) to alleviate the collapse due to non-golden
targets. In the finetune stage with the domain-
related parallel corpus, we adopted the training
strategy of switching the optimization objective
from the MLE to our proposed Dual Skew Diver-
gence (DSD) (Li et al., 2019). The results demon-
strated that switching to the DSD objective resulted
in improved convergence.

From the evaluation results, we observe substan-
tial improvements over the strong baseline with 4.3
(En→ Zh), 4.8 (Zh→ En), 3.2 (Ja→ En) BLEU
scores on the development sets, respectively. The
gains can be attributed to larger model capacity and
better training strategies. And the results suggest
that the cost of domain adaptation to improve per-
formance is less than the cost of increasing model
capacity.

2 Model Perspective

With the development of deep learning in NLP (He
et al., 2018; Cai et al., 2018; He et al., 2019; Li
et al., 2021d), model ensembling can usually pro-
duce better results than single models, and the big-
ger the difference between the models used for
ensembling, within a certain limit, the higher the
improvement will be. As a result, we chose four
distinct typical architectures as the basis for single
NMT models and trained them on the same data.
The detailed parameters of each model architecture
are shown in Table 1.

Deep Transformer Some related works (Zhang
et al., 2019; Wang et al., 2019; Li et al., 2020a,
2021a) have revealed that deep networks have great
advantages in NMT performance compared to shal-
low networks recently. Based on the Transformer
NMT model architecture, we found that in the pres-
ence of sufficient training data, merely increasing
the number of stacked layers of the encoder can ful-
fill the goal of deep Transformer without the use of
additional initialization, dropout, or layer skipping
techniques.

Wide Transformer Recent researches (Sun
et al., 2019; Wu et al., 2020a; Zhang et al., 2020a;
Wu et al., 2020b; Meng et al., 2020) have demon-
strated that, in addition to deepening the NMT
model, widening the model can also effectively
improve translation performance, with increasing
the feed-forward network (FFN) size in the Trans-

Deep
Transformer

Wide
Transformer

Deep
DynamicConv

Enc. Layers 40 20 20
Dec. Layers 6 6 6
Attn. Heads 16 16 16
Hidden Size 1,024 1,024 1,024
FFN Size 4,096 8,192 4,096

Table 1: Hyper-parameters of different model architec-
tures. Note that Wide Transformer with relative posi-
tion encoding was also used as baseline models.

former model bringing less training and inference
cost than increasing the overall hidden size of the
model. We took a same practice in our work by
increasing the FFN size and established a Wide
Transformer baseline.

Deep DynamicConv Dynamic convolution
(DynamicConv) (Wu et al., 2019) was proposed
as a replacement for Transformer architecture
and has piqued much interest (Wu et al., 2020a)
due to its good speed advantage and comparable
performance. To enhance the performance of
single model, we also deepen the DynamicConv
model by increasing the number of encoder layers,
denoted as Deep DynamicConv. The original Dy-
namicConv model consists of 7 encoder layers and
6 decoder layers. We deepen the DynamicConv
model’s encoder layers to Deep DynamicConv.
Because the kernel size of each convolution layer
in the DynamicConv model differs, we set the
kernel sizes of the 16 encoder layers in Deep
DynamicConv to [3, 7, 15, 31, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31, 31, 31, 31] and leave the
other settings unchanged from the original model.

Relative Position Encoding Because self-
attention in the convention Transformer model is
position-independent, the encoded features must
be enhanced with explicit positional information
for natural language processing. Absolute position
encoding is usually employed in the Transformer
NMT model. Shaw et al. (2018) proposed to add
relative position encoding (RPE) for improving
self-attentional features and shown additional
performance gains. We also applied relative
position encoding to the Wide Transformer model
and created another strong baseline.

We use the identical vocabulary and data to train
these four baseline models separately, and then
average the best 5 checkpoints in each model’s
training phase to generate the final model output
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Figure 1: Illustration for contrastive learning-reinforced domain adaptation

in the corresponding stage. According to Wu et al.
(2020a)’s experience, the best 5 checkpoints are
determined based on the BLEU metric on the devel-
opment set rather than the perplexity (PPL) metric.
Furthermore, we applied the D2GPo objective (Li
et al., 2020b) in the training process to obtain more
stable convergence and decrease the impacts of
overfitting resulting from the training set’s noise.

