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Abstract

This paper describes the NoahNMT system sub-
mitted to the WMT 2021 shared task of Very
Low Resource Supervised Machine Transla-
tion. The system is a standard Transformer
model equipped with our recent technique of
dual transfer. It also employs widely used tech-
niques that are known to be helpful for neural
machine translation, including iterative back-
translation, selected finetuning, and ensemble.
The final submission achieves the top BLEU
for three translation directions.

1 Introduction

In this paper, we describe the NoahNMT system
submitted to one of the WMT 2021 shared tasks.
The shared task features both unsupervised ma-
chine translation and very low resource supervised
machine translation. As our core technique is
mainly suitable for low resource supervised ma-
chine translation, we participated in four translation
directions between Chuvash-Russian (chv-ru)
and Upper Sorbian-German (hsb-de).

Our core technique is called dual transfer (Zhang
et al., 2021), which belongs to the family of trans-
fer learning. It transfers from both high resource
neural machine translation model and pretrained
language model to improve the quality of low re-
source machine translation. During the preparation
for the shared task, we conducted additional experi-
ments that supplement the original paper, including
the choice of parent language, the validation of
Transformer big model, and the usage of dual trans-
fer along with iterative back-translation.

In addition, we also applied proven techniques
to strengthen the quality of our system, includ-
ing selected finetuning and ensemble. Our final
submission achieves the top BLEU on the blind
test sets for three translation directions: chv→ru,
ru→chv, and hsb→de.

2 Approach

In this section, we describe the techniques used in
our system. Interested readers are encouraged to
check out the original papers for further details.

2.1 Dual Transfer

We reproduced the illustration of dual transfer from
the original paper (Zhang et al., 2021), as shown in
Figure 1. This illustration shows the case of gen-
eral transfer, where the high resource translation
direction is A→B, and the low resource transla-
tion direction is P→Q. As discussed in the original
paper, in many cases, it is possible to use shared tar-
get transfer (B=Q) or shared source transfer (A=P).
Taking chv→ru as an example, we can choose
en→ru as the high resource translation direction,
resulting in an instance of shared target transfer. In
this shared task, when training the high resource
translation model, we always initialize the shared
language side with the pretrained language model
BERT (Devlin et al., 2019).

2.2 Iterative Back-Translation

Iterative back-translation (Hoang et al., 2018) is
an extension of back-translation (Sennrich et al.,
2016a). It can exploit both sides of monolingual
data of a language pair, and produces translation
models for both directions, which is suitable for
this shared task.

The initial models for generating synthetic par-
allel data are produced by using dual transfer with
low resource authentic parallel data. In each itera-
tion of iterative back-translation, we use the latest
model to greedily decode a disjoint subset of 4m
monolingual sentences1 to generate synthetic paral-
lel data. Then a new model is trained on a mixture
of authentic and synthetic parallel data. With the
use of dual transfer, model training can start from

1For chv and hsb, all monolingual sentences are used in
each iteration.
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Figure 1: Dual transfer from pretrained language model and high resource A→B neural machine translation to low
resource P→Q neural machine translation. Dashed lines represent initialization. Parameters in striped blocks are
frozen in the corresponding step, while other parameters are trainable. Different colors represent different languages.
Data used in each step is also listed.

language code # sentence (pair)
cs-de 15m
hsb-de 0.1m
kk-ru 3.9m
en-ru 17m
chv-ru 0.7m

cs 90m
de 100m
hsb 0.8m
kk 17m
en 54m
ru 110m
chv 3m

Table 1: Training data statistics.

the initial parameters as shown in Step (4) of Fig-
ure 1. This has the additional benefit of reducing
training time, because convergence is faster than
training from random initialization.

2.3 Selected Finetuning

Selected finetuning aims to deal with the domain
difference that may exist between the test set and
the training set. Given the source side of the test
set, we try to select similar source sentences from
the training set, and then finetune the translation
model on the selected subset of training sentence
pairs.

