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Abstract
In this paper, we describe our submission to
the WMT 2021 Metrics Shared Task. We
use the automatically-generated questions and
answers to evaluate the quality of Machine
Translation (MT) systems. Our submission
builds upon the recently proposed MTEQA
framework. Experiments on WMT20 evalua-
tion datasets show that at the system-level the
MTEQA metric achieves performance com-
parable with other state-of-the-art solutions,
while considering only a certain amount of in-
formation from the whole translation.

1 Introduction

The goal of automatic Machine Translation (MT)
evaluation is to automatically evaluate the output
quality produced by MT systems. Metrics used for
this task assign a score by comparing the MT out-
put to either a reference translation or to the source
sentence. The main indicator that is used to assess
the performance of a specific metric is the correla-
tion with human judgement computed for outputs
from several systems. It was recently shown that
metrics based on contextualized embeddings, such
as YISI (Lo, 2019) or ESIM (Mathur et al., 2019),
are able to achieve better performance than the
most common BLEU (Papineni et al., 2002).

In this paper, we describe application of the
recently proposed metric – MTEQA (Krubiński
et al., 2021) for the task of evaluating the quality of
MT outputs in the context of the WMT21 Metric
task.

The MTEQA1 framework is inspired by previ-
ous works on evaluating abstractive summaries. It
builds upon the fact that state-of-the-art (neural)
MT systems tend to produce a fluent output but
sometimes fail in adequacy of the translation. It
leverages the recent progress in Question Genera-
tion (QG) and Question Answering (QA) to formu-
late and answer questions based on the MT output.

1https://github.com/ufal/MTEQA

2 Related Work

2.1 MT Evaluation

Metrics that are most widely used for automatic
evaluation of MT outputs produce a score by com-
paring surface-level forms of hypothesis and refer-
ence translation. The most common one, BLEU, is
a modified version of n-gram precision calculated
by averaging over different values of n with penal-
ization for too short translations (brevity penalty).
The recently proposed CHRF (Popović, 2015) con-
siders the character-level n-grams, making it possi-
ble to reward partially matched tokens. Recently,
various works (e.g., Lo, 2019; Mathur et al., 2019;
Bawden et al., 2020) explored the usage of con-
textualized word- or sentence-level embeddings to
compare the numerical representations of reference
and hypothesis. Such metrics enable explicit regres-
sion towards the desired human-produced labels.

2.2 Question-based Evaluation

Previous works examined the usage of reading com-
prehension tests to measure the quality and “use-
fulness” of MT systems (Tomita et al., 1993; Fuji
et al., 2001; Castilho and Guerberof Arenas, 2018).
Berka et al. (2011) were the first to use the yes/no
type of questions for manual evaluation of MT sys-
tems, examining the English-to-Czech direction.
Scarton and Specia (2016) approached the prob-
lem of document-level Quality Estimation (QE) by
extending the CREG corpus (Ott et al., 2012) of
German documents designed for reading compre-
hension exercises.

More work on the questions-based evaluation
was done in the context of text summarization. Eyal
et al. (2019) proposed the APES metric for the task
of evaluating abstractive text summarization. They
used the reference summary to produce fill-in-the-
blank type of questions, by finding all possible
entities using a NER system. The APES score
for a given summarization model is the percentage
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Reference Extracted 
Answers Generated Questions MT output Test Answers

The 56-year-old Macura studied 
at Prague University of 

Economics.

56 How old is Macura?

Fifty-six-year-old Macura graduated from the 
University of Economics in Prague.

Fifty-six

Prague University 
of Economics Where did Macura study? University of 

Economics

Um 19 Uhr haben wir das Auto 
gepackt und sind an Bord der 

Fähre nach Portsmouth 
gegangen.

Portsmouth Wo sind wir hin, nachdem wir das Auto 
gepackt haben?

Gegen 19 Uhr haben wir das Auto gepackt 
und die Fähre nach Portsmouth bestiegen.

Portsmouth

19 Uhr An welchem Datum haben wir das Auto 
gepackt? 19 Uhr

Figure 1: Example of the Extracted Answers, Generated Questions and corresponding Test Answers from a new-
stest2021 reference file.

of questions that were answered correctly (using
a Question Answering system), averaged over the
whole test-set. Scialom et al. (2019) extended their
work into unsupervised settings by generating ques-
tions from the source document. The FEQA (Dur-
mus et al., 2020) and QAGS (Wang et al., 2020)
metrics further extend the idea by automatically
generating human-readable questions.