3 Training Perspective

Contrastive Learning-reinforced Domain
Adaptation Data domain issues have been found
to have a significant impact on machine translation
performance (Saunders, 2021). The official
training data is of hybrid domain, despite the fact
that the evaluation task is news translation. And,
while news translation corpora can be deemed to be
in the news domain, there are significant variances
in news styles within the same domain. As a result,
one of the keys to performance enhancement will
be how to utilize the data training model that is
closer to the evaluation data domain and style.

Using languages L1 and L2 as an example, the
data that may be used comprises the parallel cor-
pus DP

L1−L2
, as well as their respective large-scale

monolingual corpus DM
L1

and DM
L2

. Parallel cor-
pora are typically utilized for direct training of
NMT models, whereas monolingual corpora are
used for back-translation (Edunov et al., 2018) and
self-supervised training (Jiao et al., 2021). The do-
main filtering method can be utilized in these three
training procedures to create corpus whose domain
is more similar to the development and test sets.

Instead of relying on the co-occurrence probabil-

ity of the surface tokens in the sentence, we based
the domain filtering on the hypothesis that the more
similar the sentence representations generated by
the Transformer encoder are, the more likely they
are to be dispersed in the same domain. Because
the current Transformer encoder’s representation is
based on the bidirectional and full attention of all
tokens, the combination and order of tokens have a
significant impact on the final representation, the
sentence representation is adequate for capturing
domain information. As a result, we use the sen-
tence embedding distance to measure the domain
similarity.

We leveraged a universal paraphrastic sentence
encoder (Wieting et al., 2016; Ethayarajh, 2018;
Li and Zhao, 2020) to embed each given sentence
to a dense representation. On a large scale mono-
lingual corpus, we train our own monolingual and
multilingual sentence encoder, a Transformer that
has been pre-trained using masked language mod-
eling (Devlin et al., 2019; Zhang et al., 2020c; Li
et al., 2021b), with the XLM toolkit (Conneau et al.,
2020) and fine-tuned to maximize cosine similarity
between similar sentences. Contrastive learning
seeks to acquire effective representation by pulling
semantically close neighbors and pushing non-
neighbors apart (Hadsell et al., 2006). Since this cri-
terion precisely meets the requirements of sentence
representation learning, we use contrastive learning
to finetune the pre-trained sentence encoder. Fig-
ure 1 illustrates our contrastive learning-reinforced
domain adaptation method.

According to the domain adaptation require-
ments in actual machine translation, the trained
sentence encoder needs respond to four scenar-
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ios: Original Input Monolingual Filter, Translated
Input Monolingual Filter, Original Input Cross-
lingual Filter, Translated Input Cross-lingual Fil-
ter. Because the fourth scenario can be covered by
the first, we only employ the first three scenarios
in our experiment.

For all scenarios, we first follow Gao et al.
(2021)’s approach to perform unsupervised train-
ing in which the input sentence itself is used as
a positive instance due to there will be some dif-
ferences between the sentence representations of
the two pass input with the presence of the model
dropout, and other sentences in the in-batch are
used as negative instances.

The unsupervised contrastive learning-trained
monolingual sentence encoder can be used directly
as an evaluator of the similarity of sentences in
the same language and to mine similar sentences
from the sentence bank. However, for the non-gold
translated sentences filtering, we apply the base-
line NMT models to translate parallel corpus and
to back-translated monolingual corpus to generate
pseudo-paraphrase corpus. And then triplet loss
is used to fine-tune the unsupervised sentence en-
coder:

L(x, y) = max(0, α− cos(x, y)) + cos(x, yn),

where positive pairs (x, y) are paraphrases from
translation or back-translation, yn are in-batch neg-
ative instances.

Likewise, we still need cross-language filtering,
therefore we use parallel corpus instead of syn-
thetic pseudo-restatement corpus and triplet loss
for additional finetuning on the multilingual sen-
tence encoder.

As shown in Figure 1, taking the L2 in-domain
source sentences in development set as an exam-
ple, we first use the initial NMT model to translate
these sentences to L1 translated text. The different
trained sentence encoder is then used to encode
these sentences and the large-scale monolingual
or parallel corpus based on different scenarios re-
spectively. Then, using the faiss toolkit1, a query
procedure is performed to locate related in-domain
monolingual or parallel corpora with similarity cal-
culation and ranking.

