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Introduction

The Fifth Conference on Machine Translation (WMT 2020) took place on Thursday, November 19
and Friday, November 20, 2020 immediately following the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2020).

This is the fifth time WMT has been held as a conference. The first time WMT was held as a conference
was at ACL 2016 in Berlin, Germany, the second time at EMNLP 2017 in Copenhagen, Denmark, the
third time at EMNLP 2018 in Brussels, Belgium, and the fourth time at ACL 2019 in Florence, Italy.
Prior to being a conference, WMT was held 10 times as a workshop. WMT was held for the first
time at HLT-NAACL 2006 in New York City, USA. In the following years the Workshop on Statistical
Machine Translation was held at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio,
USA, EACL 2009 in Athens, Greece, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh,
Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia, Bulgaria, ACL 2014 in Baltimore,
USA, EMNLP 2015 in Lisbon, Portugal.

The focus of our conference is to bring together researchers from the area of machine translation and
invite selected research papers to be presented at the conference.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation, we
conducted 11 shared tasks. These consisted of seven translation tasks: Machine Translation of News,
Lifelong Learning for Machine Translation, Robust Machine Translation, Similar Language Translation,
Unsupervised and Very Low Resource Supervised Translation, Biomedical Translation, and Machine
Translation for Chats, and four other tasks: Automatic Post-Editing, Metrics for Machine Translation,
and Parallel Corpus Filtering and Alignment for Low-Resource Conditions.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. WMT 2020 has received 58 full research paper submissions (not counting withdrawn
submissions). In total, WMT 2020 featured 19 full research paper oral presentations and 112 shared task
poster presentations.

The invited talk entitled “Low-resourcedness Beyond Data” was given by Ignatius Ezeani, Jade
Abbott, Julia Kreutzer, Salomon Kabongo, Perez Ogayo, Shamsuddeen Hassan Muhammad, Rubungo
Andre Niyongabo, Jamiil Toure Ali, Kathleen Siminyu, Salomey Osei, Wilhelmina Nekoto, Arshath
Ramkilowan, Masabata Mokgesi-Selinga, Bonaventure Dossou, Ayodele Olabiyi, Blessing Sibanda,
Akinola Oluwole, Vukosi Marivate, and Orevaoghene Ahia.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian
Federmann, Mark Fishel, Alexander Fraser, Yvette Graham, Paco Guzman, Barry Haddow, Matthias
Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Makoto Morishita, Christof Monz,
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Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel,
Matt Post, Marco Turchi, Marcos Zampieri.
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11:00–12:30 News Translation Task

11:00–12:30 The University of Edinburgh’s English-Tamil and English-Inuktitut Submissions to
the WMT20 News Translation Task
Rachel Bawden, Alexandra Birch, Radina Dobreva, Arturo Oncevay, Antonio Vale-
rio Miceli Barone and Philip Williams

11:00–12:30 GTCOM Neural Machine Translation Systems for WMT20
Chao Bei, Hao Zong, Qingmin Liu and Conghu Yuan

11:00–12:30 DiDi’s Machine Translation System for WMT2020
Tanfang Chen, Weiwei Wang, Wenyang Wei, Xing Shi, Xiangang Li, Jieping Ye
and Kevin Knight

11:00–12:30 Facebook AI’s WMT20 News Translation Task Submission
Peng-Jen Chen, Ann Lee, Changhan Wang, Naman Goyal, Angela Fan, Mary
Williamson and Jiatao Gu
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11:00–12:30 Linguistically Motivated Subwords for English-Tamil Translation: University of
Groningen’s Submission to WMT-2020
Prajit Dhar, Arianna Bisazza and Gertjan van Noord

11:00–12:30 The TALP-UPC System Description for WMT20 News Translation Task: Multilin-
gual Adaptation for Low Resource MT
Carlos Escolano, Marta R. Costa-jussà and José A. R. Fonollosa

11:00–12:30 An Iterative Knowledge Transfer NMT System for WMT20 News Translation Task
Jiwan Kim, Soyoon Park, Sangha Kim and Yoonjung Choi

11:00–12:30 Tohoku-AIP-NTT at WMT 2020 News Translation Task
Shun Kiyono, Takumi Ito, Ryuto Konno, Makoto Morishita and Jun Suzuki

11:00–12:30 NRC Systems for the 2020 Inuktitut-English News Translation Task
Rebecca Knowles, Darlene Stewart, Samuel Larkin and Patrick Littell

11:00–12:30 CUNI Submission for the Inuktitut Language in WMT News 2020
Tom Kocmi

11:00–12:30 Tilde at WMT 2020: News Task Systems
Rihards Krišlauks and Mārcis Pinnis

11:00–12:30 Samsung R&D Institute Poland submission to WMT20 News Translation Task
Mateusz Krubiński, Marcin Chochowski, Bartłomiej Boczek, Mikołaj Koszowski,
Adam Dobrowolski, Marcin Szymański and Paweł Przybysz

11:00–12:30 Speed-optimized, Compact Student Models that Distill Knowledge from a Larger
Teacher Model: the UEDIN-CUNI Submission to the WMT 2020 News Translation
Task
Ulrich Germann, Roman Grundkiewicz, Martin Popel, Radina Dobreva, Nikolay
Bogoychev and Kenneth Heafield

11:00–12:30 The University of Edinburgh’s submission to the German-to-English and English-
to-German Tracks in the WMT 2020 News Translation and Zero-shot Translation
Robustness Tasks
Ulrich Germann

11:00–12:30 Contact Relatedness can help improve multilingual NMT: Microsoft STCI-MT @
WMT20
Vikrant Goyal, Anoop Kunchukuttan, Rahul Kejriwal, Siddharth Jain and Amit
Bhagwat

11:00–12:30 The AFRL WMT20 News Translation Systems
Jeremy Gwinnup and Tim Anderson
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11:00–12:30 The Ubiqus English-Inuktitut System for WMT20
François Hernandez and Vincent Nguyen

11:00–12:30 SJTU-NICT’s Supervised and Unsupervised Neural Machine Translation Systems
for the WMT20 News Translation Task
Zuchao Li, Hai Zhao, Rui Wang, Kehai Chen, Masao Utiyama and Eiichiro Sumita

11:00–12:30 Combination of Neural Machine Translation Systems at WMT20
Benjamin Marie, Raphael Rubino and Atsushi Fujita

11:00–12:30 WeChat Neural Machine Translation Systems for WMT20
Fandong Meng, Jianhao Yan, Yijin Liu, Yuan Gao, Xianfeng Zeng, Qinsong Zeng,
Peng Li, Ming Chen, Jie Zhou, Sifan Liu and Hao Zhou

11:00–12:30 PROMT Systems for WMT 2020 Shared News Translation Task
Alexander Molchanov

11:00–12:30 eTranslation’s Submissions to the WMT 2020 News Translation Task
Csaba Oravecz, Katina Bontcheva, László Tihanyi, David Kolovratnik, Bhavani
Bhaskar, Adrien Lardilleux, Szymon Klocek and Andreas Eisele

11:00–12:30 The ADAPT System Description for the WMT20 News Translation Task
Venkatesh Parthasarathy, Akshai Ramesh, Rejwanul Haque and Andy Way

11:00–12:30 CUNI English-Czech and English-Polish Systems in WMT20: Robust Document-
Level Training
Martin Popel

11:00–12:30 Machine Translation for English–Inuktitut with Segmentation, Data Acquisition and
Pre-Training
Christian Roest, Lukas Edman, Gosse Minnema, Kevin Kelly, Jennifer Spenader
and Antonio Toral

11:00–12:30 OPPO’s Machine Translation Systems for WMT20
Tingxun Shi, Shiyu Zhao, Xiaopu Li, Xiaoxue Wang, Qian Zhang, Di Ai, Dawei
Dang, Xue Zhengshan and JIE HAO

11:00–12:30 HW-TSC’s Participation in the WMT 2020 News Translation Shared Task
Daimeng Wei, Hengchao Shang, Zhanglin Wu, Zhengzhe Yu, Liangyou Li, Jiaxin
Guo, Minghan Wang, Hao Yang, Lizhi Lei, Ying Qin and Shiliang Sun

11:00–12:30 IIE’s Neural Machine Translation Systems for WMT20
Xiangpeng Wei, Ping Guo, Yunpeng Li, Xingsheng Zhang, Luxi Xing and Yue Hu
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11:00–12:30 The Volctrans Machine Translation System for WMT20
Liwei Wu, Xiao Pan, Zehui Lin, Yaoming ZHU, Mingxuan Wang and Lei Li

11:00–12:30 Tencent Neural Machine Translation Systems for the WMT20 News Translation Task
Shuangzhi Wu, Xing Wang, Longyue Wang, Fangxu Liu, Jun Xie, Zhaopeng Tu,
Shuming Shi and Mu Li

11:00–12:30 Russian-English Bidirectional Machine Translation System
ariel Xv

11:00–12:30 The DeepMind Chinese–English Document Translation System at WMT2020
Lei Yu, Laurent Sartran, Po-Sen Huang, Wojciech Stokowiec, Domenic Donato,
Srivatsan Srinivasan, Alek Andreev, Wang Ling, Sona Mokra, Agustin Dal Lago,
Yotam Doron, Susannah Young, Phil Blunsom and Chris Dyer

11:00–12:30 The NiuTrans Machine Translation Systems for WMT20
Yuhao Zhang, Ziyang Wang, Runzhe Cao, Binghao Wei, Weiqiao Shan, Shuhan
Zhou, Abudurexiti Reheman, Tao Zhou, Xin Zeng, Laohu Wang, Yongyu Mu, Jing-
nan Zhang, Xiaoqian Liu, Xuanjun Zhou, Yinqiao Li, Bei Li, Tong Xiao and Jingbo
Zhu

11:00–12:30 Test Sets

11:00-12:30 Fine-grained linguistic evaluation for state-of-the-art Machine Translation
Eleftherios Avramidis, Vivien Macketanz, Ursula Strohriegel, Aljoscha Burchardt
and Sebastian Möller

11:00–12:30 Gender Coreference and Bias Evaluation at WMT 2020
Tom Kocmi, Tomasz Limisiewicz and Gabriel Stanovsky

11:00–12:30 The MUCOW word sense disambiguation test suite at WMT 2020
Yves Scherrer, Alessandro Raganato and Jörg Tiedemann

11:00–12:30 WMT20 Document-Level Markable Error Exploration
Vilém Zouhar, Tereza Vojtěchová and Ondřej Bojar
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11:00–12:30 Similar Language Translation Task

11:00–12:30 Translating Similar Languages: Role of Mutual Intelligibility in Multilingual Trans-
formers
Ife Adebara, El Moatez Billah Nagoudi and Muhammad Abdul Mageed

11:00–12:30 Attention Transformer Model for Translation of Similar Languages
Farhan Dhanani and Muhammad Rafi

11:00–12:30 Transformer-based Neural Machine Translation System for Hindi – Marathi:
WMT20 Shared Task
Amit Kumar, Rupjyoti Baruah, Rajesh Kumar Mundotiya and Anil Kumar Singh

11:00–12:30 Hindi-Marathi Cross Lingual Model
Sahinur Rahman Laskar, Abdullah Faiz Ur Rahman Khilji, Partha Pakray and Sivaji
Bandyopadhyay

11:00–12:30 Transfer Learning for Related Languages: Submissions to the WMT20 Similar Lan-
guage Translation Task
Lovish Madaan, Soumya Sharma and Parag Singla

11:00–12:30 The IPN-CIC team system submission for the WMT 2020 similar language task
Luis A. Menéndez-Salazar, Grigori Sidorov and Marta R. Costa-Jussà

11:00–12:30 NMT based Similar Language Translation for Hindi - Marathi
Vandan Mujadia and Dipti Sharma

11:00–12:30 NUIG-Panlingua-KMI Hindi-Marathi MT Systems for Similar Language Transla-
tion Task @ WMT 2020
Atul Kr. Ojha, Priya Rani, Akanksha Bansal, Bharathi Raja Chakravarthi, Ritesh
Kumar and John P. McCrae

11:00–12:30 Neural Machine Translation for Similar Languages: The Case of Indo-Aryan Lan-
guages
Santanu Pal and Marcos Zampieri

11:00–12:30 Neural Machine Translation between similar South-Slavic languages
Maja Popović and Alberto Poncelas

11:00–12:30 Infosys Machine Translation System for WMT20 Similar Language Translation Task
Kamalkumar Rathinasamy, Amanpreet Singh, Balaguru Sivasambagupta, Prajna
Prasad Neerchal and Vani Sivasankaran
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11:00–12:30 Document Level NMT of Low-Resource Languages with Backtranslation
Sami Ul Haq, Sadaf Abdul Rauf, Arsalan Shaukat and Abdullah Saeed

11:00–12:30 Multilingual Neural Machine Translation: Case-study for Catalan, Spanish and
Portuguese Romance Languages
Pere Vergés Boncompte and Marta R. Costa-jussà

11:00–12:30 A3-108 Machine Translation System for Similar Language Translation Shared Task
2020
Saumitra Yadav and Manish Shrivastava

11:00–12:30 Chat Translation Task

11:00–12:30 The University of Maryland’s Submissions to the WMT20 Chat Translation Task:
Searching for More Data to Adapt Discourse-Aware Neural Machine Translation
Calvin Bao, Yow-Ting Shiue, Chujun Song, Jie Li and Marine Carpuat

11:00–12:30 Naver Labs Europe’s Participation in the Robustness, Chat, and Biomedical Tasks
at WMT 2020
Alexandre Berard, Ioan Calapodescu, Vassilina Nikoulina and Jerin Philip

11:00–12:30 The University of Edinburgh-Uppsala University’s Submission to the WMT 2020
Chat Translation Task
Nikita Moghe, Christian Hardmeier and Rachel Bawden

11:00–12:30 JUST System for WMT20 Chat Translation Task
Roweida Mohammed, Mahmoud Al-Ayyoub and Malak Abdullah

11:00–12:30 Tencent AI Lab Machine Translation Systems for WMT20 Chat Translation Task
Longyue Wang, Zhaopeng Tu, Xing Wang, Li Ding, Liang Ding and Shuming Shi

12:30–13:00 Break
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13:00–14:00 Session 3: Research Papers I (Chair: Tom Kocmi)

Combining Sequence Distillation and Transfer Learning for Efficient Low-Resource
Neural Machine Translation Models
Raj Dabre and Atsushi Fujita

Fast Interleaved Bidirectional Sequence Generation
Biao Zhang, Ivan Titov and Rico Sennrich

Priming Neural Machine Translation
Minh Quang Pham, Jitao Xu, Josep Crego, François Yvon and Jean Senellart

Subword Segmentation and a Single Bridge Language Affect Zero-Shot Neural Ma-
chine Translation
Annette Rios, Mathias Müller and Rico Sennrich

Look It Up: Bilingual and Monolingual Dictionaries Improve Neural Machine
Translation
Xing Jie Zhong and David Chiang

14:00–16:00 Break

16:00–17:00 Session 4: Shared Task Overview I (Chair: Antonio Toral)

17:00–18:30 Session 5: Shared Task Posters I

18:30–19:00 Break
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19:00–20:00 Session 6: Research Papers II (Chair: Colin Cherry)

Complete Multilingual Neural Machine Translation
Markus Freitag and Orhan Firat

Paraphrase Generation as Zero-Shot Multilingual Translation: Disentangling Se-
mantic Similarity from Lexical and Syntactic Diversity
Brian Thompson and Matt Post

When Does Unsupervised Machine Translation Work?
Kelly Marchisio, Kevin Duh and Philipp Koehn

Language Models not just for Pre-training: Fast Online Neural Noisy Channel
Modeling
Shruti Bhosale, Kyra Yee, Sergey Edunov and Michael Auli

Friday, November 20, 2020

9:00–10:00 Session 7: Research Papers III (Chair: Marta R. Costa-jussà)

Towards Multimodal Simultaneous Neural Machine Translation
Aizhan Imankulova, Masahiro Kaneko, Tosho Hirasawa and Mamoru Komachi

Diving Deep into Context-Aware Neural Machine Translation
Jingjing Huo, Christian Herold, Yingbo Gao, Leonard Dahlmann, Shahram Khadivi
and Hermann Ney

A Study of Residual Adapters for Multi-Domain Neural Machine Translation
Minh Quang Pham, Josep Maria Crego, François Yvon and Jean Senellart

Mitigating Gender Bias in Machine Translation with Target Gender Annotations
Artūrs Stafanovičs, Mārcis Pinnis and Toms Bergmanis

Document-aligned Japanese-English Conversation Parallel Corpus
Matı̄ss Rikters, Ryokan Ri, Tong Li and Toshiaki Nakazawa

xxvii
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10:00–11:00 Session 8: Shared Task Overview Papers II (Chair Jindřich Libovický)

Findings of the WMT 2020 Shared Task on Automatic Post-Editing
Rajen Chatterjee, Markus Freitag, Matteo Negri and Marco Turchi

Findings of the WMT 2020 Biomedical Translation Shared Task: Basque, Italian
and Russian as New Additional Languages
Rachel Bawden, Giorgio Maria Di Nunzio, Cristian Grozea, Inigo Jauregi Unanue,
Antonio Jimeno Yepes, Nancy Mah, David Martinez, Aurélie Névéol, Mariana
Neves, Maite Oronoz, Olatz Perez-de-Viñaspre, Massimo Piccardi, Roland Roller,
Amy Siu, Philippe Thomas, Federica Vezzani, Maika Vicente Navarro, Dina Wie-
mann and Lana Yeganova

Results of the WMT20 Metrics Shared Task
Nitika Mathur, Johnny Wei, Markus Freitag, Qingsong Ma and Ondřej Bojar

Findings of the WMT 2020 Shared Task on Parallel Corpus Filtering and Alignment
Philipp Koehn, Vishrav Chaudhary, Ahmed El-Kishky, Naman Goyal, Peng-Jen
Chen and Francisco Guzmán

Findings of the WMT 2020 Shared Task on Quality Estimation
Lucia Specia, Frédéric Blain, Marina Fomicheva, Erick Fonseca, Vishrav Chaud-
hary, Francisco Guzmán and André F. T. Martins

Findings of the WMT 2020 Shared Tasks in Unsupervised MT and Very Low Re-
source Supervised MT
Alexander Fraser

11:00–12:30 Session 9: Shared Task Posters II
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Automatic Post-Editing Task

11:00–12:30 Cross-Lingual Transformers for Neural Automatic Post-Editing
Dongjun Lee

11:00–12:30 POSTECH-ETRI’s Submission to the WMT2020 APE Shared Task: Automatic Post-
Editing with Cross-lingual Language Model
Jihyung Lee, WonKee Lee, Jaehun Shin, Baikjin Jung, Young-Kil Kim and Jong-
Hyeok Lee

11:00–12:30 Noising Scheme for Data Augmentation in Automatic Post-Editing
WonKee Lee, Jaehun Shin, Baikjin Jung, Jihyung Lee and Jong-Hyeok Lee

11:00–12:30 Alibaba’s Submission for the WMT 2020 APE Shared Task: Improving Automatic
Post-Editing with Pre-trained Conditional Cross-Lingual BERT
Jiayi Wang, Ke Wang, Kai Fan, Yuqi Zhang, Jun Lu, Xin Ge, Yangbin Shi and Yu
Zhao

11:00–12:30 HW-TSC’s Participation at WMT 2020 Automatic Post Editing Shared Task
Hao Yang, Minghan Wang, Daimeng Wei, Hengchao Shang, Jiaxin Guo, Zongyao
Li, Lizhi Lei, Ying Qin, Shimin Tao, Shiliang Sun and Yimeng Chen

Biomedical Translation Task

11:00–12:30 LIMSI @ WMT 2020
Sadaf Abdul Rauf, José Carlos Rosales Núñez, Minh Quang Pham and François
Yvon

11:00–12:30 Elhuyar submission to the Biomedical Translation Task 2020 on terminology and
abstracts translation
Ander Corral and Xabier Saralegi

11:00–12:30 YerevaNN’s Systems for WMT20 Biomedical Translation Task: The Effect of Fixing
Misaligned Sentence Pairs
Karen Hambardzumyan, Hovhannes Tamoyan and Hrant Khachatrian

11:00–12:30 Pretrained Language Models and Backtranslation for English-Basque Biomedical
Neural Machine Translation
Inigo Jauregi Unanue and Massimo Piccardi

11:00–12:30 Lite Training Strategies for Portuguese-English and English-Portuguese Translation
Alexandre Lopes, Rodrigo Nogueira, Roberto Lotufo and Helio Pedrini
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11:00–12:30 The ADAPT’s Submissions to the WMT20 Biomedical Translation Task
Prashant Nayak, Rejwanul Haque and Andy Way

11:00–12:30 FJWU participation for the WMT20 Biomedical Translation Task
Sumbal Naz, Sadaf Abdul Rauf, Noor-e- Hira and Sami Ul Haq

11:00–12:30 Huawei’s Submissions to the WMT20 Biomedical Translation Task
Wei Peng, Jianfeng Liu, Minghan Wang, Liangyou Li, Xupeng Meng, Hao Yang
and Qun Liu

11:00–12:30 Addressing Exposure Bias With Document Minimum Risk Training: Cambridge at
the WMT20 Biomedical Translation Task
Danielle Saunders and Bill Byrne

11:00–12:30 UoS Participation in the WMT20 Translation of Biomedical Abstracts
Felipe Soares and Delton Vaz

11:00–12:30 Ixamed’s submission description for WMT20 Biomedical shared task: benefits and
limitations of using terminologies for domain adaptation
Xabier Soto, Olatz Perez-de-Viñaspre, Gorka Labaka and Maite Oronoz

11:00–12:30 Tencent AI Lab Machine Translation Systems for the WMT20 Biomedical Transla-
tion Task
Xing Wang, Zhaopeng Tu, Longyue Wang and Shuming Shi

Metrics Task

11:00–12:30 ParBLEU: Augmenting Metrics with Automatic Paraphrases for the WMT’20 Met-
rics Shared Task
Rachel Bawden, Biao Zhang, Andre Tättar and Matt Post

11:00–12:30 Extended Study on Using Pretrained Language Models and YiSi-1 for Machine
Translation Evaluation
Chi-kiu Lo

11:00–12:30 Machine Translation Reference-less Evaluation using YiSi-2 with Bilingual Map-
pings of Massive Multilingual Language Model
Chi-kiu Lo and Samuel Larkin

11:00–12:30 Unbabel’s Participation in the WMT20 Metrics Shared Task
Ricardo Rei, Craig Stewart, Ana C Farinha and Alon Lavie
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11:00–12:30 Learning to Evaluate Translation Beyond English: BLEURT Submissions to the
WMT Metrics 2020 Shared Task
Thibault Sellam, Amy Pu, Hyung Won Chung, Sebastian Gehrmann, Qijun Tan,
Markus Freitag, Dipanjan Das and Ankur Parikh

11:00–12:30 Towards a Better Evaluation of Metrics for Machine Translation
Peter Stanchev, Weiyue Wang and Hermann Ney

11:00–12:30 Incorporate Semantic Structures into Machine Translation Evaluation via UCCA
Jin Xu, Yinuo Guo and Junfeng Hu

Parallel Corpus Filtering Task

11:00–12:30 Filtering Noisy Parallel Corpus using Transformers with Proxy Task Learning
Haluk Açarçiçek, Talha Çolakoğlu, pınar ece aktan hatipoğlu, Chong Hsuan Huang
and Wei Peng

11:00–12:30 Score Combination for Improved Parallel Corpus Filtering for Low Resource Con-
ditions
Muhammad ElNokrashy, Amr Hendy, Mohamed Abdelghaffar, Mohamed Afify,
Ahmed Tawfik and Hany Hassan Awadalla

11:00–12:30 Bicleaner at WMT 2020: Universitat d’Alacant-Prompsit’s submission to the par-
allel corpus filtering shared task
Miquel Esplà-Gomis, Víctor M. Sánchez-Cartagena, Jaume Zaragoza-Bernabeu
and Felipe Sánchez-Martínez

11:00–12:30 An exploratory approach to the Parallel Corpus Filtering shared task WMT20
Ankur Kejriwal and Philipp Koehn

11:00–12:30 Dual Conditional Cross Entropy Scores and LASER Similarity Scores for the
WMT20 Parallel Corpus Filtering Shared Task
Felicia Koerner and Philipp Koehn

11:00–12:30 Improving Parallel Data Identification using Iteratively Refined Sentence Align-
ments and Bilingual Mappings of Pre-trained Language Models
Chi-kiu Lo and Eric Joanis

11:00–12:30 Alibaba Submission to the WMT20 Parallel Corpus Filtering Task
Jun Lu, Xin Ge, Yangbin Shi and Yuqi Zhang

11:00–12:30 Volctrans Parallel Corpus Filtering System for WMT 2020
Runxin Xu, Zhuo Zhi, Jun Cao, Mingxuan Wang and Lei Li
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Quality Estimation Task

11:00–12:30 PATQUEST: Papago Translation Quality Estimation
Yujin Baek, Zae Myung Kim, Jihyung Moon, Hyunjoong Kim and Eunjeong Park

11:00–12:30 RTM Ensemble Learning Results at Quality Estimation Task
Ergun Biçici

11:00–12:30 NJU’s submission to the WMT20 QE Shared Task
Qu Cui, Xiang Geng, Shujian Huang and Jiajun CHEN

11:00–12:30 BERGAMOT-LATTE Submissions for the WMT20 Quality Estimation Shared Task
Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Vishrav Chaud-
hary, Mark Fishel, Francisco Guzmán and Lucia Specia

11:00–12:30 The NiuTrans System for the WMT20 Quality Estimation Shared Task
Chi Hu, Hui Liu, Kai Feng, Chen Xu, Nuo Xu, Zefan Zhou, Shiqin Yan, Yingfeng
Luo, Chenglong Wang, Xia Meng, Tong Xiao and Jingbo Zhu

11:00–12:30 Two-Phase Cross-Lingual Language Model Fine-Tuning for Machine Translation
Quality Estimation
Dongjun Lee

11:00–12:30 IST-Unbabel Participation in the WMT20 Quality Estimation Shared Task
João Moura, miguel vera, Daan van Stigt, Fabio Kepler and André F. T. Martins

11:00–12:30 TMUOU Submission for WMT20 Quality Estimation Shared Task
Akifumi Nakamachi, Hiroki Shimanaka, Tomoyuki Kajiwara and Mamoru Ko-
machi

11:00–12:30 NICT Kyoto Submission for the WMT’20 Quality Estimation Task: Intermediate
Training for Domain and Task Adaptation
Raphael Rubino

11:00–12:30 TransQuest at WMT2020: Sentence-Level Direct Assessment
Tharindu Ranasinghe, Constantin Orasan and Ruslan Mitkov

11:00–12:30 HW-TSC’s Participation at WMT 2020 Quality Estimation Shared Task
Minghan Wang, Hao Yang, Hengchao Shang, Daimeng Wei, Jiaxin Guo, Lizhi Lei,
Ying Qin, Shimin Tao, Shiliang Sun, Yimeng Chen and Liangyou Li
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11:00–12:30 Tencent submission for WMT20 Quality Estimation Shared Task
Haijiang Wu, Zixuan Wang, Qingsong Ma, Xinjie Wen, Ruichen Wang, Xiaoli
Wang, Yulin Zhang, Zhipeng Yao and Siyao Peng

11:00–12:30 Zero-Shot Translation Quality Estimation with Explicit Cross-Lingual Patterns
Lei Zhou, Liang Ding and Koichi Takeda

Unsupervised and Very Low-Resource Translation Task

11:00–12:30 NLPRL System for Very Low Resource Supervised Machine Translation
Rupjyoti Baruah, Rajesh Kumar Mundotiya, Amit Kumar and Anil kumar Singh

11:00–12:30 Low-Resource Translation as Language Modeling
Tucker Berckmann and Berkan Hiziroglu

11:00–12:30 The LMU Munich System for the WMT 2020 Unsupervised Machine Translation
Shared Task
Alexandra Chronopoulou, Dario Stojanovski, Viktor Hangya and Alexander Fraser

11:00–12:30 UdS-DFKI@WMT20: Unsupervised MT and Very Low Resource Supervised MT
for German-Upper Sorbian
Sourav Dutta, Jesujoba Alabi, Saptarashmi Bandyopadhyay, Dana Ruiter and Josef
van Genabith

11:00–12:30 Data Selection for Unsupervised Translation of German–Upper Sorbian
Lukas Edman, Antonio Toral and Gertjan van Noord

11:00–12:30 The LMU Munich System for the WMT20 Very Low Resource Supervised MT Task
Jindřich Libovický, Viktor Hangya, Helmut Schmid and Alexander Fraser

11:00–12:30 NRC Systems for Low Resource German-Upper Sorbian Machine Translation 2020:
Transfer Learning with Lexical Modifications
Rebecca Knowles, Samuel Larkin, Darlene Stewart and Patrick Littell

11:00–12:30 CUNI Systems for the Unsupervised and Very Low Resource Translation Task in
WMT20
Ivana Kvapilíková, Tom Kocmi and Ondřej Bojar

11:00–12:30 The University of Helsinki and Aalto University submissions to the WMT 2020 news
and low-resource translation tasks
Yves Scherrer, Stig-Arne Grönroos and Sami Virpioja
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ing Sibanda, Akinola Oluwole, Vukosi Marivate, Orevaoghene Ahia
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Panel: Jade Abbott, Anoop Kunchukuttan, Kathleen Siminyu and Jörg Tiede-
mann

15:30–16:00 Break

16:00–17:00 Session 12: Shared Task Overview II (Chair: Matt Post)
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ment Level Human Machine Translation Evaluation
Sheila Castilho
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Josef Stefan Institute

Christof Monz
University of Amsterdam

Makoto Morishita
NTT

Masaaki Nagata
NTT

Toshiaki Nakazawa
University of Tokyo

Santanu Pal
WIPRO AI

Matt Post
JHU

Marcos Zampieri
Rochester Institute of Technology

Abstract

This paper presents the results of the news
translation task and the similar language trans-
lation task, both organised alongside the Con-
ference on Machine Translation (WMT) 2020.
In the news task, participants were asked to
build machine translation systems for any of
11 language pairs, to be evaluated on test sets
consisting mainly of news stories. The task
was also opened up to additional test suites
to probe specific aspects of translation. In the
similar language translation task, participants
built machine translation systems for translat-
ing between closely related pairs of languages.

1 Introduction

The Fifth Conference on Machine Translation
(WMT20)1 was held online with EMNLP 2020
and hosted a number of shared tasks on various as-
pects of machine translation. This conference built
on 14 previous editions of WMT as workshops and
conferences (Koehn and Monz, 2006; Callison-
Burch et al., 2007, 2008, 2009, 2010, 2011, 2012;
Bojar et al., 2013, 2014, 2015, 2016, 2017, 2018;
Barrault et al., 2019).

This year we conducted several official tasks.
We report in this paper on the news and similar
translation tasks. Additional shared tasks are de-
scribed in separate papers in these proceedings:
• automatic post-editing (Chatterjee et al.,

2020)
• biomedical translation (Bawden et al., 2020b)
• chat translation (Farajian et al., 2020)
• lifelong learning (Barrault et al., 2020)
1http://www.statmt.org/wmt20/

• metrics (Mathur et al., 2020)
• parallel corpus filtering (Koehn et al., 2020)
• quality estimation (Specia et al., 2020a)
• robustness (Specia et al., 2020b)
• unsupervised and very low-resource transla-

tion (Fraser, 2020)

In the news translation task (Section 2), partic-
ipants were asked to translate a shared test set,
optionally restricting themselves to the provided
training data (“constrained” condition). We in-
cluded 22 translation directions this year, with
translation between English and each of Chinese,
Czech, German and Russian, as well as French to
and from German being repeated from last year,
and English to and from Inuktitut, Japanese, Pol-
ish and Tamil being new for this year. Further-
more, English to and from Khmer and Pashto were
included, using the same test sets as in the cor-
pus filtering task. The translation tasks covered
a range of language families, and included both
low-resource and high-resource pairs. System out-
puts for each task were evaluated both automati-
cally and manually, but we only include the man-
ual evaluation here.

The human evaluation (Section 3) involves ask-
ing human judges to score sentences output by
anonymized systems. We obtained large numbers
of assessments from researchers who contributed
evaluations proportional to the number of tasks
they entered. In addition, we used Mechanical
Turk to collect further evaluations, as well as a
pool of linguists. This year, the official manual
evaluation metric is again based on judgments of
adequacy on a 100-point scale, a method (known
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as “direct assessment”) that we explored in the
previous years with convincing results in terms of
the trade-off between annotation effort and reli-
able distinctions between systems.

The primary objectives of WMT are to evalu-
ate the state of the art in machine translation, to
disseminate common test sets and public train-
ing data with published performance numbers, and
to refine evaluation and estimation methodologies
for machine translation. As before, all of the
data, translations, and collected human judgments
are publicly available.2 We hope these datasets
serve as a valuable resource for research into data-
driven machine translation, automatic evaluation,
or prediction of translation quality. News transla-
tions are also available for interactive visualization
and comparison of differences between systems at
http://wmt.ufal.cz/ using MT-ComparEval
(Sudarikov et al., 2016).

In order to gain further insight into the perfor-
mance of individual MT systems, we organized a
call for dedicated “test suites”, each focusing on
some particular aspect of translation quality. A
brief overview of the test suites is provided in Sec-
tion 4.

Following the success of the first Similar Lan-
guage Translation (SLT) task at WMT 2019 and
the interest of the community in this topic (Costa-
jussà et al., 2018; Popović et al., 2020), we orga-
nize a second iteration of the SLT task at WMT
2020. The goal of the shared task is to evaluate
the performance of state-of-the-art MT systems on
translating between pairs of closely-related lan-
guages from the same language family. SLT
2020 features five pairs of similar languages from
three language families: Indo-Aryan (Hindi and
Marathi), Romance (Catalan, Spanish, and Por-
tuguese), and South-Slavic (Croatian, Serbian, and
Slovene). Translations were evaluated in both di-
rections using three automatic metrics: BLEU,
RIBES, and TER. Results and main findings of the
SLT shared task are discussed in Section 5.

2 News Translation Task

This recurring WMT task assesses the quality of
MT on news domain text. As in the previous year,
we included Chinese, Czech, German and Rus-
sian (into and out of English) as well as French-
German. New language pairs for this year were
Inuktitut, Japanese, Polish and Tamil (to and from

2http://statmt.org/wmt20/results.html

English). We also included the two language pairs
from the corpus filtering task (Pashto→English
and Khmer→English), to give participants the op-
portunity to build and test MT systems using the
large noisy corpora released for that task.

2.1 Test Data
As in previous years, the test sets consist (as far as
possible) of unseen translations prepared specially
for the task. The test sets are publicly released to
be used as translation benchmarks in the coming
years. Here we describe the production and com-
position of the test sets.

The test sets differed along several dimensions,
which we list in Table 1. The differing aspects of
the test sets are as follows:

Domain Most test sets are drawn from the
“news” domain, which means the source texts
were extracted from online news websites, and
the translations were produced specifically for the
task. The Pashto→English and Khmer→English
test sets were drawn from wikipedia and, as last
year, the French↔German test sets concentrated
on EU-related news.

