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Abstract

Recent work in simultaneous machine trans-
lation is often trained with conventional full
sentence translation corpora, leading to either
excessive latency or necessity to anticipate as-
yet-unarrived words, when dealing with a lan-
guage pair whose word orders significantly dif-
fer. This is unlike human simultaneous inter-
preters who produce largely monotonic trans-
lations at the expense of the grammaticality of
a sentence being translated. In this paper, we
thus propose an algorithm to reorder and re-
fine the target side of a full sentence transla-
tion corpus, so that the words/phrases between
the source and target sentences are aligned
largely monotonically, using word alignment
and non-autoregressive neural machine transla-
tion. We then train a widely used wait-k simul-
taneous translation model on this reordered-
and-refined corpus. The proposed approach
improves BLEU scores and resulting trans-
lations exhibit enhanced monotonicity with
source sentences.

1 Introduction

Simultaneous interpretation is widely used in var-
ious scenarios such as cross-lingual communica-
tion between international speakers, international
summits, and streaming translation of a live video.
Simultaneous interpretation has a latency advan-
tage over conventional full-sentence translation, i.e.
offline translation, as it requires only partial se-
quence to start translating. However, as the source
and target languages differ in word orders, there is
a difficulty in simultaneous interpretation that does
not exist in offline translation which translates only
after the whole source sentence is received. For
example, when dealing with language pairs that
significantly differ in word order (e.g., between
SOV language and SVO language), an interpreter
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Figure 1: An example illustration of monotonic reorder-
ing and refinement for simultaneous translation

may not receive sufficient information with par-
tial sequence to start generating a translation that
respects the natural order of the target language.
One of the approaches to address this problem is to
perform anticipation1. Note that the nature of antic-
ipation relies on interpreters’ assumptions and the
anticipation may provide incorrect translations. Al-
ternatively, human interpreters strategically resort
to producing monotonic translations that follow
the word order of the source sequence (Cai et al.,
2020).

To illustrate the differences between the two
strategies, the example in Figure 1 may be referred
to. Of the two targets, offline target y respects
the target language order and an online target ŷ
roughly follows the source word ordering. Suc-
cessful anticipation in Figure 1’s case would be to
predict the initial words in y (I was a “frog in a
well") before receiving the full x. This would pose
difficulty even to professional translators as all the
relevant information is in the latter part of the x
(저는I /“우물a well /안in /개구리a frog"였습니다was.).
Bartłomiejczyk (2008) reports the success rate of
human interpreters’ anticipation attempts to be as
low as 38.1% even though they make predictions
based on pre-acquired domain knowledge. On the
other hand, a monotonic approach would be to gen-

1A simultaneous interpretation strategy where the inter-
preter says information that is not yet said by the speaker.
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erate an ŷ style translation - the grammaticality in
the resulting sequence is sacrificed to translate only
the received information.

A similar case applies to Simultaneous Machine
Translation (SimulMT) models, which start trans-
lating before a whole sentence is given. Several
studies (Ma et al., 2019; Arivazhagan et al., 2019;
Ma et al., 2020) often utilize offline full-sentence
translation corpora to train SimulMT models. Of-
fline full-sentence parallel corpora are expected to
follow the natural order of languages and mostly
contain source to offline-target pairs. Naturally,
when SimulMT models are trained on these cor-
pora, the models inevitably learn to perform antic-
ipation. Recent SimulMT studies are focused on
reducing anticipation (Zhang et al., 2020a) or per-
forming better anticipation (Zhang et al., 2020b).
On the contrary, studies on enabling monotonic
translation in SimulMT are scarcely available. Re-
cently, Chen et al. (2020) suggest utilizing pseudo-
references for monotonic translation.

In this paper, we propose a paraphrasing method
to generate a monotonic parallel corpus to allow a
monotonic interpretation strategy in SimulMT. Our
method consists of two stages. The method first
chunks source and target sequences into segments
and monotonically reorders the target segments
based on source-target word alignment informa-
tion (Section 3.1). Then, the reordered targets are
refined to enhance fluency and syntactic correct-
ness (Section 3.2). To show the effectiveness of
our method, we train wait-k models (Ma et al.,
2019) on the resulting monotonic parallel corpus of
reordering-and-refinement. Results show improve-
ments in BLEU scores over baselines and models
producing monotonic translations. Our main con-
tributions are as follows:

• We propose a method to reorder and refine
the target side in an offline corpus to build
a monotonically aligned parallel corpus for
SimulMT.

