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Abstract

Unlike most work on pruning neural networks,
we make inference faster. Group lasso regular-
isation enables pruning entire rows, columns
or blocks of parameters that result in a smaller
dense network. Because the network is still
dense, efficient matrix multiply routines are
still used and only minimal software changes
are required to support variable layer sizes.
Moreover, pruning is applied during training
so there is no separate pruning step. Exper-
iments on top of English→German models,
which already have state-of-the-art speed and
size, show that two-thirds of feedforward con-
nections can be removed with 0.2 BLEU loss.
With 6 decoder layers, the pruned model is
34% faster; with 2 tied decoder layers, the
pruned model is 14% faster. Pruning entire
heads and feedforward connections in a 12-
1 encoder-decoder architecture gains an addi-
tional 51% speed-up. These push the Pareto
frontier with respect to the trade-off between
time and quality compared to strong baselines.
In the WMT 2021 Efficiency Task, our pruned
and quantised models are 1.9–2.7× faster at
the cost 0.9–1.7 BLEU in comparison to the
unoptimised baselines. Across language pairs,
we see similar sparsity patterns: an ascend-
ing or U-shaped distribution in encoder feed-
forward and attention layers and an ascending
distribution in the decoder.

1 Introduction

Making transformer-based machine translation
models (Vaswani et al., 2017) faster and smaller is a
common requirement for server and mobile deploy-
ment. We focus on pruning methods that actually
improve speed upon strong baselines. There is a va-
riety of work on pruning individual parameters (See
et al., 2016; Brix et al., 2020), structures like atten-
tion heads (Voita et al., 2019; Behnke and Heafield,
2020), and even whole layers (Sajjad et al., 2020).
Unfortunately, much of the prior work on pruning
does not report speed or makes inference slower:

Brix et al. (2020) achieved no speed-up while Yao
et al. (2019) report a 87.5% sparse model took
1.6× as long using cuSPARSE. However, Gale
et al. (2020) point out that coefficient-sparse ker-
nels like cuSPARSE are highly unoptimised. Even
block-sparse kernels are 1.8× slower at 70% spar-
sity (Gray et al., 2017) though they did eventually
achieve a 1.4× speed-up with “balanced pruning”.
We propose pruning entire rows or columns and
even whole submatrices of a tensor, resulting in a
smaller dense matrix. Because the inference prob-
lem remains dense, we sidestep the need for sparse
kernels to improve speed.

We use group lasso (Yuan and Lin, 2006) regu-
larisation, which encourages groups to diminish to-
gether, during the usual training procedure. Murray
et al. (2019) used group lasso to prune feedforward
layers in their submission to the Efficient Transla-
tion Task at WNGT 2019 (Kim et al., 2019a). Their
submissions, which “eliminate more than 25% of
the model’s parameters while suffering a decrease
of only 1.1 BLEU” were at best 6% faster than their
baseline. When tuned for the same quality loss, our
method reduces size by 66% and translates 52%
faster. Moreover, their submissions were slower
than higher-quality competitors by an order of mag-
nitude, whereas our baselines are state-of-the-art.

Too much work (Gu et al., 2018; Lee et al., 2020;
Wang et al., 2020b) on efficiency compares a base-
line unoptimized system with their optimized sys-
tem, which is smaller or faster in exchange for
some reduction in BLEU. What these papers fail
to prove is that their method works better than ex-
isting methods that also make models smaller or
faster in exchange for some reduction in BLEU like
knowledge distillation (Kim and Rush, 2016), quan-
tisation, reducing the number of layers, prior work
on pruning, or simply training a smaller model. In
other words, is the trade-off offered by their method
any better than the trade-offs already available, re-
gardless of the type of method? Stacking the exist-
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ing methods produces a variety of data points with
different speed and quality. The Pareto frontier
is the set of data points that a practitioner would
choose from: no other data point is simultaneously
faster (or smaller) and of higher quality. We argue
that a new method’s empirical justification should
advance the Pareto frontier. In this work, we build
upon and compare to strong baselines to show the
frontier advances.

To compare with the state-of-the-art in terms
of speed and to investigate the impact this prun-
ing makes on different languages, we build
upon English→German, Spanish→English and
Estonian→English student models trained with
sequence-level knowledge distillation (Kim and
Rush, 2016). We experiment with four architec-
ture variations: a typical decoder with 6 layers and
faster variations with shallow decoder of only 1–2
layers. We also include our experiments from the
WMT 2021 Efficiency Shared Task.

Our key findings show that:
1. It is possible to prune entire nodes from feed-

forward layers early during training, result-
ing in Pareto optimal architectures (quality vs
speed). Similarly, pruning entire heads on the
top of it results in even faster models.

2. Different language pairs exhibit similar struc-
tural sparsity patterns.

3. Pruning during training matches, and some-
times outperforms, retraining the pruned
model from scratch.

4. Among the English→German Pareto optimal
models, the notable examples include a model
with a 6-layered decoder being 34% faster at
the cost of 0.2 BLEU and a model with 12-1
encoder-decoder ratio gaining additional 51%
speed-up costing 0.3 BLEU.

5. This type of pruning combined with quanti-
sation gives a significant speed boost. Our
models are 1.9–2.7× faster at the cost of 0.9–
1.7 BLEU.