Due to limited resources and data available,
the Inuktitut↔English test sets contain document-
and sentence-aligned data collected from two do-
mains: news and parliamentary. The news data
were extracted from the Nunatsiaq News online
news website. The parliamentary data were de-
bates from the Nunavut Hansard that are more re-
cent than the training corpus.

Development? For new languages we released a
development set, produced in the same way as the
test set.

Sentence-split? For some pairs, we did not
sentence-split the source texts. In these cases, we
extracted the text from the HTML source with
paragraph breaks retained, and asked translators
to maintain only the paragraph breaks. This was
done in order to try to improve the quality of the
human translation by allowing the translators more
freedom. Some analysis of the paragraph-split
pairs is presented in Section 2.1.1.

Directional? For most language pairs the
source-side of the test set is the original, and the
target-side of the test set is the translation. This
is in contrast to the situation up until 2018 when
our test sets were constructed from both “source-
original” and “target-original” parts. Where a
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development set is provided, it is a mixture of
both “source-original” and “target-original” texts,
in order to maximise its size, although the original
language is always marked in the sgm file, except
for Inuktitut↔English. The consequences of di-
rectionality in test sets has been discussed recently
in the literature (Freitag et al., 2019; Laubli et al.,
2020; Graham et al., 2020), and the conclusion
is that it can have an effect on detrimental effect
on the accuracy of system evaluation. We use
“source-original” parallel sentences wherever
possible, on the basis that it is the more realistic
scenario for practical MT usage.

Exception: the test sets for the two
Inuktitut↔English translation directions con-
tain the same data, without regard to original
direction. For most news text in the test and
development sets, English was the original lan-
guage and Inuktitut the translation, while the
parliamentary data mixes the two directions.

The origins of the news test documents is shown
in Table 5, and the size of the test sets in terms
of sentence pairs and words is given in Figure 4.
We generally aimed for 1000 sentences for a new
language pair, and 2000 sentences for a previously
used language pair (since there was no need to cre-
ate a development set for a previously-used lan-
guage pair). For test sets where the source was not
sentence-split (see below) we aimed for an equiv-
alent to 2000 sentences, but in running words.

In order to improve the consistency and qual-
ity of the test set translations, this year we pre-
pared common translator briefs to be sent to each
agency we used. We show the translator briefs in
Appendix B (for sentence-split sources) and Ap-
pendix C (for paragraph-split sources).

2.1.1 Paragraph-split Test Sets
For the language pairs English↔Czech,
English↔German and English→Chinese, we
provided the translators with paragraph-split
texts, instead of sentence-split texts. We did this
in order to provide the translators with greater
freedom and, hopefully, to improve the quality of
the translation. Allowing translators to merge and
split sentences removes one of the “translation
shifts” identified by Popovic (2019), which can
make translations create solely for MT evaluation
different from translations produced for other
purposes.

We first show some descriptive statistics of the
source texts, for Czech, English and German, in

Table 2, where we used the Moses sentence split-
ter (Koehn et al., 2007) to provide sentence bound-
aries. We can see that the number of sentences per
paragraph is much lower for English, where in fact
70% of paragraphs only have single sentence. For
Czech and German, the mean sentences per para-
graph is quite similar (2.62 vs. 2.52).

The main question though, is whether trans-
lators tended to preserve the sentence structure
when translating. To determine this, we split both
source paragraphs and translations into sentence,
and aligned them using hunalign (Varga et al.,
2005) with the bitextor dictionaries (Esplà-Gomis,
2009). In Table 4 we show the counts of 1-1 sen-
tence alignments, as well as cases where the trans-
lator merged or split neighbouring sentences. Note
that these counts are approximate, since they are
affected by errors in the automatic splitting and
alignment.

Looking through examples of merges and splits,
we see that most of them are relatively sim-
ple changes, where the translator has merged to
clauses into a sentence, or split a sentence to
clauses. Examples of such merges and splits are
shown in Table 3, where the first and second are
simple merges or splits, whereas the third is a
rare case of more complex reordering. We leave
a detailed analysis of the translators’ treatment of
paragraph-split data for future work.

2.2 Training Data

As in past years we provided a selection of parallel
and monolingual corpora for model training, and
development sets to tune system parameters. Par-
ticipants were permitted to use any of the provided
corpora to train systems for any of the language
pairs. As well as providing updates on many of the
previously released data sets, we included several
new data sets, mainly to support the new language
pairs. These included Wikimatrix (Schwenk et al.,
2019), which was added for all language pairs
where it was available. The news commentary and
europarl corpora that we have been using since the
earliest news task now have “data sheets”, describ-
ing the data sets in standardised format (Costa-
jussà et al., 2020).

For Tamil-English, we additionally included
some recently crawled multilingual parallel cor-
pora from Indian government websites (Haddow
and Kirefu, 2020; Siripragada et al., 2020), the
Tanzil corpus (Tiedemann, 2009), the Pavlick dic-
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Europarl Parallel Corpus
Czech ↔ English German ↔ English Polish↔ English German ↔ French

Sentences 645,241 1,825,745 632,435 1,801,076
Words 14,948,900 17,380,340 48,125,573 50,506,059 14,691,199 16,995,232 47,517,102 55,366,136

Distinct words 172,452 63,289 371,748 113,960 170,271 62,694 368,585 134,762

News Commentary Parallel Corpus
Czech↔ English German↔ English Russian↔ English

Sentences 248,927 361,735 308,853
Words 5,570,734 6,156,063 9,199,170 9,127,331 7,867,940 8,200,081

Distinct words 174,952 70,115 206,506 83,701 201,616 80,219
Chinese↔ English Japanese↔ English German↔ French

Sentences 312,489 1,818 276,637
Words – 7,939,817 – 44,418 7,148,178 8,703,088

Distinct words – 76,013 – 6,165 178,453 85,189

Common Crawl Parallel Corpus
German↔ English Czech↔ English Russian↔ English French↔ German

Sentences 2,399,123 161,838 878,386 622,288
Words 54,575,405 58,870,638 3,529,783 3,927,378 21,018,793 21,535,122 13,991,973 12,217,457

Distinct words 1,640,835 823,480 210,170 128,212 764,203 432,062 676,725 932,137

ParaCrawl Parallel Corpus
German↔ English Czech↔ English Polish↔ English

Sentences 34,371,306 5,345,693 6,577,804
Words 767,321,987 813,326,217 115,294,152 124,695,776 151,873,495 167,023,296

Distinct Words 8,187,923 4,151,916 1,503,435 1,030,918 1,926,833 1,386,287

Japanese↔ English Russian↔ English French↔ German
Sentences 10,120,013 12,061,155 7,222,574

Words – 274,368,443 182,325,667 210,770,840 145,190,707 123,205,701
Distinct Words – 2,051,246 2,958,831 2,385,076 1,534,068 2,368,682

Khmer↔ English Pashto↔ English
Sentences 4,169,574 1,022,883

Words – 77,927,333 14,442,909 13,890,077
Distinct Words – 1,002,134 365,781 349,261

EU Press Release Parallel Corpus
Czech↔ English German↔ English Polish↔ English

Sentences 452,411 1,631,639 277,984
Words 7,214,324 7,748,940 26,321,432 27,018,196 6,415,074 6,904,358

Distinct words 141,077 83,733 402,533 197,030 121,451 62,672

Yandex 1M Parallel Corpus
Russian↔ English

Sentences 1,000,000
Words 24,121,459 26,107,293

Distinct 701,809 387,646

CzEng v2.0 Parallel Corpus
Czech↔ English

Sentences 60,980,645
Words 757,316,261 848,016,692

Distinct 3,684,081 2,493,804

WikiTitles Parallel Corpus
Czech↔ English German↔ English Inuktitut↔ English Japanese↔ English

Sentences 382,336 1,382,681 829 706,012
Words 916,397 984,247 2,999,545 3,504,013 1213 1213 – 1,867,218

Distinct 206,935 176,156 645,224 547,930 962 938 – 268,391

Polish↔ English Pashto↔ English Russian↔ English
Sentences 1,006,263 9,869 1,108,789

Words 2,236,756 2,579,249 20,674 19,519 3,010,302 3,027,765
Distinct 507,571 475,255 9,692 8,899 507,251 434,244

Tamil↔ English Chinese↔ English German↔ French
Sentences 102,143 836,682 942,017

Words 237,962 234,380 – 2,267,336 1,989,965 2,363,308
Distinct 72,577 61,267 – 357,440 479,000 423,406

Figure 1: Statistics for the training sets used in the translation task. The number of words and the number of distinct words
(case-insensitive) is based on the Moses tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/indic_nlp_
library) for Gujarati.
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CCMT Corpus
casia2015 casict2011 casict2015 datum2011 datum2017 neu2017

Sentences 1,050,000 1,936,633 2,036,834 1,000,004 999,985 2,000,000
Words (en) 20,571,578 34,866,598 22,802,353 24,632,984 25,182,185 29,696,442

Distinct words (en) 470,452 627,630 435,010 316,277 312,164 624,420

United Nations Parallel Corpus
Russian↔ English Chinese↔ English

Sentences 23,239,280 15,886,041
Words 570,099,284 601,123,628 – 425,637,920

Distinct 1,446,782 1,027,143 – 769,760

Extra Tamil-English Parallel Data
PIB MKB NLPC

Sentences 60,836 5,744 8,900
Words 981,352 1,245,455 91,556 114,415 62,041 75,326

Distinct 96,911 35,954 20,697 9,501 13,794 7,087

UFAL Tanzil PMIndia
Sentences 169,871 93,540 39,526

Words 3,335,382 4,537,910 2,595,930 2,822,291 604,814 798,406
Distinct 347,874 70,627 27,711 20,282 70,845 25,074

Extra Japanese-English Parallel Data
Subtitles Kyoto TED

Sentences 2,801,388 443,849 223,108
Words – 23,933,060 – 11,622,252 4,554,409

Distinct – 161,484 – 191,885 – 60,786

Nunavut Hansard Parallel Corpus
Inuktitut↔ English

Sentences 1,301,736
Words 10,875,086 20,781,805

Distinct 1,594,280 57,691

Opus Corpus
Khmer↔ English Pashto↔ English

Sentences 290,049 123,198
Words – 4,537,258 889,520 814,064

Distinct – 52,496 30,583 20,795

Synthetic parallel data (both directions combined)
Czech↔ English Russian↔ English Chinese↔ English

Sentences 126,828,081 76,133,209 19,763,867
Words 2,351,230,606 2,655,779,234 1,511,996,711 1,698,428,744 – 416,567,173

Distinct 5,745,323 3,840,231 5,928,141 3,889,049 – 1,188,933

Wikimatrix Parallel Data
Czech↔ English German↔ English Japanese↔ English Polish↔ English

Sentences 2,094,650 6,227,188 3,895,992 3,085,946
Words 34,801,119 39,197,172 113,445,806 118,077,685 – 72,320,248 50,061,388 55,736,716

Distinct 1,068,844 798,095 2,855,263 1,827,785 1,106,529 1,312,825 1,096,411

Russian↔ English Tamil↔ English Chinese↔ English German↔ French
Sentences 5,203,872 240,357 2,595,119 3,350,816

Words 93,828,313 102,937,537 3,057,383 3,766,628 – 58,615,891 68,249,384 59,422,699
Distinct 2,233,043 1,592,190 392,613 262,094 – 1,059,537 1,067,450 1,844,533

Figure 2: Statistics for the training sets used in the translation task. The number of words and the number of distinct words
(case-insensitive) is based on the Moses tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/indic_nlp_
library) for Tamil.
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Monolingual Wikipedia Data

English Khmer Pashto Tamil
Sentences 67,796,935 132,666 76,557 1,669,257

Words 2,277,495,444 – 3,985,596 22,251,345
Distinct words 8,570,978 – 229,040 1,542,047

News Language Model Data

English German Czech Russian Japanese
Sentences 233,501,354 333,313,278 81,708,712 93,827,187 3,446,416

Words 5,578,072,595 6,492,440,544 1,429,535,453 1,702,976,902 –
Distinct words 7,590,931 37,274,673 4,890,810 5,199,379 –

Polish Chinese French Tamil
Sentences 3,788,276 4,724,008 87,063,385 708,500

Words 66,323,590 – 2,105,883,073 9,421,383
Distinct words 725,050 – 3,736,705 536,423

Document-Split News LM Data (not dedudped)

Czech English German
Sentences 114,101,660 486,139,068 654,097,256

Words 1,798,383,105 10,459,366,947 11,097,364,402
Distinct words 4,765,875 7,857,783 24,538,295

Common Crawl Language Model Data

English German Czech Russian Polish
Sent. 3,074,921,453 2,872,785,485 333,498,145 1,168,529,851 1,422,729,881

Words 65,104,585,881 65,147,123,742 6,702,445,552 23,332,529,629 40,639,985,955
Dist. 342,149,665 338,410,238 48,788,665 90,497,177 213,298,869

Chinese Inuktitut Tamil Pashto French
Sent. 1,672,324,647 296,730 28,828,239 6,558,180 4,898,012,445

Words – 1,480,611 632,363,004 218,412,919 126,364,574,036
Dist. – 448,513 16,780,006 23,531,044 363,878,959

Figure 3: Statistics for the monolingual training sets used in the translation task. The number of words and the number of dis-
tinct words (case-insensitive) is based on the Moses tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/
indic_nlp_library) for Tamil.

Test Sets
Czech→ EN EN→ Czech German→ EN EN→ German

Lines. 664 1418 785 1418
Words 30069 39570 50330 47553 35475 38559 38322 50330 53243 53837

Distinct words 10043 6303 7893 12667 7923 5936 5954 7893 10563 10536

Inuktitut↔ EN Tamil→ EN EN→ Tamil Japanese→ EN EN→ Japanese Khmer↔ EN
Lines. 2971 997 1000 993 1000 2320
Words 36710 68111 15402 19716 25176 19749 – 28446 25176 – – 45220

Distinct words 14531 5719 6183 3519 4971 8139 – 5195 4971 – – 5315

Pashto↔ EN Polish→ EN EN→ Polish EN→ Russian German↔ French
Lines. 2719 1001 1000 2002 1619
Words 59245 53754 18472 21852 25176 24346 49862 47909 30422 40180

Distinct words 9071 6305 6685 4274 4971 7997 7772 13042 5428 4727

Chinese→ EN EN→ Chinese Russia→ EN
Lines. 2000 1418 991
Words – 74835 74700 50330 – – 17249 20346 20704

Distinct words – 8137 8209 7893 – – 6328 4091 4066

Figure 4: Statistics for the test sets used in the translation task. In the cases that there are three word counts, these are
for source, first target translation, and second target translation. The number of words and the number of distinct words
(case-insensitive) is based on the Moses tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/indic_nlp_
library) for Tamil
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Pair Domain Development? Sentence-split? Directional? Documents?
Chinese↔English news 7 Only zh→en 3 3

Czech↔English news 7 7 3 3

French↔German EU related news 7 3 7 7

German↔English news 7 7 3 3

Inuktitut↔English news and parliament 3 3 7 Only news
Japanese↔English news 3 3 3 3

Khmer↔English wikipedia 3 3 7 7

Pashto↔English wikipedia 3 3 7 7

Polish↔English news 3 3 3 3

Russian↔English news 7 3 3 3

Tamil↔English news 3 3 3 3

Table 1: The characteristics of the test sets for the news tasks. We show the domain that the test set was drawn from, whether or
not we released a development set this year, whether the texts were sentence-split before translation, and whether the direction
of translation was preserved. For “directional” test sets, the entire source side of the test set was originally written in the
source language, and then translated to the target language. Non-directional test sets are a mixture of “source-original” and
“target-original” texts. Finally, we record whether or not the test set contained the original document boundaries.

Language Documents Paragraphs Sentences Words Sentences per
Paragraph

Czech 102 659 1725 25874 2.62
English 130 1418 2043 44018 1.44
German 118 777 1958 31030 2.52

Table 2: Descriptive statistics of paragraph-split source texts. To count the sentences, we applied the Moses sentence splitter
to the texts.

Als Rückzieher sei das aber nicht zu verstehen:
"Ganz Ägypten ist der Tahrirplatz".

But that should not be understood as a with-
drawal.
"All of Egypt is Tahrir square."

"Ich fühle mich unglaublich geehrt und demütig,
neben JLo die Latino-Community zu repräsen-
tieren.

"I feel incredibly honored and humbled to be next
to J. Lo, representing the Latino community that
is such an important force in the United States,"
Shakira shared in a video.

Denn diese hat eine unglaubliche Stärke in den
USA", teilte Shakira in einem Video mit.
Man könne die Unternehmen zwar nicht von
der Umsatzsteuer auf Sachspenden befreien, erk-
lärte das Ministerium auf eine Frage der Grünen-
Bundestagsfraktion, über die die Zeitungen der
Funke-Mediengruppe am Freitag berichteten.

Although it is impossible to exempt companies
from VAT on donations in kind, retailers could
set the market value of unsaleable returns so low
that they would need to pay no or only very lit-
tle VAT, the Ministry explained in response to a
question from the Greens parliamentary group,
as reported in newspapers of the Funke media
group on Friday.

Die Händler könnten aber den Marktwert der un-
verkäuflichen Retouren so niedrig ansetzen, dass
sie keine oder nur wenig Umsatzsteuer zahlen
müssten.

Table 3: Examples of translations where the translator has split or merged the sentences. The third example is one of the rare
examples of a non-trivial merging of the sentence (i.e. there is merging accompanied by reordering)

tionaries (Pavlick et al., 2014), a corpus3 produced
3https://github.com/nlpcuom/

by the University of Moratuwa, the HindEnCorp

English-Tamil-Parallel-Corpus
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Pair Translator 1-1 %age Merges Splits n-m
Czech→English A 1573 91.2 26 98 1
English→Czech A 2013 98.5 10 8 1

German→English A 1913 97.7 13 19 0
B 1844 94.2 35 43 0

English→German A 2017 98.7 9 8 0
B 1816 88.9 12 203 0

Table 4: How the translators treated sentences when translating the paragraph-split texts. We sentence-split and automatically
aligned source and translation. We show the number and percentage of sentences which were translated 1-1, as well as the
number of times translators merged or split sentences when translating.

(Kunchukuttan et al., 2018) and English and Tamil
wikipedia dumps.

The training corpus for Inuktitut↔English is
the recently released Nunavut Hansard Inuktitut–
English Parallel Corpus 3.0 (Joanis et al., 2020).

For the Japanese↔English tasks, we added sev-
eral freely available parallel corpora to the train-
ing data. It includes JParaCrawl v2.0 (Morishita
et al., 2020), a large web-based parallel corpus,
Japanese-English Subtitle Corpus (JESC) (Pryzant
et al., 2017), the Kyoto Free Translation Task
(KFTT) corpus (Neubig, 2011), constructed from
the Kyoto-related Wikipedia articles, and TED
Talks (Cettolo et al., 2012).

The monolingual data we provided was similar
to last year’s, with a 2019 news crawl added to all
the news corpora. In addition, we provided ver-
sions of the news corpora for Czech, English and
German, with both the document and paragraph
structure retained. In other words, we did not ap-
ply sentence splitting to these corpora, and we re-
tained the document boundaries and text ordering
of the originals.

Training, development, and test data for
Pashto↔English and Khmer↔English are shared
with the Parallel Corpus Filtering Shared Task
(Koehn et al., 2020). The training data
mostly comes from OPUS (software localization,
Tatoeba, Global Voices), the Bible, and special-
prepared corpora from TED Talks and the Jehova
Witness web site (JW300). The development and
test sets were created as part of the Flores initia-
tive (Guzmán et al., 2019) by professional transla-
tion of Wikipedia content with careful vetting of
the translations. Please refer the to the Parallel
Corpus Filtering Shared Task overview paper for
details on these corpora.

Some statistics about the training and test mate-
rials are given in Figures 1, 2, 3 and 4.

2.3 Submitted Systems
In 2020, we received a total of 153 submissions.
The participating institutions are listed in Table 6
and detailed in the rest of this section. Each sys-
tem did not necessarily appear in all translation
tasks. We also included online MT systems (orig-
inating from 4 services), which we anonymized as
ONLINE-A,B,G,Z.

This year we introduced a new submission tool,
OCELoT4, replacing the matrix that has been used
in most previous editions. Using OCELoT gave us
more control over the submission and scoring pro-
cess, for example we were able to limit the num-
ber of test submissions by each team, and we also
displayed the submissions anonymously to avoid
publishing any automatic scores. A screenshot of
OCELoT is shown in Figure 5.

For presentation of the results, systems are
treated as either constrained or unconstrained, de-
pending on whether their models were trained only
on the provided data. Since we do not know how
they were built, the online systems are treated
as unconstrained during the automatic and human
evaluations.

In the rest of this section, we provide brief de-
tails of the submitted systems, for those where the
authors provided such details.

2.3.1 AFRL (Gwinnup and Anderson, 2020)
AFRL-SYSCOMB20 is a system combination
consisting of two Marian transformer ensembles,
one OpenNMT transformer system and a Moses
phrase-based system.

AFRL-FINETUNE is an OpenNMT transformer
system fine-tuned on newstest2014-2017.

2.3.2 ARIEL XV (Xv, 2020)
ARIEL XV is a Transformer base model trained
with the Sockeye sequence modeling toolkit us-

4https://github.com/AppraiseDev/OCELoT
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English I ABC News (2), All Africa (5), Brisbane Times (1), CBS LA (1), CBS News (1), CNBC (3), CNN (2),
Daily Express (1), Daily Mail (2), Fox News (1), Gateway (1), Guardian (3), Huffington Post (2), Lon-
don Evening Standard (2), Metro (2), NDTV (7), RTE (7), Reuters (4), STV (2), Seattle Times (3), The
Independent (1), The Local (1), The Scotsman (2), The Sun (1), The Telegraph (1), VOA Zimbabwe (1),
news.com.au (4),

English II ABC News (2), Al Jazeera (1), All Africa (6), Brisbane Times (1), CBS LA (1), CNBC (3), CNN (1),
Chicago Defender (1), Daily Express (2), Daily Mail (2), Egypt Independent (1), Euronews (1),
Guardian (2), Herald Scotland (1), Huffington Post (6), Kazakh TV (1), LA Times (1), London Evening
Standard (3), Metro (1), NDTV (6), One India (2), RTE (1), Reuters (1), Russia Today (1), Seattle
Times (1), Sky (1), The Independent (1), The Scotsman (4), The Sun (2), UPI (1), news.com.au (3),

English III ABC News (5), Al Jazeera (3), All Africa (2), Brisbane Times (2), CBS LA (2), CBS News (3),
CNBC (5), CNN (6), Chicago Defender (1), Daily Express (2), Daily Mail (2), Euronews (3), Fox
News (5), Gateway (1), Guardian (5), Herald Scotland (1), Huffington Post (8), LA Times (2), London
Evening Standard (5), Medical Daily (1), Metro (3), NDTV (7), New Republic (1), New York Times (2),
Novinite (3), RTE (3), Reuters (8), Russia Today (7), STV (1), Sciencedaily (2), Seattle Times (12),
Sky (3), The Independent (2), The Scotsman (1), The Sun (1), The Telegraph (4), UPI (6),

Chinese China News (64), Chubun (3), Hunan Ribao (5), International Times (10), Jingji Guancha Bao (1),
Macao Government (5), Nhan Dan (9), Nikkei (2), Reuters (2), The Australian (2), UN news (2),
Xinhua (46), qq.com (1), tsrus.cn (3),

Czech Aktualne (6), Blesk (13), Denik (7), E15 (3), Hospodářské Noviny (7), Idnes (10), Lidovky (8), Medi-
afax (3), Neviditelný Pes (2), Novinky (14), Reflex (1), Respekt (5), Týden (9), Česká Pozice (7), České
Noviny (7),

German Allgemeine Zeitung (2), Braunschweiger Zzeitung (3), Dülmener Zeitung (1), Das Bild (2),
Der Spiegel (2), Der Standart (2), Deutsche Welle (2), Die Zeit (3), Echo Online (1), Epoch
Times (3), Euronews (2), Frankfurter Allgemeine Zeitung (1), Freie Presse (1), Freitag (1), Giessener
Anzeiger (1), Goslarsche Zeitung (1), Handelsblatt (2), Heute (2), In Südthüringen (1), Infranken (1),
Junge Freiheit (1), Kurier (4), Lübecker Nachrichten (1), Leipziger Volkszeitung (1), Lippische
Landes-Zeitung (2), Mittelbayerische Zeitung (2), Mitteldeutsche Zeitung (3), NTV (6), NZZ (5),
Nachrichten (2), Neue Osnabrücker Zeitung (1), Neue Presse (1), Neues Deutschland (1), Nord-
deutsche Neueste Nachrichten (3), OE24 (1), Onetz (1), Passauer Neue Presse (2), Peiner Allge-
meine Zeitung (3), Presse Portal (1), Rhein Zeitung (3), Söster Anzeiger (1), Süddeutsche Zeitung (3),
Salzburger Nachrichten (4), Schaumburger Nachrichten (1), Schleswig-Holsteinischer Zeitungsver-
lag (4), Segeberger Zeitung (3), Solinger Tageblatt (1), Stuttgarter Zeitung (1), Tagesspiegel (3), Tiroler
Tageszeitung (7), Vaterland (1), Volksblatt (1), Welt (2), Westfälische Nachrichten (1), Westfälischer
Anzeiger (1), Wiesbadener Kurier (1), Yahoo (5),

Inuktitut Nunatsiaq News (36), Nunavut Hansard (1),
Japanese Fukui Shimbun (6), Hokkaido Shimbun (6), Ise Shimbun (1), Iwaki Minpo (2), Saga Shimbun (3),

Sanyo Shimbun (4), Shizuoka Shimbun (15), Ube nippo Shimbun (1), Yahoo (40), Yamagata Shim-
bun (2),

Polish Bankier (5), Gazeta Powiatowa (1), Gazeta Prawna (3), Interia (24), Polityka (1), Rzeczpospolita (4),
Super Nowosci (3), Sztafeta (1), TVN24 (7), Tygodnik Zamojski (2), WPROST (7), Wyborcza (1),
Zycie Podkarpackie (3),

Russian Argumenti Nedely (6), Argumenty i Fakty (9), BBC Russian (2), Delovoj Peterburg (2), ERR (2),
Ekonomika i Zhizn (1), Fakty i Komentarii (3), Gazeta (4), Interfax (3), Izvestiya (7), Kommer-
sant (4), Komsomolskaya Pravda (4), Lenta (7), Moskovskij Komsomolets (3), Nasha Versiya (1),
Novye Izvestiya (1), Parlamentskaya Gazeta (5), Rosbalt (5), Rossiskaya Gazeta (1), Russia Today (3),
Russkaya Planeta (1), Sport Express (6), Tyumenskaya Oblast Segodnya (1), Vedomosti (2), Vesti (6),
Xinhua (2),

Tamil Aranda Vikatan (11), Dinamalar (2), Makkal Kural (21), One India (21), Viduthalai (15), news.lk (12),

Table 5: Composition of the test sets. English I was used for English to Japanese, Polish, Russian and Tamil, English II was
used additionally for English to Russian, and English III (which was not sentence-split) was translated to Czech, German and
Chinese. The same document pairs were used in both directions for Inuktitut↔English. For more details see the XML test
files. The docid tag gives the source and the date for each document in the test set, and the origlang tag indicates the original
source language.
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Team Institution
AFRL Air Force Research Laboratory (Gwinnup and Anderson, 2020)
ARIEL XV Independent submission (Xv, 2020)
CUNI Charles University (Popel, 2020, 2018; Kocmi, 2020)
DCU Dublin City University (Parthasarathy et al., 2020)
DEEPMIND DeepMind (Yu et al., 2020)
DIDI-NLP DiDi AI Labs (Chen et al., 2020b)
DONG-NMT (no associated paper)
ENMT Indepdendent Submission (Kim et al., 2020)
ETRANSLATION eTranslation (Oravecz et al., 2020)
FACEBOOK AI Facebook AI (Chen et al., 2020a)
GRONINGEN University of Groningen (Roest et al., 2020; Dhar et al., 2020)
GTCOM Global Tone Communication (Bei et al., 2020)
HELSINKINLP University of Helsinki and Aalto University (Scherrer et al., 2020a)
HUAWEI TSC Huawei TSC (Wei et al., 2020a)
IIE Institute of Information Engineering, Chinese Academy of Sciences

(Wei et al., 2020b)
MICROSOFT STC INDIA Microsoft STC India (Goyal et al., 2020)
NICT-KYOTO NICT-Kyoto (Marie et al., 2020)
NICT-RUI NICT-Rui (Li et al., 2020)
NIUTRANS NiuTrans (Zhang et al., 2020)
NRC National Research Council Canada (Knowles et al., 2020)
OPPO OPPO (Shi et al., 2020)
PROMT PROMT (Molchanov, 2020)
SJTU-NICT SJTU-NICT (Li et al., 2020)
SRPOL Samsung Research Poland (Krubiński et al., 2020)
TALP UPC TALP UPC (Escolano et al., 2020)
TENCENT TRANSLATION Tencent Translation (Wu et al., 2020b)
THUNLP NLP Lab at Tsinghua University (no associated paper)
TILDE Tilde (Krišlauks and Pinnis, 2020)
TOHOKU-AIP-NTT Tohoku-AIP-NTT (Kiyono et al., 2020)
UBIQUS Ubiqus (Hernandez and Nguyen, 2020)
UEDIN University of Edinburgh (Bawden et al., 2020a; Germann, 2020)
UEDIN-CUNI University of Edinburgh and Charles University (Germann et al., 2020)
UQAM_TANLE Université du Québec à Montréal (no associated paper)
VOLCTRANS ByteDance AI Lab (Wu et al., 2020a)
WECHAT WeChat (Meng et al., 2020)
WMTBIOMEDBASELINE Baseline System from Biomedical Task (Bawden et al., 2020b)
YOLO American University of Beirut (no associated paper)
ZLABS-NLP Zoho Corporation (no associated paper)

Table 6: Participants in the shared translation task. Not all teams participated in all language pairs. The translations from the
online systems were not submitted by their respective companies but were obtained by us, and are therefore anonymized in a
fashion consistent with previous years of the workshop.
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Figure 5: The OCELoT leaderboard tool

ing only the constrained data. The authors exper-
iment with bi-text data filtering, back-translation,
rule-based reranking based on translation and lan-
guage model scores, ensembling several training
runs and fine-tuning for sentences similar to the
desired domain based on the source side of the test
set.

2.3.3 Charles University (CUNI)
CUNI-DOCTRANSFORMER (Popel, 2020) is
similar to the sentence-level version (CUNI-T2T-
2018, CUBBITT), but trained on sequences with
multiple sentences of up to 3000 characters.

CUNI-T2T-2018 (Popel, 2018), also called
CUBBITT, is exactly the same system as in
WMT2018. It is the Transformer model trained
according to Popel and Bojar (2018) plus a novel
concat-regime backtranslation with checkpoint av-
eraging (Popel et al., 2020), tuned separately for
CZ-domain and non CZ-domain articles, possi-
bly handling also translation-direction (“transla-
tionese”) issues. For cs→en also a coreference
preprocessing was used adding the female-gender

pronoun where it was pro-dropped in Czech, refer-
ring to a human and could not be inferred from a
given sentence.

CUNI-TRANSFER (Kocmi, 2020) combines
transfer learning from a high-resource lan-
guage pair Czech–English into the low-resource
Inuktitut-English with an additional backtransla-
tion step. Surprising behaviour is noticed when
using synthetic data, which can be possibly
attributed to a narrow domain of training and test
data. The system is the Transformer model in a
constrained submission.

CUNI-TRANSFORMER (Popel, 2020) is simi-
lar to the WMT2018 version of CUBBITT, but
with 12 encoder layers instead of 6 and trained on
CzEng 2.0 instead of CzEng 1.7. The English-
Polish version was trained similarly on the pro-
vided constrained data.

2.3.4 DCU (Parthasarathy et al., 2020)
DCU participated in the Tamil↔English transla-
tions with the Transformer model. Various strate-
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gies were tested in order to improve over the base-
line, e.g. several techniques of data augmentation
and mining as well as a hyperparameter search for
better performance of the Transformer model in
low-resource scenarios.

2.3.5 DEEPMIND (Yu et al., 2020)
DEEPMIND is a document-level translation sys-
tem built upon noisy channel factorization. The
system optimizes the selection of translations of
individual sentences in the document in itera-
tive beam search, replacing sentences with al-
ternative translations. Candidate translations are
constructed and later scored using a number
of independent components, mainly sequence-to-
sequence models trained on large data and highly
optimized with techniques of back-translation,
distillation, and fine-tuning with in-domain data.
MonteCarlo Tree Search decoding and uncertainty
estimation are used to improve the robustness of
the search for the best sentence translation selec-
tion and specialized length models and sentence
segmentation help to avoid too short output.

2.3.6 DIDI-NLP (Chen et al., 2020b)
DIDI-NLP is a Transformer model improved
with several techniques for model enhancement,
including data filtering, data selection, large-scale
back-translation, knowledge distillation, fine-
tuning, model ensembling, and re-ranking.

Ensembled models include Transformers with
relative position attention, larger inner feed-
forward network size or reversed source. Multiple
domain models based on unsupervised BERT-CLS
clusters are used in a dynamically-weighted selec-
tion of the next word. The final n-best lists are
reranked with MIRA.

2.3.7 DONG-NMT (no associated paper)
No description provided.

2.3.8 ENMT (Kim et al., 2020)
Kim et al. (2020) base their approach on trans-
ferring knowledge of domain and linguistic char-
acteristics by pre-training the encoder-decoder
model with large amount of in-domain monolin-
gual data through unsupervised and supervised
prediction task. The model is then fine-tuned with
parallel data and in-domain synthetic data, gener-
ated with iterative back-translation. For additional
gain, final results are generated with an ensemble
model and re-ranked with averaged models and
language models.

2.3.9 ETRANSLATION (Oravecz et al., 2020)
ETRANSLATION mainly use the standard training
pipeline of Transformer in Marian, using tagged
back-translation and other features. Subword units
are identified by SentencePiece.

The paper describes the group’s concern about
computing resources and the practical utility of
expensive features like ensembling 2 to 4 big-
ger models. Techniques that were ineffective in
ETRANSLATION’s case (e.g. right-to-left model
for rescoring English→German or Unicode pre-
processing for Japanese→English) are also de-
scribed.

2.3.10 FACEBOOK AI (Chen et al., 2020a)
FACEBOOK AI focus on low-resource language
pairs involving Inuktitut and Tamil using two
strategies: (1) exploiting all available data (par-
allel and monolingual from all languages) and (2)
adapting the model to the test domain.

For (1), FACEBOOK AI opt for non-constrained
submission, using data derived from Common-
Crawl to get strong translation models via itera-
tive backtranslation and self-training and strong
language models for noisy channel reranking.
Multilingual language models are created using
mBART across all the 13 languages of WMT20.
For (2), the datasets are tagged for domain, fine-
tuned on and further extended with in-domain
data.