Back-translation and Self-supervised Training
Using the in-domain monolingual and parallel cor-

1https://github.com/facebookresearch/
faiss

pus, we may train the initial model using back-
translation and self-supervised training approaches.
For back-translation, we leverage the original mul-
tiple NMT models to translate these monolinguals
into various pseudo-parallel corpora, and then com-
bine them with the in-domain parallel corpus to
finetune the NMT model. For self-supervised train-
ing, we use a variety of models to perform en-
semble translation on the in-domain monolingual
text as the translation target and combine the in-
domain translation corpus to fine-tune the model.
In the specific implementation, we perform back-
translation and self-supervised training consecu-
tively such that the self-supervised training stage
can exploit the stronger NMT model trained during
the back-translation stage.

Optimization Objective Switching Training It
is easier to fall into a local optimum in the pro-
cess of back-translation and self-supervised train-
ing because there are relatively fewer in-domain
data and input or output in part of the data utilized
is not gold. According to our experience in (Li
et al., 2019), switching the training objective to the
adversarial learning objective after MLE training
converges might help jump out of the local opti-
mal state and get better performance. Follow this
practice, in the back-translation and self-supervised
training stages, we first employ MLE target training
to converge on a development set and then switch
to Li et al. (2019)’s DSD loss for further training:

LDSD = − 1

n

n∑
i=1

[β(t)yi log((1− α)ŷi + αyi)

−(1− β(t))ŷi log(ŷi)

+(1− β(t))ŷi log((1− α)yi + αŷi)],

where yi is the i-th token in the target sequence
y, ŷi is the i-th predicted token, α is a hyper-
parameter in α-skew divergence (Lee, 1999), and
β(t) is the controllable weight from the PID con-
troller.

4 Data Setup

English↔Chinese In the English↔Chinese
translation, we used all official parallel corpus,
including ParaCrawl v7.1, News Commentary
v16, Wiki Titles v3, UN Parallel Corpus V1.0,
CCMT Corpus and WikiMatrix. For English, we
use the tokenization tool provided by Moses2, and

2https://github.com/moses-smt/
mosesdecoder

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder


158

Systems En→Zh Zh→En En→Ja Ja→En

Dev Test Dev Test Dev Test Dev Test

Transformer-big 31.67 − 33.26 − 23.31 − 21.61 −

Deep Transformer 32.48 − 34.18 − 24.68 − 22.78 −
¬ ++ID-BT 35.30 − 38.94 − − − 24.46 −
 ++ID-ST 35.95 − 39.18 − − − 25.82 −

Wide Transformer 32.67 − 34.01 − 24.27 − 23.20 −
® ++ID-BT 35.37 − 38.82 − − − 24.55 −
¯ ++ID-ST 36.15 − 39.13 − − − 25.71 −

Deep DynamicConv. 32.39 − 33.68 − 24.08 − 21.91 −
° ++ID-BT 35.01 − 38.66 − − − 24.37 −
± ++ID-ST 36.03 − 39.05 − − − 25.66 −

Wide Transformer w/ RPE 32.52 − 34.35 − 24.76 − 22.78 −
² ++ID-BT 35.55 − 38.91 − − − 24.48 −
³ ++ID-ST 36.08 − 39.20 − − − 25.71 −

Baseline Ensemble 32.79 31.9 34.47 27.8 24.79 42.6 23.15 23.8
Ensemble: ¬ + ® + ° + ² 35.62 35.7 38.98 32.4 − − 24.63 26.4
Ensemble:  + ¯ + ± + ³ 36.41 36.2 39.25 32.6 − − 25.99 27.0

Table 2: BLEU evaluation results on the WMT 2021 development and test sets. The BLEU in the development
set is a word-level MultiBLEU score, but the BLEU in the test set is from the official evaluation. Due to a lack of
resources, En→Ja only completed the baseline training and ensemble submission.

for Chinese, we use pkuseg (Luo et al., 2019) as
the word segmentor. We adopt a joint byte pair
encoding (BPE) (Sennrich et al., 2016) with 44K
operations for subword vocabulary in English
and Chinese. Punctuation normalization is not
employed to preprocess the training data in order
to prevent complex post-processing of punctuation
restoration. For English post-processing, we use
the script in Moses to de-tokenize the translation,
whereas for Chinese, we employ sacremoses3 for
de-segmentation.