2 Related work

Extensive research to reduce workload, compress
and speed-up neural machine translation models
includes methods such as knowledge distillation
(Kim and Rush, 2016), quantisation (Quinn and
Ballesteros, 2018; Aji and Heafield, 2020), layer
approximation (Kim et al., 2019b) and pruning.
For the best results, they can be stacked together to
train the efficient state-of-the-art model.

In their analysis, Dalvi et al. (2020) claim that
85% of transformer neurons are redundant across
the network. Using transfer learning, they find
the minimal set of neurons that achieve optimum
performance given the task. However, that method
requires a fully pretrained model to perform a brute-
force search on it, making overall training time too
long.

Pruning techniques are usually split into two
groups: unstructured and structured. Unstructured
removes individual coefficients. It is straightfor-
ward to apply and yields good quality results simul-
taneously, which makes it popular. Unstructured
magnitude pruning, while successfully applied to
NMT (See et al., 2016), often needs retraining to
recover from quality damage. Moreover, it also
requires an efficient matrix multiplication routine
to get any speed-up besides size compression. The
latest research on combining lottery ticket hypothe-
sis with other methods (Brix et al., 2020) sparsified
NMT models by 70 to 90% while losing between
0.6 to 3.3 BLEU points in quality. They used a
sparse matrix representation for compression but
did not report any speed gains.

On the other hand, structured pruning removes
whole layers or groups of parameters, such as
blocks (Narang et al., 2017), which makes it easier
to optimise on hardware via a special block-sparse
matrix multiply (Gray et al., 2017). We apply block
sparsity, but the blocks are entire rows or columns
so that the usual dense matrix multiply can be used
with less overhead. Another line of work prunes
entire attention heads from a model (Voita et al.,
2019; Behnke and Heafield, 2020), which we also
explore in our approach.

Yao et al. (2019) combine unstructured sparsity
with a light structure that aims to balance parallel
workloads. They introduce a specialised kernel
for their structured sparsity. Our workloads are
easier to balance because they retain density. The
idea that different levels of coarseness can be com-
bined may also extend to prune coefficients, rows,
columns, and layers simultaneously in future work.

Wang et al. (2020c) parametrise weight matri-
ces with low-rank factorisations and remove rank-1
components during training, which is said to bet-
ter preserve linear transformation of uncompressed
matrices. They report compressing a Transformer-
XL language model by 90% with 1.6× speed-up
during inference. Low-rank approximations pre-
serve density, albeit at the cost of doing serial ma-
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trix multiplications.
Fan et al. (2019) explored a structured dropout

that allows users to prune models for inference.
Unfortunately they fail short on NMT experiments.
They call WMT14 en-de a ‘competitive benchmark’
which it has not been for many years. Most prob-
lematically, they use tokenised BLEU, which has
been noted to be harmful and gives false ‘boost’
of multiple points on tokenised data. They do
not specify the tokeniser or script they use either.
Again, there do not include any report on speed or
model sizes despite claiming to have much smaller
models as a result.

Dodge et al. (2019) used group lasso to sparsify
a variant of RNN for text classification, which is an
easier task to learn than NMT. They have to train
until convergence twice, which we avoid. They pro-
vide no speed or model size analysis, suggesting
that there is no improvement or proper implemen-
tation.

Group lasso has also been previously used by
Wuebker et al. (2018) to compress the delta be-
tween a base model and a domain adapted version
of the model. They still have to run a full-size
model in inference, so they have no overall speed
gain. They also have to store the full base model;
compression only refers to the delta. In contrast,
our work makes the base model faster and smaller.
The different goals also mean different groups: they
focused on embeddings that update in domain adap-
tation while we focus on costly parts of the archi-
tecture.

Though we use the same algorithm of group
lasso, our method differs in several ways from
(Murray et al., 2019). We prune submatrices in
addition to rows and columns, though experiments
on just rows and columns show better performance
than theirs. They pruned only feedforward layers;
we see more speed-up from feedforward layers and
additionally prune attention. Finally, we use the
normal Adam optimiser (Kingma and Ba, 2014)
instead of proximal gradient descent (Parikh and
Boyd, 2014). Empirically, we find turning regu-
larisation off after some training is important to
quality. Overall, we achieve a much better trade-
off between quality and speed/compression.

Most of the methods above need either tuning or
retraining, often multiple times. They are usually
treated as techniques to compress already existing
models. Still, there are ongoing research efforts
on training a reduced model from start to finish in

one go. For example, Golub et al. (2018) pruned
weights with the lowest total accumulated gradi-
ents and reduced the memory footprint to allow
training much larger models than possible on avail-
able hardware. Some methods prune immediately
after initialisation, in either unstructured (Lee et al.,
2019) or structured (Wang et al., 2020a) way. Our
method is orthogonal and is integrated into a train-
ing scheme instead.

Using regularisation to sparsify groups of param-
eters was introduced by Yuan and Lin (2006) and
has been since then built upon in the machine learn-
ing field (Scardapane et al., 2017; Wen et al., 2016).
In this paper, we use group lasso in its simplest
form to achieve structural sparsity in transformer
layers, focusing on inference speed of machine
translation.

3 Methodology

To allow regularisation to remove parameters struc-
turally, we need to define how we group parameters.
Depending on which matrix it is, we treat parame-
ters in its rows, columns or heads as one entity to
be pruned together. Thus, we apply a group lasso
over them. A bias term, if necessary, is treated as a
part of regularised groups. We want such a sparsity
pattern to emerge early into training so that there is
no need to retrain or tune it later.