2.3 MTEQA

MTEQA is the first MT metric based on the princi-
ples of question answering.

The automatically generated pairs of a question
and its (gold-standard) answer from the reference
translation are used by a question answering system
to provide a new (test) answer given the question
and the MT output (translation) used as the context.

The generated (test) answer is then compared
to the gold-standard answer, using the string-
comparison metric. The final score for a given
MT output is the average taken over all of the ques-
tion/answer pairs generated for a corresponding
reference.

3 Experiments

Our implementation of the MTEQA metric is based
on the state-of-the-art system capable of solving the
initial three tasks of the procedure: answer extrac-
tion, question generation, question answering. It is
the T5 model (Raffel et al., 2020) fine-tuned on the
SQuADv1 dataset (Rajpurkar et al., 2016) by Patil
(2020) and available from GitHub2. The limitation
of the T5 model is that it was trained on English
data and most importantly tuned on the SQuADv1

2https://github.com/patil-suraj/
question_generation

dataset which is in English. Thus, this model only
allows evaluation of MT systems translating from
any language to English.

To overcome that, we used the multilingual
mT5 model (Xue et al., 2021) and fine-tuned it
on machine translation of SQuADv1 dataset. We
exploited the existing translations into German
(Lewis et al., 2020) and into Czech (Macková and
Straka, 2020) which allows score translations into
German (xx-de) and into Czech (xx-cs) directions.
Due to time constraints we were not able to train
QA and QG systems in other languages.

Figure 1 presents examples of extracted answers
and generated questions.

3.1 Baseline

The baseline implementation is based on the T5
model tuned on the SQuADv1 dataset and used to
generate: 1) the gold-standard answers from the
reference translations, 2) a question for each gold-
standard answer, 3) a test answer for each question
and MT output (context) pair. The test answers are
compared by the word-level F1 score commonly
used for QA evaluation (Rajpurkar et al., 2016;
Trischler et al., 2017; Chen et al., 2019; Durmus
et al., 2020).

For each of the MT systems participating in
WMT20 News translation task (Barrault et al.,
2020), we compute both segment-level scores and
a single system-level score, an average of segment-
level scores. We report the system-level Pearson
correlation with a DA human assessment using the
newstest2020 references We report correlation for
a English → German, English → Czech and a few
to-English directions (see Table 1, row MTEQA
F1). We also include an average over all of the
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cs-en de-en zh-en en-de en-cs
12 12 16 avg 14 12

MTEQA F1 0.782∗ 0.997∗ 0.952∗ 0.893∗ 0.946∗ 0.845∗

MTEQA F1 KEYPHRASE 0.851∗ 0.998∗ 0.944∗ 0.896∗ 0.941∗ 0.877∗

MTEQA CHRF KEYPHRASE 0.890∗ 0.998∗ 0.951∗ 0.905∗ 0.952∗ 0.859∗

SENTBLEU 0.844 0.978 0.948 0.859 0.934 0.840
BLEU 0.851 0.985 0.956 0.854 0.928 0.825
PRISM 0.818 0.998 0.957 0.880 0.958 0.949
YISI-2 0.764 0.988 0.964 0.821 0.899 0.714

Table 1: System-level Pearson correlation for selected metrics used for measuring MT quality with DA human
assessment over MT systems using the newstest2020 references. Average (avg) is computed over all to-English
directions available. Number below the language pair indicates the number of systems considered. Figures without
∗ are taken from Mathur et al. (2020a).

to-English directions, which were part of WMT20
Metric Task (Mathur et al., 2020b) evaluation cam-
paign3. Other metrics are included for a compari-
son. At the segment-level, we report the Kendall’s
Tau correlation of segment-level metric scores with
DARR human assessment scores, see Table 2. We
use the same Kendall’s Tau-like formulation which
was used by Mathur et al. (2020b) in WMT20 eval-
uation campaign.

On average, the baseline outperforms the tra-
ditional MT evaluation metrics (SENTBLEU,
BLEU) as well as the recently proposed ones that
performed very well in the WMT20 Metric Task
(PRISM, YISI-2), though for some of the transla-
tion directions (e.g. cs-en) MTEQA F1 is much
worse (but for cs-en YISI-2 also does not beat
BLEU). The segment-level correlation is much
lower, even negative for some directions (e.g. zh-
en) .

3.2 Generating Additional Answers

Since the QG system generates a single question
for each sub-sequence of words marked as an ex-
tracted answer, the limit factor is the number of
gold-standard answers we extract. To generate
more questions we need more keyphrases to be
asked about.