• We investigate the monotonicity in different
language pairs, and show monotonicity can be
improved after the reordering-and-refinement
process.

• We train widely used wait-k models on gen-
erated monotonic parallel corpora in multiple
language pairs. The results show improve-
ments over baselines in both translation qual-
ity and monotonicity.

Figure 2: Monotonicity measured on offline trainsets.
Utilized data is described in Section 4.1. As Kendall’s
τ and Spearsman’s ρ show similar patterns, we only re-
port Kendall’s τ measurements in the rest of the paper.

2 Monotonicity Analysis

In this section, we analyze the degree of word or-
der differences in multiple language pairs, i.e., the
monotonicity in different language pairs. To mea-
sure the monotonicity, two rank correlation statis-
tics are utilized: Kendall’s τ and Spearman’s ρ.
The analyzed language pairs are: English-{Korean,
Japanese, Chinese, German, French}.

According to Polinsky (2012), English is a head-
initial language and Korean and Japanese are rigid
head-final languages; Korean and Japanese are
likely to exhibit extreme word order differences
with English. German and Chinese are considered
a mixture of head-final and head-initial languages;
they are likely to have word differences with En-
glish, but not as severe as Korean or Japanese.
French is also head-initial, so English and French
pair is likely to have similar word order.

Figure 2 show monotonicity measurements
between English and five different languages
which vary in monotonicity: English-German
and English-French pairs show high monotonic-
ity, while English-Japanese and English-Korean
pairs show low monotonicity.

Lower monotonicity in language pairs presents
higher difficulties for SimulMT tasks. For example,
wait-k algorithm only sees k + t source tokens to
generate a target token at step t which could lead to
unwanted anticipation. To avoid such anticipation,
as we mentioned in Section 1, human interpreters
often provide a monotonic translation. In the same
sense, we conjecture that promoting monotonic-
ity in training corpora is beneficial for translation
quality in SimulMT.
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3 Monotonic Reordering and Refinement

In this section, we describe our proposed paraphras-
ing method of chunk-wise reordering and refine-
ment to generate monotonic corpus for SimulMT.
Given source x = {x1, x2, · · · , x|x|} and offline
full sentence target y = {y1, y2, · · · , y|y|}, an
alignment a is defined as a set of position pairs
of x and y.

a = {(s, t) : s ∈ {1, · · · , |x|}, t ∈ {1, · · · , |y|}}

First, in chunk-wise reordering phase, we generate
source chunk set CX

CX = {(x1:p1), (xp1+1:p2), · · · , (xpk−1+1:pk)},

where 0 < p1 < p2 < · · · < pk = |x| and re-
ordered target chunk set CY

CY = {(y′1:q1), (y
′
q1+1:q2), · · · , (y

′
qk−1+1:qk

)},

where 0 < q1 < q2 < · · · < qk = |y|, and y′i ∈
y′ is reordered target token from offline target y.
The elements of a reordered target chunk CYi are
corresponding target tokens of a source chunk CXi
based on given alignment information a. Also,
we preserve the original target order within each
CYi . For example, offline and reordered target in
Figure 1 correspond to y and y′ respectively, and
both sequences are only different in token orders.
The number of source chunks in one sentence is
the same as the number of reordered target chunks
(|CX | = |CY |), while the number of tokens in |CXi |
and |CYi | could vary. We experiment two chunking
methods; fixed-size chunking and alignment-aware
adaptive size chunking.

Given chunked sets CX and CY , we refine re-
ordered target tokens to generate more natural and
fluent sentence with a Non-Autoregressive Trans-
lation (NAT) model. In the refinement algorithm,
final paraphrased sentence ŷ is generated from re-
ordered sequence y′. Furthermore, we incorporate
an Autoregressive Translation (AT) model into our
refinement process. The more detailed steps for
each phase will be explained in the following sub-
sections.

3.1 Chunk-wise Reordering
3.1.1 Fixed-size Chunk Reordering
In the fixed-size chunk reordering method, we sim-
ply chunk a sequence of tokens into fixed size seg-
ments. The source chunk set CX in this chunking
method is as follows:

CX = {(x1:K), (xK+1:2K), · · · , (x[|x|/K]:|x|)},

where K ∈ [1, |x|] is chunk size. If k = 1, CX
is identical with x. We conduct subword opera-
tion such as sentencepiece or BPE after chunking
process in order to avoid subword separation.