Group lasso regularisation

Given a matrix w split into non-overlapping groups
of parameters G, the group lasso is defined as:

R(w) =
G∑

g=1

γ ‖wg‖2 =
G∑

g=1

γ

√√√√√|Gg |∑
j=1

(
wj
g

)2
.

(1)

This penalty term applies L2 norm over the pa-
rameters in each group to force them to go towards
0 together, with L1 on top of it to enforce overall
sparsification. γ is a scalar that orthonormalises
groups of different sizes (Simon and Tibshirani,
2012), scaling by the number of elements in a group√
dg. If regularising only rows and columns, all

groups are of the same size. However, in later ex-
periments, we also regularise whole attention heads
alongside individual feedforward connections.

In the end, the penalty for each layer is added
to the cost function and scaled by λ and averaged
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Figure 1: An example of block-sparse matrices in the
first layer of decoder (top) and encoder (bottom) pruned
by group lasso regularisation.

over words in a batch along with cross-entropy:

1

|B|
(
∑
x∈B

CE(x) + λ ∗
∑
w∈W

R(w)) . (2)

Initially we experimented with 8x8 blocks in
group lasso. However, this approach removed en-
tire rows and columns that correspond to pruning
connections. Figure 1 shows an example of this ef-
fect on parameter matrices. When an entire row or
column is zero, it can be deleted to form a smaller
dense matrix. If an input connection is ignored and
not used elsewhere, it can be removed from the
upstream matrix. If an output connection is con-
stant, the constant can be folded into downstream
bias. These optimisations are typically discovered
automatically by regularisation. We mainly focus
on pruning feedforward layers, but later include
experiments that prune attention heads as well.

4 Setup

4.1 Data & architectures

We concentrate on three language pairs:
English→German, Spanish→English and
Estonian→English. We use knowledge distillation
(Kim and Rush, 2016) under teacher-student
regime.

In English→German, we follow the Workshop
on Neural Generation and Translation 2020 Effi-
ciency shared task (WNGT2020) 1 under the WMT
2019 data condition (Barrault et al., 2019). As
a teacher, we use a WMT 2019 system submit-
ted by Microsoft to news translation task (Junczys-
Dowmunt, 2019). It is an ensemble of four deep
transformer-big models (Vaswani et al., 2017)
with 12 layers in encoder and decoder, embed-
ding size of 1024 and feedforward size 4096 and
8 attention heads. For Spanish→English and
Estonian→English, we use teachers provided by

1https://sites.google.com/view/wngt20

the Bergamot,2 which is an ensemble of two similar
architectures but with 6 layers instead.

We start with strong student baselines, which are
already very small and fast, closely following the
latest trends set by WNGT2020.

Students for all language pairs have an em-
bedding dimension of 256 and feedforward of
1536, based on “tiny” architecture from Kim et al.
(2019a). The attention has 8 heads in each layer
except for decoder self-attention, which is replaced
by a faster SSRU (Simpler Simple Recurrent Unit)
(Kim et al., 2019b). The models use a shared vocab-
ulary of 32,000 subword units generated by Senten-
cePiece (Kudo and Richardson, 2018) and translate
using shortlists of top 50 words.

We tried different configurations of layers to in-
vestigate trade-offs between them and potential bot-
tlenecks. We describe each architecture by layer
number in encoder and decoder and whether the
decoder layers are tied. Thus, we investigate the fol-
lowing architectures (chronologically): “6-2tied”,
“6-6”, “12-1” and “6-2”.

Other training hyperparameters were Marian de-
faults for training a transformer base model.3 We
used dynamic batching, filling a 10GB workspace
on each of 4 GPUs, resulting in about 71,000 words
per batch in a “6-2tied” student and about 46,000
words per batch in a “6-6” student. As is more
effective in the teacher-student regime, we did not
use dropout or label smoothing. We use the Adam
optimiser (Kingma and Ba, 2014).

The English→German models were trained on
13M sentences of available parallel data, using
the concatenated English-German WMT testsets
from 2016–2018 as a development set. The
Spanish→English students were trained on 242M
sentences which included about 15M of mixed
forward- and backtranslations. We used a WMT13
testset for development. Estonian→English stu-
dents were trained on 132M sentences which in-
cluded about 30M of mixed forward- and back-
translations, and WMT18/dev was used for devel-
opment.

We trained and decoded all our models using
the Marian NMT toolkit (Junczys-Dowmunt et al.,
2018). We evaluate quality and speed on 1 CPU
core. In order to expand beyond BLEU and in-
centivise others to do the same, we additionally

2https://github.com/browsermt/students
3Available via --task transformer-base.

https://sites.google.com/view/wngt20
https://github.com/browsermt/students
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evaluate with chrF (Popović, 2015) and COMET4

(Rei et al., 2020) as well. We use SacreBLEU (Post,
2018) for BLEU and chrF. Training progressed un-
til BLEU stopped improving for 20 consecutive
validations. The checkpoint with the highest BLEU
score was selected.

4.2 Training regime

Our training regime for all of ours models has three
phases:

1. Pretrain for 25k batches.
2. Train with a regulariser for 250k batches.
3. Remove rows/columns with a sum less than

1e−5, collapse a model and then train without
regularisation until convergence.