Considering the whole predictive power of the
MTEQA metric is based on questions, we used lin-
guistic processing of the sentence based on Part-of-
Speech (POS) pattern matching and Named Entity
Recognition (NER) to extract more keyphrases.

Given a sentence as the input, first, we parse the
sentence using UDPipe (Straka et al., 2016) to ex-
tract part of speech (POS) tags. Then, we extract
phrases that are matched with one of the patterns
in our POS pattern bank. The POS pattern bank

3cs, de, ja, pl, ru, ta, zh, iu, km, ps→ en

is created by parsing the sentences from XQuAD
(Artetxe et al., 2020) dataset, extracting the POS
patterns corresponding to the gold-standard an-
swers, and taking the most frequent patterns. This
dataset contains professional translations of the
development set of SQuADv1, translated into var-
ious languages from different language families
and using different scripts. Second, we extract
named entities mentioned in the input sentence
using a combination of two multilingual NER mod-
els, POLYGLOT-NER (Al-Rfou et al., 2015), and
Stanza (Qi et al., 2020). Finally, we output the
union of the extracted phrases and named enti-
ties as the potential answers. At both system- and
segment-level using the MTEQA F1 KEYPHRASE

variant yields improvements for most of the trans-
lation directions.

3.2.1 Tuning the Answer Comparison Metric

The choice of the Answer Comparison Metric can
have a considerable impact on the final perfor-
mance. Using the word-level F1 metric, given
the gold-standard answer “Tchaikovsky”, both the

“Tchaikovski” and “Beethoven” would get the same
score. In the context of MT, it may be worth to
consider a more fine-grained comparison.

We decided to use the CHRF (Popović, 2015)
metric, since it operates on the level of characters,
and enables scoring even partial matches. Using
the MTEQA CHRF KEYPHRASE variant yields
further improvements at both system- and segment-
level.

For the WMT21 Metrics Shared Task we sub-
mit this variant of the metric – the gold-standard
answers are extracted by POS pattern matching
and NER, and the chrF metric is used for answer
comparison (MTEQA CHRF KEYPHRASE).
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cs-en de-en zh-en en-de en-cs
MTEQA F1 −0.422∗ 0.041∗ −0.430∗ −0.581∗ −0.480∗
MTEQA F1 KEYPHRASE −0.108∗ 0.273∗ −0.058∗ −0.016∗ 0.100∗

MTEQA CHRF KEYPHRASE 0.017∗ 0.327∗ 0.030∗ 0.159∗ 0.227∗

SENTBLEU 0.068 0.413 0.093 0.303 0.432
PRISM 0.143 0.475 0.167 0.447 0.619
YISI-2 0.068 0.413 0.116 0.296 0.187

Table 2: Segment-level Kendall’s Tau correlation for a few metrics used for measuring MT quality with DARR
human assessment scores, over MT systems using the newstest2020 references. Numbers without ∗ are taken from
(Mathur et al., 2020a).

4 MQM scores

Recently, Freitag et al. (2021) demonstrated that
the WMT DA method traditionally used for hu-
man evaluations has actually lower correlation
with expert-based labels than the Multidimensional
Quality Metrics (MQM) scoring method developed
in the EU QTLaunchPad and QT21 projects. Fol-
lowing their findings, the WMT21 Metric Task will
report the correlation with MQM labels in the offi-
cial results.

To provide a more complete picture of the per-
formance of the MTEQA metric, we also report
correlation with the MQM assessments. Table 3
presents the system-level Pearson correlation of
the metric with both the MQM and DA labels for
8 systems that were re-annotated by Freitag et al.
(2021) and are available from GitHub4.

The results are surprising and to a large extent
unintuitive. Metrics performing well in comparison
with MQM are often bad in comparison with DA.

5 Conclusions

In this paper we described our submission to the
WMT21 Metrics Shared Task. We showed that
the degree to which the MT output can be used to
answer questions about the reference can be used
as a proxy to evaluate the translation quality.

We showed a gradual improvement of our sub-
mission. We examined a linguistically motivated
way of extracting keyphrases from the sentence,
and showed that it boosts both the segment- and
system-level correlation with DA human judg-
ments. We were able to further boost the final
performance by using the CHRF metric to compare
the reference and test answers.

Finally, we examined the performance against
the MQM labels and compared the performance
against the DA labels.

4https://github.com/google/
wmt-mqm-human-evaluation
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