2.3.11 GRONINGEN

GRONINGEN-ENIU (Roest et al., 2020) inves-
tigate the (1) importance of correct morpholog-
ical segmentation of the polysynthetic Inuktitut,
testing rule-based, supervised, semi-supervised as
well as unsupervised word segmentation methods,
(2) whether or not adding data from a related lan-
guage (Greenlandic) helps, and (3) whether con-
textual word embeddings (XLM) improve transla-
tion.

GRONINGEN-ENIU use Transformer imple-
mented in Marian with the default setting, improv-
ing the performance also with tagged backtransla-
tion, domain-specific data, ensembling and fine-
tuning.

GRONINGEN-ENTAM (Dhar et al., 2020)
study the effects of various techniques such as
linguistically motivated segmentation, back-
translation, fine-tuning and word dropout on the
English→Tamil News Translation task. Linguis-
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tically motivated subword segmentation does not
consistently outperform the widely used Senten-
cePiece segmentation despite the agglutinative
nature of Tamil morphology. The authors also
found that fully-fledged back-translation remains
more competitive than its cheaper alternative.

2.3.12 GTCOM (Bei et al., 2020)
GTCOM are unconstrained systems using
mBART (Multilingual Bidirectional and Auto-
Regressive Transformers), back-translation and
forward-translation. Further gains are achieved
using rules, language model and RoBERTa model
to filter monolingual, parallel sentences and
synthetic sentences. The vocabularies are created
from both monolingual and parallel data.

2.3.13 HELSINKINLP (Scherrer et al., 2020a)
HELSINKINLP for the Inuktitut-English news
translation task focuses on the efficient use of
monolingual and related bilingual corpora with
multi-task learning as well as an optimized sub-
word segmentation with sampling.

2.3.14 HUAWEI TSC (Wei et al., 2020a)
HUAWEI TSC use Transformer-big with a fur-
ther increased model size, focussing on standard
techniques of careful pre-processing and filtering,
back-translation and forward translation, includ-
ing self-training, i.e. translating one of the sides of
the original parallel data. Ensembling of individ-
ual training runs is used in the forward as well as
backward translation, and single models are cre-
ated from the ensembles using knowledge distil-
lation. The submission uses THUNMT (Zhang
et al., 2017) open-source engine.

2.3.15 IIE (Wei et al., 2020b)
IIE German↔French news translation system is
based on the Transformer architecture with some
effective improvements. Multiscale collaborative
deep architecture, data selection, back translation,
knowledge distillation, domain adaptation, model
ensemble and re-ranking are employed and proven
effective in the experiments.

2.3.16 MICROSOFT STC INDIA (Goyal et al.,
2020)

Focusing on English↔Tamil, MICROSOFT STC
INDIA experiment with “contact relatedness” of
languages, i.e. using Hindi-English data in joint
training. Hindi texts first have to be mapped from
the Devanagari script to Tamil characters in a lossy

but deterministic way. Further gains are obtained
from tagged back-translation and other variants of
back-translation are also examined (noisification
or back-translating with right-to-left models).

Transformer implemented in fairseq is used,
with smaller than “base” models due to limited
training data.

2.3.17 NICT-KYOTO (Marie et al., 2020)
NICT-KYOTO is a combination of neural ma-
chine translation systems processed through n-
best list reranking. The systems combined
are Transformer-based trained with Marian and
Fairseq with and without using tagged back-
translation. All the systems are constrained, and
the final primary submission is selected on the ba-
sis of the BLEU score obtained on the official val-
idation data.

2.3.18 NICT-RUI (Li et al., 2020)
NICT-RUI (Li et al., 2020) NICT-RUI is
closely related to SJTU-NICT using large XLM
model to improve NMT but the exact relation is
unclear.

2.3.19 NIUTRANS (Zhang et al., 2020)
NIUTRANS gain their performance from focussed
attention to six areas: (1) careful data preprocess-
ing and filtering, (2) iterative back-translation to
generate additional training data, (3) using dif-
ferent model architectures, such as wider and/or
deeper models, relative position representation
and relative length, to enhance the diversity of
translations, (4) iterative knowledge distillation
by in-domain monolingual data, (5) iterative fine-
tuning for domain adaptation using small training
batches, (6) rule-based post-processing of num-
bers, names and punctuation.

For low-resource language pairs, multi-lingual
seed models are used.

2.3.20 NRC (Knowles et al., 2020)
The NRC systems are hybrids of Transformer
models trained with Sockeye, with one ensem-
bled system for news domain translation and one
for Hansard domain translation. Data was pre-
processed with language-specific punctuation and
character preprocessing, tokenization, and BPE.
They were trained with domain tagging, domain-
specific finetuning, ensembles of 3 systems per
domain, BPE-dropout (EN-IU), and tagged back-
translation (IU-EN).
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2.3.21 OPPO (Shi et al., 2020)
OPPO train Marian for some language pairs and
fairseq for others, relying on a number of ma-
ture techniques including careful corpus filtering,
iterative forward and backward translation, fine-
tuning on the original parallel data, ensembling
of several different models, and complex rerank-
ing which uses forward (source-to-target) scorers,
backward scorers (target-to-source) and language
models (monolingual), each group again building
upon ensembles and being applied left-to-right as
well as right-to-left.

Each language pair received targeted attention,
discussing training data properties, varying the
process as needed and choosing from several pos-
sible final models.

2.3.22 PROMT (Molchanov, 2020)
PROMT BASELINE TRANSFORMER uses Mar-
ianNMT, shared vocabulary, 16k BPE merge op-
erations and it is trained on unconstrained data.

PROMT BASIC TRANSFORMER uses separate
vocabs (16k source + 32k target), and tied embed-
dings.

PROMT MULTILINGUAL 4-TO-EN is a multi-
lingual system trained to translate from Croatian,
Serbian, Slovak and Czech to English. It is a ba-
sic Transformer configuration with shared vocab-
ulary.

PROMT MULTILINGUAL PL-EN is a
Polish↔English system trained jointly in both
directions. It uses basic Transformer configuration
and shared vocabulary.

None of PROMT systems are constrained.

2.3.23 SJTU-NICT (Li et al., 2020)
SJTU-NICT represents two different main ap-
proaches. For News Translation Task, (1) cross-
lingual language models (XLM) are used in
an additional encoder to benefit from language-
independent sentence representations from both
the source and target side for Polish→English.
For English→Chinese, which includes document-
level information, three-stage training is used to
train Longformer (Transformer with attention ex-
tended to the full document).

2.3.24 SRPOL (Krubiński et al., 2020)
No short description provided.

2.3.25 TALP UPC (Escolano et al., 2020)
No short description provided.

2.3.26 TENCENT TRANSLATION (Wu et al.,
2020b)

No short description provided.

2.3.27 THUNLP (no associated paper)
No description provided.

2.3.28 TILDE (Krišlauks and Pinnis, 2020)
For WMT 2020, Tilde developed English↔Polish
(separate constrained and unconstrained submis-
sions) and Polish↔English (constrained only)
NMT systems. Tilde experimented with mor-
pheme splitting prior to byte-pair encoding,
dual conditional cross-entropy filtering, sampling-
based backtranslation of source-domain-adherent
monolingual data, and right-to-left reranking. The
submitted translations were produced using en-
sembles of Transformer base and Transformer big
models, which were trained using back-translated
data, and right-to-left re-ranking.

2.3.29 TOHOKU-AIP-NTT (Kiyono et al.,
2020)

TOHOKU-AIP-NTT used Transformer-based
Encoder-Decoder model with 8 layers and feed
forward dimension of 8192. Synthetic data
were created via beam back-translation from
monolingual data available for each language
and incorporated to the training using tagged
backtranslation. The bitext was oversampled so
that the model saw the bitext and synthetic data in
1:1 ratio. After training, the model was finetuned
with newstest corpus.

An ensemble of four models was used to gen-
erate candidate translation, which were in turn
re-ranked using scores from following compo-
nents: (1) source-to-target right-to-left model, (2)
target-to-source left-to-right model, (3) target-to-
source right-to-left model, (4) masked language
model (RoBERTa), and (5) uni-directional lan-
guage model (Transformer-LM).

2.3.30 MULTILINGUAL-UBIQUS (Hernandez
and Nguyen, 2020)

UBIQUS performed a single submission, based
on an unconstrained multilingual setup. The ap-
proach consists of jointly training a traditional
Transformer model on several agglutinative lan-
guages in order to benefit from them for the low-
resource English-Inuktitut task. For that purpose,

14



the dataset was extended with other linguistically
near languages (Finnish, Estonian), as well as in-
house datasets introducing more diversity to the
domain.

2.3.31 UEDIN

UEDIN (Bawden et al., 2020a) for the very
low-resource English-Tamil involved exploring
pretraining, using both language model objectives
and translation using an unrelated high-resource
language pair (German-English), and iterative
backtranslation. For English-Inuktitut, UEDIN
explored the use of multilingual systems.

UEDIN-DEEN and UEDIN-ENDE (Germann,
2020) ensemble big transformer models trained
in three stages: First, base transformer mod-
els were trained on available high-quality paral-
lel data. These models were used to rank and se-
lect parallel data from crawled and automatically
matched parallel data (Paracrawl, Commoncrawl,
etc.). 2nd-generation big transformers were then
trained on the combined parallel data. These mod-
els were used for back-translation. Original and
back-translated data was then used to the final 3rd-
generation models.

2.3.32 UEDIN-CUNI (Germann et al., 2020)
UEDIN-CUNI CSEN STUDENT and UEDIN-
CUNI ENCS STUDENT are compact, efficient
student models that distill knowledge from larger
teacher models. All models are variants of the
transformer architecture. The teacher models were
used to translate the source side of the training
data to create synthetic training data for the stu-
dent models.

2.3.33 UQAM_TANLE

No description provided.

2.3.34 VOLCTRANS (Wu et al., 2020a)
VOLCTRANS aims at building a general training
framework which can be well applied to different
translation. directions. Techniques used in the
submitted systems include optional multilingual
pre-training (mRASP) for low resource languages,
very deep Transformer or dynamic convolution
models up to 50 encoder layers, iterative back-
translation, knowledge distillation, model ensem-
ble and development set fine-tuning. The key in-
gredient of the process seems the strong focus on
diversification of the (synthetic) training data, us-
ing multiple scalings of the Transformer model

and dynamic convolution, random upsamplings
of the parallel data, creation of multiple back-
translated corpus variants or random ensembling
which uses not a fixed set of ensembled models
but rather a random checkpoint of each of them.

2.3.35 WECHAT (Meng et al., 2020)
WECHAT is based on the Transformer with ef-
fective variants and the DTMT architecture. The
experiments include data selection, several syn-
thetic data generation approaches (i.e., back-
translation, knowledge distillation, and iterative
in-domain knowledge transfer), advanced finetun-
ing approaches and self-bleu based model ensem-
ble.

2.3.36 WMTBIOMEDBASELINE (Bawden
et al., 2020b)

WMTBIOMEDBASELINE are the baseline sys-
tems from the Biomedical Translation Task.

2.3.37 YOLO (no associated paper)
No description provided.

2.3.38 ZLABS-NLP

ZLABS-NLP used SentencePiece for subword seg-
mentation, otherwise the model including hyper-
parameters is the same as described by Ott et al.
(2018) and implemented in FairSeq. Probably,
OpenNMT-py was used during training (back-
translation for Tamil).

3 Human Evaluation

A human evaluation campaign is run each year to
assess translation quality and to determine the of-
ficial ranking of systems taking part in the news
translation task. This section describes how data
for the human evaluation is prepared, the process
of collecting human assessments, and computation
of the official results of the shared task.

3.1 Direct Assessment

Since running a comparison of direct assessments
(DA, Graham et al., 2013, 2014, 2016) and rela-
tive ranking in 2016 (Bojar et al., 2016) and ver-
ifying a high correlation of system rankings for
the two methods, as well as the advantages of DA,
such as quality controlled crowd-sourcing and lin-
ear growth relative to numbers of submissions, we
have employed DA as the primary mechanism for
evaluating systems. With DA human evaluation,
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human assessors are asked to rate a given trans-
lation by how adequately it expresses the mean-
ing of the corresponding reference translation or
source language input on an analogue scale, which
corresponds to an underlying absolute 0–100 rat-
ing scale.5 No sentence or document length re-
striction is applied during manual evaluation. Di-
rect Assessment is also employed for evaluation
of video captioning systems at TRECvid (Graham
et al., 2018; Awad et al., 2019) and multilingual
surface realisation (Mille et al., 2018, 2019).

3.1.1 Source and Reference-based
Evaluations

The earlier DA evaluations that we performed
were all referenced based, as described above,
however in 2018 we trialled source-based evalu-
ation for the first time, in English to Czech trans-
lation. In this configuration, the human assessor
is shown the source input and system output only
(with no reference translation shown). This ap-
proach has the advantage of freeing up the human-
generated reference translation so that it can be
included in the evaluation to provide an estimate
of human performance. As was the approach in
WMT19, since we would like to restrict human
assessors to only evaluate translation into their na-
tive language, we again restrict bilingual/source-
based evaluation to evaluation of translation for
out-of-English language pairs. This is especially
relevant since we have a large group of volun-
teer human assessors with native language fluency
in non-English languages and high fluency in En-
glish, while we generally lack the reverse, i.e. na-
tive English speakers with high fluency in non-
English languages.

3.1.2 Translationese
Prior to WMT19, all the test sets included a mix
of sentence pairs that were originally in the source
language, and then translated to the target lan-
guage, and sentence pairs that were originally in
the target language but translated to the source
language. The inclusion of the latter “reverse-
created” sentence pairs has been shown to intro-
duce biases into the evaluations, particularly in
terms of BLEU scores (Graham et al., 2020), so
we avoid it where possible. As detailed in Sec-

5Past work has investigated the degree to which employ-
ment of a reference translation in DA evaluations could in-
troduce bias into evaluation results and showed no significant
evidence of reference-bias (Ma et al., 2017).

tion 2, most of our test sets do not include reverse-
created sentence pairs, except when there were re-
source constraints on the creation of the test sets.

3.1.3 Document Context

Prior to WMT19, the issue of including document
context was raised within the community (Läubli
et al., 2018; Toral et al., 2018) and at WMT19
a range of DA styles were subsequently tested
that included document context. In WMT19, two
options were run, firstly, an evaluation that in-
cluded the document context “+DC” (with docu-
ment context), and secondly, a variation that omit-
ted document context “−DC” (without document
context). This year, for language pairs for which
document context was available in the test set,
we therefore include this context when evaluat-
ing translations for systems. Although we in-
clude document context, ratings are nevertheless
collected on the segment-level, motivated by the
power analysis described in Graham et al. (2019)
and Graham et al. (2020). The particular details
on how document context is made available to as-
sessors depends on the translation direction, as de-
scribed in more detail in Sections 3.2 and 3.3 be-
low for translation into English and out of English,
resp.

In the following, we use the following abbre-
viations to describe annotation style: SR+DC for
translation direction where assessors rank individ-
ual segments (Segment Ranking, SR) and have ac-
cess to the full document, SR−DC for translation
directions where document context is not available
and assessors see individual sentences in random
order.

Fully document-level evaluation (DR+DC,
document-level ranking with document context
available) as trialled last year where we asked for a
single score given the whole document is problem-
atic in terms of statistical power and inconclusive
ties, as shown in Graham et al. (2019); Graham
et al. (2020), and we subsequently did not include
this approach for any into-English language this
year.

As in previous years, the SR−DC annotation is
organized into “HITs” (following the Mechanical
Turk’s term “human intelligence task”), each con-
taining 100 screens.
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Seg Rating + Seg Rating −
Doc Context Doc Context
(SR+DC) (SR−DC)

Chinese to English M
Czech to English M
German to English M
Inuktitut to English M
Khmer to English M
Japanese to English M
Pashto to English M
Polish to English M
Russian to English M
Tamil to English M

Table 7: Summary of human evaluation configurations
for monolingual translation for into-English language pairs;
M denotes reference-based/monolingual human evaluation
in which the machine translation output was compared to
human-generated reference

Language Pair Sys. Assess. Assess/Sys

Czech→English 12 10,703 891.9
German→English 13 14,303 1,100.2
Inuktitut→English 11 13,897 1,263.4
Japanese→English 10 11,234 1,123.4
Khmer→English 7 7,944 1,134.9
Polish→English 14 14,146 1,010.4
Pashto→English 6 8,162 1,360.3
Russian→English 12 12,783 1,065.2
Tamil→English 14 8,899 635.6
Chinese→English 17 34,596 2,035.1

Total to-English 116 136,667 1,178.2

Table 8: Amount of data collected in the WMT20 man-
ual evaluation campaign for evaluation into-English; after re-
moval of quality control items.

3.2 Human Evaluation of Translation
into-English

A summary of the human evaluation configura-
tions run this year in the news task for into-English
language pairs is provided in Table 7.

In terms of the News translation task manual
evaluation for into-English language pairs, a total
of 654 turker accounts were involved.6 654,583
translation assessment scores were submitted in
total by the crowd, of which 166,868 were pro-
vided by workers who passed quality control.

System rankings are produced from a large set
of human assessments of translations, each of
which indicates the absolute quality of the out-
put of a system. Table 8 shows total numbers of
human assessments collected in WMT20 for into-
English language pairs contributing to final scores
for systems.7

6Numbers do not include the 2,233 workers on Mechani-
cal Turk who did not pass quality control.

7Number of systems for WMT20 includes three “human”

3.2.1 Crowd Quality Control
We run two configurations of DA, one with docu-
ment context, segment-rating with document con-
text (SR+DC), for languages for which this infor-
mation was available and one without document
context, for the remainder, segment rating without
document context (SR-DC). We describe quality
control details and both methods of ranking sys-
tems for into-English language pairs in detail be-
low.

Standard DA HIT Structure (SR−DC) In the
standard DA HIT structure (without document
context), three kinds of quality control translation
pairs are employed as described in Table 9: we
repeat pairs expecting a similar judgment (Repeat
Pairs), damage MT outputs expecting significantly
worse scores (Bad Reference Pairs) and use refer-
ences instead of MT outputs expecting high scores
(Good Reference Pairs). For each of these three
types, we include the MT output, along with its
corresponding control.

In total, 60 items in a 100-translation HIT serve
in quality control checks but 40 of those are regu-
lar judgments of MT system outputs (we exclude
assessments of bad references and ordinary ref-
erence translations when calculating final scores).
The effort wasted for the sake of quality control is
thus 20%.

Also in the standard DA HIT structure, within
each 100-translation HIT, the same proportion of
translations are included from each participating
system for that language pair. This ensures the
final dataset for a given language pair contains
roughly equivalent numbers of assessments for
each participating system. This serves three pur-
poses for making the evaluation fair. Firstly, for
the point estimates used to rank systems to be re-
liable, a sufficient sample size is needed and the
most efficient way to reach a sufficient sample
size for all systems is to keep total numbers of
judgments roughly equal as more and more judg-
ments are collected. Secondly, it helps to make
the evaluation fair because each system will suf-
fer or benefit equally from an overly lenient/harsh
human judge. Thirdly, despite DA judgments be-
ing absolute, it is known that judges “calibrate”
the way they use the scale depending on the gen-
eral observed translation quality. With each HIT
including all participating systems, this effect is

systems comprising human-generated reference translations
used to provide human performance estimates.
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Repeat Pairs: Original System output (10) An exact repeat of it (10);
Bad Reference Pairs: Original System output (10) A degraded version of it (10);
Good Reference Pairs: Original System output (10) Its corresponding reference translation (10).

Table 9: Standard DA HIT structure quality control translation pairs hidden within 100-translation HITs, numbers of items
are provided in parentheses.

averaged out. Furthermore apart from quality con-
trol items, HITs are constructed using translations
sampled from the entire set of outputs for a given
language pair.

Document-Level DA HIT Structure (SR+DC)
Collection of segment-level ratings with document
context (Segment Rating + Document Context)
involved constructing HITs so that each sentence
belonging to a given document (produced by a sin-
gle MT system) was displayed to and rated in turn
by the human annotator.

Quality control items for this set-up was carried
out as follows with the aim of constructing a HIT
with as close as possible to 100 segments in total:

1. All documents produced by all systems are
pooled;8

2. Documents are then sampled at random
(without replacement) and assigned to the
current HIT until the current HIT comprises
no more than 70 segments in total;

3. Once documents amounting to close to 70
segments have been assigned to the current
HIT, we select a subset of these documents
to be paired with quality control documents;
this subset is selected by repeatedly checking
if the addition of the number of the segments
belonging to a given document (as quality
control items) will keep the total number of
segments in the HIT below 100; if this is the
case it is included; otherwise it is skipped
until the addition of all documents has been
checked. In doing this, the HIT is structured
to bring the total number of segments as close
as possible to 100 segments in total within a
HIT but without selecting documents in any
systematic way such as selecting them based
on fewest segments, for example.

4. Once we have selected a core set of origi-
nal system output documents and a subset of

8If a “human” system is included to provide a human per-
formance estimate, it is also considered a system during qual-
ity control set-up.

them to be paired with quality control ver-
sions for each HIT, quality control documents
are automatically constructed by altering the
sentences of a given document into a mix-
ture of three kinds of quality control items
used in the original DA segment-level quality
control: bad reference translations, reference
translations and exact repeats (see below for
details of bad reference generation);

5. Finally, the documents belonging to a HIT
are shuffled.

Construction of Bad References As in previ-
ous years, bad reference pairs were created au-
tomatically by replacing a phrase within a given
translation with a phrase of the same length, ran-
domly selected from n-grams extracted from the
full test set of reference translations belonging to
that language pair. This means that the replace-
ment phrase will itself comprise a mostly fluent
sequence of words (making it difficult to tell that
the sentence is low quality without reading the en-
tire sentence) while at the same time making its
presence highly likely to sufficiently change the
meaning of the MT output so that it causes a no-
ticeable degradation. The length of the phrase to
be replaced is determined by the number of words
in the original translation, as follows:

Translation # Words Replaced
Length (N) in Translation

1 1
2–5 2
6–8 3
9–15 4
16–20 5
>20 b N/4 c

3.2.2 Annotator Agreement
When an analogue scale (or 0–100 point scale,
in practice) is employed, agreement cannot be
measured using the conventional Kappa coeffi-
cient, ordinarily applied to human assessment
when judgments are discrete categories or pref-
erences. Instead, to measure consistency we fil-
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ter crowd-sourced human assessors by how con-
sistently they rate translations of known distinct
quality using the bad reference pairs described
previously. Quality filtering via bad reference
pairs is especially important for the crowd-sourced
portion of the manual evaluation. Due to the
anonymous nature of crowd-sourcing, when col-
lecting assessments of translations, it is likely to
encounter workers who attempt to game the ser-
vice, as well as submission of inconsistent eval-
uations and even robotic ones. We therefore em-
ploy DA’s quality control mechanism to filter out
low quality data, facilitated by the use of DA’s ana-
logue rating scale.

Assessments belonging to a given crowd-
sourced worker who has not demonstrated that
he/she can reliably score bad reference transla-
tions significantly lower than corresponding gen-
uine system output translations are filtered out.
A paired significance test is applied to test if de-
graded translations are consistently scored lower
than their original counterparts and the p-value
produced by this test is used as an estimate of
human assessor reliability. Assessments of work-
ers whose p-value does not fall below the conven-
tional 0.05 threshold are omitted from the evalua-
tion of systems, since they do not reliably score
degraded translations lower than corresponding
MT output translations.

Table 10 shows the number of workers partic-
ipating in the into-English translation evaluation
who met our filtering requirement in WMT20 by
showing a significantly lower score for bad refer-
ence items compared to corresponding MT out-
puts, and the proportion of those who simultane-
ously showed no significant difference in scores
they gave to pairs of identical translations. We re-
moved data from the non-reliable workers in all
language pairs.

3.3 Human Evaluation of Translation
out-of-English

Human evaluation of out-of-English translations
features a bilingual/source-based evaluation cam-
paign that enlists the help of participants in the
shared task. As usual, each team was asked to
contribute around 8 hours annotation time, which
we estimated at 16 HITs per each primary system
submitted, with each HIT including 100 segment
translations. Unfortunately, not all participating
teams were able to provide requested number of

assessments, hence, to collect the required number
of assessments per MT system, we also employed
external translators in a separate campaign. The
contracted translators contributed with one third
of total number of assessments. Both campaigns
utilized document-level DA and were run for all
out-of-English language pairs, which test sets in-
clude document-level segmentation.

For English→Khmer, English→Pashto,
French→German, and German→French, whose
test sets do not provide document boundaries,
segment-level DA evaluation without document
context (SR–DC) was performed, enlisting the
effort of translators.

For English→Inuktitut, since we expected no
participants to speak Inuktitut, the NRC hired na-
tive speakers through the Pirurvik Centre to con-
duct most of the DA evaluation. Due to the de-
lays in starting the evaluation campaign, they were
only able to complete the evaluation a few days be-
fore the conference, and could only annotate the
news half of the test set. The Hansard half of the
test set was not assessed in time for this report, but
plans are being made to continue the evaluation
after the conference. Updated rankings should be
provided at a future date.

In terms of the News translation task document-
level manual evaluation for out-of-English lan-
guage pairs, a total of 1,189 researcher/translator
accounts were involved, and 248,597 transla-
tion assessment scores were contributed in to-
tal (with quality control pairs), including 18,108
document ratings. For the segment-level cam-
paigns (i.e. English→Khmer, English→Pashto,
German→French and French→German) we had
300 accounts and 65872 scores collected in to-
tal. Statistics per language pair are summarized
in Table 11. For data collection we again used the
open-source Appraise9 (Federmann, 2012). The
effort that goes into the manual evaluation cam-
paign each year is impressive, and we are grateful
to all participating individuals and teams for their
work.

3.3.1 Document-Level Assessment
This year’s human evaluation for out-of-English
language pairs features an improved document-
level direct assessment configuration that extends
the context span to entire documents for a more
reliable machine translation evaluation (Castilho

9https://github.com/AppraiseDev/Appraise
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(A) (A)
Sig. Diff. & No Sig. Diff.

All Bad Ref. Exact Rep.

SR
−

D
C Inuktitut→English 464 87 (19%) 81 (93%)

Khmer→English 529 60 (11%) 56 (93%)
Pashto→English 321 46 (14%) 46 (100%)

Total 1,126 169 (15%) 158 (93%)
SR

+
D

C

Czech→English 247 50 (20%) 43 (86%)
German→English 343 84 (24%) 77 (92%)

Japanese→English 422 81 (19%) 74 (91%)
Polish→English 367 87 (24%) 77 (89%)

Russian→English 360 109 (30%) 89 (82%)
Tamil→English 235 71 (30%) 65 (92%)

Chinese→English 878 178 (20%) 158 (89%)

Total 1,804 482 (27%) 423 (88%)

Overall 2,930 651 (22%) 581 (90%)
Table 10: Number of crowd-sourced workers taking part in the reference-based SR−DC campaign; (A) those whose scores
for bad reference items were significantly lower than corresponding MT outputs; those of (A) whose scores also showed no
significant difference for exact repeats of the same translation.

Language Pair Sys. Assess. Assess/Sys

English→Czech 13 37,535 2,887.3
English→German 17 19,102 1,123.6
English→Inuktitut 12 21,816 1,818.0
English→Japanese 12 24,341 2,028.4
English→Polish 15 20,162 1,344.1
English→Russian 10 21,618 2,161.8
English→Tamil 16 10,123 632.7
English→Chinese 14 46,207 3,300.5

Total document-level 109 200,904 1,843.2

German→French 7 14,470 2067.1
French→German 9 16,844 1871.6
English→Khmer 8 13,393 1,674.1
English→Pashto 7 13,267 1,895.3

Total segment-level 31 57,974 1,870.1

Table 11: Amount of data collected in the WMT20 man-
ual document- and segment-level evaluation campaigns for
bilingual/source-based evaluation out of English and non-
English pairs.

et al., 2020; Laubli et al., 2020). It differs from
SR+DC DA introduced in WMT19 (Bojar et al.,
2019), and still used in into-English human eval-
uation this year, where a single segment from a
document is provided on a screen at a time, fol-
lowed by showing the entire document during an-
notation. Figure 6 shows a screenshot of the
document-level direct assessment interface intro-
duced this year.10 Annotators see the entire docu-

10Compare with Figures 3 and 4 in Bojar et al. (2019).

ment on a screen. In the default scenario, an anno-
tator scores individual segments one-by-one and,
after scoring all of them, on the same screen, the
annotator then judges the translation of the entire
document displayed. Annotators can, however, re-
visit and update scores of previously assessed seg-
ments at any point of the annotation of the given
document.

3.3.2 Quality Control

For the document-level evaluation of out-of-
English translations, HITs were generated using
the same method as described for the SR+DC
evaluation of into-English translations in Sec-
tion 3.2.1 with minor modifications. Source-based
DA allows to include human references in the
evaluation as another system to provide an esti-
mate of human performance. Human references
were added to the pull of system outputs prior
to sampling documents for tasks generation. If
multiple references are available, which is the
case for English→German (3 alternative refer-
ence translations, including 1 generated using the
paraphrasing method of Freitag et al. (2020)) and
English→Chinese (2 translations), each reference
is assessed individually.

Since the annotations are made by researchers
and professional translators who ensure a bet-
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Figure 6: Screen shot of the new document-level DA configuration in the Appraise interface for an example assessment
from the human evaluation campaign. The annotator is presented with the entire translated document randomly selected from
competing systems (anonymized) and is asked to rate the translation of individual segments and the entire document on sliding
scales.

ter quality of assessments than the crowd-sourced
workers, only bad references are used as quality
control items. Instead of sampling initial docu-
ments with close to 70 segments, we sample docu-
ments with 88 segments, and then a subset of doc-
uments with around 12 segments is selected to be
converted into bad references. The remaining of
the HIT creation process remains the same.

3.4 Producing the Human Ranking

In all set-ups, similar to previous years, sys-
tem rankings were arrived at in the following
way. Firstly, in order to iron out differences
in scoring strategies of distinct human assessors,
human assessment scores for translations were

first standardized according to each individual hu-
man assessor’s overall mean and standard devia-
tion score. This year all rankings for to-English
translation were arrived at via segment ratings
(SR−DC, SR+DC), average standardized scores
for individual segments belonging to a given sys-
tem were then computed, before the final overall
DA score for a given system is computed as the
average of its segment scores (Ave z in Table 12).
Results are also reported for average scores for
systems, computed in the same way but without
any score standardization applied (Ave % in Table
12).

Table 13 shows official news task results for
translation out of English, where lines indicate
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Chinese→English
Ave. Ave. z System
77.5 0.102 VolcTrans
77.6 0.089 DiDi-NLP
77.4 0.077 WeChat-AI
76.7 0.063 Tencent-Translation
77.8 0.060 Online-B
78.0 0.051 DeepMind
77.5 0.051 OPPO
76.5 0.028 THUNLP
76.0 0.016 SJTU-NICT
72.4 0.000 Huawei-TSC
76.1 −0.017 Online-A
74.8 −0.029 HUMAN
71.7 −0.071 Online-G
74.7 −0.078 dong-nmt
72.2 −0.106 zlabs-nlp
72.6 −0.135 Online-Z
67.3 −0.333 WMTBiomedBaseline

Czech→English
Ave. Ave. z System
78.3 0.118 CUNI-DocTransformer
77.5 0.071 OPPO
74.8 0.041 Online-B
75.3 0.034 CUNI-Transformer
73.8 0.018 Online-A
73.7 −0.037 SRPOL
74.1 −0.049 UEDIN-CUNI
74.1 −0.065 CUNI-T2T-2018
72.5 −0.069 Online-G
71.8 −0.080 Online-Z
71.9 −0.094 PROMT-NMT
72.0 −0.141 zlabs-nlp

German→English
Ave. Ave. z System
82.6 0.228 VolcTrans
84.6 0.220 OPPO
82.2 0.186 HUMAN
81.5 0.179 Tohoku-AIP-NTT
81.3 0.179 Online-A
81.5 0.172 Online-G
79.8 0.171 PROMT-NMT
82.1 0.167 Online-B
78.5 0.131 UEDIN
78.8 0.085 Online-Z
74.2 −0.079 WMTBiomedBaseline
71.1 −0.106 zlabs-nlp
20.5 −1.618 yolo

Inuktitut→English
Ave. Ave. z System
73.1 0.168 NiuTrans
72.9 0.167 Facebook-AI
71.2 0.100 CUNI-Transfer
70.7 0.096 Groningen
70.3 0.072 SRPOL
71.1 0.066 Helsinki
70.2 0.055 NRC
70.2 0.054 UEDIN
70.1 0.047 UQAM-TanLe
68.8 0.006 NICT-Kyoto
68.4 −0.035 OPPO

Japanese→English
Ave. Ave. z System
75.1 0.184 Tohoku-AIP-NTT
76.4 0.147 NiuTrans
74.1 0.088 OPPO
75.2 0.084 NICT-Kyoto
73.3 0.068 Online-B
70.9 0.026 Online-A
71.1 0.019 eTranslation
64.1 −0.208 zlabs-nlp
66.0 −0.220 Online-G
61.7 −0.240 Online-Z

Khmer→English
Ave. Ave. z System
69.0 0.168 Online-B
69.4 0.146 GTCOM
68.5 0.136 Huawei-TSC
62.6 −0.047 VolcTrans
58.1 −0.210 OPPO
56.9 −0.222 Online-Z
55.5 −0.282 Online-G

Pashto→English
Ave. Ave. z System
67.3 0.032 Online-B
66.7 0.024 GTCOM
65.5 −0.016 Huawei-TSC
62.7 −0.106 VolcTrans
62.1 −0.164 OPPO
61.0 −0.195 Online-Z

Polish→English
Ave. Ave. z System
77.2 0.131 SRPOL
76.7 0.097 Online-G
77.7 0.096 NICT-Rui
77.9 0.094 Online-B
78.1 0.085 SJTU-NICT
76.6 0.083 Online-A
75.2 0.050 OPPO
77.3 0.006 Online-Z
78.1 −0.003 CUNI-Transformer
76.1 −0.038 NICT-Kyoto
73.3 −0.041 VolcTrans
73.2 −0.048 PROMT-NMT
74.3 −0.072 Tilde
74.0 −0.130 zlabs-nlp

Russian→English
Ave. Ave. z System
79.3 0.124 Online-G
80.9 0.114 Online-A
79.7 0.113 OPPO
80.6 0.104 eTranslation
79.5 0.096 PROMT-NMT
80.2 0.072 Online-B
79.9 0.062 HUMAN
77.7 0.042 ariel xv
79.2 0.026 AFRL
76.0 −0.016 DiDi-NLP
75.2 −0.022 Online-Z
71.7 −0.153 zlabs-nlp

Tamil→English
Ave. Ave. z System
68.7 0.203 GTCOM
70.3 0.202 OPPO
68.9 0.176 Online-B
73.9 0.173 Facebook-AI
70.9 0.150 NiuTrans
71.9 0.116 VolcTrans
64.5 0.007 Online-Z
66.4 0.001 zlabs-nlp
67.5 −0.016 Microsoft-STC-India
60.8 −0.020 UEDIN
64.5 −0.068 Online-A
63.4 −0.078 DCU
53.7 −0.398 Online-G
53.9 −0.451 TALP-UPC

Table 12: Official results of WMT20 News Translation Task for translation into-English. Systems ordered by DA score
z-score; systems within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test p < 0.05;
grayed entry indicates resources that fall outside the constraints provided.