It is well known that initial transformer training
is problematic and sensitive to model hyperparam-
eters (Nguyen and Salazar, 2019; Aji et al., 2019;
Liu et al., 2020). A transformer starts training with
1–2 BLEU and quickly jumps over to 15–30 or
more within a short training period, then slows
down. Thus, we start pruning after BLEU improve-
ment slowed down to be less than 1 BLEU point
in a single checkpoint. This way, we avoid any po-
tential damage to a model during the critical initial
period. In this case, we pretrain for 25k batches.

Next, we had to decide how long to regularise
our model to achieve a good trade-off between qual-
ity and sparsity levels. We started with regularising
a model until convergence. As shown in Fig. 2,
most of the parameters are already pruned in the
first half of the training. Since students require
significantly more updates to train than standard
models, we want to give a model enough time to
sparsify and converge without any constraints. For
this reason, we split an average training time into
two halves: the first with pruning, the second with-
out it with normal convergence. We found that
switching the regulariser off at some point is less
aggressive and allows a model to recover some of
its lost quality. We chose 250k updates as a pivot
as it is about halfway to when the model has begun
stalling in Fig. 2.

After each step, we copy the latest checkpoint
and start a fresh training round. Thus, all training
hyperparameters are reset. We checked and found
no additional advantage to our baselines by refresh-
ing learning rate scheduling or Adam optimiser.
We do so to avoid partially retraining the same set-
tings during our development phase, but Brix et al.

4We used the default ’wmt20-comet-da’ metric model.
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Figure 2: An example of pruning FFN layers in an
English→German tied model (λ = 0.5). About
“halfway” through, most parameters are already re-
moved.

Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0
BLEU 37.2 37.8 37.4 36.8 36.5 36.1
chrF 63.3 63.8 63.4 63.1 62.8 62.5
COMET 49.7 51.1 50.4 48.9 47.2 46.0
FFN sparsity 0% 45% 63% 73% 85% 92%
Size (MB) 61 51 47 45 43 41
WPS 2404 2613 2748 3067 3215 3420
Speed-up 1.00 1.09 1.14 1.28 1.34 1.42

(a) With pruned encoder + decoder.

Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0
BLEU 37.2 37.6 37.3 36.8 36.8 36.4
chrF 63.3 63.4 63.4 63.1 62.9 62.8
COMET 49.7 50.4 49.8 49.8 48.3 47.8
FFN sparsity 0% 48% 64% 72% 79% 82%
Size (MB) 61 50 47 45 44 43
Words per sec 2404 2748 2916 2929 3054 3096
Speed-up 1.00 1.14 1.21 1.22 1.27 1.29

(b) With pruned encoder.

Table 1: The evaluation of English→German “6-2tied”
students pruned using group lasso.

(2020) found it beneficial in their pruning scheme.

5 Experiments

5.1 Pruning “6-2tied” models
(English→German)

We begin our experiments with the state-of-the-
art English→German student with a tied decoder
(Bogoychev et al., 2020). This is their fastest ar-
chitecture and we want to investigate how much
further it can be pushed in that regard. In terms
what is a typical difference in inference speed, a
tiny distilled model is usually at least 20× faster
than its teacher (Germann et al., 2020).

We investigate two scenarios: pruning both
the encoder and decoder (Tab. 1a) or prun-
ing only the encoder (Tab. 1b). The mod-
els were trained with the regularisation term
λ ∈ {0.3, 0.4, 0.5, 0.7, 1.0}.

Since there is only one layer’s worth of decoder
parameters, the regularisation is reluctant to re-
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Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0

BLEU Pruned 37.2 37.8 37.4 36.8 36.5 36.1
Reinit - 37.1 36.5 36.5 36.1 35.3

chrF Pruned 63.3 63.8 63.4 63.1 62.8 62.5
Reinit - 63.2 62.8 62.7 62.3 62.0

COMET Pruned 49.7 51.1 50.4 48.9 47.2 46.0
Reinit - 48.8 47.3 47.3 45.7 42.7

Table 2: The average BLEU of English→German
“6-2tied” students with pruned encoder and decoder
(Pruned), compared to the same architecture trained
from scratch (Reinit).

Reg. λ −→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0
Enc. L1 1536 821 453 259 100 56 35 12
Enc. L2 1536 932 506 327 166 93 65 22
Enc. L3 1536 1009 502 298 129 79 47 10
Enc. L4 1536 1213 663 384 147 70 41 11
Enc. L5 1536 1149 646 392 186 119 87 16
Enc. L6 1536 1366 919 610 322 208 148 43
Dec. L1 1536 542 231 121 43 15 8 1
Dec. L2 1536 836 435 259 108 50 27 4
Dec. L3 1536 448 227 129 49 26 16 3
Dec. L4 1536 1064 623 422 229 142 111 25
Dec. L5 1536 1528 1260 876 450 276 198 49
Dec. L6 1536 1536 1536 1536 1517 1216 835 178
BLEU 38.5 38.7 38.6 38.3 37.7 37.6 37.4 36.8
chrF 64.2 64.5 64.4 64.1 63.7 63.6 63.5 63.1
COMET 54.8 55.7 54.7 53.8 52.9 52.8 51.9 49.6
FFN sparsity 0% 31% 55% 69% 81% 87% 91% 98%
Size (MB) 83 72 63 58 54 52 50 48
WPS 1225 1377 1543 1639 1741 1827 1867 1976
Speed-up 1.00 1.12 1.26 1.34 1.42 1.49 1.52 1.61

Table 3: The evaluation of English→German “6-6”
students pruned with group lasso on 1 CPU core, with
the distribution of parameters left in each layer.

move any parameters from it (Tab. 1a). A simi-
lar effect was observed by Behnke and Heafield
(2020).