3.1.2 Alignment-Aware Chunk Reordering
In the alignment-aware chunking method, we seg-
ment a sentence adaptively by leveraging alignment
information a, as described in Algorithm 1. The
left grid in Figure 3 presents the subword alignment
between source and target sentence. We run aligner
on subword over word because the alignment per-
formance is consistently better Zenkel et al. (2020)
when using GIZA++ (Och and Ney, 2003) , which
we use in our experiments. Based on this align-
ment information, we initialize a list of chunks
C. As observable, there are some tokens which
have no alignment information. To avoid omission,
we assign the same alignment as the previous to-
ken; if a token is at the head, it follows the next
token’s alignment. To ensure subwords can be
properly detokenized after reordering, we merge
mid-splitted subwords. The middle grid in Figure
3 presents the result of these initialization steps.
After initialization, we generate consistent chunks
by merging all the inconsistent ones, following the
definition of consistency in Zens et al. (2002). In a
consistent chunk, tokens are only aligned to each
other, not to tokens in other chunks. If any chunk in
C has size smaller than a minimum size threshold
δ, we merge a chunk pair that are adjacent in both
source and target side and have the shortest target
distance between them. If the distances are the
same between multiple candidate pairs, we choose
the pair of chunks that makes the smallest size af-
ter merging. We additionally merge the chunks
adjacent to the merged one if they are arranged
monotonically. Merging is repeated until all chunks
meet the size requirements. An example of final
result is the right grid in Figure 3. Phrase extrac-
tion method used in statistical machine translation
Koehn (2004) also makes phrase level alignments
from word alignments using heuristics like ours,
but it tends to choose shorter phrases since the num-
ber of co-occurrences decrease drastically as the
phrase size grows, which makes it difficult to gen-
erate larger chunks to prevent hurting grammatical
correctness while reordering phase.

3.2 Refinement

Reordered target results from previous phase in-
evitably entail irregularities mainly for two rea-
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Figure 3: Example of alignment-aware reordering process. Left: Original alignments. Center: (Initialization)
After filling align vacancy, merging mid-split subwords and enforcing the consistency requirement. Right: After
merging all the chunks shorter than length thresholds.

Algorithm 1: Alignment-Aware reordering
Input: Source sentence x and target

sentence y
Output: Monotonically aligned chunks C′

1 a = Alignment between x and y
2 C = Initialize chunks C
3 C = Merge all the inconsistent chunks in C
4 while |CXi | < δsrc or |CYi | < δtgt

for any Ci in C do
5 Ck = The smaller of the chunks adjacent

to Ci
6 Merge Ci and Ck
7 Merge monotonic chunks adjacent to Ci
8 end
9 C′ = Reorder target side of C monotonically

sons. One could be broken connectivity of collo-
cations in segmentation process. The other would
be disfluently missing or containing words of end-
ings and preposition as the position of chunk has
been changed, thus requiring an addition of new
words or clearing unnecessary words. In this part,
we focus on refining aforementioned anormalities
in order to enhance fluency, while preserving the
monotonicity at the same time.

3.2.1 Refinement with NAT

We iteratively decode partial source CX with pre-
trained translation model, given partial reordered
target CY as a guidance in order to generate cor-
responding online target Ŷ . More specific pro-
cess is explained in Algorithm 2. As the model
refines given [Ŷi−1; CYi ], previous refined output
Ŷi−1 could be altered as the model re-generates
the entire sequence from scratch. Similarly in re-

Algorithm 2: Chunk-wise Refinement
Input: Source and target chunks CX , CY
Output: Paraphrased target ŷ

1 i = 1

2 Ŷ0 = []
3 while i ≤ |CX | do
4 Xi = CX1:i and Y ′i = [Ŷi−1; CYi ]
5 Ŷi = argmaxY log pR(Y |Xi, Y

′
i )

6 i = i+ 1

7 end
Return: Ŷ|CX |

translation (Arivazhagan et al., 2020; Han et al.,
2020b), we set an option of fixed or alterable pre-
fix to force the model whether to generate same
target prefix of Ŷi−1 or to allow the model to mod-
ify the prefix. As we limit the visibility of source
information and iteratively generate target tokens
with increasing source chunks, we expect the re-
finement model to generate monotonically aligned
and paraphrased targets ŷ with enhanced fluency.

We use NAT architecture as the core refinement
modelR. In NAT inference, the model’s decoder
is first given source features and fed an empty tar-
get sequence. Then the NAT decoder develops the
empty sequence into a translation of the source se-
quence. This development is often iterative. Note
that at every iteration step, the target sequence is
refined - closer to the source sequence in mean-
ing and become more fluent. This motivates us
to utilize NAT architecture in our refinement pro-
cess for monotonic-yet-disfluent sequences. In our
approach, the NAT model starts refinement itera-
tion with initialized tokens of previous output and
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reordered target chunk Y ′i , instead of an empty se-
quence. This target initialization act as a weak
supervision to generate monotonically aligned tar-
get, which allow model to focus only on the fluency
the reordered targets.