English↔Japanese In the English↔Japanese
translation, data for training were combined from
ParaCrawl v7.1, News Commentary v16, Wiki
Titles v3, WikiMatrix, The Kyoto Free Trans-
lation Task Corpus, and TED Talks. Similarly,
the Japanese sentences are segmented using the
Mecab4 segmentor, while the English sentences are
processed using the Moses tokenizer. The size of
the English and Japanese joint BPE is also set to
44K. In post-processing, Moses script and sacre-
moses are also employed for detokenization.

We merged the whole news-crawl corpus for
monolingual data. However, in Chinese and
Japanese, news-crawl corpus alone is insufficient
to train the sentence encoder, so we sampled some
data from the common-crawl corpus and eventu-
ally produced the data in English, Chinese, and

3https://github.com/alvations/
sacremoses

4https://github.com/taku910/mecab

Japanese 100M sentences each. For pre-processing,
we exclude sentences that are more than 175 words
long, and the word ratio between the source and
the target greater than 1:2 or 2:1.

5 Model Training

All of our NMT models are built using the Fairseq
toolkit. Except for the switching training phase, all
models are optimized with Adam optimizer, and
SGD optimizer is utilized for optimization training
when switching to DSD loss. During the base-
line model training process, the learning rate is
scheduled using the inverse sqrt scheduler with
4000 warm-up steps, maximum learning rate 5e-4,
and betas (0.9, 0.98). Each model is trained on 8
NVIDIA V100 GPUs, with batch size limited to
8192 tokens per GPU. FP16 is emploted to save
GPU memory and speed up calculations. To in-
crease the virtual batch size, we set the gradient
update steps to 8 during the training phase. The
label smoothing and dropout values are both set to
0.1. In the finetuning stage, we utilize a smaller
batch size, 4,096 tokens per GPU, and train the
model at a fixed learning rate of 1e-4. Sentence en-
coder models are developed with the XLM toolkit,
and the architecture is based on the BERT-base.
The hidden size, heads, hidden layers, and FFN
size are 768/12/12/3072 respectively. During train-
ing, a early stop mechanism is applied in which the
training will stop when the PPL on the development
set does not decrease after 25 epochs.

https://github.com/alvations/sacremoses
https://github.com/alvations/sacremoses
https://github.com/taku910/mecab
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6 Results and Analysis

Table 2 shows the results on the development sets as
well as the official evaluation results on the WMT21
test sets. First, when comparing Deep Transformer,
Wide Transformer, and Transformer-big, we ob-
served that increasing the number of model layers
or widening the model to increase the number of
model parameters can result in large performance
benefits. Second, Deep DynamicConv has shown
comparable results to Deep Transformer in multi-
ple data sets, demonstrating that DynamicConv is a
viable replacement option for Transformer. Third,
the Deep Transformer w/ RPE model outperforms
Deep Transformer model in most circumstances,
demonstrating that machine translation benefits
from additional relative position encoding informa-
tion. Fourth, in-domain back-translation (ID-BT)
and in-domain self-supervised training (ID-ST) im-
prove the model’s performance substantially more
than the increased model parameters, indicating
that the data domain is a primary factor limiting
translation performance. Furthermore, these en-
hancements demonstrate that our domain adaption
approach of contrast learning-reinforced is a effec-
tive approach. Finally, we performed ensemble
on the four finetuned baselines and received even
higher results, demonstrating that the models of the
four architectures differ from each other.

7 Conclusion

In this paper, we introduce our MISS transla-
tion system, which participated in the WMT21
news translation task. We developed a new con-
trast learning-reinforced domain adaptation strat-
egy in this work, and the experimental findings
suggest that this method may significantly increase
translation performance. Furthermore, we con-
ducted experiments on a range of model archi-
tectures. Our domain adaption strategy improved
these strong baseline models significantly, illus-
trating the method’s generality and indicating that
the performance deficiency is not due to a specific
model structure.
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