Because only the encoder was pruned, the speed-
up is relatively small. Still, we successfully prune
from half up to two-thirds of feedforward param-
eters with ±0.2 BLEU change with 9–14% faster
inference. In the most extreme case, it gains 42%
speed-up at the cost of 1.5 BLEU.

To investigate whether this pruning just found a
new type of architecture structure, we reinitialise
and retrain the smaller pruned models from scratch
with reduced dimensions. As seen in Tab. 2, the
same models achieve noticeably worse translation
quality when trained from the get-go in comparison
to careful pruning.

Next, we concentrate on pruning encoder only
(Tab. 1b). The model with about 50% of feedfor-
ward parameters removed is 14% faster with no
change to the overall quality. The most aggressive
pruning removes almost all feedforward layers in

Reg. λ −→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0

BLEU Pruned 38.5 38.7 38.6 38.3 37.7 37.6 37.4 36.8
Reinit - 38.1 38.0 37.6 37.3 37.2 37.0 36.6

chrF Pruned 64.2 64.5 64.4 64.1 63.7 63.6 63.5 63.1
Reinit - 64.0 63.9 63.7 63.6 63.4 63.3 63.0

COMET Pruned 54.8 55.7 54.7 53.8 52.9 52.8 51.9 49.6
Reinit - 53.8 53.3 52.3 51.5 51.4 49.7 49.1

Table 4: The evaluation of English→German “6-6”
students with pruned both encoder and decoder
(Pruned), compared to the same architecture trained
from scratch (Reinit).

Reg. λ→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0
BLEU 37.3 36.9 36.8 36.6 36.3 36.3 36.1 35.9
chrF 62.6 62.4 62.3 62.3 62.0 62.0 61.9 61.8
COMET 58.1 57.3 56.8 56.2 55.1 55.4 54.6 54.3
FFN sparsity 0% 48% 67% 77% 86% 91% 94% 98%
Size (MB) 83 59 66 55 52 50 49 48
WPS 1407 1655 1811 1891 2017 2071 2112 2204
Speed-up 1.00 1.18 1.29 1.34 1.43 1.47 1.50 1.57

Table 5: The evaluation of Spanish→English “6-6” stu-
dents pruned with group lasso on 1 CPU core averaged
over WMT12–13.

the encoder at the loss of 1.2 BLEU.
In both cases, only one-third of feedforward pa-

rameters is required to perform within a small mar-
gin of BLEU loss (−0.2 to −0.3). Removing more
than that results in progressively worse quality.

5.2 Pruning “6-6” models
(English→German, Spanish→English)

The models with “6-6” architecture were trained
with λ = {0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 1.0} prun-
ing both encoder and decoder. The results are pre-
sented in Tab. 4. Additionally, we show the number
of remaining rows/columns left in each layer, along
with sparsity and inference speed-up.

The pruned models behave similarly to the
smaller models in Tab. 1. The regularised mod-
els are of a better translation quality than the same
architectures trained from scratch (Tab. 6). Sim-
ilarly, it is possible to remove two-thirds of all
feedforward parameters with -0.2 BLEU and +34%
speed-up. Pruning more than that causes a notable
step down in quality, which may not be worth aim-
ing for since the “6-2tied” architectures outperform
that loss. The sparsity pattern follows an ascending
trend in both encoder and decoder layers.

We repeat the experiments but this time with
Spanish→English using the same “6-6” architec-
ture. The models were trained with regularisation
λ = {0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 1.0}. The results
are presented in Tab 5.
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Reg. λ −→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0

BLEU Pruned 37.3 36.9 36.8 36.6 36.3 36.3 36.1 35.9
Reinit - 37.0 36.7 36.5 36.3 36.2 36.2 35.8

chrF Pruned 62.6 62.4 62.3 62.3 62.0 62.0 61.9 61.8
Reinit - 62.5 62.2 62.1 62.0 61.9 61.9 61.7

COMET Pruned 58.1 57.3 56.8 56.2 55.1 55.4 54.6 54.3
Reinit - 57.3 56.7 55.9 55.1 54.6 54.5 53.0

Table 6: The evaluation of Spanish→English “6-6” stu-
dents with pruned encoder and decoder (Pruned), com-
pared to the same architecture trained from scratch
(Reinit) averaged over WMT12–13.

Reg. λ −→ Base 0.2 0.3 0.4 0.5 0.7
BLEU 38.2 37.9 37.3 37.0 37.0 36.6
chrF 63.9 63.6 63.2 62.9 62.9 62.5
COMET 49.5 49.6 48.2 46.5 45.5 44.6
Att. sparsity 0% 48% 56% 58% 57% 59%
FFN sparsity 0% 63% 76% 81% 84% 87%
Size (MB) 85 54 48 45 44 43
WPS 1930 2918 3029 3430 3446 3485
Speed-up 1.00 1.51 1.57 1.78 1.79 1.81

Table 7: The evaluation of English→German “12-1”
students pruned with group lasso on 1 CPU core.