22



clusters according to Wilcoxon rank-sum test p <
0.05. For evaluation of English→Inuktitut insuffi-
cient data resulted in a small sample size of human
assessments per system and as a result some sys-
tems that fall within the same cluster are likely to
do so simply due to low statistical power (Graham
et al., 2020).

Human performance estimates arrived at by
evaluation of human-produced reference transla-
tions are denoted by “HUMAN” in all tables. Note
that “HUMAN-P” is a human-produced para-
phrase of HUMAN-A, according to the method
proposed by Freitag et al. (2020). Clusters are
identified by grouping systems together accord-
ing to which systems significantly outperform all
others in lower ranking clusters, according to
Wilcoxon rank-sum test.

Appendix A shows the underlying head-to-head
significance test official results for all pairs of sys-
tems. All data collected during the human evalu-
ation is available at http://www.statmt.org/wmt20/
results.html.

In terms of human and machine quality com-
parisons in results, it is clear from the source-
based evaluation of English to German and En-
glish to Chinese translation that human translators
vary in performance, with each human translator
represented in a distinct cluster. Without taking
from the significant achievement of systems that
have tied with a human translator, this fact should
be taken into account when drawing conclusions
about human parity. A tie with a single human
translator should not be interpreted as a tie with
human performance in general.

4 Test Suites

“Test Suites” have now become an established part
of WMT News Translation. Their purpose is to
complement the standard one-dimensional manual
evaluation. Each test suite can focus on any aspect
of translation quality and any subset of language
pairs and MT systems.

Anyone can propose their own test suite and
take part, and we also try to solicit evaluation from
past successful test suite teams to support some
cross-year insight.

Each team in the test suites track provides
source texts (and optionally references) for any
language pair that is being evaluated by WMT
News Task. We shuffle these additional texts into
the inputs of News Task and ship them as inputs

to MT system developers jointly with the regular
news texts. The shuffling happens at the document
or sentence level as agreed with the test suite au-
thors. (Shuffling at the level of sentences can lead
to a very high number of documents in the final
test set because each sentence is treated as a sepa-
rate document.)

MT system developers may decide to skip these
documents based on their ID but most of them pro-
cess test suites along with the main news texts.
After collecting the output translations from all
WMT News Task Participants, test suites transla-
tions are made available back to the test suite au-
thors for evaluation. Test suite sentences do not
go through the manual evaluation as described in
Section 3.

As in the previous years, test suites are not lim-
ited to the news domain, so News Task system may
actually underperform on them.

4.1 Test Suite Details

The following paragraphs briefly describe each of
the test suites. Please refer to the respective paper
for all the details of the evaluation.

4.1.1 Covid Test Suite TICO-19
The TICO-19 test suite was developed to evalu-
ate how well can MT systems handle the newly-
emerged topic of COVID-19. Accurate automatic
translation can play an important role in facilitat-
ing communication in order to protect at-risk pop-
ulations and combat the infodemic of misinforma-
tion, as described by the World Health Organiza-
tion. The test suite has no corresponding paper so
its authors provided an analysis of the outcomes
directly here.

The submitted systems were evaluated using
the test set from the recently-released TICO-19
dataset (Anastasopoulos et al., 2020). The dataset
provides manually created translations of COVID-
19 related data. The test set consists of PubMed
articles (678 sentences from 5 scientific articles),
patient-medical professional conversations (104
sentences), as well as related Wikipedia articles
(411 sentences), announcements (98 sentences
from Wikisource), and news items (67 sentences
from Wikinews), for a total of 2100 sentences.

Table 15 outlines the BLEU scores by each sub-
mitted system in the English-to-X directions, also
breaking down the results per domain. The analy-
sis shows that some systems are significantly more
prepared to handle highly narrow-domain data. In
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English→Chinese
Ave. Ave. z System
80.6 0.568 HUMAN-B
82.5 0.529 HUMAN-A
80.0 0.447 OPPO
79.0 0.420 Tencent-Translation
77.3 0.415 Huawei-TSC
77.4 0.404 NiuTrans
77.7 0.387 SJTU-NICT
76.6 0.373 VolcTrans
73.7 0.282 Online-B
73.0 0.241 Online-A
69.5 0.136 dong-nmt
68.5 0.135 Online-Z
70.1 0.122 Online-G
68.7 0.082 zlabs-nlp

English→Czech
Ave. Ave. z System
85.6 0.654 HUMAN
82.2 0.546 CUNI-DocTransformer
81.8 0.538 OPPO
80.8 0.505 SRPOL
80.5 0.458 CUNI-T2T-2018
80.4 0.441 eTranslation
79.3 0.434 CUNI-Transformer
77.1 0.322 UEDIN-CUNI
70.5 0.048 Online-B
69.1 0.017 Online-Z
68.7 0.008 Online-A
62.7 −0.216 Online-G
48.1 −0.760 zlabs-nlp

English→German
Ave. Ave. z System
90.5 0.569 HUMAN-B
87.4 0.495 OPPO
88.6 0.468 Tohoku-AIP-NTT
85.7 0.446 HUMAN-A
84.5 0.416 Online-B
84.3 0.385 Tencent-Translation
84.6 0.326 VolcTrans
85.3 0.322 Online-A
82.5 0.312 eTranslation
84.2 0.299 HUMAN-paraphrase
82.2 0.260 AFRL
81.0 0.251 UEDIN
79.3 0.247 PROMT-NMT
77.7 0.126 Online-Z
73.9 −0.120 Online-G
68.1 −0.278 zlabs-nlp
65.5 −0.338 WMTBiomedBaseline

English→Inuktitut (News only)
Ave. Ave. z System
90.5 0.574 HUMAN
75.3 0.425 MultiLingual-Ubiqus
77.4 0.409 CUNI-Transfer
71.9 0.369 NRC
74.6 0.368 Facebook-AI
79.2 0.364 NICT-Kyoto
71.6 0.339 Groningen
75.2 0.296 Helsinki
72.8 0.282 SRPOL
68.9 0.084 UQAM-TanLe
66.4 0.081 UEDIN
48.2 −0.384 OPPO

English→Japanese
Ave. Ave. z System
79.7 0.576 HUMAN
77.7 0.502 NiuTrans
76.1 0.496 Tohoku-AIP-NTT
75.8 0.496 OPPO
75.9 0.492 ENMT
71.8 0.375 NICT-Kyoto
71.3 0.349 Online-A
70.2 0.335 Online-B
63.9 0.159 zlabs-nlp
59.8 0.032 Online-Z
53.9 −0.132 SJTU-NICT
52.8 −0.164 Online-G

English→Polish
Ave. Ave. z System
88.6 0.672 HUMAN
76.4 0.493 SRPOL
75.6 0.435 eTranslation
76.3 0.383 VolcTrans
74.0 0.348 Tilde
70.6 0.316 Online-G
72.0 0.310 OPPO
72.4 0.299 NICT-Kyoto
69.7 0.272 Tilde
71.8 0.255 CUNI-Transformer
70.1 0.236 Online-B
69.0 0.219 SJTU-NICT
64.5 0.097 Online-A
63.9 −0.060 Online-Z
47.7 −0.538 zlabs-nlp

English→Russian
Ave. Ave. z System
91.8 0.681 HUMAN
81.5 0.469 Online-G
83.7 0.461 OPPO
79.6 0.404 ariel xv
80.3 0.336 Online-B
75.1 0.252 PROMT-NMT
76.2 0.222 DiDi-NLP
75.3 0.081 Online-A
71.3 0.035 zlabs-nlp
68.5 0.012 Online-Z

English→Tamil
Ave. Ave. z System
83.4 0.762 HUMAN
79.0 0.663 Facebook-AI
75.5 0.514 GTCOM
77.3 0.491 Online-B
77.4 0.480 OPPO
78.0 0.457 Online-A
76.7 0.424 VolcTrans
72.8 0.326 Online-Z
72.7 0.307 zlabs-nlp
72.2 0.296 Microsoft-STC-India
74.1 0.231 UEDIN
71.9 0.153 Groningen
68.1 −0.006 DCU
58.2 −0.407 TALP-UPC
53.8 −0.716 Online-G
49.6 −0.819 SJTU-NICT

English→Khmer
Ave. Ave. z System
77.4 0.478 GTCOM
76.1 0.435 Online-B
74.6 0.386 Huawei-TSC
73.3 0.349 HUMAN
71.1 0.266 VolcTrans
63.8 0.059 Online-Z
60.9 −0.061 OPPO
57.0 −0.164 Online-Z

English→Pashto
Ave. Ave. z System
73.0 0.244 GTCOM
71.9 0.180 Huawei-TSC
70.4 0.162 OPPO
69.7 0.158 Online-B
68.8 0.092 HUMAN
67.7 0.055 Online-Z
66.9 −0.029 VolcTrans

Table 13: Official results of WMT20 News Translation Task for translation out-of-English. Systems ordered by DA score
z-score; systems within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test p < 0.05;
grayed entry indicates resources that fall outside the constraints provided.
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German→ French
Ave. Ave. z System
90.4 0.279 OPPO
90.2 0.266 VolcTrans
89.7 0.262 IIE
89.2 0.243 HUMAN
89.1 0.226 Online-B
89.1 0.223 Online-A
88.5 0.208 Online-G

French→ German
Ave. Ave. z System
89.8 0.334 VolcTrans
89.7 0.333 OPPO
89.1 0.319 IIE
89.0 0.295 Online-B
87.4 0.247 HUMAN
87.3 0.240 Online-A
87.1 0.221 SJTU-NICT
86.8 0.195 Online-G
85.6 0.155 Online-Z

Table 14: Official results of WMT20 News Translation Task for translation from French ↔ German. Systems ordered by
DA score z-score; systems within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test
p < 0.05; grayed entry indicates resources that fall outside the constraints provided.

addition, the variance of the output quality across
languages and across domains highlights the im-
portance of building MT systems that can general-
ize across domains.

4.1.2 Document Coherence Check via
Markable Annotation (Zouhar et al.,
2020)

The test suite provided in 2020 by the ELITR
project (Zouhar et al., 2020) follows upon Vojtě-
chová et al. (2019). The focus this year is on
“markables”, i.e. mainly domain-specific terms
that have to be translated consistently and unam-
biguously throughout the whole document (except
news where style may require variation) to main-
tain lexical coherence. Manual annotation of the
translation of markables is contrasted with man-
ual annotation of fluency and adequacy and also
BLEU scores.

The test suite is limited to 4 English→Czech
documents and 2 Czech→English documents,
covering 215 markable occurrences across 4 dif-
ferent domains. The set of markables was col-
lected in the first phase of the annotation, which
amounted to 4k assessments across the systems.
The second annotation phase with 6.5k assess-
ments compared markable translations, always
checking outputs of all the 13 competing MT sys-
tems but still considering the document-level con-
text of each of them.

Among other things, the observations indicate
that the better the system, the lower the variance
in manual scores. Markables annotation then con-
firms that frequent errors like bad translation of a
term need not be the most severe and conversely,

even rare errors such as bad disambiguation, over-
translation or disappearance of a term or its trans-
lation which conflicts with other terms in the doc-
ument can be critical.

The comparison of MT outputs with the refer-
ence (hidden among MT systems) in the evalua-
tion is also interesting. Man-made errors were al-
ways marked as less severe than those of MT. The
annotation also suggests that one of the document-
level systems outperformed the reference in mark-
able evaluation if error severity and frequency are
weighted equally.

Fluency and adequacy collected as average
sentence-level scores (with access to the full doc-
uments of all systems) are curious, revealing per-
haps more about the annotators than the MT sys-
tems.

4.1.3 Gender Coreference and Bias (Kocmi
et al., 2020)

The test suite by Kocmi et al. (2020) focuses on
the gender bias in professions (e.g. physician,
teacher, secretary) for the translation from English
into Czech, German, Polish and Russian. These
nouns are ambiguous with respect to gender in En-
glish but exhibit gender in the examined target lan-
guages.

The test suite is based on the fact that a pro-
noun referring to the ambiguous noun can reveal
the gender of the noun in the English source sen-
tence. Once disambiguated, the gender needs to
be preserved in translation. To correctly translate
the given noun, the translation system thus has to
correctly resolve the coreference link and transfer
information from the pronoun to the noun in the
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en→ Translation Accuracy by Domain (BLEU)

Overall PubMed Conv. Wikisource Wikinews Wikipedia

Mandarin Chinese (zh)
SJTU-NICT 57.83 68.88 41.49 33.57 55.97 53.45
OPPO 40.80 49.54 17.01 26.42 31.41 37.53
Online-B 39.55 53.92 23.22 26.09 34.13 32.65
Online-A 35.23 42.81 18.15 20.83 27.77 32.46
Online-G 33.14 38.08 13.06 20.80 26.28 31.74
zlabs-nlp 24.17 31.15 10.11 17.39 21.05 21.00
Online-Z 22.69 28.58 13.31 13.70 17.80 20.30

Khmer (km)
Online-B 9.01 11.85 7.68 25.86 12.78 6.22
VolcTrans 7.57 12.93 2.35 21.11 4.30 4.63
Online-Z 7.29 9.08 3.38 20.94 5.27 5.65
OPPO 6.99 7.59 6.95 10.73 5.52 6.54
Online-G 2.72 3.10 3.60 1.13 1.70 2.59

Tamil (ta)
Online-B 30.42 21.42 17.91 31.31 34.11 35.50
Facebook_AI 15.56 12.41 8.71 16.06 16.67 17.40
Online-A 14.49 12.03 7.85 14.78 13.93 16.00
OPPO 12.86 10.22 5.89 13.26 11.67 14.51
UEDIN 12.25 10.15 9.59 12.90 13.83 13.36
Microsoft_STC_India 11.91 9.48 6.49 12.07 12.56 13.33
Online-Z 11.70 9.45 10.87 13.52 10.10 12.96
VolcTrans 11.63 10.12 11.91 9.52 12.32 12.53
zlabs-nlp 10.32 8.91 5.85 9.64 10.90 11.20
DCU 9.70 7.66 7.79 8.44 9.36 10.91
Groningen 8.93 8.00 5.95 8.14 9.66 9.47
Online-G 7.32 6.79 8.42 8.32 5.59 7.58
TALP_UPC 6.25 5.77 3.48 5.47 7.32 6.54
SJTU-NICT 2.91 3.01 3.72 5.26 2.68 2.67

Pashto (ps)
Online-B 36.56 49.26 26.94 12.15 8.85 32.25
VolcTrans 18.47 24.22 16.21 12.58 8.96 16.41
OPPO 18.24 21.88 13.98 14.40 7.98 17.15
Online-Z 15.14 18.59 13.57 12.87 7.60 13.93

Russian (ru)
Online-B 40.20 29.71 26.37 22.90 40.44 46.38
Online-G 33.78 28.20 25.51 22.58 32.39 37.30
PROMT_NMT 32.69 27.45 24.82 21.90 30.39 36.05
ariel197197 32.40 25.44 28.33 22.17 37.04 35.96
OPPO 31.86 29.04 23.33 22.17 32.27 33.76
Online-A 29.84 24.76 21.13 20.53 27.54 33.07
zlabs-nlp 25.83 23.63 21.96 19.40 25.97 27.20
Online-Z 24.67 20.26 20.43 20.01 26.09 27.07

Table 15: TICO-19 test suite results on the English-to-X WMT20 translation directions.
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antecedent (a less common direction of informa-
tion flow), and then correctly express the noun in
the target language. The success of the MT sys-
tem in this test can be established automatically,
whenever the gender of the target word can be au-
tomatically identified.

Kocmi et al. (2020) build upon the WinoMT
(Stanovsky et al., 2019) test set, which provides
exactly the necessary type of sentences containing
an ambiguous profession noun and a personal pro-
noun which unambiguously (for the human eye)
refers to it based the situation described. When ex-
tending WinMT with Czech and Polish, Stanovsky
et al. have to disregard some test patterns but the
principle remains.

The results indicate that all MT systems fail in
this test, following gender bias (stereotypical pat-
terns attributing the masculine gender to some pro-
fessions and feminine gender to others) rather than
the coreference link.

4.1.4 Linguistic Evaluation of
German-to-English (Avramidis et al.,
2020)

The test suite by DFKI covers 107 grammatical
phenomena organized into 14 categories. Since
2018, the same set of phenomena are being tested
annually (Macketanz et al., 2018; Avramidis et al.,
2019).

Automatic evaluation is complemented with 45
hours of human annotation.

This year, the newcomers VOLCTRANS and
TOHOKU-AIP-NTT perform particularly well in
the tested phenomena, followed by the tradi-
tional systems UEDIN, ONLINE-B, ONLINE-G,
and ONLINE-A.

The generally good news is that systems which
participated in both WMT19 and WMT20 show
an improvement this year. Given that the test suite
target side remains undisclosed, these scores can
be deemed absolute, unlike the official DA scores
which are only relative within each year and set of
systems.

The test suite allows to report these improve-
ments per linguistic category and specifically for
each MT system that participated in two consec-
utive years. The biggest improvements are ob-
served in long distance dependencies or interrog-
atives, verb valency, ambiguity and punctuation,
and we tend to attribute all these improvements to
increased capacity (which allows increased sensi-
tivity to long-range relations) of the models.

4.1.5 Word Sense Disambiguation (Scherrer
et al., 2020b)

Scherrer et al. (2020b) is a followup of last year’s
evaluation (Raganato et al., 2019), assessing the
ability of MT systems to disambiguate a word
given its context of the sentence.

The underlying MuCoW (multilingual con-
trastive word sense disambiguation) dataset con-
tains approximately 2k to 4k sentences per lan-
guage pair selected from large parallel corpora to
contain particularly ambiguous words.

This year, the focus was on language pairs
that appeared both in WMT19 and WMT20
(and were available in the MuCoW dataset),
namely English→Czech, English↔German, and
English→Russian.

Comparing overall numbers across the years,
Scherrer et al. (2020b) report that ambiguous
words are correctly disambiguated in the major-
ity of cases. Both precision (percentage of cor-
rect choices out of sentences where either good
or bad expected translation was found) and re-
call (percentage of correct choices out of all sen-
tences) are above 60 % and reaching 80 % for
the best systems in a given language pair when
mixing “in-domain” and “out-of-domain” evalua-
tion. The “out-of-domain” synsets are those that
are represented in the test suite with more than half
of cases coming from the colloquial subtitle do-
main; other synsets are deemed “in-domain”. The
“in-domain” scores are generally higher, with pre-
cisions above 95 % for the best Czech and Russian
systems. Across the years, no real improvement is
however observed.

Three cases suggest that training systems at the
level of documents decreases their performance
in this sentence-level evaluation (each sentence
forms a separate document): DocTransformer vs.
Transformer by CUNI in 2019 and 2020 and Mi-
crosoft document-level vs. sentence-level submis-
sion in 2019.

5 Similar Language Translation

Most shared tasks at WMT (e.g. News, Biomed-
ical) have historically dealt with translating texts
from and to English. In recent years, we ob-
served a growing interest in training systems to
translate between languages other than English.
This includes a number of papers applying MT
to translate between pairs of closely-related lan-
guages, national language varieties, and dialects
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of the same language (Zhang, 1998; Marujo et al.,
2011; Hassani, 2017; Costa-jussà et al., 2018;
Popović et al., 2020). To address this topic, the
first Similar Language Translation (SLT) shared
task at WMT 2019 has been organized. It fea-
tured data from three pairs of closely-related lan-
guages from different language families: Spanish
- Portuguese (Romance languages), Czech - Pol-
ish (Slavic languages), and Hindi - Nepali (Indo-
Aryan languages).

Following the success of the first SLT shared
task at WMT 2019 and the interest of the com-
munity in this topic, we organize, for the second
time at WMT, this shared task to evaluate the per-
formance of state-of-the-art translation systems on
translating between pairs of languages from the
same language family. SLT 2020 features five
pairs of similar languages from three different lan-
guage families: Indo-Aryan, Romance, and South-
Slavic. Translations were evaluated in both direc-
tions using automatic evaluation metrics presented
in this section.

5.1 Data
Training We have made available a number of
data sources for the SLT shared task. Some train-
ing datasets were used in the previous editions of
the WMT News Translation shared task and were
updated (Europarl v10, News Commentary v15,
Wiki Titles v2), while some corpora were newly
introduced (JRC Acquis). The released parallel
HI–MR dataset was collected from news (Siripra-
gada et al., 2020), PMIndia (Haddow and Kirefu,
2020) and Indic Wordnet (Bhattacharyya, 2010;
Kunchukuttan, 2020a) datasets. All data were ini-
tially combined, tokenized using indic-nlp tok-
enizer (Kunchukuttan, 2020b) and randomly shuf-
fled. From the combined corpus, we randomly ex-
tracted 49,434 sentences for the training set and
the rest are used as development and test sets.
For the South-Slavic language pairs we used large
datasets available from Opus (Tiedemann and Ny-
gaard, 2004)11, more precisely the OpenSubtitles,
MultiParaCrawl, DGT and JW300 data. Different
to the other language groups, for monolingual data
web corpora of the three languages (Ljubešić and
Erjavec, 2011; Ljubešić and Klubička, 2014; Er-
javec et al., 2015) were given to the participants.

Development and Test Data The development
and test sets for Spanish–Catalan and Spanish–

11http://opus.nlpl.eu/

Portuguese language pairs were created from a
corpus provided by Pangeanic12. First, we per-
formed cleaning using CLEAN-CORPUS-N.PERL13

script to retain sentences that have between 4 and
100 tokens. This narrowed the number of sen-
tences to 1,287 and 1,535 in dev and test sets
respectively. Finally, sentences containing meta-
data information were removed, which resulted in
1,283 and 1,495 sentences in dev and test sets re-
spectively.

The aforementioned shuffled combined HI–MR
dataset, 1411 sentences are used for development
set and 3882 for the test set. Finally, the test set
was equally split into two different test sets: 1941
sentences used for HI to MR and 1941 sentences
were used for MR to HI.

For the Slovene–Croatian and Slovene–Serbian
language pairs, development and test data were
obtained from the Ciklopea translation agency14

in form of a data donation from the Bisnode
business intelligence company15. The data con-
sists of public relations releases translated in var-
ious directions between the three languages. The
data was cleaned, deduplicated and shuffled, re-
sulting in 2,457 dev and 2,582 instances for the
Slovene–Croatian pair, and 1,259 dev and 1,260
test instances in the Slovene–Serbian pair. Given
that these translations sometimes form Slovene–
Croatian–Serbian triangles, special care was in-
vested in circumventing data leakage between de-
velopment data on one side, and test data on the
other, of the two language pairs.

5.2 Participants and Approaches

The second edition of the WMT SLT task attracted
68 teams who signed up to participate in the com-
petition and 18 of them submitted their system
outputs. In the end of the competition, 14 teams
submitted system description papers which are re-
ferred to in this report. Table 22 summarizes the
participation across language pairs and translation
directions and includes references to the 14 system
description papers.

Next we provide summaries for each of the en-
tries we received:

A3-108 The team A3-108 submitted their sys-
tem for HI–MR and MR–HI. The team initially

12https://www.pangeanic.com/
13https://github.com/moses-smt
14https://ciklopea.com
15https://www.bisnode.hr
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Table 16: Corpora for the Hindi↔Marathi language pair.

Corpus Sentences
Parallel Hindi↔Marathi News 12,349

Hindi↔Marathi PM India 25,897
Hindi↔Marathi Indic WordNet 11,188

Monolingual Hindi News Crawl 2008-2019 32,609,161
Hindi IITB 45,075,242
Hindi hi.yyyy_nn.raw.xz 2012-2017
Marathi News Crawl 2018-2019 326,748
Marathi mr.yyyy_nn.raw.xz 2012-2017

Dev Hindi↔Marathi 1,411
Test Hindi↔Marathi 1,941

Table 17: Corpora for the Spanish↔ Catalan language pair.

Corpus Sentences
Parallel Spanish↔ Catalan Wiki Titles v2 446,326

Spanish↔ Catalan DOGC v2 10,933,622
Monolingual Spanish Europarl v10 2,038,042

Spanish News Commentary v15 465,165
Spanish News Crawl 2007-2019 53,874,815
Catalan caWaC 24,745,986

Dev Spanish↔ Catalan 1,283
Test Spanish↔ Catalan 1,495

Table 18: Corpora for the Spanish↔ Portuguese language pair.

Corpus Sentences
Parallel Spanish↔ Portuguese Europarl v10 1,801,845

Spanish↔ Portuguese News Commentary v15 48,259
Spanish↔ Portuguese Wiki Titles v2 649,833
Spanish↔ Portuguese JRC-Acquis 1,650,126

Monolingual Spanish Europarl v10 2,038,042
Spanish News Commentary v15 465,165
Spanish News Crawl 2007-2019 53,874,815
Portuguese Europarl v10 2,016,635
Portuguese News Commentary v15 73,550
Portuguese News Crawl 2008-2019 9,392,574

Dev Spanish↔ Portuguese 1,283
Test Spanish↔ Portuguese 1,495

Table 19: Corpora for the Slovenian↔ Croatian language pair.

Corpus Sentences
Parallel Slovenian↔ Croatian OpenSubtitles v2018 15,636,933

Slovenian↔ Croatian MultiParaCrawl v5 271,415
Slovenian↔ Croatian JW300 v1 1,052,547
Slovenian↔ Croatian DGT v2019 698,314

Monolingual Slovenian slWaC 46,251,729
Croatian hrWaC 64,577,734

Dev Slovenian↔ Croatian 2,457
Test Slovenian↔ Croatian 2,582
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Table 20: Corpora for the Slovenian↔ Serbian language pair.

Corpus Sentences
Parallel Slovenian↔ Serbian OpenSubtitles v2018 16,426,054
Monolingual Slovenian slWaC 46,251,729

Serbian srWaC 24,073,253
Dev Slovenian↔ Serbian 1,259
Test Slovenian↔ Serbian 1,260

Table 21: Corpora for the Croatian↔ Serbian language pair.

Corpus Sentences
Parallel Croatian↔ Serbian SETimes 203,989

build SMT models for both language direction
after three steps preprocessing: (i) default – in-
dic_nlp_library16 and moses tokenizer17, (ii) mor-
fessor18 and (iii) BPE19. These SMT models were
used for back-translation. Finally, these back-
translation data were used to train their NMT sys-
tem.

ADAPT-DCU The ADAPT-DCU team partici-
pated in the SLT task on the Croatian–Slovene
and Serbian–Slovene language pairs. The team’s
submissions were based on the Sockeye imple-
mentations of the Transformer, with a joint 32k-
large BPE vocabulary for all three languages. The
submission were regularly multilingual (having
Slovene on one side and Croatian and Serbian
on the other). The team used only OpenSubtitles
bilingual training data, considering other available
data to be too noisy. The basic implementation
of the multilingual system was submitted as the
second contrastive system, the multilingual imple-
mentation trained on filtered parallel data as the
first contrastive system, while the primary submis-
sion included backtranslation of target monolin-
gual data of segments similar to the development
data. By performing n-gram-character-based fil-
tering of training data the training time was cut in
half with a minor improvement on the translation
quality, while the largest improvements in trans-
lation quality were obtained by back-translating
data similar to development data (between 8 and
14 BLEU points).

f1plusf6 During preprocessing as Marathi and
Hindi are rich in terms of morphology, Applied

16https://anoopkunchukuttan.github.io/indic_
nlp_library/

17https://github.com/moses-smt/mosesdecoder
18https://github.com/aalto-speech/morfessor
19https://github.com/rsennrich/subword-nmt

two way segmentation as preprocessing, first su-
pervised and unsupervised word based morpho-
logical segmentation and then BPE based segmen-
tation to tackle low-resource language pairs. The
participants used shared vocab across training and
utilised POS based features on the source side to
create initial models for both directions.

For preparing unsupervised back-translation
parallel data they used aligned embedding space
to generate word by word parallel sentences for
both language directions. They also prepared
initial models from the provided parallel data
for back translation from monolingual data and
pruned back-translation pairs based on perplexity
score. Their model is based on Luong’s attention
on bi-LSTM network, copy attention on dynam-
ically generated dictionary with label smoothing
and dropouts to reduce overfitting.

Fast-MT Fast-MT team submitted their NMT
system where Transformers and Recurrent Atten-
tion models are effectively used. They combined
the recurrence based layered encoder-decoder
model with the Transformer model. Their sub-
mitted system for Indo-Aryan Language (Hindi to
Marathi) pair is trained on the parallel corpus of
the training dataset provided by the organizers.

IIAI IIAI TEAM participate in both directions
of the Hindi–Marathi translation task. Their pri-
mary submission is a transformer model trained
on the released parallel and back-translated mono-
lingual data. The team jointly learned BPE from
the merged source–target corpus. After BPE, sen-
tences were corrupted and reconstructed using the
two ways:(i) 15% of the subwords in the sentence
are randomly selected and masked, (ii) 15% of the
subwords are randomly selected one by one and
swapped with another randomly-selected subword
in the sequence.
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Team System Description Paper
A3108 Yadav and Shrivastava (2020)
ADAPT-DCU Popović and Poncelas (2020)
f1plusf6 Mujadia and Sharmaa (2020)
FAST-MT Dhanani and Rafi (2020)
IIAI
IIT-DELHI Madaan et al. (2020)
INFOSYS Rathinasamy et al. (2020)
IPN-CIC Menéndez-Salazar et al. (2020)
NICT
NITS-CNLP Laskar et al. (2020)
NLPRL Kumar et al. (2020)
NLPRL-IITBHU
NUIG-Panlingua-KMI Ojha et al. (2020)
NUST_FJWU Haq et al. (2020)
Prompsit
UBC-NLP Adebara et al. (2020)
UPCTALP Boncompte and Costa-jussà (2020)
WIPRO-RIT Pal and Zampieri (2020)

Table 22: The teams that participated in the SLT 2020 task and their system description papers.

IITDELHI Team IITDELHI participated in
the SLT task on Hindi–Marathi and Spanish–
Portuguese language pairs. The team’s primary
submission builds on fine-tuning over pretrained
mBART. They used pre-trained weights of the
mBART model (Liu et al., 2019), which is pre-
trained on large amounts of monolingual data for
25 languages including Spanish, however Por-
tuguese is not there. The authors initialized a
Transformer architecture with 12 encoder and de-
coder layers using the pre-trained weights, and
then directly fine-tuned with the released training
data. The authors conclude that mBART is helpful
for transfer learning, even though the languages
that are not available in the pre-trained model.

INFOSYS Infosys system for Hindi–Marathi
(Primary) task is designed to learn the nuances
of translation of this low resource language pair
by taking advantage of the fact that the source
(Hindi) and target (Marathi) languages are same
alphabet languages. This system is an ensemble of
FairSeq model built on anonymized parallel data
and FairSeq back-translation model. The common
words/tokens between source and target languages
are anonymized during pre-processing upon which
the FairSeq model is trained. The input statements
during inferencing are anonymized based on the
vocabulary of common tokens prepared during
training and the predicted statements are de-
anonymized during post-processing accordingly.

This improved the accuracy (BLEU) of FairSeq
considerably. Pre-processing also applies tradi-
tional parallel corpus filtering techniques to clean
parallel data followed by domain specific tech-
niques. There were records containing multiple
statements delimited by slashes, where the domain
specific techniques are applied to transform them
in to records that retain only the matching single
statement, identified based on its syntactic similar-
ity with its parallel statement. Synthetic data gen-
erated with the mono-lingual (Marathi) data dur-
ing FairSeq back-translation has unknown words
(w.r.t parallel data vocabulary), resulting unknown
words during prediction, which are downvoted
while ensembling.

IPN-CIC This team participated in the Spanish-
Portuguese language pair. The systems used the
Transformer architecture with a fine-tuning for do-
main adaptation. The team proposed experiments
on the kind of tokens used (words and sub-word
units) and the initialization of the word embed-
dings in the systems using either a random initial-
ization or pre-trained word embeddings.

NICT NICT participated in two language pairs:
Hindi–Marathi and Spanish–Catalan, for both
translation directions. Their primary submission
is an unsupervised NMT system, initialized with a
pre-trained cross-lingual language model (XLM),
that has been trained using only the monolingual
data provided by the organizers. They used the
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standard hyper-parameters for training XLM and
unsupervised NMT. Their contrastive submission
is the same but supervised NMT system trained
on the combination of the released bilingual and
monolingual data.

NITS-CNLP NITS-CNLP system for HI–MR
and MR–HI translation is based on cross-lingual
language modelling with masked language mod-
eling and translation language modeling. These
language models were pre-trained on monolingual
corpus and fine-tuned on parallel data following
the architecture of Conneau and Lample (2019)
and employing 6 layers with 8 attention heads and
with 32 batch size, trained on a single GPU.

NLPRL This system submitted by the NLPRL
team for the HI-MR is based on the Transformer
approach. The system were trained on only the
released parallel corpus. The team used Sentence-
Piece library for preprocessing and set vocabulary
size of 5000 symbols for source and target byte-
pair encoding, respectively.

NLPRL-BHU The team participated in the HI
↔ MR language pair. The participants used byte
pair encoding to preprocess the data and fairseq
library with the GRU-transformer for training.

NUIG-Panlingua-KMI The NUIG-Panlingua-
KMI team explored phrase-based SMT,
dependecy-based SMT method and neural
method (used subword) for Hindi↔Marathi
language pair.

NUST-FJWU NUST-FJWU system is an exten-
sion of state-of-the-art Transformer model with hi-
erarchical attention networks to incorporate con-
textual information. During training the model
used back-translation.

Prompsit This team is participating with a rule-
based system based on Apertium (Forcada et al.,
2009-11). Apertium is a free/open-source plat-
form for developing rule-based machine transla-
tion systems and language technology that was
first released in 2005. Apertium is hosted in
Github where both language data and code are li-
censed under the GNU GPL. It is a research and
business platform with a very active community
that loves small languages. Language pairs are at
a very different level of development and output
quality in the platform, depending on two main
variables: how much funded or in-kind effort has

been devoted to it and the nature of the languages
itself (the closer, the better).

UBC-NLP The UBC-NLP team participated in
the SLT task on all the available language pairs.
The team regularly used all the parallel data
and trained 6-layer Transformer models based
on the Fairseq library. Only for the Slovene–
Croatian language pair the team performed back-
translation, noticing a 3 BLEU point improve-
ment in the results. This team obtained better re-
sults with bilingual than with multilingual models
(training a single model for all language groups).

UPCTALP The UPCTALP participated in the
Romance pairs. This team made use of the Trans-
former architecture improved with multilingual,
back-translation and fine-tuning techniques. Each
of this techniques improved over the previous one.

WIPRO-RIT WIPRO-RIT submitted their sys-
tem to the SLT 2020 Indo-Aryan track. The pre-
sented system is a single multilingual NMT sys-
tem based on the transformer architecture that can
translate between multiple languages. The pre-
sented model is inspired from the model described
in Johnson et al. (2017). WIPRO-RIT achieved
competitive performance ranking 1st in Marathi
to Hindi and 2nd in Hindi to Marathi translation
among 22 systems.in Hindi to Marathi translation
among 22 systems.