We use BM25 (Robertson and Zaragoza, 2009)
to calculate the similarity between two sentences
for retrieval. The BM25 score between a query
sentence Q and a sentence D in the corpus for

parent language chv→ru BLEU
kk 18.47
en 18.61

Table 2: Test set BLEU for chv→ru, when the parent
language is either kk or en (i.e. the parent translation
direction is either kk→ru or en→ru). The translation
model is Transformer base.

retrieval C is given by

s (D,Q)

=

LQ∑
i=1

IDF (qi) · (k + 1) · TF (qi, D)

k ·
(
1− b+ b · LD

Lavg

)
+TF (qi, D)

,

where the query sentence Q is a sequence of LQ

subwords {qi}
LQ

i=1, IDF (qi) is the Inverse Docu-
ment Frequency for qi in the corpus C, TF (qi, D)
is the Term Frequency for qi in the sentence D, LD

is the length of the sentence D, Lavg is the average
length of the corpus C, k and b are hyperparameters,
which are set as 1.5 and 0.75, respectively.

Based on the BM25 score, we calculate the simi-
larity between a source test sentence (as the query
sentence) and the source sentences in the training
set to obtain the top 500 sentences. After perform-
ing the selection for all the source test sentences,
we merge them and remove duplicates to obtain the
set for finetuning.
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model chv→ru ru→chv hsb→de de→hsb
Transformer base 18.61 16.18* 55.60 55.98
Transformer big 19.24 17.12 56.10 57.12

Table 3: Test set BLEU for the four translation directions, using either Transformer base or Transformer big for dual
transfer. *: The parent translation direction is ru→kk, and we did not train a Transformer base with ru→en as
the parent, though the resulting ru→chv BLEU scores should be close based on the experiment in Section 4.1.

runtime (hours)
BERTen 143
BERTchv 54

NMTen→ru 52
NMTchv→ru 14

Table 4: Runtime of each step in dual transfer for
NMTchv→ru with Transformer big.

3 Experimental Setup

3.1 Data

We collected allowed data for the involved lan-
guages and followed the same preprocessing
pipeline of punctuation normalization and tokeniza-
tion, using scripts from Moses2. The English mono-
lingual data came from the English original side of
ru-en back-translated news3, but its automatic
translation to Russian was discarded. The pro-
vided Chuvash-Russian dictionary was not used.
Each language was encoded with byte pair encod-
ing (BPE) (Sennrich et al., 2016b). The BPE codes
and vocabularies were learned on each language’s
monolingual data, and then used to segment paral-
lel data. We used 32k merge operations for all lan-
guages. After BPE segmentation, we discarded sen-
tences with more than 128 subwords, and cleaned
parallel data with length ratio 1.5. Training data
statistics is provided in Table 1. Note that we exper-
imented with Kazakh (kk) data (Section 4.1), but
did not use it for our final submission. Evaluation
on test sets is given by SacreBLEU4 (Post, 2018),
after BPE removal and detokenization.

3.2 Hyperparameters

We use Transformer (Vaswani et al., 2017) as our
translation model, but with slight modifications

2https://github.com/moses-smt/
mosesdecoder

3http://data.statmt.org/wmt20/
translation-task/back-translation

4SacreBLEU signature: BLEU+case.mixed+numrefs.1+
smooth.exp+tok.13a+version.1.4.12.

that follow the implementation of BERT5. The ab-
solute position embeddings are also learned as in
BERT. The encoder and decoder embeddings are in-
dependent because each language manages its own
vocabulary, but we tie the decoder input and out-
put embeddings (Press and Wolf, 2017). We apply
dropout with probability 0.1. We use LazyAdam as
the optimizer. Learning rate warms up for 16,000
steps and then follows inverse square root decay.
The peak learning rate is 5× 10−4 for parent trans-
lation models, and 1 × 10−4 for child translation
models. Early stopping occurs when the validation
BLEU does not improve for 10 checkpoints. We
set checkpoint frequency to 2,000 updates for par-
ent translation models and 1,000 updates for child
translation models. The batch size is 6,144 tokens
per GPU and 8 NVIDIA V100 GPUs are used.

Hyperparameters for BERT are the same as in
the original paper (Zhang et al., 2021).

For selected finetuning, we use stochastic gradi-
ent descent as the optimizer, and the learning rate is
1×10−5. We finetune for 10,000 updates, and save
a checkpoint every 100 updates. The checkpoint
with the highest validation BLEU is kept.