The only differences between German and Span-
ish experiments are the languages involved and the
scale of the training data: Spanish students trained
on a 19× larger corpus. Experiments of such scale
are still widely unexplored in machine translation,
raising the question of whether known methods are
beneficial in real-life scenarios. Most pruning pa-
pers use English→German models under WMT14
constraints (Bojar et al.), which is only 4.5M sen-
tences (See et al., 2016; Brix et al., 2020; Hsu
et al., 2020), sometimes branching into different
languages such as Russian or French in a similar
scope (Voita et al., 2019; Kasai et al., 2020). For
that reason, we sampled 13M from 242M sentences
(the same amount as English→German) and re-
peated the experiments. In the end, we came to sim-
ilar conclusions, meaning that the Spanish subpar
results are not related to architecture or data size.
The reinitialised models (Tab. 6) on full dataset
achieve comparable quality to their pruned counter-
parts. We conclude that in some cases, structural
pruning serves as an architecture search method to
find Pareto optimal quality-speed trade-off.

5.3 Pruning “12-1” models
(English→German)

Kasai et al. (2020) argues that shifting layers from
decoder to encoder makes a model much faster at
almost no cost in translation quality. Their experi-
ments have shown that 12-1 encoder-decoder layer

Baseline rc+heads rc+rc
FFN Heads FFN Heads FFN Heads

Encoder 1 1536 8 579 0 210 7
Encoder 2 1536 8 793 1 552 1
Encoder 3 1536 8 959 0 712 3
Encoder 4 1536 8 913 0 459 6
Encoder 5 1536 8 1212 3 708 4
Encoder 6 1536 8 1523 2 1033 8
Decoder 1 1536 8 1536 2 1535 7
Decoder 2 1536 8 1536 7 1536 8

BLEU Pruned 31.5 29.8 30.4
Reinit - 28.5 30.3

chrF Pruned 58.4 57.0 57.6
Reinit 56.0 57.5

COMET Pruned 54.8 49.9 53.0
Reinit - 46.8 50.7

Time 21.57 15.16 18.9
WPS 1414 2012 1614
Speed-up 1.00 1.42 1.14

Table 8: The WMT18 testset evaluation of
Estonian→English “6-2” students pruned with
group lasso on 1 CPU core with the same architectures
trained from scratch (Reinit).

proportions perform as good as 6-6. Pruning an
already reduced decoder may cause a bottleneck
that damages quality too much. However, if we
shift most of the workload into an encoder, we can
focus on pruning it exclusively.

This time we prune attention layers as well.
Pruning attention structurally is more tricky — you
cannot remove individual connections easily due to
how matrix multiplications perform their routine.
The only option is to remove respective heads or an
entire layer. To keep it simple, we regularise indi-
vidual connections and remove an entire attention
head if at least half of its connections are dead (its
rows/columns < 1e− 5). The results are in Tab. 7,
with an extended version of it in the appendix.

In terms of quality and speed-up, it outperforms
other models presented so far. This type of pruning
was not aggressive on attention, preferring to prune
feedforward layers instead, indicating that attention
connections perform more critical work in a model.
At the small cost of 0.3 BLEU, the model is 51%
faster than the baseline.

5.4 Pruning “6-2” models with head lasso
(Estonian→English)

Finally, we train Estonian→English models, prun-
ing both feedforward and attention layers across
the whole model. We do not sweep parameters,
choosing λ = 0.3. The results are in Tab. 8.

This time we try two options:
• regularising individual connections and then

removing heads with more than half of con-



1081

BLEU COMET Sparsity
WMT20 WMT21 WMT20 WMT21 Att. FFN Speed (s)

12-1.tiny 36.1 27.6 48.2 41.9 0% 0% 19.2
+ head-lasso pruning 34.7 27.0 42.9 38.8 3% 75% 14.5

+ 8bit quantisation 33.9 26.2 38.8 33.6 3% 75% 9.3
+ 8bit finetuning 34.1 26.7 39.8 33.0 3% 75% 9.3

+ rowcol-lasso pruning 33.8 26.3 39.3 34.2 68% 73% 11.6
+ 8bit quantisation 32.9 25.6 33.7 28.7 68% 73% 6.9

+ 8bit finetuning 32.9 26.0 35.7 31.3 68% 73% 7.1

12-1.micro 35.4 27.6 46.2 40.2 0% 0% 17.1
+ head-lasso pruning 34.6 26.7 43.0 35.4 3% 72% 14.1

+ 8bit quantisation 33.4 26.0 36.7 31.2 3% 72% 9.2
+ 8bit finetuning 33.7 26.5 38.3 33.3 3% 72% 9.2

+ rowcol-lasso pruning 34.3 26.4 40.7 35.1 60% 59% 12.0
+ 8bit quantisation 32.7 25.5 34.2 29.1 60% 59% 7.5

+ 8bit finetuning 33.3 25.9 35.2 30.5 60% 59% 7.5

Table 9: 8-bit model performance. BLEU score is calculated from WMT20. Speed is measured on a single core
CPU with a mini-batch of 32. We experimented with two types of pruning. Head pruning removes entire heads.
Row and column pruning removes entire rows or columns of matrices, resulting in a smaller matrix.
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Figure 3: Pareto trade-off between average trans-
lation quality and average translation time for
English→German students of different architectures.