5.3 Results

We present results for the three language fami-
lies: three different language families: Indo-Aryan
(Hindi - Marathi), Romance (Spanish - Catalan,
Spanish - Portuguese), and South-Slavic (Slovene
- Croatian, Slovene - Serbian), all of them in the
two possible directions. Like last year edision,
the second edition of the Similar Translation Task
evaluation was also performed on automatic ba-
sis using BLEU (Papineni et al., 2002), RIBES
(Isozaki et al., 2010) and TER (Snover et al., 2006)
measures. Each language direction is reported
in one different table which contain information
of the team; type of system, either contrastive
(CONTRASTIVE) or primary (PRIMARY), and
the BLEU, RIBES and TER results. The scores
are sorted by BLEU. In general, primary systems
tend to be better than contrastive systems, as ex-
pected, but there are some exceptions.

This year we recived major number of partici-
pants for the case of Indo-Aryan language group
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i.e. Hindi–Marathi (in both directions). We re-
ceived 22 submissions from 14 teams. The best
systems (INFOSYS) based on BLEU for Hindi–
Marathi achieved score 18.26, however based on
other evaluation matric WIPRO-RIT achieved the
best 62.45 RIBES and around 72 TER (see Table
23). While in the other direction Marathi–Hindi
the best performing system (WIPRO-RIT) reached
24.53 of BLEU and 66.39 on TER, but based on
RIBES score 66.83, IITDELHI performed the best
(see Table 24).

Similarly to the previous edition of the SLT
shared task, participants could submit systems for
the Spanish–Portuguese language pair (in both
directions). The best systems for Spanish-to-
Portuguese achieved over 32 BLEU and around 52
TER. While in the opposite direction (Portuguese-
to-Spanish) the best performing system reached
33.82 of BLEU, but its TER score was 52.41,
which is higher than in the case of best per-
forming Spanish-to-Portuguese systems. As the
Spanish–Catalan dev and test sets were aligned
with Spanish–Portuguese ones, we noticed that
the best results for the Spanish–Catalan language
pair are in general much better than for Spanish–
Portuguese. For Spanish-to-Catalan the best sys-
tem attained over 86 BLEU and below 8 TER. In
the case of Catalan-to-Spanish, the best systems
scored around 77 BLEU and less than 15 TER.

A new language group in this year’s SLT task
is the group of (Western) South Slavic languages
- Slovene, Croatian and Serbian, forming two
language pairs - Slovene–Croatian and Slovene–
Serbian, with one additional twist given the very
high mutual intelligibility of Croatian and Ser-
bian. The best systems for Slovene-to-Croatian
achieved 36 BLEU and 43 TER, which is signif-
icantly worse than the results of the same best-
performing system in the opposite direction - 43
BLEU and 36 TER. On the Slovene–Serbian pair
a similar phenomenon can be observed - Slovene
to Serbian achieving 39 BLEU and 40 TER, while
the opposite direction achieves 47 BLEU and 33
TER. The reason for such a significant lack of
symmetry is the better performance of the sys-
tems translating into Slovene, probably given that
(Croatian and Serbian) multi-source translation
(into Slovene) is simpler than multi-target transla-
tion, which was, finally, propagated to the back-
translation procedure, increasing the difference
between the directions even further.

5.4 Summary

In this section, we presented the results of
the WMT SLT 2020 task. The second it-
eration of this competition featured data from
five language pairs from three different lan-
guage families: Hindi-Marathi; Spanish-Catalan
and Spanish-Portuguese; Sloven-Croatian and
Slovene-Serbian. We evaluated the systems trans-
lating in both directions of the language pair using
three automatic metrics: BLEU, RIBES, and TER.
We observed that the performance varies widely
between language pairs. For example. the best
performing systems trained to translate between
Catalan and Spanish in both directions obtained
significantly higher results than those trained to
translate between other language pairs.

In terms of participation, SLT received system
submissions from 18 teams. In the end of the com-
petition, 14 teams wrote system description papers
that appear in the WMT proceedings. The list of
teams with references to the respective system de-
scription paper is presented in Table 22. Finally,
short summaries of each entry, based on the de-
scription provided by the participants, were also
presented in this section.

6 Conclusion

This paper presented the results of WMT20 news
translation and similar language translation shared
tasks, as well as the extra test suites added to the
news translation task. Our main findings rank
participating systems in their sentence-level and
document-level translation quality, as assessed in
a large-scale manual evaluation using the method
of Direct Assessment (DA).

For out-of-English language pairs, DA was
modified so that the context of the whole doc-
ument is available while judging individual sen-
tences and assessors are allowed to return to any
sentence judgement within the document.

As in previous years, the effect of translationese
(translating from a source which itself was pro-
duced in translation) was avoided except lower-
resourced Inuktitut↔English, Pashto↔English,
Khmer↔English, and German↔French by cre-
ating reference translations always in the same
direction as the MT systems are run. Further-
more, 8 out-of-English language pairs would not
need human reference for our evaluation at all be-
cause the assessors are evaluating translation can-
didates bilingually, comparing them to the source
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Team Type BLEU ↑ RIBES ↑ TER ↓
INFOSYS PRIMARY 18.26 56.73 76.48
WIPRO-RIT PRIMARY 16.62 62.45 72.23
WIPRO-RIT CONTRASTIVE2 15.42 61.02 73.59
IITDELHI PRIMARY 15.14 61.06 74.63
IIAI CONTRASTIVE 14.99 52.11 85.77
IITDELHI CONTRASTIVE 14.91 57.63 81.19
IIAI PRIMARY 14.73 52.80 86.13
WIPRO-RIT CONTRASTIVE1 13.25 58.51 76.17
NLPRL PRIMARY 12.50 58.66 76.86
NITS-CNLP PRIMARY 11.59 57.76 79.07
A3108 PRIMARY 11.41 57.20 79.96
A3108 CONTRASTIVE 10.21 55.17 82.01
NUIG-Panlingua-KMI CONTRASTIVE 9.76 52.18 91.49
NUIG-Panlingua-KMI PRIMARY 9.38 51.88 91.24
f1plusf6 PRIMARY 5.49 43.74 94.60
f1plusf6 CONTRASTIVE 5.41 43.49 94.52
FAST-MT PRIMARY 3.68 31.14 97.64
NICT CONTRASTIVE 3.41 42.43 -
NICT PRIMARY 1.26 31.20 -
UBC-NLP PRIMARY 0 1 -
UBC-NLP CONTRASTIVE 0 0.12 -

Table 23: Results for Hindi to Marathi translation.

Team Type BLEU ↑ RIBES ↑ TER ↓
WIPRO-RIT PRIMARY 24.53 66.23 66.39
IITDELHI PRIMARY 24.53 66.83 67.25
WIPRO-RIT CONTRASTIVE2 22.93 65.89 68.11
WIPRO-RIT CONTRASTIVE1 22.69 65.01 68.13
A3108 CONTRASTIVE 21.11 60.76 77.28
NLPRL PRIMARY 20.72 64.46 71.04
IIAI CONTRASTIVE 20.32 59.56 79.32
IIAI PRIMARY 20.04 58.95 80.27
IITDELHI CONTRASTIVE 18.74 58.56 77.22
A3108 PRIMARY 18.32 59.31 77.35
f1plusf6 PRIMARY 18.14 60.86 78.27
NUIG-Panlingua-KMI CONTRASTIVE 17.39 58.84 81.15
NUIG-Panlingua-KMI PRIMARY 17.38 59.31 81.47
f1plusf6 CONTRASTIVE 17.17 60.69 78.18
NITS-CNLP PRIMARY 15.44 61.13 75.96
NICT CONTRASTIVE 11.20 56.13 -
FAST-MT PRIMARY 9.02 46.96 88.68
NUST_FJWU CONTRASTIVE 6.79 46.27 91.28
NUST_FJWU PRIMARY 6.71 43.19 93.74
NICT PRIMARY 6.28 50.14 -
NLPRL-IITBHU PRIMARY 0.12 7.66 -
UBC-NLP PRIMARY 0.09 7.19 -
UBC-NLP CONTRASTIVE 0 0.09 -

Table 24: Results for Marathi to Hindi translation.
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Team Type BLEU ↑ RIBES ↑ TER ↓
Prompsit PRIMARY 77.08 95.71 12.35
NICT CONTRASTIVE 76.67 93.33 14.22
UPCTALP PRIMARY 68.84 89.83 20.09
NICT PRIMARY 68.43 92.13 19.47
UBC-NLP PRIMARY 0.17 4.81 -
UBC-NLP CONTRASTIVE 0 1.50 -

Table 25: Results for Catalan to Spanish translation.

Team Type BLEU ↑ RIBES ↑ TER ↓
Prompsit PRIMARY 86.48 97.37 7.716
Prompsit CONTRASTIVE 81.36 96.64 10.15
UPCTALP PRIMARY 60.50 90.25 25.80
NICT CONTRASTIVE 59.05 90.73 25.90
NICT PRIMARY 51.97 88.30 31.68
UBC-NLP CONTRASTIVE 9.53 64.17 77.42
UBC-NLP PRIMARY 8.49 58.93 84.16

Table 26: Results for Spanish to Catalan translation.

Team Type BLEU ↑ RIBES ↑ TER ↓
UPCTALP PRIMARY 33.82 76.04 52.41
IITDELHI PRIMARY 32.84 74.84 52.65
Prompsit PRIMARY 30.27 75.37 54.46
IPN-CIC PRIMARY 28.38 72.24 56.27
IPN-CIC CONTRASTIVE1 27.98 72.11 56.16
IPN-CIC CONTRASTIVE2 27.41 75.18 57.28
UBC-NLP CONTRASTIVE 0.06 1.50 -
UBC-NLP PRIMARY 0 5.86 -

Table 27: Results for Portuguese to Spanish translation.

Team Type BLEU ↑ RIBES ↑ TER ↓
IIT-DELHI PRIMARY 32.69 74.05 51.74
UPCTALP PRIMARY 32.33 73.04 52.06
IPN-CIC PRIMARY 27.08 72.98 55.34
Prompsit PRIMARY 26.91 75.79 54.63
Prompsit CONTRASTIVE 26.81 75.71 54.73
IPN-CIC CONTRASTIVE1 23.91 71.55 57.55
IPN-CIC CONTRASTIVE2 23.90 73.73 58.07
UBC-NLP PRIMARY 17.06 52.55 76.21
UBC-NLP CONTRASTIVE 4.47 52.72 88.13

Table 28: Results for Spanish to Portuguese translation.

Team Type BLEU ↑ RIBES ↑ TER ↓
ADAPT-DCU PRIMARY 43.41 73.77 35.8
ADAPT-DCU CONTRASTIVE2 29.04 68.71 48.74
ADAPT-DCU CONTRASTIVE1 26.96 64.02 50.73
UBC-NLP PRIMARY 0.07 1.03 -
UBC-NLP CONTRASTIVE 0 0.25 -

Table 29: Results for Croatian to Slovene translation.
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Team Type BLEU ↑ RIBES ↑ TER ↓
ADAPT-DCU PRIMARY 35.56 72.04 43.19
ADAPT-DCU CONTRASTIVE1 27.63 70.53 49.91
ADAPT-DCU CONTRASTIVE2 23.3 60.8 52.79
UBC-NLP PRIMARY 22.26 64.41 64.5
UBC-NLP CONTRASTIVE 1.68 35.35 -

Table 30: Results for Slovene to Croatian translation.

Team Type BLEU ↑ RIBES ↑ TER ↓
ADAPT-DCU PRIMARY 47.45 75.11 32.61
ADAPT-DCU CONTRASTIVE1 33.5 70.86 44.58
ADAPT-DCU CONTRASTIVE2 30.28 65.92 47.77
UBC-NLP CONTRASTIVE 0 0.39 -
UBC-NLP PRIMARY 0 1.3 -

Table 31: Results for Serbian to Slovene translation.

Team Type BLEU ↑ RIBES ↑ TER ↓
ADAPT-DCU PRIMARY 39.16 73.37 39.81
ADAPT-DCU CONTRASTIVE1 29.79 70.24 47.55
ADAPT-DCU CONTRASTIVE2 25.7 64.81 50.51
UBC-NLP PRIMARY 20.18 63.37 65.56
UBC-NLP CONTRASTIVE 2.01 38.87 -

Table 32: Results for Slovene to Serbian translation.

text (as opposed to the reference) in these language
pairs. The reference translations are nevertheless
included as evaluation, hidden among participat-
ing MT systems.

This year, English→German included two in-
dependent reference translations and one human-
produced paraphrase, and English→Chinese in-
cluded two references. Each of these translations
ended up significantly differing in quality from
the other ones. In German↔English and also
Chinese→English and English→Inuktitut, some
MT systems fall in the same cluster with hu-
man translation. The observed variance of human
translation quality however demands modesty be-
fore making any claims about human parity.

The need for cautious interpretation of the re-
sults is also strengthened by the fact that even in
English→German and English→Czech where hu-
man translation was seemingly significantly sur-
passed in 2018 and/or 2019, the result is not con-
firmed this year. Furthermore and similarly to pre-
vious year, a test suite this year again suggests that
some aspects of translation are not handled by cur-
rent systems at all. This year all MT systems fall
into the gender bias trap (Kocmi et al., 2020) and
they tend to make more severe errors than humans
(Zouhar et al., 2020).

The results of the task on similar language
translation indicate that the performance when
translating between pairs of closely-related lan-
guages is extremely varied across different lan-
guage pairs. The best performing systems trained
to translate between Catalan and Spanish, for ex-
ample, obtained significantly higher results in both
directions than those trained to translate between
other language pairs in terms of BLEU, RIBES,
and TER.
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A Differences in Human Scores

Tables 33–50 show differences in average standardized human scores for all pairs of competing sys-
tems for each language pair. The numbers in each of the tables’ cells indicate the difference in average
standardized human scores for the system in that column and the system in that row.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied Wilcoxon rank-sum test to measure the likelihood that such
differences could occur simply by chance. In the following tables ? indicates statistical significance
at p < 0.05, † indicates statistical significance at p < 0.01, and ‡ indicates statistical significance at
p < 0.001, according to Wilcoxon rank-sum test.

Each table contains final rows showing the average score achieved by that system and the rank range
according according to Wilcoxon rank-sum test (p < 0.05). Gray lines separate clusters based on non-
overlapping rank ranges.
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CUNI-DOCTRANSFORMER - 0.05 0.08 0.08? 0.10 0.15† 0.17‡ 0.18‡ 0.19‡ 0.20‡ 0.21‡ 0.26‡
OPPO -0.05 - 0.03 0.04 0.05 0.11? 0.12‡ 0.14‡ 0.14‡ 0.15‡ 0.17‡ 0.21‡

ONLINE-B -0.08 -0.03 - 0.01 0.02 0.08 0.09† 0.11† 0.11† 0.12† 0.14† 0.18‡
CUNI-TRANSFORMER -0.08 -0.04 -0.01 - 0.02 0.07 0.08? 0.10? 0.10† 0.11† 0.13† 0.18‡

ONLINE-A -0.10 -0.05 -0.02 -0.02 - 0.05 0.07? 0.08? 0.09? 0.10† 0.11† 0.16‡
SRPOL -0.15 -0.11 -0.08 -0.07 -0.05 - 0.01 0.03 0.03 0.04 0.06 0.10†

UEDIN-CUNI -0.17 -0.12 -0.09 -0.08 -0.07 -0.01 - 0.02 0.02 0.03 0.05 0.09?
CUNI-T2T-2018 -0.18 -0.14 -0.11 -0.10 -0.08 -0.03 -0.02 - 0.00 0.02 0.03 0.08

ONLINE-G -0.19 -0.14 -0.11 -0.10 -0.09 -0.03 -0.02 0.00 - 0.01 0.03 0.07
ONLINE-Z -0.20 -0.15 -0.12 -0.11 -0.10 -0.04 -0.03 -0.02 -0.01 - 0.01 0.06

PROMT-NMT -0.21 -0.17 -0.14 -0.13 -0.11 -0.06 -0.05 -0.03 -0.03 -0.01 - 0.05
ZLABS-NLP -0.26 -0.21 -0.18 -0.18 -0.16 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -

score 0.12 0.07 0.04 0.03 0.02 -0.04 -0.05 -0.07 -0.07 -0.08 -0.09 -0.14
rank 1–12 1–12 1–12 1–12 1–12 1–12 1–12 1–12 1–12 1–12 1–12 1–12

Table 33: Head to head comparison for Czech→English systems
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VOLCTRANS - 0.01? 0.02† 0.04† 0.04? 0.05† 0.05‡ 0.07† 0.09‡ 0.10‡ 0.12‡ 0.13‡ 0.17‡ 0.18‡ 0.21‡ 0.24‡ 0.43‡
DIDI-NLP -0.01 - 0.01 0.03 0.03 0.04 0.04? 0.06 0.07 0.09‡ 0.11† 0.12‡ 0.16‡ 0.17‡ 0.19‡ 0.22‡ 0.42‡

WECHAT-AI -0.02 -0.01 - 0.01 0.02 0.03 0.03 0.05 0.06 0.08† 0.09? 0.11‡ 0.15‡ 0.16‡ 0.18‡ 0.21‡ 0.41‡
TENCENT-TRANSLATION -0.04 -0.03 -0.01 - 0.00 0.01 0.01 0.04 0.05 0.06? 0.08 0.09† 0.13‡ 0.14‡ 0.17‡ 0.20‡ 0.40‡

ONLINE-B -0.04 -0.03 -0.02 0.00 - 0.01 0.01 0.03 0.04 0.06† 0.08? 0.09‡ 0.13‡ 0.14‡ 0.17‡ 0.20‡ 0.39‡
DEEPMIND -0.05 -0.04 -0.03 -0.01 -0.01 - 0.00 0.02 0.03 0.05† 0.07? 0.08† 0.12‡ 0.13‡ 0.16‡ 0.19‡ 0.38‡

OPPO -0.05 -0.04 -0.03 -0.01 -0.01 0.00 - 0.02 0.03 0.05? 0.07 0.08† 0.12‡ 0.13‡ 0.16‡ 0.19‡ 0.38‡
THUNLP -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.02 - 0.01 0.03† 0.04 0.06† 0.10‡ 0.11‡ 0.13‡ 0.16‡ 0.36‡

SJTU-NICT -0.09 -0.07 -0.06 -0.05 -0.04 -0.03 -0.03 -0.01 - 0.02? 0.03 0.05† 0.09‡ 0.09‡ 0.12‡ 0.15‡ 0.35‡
HUAWEI-TSC -0.10 -0.09 -0.08 -0.06 -0.06 -0.05 -0.05 -0.03 -0.02 - 0.02 0.03 0.07? 0.08† 0.11† 0.13‡ 0.33‡

ONLINE-A -0.12 -0.11 -0.09 -0.08 -0.08 -0.07 -0.07 -0.04 -0.03 -0.02 - 0.01 0.05† 0.06‡ 0.09‡ 0.12‡ 0.32‡
HUMAN -0.13 -0.12 -0.11 -0.09 -0.09 -0.08 -0.08 -0.06 -0.05 -0.03 -0.01 - 0.04 0.05? 0.08† 0.11‡ 0.30‡

ONLINE-G -0.17 -0.16 -0.15 -0.13 -0.13 -0.12 -0.12 -0.10 -0.09 -0.07 -0.05 -0.04 - 0.01 0.03 0.06? 0.26‡
DONG-NMT -0.18 -0.17 -0.16 -0.14 -0.14 -0.13 -0.13 -0.11 -0.09 -0.08 -0.06 -0.05 -0.01 - 0.03 0.06 0.25‡
ZLABS-NLP -0.21 -0.19 -0.18 -0.17 -0.17 -0.16 -0.16 -0.13 -0.12 -0.11 -0.09 -0.08 -0.03 -0.03 - 0.03 0.23‡
ONLINE-Z -0.24 -0.22 -0.21 -0.20 -0.20 -0.19 -0.19 -0.16 -0.15 -0.13 -0.12 -0.11 -0.06 -0.06 -0.03 - 0.20‡

WMTBIOMEDBASELINE -0.43 -0.42 -0.41 -0.40 -0.39 -0.38 -0.38 -0.36 -0.35 -0.33 -0.32 -0.30 -0.26 -0.25 -0.23 -0.20 -

score 0.10 0.09 0.08 0.06 0.06 0.05 0.05 0.03 0.02 0.00 -0.02 -0.03 -0.07 -0.08 -0.11 -0.14 -0.33
rank 1 2–16 2–16 2–16 2–16 2–16 2–16 2–16 2–16 2–16 2–16 2–16 2–16 2–16 2–16 2–16 17

Table 34: Head to head comparison for Chinese→English systems
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VOLCTRANS - 0.01 0.04? 0.05 0.05 0.06 0.06? 0.06? 0.10? 0.14‡ 0.31‡ 0.33‡ 1.85‡
OPPO -0.01 - 0.03? 0.04 0.04 0.05 0.05? 0.05? 0.09 0.13‡ 0.30‡ 0.33‡ 1.84‡

HUMAN -0.04 -0.03 - 0.01 0.01 0.01 0.02 0.02 0.06 0.10 0.27‡ 0.29‡ 1.80‡
TOHOKU-AIP-NTT -0.05 -0.04 -0.01 - 0.00 0.01 0.01 0.01 0.05 0.09† 0.26‡ 0.28‡ 1.80‡

ONLINE-A -0.05 -0.04 -0.01 0.00 - 0.01 0.01 0.01 0.05 0.09† 0.26‡ 0.28‡ 1.80‡
ONLINE-G -0.06 -0.05 -0.01 -0.01 -0.01 - 0.00 0.01 0.04 0.09† 0.25‡ 0.28‡ 1.79‡

PROMT-NMT -0.06 -0.05 -0.02 -0.01 -0.01 0.00 - 0.00 0.04 0.09 0.25‡ 0.28‡ 1.79‡
ONLINE-B -0.06 -0.05 -0.02 -0.01 -0.01 -0.01 0.00 - 0.04 0.08 0.25‡ 0.27‡ 1.78‡

UEDIN -0.10 -0.09 -0.06 -0.05 -0.05 -0.04 -0.04 -0.04 - 0.05? 0.21‡ 0.24‡ 1.75‡
ONLINE-Z -0.14 -0.13 -0.10 -0.09 -0.09 -0.09 -0.09 -0.08 -0.05 - 0.16‡ 0.19‡ 1.70‡

WMTBIOMEDBASELINE -0.31 -0.30 -0.27 -0.26 -0.26 -0.25 -0.25 -0.25 -0.21 -0.16 - 0.03 1.54‡
ZLABS-NLP -0.33 -0.33 -0.29 -0.28 -0.28 -0.28 -0.28 -0.27 -0.24 -0.19 -0.03 - 1.51‡

YOLO -1.85 -1.84 -1.80 -1.80 -1.80 -1.79 -1.79 -1.78 -1.75 -1.70 -1.54 -1.51 -

score 0.23 0.22 0.19 0.18 0.18 0.17 0.17 0.17 0.13 0.09 -0.08 -0.11 -1.62
rank 1–9 1–9 1–9 1–9 1–9 1–9 1–9 1–9 1–9 10 11–12 11–12 13

Table 35: Head to head comparison for German→English systems
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ONLINE-G - 0.01 0.01 0.02 0.03 0.05† 0.06 0.08? 0.10† 0.14‡ 0.15‡ 0.28‡
ONLINE-A -0.01 - 0.00 0.01 0.02 0.04 0.05 0.07 0.09? 0.13† 0.14† 0.27‡

OPPO -0.01 0.00 - 0.01 0.02 0.04? 0.05 0.07? 0.09† 0.13† 0.13‡ 0.27‡
ETRANSLATION -0.02 -0.01 -0.01 - 0.01 0.03? 0.04 0.06? 0.08? 0.12† 0.13† 0.26‡
PROMT-NMT -0.03 -0.02 -0.02 -0.01 - 0.02 0.03 0.05 0.07 0.11? 0.12? 0.25‡

ONLINE-B -0.05 -0.04 -0.04 -0.03 -0.02 - 0.01 0.03 0.05 0.09 0.09 0.23‡
HUMAN -0.06 -0.05 -0.05 -0.04 -0.03 -0.01 - 0.02 0.04 0.08? 0.08? 0.22‡
ARIEL XV -0.08 -0.07 -0.07 -0.06 -0.05 -0.03 -0.02 - 0.02 0.06 0.06 0.20‡

AFRL -0.10 -0.09 -0.09 -0.08 -0.07 -0.05 -0.04 -0.02 - 0.04 0.05 0.18‡
DIDI-NLP -0.14 -0.13 -0.13 -0.12 -0.11 -0.09 -0.08 -0.06 -0.04 - 0.01 0.14‡
ONLINE-Z -0.15 -0.14 -0.13 -0.13 -0.12 -0.09 -0.08 -0.06 -0.05 -0.01 - 0.13‡

ZLABS-NLP -0.28 -0.27 -0.27 -0.26 -0.25 -0.23 -0.22 -0.20 -0.18 -0.14 -0.13 -

score 0.12 0.11 0.11 0.10 0.10 0.07 0.06 0.04 0.03 -0.02 -0.02 -0.15
rank 1–11 1–11 1–11 1–11 1–11 1–11 1–11 1–11 1–11 1–11 1–11 12

Table 36: Head to head comparison for Russian→English systems
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TOHOKU-AIP-NTT - 0.04 0.10 0.10? 0.12‡ 0.16‡ 0.16‡ 0.39‡ 0.40‡ 0.42‡
NIUTRANS -0.04 - 0.06 0.06? 0.08‡ 0.12‡ 0.13‡ 0.35‡ 0.37‡ 0.39‡

OPPO -0.10 -0.06 - 0.00 0.02? 0.06? 0.07? 0.30‡ 0.31‡ 0.33‡
NICT-KYOTO -0.10 -0.06 0.00 - 0.02 0.06 0.06 0.29‡ 0.30‡ 0.32‡

ONLINE-B -0.12 -0.08 -0.02 -0.02 - 0.04 0.05 0.28‡ 0.29‡ 0.31‡
ONLINE-A -0.16 -0.12 -0.06 -0.06 -0.04 - 0.01 0.23‡ 0.25‡ 0.27‡

ETRANSLATION -0.16 -0.13 -0.07 -0.06 -0.05 -0.01 - 0.23‡ 0.24‡ 0.26‡
ZLABS-NLP -0.39 -0.35 -0.30 -0.29 -0.28 -0.23 -0.23 - 0.01 0.03
ONLINE-G -0.40 -0.37 -0.31 -0.30 -0.29 -0.25 -0.24 -0.01 - 0.02
ONLINE-Z -0.42 -0.39 -0.33 -0.32 -0.31 -0.27 -0.26 -0.03 -0.02 -

score 0.18 0.15 0.09 0.08 0.07 0.03 0.02 -0.21 -0.22 -0.24
rank 1–7 1–7 1–7 1–7 1–7 1–7 1–7 8–10 8–10 8–10

Table 37: Head to head comparison for Japanese→English systems

47



S
R

P
O

L

O
N

L
IN

E
-G

N
IC

T-
R

U
I

O
N

L
IN

E
-B

S
JT

U
-N

IC
T

O
N

L
IN

E
-A

O
P

P
O

O
N

L
IN

E
-Z

C
U

N
I-

T
R

A
N

S
F

O
R

M
E

R

N
IC

T-
K

Y
O

T
O

V
O

L
C

T
R

A
N

S

P
R

O
M

T-
N

M
T

T
IL

D
E

Z
L

A
B

S
-N

L
P

SRPOL - 0.03 0.04 0.04? 0.05 0.05? 0.08† 0.12† 0.13‡ 0.17‡ 0.17‡ 0.18‡ 0.20‡ 0.26‡
ONLINE-G -0.03 - 0.00 0.00 0.01 0.01 0.05 0.09? 0.10? 0.13† 0.14‡ 0.14‡ 0.17‡ 0.23‡
NICT-RUI -0.04 0.00 - 0.00 0.01 0.01 0.05? 0.09† 0.10† 0.13‡ 0.14‡ 0.14‡ 0.17‡ 0.23‡
ONLINE-B -0.04 0.00 0.00 - 0.01 0.01 0.04 0.09 0.10 0.13? 0.14† 0.14† 0.17‡ 0.22‡

SJTU-NICT -0.05 -0.01 -0.01 -0.01 - 0.00 0.04 0.08? 0.09† 0.12† 0.13‡ 0.13‡ 0.16‡ 0.22‡
ONLINE-A -0.05 -0.01 -0.01 -0.01 0.00 - 0.03 0.08 0.09? 0.12? 0.12† 0.13† 0.15‡ 0.21‡

OPPO -0.08 -0.05 -0.05 -0.04 -0.04 -0.03 - 0.04 0.05 0.09 0.09? 0.10? 0.12† 0.18‡
ONLINE-Z -0.12 -0.09 -0.09 -0.09 -0.08 -0.08 -0.04 - 0.01 0.04 0.05 0.05 0.08† 0.14†

CUNI-TRANSFORMER -0.13 -0.10 -0.10 -0.10 -0.09 -0.09 -0.05 -0.01 - 0.03 0.04 0.04 0.07? 0.13†
NICT-KYOTO -0.17 -0.13 -0.13 -0.13 -0.12 -0.12 -0.09 -0.04 -0.03 - 0.00 0.01 0.03 0.09?
VOLCTRANS -0.17 -0.14 -0.14 -0.14 -0.13 -0.12 -0.09 -0.05 -0.04 0.00 - 0.01 0.03 0.09

PROMT-NMT -0.18 -0.14 -0.14 -0.14 -0.13 -0.13 -0.10 -0.05 -0.04 -0.01 -0.01 - 0.02 0.08
TILDE -0.20 -0.17 -0.17 -0.17 -0.16 -0.15 -0.12 -0.08 -0.07 -0.03 -0.03 -0.02 - 0.06

ZLABS-NLP -0.26 -0.23 -0.23 -0.22 -0.22 -0.21 -0.18 -0.14 -0.13 -0.09 -0.09 -0.08 -0.06 -

score 0.13 0.10 0.10 0.09 0.09 0.08 0.05 0.01 -0.00 -0.04 -0.04 -0.05 -0.07 -0.13
rank 1–14 1–14 1–14 1–14 1–14 1–14 1–14 1–14 1–14 1–14 1–14 1–14 1–14 1–14

Table 38: Head to head comparison for Polish→English systems
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GTCOM - 0.00 0.03 0.03 0.05 0.09 0.20‡ 0.20‡ 0.22‡ 0.22‡ 0.27‡ 0.28‡ 0.60‡ 0.65‡
OPPO 0.00 - 0.03 0.03 0.05 0.09 0.20‡ 0.20‡ 0.22‡ 0.22‡ 0.27‡ 0.28‡ 0.60‡ 0.65‡

ONLINE-B -0.03 -0.03 - 0.00 0.03 0.06 0.17‡ 0.17‡ 0.19‡ 0.20† 0.24‡ 0.25‡ 0.57‡ 0.63‡
FACEBOOK-AI -0.03 -0.03 0.00 - 0.02 0.06? 0.17‡ 0.17‡ 0.19‡ 0.19‡ 0.24‡ 0.25‡ 0.57‡ 0.62‡

NIUTRANS -0.05 -0.05 -0.03 -0.02 - 0.03 0.14‡ 0.15† 0.17‡ 0.17‡ 0.22‡ 0.23‡ 0.55‡ 0.60‡
VOLCTRANS -0.09 -0.09 -0.06 -0.06 -0.03 - 0.11† 0.12† 0.13‡ 0.14† 0.18‡ 0.19‡ 0.51‡ 0.57‡

ONLINE-Z -0.20 -0.20 -0.17 -0.17 -0.14 -0.11 - 0.01 0.02 0.03 0.07 0.08 0.41‡ 0.46‡
ZLABS-NLP -0.20 -0.20 -0.17 -0.17 -0.15 -0.12 -0.01 - 0.02 0.02 0.07 0.08 0.40‡ 0.45‡

MICROSOFT-STC-INDIA -0.22 -0.22 -0.19 -0.19 -0.17 -0.13 -0.02 -0.02 - 0.00 0.05 0.06 0.38‡ 0.43‡
UEDIN -0.22 -0.22 -0.20 -0.19 -0.17 -0.14 -0.03 -0.02 0.00 - 0.05 0.06 0.38‡ 0.43‡

ONLINE-A -0.27 -0.27 -0.24 -0.24 -0.22 -0.18 -0.07 -0.07 -0.05 -0.05 - 0.01 0.33‡ 0.38‡
DCU -0.28 -0.28 -0.25 -0.25 -0.23 -0.19 -0.08 -0.08 -0.06 -0.06 -0.01 - 0.32‡ 0.37‡

ONLINE-G -0.60 -0.60 -0.57 -0.57 -0.55 -0.51 -0.41 -0.40 -0.38 -0.38 -0.33 -0.32 - 0.05?
TALP-UPC -0.65 -0.65 -0.63 -0.62 -0.60 -0.57 -0.46 -0.45 -0.43 -0.43 -0.38 -0.37 -0.05 -

score 0.20 0.20 0.18 0.17 0.15 0.12 0.01 0.00 -0.02 -0.02 -0.07 -0.08 -0.40 -0.45
rank 1–6 1–6 1–6 1–6 1–6 1–6 7–12 7–12 7–12 7–12 7–12 7–12 13 14

Table 39: Head to head comparison for Tamil→English systems
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NIUTRANS - 0.00 0.07? 0.07? 0.10† 0.10? 0.11† 0.11‡ 0.12† 0.16‡ 0.20‡
FACEBOOK-AI 0.00 - 0.07? 0.07? 0.10? 0.10? 0.11† 0.11‡ 0.12† 0.16‡ 0.20‡

CUNI-TRANSFER -0.07 -0.07 - 0.00 0.03 0.03 0.04 0.05 0.05 0.09? 0.13‡
GRONINGEN -0.07 -0.07 0.00 - 0.02 0.03 0.04 0.04 0.05 0.09? 0.13†

SRPOL -0.10 -0.10 -0.03 -0.02 - 0.01 0.02 0.02 0.02 0.07? 0.11†
HELSINKI -0.10 -0.10 -0.03 -0.03 -0.01 - 0.01 0.01 0.02 0.06? 0.10†

NRC -0.11 -0.11 -0.04 -0.04 -0.02 -0.01 - 0.00 0.01 0.05 0.09?
UEDIN -0.11 -0.11 -0.05 -0.04 -0.02 -0.01 0.00 - 0.01 0.05 0.09?