3.2.2 Incorporation of AT
Despite the aptness of NAT structure to our re-
finement phase, NAT model entails a performance
degradation compared to AT model in the expense
of speedup. Also, there exists repetition problem
in NAT (Lee et al., 2018; Gu and Kong, 2021)
which is generated in the process of multiple chunk-
wise iterative refinement. In order to complement
the aforementioned weaknesses of NAT decoding,
we incorporate AT into our refinement process
with NAT model.The final probability is computed
jointly with the probability of AT and NAT model:

pR(Y |Xi, Y
′
i ) ∝

pAT (Y |Xi)
α · pNAT (Y |Xi, Y

′
i )

(1−α), (1)

where α ∈ [0, 1] is hyper-parameter deciding the
ratio between AT and NAT probability.

Size/Lavg EnKo EnJa DeEn EnZh

Train 3.4M/22 3.9M/12 4M/28 15.9M/27

Valid 800/19 4451/17 3000/25 4000/30

Test 1429/21 1194/17 2169/25 4000/30

AlignAw 3.1M 1.7M 2.2M 6.5M

er 0.85 1.15 0.98 1.12

Table 1: Data statistics and average of En token length
Lavg of used corpus. AlignAw denotes number of pairs
processed with alignment aware refinement. er denotes
emission rates used in wait-k decoding. Token lengths
and er are measured base on subwords counts.

4 Experiments

4.1 Dataset

In this section, we describe the utilized datasets.
Detailed statistics are presented in Table 1. Uti-
lized EnKo trainset and devset are created using
in-house translation corpora while test scores are
reported on IWSLT17 (Cettolo et al., 2017) EnKo
testset. The DeEn trainset of WMT15 translation
task (Bojar et al., 2015) is utilized. newstest2013 is
utilized as devset and newstest2015 is used as test-
set. The EnJa trainset and validset are respectively
the combination trainsets and validsets of KFTT
(Neubig, 2011), JESC (Pryzant et al., 2018), TED

(Cettolo et al., 2012). The trainset and validset are
used as preprocessed and provided by the MTNT
authors2 (Michel and Neubig, 2018). Only the TED
portion of testsets is used. For EnZh training UN
Corpus v1.0 (Ziemski et al., 2016) is used. Train-
set, devset, and testset follow the original splits.
Monotonicity of EnFr in Figure 2 is measured on
the WMT14 (Bojar et al., 2014) trainset. Addi-
tional details regarding utilized tokenization and
vocabulary training are listed in Appendix A.

4.2 Metric

All the BLEU scores are cased-BLEU measured
using sacreBLEU (Post, 2018). Test scores are mea-
sured using models that report best BLEU on their
respective devsets. All references and translations
of each Korean, Japanese, and Chinese languages
are tokenized prior to BLEU evaluation. Tokenizers
utilized are mecab-ko3, KyTea 4, and jieba for Ko-
rean, Japanese and Chinese respectively. We report
detokenized BLEU on DeEn results. To measure
monotoniticy, we use Kendal’s τ rank correlation
coefficient.

4.3 Implementation Details

The default setting for NMT and SimulMT mod-
els follow the base configuration of transformer
(Vaswani et al., 2017). SimulMT models are
trained using wait-k algorithm, where k ∈
{4, 6, 8, 10, 12}, with uni-directional encoder sim-
ilarly to Han et al. (2020a). The base NMT and
SimulMT models are trained up to 300k train steps
on a single GPU - each step is performed on a batch
of approximately 12288 tokens. For refinement, we
utilize NAT models of Levenshtein transformer ar-
chitecture (Gu et al., 2019) with maximum iteration
of 1. The NAT models are trained using sequence-
level knowledge distillation (Kim and Rush, 2016)
- the references of trainset pairs are replaced with
beam search results (beam = 5) of NMT teach-
ers. The NAT models follow base configurations
and teacher NMT models follow big configuration.
Both types of models are trained up to 300k steps
on 8 GPUs. In each training step, a 8192 tokens
batch is used per GPU. Additional implementation
details can be found in the Appendix B.