4 Results

4.1 The Choice of Parent Language
In our preliminary experiments, we found it bene-
ficial to use a closely related language as the par-
ent language. It is clear that there are several fac-
tors that should be taken into account, such as the
degree of closeness, and the amount of resource
for training the parent model. For Upper Sorbian,
Czech (cs) is closely related to it, and Czech-
German has a good amount of parallel data, so
we directly choose Czech as the parent language.

Chuvash, however, is a rather isolated language
in the Turkic family. The closest language with us-
able data is Kazakh (kk), but the amount of parallel
data for Kazakh-Russian is relatively small, and we
found it to be quite noisy. Therefore, we considered

5https://github.com/google-research/
bert

https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
http://data.statmt.org/wmt20/translation-task/back-translation
http://data.statmt.org/wmt20/translation-task/back-translation
https://github.com/google-research/bert
https://github.com/google-research/bert
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iteration chv→ru ru→chv hsb→de de→hsb
0 19.24 17.12 56.10 57.12
1 19.73 17.45 57.23 56.81
2 20.42 17.69 57.12 56.79
3 19.85 17.81 57.72 57.47
4 19.57 17.78 57.40 57.33
5 19.60 17.48 57.66 57.07

Table 5: Test set BLEU for the four translation directions with iterative back-translation. Iteration 0 is the
Transformer big model in Table 3. Best BLEU scores are in bold.

method chv→ru ru→chv
before selected finetuning 20.42 17.69
after selected finetuning 20.55 18.03

Table 6: Test set BLEU to show the effect of selected finetuning.

model hsb→de de→hsb

best single 57.72 57.47
ensemble 58.54 58.28

Table 7: Test set BLEU to show the effect of ensemble.

using English (en) as the parent language of Chu-
vash. Even though English is unrelated to Chuvash
and they use different scripts, English-Russian has
more parallel data that can guarantee the quality of
the parent model.

We conducted an experiment with Transformer
base. Results in Table 2 indicate that English can
serve as an eligible parent for Chuvash. Consider-
ing that we plan to use Transformer big for which
data amount is likely to play a more important role,
we decided to use English as the parent language
for Chuvash.

4.2 The Effect of Transformer Big

The original paper (Zhang et al., 2021) evaluated
dual transfer only with Transformer base. In this
shared task, we scale up to Transformer big. We
also face a more realistic setting where the mono-
lingual data for the low resource languages (chv
and hsb) are quite scarce. Therefore it is worth
testing the effect of scaling up. Results in Table
3 show that Transformer big brings consistent im-
provements. We also report the runtime of each
step in dual transfer for NMTchv→ru with Trans-
former big in Table 4 for reference, but the numbers
can vary depending on implementation and data
size. In the following experiments and our final
submission, we use Transformer big models.

4.3 Iterative Back-Translation

We ran five iterations of iterative back-translation.
Results are shown in Table 5. The best BLEU
scores are attained with two or three iterations. An-
other observation is that iterative back-translation
brings larger improvements for chv→ru and
hsb→de than ru→chv and de→hsb. This is
probably because the monolingual data for chv
and hsb are small in quantity.

4.4 Selected Finetuning

We only use selected finetuning for the chv-ru
pair because parallel data for hsb-de is scarce.
In order to test the effect of selected finetuning,
we start from the models of Iteration 2 in Table 5.
Results in Table 6 indicate that selected finetuning
gives modest improvements.

4.5 Ensemble

We validate the effectiveness of ensemble on
hsb→de and de→hsb, by performing ensem-
ble decoding from the five models from iterative
back-translation. Results in Table 7 demonstrate
that ensemble gives BLEU improvements of about
0.8.

4.6 Final Submission

For chv→ru and ru→chv, we perform selected
finetuning starting from the best models from it-
erative back-translation (Iteration 2 for chv→ru,
Iteration 3 for ru→chv). Note that the selected
training subsets are different from those in Section
4.4 because the selection is based on the source
side of the blind test sets. We finetune five times
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with different random seeds for model ensemble.
For hsb→de and de→hsb, we ensemble the five
models from iterative back-translation.

5 Conclusion

In this paper, we describe a series of experiments
that contribute to our submission to the WMT 2021
shared task of Very Low Resource Supervised Ma-
chine Translation. These experiments, as well as
the good results of the final submission, show that
dual transfer can work in synergy with several
widely used techniques in realistic scenarios.
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