UQAM-TANLE -0.12 -0.12 -0.05 -0.05 -0.02 -0.02 -0.01 -0.01 - 0.04 0.08?
NICT-KYOTO -0.16 -0.16 -0.09 -0.09 -0.07 -0.06 -0.05 -0.05 -0.04 - 0.04

OPPO -0.20 -0.20 -0.13 -0.13 -0.11 -0.10 -0.09 -0.09 -0.08 -0.04 -

score 0.17 0.17 0.10 0.10 0.07 0.07 0.06 0.05 0.05 0.01 -0.04
rank 1–2 1–2 3–11 3–11 3–11 3–11 3–11 3–11 3–11 3–11 3–11

Table 40: Head to head comparison for Inuktitut→English systems
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ONLINE-B - 0.01 0.05? 0.14‡ 0.20‡ 0.23‡
GTCOM -0.01 - 0.04 0.13‡ 0.19‡ 0.22‡

HUAWEI-TSC -0.05 -0.04 - 0.09? 0.15‡ 0.18‡
VOLCTRANS -0.14 -0.13 -0.09 - 0.06? 0.09†

OPPO -0.20 -0.19 -0.15 -0.06 - 0.03
ONLINE-Z -0.23 -0.22 -0.18 -0.09 -0.03 -

score 0.03 0.02 -0.02 -0.11 -0.16 -0.20
rank 1–3 1–3 1–3 4 5–6 5–6

Table 41: Head to head comparison for Pashto→English systems
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ONLINE-B - 0.02 0.03 0.22‡ 0.38‡ 0.39‡ 0.45‡
GTCOM -0.02 - 0.01 0.19‡ 0.36‡ 0.37‡ 0.43‡

HUAWEI-TSC -0.03 -0.01 - 0.18‡ 0.35‡ 0.36‡ 0.42‡
VOLCTRANS -0.22 -0.19 -0.18 - 0.16‡ 0.18‡ 0.23‡

OPPO -0.38 -0.36 -0.35 -0.16 - 0.01 0.07
ONLINE-Z -0.39 -0.37 -0.36 -0.18 -0.01 - 0.06
ONLINE-G -0.45 -0.43 -0.42 -0.23 -0.07 -0.06 -

score 0.17 0.15 0.14 -0.05 -0.21 -0.22 -0.28
rank 1–3 1–3 1–3 4 5–7 5–7 5–7

Table 42: Head to head comparison for Khmer→English systems
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HUMAN-B - 0.04‡ 0.12‡ 0.15‡ 0.15‡ 0.16‡ 0.18‡ 0.19‡ 0.29‡ 0.33‡ 0.43‡ 0.43‡ 0.45‡ 0.49‡
HUMAN-A -0.04 - 0.08‡ 0.11‡ 0.11‡ 0.13‡ 0.14‡ 0.16‡ 0.25‡ 0.29‡ 0.39‡ 0.39‡ 0.41‡ 0.45‡

OPPO -0.12 -0.08 - 0.03‡ 0.03‡ 0.04‡ 0.06‡ 0.07‡ 0.16‡ 0.21‡ 0.31‡ 0.31‡ 0.32‡ 0.36‡
TENCENT-TRANSLATION -0.15 -0.11 -0.03 - 0.01 0.02 0.03? 0.05 0.14‡ 0.18‡ 0.28‡ 0.29‡ 0.30‡ 0.34‡

HUAWEI-TSC -0.15 -0.11 -0.03 -0.01 - 0.01 0.03? 0.04 0.13‡ 0.17‡ 0.28‡ 0.28‡ 0.29‡ 0.33‡
NIUTRANS -0.16 -0.13 -0.04 -0.02 -0.01 - 0.02 0.03 0.12‡ 0.16‡ 0.27‡ 0.27‡ 0.28‡ 0.32‡

SJTU-NICT -0.18 -0.14 -0.06 -0.03 -0.03 -0.02 - 0.01 0.10‡ 0.15‡ 0.25‡ 0.25‡ 0.27‡ 0.30‡
VOLCTRANS -0.19 -0.16 -0.07 -0.05 -0.04 -0.03 -0.01 - 0.09‡ 0.13‡ 0.24‡ 0.24‡ 0.25‡ 0.29‡

ONLINE-B -0.29 -0.25 -0.16 -0.14 -0.13 -0.12 -0.10 -0.09 - 0.04‡ 0.15‡ 0.15‡ 0.16‡ 0.20‡
ONLINE-A -0.33 -0.29 -0.21 -0.18 -0.17 -0.16 -0.15 -0.13 -0.04 - 0.11‡ 0.11‡ 0.12‡ 0.16‡

DONG-NMT -0.43 -0.39 -0.31 -0.28 -0.28 -0.27 -0.25 -0.24 -0.15 -0.11 - 0.00 0.01 0.05†
ONLINE-Z -0.43 -0.39 -0.31 -0.29 -0.28 -0.27 -0.25 -0.24 -0.15 -0.11 0.00 - 0.01 0.05?
ONLINE-G -0.45 -0.41 -0.32 -0.30 -0.29 -0.28 -0.27 -0.25 -0.16 -0.12 -0.01 -0.01 - 0.04?

ZLABS-NLP -0.49 -0.45 -0.36 -0.34 -0.33 -0.32 -0.30 -0.29 -0.20 -0.16 -0.05 -0.05 -0.04 -

score 0.57 0.53 0.45 0.42 0.41 0.40 0.39 0.37 0.28 0.24 0.14 0.14 0.12 0.08
rank 1 2 3 4–8 4–8 4–8 4–8 4–8 9 10 11–13 11–13 11–13 14

Table 43: Head to head comparison for English→Chinese systems
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HUMAN - 0.11‡ 0.12‡ 0.15‡ 0.20‡ 0.21‡ 0.22‡ 0.33‡ 0.61‡ 0.64‡ 0.65‡ 0.87‡ 1.41‡
CUNI-DOCTRANSFORMER -0.11 - 0.01 0.04† 0.09‡ 0.11‡ 0.11‡ 0.22‡ 0.50‡ 0.53‡ 0.54‡ 0.76‡ 1.31‡

OPPO -0.12 -0.01 - 0.03? 0.08‡ 0.10‡ 0.10‡ 0.22‡ 0.49‡ 0.52‡ 0.53‡ 0.75‡ 1.30‡
SRPOL -0.15 -0.04 -0.03 - 0.05? 0.06‡ 0.07† 0.18‡ 0.46‡ 0.49‡ 0.50‡ 0.72‡ 1.26‡

CUNI-T2T-2018 -0.20 -0.09 -0.08 -0.05 - 0.02 0.02 0.14‡ 0.41‡ 0.44‡ 0.45‡ 0.67‡ 1.22‡
ETRANSLATION -0.21 -0.11 -0.10 -0.06 -0.02 - 0.01 0.12‡ 0.39‡ 0.42‡ 0.43‡ 0.66 ‡ 1.20‡

CUNI-TRANSFORMER -0.22 -0.11 -0.10 -0.07 -0.02 -0.01 - 0.11‡ 0.39‡ 0.42‡ 0.43‡ 0.65‡ 1.19‡
UEDIN-CUNI -0.33 -0.22 -0.22 -0.18 -0.14 -0.12 -0.11 - 0.27‡ 0.30‡ 0.31‡ 0.54‡ 1.08‡

ONLINE-B -0.61 -0.50 -0.49 -0.46 -0.41 -0.39 -0.39 -0.27 - 0.03 0.04 0.26‡ 0.81‡
ONLINE-Z -0.64 -0.53 -0.52 -0.49 -0.44 -0.42 -0.42 -0.30 -0.03 - 0.01 0.23‡ 0.78‡
ONLINE-A -0.65 -0.54 -0.53 -0.50 -0.45 -0.43 -0.43 -0.31 -0.04 -0.01 - 0.22‡ 0.77‡
ONLINE-G -0.87 -0.76 -0.75 -0.72 -0.67 -0.66 -0.65 -0.54 -0.26 -0.23 -0.22 - 0.54‡

ZLABS-NLP -1.41 -1.31 -1.30 -1.26 -1.22 -1.20 -1.19 -1.08 -0.81 -0.78 -0.77 -0.54 -

score 0.65 0.55 0.54 0.51 0.46 0.44 0.43 0.32 0.05 0.02 0.01 -0.22 -0.76
rank 1 2–3 2–3 4 5–7 5–7 5–7 8 9–11 9–11 9–11 12 13

Table 44: Head to head comparison for English→Czech systems
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HUMAN-B - 0.07? 0.10‡ 0.12? 0.15‡ 0.18‡ 0.24‡ 0.25‡ 0.26‡ 0.27‡ 0.31‡ 0.32‡ 0.32‡ 0.44‡ 0.69‡ 0.85‡ 0.91‡
OPPO -0.07 - 0.03 0.05 0.08? 0.11‡ 0.17‡ 0.17‡ 0.18‡ 0.20‡ 0.24‡ 0.24‡ 0.25‡ 0.37‡ 0.61‡ 0.77‡ 0.83‡

TOHOKU-AIP-NTT -0.10 -0.03 - 0.02 0.05 0.08? 0.14‡ 0.15‡ 0.16‡ 0.17‡ 0.21‡ 0.22‡ 0.22‡ 0.34‡ 0.59‡ 0.75‡ 0.81‡
HUMAN-A -0.12 -0.05 -0.02 - 0.03? 0.06† 0.12‡ 0.12‡ 0.13‡ 0.15‡ 0.19‡ 0.19‡ 0.20‡ 0.32‡ 0.57‡ 0.72‡ 0.78‡

ONLINE-B -0.15 -0.08 -0.05 -0.03 - 0.03 0.09‡ 0.09‡ 0.10‡ 0.12‡ 0.16‡ 0.17‡ 0.17‡ 0.29‡ 0.54‡ 0.69‡ 0.75‡
TENCENT-TRANSLATION -0.18 -0.11 -0.08 -0.06 -0.03 - 0.06‡ 0.06‡ 0.07† 0.09‡ 0.12‡ 0.13‡ 0.14‡ 0.26‡ 0.50‡ 0.66‡ 0.72‡

VOLCTRANS -0.24 -0.17 -0.14 -0.12 -0.09 -0.06 - 0.00 0.01 0.03 0.07 0.08† 0.08† 0.20‡ 0.45‡ 0.60‡ 0.66‡
ONLINE-A -0.25 -0.17 -0.15 -0.12 -0.09 -0.06 0.00 - 0.01 0.02 0.06 0.07† 0.08† 0.20‡ 0.44‡ 0.60‡ 0.66‡

ETRANSLATION -0.26 -0.18 -0.16 -0.13 -0.10 -0.07 -0.01 -0.01 - 0.01 0.05 0.06† 0.06‡ 0.19‡ 0.43‡ 0.59‡ 0.65‡
HUMAN-C -0.27 -0.20 -0.17 -0.15 -0.12 -0.09 -0.03 -0.02 -0.01 - 0.04 0.05? 0.05? 0.17‡ 0.42‡ 0.58‡ 0.64‡

AFRL -0.31 -0.24 -0.21 -0.19 -0.16 -0.12 -0.07 -0.06 -0.05 -0.04 - 0.01 0.01? 0.13‡ 0.38‡ 0.54‡ 0.60‡
UEDIN -0.32 -0.24 -0.22 -0.19 -0.17 -0.13 -0.08 -0.07 -0.06 -0.05 -0.01 - 0.00 0.13† 0.37‡ 0.53‡ 0.59‡

PROMT-NMT -0.32 -0.25 -0.22 -0.20 -0.17 -0.14 -0.08 -0.08 -0.06 -0.05 -0.01 0.00 - 0.12‡ 0.37‡ 0.53‡ 0.59‡
ONLINE-Z -0.44 -0.37 -0.34 -0.32 -0.29 -0.26 -0.20 -0.20 -0.19 -0.17 -0.13 -0.13 -0.12 - 0.25‡ 0.40‡ 0.46‡
ONLINE-G -0.69 -0.61 -0.59 -0.57 -0.54 -0.50 -0.45 -0.44 -0.43 -0.42 -0.38 -0.37 -0.37 -0.25 - 0.16 0.22†

ZLABS-NLP -0.85 -0.77 -0.75 -0.72 -0.69 -0.66 -0.60 -0.60 -0.59 -0.58 -0.54 -0.53 -0.53 -0.40 -0.16 - 0.06
WMTBIOMEDBASELINE -0.91 -0.83 -0.81 -0.78 -0.75 -0.72 -0.66 -0.66 -0.65 -0.64 -0.60 -0.59 -0.59 -0.46 -0.22 -0.06 -

score 0.57 0.49 0.47 0.45 0.42 0.39 0.33 0.32 0.31 0.30 0.26 0.25 0.25 0.13 -0.12 -0.28 -0.34
rank 1 2–6 2–6 2–6 2–6 2–6 7–13 7–13 7–13 7–13 7–13 7–13 7–13 14 15–17 15–17 15–17

Table 45: Head to head comparison for English→German systems
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HUMAN - 0.15 0.17† 0.21‡ 0.21‡ 0.21† 0.24‡ 0.28‡ 0.29‡ 0.49‡ 0.49‡ 0.96‡
MULTILINGUAL-UBIQUS -0.15 - 0.02? 0.06‡ 0.06‡ 0.06? 0.09‡ 0.13‡ 0.14‡ 0.34‡ 0.34‡ 0.81‡

CUNI-TRANSFER -0.17 -0.02 - 0.04† 0.04 0.04 0.07† 0.11‡ 0.13‡ 0.32‡ 0.33‡ 0.79‡
NRC -0.21 -0.06 -0.04 - 0.00 0.01 0.03 0.07 0.09 0.29‡ 0.29‡ 0.75‡

FACEBOOK-AI -0.21 -0.06 -0.04 0.00 - 0.00 0.03 0.07† 0.09† 0.28‡ 0.29‡ 0.75‡
NICT-KYOTO -0.21 -0.06 -0.04 -0.01† 0.00 - 0.02† 0.07‡ 0.08‡ 0.28‡ 0.28‡ 0.75‡

GRONINGEN -0.24 -0.09 -0.07 -0.03 -0.03 -0.02 - 0.04 0.06 0.26‡ 0.26‡ 0.72‡
HELSINKI -0.28 -0.13 -0.11 -0.07 -0.07 -0.07 -0.04 - 0.01 0.21‡ 0.21‡ 0.68‡

SRPOL -0.29 -0.14 -0.13 -0.09 -0.09 -0.08 -0.06 -0.01 - 0.20‡ 0.20‡ 0.67‡
UQAM-TANLE -0.49 -0.34 -0.32 -0.29 -0.28 -0.28 -0.26 -0.21 -0.20 - 0.00 0.47‡

UEDIN -0.49 -0.34 -0.33 -0.29 -0.29 -0.28 -0.26 -0.21 -0.20 0.00 - 0.47‡
OPPO -0.96 -0.81 -0.79 -0.75 -0.75 -0.75 -0.72 -0.68 -0.67 -0.47 -0.47 -

score 0.57 0.42 0.41 0.37 0.37 0.36 0.34 0.30 0.28 0.08 0.08 -0.38
rank 1–2 1–2 3–9 3–9 3–9 3–9 3–9 3–9 3–9 10–11 10–11 12

Table 46: Head to head comparison for English→Inuktitut systems
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HUMAN - 0.07† 0.08† 0.08† 0.08† 0.20‡ 0.23‡ 0.24‡ 0.42‡ 0.54‡ 0.71‡ 0.74‡
NIUTRANS -0.07 - 0.01 0.01 0.01 0.13‡ 0.15‡ 0.17‡ 0.34‡ 0.47‡ 0.63‡ 0.67‡

TOHOKU-AIP-NTT -0.08 -0.01 - 0.00 0.00 0.12‡ 0.15‡ 0.16‡ 0.34‡ 0.46‡ 0.63‡ 0.66‡
OPPO -0.08 -0.01 0.00 - 0.00 0.12‡ 0.15‡ 0.16‡ 0.34‡ 0.46‡ 0.63‡ 0.66‡

ENMT -0.08 -0.01 0.00 0.00 - 0.12‡ 0.14‡ 0.16‡ 0.33‡ 0.46‡ 0.62‡ 0.66‡
NICT-KYOTO -0.20 -0.13 -0.12 -0.12 -0.12 - 0.03 0.04? 0.22‡ 0.34‡ 0.51‡ 0.54‡

ONLINE-A -0.23 -0.15 -0.15 -0.15 -0.14 -0.03 - 0.01 0.19‡ 0.32‡ 0.48‡ 0.51‡
ONLINE-B -0.24 -0.17 -0.16 -0.16 -0.16 -0.04 -0.01 - 0.18‡ 0.30‡ 0.47‡ 0.50‡

ZLABS-NLP -0.42 -0.34 -0.34 -0.34 -0.33 -0.22 -0.19 -0.18 - 0.13‡ 0.29‡ 0.32‡
ONLINE-Z -0.54 -0.47 -0.46 -0.46 -0.46 -0.34 -0.32 -0.30 -0.13 - 0.16‡ 0.20‡

SJTU-NICT -0.71 -0.63 -0.63 -0.63 -0.62 -0.51 -0.48 -0.47 -0.29 -0.16 - 0.03
ONLINE-G -0.74 -0.67 -0.66 -0.66 -0.66 -0.54 -0.51 -0.50 -0.32 -0.20 -0.03 -

score 0.58 0.50 0.50 0.50 0.49 0.38 0.35 0.34 0.16 0.03 -0.13 -0.16
rank 1 2–5 2–5 2–5 2–5 6–8 6–8 6–8 9 10 11–12 11–12

Table 47: Head to head comparison for English→Japanese systems
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HUMAN - 0.18‡ 0.24‡ 0.29‡ 0.32‡ 0.36‡ 0.36‡ 0.37‡ 0.40‡ 0.42‡ 0.44‡ 0.45‡ 0.58‡ 0.73‡ 1.21‡
SRPOL -0.18 - 0.06? 0.11† 0.14‡ 0.18‡ 0.18‡ 0.19‡ 0.22‡ 0.24‡ 0.26‡ 0.27‡ 0.40‡ 0.55‡ 1.03‡

ETRANSLATION -0.24 -0.06 - 0.05 0.09† 0.12† 0.12‡ 0.14† 0.16‡ 0.18‡ 0.20‡ 0.22‡ 0.34‡ 0.49‡ 0.97‡
VOLCTRANS -0.29 -0.11 -0.05 - 0.03 0.07 0.07‡ 0.08 0.11‡ 0.13† 0.15‡ 0.16‡ 0.29‡ 0.44‡ 0.92‡

TILDE -0.32 -0.14 -0.09 -0.03 - 0.03 0.04? 0.05 0.08? 0.09 0.11‡ 0.13‡ 0.25‡ 0.41‡ 0.89‡
ONLINE-G -0.36 -0.18 -0.12 -0.07 -0.03 - 0.01 0.02 0.04 0.06 0.08† 0.10† 0.22‡ 0.38‡ 0.85‡

OPPO -0.36 -0.18 -0.12 -0.07 -0.04 -0.01 - 0.01 0.04 0.06 0.07? 0.09? 0.21‡ 0.37‡ 0.85‡
NICT-KYOTO -0.37 -0.19 -0.14 -0.08 -0.05 -0.02 -0.01? - 0.03? 0.04 0.06‡ 0.08‡ 0.20‡ 0.36‡ 0.84‡

TILDE -0.40 -0.22 -0.16 -0.11 -0.08 -0.04 -0.04 -0.03 - 0.02 0.04 0.05 0.18‡ 0.33‡ 0.81‡
CUNI-TRANSFORMER -0.42 -0.24 -0.18 -0.13 -0.09 -0.06 -0.06 -0.04 -0.02 - 0.02? 0.04? 0.16‡ 0.31‡ 0.79‡

ONLINE-B -0.44 -0.26 -0.20 -0.15 -0.11 -0.08 -0.07 -0.06 -0.04 -0.02 - 0.02 0.14‡ 0.30‡ 0.77‡
SJTU-NICT -0.45 -0.27 -0.22 -0.16 -0.13 -0.10 -0.09 -0.08 -0.05 -0.04 -0.02 - 0.12† 0.28‡ 0.76‡

ONLINE-A -0.58 -0.40 -0.34 -0.29 -0.25 -0.22 -0.21 -0.20 -0.18 -0.16 -0.14 -0.12 - 0.16‡ 0.63‡
ONLINE-Z -0.73 -0.55 -0.49 -0.44 -0.41 -0.38 -0.37 -0.36 -0.33 -0.31 -0.30 -0.28 -0.16 - 0.48‡

ZLABS-NLP -1.21 -1.03 -0.97 -0.92 -0.89 -0.85 -0.85 -0.84 -0.81 -0.79 -0.77 -0.76 -0.63 -0.48 -

score 0.67 0.49 0.43 0.38 0.35 0.32 0.31 0.30 0.27 0.26 0.24 0.22 0.10 -0.06 -0.54
rank 1 2 3–8 3–8 3–8 3–8 3–8 3–8 9–10 9–10 11–12 11–12 13 14 15

Table 48: Head to head comparison for English→Polish systems
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HUMAN - 0.21‡ 0.22‡ 0.28‡ 0.35‡ 0.43‡ 0.46‡ 0.60‡ 0.65‡ 0.67‡
ONLINE-G -0.21 - 0.01 0.06? 0.13‡ 0.22‡ 0.25‡ 0.39‡ 0.43‡ 0.46‡

OPPO -0.22 -0.01 - 0.06 0.13‡ 0.21‡ 0.24‡ 0.38‡ 0.43‡ 0.45‡
ARIEL XV -0.28 -0.06 -0.06 - 0.07† 0.15‡ 0.18‡ 0.32‡ 0.37‡ 0.39‡

ONLINE-B -0.35 -0.13 -0.13 -0.07 - 0.08† 0.11‡ 0.25‡ 0.30‡ 0.32‡
PROMT-NMT -0.43 -0.22 -0.21 -0.15 -0.08 - 0.03? 0.17‡ 0.22‡ 0.24‡

DIDI-NLP -0.46 -0.25 -0.24 -0.18 -0.11 -0.03 - 0.14‡ 0.19‡ 0.21‡
ONLINE-A -0.60 -0.39 -0.38 -0.32 -0.25 -0.17 -0.14 - 0.05 0.07†

ZLABS-NLP -0.65 -0.43 -0.43 -0.37 -0.30 -0.22 -0.19 -0.05 - 0.02
ONLINE-Z -0.67 -0.46 -0.45 -0.39 -0.32 -0.24 -0.21 -0.07 -0.02 -

score 0.68 0.47 0.46 0.40 0.34 0.25 0.22 0.08 0.04 0.01
rank 1 2–4 2–4 2–4 5 6 7 8–10 8–10 8–10

Table 49: Head to head comparison for English→Russian systems
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HUMAN - 0.10‡ 0.25‡ 0.27‡ 0.28‡ 0.31‡ 0.34‡ 0.44‡ 0.45‡ 0.47‡ 0.53‡ 0.61‡ 0.77‡ 1.17‡ 1.48‡ 1.58‡
FACEBOOK-AI -0.10 - 0.15‡ 0.17‡ 0.18‡ 0.21‡ 0.24‡ 0.34‡ 0.36‡ 0.37‡ 0.43‡ 0.51‡ 0.67‡ 1.07‡ 1.38‡ 1.48‡

GTCOM -0.25 -0.15 - 0.02 0.03 0.06 0.09 0.19‡ 0.21‡ 0.22‡ 0.28‡ 0.36‡ 0.52‡ 0.92‡ 1.23‡ 1.33‡
ONLINE-B -0.27 -0.17 -0.02 - 0.01 0.03 0.07 0.17‡ 0.18‡ 0.19‡ 0.26‡ 0.34‡ 0.50‡ 0.90‡ 1.21‡ 1.31‡

OPPO -0.28 -0.18 -0.03 -0.01 - 0.02 0.06 0.15‡ 0.17‡ 0.18‡ 0.25‡ 0.33‡ 0.49‡ 0.89‡ 1.20‡ 1.30‡
ONLINE-A -0.31 -0.21 -0.06 -0.03 -0.02 - 0.03 0.13‡ 0.15† 0.16‡ 0.23‡ 0.30‡ 0.46‡ 0.86‡ 1.17‡ 1.28‡

VOLCTRANS -0.34 -0.24 -0.09 -0.07 -0.06 -0.03 - 0.10‡ 0.12? 0.13† 0.19‡ 0.27‡ 0.43‡ 0.83‡ 1.14‡ 1.24‡
ONLINE-Z -0.44 -0.34 -0.19 -0.17 -0.15 -0.13 -0.10 - 0.02 0.03 0.09 0.17? 0.33‡ 0.73‡ 1.04‡ 1.15‡

ZLABS-NLP -0.45 -0.36 -0.21 -0.18 -0.17 -0.15 -0.12 -0.02 - 0.01 0.08 0.15† 0.31‡ 0.71‡ 1.02‡ 1.13‡
MICROSOFT-STC-INDIA -0.47 -0.37 -0.22 -0.19 -0.18 -0.16 -0.13 -0.03 -0.01 - 0.07 0.14? 0.30‡ 0.70‡ 1.01‡ 1.12‡

UEDIN -0.53 -0.43 -0.28 -0.26 -0.25 -0.23 -0.19 -0.09 -0.08 -0.07 - 0.08 0.24‡ 0.64‡ 0.95‡ 1.05‡
GRONINGEN -0.61 -0.51 -0.36 -0.34 -0.33 -0.30 -0.27 -0.17 -0.15 -0.14 -0.08 - 0.16‡ 0.56‡ 0.87‡ 0.97‡

DCU -0.77 -0.67 -0.52 -0.50 -0.49 -0.46 -0.43 -0.33 -0.31 -0.30 -0.24 -0.16 - 0.40‡ 0.71‡ 0.81‡
TALP-UPC -1.17 -1.07 -0.92 -0.90 -0.89 -0.86 -0.83 -0.73 -0.71 -0.70 -0.64 -0.56 -0.40 - 0.31‡ 0.41‡

ONLINE-G -1.48 -1.38 -1.23 -1.21 -1.20 -1.17 -1.14 -1.04 -1.02 -1.01 -0.95 -0.87 -0.71 -0.31 - 0.10?
SJTU-NICT -1.58 -1.48 -1.33 -1.31 -1.30 -1.28 -1.24 -1.15 -1.13 -1.12 -1.05 -0.97 -0.81 -0.41 -0.10 -

score 0.76 0.66 0.51 0.49 0.48 0.46 0.42 0.33 0.31 0.30 0.23 0.15 -0.01 -0.41 -0.72 -0.82
rank 1 2 3–7 3–7 3–7 3–7 3–7 8–12 8–12 8–12 8–12 8–12 13 14 15 16

Table 50: Head to head comparison for English→Tamil systems
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B Translator Brief: Sentence-Split News Test Sets

Translator Brief 
In this project we wish to translate online news articles for use in evaluation of Machine 
Translation (MT). The translations produced by you will be compared against the translations 
produced by a variety of different MT systems.  They will be released to the research 
community to provide a benchmark, or “gold-standard” measure for translation quality. The 
translation therefore needs to be a high-quality rendering of the source text into the target 
language, as if it was news written directly in the target language. However there are some 
constraints imposed by the intended usage: 

● All translations should be “from scratch”, without post-editing from MT. Using 
post-editing would bias the evaluation, so we need to avoid it. We can detect 
post-editing so will reject translations that are post-edited.  

● Translation should preserve the sentence boundaries.  The source texts are 
provided with exactly one sentence per line, and the translations should be the same, 
one sentence per line. 

● Translators should avoid inserting parenthetical explanations into the translated 
text and obviously avoid losing any pieces of information from the source text. 

We will check a sample of the translations for quality, and we will check the entire set for 
evidence of post-editing.  
 
The source files will be delivered as text files (sometimes known as “notepad” files), with one 
sentence per line. We need the translations to be returned in the same format. If you prefer 
to receive the text in a different format, then please let us know as we may be able to 
accommodate it.  
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C Translator Brief: Paragraph-Split News Test Sets

Translator Brief 
In this project we wish to translate online news articles for use in evaluation of Machine 
Translation (MT). The translations produced by you will be compared against the translations 
produced by a variety of different MT systems.  They will be released to the research 
community to provide a benchmark, or “gold-standard” measure for translation quality. The 
translation therefore needs to be a high-quality rendering of the source text into the target 
language, as if it was news written directly in the target language. However there are some 
constraints imposed by the intended usage: 

● All translations should be “from scratch”, without post-editing from MT. Using 
post-editing would bias the evaluation, so we need to avoid it. We can detect 
post-editing so will reject translations that are post-edited.  

● Translation should preserve paragraph or newline boundaries and blank lines.  
The source texts are formatted as short paragraphs separated by blank lines. We 
need this formatting preserved so that we can align the sources and translations. 

● Translators should avoid inserting parenthetical explanations into the translated 
text and obviously avoid losing any pieces of information from the source text. 

We will check a sample of the translations for quality, and we will check the entire set for 
evidence of post-editing.  
 
The source files will be delivered as text files (sometimes known as “notepad” files). We 
need the translations to be returned in the same format, ideally with utf8 encoding. If you 
prefer to receive the text in a different format, then please let us know as we may be able to 
accommodate it.  
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Universitat Politècnica de Catalunya
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Abstract

A lifelong learning system can adapt to new
data without forgetting previously acquired
knowledge. In this paper, we introduce the
first benchmark for lifelong learning machine
translation. For this purpose, we provide train-
ing, lifelong and test data sets for two language
pairs: English-German and English-French.
Additionally, we report the results of our base-
line systems, which we make available to the
public. The goal of this shared task is to en-
courage research on the emerging topic of life-
long learning machine translation.

1 Introduction

Lifelong learning can be defined as the ability to
continually acquire new and retain previous knowl-
edge. This ability characterizes humankind, but
it is also reflected in several artificial intelligence
systems (Parisi et al., 2019; Biesialska et al., 2020).
There are many challenges that have to be solved
in order to achieve this goal of continual adapta-
tion, among which catastrophic forgetting (French,
1999) seems to be the most relevant.

Lifelong learning is very useful in the area of ma-
chine translation (MT), as it allows MT systems to
adapt to new vocabularies and topics, and produce
accurate translations across time. Currently, there
are no previous works that systematically try to
solve the problem. This may be due to the lack of
a benchmark to address the challenge (Biesialska
et al., 2020).

In this context, the main goal of the shared task
on lifelong learning for MT is to develop systems
that can self-adapt relying solely on domain expert
data and are then freed from the necessity of ma-
chine learning expertise. What is more, this shared
task also allows to investigate several MT research
directions, such as: the continuous training/adapta-
tion techniques; the preparation of additional pub-

licly available corpora and evaluation sets; the ac-
tive learning methods via a controlled simulated
environment; the unsupervised adaptation of MT
systems; the document-level approaches and the
development and evaluation of MT systems across
time.

2 Related work and tasks

As mentioned in the introduction, there are not re-
ally any works in MT properly evaluating lifelong
learning systems. However, there is a long his-
tory of studies in related tasks that are useful for
addressing the lifelong learning objective.

Domain adaptation is based on the premise that
the system can adapt to a target domain known in
advance. This has been widely studied earlier for
statistical MT e.g. (Koehn and Schroeder, 2007)
and, more recently, for neural MT e.g. (Luong and
Manning, 2015)).

Instance-based adaptation exploits similarity
between training and inference instances (Li et al.,
2018), also in unsupervised scenarios (Farajian
et al., 2017). These studies have even led to the
creation of adaptive MT commercial toolkits (Fed-
erico, 2018). Importantly, in this task there is no
target domain data available.

Unsupervised learning focuses on using mono-
lingual corpora to train the translation system, with-
out relying on any parallel corpora (Artetxe et al.,
2018; Lample et al., 2018).

Active learning aims at selecting the most useful
source sentences from a monolingual set and query
their translation. This selection needs to minimize
the post-edited cost and maximize the improvement
of a finetuned model (Liu et al., 2018).

Interactive learning relies on a joint collabora-
tion between a human and an MT system to obtain
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high-quality translations while reducing the human
effort in the process (Peris et al., 2016).

Our lifelong learning setting differs from both
domain and instance-based adaptation, as it de-
pends on the target data (called the lifelong data).
The lifelong data set, unlike the training data, is
unsupervised. Therefore, it is advisable to use tech-
niques such as unsupervised learning, active learn-
ing, or interactive learning to approach the task.

3 Overview of the system and
environment

The toolchain developed to evaluate the au-
tonomous systems is described in Figure 1. It is
made of four parts:

• the input datasets (purple on Figure 1), see
section 3.1;

• the four blocks of the system (green on Fig-
ure 1 to be modified to include your own sys-
tem), see appendix A for more details;

• the user simulation (orange on Figure 1), see
section A.5;

• the evaluation blocks (blue on Figure 1), see
section 3.2

Note that input datasets, user simulation and eval-
uation blocks are fixed and guarantee the repro-
ducibility of the experiments. Participants are free
to edit the four blocks of the system in order to in-
clude their own code. Once your code is included
in this toolchain, the system will run automatically
and the BEAT platform is responsible for manag-
ing the data exchanges between the different blocks
of the architecture. Thus, you don’t need to take
care about the communication between blocks, es-
pecially, the interaction between the system and the
user simulation is automatic.

3.1 Datasets
Two different datasets are available: the training
data and what we called lifelong data. The train-
ing data is used to train the preprocessing system
(eventually) and the initial system in a supervised
way. Source text along with the translation of all
documents included in this set are available at any
time during the lifelong MT process. Note that
no development data is provided, meaning that it
is up to the participants to decide how to split the
training data into train and development (if one is
needed).

This year, we used the Europarl and NewsCom-
mentary corpora as training data as they have docu-
ment information along with their production dates.
This represents between 50M and 58.6M words per
language depending on the considered language
pair (see details in Table 1).

The lifelong data is available in a sequential
manner: each document is processed one after the
other to simulate the process along time. This data
is unsupervised, meaning that no reference trans-
lation is provided (they correspond to the data to
translate every day). The system has to provide
translations for those documents that will be evalu-
ated.

We used the WMT14 English to French and En-
glish to German corpus as lifelong learning data.
While this allows for comparison with systems that
participated in WMT14 News translation shared
task, one must keep in mind that the training data
is much smaller than what was available for the
shared task at the time. The aim here is to demon-
strate the effectiveness of the continuous adaptation
when compared to a baseline system that does not
evolve (lower bound) and the best supervised sys-
tem (retrained with all available data). In the future,
we will extend the lifelong learning data to include
that from 2014 up to the most recent one.

Training data (from 01.01.1996 to 31.12.2013)
English French English German

#Documents 15218 15472
#Segments 2308516 2246090
#Words 55.6M 58.6M 53.6M 50.4M

Lifelong data (newstest2014)
English French English German

#Documents 176 164
#Segments 3003 3003
#Words 62.3k 69.6k 59.3k 55.1k

Table 1: Statistics of the newstest2014 English-French
and English-German corpora.

3.2 Evaluation
The evaluation is performed in the mt evaluation
and BLEU collate blocks. The first block is aimed
at collecting scoring statistics for the document
being currently processed. In our case, it will cor-
respond to the BLEU modified n-gram precisions.
The second block will aggregate those statistics
along with the penalisation in order to provide a
final score for the system.