2https://www.cs.cmu.edu/~pmichel1/
mtnt/

3https://github.com/hephaex/mecab-ko
4http://www.phontron.com/kytea/

https://www.cs.cmu.edu/~pmichel1/mtnt/
https://www.cs.cmu.edu/~pmichel1/mtnt/
https://github.com/hephaex/mecab-ko
http://www.phontron.com/kytea/
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Wait-k BLEU k=4 k=6 k=8 k=10 k=12
Offline 10.9 12.1 12.6 12.8 13.4
Fixed + NAT 11.2 12.3 13.5 13.5 13.7
AlignAw + NAT 11.4 12.8 12.7 12.9 13.1
AlignAw + NAT + AT (α = 0.25) 11.7 12.6 12.4 12.7 13.2
AlignAw + NAT + AT (α = 0.50) 10.7 12.4 13.0 13.0 13.2

Wait-k Kendal’s τ k=4 k=6 k=8 k=10 k=12
Offline 0.65526 0.60792 0.58440 0.55169 0.53701
Fixed + NAT 0.71822 0.66811 0.63154 0.61244 0.59478
AlignAw + NAT 0.71903 0.69101 0.67149 0.65985 0.64043
AlignAw + NAT + AT (α = 0.25) 0.73215 0.69386 0.69524 0.67593 0.63335
AlignAw + NAT + AT (α = 0.50) 0.73055 0.70106 0.67674 0.65559 0.64042

Table 2: BLEU scores and monotonicity measurements of EnKo wait-k models trained on offline and reordered-
and-refined corpora. Note that monotonicity is measured between the model translations and testset references.

4.4 Corpus Generation and Training

We demonstrate the effectiveness of our reordering-
and-refinement method by training wait-k models
on the resulting datasets. The wait-k models are
trained on the combination of the monotonically
aligned training pairs and offline trainset. AlignAw
+ NAT + AT denotes monotonically aligned corpora
using alignment-aware reordering and refinement
using joint probability of NAT and AT models. And
Offline refers to the offline full-sentence corpus.

4.4.1 Reordering

Fixed: For fixed-size reordering, we experiment
with chunk sizes K ∈ {4, 6, 8, 10, 12}. In wait-
k training, k and K are matched. All fixed-size
reordered-and-refined corpora have the same size
as corresponding offline corpus.

AlignAw: For each corpus, we generate four vari-
ations of alignment-aware reordering with source
and target minimum chunk size of 2, 3. Alignment-
aware reordering is not applicable on the already-
monotonic cases and the sentence pairs which are
locally non-monotonic inside a chunk and globally
monotonic among chunks within a single pair - typ-
ically, the reordering method is applicable to 20%
to 50% of offline corpus.

We gather unique pairs from the created four
variations to generate the final reordered pairs. The
statistics of reordered set for each translation direc-
tion is in Table 1. The resulting pairs are refined
and combined with corresponding offline corpus to
train wait-k models. Here, same set of reordered
pairs are utilized for all k settings.

seq-rep-n Offline NAT NAT + AT

1-gram 0.036 0.076 0.072
2-gram 0.008 0.022 0.018
3-gram 0.003 0.009 0.006
4-gram 0.001 0.004 0.002

Table 3: N-gram repetition rate measured on offline and
reordered-and-refined EnKo corpora. α = 0.25 is set
to for NAT + AT

4.4.2 Refinement
NAT: NAT models are utilized to refine the re-
ordered pairs. Both the fixed prefix and alter-
able prefix refinement is performed and combined.
BertScore (Zhang et al., 2020c) is measured and
used to discard refinement results that show below
average scores. The size of the resulting set is the
same as the corresponding offline corpus.

NAT + AT: NAT and AT models can both be
utilized to jointly compute token probability in re-
finement (Section 3.2.2). The AT models utilized
are the baseline wait-k models trained on offline
corpora. We experiment with α ∈ {0.25, 0.5}. The
examples of reordered-and-refined sequences can
be found in Appendix E.

5 Results and Analysis

5.1 Experimental Results on EnKo

Table 2 shows BLEU scores and Kendal’s τs of
wait-k models trained using original offline corpus
and variations of reordered-and-refined corpus. We
observe that the models trained on monotonically
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Figure 4: Monotonicity of offline pairs and pairs processed with reordering-and-refinement. AlignAw indicate
that targets are alignment-aware reordering (Section 3.1.2, and AlignAw + NAT show monotonicity after NAT
refinement (Section 3.2.1) is applied to AlignAw pairs.)