nections inactive (rc+rc = rows/columns in
FFN and attention both)

• regularising entire heads with group lasso
(rc+heads = rows/columns in FFN, heads in
attention)

Due to how the penalty is scaled with γ in Eq. 1,
the regularisation of entire heads is much more
aggressive towards them, removing some layers
entirely, which we skip during inference. Both
pruning methods perform within a -0.1 to -0.3
BLEU difference compared to the same architec-
ture trained from scratch. However, despite only
0.1 BLEU difference, the same model loses 2.3
COMET points, further validating the fact that
training from scratch is subpar. Those results show
that there is a potential in regularising larger struc-

tures and even entire layers as a way of architec-
ture searching. We leave the improvement of the
method for future work.

6 Pareto trade-off (English→German)

In this section, we look at the Pareto trade-off be-
tween the translation quality and speed for all our
English→German models (Fig. 3). To be fair in our
comparison, we trained several simpler baselines
with uniformly smaller feedforward dimensions set
to {768, 384, 192, 96}. For“12-1” we additionally
set heads per layer to 4 to roughly reflect sparsity
percentages of pruned models.

We pit against each other the said baselines, the
pruned models and their reinitialised counterparts.
Naturally, the models with 6 decoder layers are
slower but of a higher quality. However, it is better
to switch to fewer decoder layers than to prune
too far. Our experiments on “12-1” architecture
show that its pruned models outperform all others
(including all simpler baselines), being a leader in
the Pareto frontier.

7 WMT2021 Efficiency Shared Task

To put our method to the final test, we partici-
pated in WMT2021 Efficiency Task5 (Behnke et al.,
2021). Under the task constraints, we trained,
pruned and quantised 12–1.tiny and 12–1.micro ar-
chitectures. We tried two pruning settings, follow-
ing the directions set in Sect. 5.3 and 5.4: rowcol-

5http://www.statmt.org/wmt21/
efficiency-task.html

http://www.statmt.org/wmt21/efficiency-task.html
http://www.statmt.org/wmt21/efficiency-task.html
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Figure 4: The distribution of feedforward and attention connections in Spanish→English “6-6” pruned students.

lasso and head-lasso. Both prune feedforward and
attention layers in the encoder. rowcol-lasso reg-
ularised individual connections and removed an
entire attention head if at least half of its connec-
tions are dead. head-lasso applied lasso to a whole
head submatrix. Due to the scale of the task, we
had no opportunity to grid-search for the best prun-
ing hyperparameters, thus the experiments are as
close to ’out-of-the-box’ usage as they can be. We
used λ = 0.5 for both methods. The models were
pretrained for 50k updates and regularised for 150k,
after which the models were sliced and trained until
convergence. The results are presented in Tab. 9.

head-lasso left attention layers almost com-
pletely unpruned, focusing on removing connec-
tions from feedforward layers instead. rowcol-
lasso was much more aggressive in both layers at
the cost of quality. To further optimise the models,
they were quantised to 8bit. However, we observe
that the smaller a model is, the larger the quality
drop after its quantisation. Additional finetuning
allows us to recover at least partially from the quan-
tisation damage. Evaluating on the latest testset
WMT21, our pruned models are 1.2–1.7× faster at
the cost of 0.6–1.3 BLEU. With quantisation, those
models are 1.9–2.7× faster losing 0.9–1.7 BLEU
in comparison to the unpruned and unquantised
baselines.

8 Analysis

To analyse sparse architecture patterns, we exper-
iment with Spanish→English models. We prune
individual connections in all attention and feedfor-
ward layers. In Fig. 4, we present the distribution
of remaining parameters for the baseline and the
models regularised with λ = {0.1, 0.2, 0.3, 0.4}.

Since the decoder self-attention is replaced with
SSRU (Kim et al., 2019b), we only show two “pairs”
of parameters: encoder self-attention and decoder

context attention, with their feedforward counter-
parts.

Both encoder layer types follow a similar spar-
sity pattern making a “U-shape”, with the second
and third ones being the most aggressively pruned.
On the other hand, the decoder parameters are
pruned less and less with each subsequent layer.
This arrangement of parameters is identical to that
exhibited by pruned attention heads in Behnke and
Heafield (2020). In that paper, the attention in the
encoder also prunes middle layers, and the context
attention retains more heads in further layers. It
strongly indicates that the decoder prefers to attend
to itself first and confront context later.

The Estonian architectures, in which we pruned
entire attention heads, exhibit a roughly similar
structure. For us, this is a strong signal that struc-
tural pruning with its architecture search may have
a broader generalisation.