Each time the user simulation is asked for help,
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Figure 1: Flowchart of the lifelong learning MT system running on the BEAT platform.

a penalisation is calculated based o the request.
The final penalised score Spen corresponds to the
following score:

Spen = Sadapt + (Simp − Scor)

with Sadapt being the score of the adapted system
and Simp and Scor are the scores of this system
where all sentences requested to the user simulation
are considered entirely wrong and correct, respec-
tively. Note that in the case of BLEU, the brevity
penalty is not impacted by this calculation, only
the correct n-gram counts will be decreased propor-
tionally to the sentence requested for translation.
For more details, see (Prokopalo et al., 2020).

4 Baseline systems

Integrating an NMT system in the BEAT platform
requires to rethink the code so that everything is
done in memory. We chose to use the nmtpy-
torch toolkit to implement the baseline systems
(Caglayan et al., 2017).

Our baseline systems consists of a 2-layer bidi-
rectionnal GRU (Cho et al., 2014) encoder and a
2-layer Conditional GRU decoder (Sennrich et al.,
2017) equipped with an attention mechanism (Bah-
danau et al., 2014) as implemented in nmtpytorch.

Given a source sequence of embeddings
X={x1, . . . , xS} and a target sequence of embed-
dings Y={y1, . . . , yT }, the bidirectional encoder
first computes the sequence of annotations corre-
sponding to the concatenation of the hidden states
of the two GRU A={a1, . . . , aS}. At a given
timestep t of decoding, the output layer estimates

the probability of the next target word yt as follows:

dt = GRU(yt−1, d′t−1)

ct = Attention(A, query← dt) (1)

d′t = GRU′(ct, dt)

ot = tanh(Wcct +Wdd
′
t +Wyyt−1)

lt = Wo(Wbot + bb) + bo

P (yt|X,Y<t) = softmax(lt)

For a single training sample, we then maximise the
joint likelihood of source and target sentences:

L(X,Y ) =
T∑

t=1

log (P (yt|X,Y<t)) (2)

5 Adaptation techniques

The first adaptation technique used is rather simple.
It consists of selecting N sentences from training
data that are the closest to the sentences in the
document. The chosen similarity metric is the co-
sine between sentence embeddings obtained by a
simple average of word embeddings, as described
in (Arora et al., 2017). This data is then used to
finetune the initial model for maximum 10 epochs
with a learning rate of 0.00004, which is ten times
smaller than during initial training of the model.

Furthermore, we employed an active learning
strategy as an adaptation method. In principle,
there are two steps involved. Firstly, the model
provides a translation for each document from the
lifelong learning corpus. As the lifelong learning
data are unsupervised; therefore, a quality estima-
tion (QE) technique is used to evaluate the qual-
ity of the translations without any access to a ref-
erence translation. Every document is evaluated
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using sentence-level HTER scores (Specia et al.,
2018). Secondly, an OpenKiwi QE model (Kepler
et al., 2019) is used to rank the sentences according
to their quality, and those with the worst HTER
score are sent to the user simulation (active learn-
ing), which provides the correct translation of the
selected sentences. This process implies the penali-
sation of the BLEU score as explained in Section 3.

6 Experimental setup

The dimensions of embeddings and GRU hidden
states are set to 128 and 256, respectively. The
embeddings are shared in the decoder (Press and
Wolf, 2017). We use ADAM (Kingma and Ba,
2014) as the optimiser and set the learning rate
and mini-batch size to 0.0004 and 64, respectively.
Regularisation is done by means of a weight decay
of 1e−5 and the use of dropout on the embeddings,
the source context and the output (set at 0.4) (Sri-
vastava et al., 2014). We clip the gradients if the
norm of the full parameter vector exceeds 1 (Pas-
canu et al., 2013).

The data is processed by a joint BPE model with
30k merge operations (Sennrich et al., 2016a). This
leads to respectively 20.7k and 25.1k units for En-
glish and French and 17.2k and 26.5k units for
English and German, respectively.

We train each model for a maximum of 100
epochs and early stop the training if validation
BLEU (Papineni et al., 2002) does not improve
for 10 epochs (Figure 2). We also halve the learn-
ing rate if no improvement is obtained for three
epochs. The number of learnable parameters is
around 8.7M for En-Fr and 8.5M for En-De.

Figure 2: Training loss and BLEU scores for the
English→German MT system.

7 Results

The results of the baseline systems and the adapted
ones can be found in Table 2.

English→French English→German

Baseline
SHEFFIELD 25.7 15.6
UPC 26.2 14.7

Data selection + finetuning
SHEFFIELD 26.4 15.5
UPC 26.4 15.1

Table 2: BLEU scores on the newstest2014
English→French and English→German.

Results show that a simple data selection method
along with finetuning can provide a small improve-
ment of the system’s performance for English to
French. German is known to be a more complicated
language, as demonstrated by the lower results and
the inefficient effect of the adaptation method.

8 Discussion and next year evaluation

We can see that the task, given the very constrained
data is very hard. A simple comparison with the re-
sults of the systems that participated in the WMT14
News translation task shows more than 10 BLEU
points difference. We insist on the fact that the
main goal of the challenge is to provide new meth-
ods to incrementally adapt the model to incoming
documents. Without loss of generality, it is very
probable that even with a better baseline system
(trained on more data), the adapted models would
exhibit a similar improvement.

Many questions and challenges remain open as
to how lifelong learning for MT should be imple-
mented. Next year, we ought to push further the
evaluation by improving the QE model in order to
better select the sentences to be sent to the user
Simulation (Active Learning module). Hence, this
will require to reconsider how the systems are eval-
uated. This year, we introduced a way of penalising
the systems but without corresponding results.

We hope to have more participants bringing new
ideas either by using the current baseline models
(and avoiding the integration burden) or by inte-
grating their own systems into the platform.
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A LLMT system

This section describes the four different blocks that compose the LLMT system. The architecture of the
system has been developed according to standard MT architectures. In order to facilitate the development
of your system and to provide a baseline, a complete implementation of a LLMT system using nmtpytorch
(Caglayan et al., 2017) is provided on the evaluation web page, see http://www.statmt.org/wmt20/

lifelong-learning-task.html for more details.
General note: the prototypes of the process functions must not be changed!

A.1 Train and apply preprocessing

This block is responsible for preparing the training data. Preprocessing may include tokenization, learning
subword decomposition model, etc. It is also responsible for creating the source and target vocabularies
that will be used by the system. To do so, the entire training set is available at once (as in standard training
protocol). The prepared training data is sent to the train initial model (sec. A.2) block while the subword
model and vocabularies are sent to the apply preprocessing block (sec. A.3).

def process(self, data_loaders, outputs):
# Get the training data
data_loader = data_loaders[0]
for i in range(data_loader.count()):

(data, _, end_index) = data_loader[i]
... data["train_source_raw"].text
... data["train_target_raw"].text
... data["train_file_info"]

#Note: setup_for_nmtpytorch(data_loaders) does that for you

#HERE: DO AS MUCH DATA PREPARATION AS YOU WISH

#Create vocabulary and BPE or SPM model
data_dict_tok, src_vocab, trg_vocab, subword_model =

preprocess(data_dict, self.source_language, self.target_language,
self.min_freq, self.short_list)

data_dict_pickle = pickle.dumps(data_dict_tok).decode("latin1")

#Write all the necessary outputs
outputs[’train_data_tokenized’].write({’text’:data_dict_pickle}, end_index)
outputs[’source_vocabulary’].write({’text’:src_vocab}, end_index)
outputs[’target_vocabulary’].write({’text’:trg_vocab}, end_index)
outputs[’subword_model’].write({’text’:subword_model}, end_index)

# always return True, it signals BEAT to continue processing
return True

A.2 Train initial model

The initial training of the system is implemented in the file algorithms/loicbarrault/mt train model/1.py.
The process method is the main one. From this method, you can access all the training data from the
train preprocessing block. This block outputs a model.

# this will be called each time the sync’d input has more data available to be processed
def process(self, data_loaders, outputs):

(data, _,end_data_index) = data_loaders[0][0]
data_dict = pickle.loads(data["train_data"].text.encode("latin1"))

#HERE: USE YOUR SOFTWARE FUNCTIONS TO TRAIN A MODEL

# The model is Pickled with torch.save() and converted into a 1D-array of uint8
# Pass the model to the next block
outputs[’model’].write({’value’: model}, end_data_index)

# always return True, it signals BEAT to continue processing
return True

The data is available through the data loader. In the provided baseline system, the processing consists
of: tokenizing the data with Moses tokenizers (Koehn et al., 2007), training and applying a BPE model
with subword nmt (Sennrich et al., 2016b). As for the previous block, the output is written in the
corresponding variable.
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A.3 Apply preprocessing

The apply preprocessing’s algorithm is defined in the process function of the algorithm in algorithm-
s/loicbarrault/mt apply preprocessing/1.py . The aim is to preprocess the lifelong data similarly to the
training data using the vocabularies and subword models trained in the train preprocessing block.

The documents from the lifelong learning corpus are provided one after the other in the input parameter.
Other information from previous blocks is available from the data loaders as before.

# this will be called each time the sync’d input has more data available to be processed
def process(self, inputs, data_loaders, outputs):
#Get the information from previous block,
#NOTE: this should be done only once and stored in instance variable
if self.src_bpe is None or self.trg_bpe is None \

or self.src_vocab is None or self.trg_vocab is None:
(data, _, end_data_index) = data_loaders[0][0]
#Source and target vocabularies from the train_preprocessing block
self.src_vocab = data["source_vocabulary"].text
self.trg_vocab = data["target_vocabulary"].text
#Source and target BPE objects to separate text into subwords units
subword_model = io.StringIO(data["subword_model"].text)
self.src_bpe = BPE(subword_model, vocab=self.src_vocab)
self.trg_bpe = BPE(subword_model, vocab=self.trg_vocab)

# Accessing lifelong data, one document at a time
lifelong_source_raw = inputs[’lifelong_source_raw’].data.text
lifelong_target_raw = inputs[’lifelong_target_raw’].data.text

#HERE: APPLY THE PREPROCESSING TO THE DOCUMENT
lifelong_source_tok = ...
lifelong_target_tok = ...

#Write all the necessary outputs
outputs[’lifelong_source_tokenized’].write({’text’:lifelong_source_tok})
outputs[’lifelong_target_tokenized’].write({’text’:lifelong_target_tok})
if not inputs.hasMoreData():
# DO SOMETHING WHEN ALL THE LIFELONG DATA HAS BEEN PROCESSED

# always return True, it signals BEAT to continue processing
return True

A.4 Lifelong learning loop

This block receives the initial model from the mt train initial model block (sec. A.2) and process all files
from the lifelong dataset provided by the apply preprocessing block, one at a time. This block has access
to the whole training dataset and may store every processed document in memory in order to re-use it for
further adaptation and/or any processing of your choice.

The output of this block is the translated document. This hypothesis might be obtained by simply
translating the source document with the actual model (this is what the baseline model does). Eventually,
you will plug your favorite unsupervised/semi-supervised or supervised adaptation scheme to create a
better model before translating the document.

This module has also access to the user simulation (sec. A.5) from which the system can get reference
translation for some segments in order to provide the best possible output.

A.5 User simulation

This module simulates the human in the loop. It receives requests from your system and provides answers
to them. The requests and messages to the human are implemented in the lifelong loop block as dictionaries
as follows:

request = {
"request_type": "reference",
"file_id": ’{}’.format(file_id),
"sentence_id": np.uint32(0)

}

message_to_user = {
"file_id": file_id, # ID of the file the question is related to
"hypothesis": current_hypothesis[request[’sentence_id’]] ,

# The current hypothesis
"system_request": request, # the question for the human in the loop

}
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As for now, only one type of request is available, namely ’reference’. This asks the user simulation to
provide a correct translation for sentence number sentence id from document file id.

The answers are also a dict (see below) and can be obtained with the validate method as follows.
answer = {

"answer": {"value": self.reference.text[sent_id]},
"response_type": "reference",
"file_id": self.file_info.file_id,
"sentence_id": sent_id

}
#Get the answer from the user simulation
human_assisted_learning, user_answer = loop_channel.validate(message_to_user)

Asking for human assistance is not free and will result in a penalisation of the system score, as described
in sec. 3.2.

B How to setup a local platform for system development

B.1 Install
Installing the system requires to have a working conda1 environment.

Then, the baseline system is available in the following repository: https://github.com/

loicbarrault/allies_llmt_beat. Simply install using the install.bash script

B.2 Data
The data is available here: https://github.com/loicbarrault/allies_llmt_data. Simply follow
the guidelines to recreate the data.

Update the root folder at the bottom of the file allies llmt beat/beat/databases/allies-mt-internal/1.json
with the path to the repository allies llmt data/¡language-pair¿ directory (replace ¡language-pair¿ by the
desired language pair, i.e. en-fr or en-de).

B.3 Run
Run the English→French system with the following command:
b e a t −−p r e f i x / p a t h / t o / g i t / a l l i e s l l m t b e a t / b e a t exp run l o i c b a r r a u l t / l o i c b a r r a u l t / t r a n s l a t i o n l l d e v / 1 / t r a n s l a t i o n l l d e v

Run the English→German system with the following command:
b e a t −−p r e f i x / p a t h / t o / g i t / a l l i e s l l m t b e a t / b e a t exp run l o i c b a r r a u l t / l o i c b a r r a u l t / t r a n s l a t i o n l l d e v / 2 / t r a n s l a t i o n l l d e v

1https://docs.conda.io/en/latest/
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Abstract

We report the results of the first edition of the
WMT shared task on Chat Translation. The
task consisted of translating bilingual conver-
sational text, in particular customer support
chats for the English-German language pair
(English agent, German customer). This task
varies from the other translation shared tasks,
i.e. news and biomedical, mainly due to the
fact that the conversations are bilingual, less
planned, more informal, and often ungrammat-
ical. Furthermore, such conversations are usu-
ally characterized by shorter and simpler sen-
tences and contain more pronouns.

We received 14 submissions from 6 participat-
ing teams, all of them covering both directions,
i.e. En→De for agent utterances and De→En
for customer messages. We used automatic
metrics (BLEU and TER) for evaluating the
translations of both agent and customer mes-
sages and human document-level direct assess-
ments to evaluate the agent translations.

1 Introduction

Despite the significant progress in Neural Machine
Translation (NMT) in the last years (Vaswani et al.,
2017; Hassan et al., 2018), most systems still op-
erate at sentence-level, disregarding the context of
previous sentences. It has been pointed out that ig-
noring the context may degrade the quality of trans-
lations, leading to incorrect choice of pronouns, lex-
ical inconsistency, and incoherence (Läubli et al.,
2018; Toral et al., 2018). This is particularly rel-
evant in the context of bilingual chat translation,
which normally consists of short messages, refer-
encing each other, and where the correct lexical
choice to translate a speaker might have been ut-
tered in a previous turn by the other speaker.

Numerous systems have been proposed recently
to address document-level translation (Tiedemann

∗These authors contributed equally.

and Scherrer, 2017; Zhang et al., 2018; Maruf
et al., 2019; Miculicich et al., 2018; Voita et al.,
2019b; Tu et al., 2018; Maruf et al., 2018; Jean
et al., 2017; Voita et al., 2018, 2019a; Junczys-
Dowmunt, 2019; Lopes et al., 2020), focusing
on extending both Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017) with additional
encoders or decoders to incorporate previous sen-
tences context. However, often, the approaches are
developed for single speaker and document-like
tasks. By contrast, in this shared task, we focus on
the online multispeaker and multi-lingual setting,
where each participant in the conversation speaks
in their native language. This task has been first
considered by Maruf et al. (2018).

In the first round of the Chat Translation shared
task, we propose translating dialogues with two
speakers, where the first speaker is speaking in
the German→English direction and the second is
speaking in the English→German. Moreover, we
tailor this task for a specific use case: translating
conversational text of the customer support chats.
In this setting the utterances of the German speak-
ing customer are translated using a machine trans-
lation system into English. Then, the replies of the
English speaking agent are translated into German
and sent to the customer.

Translating conversational text, in particular cus-
tomer support chats, is an important and challeng-
ing application task for machine translation tech-
nology. This type of content has so far not been
extensively explored in prior MT research, largely
due to the lack of publicly available data sets. Prior
related work has mostly focused on movie subtitles
and European Parliament speeches. To alleviate
this problem, we created a corpus for this shared
task, BConTrasT(§2), which is translated from En-
glish into German and is based on the monolingual
Taskmaster-1 corpus (Byrne et al., 2019).
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The main motivation of this shared task is to an-
alyze the challenges posed by conversational data
as a content type, which has a broad application in
industry-level services. In this content type, the text
is usually not carefully well formatted, frequently
contains typos, abbreviations, and inconsistent cas-
ing, usually with shorter sentences, often informal
and ungrammatical. Since chat sessions are inter-
active, the task of translating conversations can be
seen as a two-in-one task, modelling both dialogue
and document-level translation at the same time.

In order to evaluate the translation quality
of the participating systems we use both auto-
matic metrics (BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006)), and human evaluation,
consisting of Direct Assessment (DA). For DA,
we define the evaluation process similarly to last
year’s WMT News Translation task (Barrault et al.,
2019) with document-level context and following
the set of recommendations of Läubli et al. (2020).
However, differently than the News task, here we
rely on professional translators instead of a crowd.
This is mainly based on the observations of Läubli
et al. (2020), which provides evidence of the pro-
fessional translators having better judgment and
ability to detect fine-grained phenomena.

Six teams participated in this first campaign of
the Chat Translation shared task, with 14 runs in
total. All teams submitted both English→German
and German→English directions. In §4, we de-
scribe each system in more details.

2 Bilingual Conversational Data

One of the main challenges of bilingual conver-
sation translation is the lack of publicly avail-
able data sets targeted for the task. The most
commonly used datasets are movie subtitles (Li-
son and Tiedemann, 2016), European Parliament
speeches (Koehn, 2005), and conversations ex-
tracted from the public forums such as Ubuntu Di-
alogue corpus (Lowe et al., 2015). These corpora,
however, usually involve more than two speakers,
contain a significant amount of noise (e.g. speakers
information missing in the case of movie subtitles),
and usually cover very broad domains.

For the Chat Translation task, we aim to de-
velop a common ground for MT researchers to
train and test their solutions by providing common
training, validation, and test sets, as well as a com-
mon shared task definition. Unfortunately, due to
the General Data Protection Regulation (GDPR),

most commercial enterprises cannot distribute pub-
licly their proprietary data. Therefore, we opted
for using the Taskmaster-1 corpus (Byrne et al.,
2019), which includes monolingual (English) task-
based dialogues in six domains: (i) ordering pizza,
(ii) creating auto repair appointments, (iii) setting
up ride service, (iv) ordering movie tickets, (v) or-
dering coffee drinks, and (vi) making restaurant
reservations. We used this corpus for creating the
data of our shared task.

Since the main goal of this task is to enable mul-
tilingual speakers communicate with each other in
their native language, we used the Unbabel trans-
lation service 1 to translate the utterances of both
speakers into the target language (German). In
this process, the conversations (originally in En-
glish) were first automatically translated into Ger-
man and then manually post-edited by Unbabel
editors, who are native German speakers. Hav-
ing the conversations in both languages allows us
to simulate bilingual conversations in which one
speaker, the customer, speaks in German and the
other speaker, the agent, answers in English. Ta-
ble 1 shows the first few sentences of a bilingual
conversation, along with their corresponding trans-
lations. In order to provide a realistic environment
in which the amount of in-domain parallel data
is scarce, we translated only a small set of the
Taskmaster-1 corpus. Since pronouns are one of
the main challenges in translating conversational
data, we selected the conversations that contain at
least one English anaphoric pronoun it. For this
we used NEURALCOREF 2 and selected around 18k
sentence pairs and then divided them into train,
development, and test sets (see Table 2).

3 Task Description

A critical challenge faced by international compa-
nies today is delivering customer support in sev-
eral different languages. One solution to this chal-
lenge is centralizing support with English speaking
agents and having a translation layer in the middle
to translate from the customer’s language into the
agent’s (English) and vice versa. The ideal solution
for this environment needs to consider the context
of both sides which are in different languages, and
also needs to be robust to the noisy input since the
text here represents a higher degree of noise com-

1www.unbabel.com
2https://github.com/huggingface/

neuralcoref
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agent src: Hi there! How can I help?
tgt: Hallo! Wie kann ich helfen?

customer src: Hey, ich muss mein Auto zum Mechaniker bringen und ich würde gerne Intelligent Auto Imports besuchen.
tgt: Hey there, I need to take my car to mechanic and I would like to see Intelligent Auto imports.

agent src: Sure! what type of car is it?
tgt: Sicher! Was für ein Auto ist das?

Table 1: An example of a conversation between a customer and an agent.

Customer Agent
lines words lines words

Training 6,216 41,492 7,629 70,193
Dev 862 5,805 1,040 9,569
Test 967 6,464 1,133 10,187

Table 2: Statistics of the English side of the training,
dev, and test sets.

pared to the cases like news, biomedical, etc. In
the first edition of this shared task we focused on
this environment and asked the participants to trans-
late the customer’s utterances from German into
English and the agent’s from English into German.

Although participants were encouraged to sub-
mit both directions (i.e. modelling both speakers
was desired), in this first round of the task, we em-
phasized on the agent side (English→German) and
performed human evaluation in that direction ex-
clusively. This decision is not entrenched and, thus,
for future tasks we will aim at evaluating both trans-
lation directions. We decided to pursue this direc-
tion because the customer side (German→English)
suffers from “translationese”: English was the orig-
inal source, and it was recently shown that transla-
tionese has a significant impact in evaluation both
in automatic metrics (Freitag et al., 2020) and hu-
man evaluation (Läubli et al., 2020).

3.1 Data

The main data source for this shared task is BCon-
TrasT. As mentioned in §2, the translated conver-
sations are sampled from the original Taskmaster-1
corpus, and in theory the other monolingual data
could be leveraged by the participants either for
back-translation or training in-domain language
models. However, due to the high degree of sen-
tence similarity within the Taskmaster-1 monolin-
gual corpus, participants were not allowed to use
this additional data to train their systems.

In addition to the provided in-domain training
data, the participants were allowed to use all the

training data provided by the News shared task
organizers. Moreover, they were allowed to use
existing pre-trained models, such as BERT (Devlin
et al., 2018), Transformer-XL (Dai et al., 2019),
Reformer (Kitaev et al., 2020), among others.

3.2 Baseline

To define our non-human baseline, we use Face-
book’s last year submissions to the document-level
translation task for both directions (Ng et al., 2019)
as the terms of comparison. Even though these
models are not domain adapted for the Chat Trans-
lation task, we find them to have a reasonable qual-
ity for this domain. However, it is worth mention-
ing that we solely report the results of these models
with the automatic metrics and we do not perform
any type of direct assessment on these models.

4 Participants

Six participants submitted their systems to the
Chat Translation shared task. Although the
German→English direction (i.e. customer side)
was optional, all participants submitted their sys-
tems for both directions. In total, 14 runs were sub-
mitted (although only primary submissions were
considered for human evaluation). Table 3 summa-
rizes the participants and their affiliations.

Team Institution

NaverLabs Naver Labs Europe
UEdinUppsala Univ. of Edinburgh, Uppsala Univ.
IndTaoWang Individual participant (Tao Wang)
Tencent Tencent
UMaryland University of Maryland
UJordan Jordan U. of Science and Technology

Table 3: The participating teams and their affiliations.

4.1 Systems

Here we briefly detail each participant’s systems as
described by the authors and refer the reader to the
participant’s submission for further details.
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4.1.1 Naver Labs
Naver Labs Europe (NLE) uses a document-level
model trained on both the parallel and back-
translated data. The authors developed a multi-
domain system using the task-specific adapter lay-
ers and used it to participate in all the following
tasks: chat translation, robustness, and biomedi-
cal. These systems are designed to translate both
German and English text, or even mixed-language
documents. Furthermore, in order to improve the
robustness of these systems to noise, the authors
applied the following pre-processing solutions: spe-
cial handling of case with inline casing, a copy
placeholder for rare characters, synthetic noise gen-
eration, and BPE dropout. Their primary submis-
sion is an ensemble of three instances of this model,
which was used to decode the full bilingual dia-
logues at once using the entire dialogue’s context.
The first contrastive submission is a single model
with these settings. The second submission is an en-
semble of four sentence-level bidirectional models
(one of them with masked language model pre-
training). For more details see Bérard et al. (2020).

4.1.2 Universities of Edinburgh and Uppsala
The joint submissions of University of Edin-
burgh and Uppsala University are based on the
transformer-big architecture (Vaswani et al., 2017)
and rely on fine-tuning pre-existing systems from
the WMT 2019 News Translation Task (experiment
with both UEdin’s submission based on Marian
(Junczys-Dowmunt et al., 2018) and Facebook’s
submission based on Fairseq (Ott et al., 2019)).
They are fine-tuned on pseudo-in-domain web
crawled data and in-domain task data. The authors
also experiment with (i) domain and speaker-level
adaptation by automatically tagging the source and
target sentences with domain and speaker tags re-
spectively, and (ii) contextual NMT by exploiting
the previous context, varying the type and number
of previous utterances used. The final submission
is an ensemble of four models trained with domain
tags and using noisy-channel re-ranking. For more
details see (Moghe et al., 2020).

4.1.3 Tao Wang (individual participant)
Individual participant Tao Wang uses a sentence-
level system trained on all the WMT20 En-De par-
allel data. The author uses the Fairseq codebase
to train a transformer-big model with the default
settings of a base model. Then, the models are
fine-tuned with the in-domain training set provided

for the Chat Translation shared task.

4.1.4 Tencent
Tencent systems are based on self-attention net-
works including document-level multi-encoder and
sentence-level Transformer. In order to get more
in-domain data the authors use a multi-feature data
selection method (e.g. FDA, n-gram LM, Trans-
former LM and BERT) to select data from news
corpus. Furthermore, the systems have different
fine-tuning strategies, ranging from sentence-level
to document-level. Finally, these systems use large
scale pre-trained language models including mono-
lingual BERT (Devlin et al., 2018) and bilingual
XLM (Lample and Conneau, 2019). For more de-
tails see (Wang et al., 2020).

4.1.5 University of Maryland
The University of Maryland systems are both sen-
tence and document-level systems, with two dis-
tinct architectures for this task: (i) standard trans-
former pre-trained on WMT17 News and fine-
tuned on the WMT20 Chat data, and (ii) modi-
fied transformer by including additional encoder
to process one previous utterance in tandem with
the current utterance, also pre-trained on WMT17
News and fine-tuned on a mix of WMT20 Chat data
and a subset of WMT19 News data. The primary
system is based on the first architecture while the
second architecture is used for the two contrastive
submissions. The contrastive submissions differ in
the manner and timing in which training data was
processed. For more details see (Bao et al., 2020).

4.1.6 Jordan University of Science and
Technology

Mohammed et al. (2020) train separate models for
the agent and customer sides after combining the
training and development datasets for each side.
They use bidirectional RNN (LSTM) with pre-
trained BERT (Devlin et al., 2018) embeddings
for each of the translation directions. In addition,
the authors report using different parameters for
training, resulting in different models which then
are used for ensemble decoding. For more details
see (Mohammed et al., 2020).

4.2 Submission Summary

The submissions for this year’s shared task cover
different approaches from simple sentence-level to
more complex document-level models with extra
encoders and decoders to summarize the context
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(i.e. previous sentences), and from single direction
to bi-directional translations (i.e. jointly modelling
both En→De and De→En directions). Moreover,
they report different approaches for training their
systems ranging from fine-tuning the existing mod-
els and using embeddings of the large pre-trained
models such as BERT (Devlin et al., 2018) to train-
ing the models from scratch.

Not only the submissions are different in their
architectures, but they also differ in the data they
use during the training. Some use all the available
WMT parallel data in addition to the in-domain
training data provided for the Chat task, and some
apply data selection methods to get more in-domain
data to leverage for training their systems.

5 Evaluation Procedures

For the first round of the Chat Translation shared
task we follow the standard procedure of WMT
shared tasks and evaluate both on automatic metrics
and human evaluation with context. Even though
automatic metrics provide a cheap mechanism to
evaluate Machine Translation (MT) systems out-
puts, they do not tell the whole story for high-
performing systems (Ma et al., 2019). For example,
recent “sentence-level human parity” claims do not
seem to hold when the context of the document is
considered (Läubli et al., 2018), and metrics such
as BLEU (Papineni et al., 2002) fail to correlate
properly with human assessment (Callison-Burch
et al., 2006). In this edition of the shared task, we
aim for both automatic and manual evaluations.

5.1 Automatic Evaluation

For the automatic evaluation, we use both
BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006) metrics. For the former, we use
SacreBLEU3 (Post, 2018), while for TER we use
v0.7.254 and report case-sensitive scores. The auto-
matic metrics are used to measure the quality of the
translations of both sides, i.e. customer and agent.

5.2 Human Evaluation

For the human evaluation we follow a similar pro-
cedure to last year’s WMT News shared task (Bar-
rault et al., 2019) but take into account the set of
recommendations defined by Läubli et al. (2020).

3BLEU+case.mixed+lang.en-
de+numrefs.1+smooth.exp+tok.13a+version.1.4.13,
BLEU+case.mixed+lang.de-
en+numrefs.1+smooth.exp+tok.13a+version.1.4.13

4http://www.cs.umd.edu/˜snover/tercom/

Agent Customer
System BLEU↑ TER↓ BLEU↑ TER↓

FAIR WMT’19 43.4 38.0 49.7 32.0
Primary

NaverLabs 60.1 25.7 61.0 23.3
UEdinUppsala 60.2 25.4 62.4 22.8
IndTaoWang 59.7 26.0 61.3 23.5
Tencent 58.6 26.7 62.3 23.0
UniMaryland 56.7 28.2 49.4 32.0
UJordan 46.4 38.2 42.5 40.2

Contrastive

NaverLabs-Sys1 58.8 26.8 59.4 24.6
NaverLabs-Sys2 60.4 25.1 61.6 23.1

UEdinUppsala-Sys1 60.2 25.3 61.8 22.8
UEdinUppsala-Sys2 59.8 25.4 61.5 23.8

Tencent-Sys1 53.6 30.6 54.0 28.8
Tencent-Sys2 58.6 26.6 61.9 23.2

UniMaryland-Sys1 55.6 28.3 49.4 32.0
UniMaryland-Sys2 56.4 28.1 49.4 32.0

Table 4: Automatic evaluation scores for the agent
(En→De) and customer (De→En).

Specifically, we build HITs (following the Mechan-
ical Turk’s term human intelligence task) for the
Segment Rating + Document Context (SR+DC)
configuration with approximately 100 tasks simi-
larly to WMT News, where both the source and
target context is available to the evaluator when
rating the actual source and target sentence for eval-
uation. We use an internal tool at Unbabel which
provides the necessary visualization to evaluate a
SR+DC configuration. Despite WMT News (Bar-
rault et al., 2019) use Appraise (Federmann, 2012)
for the human evaluation as it’s tailored for docu-
ment like text, the tool used for this task was built
with chat evaluation in mind and outlines bound-
aries between each speaker. Figure 1 illustrates
the tool used for evaluation.

Following Läubli et al. (2020) guidelines, we use
trusted professional translators from the Unbabel
community to evaluate the adequacy of the trans-
lation on a scale of 0 to 100. The guidelines to the
translators were as simple as possible to avoid any
type of bias, asking them to rate each sentence tak-
ing the context into account and penalizing when
there is a context error, as they would for a non-
contextual error.

For the first edition of this shared task, we per-
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(a) First sentence of the conversation. (b) Second sentence of the conversation.

(c) Third sentence of the agent in the conversation. (d) Fifth sentence of the agent in the conversation.

Figure 1: Screenshots of a segment-rating with document-level context using the direct assessment tool. Multi-
ple screenshots are presented to illustrate the iterative nature of the evaluation and how the agent and customer
directions are presented as the conversation flows. Note that only the agent side is assessed and the scores are just
illustrative.

formed human assessment on the agent side ex-
clusively. Our decision is due to a limitation in
the process of data creation, the customer direc-
tion is from professionally translated German (yet
translated nonetheless) to the noisy original En-
glish (e.g. typos). Therefore, if we proceed with
the evaluation as it stands we would induce two bi-
ases, 1) assessing a softer version of translationese
as the source would be a translation, and 2) the
noisy reference could bias the evaluators to rank
the systems higher due to the noise and not qual-
ity. Both biases could be misleading and impact-
ing their evaluations as professional translators are
more sensitive to fine-grained phenomena (Läubli
et al., 2020; Barrault et al., 2019). Moreover, in the
proposed setting the impact of the noisy context
for the agent is negligible for them to have a gist
of the message; however there is an extra responsi-
bility in translating the agent since the application
of these systems in industry carries an additional
factor: it has the company brand associated. There-
fore, we preferred to focus more on evaluating the
agent translations more rigorously than to spend
resources in evaluating the customer.

5.2.1 Protocol for building HITs

We follow a hybrid between WMT News and
Läubli et al. (2020) to build HITs. Specifically,
as we resorted to professional translators there are
fewer control tasks in every 100 HITs (i.e. 5%
of the tasks being control tasks). To create a con-
trol task, we take inspiration from both the afore-
mentioned resources and perform the following,
assuming there is a vocabulary containing all the
target words of the conversation: For the very short
sentences containing one or two words we replace
their words with some random words from the con-
versation’s vocabulary. In the case of sentences
with three words we replace the second and third
words as before while keeping the first word. Fi-
nally, for longer sentences we preserve the first and
last 10% of the words while randomly reordering
the remaining 80% of the middle words. It is also
worth mentioning that the corruption is only em-
ployed in the current sentence for evaluation and
the context is preserved with no change.

When building the HIT bundle, among differ-
ent options, we followed the same approach as
WMT19 New’s (Barrault et al., 2019) procedure
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for SR+DC: in order to save time of our annotators,
we built the HITs such that a sentence belonging to
a given document is displayed and rated before the
next sentence of the same document for the same
participant MT system output. This is specially
suited for our task as the conversations have larger
contexts via numerous interactions. Similarly to
WMT19 News (Barrault et al., 2019), we randomly
picked documents from the pool of documents and
for each participant retrieved their translations of
that document. Next, we randomly picked doc-
uments from the pool until the sum of all their
sentences was approximately 95 and added the re-
maining control tasks. For each document in the
HIT, we sliced the translated conversation so that
the order of the sentences was preserved when pre-
sented to the annotator for the SR+DC evaluation.

5.2.2 Evaluated Dialogs

Due to constraints with the annotators, we evalu-
ated a subsample of the full test set. Therefore, we
followed the procedure in § 5.2.1 with a budget
constraint, where we specified the number of de-
sired sentences and randomly sampled dialogues
until the threshold is met (number of sentences).
In the end, we evaluated 40% of the agent side, as
noted in §5.2 we evaluated only this direction.

6 Discussion

The results of the automatic scores of both agent
and customer side of all the submitted systems
are reported in Table 4. Comparing these scores
with our baselines (i.e. FAIR WMT’19 models)
shows that in the agent side (En→De) there is a
significant difference (i.e. between +3.0 to +17.0
BLEU scores) in the performance of the submitted
systems and the baseline. However, comparing the
differences between their TER scores reveals that
there is a smaller gap between the systems, ranging
from +0.2 to -12.9.