Figure 5: BLEU scores and monotonicity measurements presented by wait-k models trained on offline translation
corpora and variations of reordered-and-refined corpora.

reordered-and-refined corpora show higher BLEU
scores and monotonicity.

Reordering: Of the variations, corpora including
AlignAw chunking process generally show better
BLEU scores over Fixed + NAT when k ≤ 6. This
could be the benefit of the semantically plausible
way to split sentences provided by AlignAw chunk-
ing. On the other hand, models trained with Fixed
+ NAT corpora show higher BLEU when k ≥ 8.

Refinement: Experiments on utilizing AT proba-
bilities show degraded BLEU scores in k ∈ 6, 8, 10.
On the contrary, the models trained on AlignAw
+ NAT + AT corpora show enhanced monotonic-
ity. The α value may be adjusted to make trade-off
between promoting monotonicity in translation or
enhancing translation quality in terms of BLEU.

Repetition Reduction with AT: Following
(Welleck et al., 2020), we report n-gram repeti-
tion rate, seq-rep-n, on each generated corpus in

Table 3. We observe from seq-rep-n in all of the
tested n values, that employing AT models in re-
finement help alleviating the repetition problem of
posed by NAT models.

5.2 Language Pairs Comparison

Figure 4 shows the difference in monotonicity be-
tween different language pairs: EnKo, EnJa, EnZh,
and DeEn. It is observable in Figure 4 that the
overall monotonicity in EnKo and EnJa pairs is
enhanced after paraphrasing, while monotonicity
scores of DeEn remain almost the same, only
showing slight improvement. The extent of mono-
tonicity enhancement in EnZh is between that of
EnKo/Ja and DeEn. In all language pairs, the en-
hancements are generally lower in long or very
short sequences. In the case of long sequence pairs,
a pair may contain multiple sequences and be al-
ready aligned at the sequence level, thus resulting
in marginal monotonicity enhancement. In the case
of shorter length sequences, the whole sentence
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may be merged into a single chunk, less benefiting
from our process. After the reordered sets are re-
fined, monotonicity marginally decreases. This is
expected as forcibly aligned tokens are refined to
augment the fluency in the resulting sentence.

To present the effectiveness of generated mono-
tonic corpus in different language pairs, we train
wait-k models on EnKo, EnJa, EnZh, and DeEn,
and report BLEU and Kendal’s τ of the models
in Figure 5. The horizontal dotted line presents
the BLEU of unidirectional offline model. The
important observation we can find is that the mono-
tonicity increment of wait-k model in Figure 5 is
proportional to that of generated monotonic corpus
in Figure 4, suggesting that promoting monotonic-
ity in training corpus is beneficial for SimulMT
models to generate monotonic output, especially in
language pairs with differing word orders.

Within two paraphrasing methods, Fixed + NAT
and AlignAw + NAT , we can see that the mono-
tonicity of Fixed + NAT is always in between that
of Offline and AlignAw + NAT in Figure 5, and the
gap increases as the k value get higher.

While our methods are effective in EnKo, the per-
formance of suggested method is similar or lower
than that of baseline in EnJa. We presume that
the ineffectiveness in EnJa is due to its short av-
erage sentence length with highest emission rate,
as shown in Table 1. A short sentence often can-
not preserve semantic properties while being split
into chunks and reordered. For example, Fixed-
length reordering always chunks all sentences ig-
nores such feature and only increases disfluency in
the chunked result. Also, even though AlignAw en-
forces the consistency requirement on the chunks,
adjustment of such requirement like changing min-
imum chunk size may be required considering the
high emission rate.

Based on the highest performance at k = 8,
there is about 8% BLEU improvement over Offline
in EnKo whereas there is about 3% improvement
in EnZh and about 2% improvement in DeEn. It is
roughly proportional to the monotonicity improve-
ments shown in Figure 4.

5.3 Evaluation on Online References

We test wait-k models on our in-house EnKo online
and offline testsets of 150 lines. We choose EnKo
because the impact of reordering-and-refinement
is the greatest in that pair. The source sentences of
both testsets are identical. The online references

Figure 6: Differences of BLEU score between online
and offline of EnKo wait-k models.

are constructed by a professional interpreter under a
simulated simultaneous interpretation scenario and
the offline references are constructed by the same
interpreter assuming a typical translation scenario.
In construction of online references interpreter was
encouraged to perform monotonic interpretation
rather than anticipation. BLEU scores are com-
puted with both online and offline references for
each trained model. Figure 6 plot the subtraction
of BLEU scores on offline references from BLEU
scores on online references. It is noticeable that the
wait-k models trained on offline corpus have nega-
tive value while all the models trained on generated
corpus present positive values, which implies the
effectiveness of our approach. Overall, the substan-
tial differences at k = 6 may suggest that the chunk
size utilized by human interpreter has comparable
value.