9 Conclusions

This paper investigated the structural pruning of
a transformer incorporated into a typical training
routine. We focused on shredding nodes in feed-
forward layers and whole attention heads as train-
ing progresses. Our experiments on knowledge-
distilled models with deep and shallow decoders
have shown that this type of pruning leads to Pareto
optimal architectures in quality and speed. More-
over, it converges in just one “pass” like a baseline
since there is no need to repeat an entire or a part
of the training. The resulting sparsity patterns are
similar across different languages, with the first
and middle layers being the most prioritised dur-
ing pruning. On the other hand, our experiments
on pruning both feedforward and attention layers
reveal that some of them, such as the last context
attention layer, distinctively avoid being pruned.
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Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0
Enc. L1 1536 330 179 113 52 29
Enc. L2 1536 633 387 266 135 57
Enc. L3 1536 882 533 351 175 82
Enc. L4 1536 738 420 269 137 66
Enc. L5 1536 720 447 309 179 100
Enc. L6 1536 1079 686 488 293 166
Dec. L1 1536 1534 1373 1072 626 339
BLEU 37.2 37.8 37.4 36.8 36.5 36.1
chrF 63.3 63.8 63.4 63.1 62.8 62.5
COMET 49.7 51.1 50.4 48.9 47.2 46.0
FFN sparsity 0% 45% 63% 73% 85% 92%
Size (MB) 61 51 47 45 43 41
WPS 2404 2613 2748 3067 3215 3420
Speed-up 1.00 1.09 1.14 1.28 1.34 1.42

(a) With pruned encoder + decoder.

Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0
Enc. L1 1536 310 164 98 42 24
Enc. L2 1536 597 372 239 104 50
Enc. L3 1536 831 480 302 143 59
Enc. L4 1536 692 376 234 115 48
Enc. L5 1536 664 400 253 142 73
Enc. L6 1536 948 575 399 209 112
Dec. L1 1536 1536 1536 1536 1536 1536
BLEU 37.2 37.6 37.3 36.8 36.8 36.4
chrF 63.3 63.4 63.4 63.1 62.9 62.8
COMET 49.7 50.4 49.8 49.8 48.3 47.8
FFN sparsity 0% 48% 64% 72% 79% 82%
Size (MB) 61 50 47 45 44 43
Words per sec 2404 2748 2916 2929 3054 3096
Speed-up 1.00 1.14 1.21 1.22 1.27 1.29

(b) With pruned encoder.

Table 10: The evaluation of English→German “6-
2tied” students pruned using group lasso on 1 CPU
core.

Reg. λ→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0
Enc. L1 1536 563 258 137 52 30 24 12
Enc. L2 1536 454 236 156 73 47 31 15
Enc. L3 1536 421 221 135 73 47 37 19
Enc. L4 1536 799 368 197 96 52 34 16
Enc. L5 1536 999 565 350 189 114 83 32
Enc. L6 1536 1227 751 472 258 166 115 40
Dec. L1 1536 418 167 77 15 5 2 1
Dec. L2 1536 491 229 117 38 18 10 1
Dec. L3 1536 448 227 129 49 26 16 3
Dec. L4 1536 787 443 294 143 104 68 24
Dec. L5 1536 1475 1037 684 343 214 156 33
Dec. L6 1536 1536 1536 1533 1220 753 459 138
BLEU 37.3 36.9 36.8 36.6 36.3 36.3 36.1 35.9
chrF 62.6 62.4 62.3 62.3 62.0 62.0 61.9 61.8
COMET 58.1 57.3 56.8 56.2 55.1 55.4 54.6 54.3
FFN sparsity 0% 48% 67% 77% 86% 91% 94% 98%
Size (MB) 83 59 66 55 52 50 49 48
WPS 1407 1655 1811 1891 2017 2071 2112 2204
Speed-up 1.00 1.18 1.29 1.34 1.43 1.47 1.50 1.57

Table 11: The evaluation of Spanish→English 6–6
students pruned with group lasso on 1 CPU core.

Reg. λ −→ Base 0.2 0.3 0.4 0.5 0.7
Enc. L1 1536 728 414 250 183 108
Enc. L2 1536 927 619 436 325 202
Enc. L3 1536 540 338 222 173 105
Enc. L4 1536 415 250 166 123 77
Enc. L5 1536 429 255 167 116 66
Enc. L6 1536 382 191 123 89 60
Enc. L7 1536 334 138 81 50 30
Enc. L8 1536 297 129 69 50 19
Enc. L9 1536 321 135 69 44 28
Enc. L10 1536 319 174 117 88 48
Enc. L11 1536 474 298 214 165 112
Enc. L12 1536 635 376 264 184 114
Dec. L1 1536 1536 1536 1536 1536 1536
Self att. L1 8 5 5 4 4 4
Self att. L2 8 3 2 2 2 2
Self att. L3 8 4 4 4 4 3
Self att. L4 8 4 3 3 3 3
Self att. L5 8 5 4 4 5 5
Self att. L6 8 4 4 4 3 3
Self att. L7 8 4 4 4 4 4
Self att. L8 8 3 1 1 1 1
Self att. L9 8 3 1 1 3 3
Self att. L10 8 3 2 1 1 1
Self att. L11 8 4 4 4 3 2
Self att. L12 8 4 4 4 4 4
Context att. L1 8 8 8 8 8 8
BLEU 38.2 37.9 37.3 37.0 37.0 36.6
chrF 63.9 63.6 63.2 62.9 62.9 62.5
COMET 49.5 49.6 48.2 46.5 45.5 44.6
Att. sparsity 0% 48% 56% 58% 57% 59%
FFN sparsity 0% 63% 76% 81% 84% 87%
Size (MB) 85 54 48 45 44 43
WPS 1930 2918 3029 3430 3446 3485
Speed-up 1 1.51 1.57 1.78 1.79 1.81

Table 12: The evaluation of English→German 12–1
students pruned with group lasso on 1 CPU core.