6 Related Work

Due to word order differences between languages,
SimulMT training often face situations where an-
ticipation is required. Note that word order differ-
ence is observed to be problematic even for human
interpreters (Al-Rubai’i, 2004; Tohyama and Mat-
subara, 2006). Chen et al. (2020) suggest using
pseudo-references which involve utilizing wait-k
inference output to limit "future anticipation" in
training. Zhang et al. (2020b) utilize NMT teach-
ers to implicitly embed future information in their
SimulMT students for better anticipation perfor-
mance. Zhang et al. (2020a) study adaptive policy
to tackle this problem - authors suggest an adap-
tive SimulMT policy that dictate READ/WRITE
actions based on whether "meaningful units" are
fully formed with consumed input tokens.

Related work in the broader SimulMT and para-
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phrasing domain is presented in Appendix F.

7 Conclusion

Most of SimulMT models are trained on offline
translation corpora, which could lead to limitation
in translation quality and achievable latency, es-
pecially in non-monotonic language pairs. To ad-
dress this problem, we propose a reordering-and-
refinement algorithm to generate monotonically
aligned online target with NAT model. We then
train widely used wait-k SimulMT models on this
newly generated corpus. Resulting models show
BLEU score improvement and significant enhance-
ment on monotonicity in multiple language pairs.
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A Dataset Details

All utilized texts regarding English-to-Korean
and German-to-English directions are first tok-
enized with Moses (Koehn et al., 2007), then per-
language BPE vocabularies are learned on the
moses-tokenized trainset. The sizes of the vo-
cabularies are 29k BPE English vocabulary and
44k BPE Korean vocabulary for English-to-Korean
and 16k BPE German vocabulary and 16k BPE
English vocabulary for German-to-English. The
English-to-Japanese texts are first moses-tokenized.
And KyTea5 is applied to additionally tokenize
Japanese texts. Separate English and Japanese vo-
cabulary of size 32K is trained on tokenized train-
ing data using Sentencepiece (Kudo and Richard-
son, 2018). For English-to-Chinese training, no
moses-tokenization is applied and Chinese sen-
tences are tokenized using Jieba6. Separate English
and Chinese vocabulary of size 32K is trained on
training pairs using sentencepiece. The in-house
EnKo data consists mainly of the AIHub EnKo of-
fline translation corpus7, news domain translation
data, in-house proprietary patent data, and trans-
lated dialogue data of general domain.

B Additional Implementation Details

Our implementation is based on fairseq (Ott et al.,
2019), and all GPUs used are V100s. The align-
ment information used in reordering process is ex-
tracted with GIZA++ (Och and Ney, 2003). The
alignment information used to evaluate monotonic-
ity is extracted using fast-align (Dyer et al., 2013).
The alignments are measured in subword level. Em-
bedding weights are separately learned for source
and target languages, while transposed target lan-
guage embedding weights also works as linear pro-
jection layers at the top of transformer decoders.

C Reporting AlignAw + NAT Scores

The AlignAw + NAT wait-k models are trained on
different variations of AlignAw + NAT corpora -
AlignAw + NAT corpora generated with prefixes
fixed (b0), and with alterable prefixes (b1), and
combination of b0 and b1 filtered using BertScore
(b0b1). The reported AlignAw + NAT testset
BLEU scores are of the wait-k models that show
highest BLEU score on validset regardless of the
dataset variations.

5http://www.phontron.com/kytea
6https://github.com/fxsjy/jieba
7https://aihub.or.kr

EnKo Wait-k k=4 k=6 k=8 k=10
Offline 10.9/18 12.1/12 12.6/7 12.8/4

Pseudo Refs 11.2/19 11.6/13 12.2/9 13.3/5

Fixed + NAT 11.2/12 12.3/8 13.5/5 13.7/3

AlignAw + NAT 11.4/9 12.8/6 12.7/3 12.9/2

Table 4: BLEU scores/k-AR% of EnKo wait-k models.

D Comparison with Test Time wait-k
Refs

In recent work, Chen et al. (2020) propose a method
of pseudo-references generated with test time wait-
k decoding. We apply their method in EnKo to
create pseudo references for k ∈ {4, 6, 8, 10} and
train wait-k model. The results are presented in
Table 4. Similar to our monotonicity metric, this
work also suggest k-anticipation rate (k-AR) as a
metric of parallel corpora. We also measure and
report our generated corpus with this metric. Com-
pare to Offline and Pseudo Refs , we see that our
AlignAw + NAT corpus significantly decrease k-
AR and the models trained with AlignAw + NAT
also show enhanced BLEU score in general.

E Examples of Paraphrased Targets

Figure 7 presents an example sentence of English
to Korean in whole pipeline process. We first rep-
resent the source sentence and its two different
target sentences, online and offline translation. As
results of the reordering phase, for each method
(i.e., fixed chunking and AlignAw chunking), we
provide only one case: k = 8 in fixed chunking
and δsrc = 2 and δtgt = 2 in AlignAw chunking.
Figure 8 shows the final grid of AlignAw chunking
in this example. We conduct the MOS evaluation
with the result of refinement phase. MOS is the
average of human-evaluated score by professional
interpreters. In this evaluation, AlignAW + NAT
shows the best performance than others. More-
over, we present the inference outputs of SimulMT
models which are trained on generated monotonic
corpus. In this case, results of our methods are bet-
ter than the result of offline model. We also provide
DeEn example in Figure 9.

F More Related Work

Simultaneous Translation: A fixed policy is
used in (Dalvi et al., 2018) and (Ma et al., 2019)
which train SimulMT models according to the pre-
defined policy. In particular, the Wait-k strategy

http://www.phontron.com/kytea
https://github.com/fxsjy/jieba
https://aihub.or.kr
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proposed by (Ma et al., 2019) waits for k sub-words
and alternates READ/WRITE based on the emis-
sion rate. Due to the deterministic feature of this
schedule, the model can be easily implemented
and trained. On the downside, anticipation from
missing contents often fails to predict correct tar-
get tokens, and a fixed schedule could impede the
model from speeding up or slowing down flexi-
bly for source inputs. There are several works of
SimulMT with many variants of the Wait-k ap-
proach. For example, (Caglayan et al., 2020) ex-
plores whether additional visual context can com-
plement missing source information. Furthermore,
in (Zheng et al., 2020b), the opportunistic decod-
ing technique is introduced which allows partial
(certain length of suffix) corrections in a timely
fashion. Finally, (Zheng et al., 2020a) extended the
wait-k to an adaptive one by composing a set of
fixed policies heuristically.

Upon the proposal by (Cho and Esipova, 2016),
various adaptive policies have been suggested by
several works including (Gu et al., 2017; Zheng
et al., 2019a,b; Arivazhagan et al., 2019; Ma et al.,
2020). SimulMT proposed by (Cho and Esipova,
2016) use greedy decoding with heuristic waiting
criteria to decide whether the model should read or
emit, while (Gu et al., 2017) utilize a pre-trained
model with a reinforcement learning agent that
maximizes quality and minimizes latency. Advanc-
ing this work, (Alinejad et al., 2018) proposes to
add a new action PREDICT that anticipate future
source words. Recently, (Arivazhagan et al., 2019)
use hard attention to schedule the policy and intro-
duced new differentiable average lagging metrics
which can be integrated into training losses, and
(Ma et al., 2020) incorporate this work into the
multi-headed Transformer model. Furthermore,
(Zhang et al., 2020a) proposes an adaptive policy
which learns to segment source input considering
possible target output. Other researches including
(Zheng et al., 2019a) use separately trained oracles
in the supervision of extracted action sequence.

Paraphrase: Translation is one of more common
approaches for paraphrase generation. Mallinson
et al. (2017) explore pivoting (translating a source
sequence to a pivot language, then to a target lan-
guage) to generate paraphrases and assess cor-
relation between original and paraphrased sen-
tences. Back-translation has also been explored for
paraphrase generation (Wieting et al., 2017; Iyyer
et al., 2018). Other techniques, such as translating

with oversampling strategy have also bee studied
(Chada, 2020).

On the other hand, various NMT research em-
ploy paraphrased data to overcome data limitation.
Edunov et al. (2018) show that source-paraphrased
corpus generated with back-translation can signifi-
cantly improve BLEU scores in NMT tasks. Simi-
larly, Khayrallah et al. (2020) directly implements
paraphrasers in NMT training to improve transla-
tion quality.
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Figure 7: Example sentence of EnKo in whole pipeline process from inputs to SimulMT results.

Figure 8: Alignment-aware result of the EnKo pipeline example in Figure 7

Figure 9: Example outputs of DeEn wait-k models trained on reordered-and-refined corpora