On the customer side we observe different be-
haviours and more diverse scores. In fact, the dif-
ferences of the BLEU scores of the baseline and
the submissions vary from -7.2 up to +12.7. This
means that in a few cases our submitted systems
fall behind the baseline by -7.2 BLEU scores. The
TER scores show a similar behaviour and the differ-
ences of the scores of the submitted systems with
the baseline varies from +8.2 (in the worst case) to
-9.2 (in the case of best performing system). Given
the fact that our references for this direction (i.e

Agent
System Avg.↑ Avg. z.↑

Human 91.4 0.319

NaverLabs 88.2 0.165
UEdinUppsala 85.4 0.032
IndTaoWang 83.6 -0.049
UniMaryland 79.3 -0.235
Tencent 74.3 -0.474
UJordan 63.9 -0.966

Table 5: Human evaluation scores of the agent side.

De→En) contain a higher degree of noise (eg. ty-
pos, wrong casings, etc) it is difficult to make a
final and strong conclusion for this direction. We
plan to investigate this aspect further.

Table 5 depicts the human evaluation scores
(Avg.) and the normalized z-scores (Avg. z) of the
agent side of the primary submissions. Human
performance estimates are analogous to Barrault
et al. (2019), evaluation of human-produced ref-
erence translations are denoted by “HUMAN” in
all tables. There are three main clusters of scores,
very high scores near human baseline levels (Naver-
Labs, UEdinUppsala, and IndTaoWang), signifi-
cant scores (UniMaryland and Tencent), and lower
scores (UJordan). Focusing on the high performing
systems, we see that NaverLabs is the clear win-
ner of the task, followed closely by UEdinUppsala,
and IndTaoWang.

In addition to the overall DA scores of the sub-
missions one might ask how they perform on the
more detailed aspects such as sentences with differ-
ent lengths or sentences containing pronouns. In
order to address the first question, we analyzed the
human scores for each system with respect to differ-
ent intervals of lengths (i.e., different bins), namely
1-5 words, 6-10 words, 11-15 words, and, finally,
16+ words. To this end we can condition either (i)
on the source sentence, or (ii) on the reference sen-
tence, or (iii) on the generated translations of each
system. Among these, we focused on (i) which
provides more insights and is fairer comparison for
all the systems.

Table 6 presents the human evaluation scores
(Avg.) and the normalized z-scores (Avg. z) of the
evaluated submissions in each length range. As
we see, all the systems perform similarly in this
range, all of them very close to the human refer-
ence. It is intersting to note that the submission of
UJordan outperforms the human reference by +2.5

71



System
Source length range (words)

1-5 6-10 11-15 16+
Avg. Avg. z. Avg. Avg. z. Avg. Avg. z. Avg. Avg. z.

Human 92.5 0.375 92.5 0.367 90.0 0.254 85.0 0.012
NaverLabs 92.5 0.375 86.9 0.103 88.3 0.170 90.0 0.234
UEdinUppsala 92.5 0.375 85.6 0.047 86.7 0.086 65.0 -0.936
IndTaoWang 92.5 0.360 83.1 -0.068 81.7 -0.146 75.0 -0.432
UniMaryland 90.0 0.249 79.4 -0.226 80.0 -0.210 55.0 -1.350
Tencent 85.0 0.042 71.9 -0.586 76.7 -0.378 65.0 -0.906
UJordan 95.0 0.486 71.3 -0.617 41.7 -2.012 10.0 -3.528

Table 6: Human evaluation scores of the agent side in each length range, based on the source sentences. The
systems are ordered based on their general rankings.

Agent
System DA↑ z-score↑
Human 95.0 0.706
NaverLabs 85.0 0.220
UEdinUppsala 85.0 0.220
Tencent 80.0 0.043
IndTaoWang 80.0 0.043
UniMaryland 80.0 0.043
UJordan 60.0 -0.861

Table 7: Human evaluation scores for the agent side
when there is a pronoun it in the source sentence.

and +0.111 points on the average and normalized
z-score, respectively. The differences increase by
moving to the longer source sentences which is
expected. The only unusual observation in these
scores is the higher scores of the NaverLabs in
the last range (i.e. sentences with 16+ words) in
which it outperforms the human reference by +5.0
and +0.222 points on the average and normalized
z-score, respectively. This can be due to the eval-
uators preferences, but still needs further analysis
before making any final conclusion.

The English sentences containing pronouns is
another aspect that we analyzed further and com-
pared the performances of the submitted systems
when there is a pronoun in the sentence. Specifi-
cally, we compute the scores for sentences which
contain at least one instance of pronoun it. Table
7 shows the human scores and the normalized z-
scores. As the results show, there is a big difference
in the scores obtained by human translators and the
submitted systems. In fact, it varies from -10.0 to
-50.0 in the case of average score and from -0.486
to -1.567 for the normalized z-scores. Even though

the number of tasks is not large, these preliminary
results suggest current document-level systems still
fall behind humans in challenging linguistic phe-
nomena such as translating pronouns, and require
further research for these phenomena.

Finally, we note that three of the submitted pri-
mary systems do not leverage the document-level
context and use only the sentence-level informa-
tion. Due to the data size and content proposed for
the first edition of the Chat Translation shared task,
this is to be expected as there is some level of repe-
tition and similarity among different conversations.
However, by looking at the results, we notice that
approaches with document-level context seem to
benefit from human evaluation when compared to
the automatic metrics.

7 Conclusions

We presented the results of the first edition of the
WMT20 Chat Translation shared task. For the pur-
pose of this task, we created a bilingual English-
German dialogue corpus, BConTrasT, which is
publicly available on the website of the task. It
is based on the monolingual Taskmaster-1 cor-
pus (Byrne et al., 2019) which was originally cre-
ated in English. We translated around 18k of con-
versations of this corpus into German using the pro-
fessional translators and used it as the in-domain
corpus of the shared task.

This year we received 14 submissions from 6
different teams, all of them covering both direc-
tions (i.e. customer and agent). In addition to
the automatic metrics (i.e. BLEU and TER) we
performed an extensive Direct Assessment with
document-level context using professional transla-
tors and used the results of these manual evalua-

72



tions to rank the participating systems. The previ-
ous sentences of each conversion provide the an-
notators with more context to have a more reliable
assessment of the translations. Due to the con-
straints posed by our data, this year we were able
to perform the manual evaluation only on the agent
side (i.e. En→De). However, we aim at assessing
both sides in the futures tasks.
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Abstract

We report the findings of the second edition of
the shared task on improving robustness in Ma-
chine Translation (MT). The task aims to test
current machine translation systems in their
ability to handle challenges facing MT models
to be deployed in the real world, including do-
main diversity and non-standard texts common
in user generated content, especially in social
media. We cover two language pairs – English-
German and English-Japanese and provide test
sets in zero-shot and few-shot variants. Par-
ticipating systems are evaluated both automat-
ically and manually, with an additional hu-
man evaluation for “catastrophic errors”. We
received 59 submissions by 11 participating
teams from a variety of types of institutions.

1 Introduction

In recent years, Machine Translation (MT) sys-
tems have seen great progress, with neural models
becoming the de-facto methods and even approach-
ing human quality in news domain (Hassan et al.,
2018). However, like other deep learning mod-
els, neural machine translation (NMT) models are
found to be sensitive to synthetic and natural noise
in input, distributional shift, and adversarial ex-
amples (Koehn and Knowles, 2017; Belinkov and
Bisk, 2018; Durrani et al., 2019; Anastasopoulos
et al., 2019; Michel et al., 2019). From an appli-
cation perspective, MT systems need to deal with
non-standard, noisy text of the kind which is ubiq-
uitous on social media and the internet, yet has
different distributional signatures from corpora in
common benchmark datasets.

Following the first shared task on Machine Trans-
lation (MT) Robustness, we now propose a second
edition, which aims at testing MT systems’ robust-
ness towards domain diversity. Specifically, this
year’s task aims to evaluate a general MT system’s
performance in the following two scenarios:

• Zero-shot: the goal is to evaluate a general MT
system’s performance in unseen domains at
test time, which are likely to be different from
a training domain (e.g. News, Wikipedia). For
that, no domain-specific data or information
on the test sets is given to participants.

• Few-shot: the goal is to test an MT system’s
performance if a few in-domain training exam-
ples are provided for the target domain. The
question we ask is: can the general MT system
leverage those training examples to improve
performance on this domain while not drop-
ping its performance on other domains?

We describe the dataset and the task setup in
Section 3. The shared-task attracted a total of 23
submissions from 11 teams. The teams employed
a variety of methods to improve robustness. A spe-
cific challenge was the small size of the in-domain
noisy parallel dataset. We summarize the partic-
ipating systems in Section 4 and some trends on
approaches used by various systems in Section 4.1.
The contributions were evaluated both automati-
cally and via a human evaluation and the results
discussed in Section 5.

We hope that this task leads to more efforts from
the community in building robust MT models.

2 Related Work

Domain mismatch is a key challenge in machine
translation (Koehn and Knowles, 2017). Most ap-
proaches for improving robustness of MT systems
to domain shift assume the existence of significant
amounts of parallel data in both the source and tar-
get domain. In this scenario, a common approach
is to first train an MT system on a (generic) source
domain and then to fine-tune it on a (specific) tar-
get domain (Luong and Manning, 2015; Freitag
and Al-Onaizan, 2016; Servan et al., 2016; Chu
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et al., 2017), to continuously fine-tune on datasets
increasingly similar to the target domain (Sajjad
et al., 2017), or to dynamically change the balance
of data towards the target domain (van der Wees
et al., 2017). Another approach trains a system on
multiple domains at the same time, while adding
domain-specific tags to the input examples (Kobus
et al., 2016). Both these approaches were employed
by participants of the first shared task on MT ro-
bustness (Li et al., 2019).

Other methods for domain adaptation of MT
systems include instance weighting (Wang et al.,
2017b), incorporating a domain classifier (Chen
et al., 2017; Britz et al., 2017), and data selec-
tion (Wang et al., 2017a). Some make use of
monolingual data available either in the target
domain—for example by training the decoder on
such data (Domhan and Hieber, 2017) or by back-
translating it (Sennrich et al., 2016)—or in the
source domain, via similar techniques (Zhang and
Zong, 2016).

Chu and Wang (2018) provide a broad survey of
domain adaptation for neural MT, which demon-
strates that the predominant setup assumes knowl-
edge of the target domain and availability of target
domain data at training time. In light of this prior
work, the shared task proposed a relatively under-
explored scenario, where examples in the target
domain are either unavailable or relatively few.

Other aspects of robustness are robustness to ad-
versarial examples or noisy inputs. The fragility
of neural MT models has been previously demon-
strated in various settings (Belinkov and Bisk,
2018; Heigold et al., 2017; Anastasopoulos et al.,
2019; Lee et al., 2018). Michel and Neubig (2018)
proposed a new dataset (MTNT) to test MT models
for robustness to the types of noise encountered in
the Internet. The previous iteration of the shared
task focused on robustness of MT systems to such
noise (Li et al., 2019). We refer to that report for
more details.

3 Task

To facilitate comparability with the News transla-
tion task and also to reduce the participation cost,
we suggest the same training data as the WMT20
News task.1 The focus of the Robustness Task is to
both evaluate models built on this type of data on
more challenging test sets, as well as to encourage

1http://www.statmt.org/wmt20/
translation-task.html

participants to explore novel training and model-
ing approaches so that models have more robust
performance at test time on multiple domains, in-
cluding unseen and diversified domains. We offer
two language pairs: English-German (En→De) and
English-Japanese (En→Ja), with different test sets
focusing on one or both these language pairs, or
one particular language direction.

3.1 Phases

The test cycle is divided into two phases. In the first
phase – zero-shot phase, we release blind test sets
from a mixture of domain(s), and participants sub-
mit their system’s output without any information
on these blind domains or training/development
data for them. In the second phase – few shot
phase, we release a small amount of training data
(10K sentence pairs) from one of the test domains
and participants submit their system’s output after
utilizing these training examples.

3.2 Training Data

The task includes two tracks, constrained and un-
constrained depending on whether the system is
trained on a predefined training datasets or not. The
two tracks are evaluated by the same automatic and
human evaluation protocol, however, they are com-
pared separately.

• Constrained: Participants can only use the
training data made available for this year’s
News translation task for training. They can
use both the parallel data and monolingual
data provided in this year’s task. Multilin-
gual systems trained with data provided by
WMT20 News task are also allowed (and par-
ticipants should indicate whether this is the
case).

• Unconstrained: Participants can develop
novel solutions to learn from unlabelled data,
especially additional monolingual data from
domains such as biomedical and/or Reddit.
The online systems that we evaluated also fall
in this category.

• Few-shot: Participants are provided a few
in-domain training examples. The data pro-
vided consist of the German-English train and
valid portions of the CoVoST dataset (dedu-
plicated by source German sentences) and
the Japanese-English and English-Japanese
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train and valid portions of the MTNT dataset
(Michel and Neubig, 2018).

3.3 Development Data

The task specified the following data to help par-
ticipants evaluate their system’s performance on
unseen and multiple domains.

• English-German: participants can use the de-
velopment data from the News translation
task, development data from QED (Abdelali
et al., 2014) corpus, development data from
WMT19 Medical translation task, and devel-
opment data from the WMT16 IT translation
task.

• English-Japanese: participants can use the
development data from the News translation
task, and development data from the MTNT
dataset, which contains noisy social media
texts and their clean translations.

3.4 Test Data

We have three test sets which were created us-
ing different sources and approaches. The general
statistics are reported in Table 1.

Wikipedia Comments Test Set (set1): This
data was collected by Imperial College London
and Facebook. We created this to be a partic-
ularly challenging test set where the source seg-
ments contain various types of linguistic constructs
that could lead to what we call catastrophic er-
rors in the MT output. For that, we chose user-
generated content, namely comments on Wikipedia
edits by Wikipedia editors. More specifically, we
took English Wikipedia comments from an exist-
ing dataset from the Toxic Comment Classification
Challenge.2 The Challenge made available 160,000
comments on Wikipedia edits tagged with multi-
grade toxicity labels (toxic, severe toxic, obscene,
threat, insult, or identity hate). We believe that the
presence of toxic content can be very challenging
for MT systems.

After filtering out non-English segments and seg-
ments that were too long (>50 words or >1000
characters) or too short (<5 words), we kept all the
remaining comments with any toxic label (approx.
7K) and randomly selected 10K non-toxic samples.

2www.kaggle.com/c/
jigsaw-toxic-comment-classification-\
challenge

Based on this initial selection of 17K English
comments, we defined heuristics to further sam-
ple from the selection and diversify the potential
sources of catastrophic errors. To that end, we first
machine translated all comments using an in-house
transformer-based model into Japanese and Ger-
man. The goal of that was to be able to examine
potential differences in source and (one example
of) translation segments.3 We then pre-processed
and automatically annotated all 17K segments with
the following soft labels for catastrophic errors:

1. Introduction of toxicity: we checked both
source and machine translation for toxic
words (using in-house lists) and labelled as
positive (i.e. potentially containing errors)
cases where the source does not contain such
words, but the translation does (at least one).

2. Mistranslation of named entities: we anno-
tated person, organisation and location named
entities in the source and translation (using an
in-house named entity recognition model) and
labelled as positive cases where (a) the transla-
tion has fewer named entities than the source
and the translation has at least one toxic word,
(b) the translation has at least 2 fewer named
entities than the source, and (c) the list of
named entity types (e.g. person vs location)
in source and translation differ and translation
has at least one toxic word.

3. Inversion of sentiment: we applied the Google
Cloud Sentiment Analysis tool4 to annotate
each source and machine translation and la-
belled as positive cases with very different sen-
timents, i.e. the source is very positive (>0.5)
and the translation is very negative (<-0.5) or
vice-versa (scores range from -1 (negative) to
1 (positive).

4. Difference in emojis: we detected emojis in
the source and machine translation5 and la-
belled as positive cases where source and
translation have a different number of emo-
jis.

3We are aware that using one particular translation model
can bias the selection to cases that are challenging for this
particular model. In future work following this methodology,
we recommend that multiple MT models be used.

4https://cloud.google.
com/natural-language/docs/
analyzing-sentiment

5https://github.com/carpedm20/emoji/)
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5. Presence of idioms: we checked if the source
contains idiomatic expressions, using an in-
house list of idioms built from various sources,
and labelled those cases as positive.

We note that the automatic labelling using our
various pre-processing techniques may have intro-
duced errors, but we believe that basing the se-
lection on such heuristics will still lead to higher
chances of selecting very challenging source seg-
ments than arbitrarily sampling the data.

We divided the original data (toxic and non-toxic
17K) into 5 sets, one for each of these soft la-
bels (allowing for duplicates samples across sets).
Finally, we uniformly selected a test set per lan-
guage pair, containing 1,098 unique segments for
English→German and 1,100 unique segments for
English→Japanese. We provided the test sets for
experiments in both directions, but we will only
report results on the original source→target direc-
tion. For each of these test sets, we discarded the
machine translation and collected reference trans-
lations from scratch using professional translators.

Reddit Test Set (set2): This data was collected
by Carnegie Mellon University following the same
procedure as last year’s test set (described in
Michel and Neubig (2018)): comments from the
social media website reddit.com were scraped,
filtered for noisy comments and translated by pro-
fessional translators. This year, data was collected
for two translation directions: English→Japanese
and Japanese→English. For English, comments
were collected from the /r/all feed, which en-
compasses all communities, and filtered for En-
glish. Since Japanese is a minority language on
Reddit, comments were scraped from a selection of
japanese-speaking communities, detailed in Michel
and Neubig (2018).

Common Voices Test Set (set3): This data was
obtained from from the CoVoST corpus (Wang
et al., 2020). CoVoST is derived from Common
Voice (Ardila et al., 2020), a crowdsourced speech
recognition corpus with an open CC0 license. Tran-
scripts were sent to professional translators and the
quality of translations was controlled by automatic
and manual checks (Guzmán et al., 2019). For this
task, we used the German→English test set with
source German sentences deduplicated.

3.5 Evaluation protocol

Automatic evaluation: We first computed
BLEU (Papineni et al., 2002) for each system
using SacreBLEU (Post, 2018). For all language
pairs except En→Ja, we used the original reference
and SacreBLEU with the default options. In the
case of En→Ja, we used the reference tokenized
with KyTea and the option --tokenize none.

Human evaluation: The system outputs were
evaluated by professional translators. The trans-
lators were presented the original source sentence,
the reference and the system output side by side.
The order between the reference and the system
output, as well as the different MT systems, was
randomized and not disclosed to the translator. The
translators rated both the reference and the trans-
lation. We believe that the reference translation
in this evaluation setup to serves the purpose of
calibration by offering the human annotators one
(hopefully) good example of translation. We also
report metrics for these reference translations as an
upperbound for the data.

We sampled 400 translations from each MT sys-
tem in each of the test sets and language pairs
(28 combinations), resulting in 11,200 segments
and their references to be annotated (22,400 seg-
ments in total). Each translation/reference segment
was annotated by three raters. Quality control
was manged by the company providing the ratings,
where the main check was that the three ratings
could not disagree by more than one category (in
which case additional raters are enlisted until agree-
ment is reached).

The rating of translations was done using a dif-
ferent metric from last year’s task. Instead of direct
assessment (DA), we chose a discrete likert rating
ranging from 1 to 5, which we found to lead to
higher agreement between raters in other annota-
tion projects (Diab et al., 2020). A summary of
the guidelines provided for this likert rating is as
follows:

1 Bad: translation errors are so severe that they
cause the target text to be incomprehensible.
This may be mainly due to major grammatical,
typographical, or lexical errors, or omission
of critical or important salient information.

2 Poor: the target text contains translation errors,
but these errors do not hinder overall compre-
hension and do not mistranslate overall intent.
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En→De De→En En→Ja Ja→En

Wikipedia Comments (set1) 1,098 / 26,549 - 1,100 / 29,419 -
Reddit (set2) - - 1,376 / 20,011 997 / 20,842
Common Voice (set3) - 5,609 / 43,119 - -

Table 1: Number of sentences/words per test set (Japanese words are counted after tokenization with KyTea).

The errors may be mainly due to partial differ-
ences in intent, grammatical or typographical
errors, or omission of important salient infor-
mation.

3 Acceptable: the target text is fully comprehen-
sible and fully translated (i.e. no information
is omitted), even if it contains minor errors.
These errors may be mainly due to partial lack
of fluency, or a few grammatical or typograph-
ical errors.

4 Very Good: the target text is fully comprehen-
sible, fully correct, and does not miss any
information. Style matters may not be trans-
ferred faithfully, such as level of formality, or
the translation of idioms does not need to be
perfect but their meaning needs to be correctly
conveyed.

5 Excellent: the target text is fully comprehensi-
ble, fully correct, and does not miss any infor-
mation. Additionally, source style is reflected
in the translation and if present, idioms are
perfectly handled.

Catastrophic error annotation: As an addi-
tional form of human annotation, alongside the
likert ratings described above, we instructed the
annotators to indicate, for translations rated below
3 - poor or bad, whether they contained any catas-
trophic errors, and to categorise the type of error.
This is a new type of evaluation and we provided
detailed guidelines, which we summarise below.

Annotators were asked to provide a YES/NO
flag to indicate whether the translation contains any
error (one or more words) that changes the meaning
of the source segment in a critical way. Critical
errors are those that lead to misleading translations
which may carry religious, health, safety, legal or
financial implications, or introduce toxicity. The
set of critical errors used for the guidelines (which
also included examples of these errors) includes –
but is not limited to – the cases below:

• Introduction of toxicity (profanity, violence,
hate or abuse) (TOX).

• Introduction of health/safety risks (SAF).

• Mistranslation of named entities (NAM).

• Reverse negation (NEG).

• Reverse of sentiment/polarity (SEN).

• Change in units/time/date/numbers (NUM).

• Other (OTH).

If the answer is YES, annotators were asked se-
lect one of the categories indicating the type of
critical error. They were asked to choose the cate-
gory that compromises the meaning of the sentence
the most if more than one error was found in the
same segment. Three raters flagged and catego-
rized errors.

4 Participants and System Descriptions

We received submissions from 8 teams participat-
ing across different tasks, test sets and languages
we provided this year. Below we briefly present the
systems we were able to get a system description
paper for:

Naver Labs (NLE): They participated in Chat
and Biomedical tasks along with the Robustness
task. They trained a general big-transformer model
using FairSeq toolkit (Ott et al., 2019) and adapted
it towards different tasks using lightweight adapter
layers for each task (Bapna and Firat, 2019). They
compared results against the more traditional fine-
tuning method (Luong and Manning, 2015) to show
that the former provides a viable alternative, while
significantly reducing the amount of parameters per
task. They also explored using embedding from
pre-trained language models in their NMT system
of which they tried two MLM variants: i) using
NMT encoder’s setting, using Roberta (Liu et al.,
2019). The latter was found more robust to novel
domains and noise. The authors found that initializ-
ing with first 8 layers instead of the entire model to
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be optimal. Another notable finding included the
use of single bidirectional model instead of mono-
directional models to give similar performance. For
the robustness task specifically they added source
side synthetic noise and used BPE drop-out. While
this was found to be useful in handling noisy data,
no gains towards domain robustness were observed.

LIMSI: LIMSI participated in Biomedical and
Robustness tasks. For the robustness challenge
their main exploration was using adapter layers
(Bapna and Firat, 2019) applied on 8 domains (par-
allel data released in the News task). The architec-
ture adds an additional, domain-specific layer on
top of every layer of the encoder and the decoder.
This allows the test sets from known domains to
use adapter layers and for novel domains to use the
generic system. They created a noisy domain by
adding synthetic noise to source data. The idea is
that residual adapter layer learned from such data
learns how to deal with noisy domain and is also
able to preserve performance on the cleaner do-
mains. However this did not work as well. The
residual adapter fine-tuned using the ParaCrawl
corpus gave better performance.

e-Translation: Their effort was mainly directed
towards the News translation task, however they
submitted two systems to the Robustness task.
Their general systems were built using big-
transformer configuration trained using Marian (Lu-
ong and Manning, 2015) after up-sampling original
training data. The system was then fine-tuned for
another round with an LM scored subset of original
data. Finally ensembling four checkpoints pro-
duced their final systems. The authors reported an
interesting finding that their models performed bet-
ter on the noisy test sets released for this task than
on the standard news test set, suggesting that sys-
tems trained on the diverse domains were already
robust enough.

UEDIN: Team UEDIN also mainly trained their
system towards News translation task, but added
Gumbel noise to the output layer of the systems
submitted to the Robustness task. They followed
standard NMT training pipeline and boasted their
systems with additional data filtered from the para-
crawl corpus. The data was carefully selected using
dual cross-entropy (Junczys-Dowmunt, 2018) and
length-normalized cross-entropy.

OPPO: Team OPPO also trained their systems
for the language pairs released for the News trans-
lation task and did not carry any specific explo-
ration towards the task of Robustness. Their sys-
tems followed standard training regime of training
transformer models with Marian toolkit, with back-
translation to generate synthetic data and ensem-
bles of models. As additional module, they added
to their system a reranker trained on six forward
and backward models, the scores of which are used
as features in training the reranker.

PROMPT: Team PROMPT also participated
mainly in the News translation task. Their sys-
tems were trained using OpenNMT (Klein et al.,
2017) toolkit. They applied several stages of data
preprocessing including length-based filtering, re-
moving duplications, and using in-house classifier
based on Hunalign aligner to identify and dis-
card non-parallel sentences. They used two types
of synthetic data to improve their systems: i) ran-
domly selecting subset of Wikipedia equal to the
size of news data and generating parallel corpus
through back-translation, ii) creating synthetic data
with unknown words using the procedure described
in (Pinnis et al., 2017). Systems were trained with
tags to differentiate between original data and syn-
thetic data from each other. Named entities were
handled through a post-processing module with re-
decoding whenever a named entity was not trans-
lated or translated incorrectly.

Online systems: We also evaluated three top per-
forming online MT systems, which are also com-
monly used in the WMT News translation task:
online-A, online-B, and online-G. While we do not
have access to details of the architectures of these
models, to the best of our knowledge they are are
all neural MT models with one case including a
selection between translations from statistical and
neural models.

4.1 Common Trends
Participating systems were trained following a stan-
dard recipe, i) using big-transformer models, ii)
boasting performance with tagged back-translation,
iii) continued training with filtered data and in-
domain data (where available), iv) ensembling dif-
ferent models to obtain further improvements. Only
two teams, namely Naver Labs and LIMSI made
specific efforts towards the task of Robustness.
Both of them used lightweight domain adaptors
proposed by Bapna and Firat (2019). Both teams
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also explored making the systems robust by adding
noisy synthetic data. While they found using adap-
tor layers instead of fine-tuning the entire model
to be a viable alternative, no success was observed
adding noise to the training process.

5 Results

In this section we describe the results of both auto-
matic and manual evaluation of general translation
quality (Section 5.1), as well as an analysis of catas-
trophic errors (Section 5.2).

5.1 General Quality

Overall, the correlation between human judgments
and BLEU is not strong. For En→De (set1), the
Pearson’s correlation coefficient is 0.97, while for
the other four tasks the coefficients are lower, with
0.78, 0.65, 0.52, 0.79 for En→De (set1), Ja→En
(set2), En→Ja (set2), and De→En (set3) respec-
tively.

Automatic Evaluation The automatic evalua-
tion (BLEU) results of the Shared Task are sum-
marized in Table 2, where we also include the
three online translation systems. We performed sig-
nificance test using compare-mt (Neubig et al.,
2019) where systems are considered as significantly
different at p <0.05. The result of significance test
is used for the automatic evaluation ranking.

Overall, the unconstrained online-B system
provides strong results and outperforms most sys-
tems in the five language pairs, except the De→En
(set3) and En→Ja (set1).

Among the participating teams, the best zero-
shot systems were OPPO, which outperforms other
zero-shot systems in En→De (set1), Ja→En (set2),
and En→Ja (set2) tasks, and NLE, which outper-
forms other systems in the other two tasks.

Only Naver Labs participated in the few-shot
stage (NLE-few) and submitted their systems in
four language directions except the En→De (set1)
subtask. Their few-shot systems ranked the first
in all the four directions they participated, tying
online-B system in three language pairs.

Human Evaluation The results of human evalu-
ation following the evaluation protocol described in
Section 3.5 are outlined in Table 3. The likert score
is calculated by averaging ratings from the three hu-
man annotators over the 400 sampled translations
for each MT system, and we performed signifi-
cance test using the testSignificance.py

script6 (Dror et al., 2018) with p <0.05. The re-
sult of significance test in likert score is used for
the human judgement ranking. Interestingly, the
correlation in the system rankings between human
judgments and BLEU is not strong. In other words,
the best performing systems in BLEU do not rank
high according human judgement, sometimes even
rank the lowest. For example, in Ja→En (set2),
the online-B system ranks first in BLEU but last in
likert score. OPPO outperforms all systems in both
directions on set2, and is overall the best system
among the constrained, zero-shot submissions.

To get insight on the proportion of sentences
with each of the categories of human score, Fig-
ure 1 displays the distribution of likert ratings for
all systems. The most frequent ratings for the par-
ticipating systems are 2 and 3 while for the human-
translated references it is 4. Comparing the few-
shot and zero-shot systems, the NLE-few outper-
forms most systems because the frequency of lower
ratings (1 or 2) is lower, but the frequency of high
ratings (5) is similar to the zero-shot systems.

5.2 Evaluation on Catastrophic Failures

Here we turn our attention to the extra level of anno-
tation where human raters flag and categorise catas-
trophic errors in sentences. We note that we had
three raters for each translation, and that in some
cases different categories of errors were flagged.
This naturally happened since the raters were asked
to choose the category with the biggest negative im-
pact, which is a subjective decision. For example,
in En→De (set1), each system has 28 sentences in
average flagged with multiple errors. We report this
average multi-error counts in Figure 3. In addition,
we note that there may also be cases of disagree-
ment, where only a subset of raters flag errors (we
will perform agreement analysis later).

Error rate of systems Table 3 shows the pro-
portion of sentences containing as least one error
in (which we will refer as “error rate”). The error
rates vary among different test sets. Regarding set1,
which is sourced from Wikipedia comments, over-
sampling for more challenging content, the error
rate for different systems is high, ranging from 51%
to 76%. It is interesting that annotators indicate
that the human-translated references contain catas-
trophic errors as well, with an error rate of 23%
for both language pairs in set1. The error rate in

6https://github.com/rtmdrr/
testSignificanceNLP
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Figure 1: Distribution of likert ratings for all submitted systems (the darker the color, the higher the ratings - higher
quality).
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System
BLEU (RANK)

set1 set2 set3
En→De En→Ja Ja→En En→Ja De→En

Constrained
eTranslation 41.9 (3) – 13.9 (2) – –
mtmt – 18.2 (5) – – –
NLE 42.2 (4) 22.5 (3) 13.3 (2) 16.2 (3) 44.7 (2)
NLE(FEW) – 25.4 (1) 15.3 (1) 18.4 (1) 45.4 (1)
OPPO 42.9 (2) 19.1 (5) 15.2 (1) 17.3 (2) 43.3 (3)
PARFWD – – – – 30.8 (5)
UEDIN 35.1 (7) – – – 43.8 (3)
LIMSI 30.2 (8) – – – –

Unconstrained
PROMT 41.4 (5) – – – 41.4 (4)
online-A 38.6 (6) 23.1 (2) 13.6 (2) 17.8 (2) 43.2 (3)
online-B 48.0 (1) 25.4 (1) 14.3 (1) 18.8 (1) 44.3 (2)
online-G 37.9 (7) 20.4 (4) 9.4 (3) 14.8 (3) 43.4 (3)

Table 2: Automatic evaluation (corpus-level BLEU, cased) over all submitted systems, with the system’s rank in
parentheses (p < 0.05). Bold highlights the system with highest BLEU score.

set2, sourced from Reddit, is lower, which is within
36%-51% for participating systems and 16%-18%
for the references. In set3, which is sourced from
Common Voice data, the error rate is the lowest.
All systems except one achieve less than 10% error
rate. The issue of catastrophic errors in the refer-
ence translations needs further investigation. We
speculate that this could be due to misinterpretation
of the guidelines, as we discuss below.

The error rate is highly correlated with the likert
score reported in Section 5.1. We show in Figure 2
the relation of the proportion of translations with-
out catastrophic errors (blue bars) and the likert
scores (red lines). As expected, systems with more
translations without errors get higher likert scores.
The Pearson’s correlation coefficient for De→En
(set3) is 92%, while for the other four language
pairs, the coefficients are over 96%.

Distribution of error types In Figure 3 we show
the absolute counts and proportion of different
types of catastrophic errors per system. We note
that some sentences may have been annotated with
more than one error type (by different human anno-
tators), and therefore the counts may seem inflated.
To provide a better idea of the distribution of errors,
for each system the error proportion is calculated
as the number of translations with certain error di-
vided by the number of sampled translations, i.e.
400. In all five language pairs, the OTH error is the

main source of catastrophic errors, however, this
OTH error is not clearly defined and might indicate
different translation errors, e.g. some translations
simply copy the source sentence and are therefore
labelled as OTH error. This requires further analy-
sis.

Excluding the OTH error (Figure 4), the catas-
trophic error distribution varies in different sub-
tasks. Named entities (NAM) account for a large
proportion of errors in all subtasks except En→De
(set3). In En→De (set1), Ja→En (set2), and
De→En (set3) subtasks, sentiment (SEN) errors
are very frequent, similar to NAM errors. The TOX
error is predominant only in En→Ja subtask. Other
types of catastrophic errors occupy much smaller
proportion.

This figure also highlights the different catas-
trophic error types flagged for reference transla-
tions. While this needs further inspection and in-
vestigation, we suspect that annotators might have
misinterpreted the guidelines. For example, in the
Wikipedia comments En→Ja, there is a large pro-
portion of sentences with catastrophic errors of the
type “toxic” (TOX): almost 10% of the reference
translations contain such error type. Translations
(human or machine) containing toxic content might
have been tagged as containing errors, even though
the source segments also contained such toxic con-
tent and the translation is simply transferring it.
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Figure 2: Proportion of translations without any error (bars) and likert over all submitted systems (red points/line).
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System
likert score / error rate (RANK)

set1 set2 set3
En→De En→Ja Ja→En En→Ja De→En

Constrained
eTranslation 2.33 / 63% (2) – 2.84 / 51% (1) – –
mtmt – 2.49 / 59% (3) – – –
NLE 2.31 / 69% (2) 2.50 / 59% (3) 2.74 / 49% (2) 2.64 / 49% (3) 3.25 / 9% (3)
NLE(FEW) – 2.70 / 51% (1) 2.87 / 46% (1) 2.82 / 36% (2) 3.51 / 6% (2)
OPPO 2.36 / 66% (2) 2.27 / 70% (4) 2.93 / 45% (1) 3.00 / 37% (1) 3.47 / 6% (2)
PARFWD – – – – 2.67 / 15% (5)
UEDIN 2.09 / 75% (3) – – – 3.02 / 8% (4)
LIMSI 2.00 / 76% (4) – – – –

Unconstrained
PROMT 2.34 / 71% (2) – – – 3.04 / 10% (4)
online-B 2.67 / 49% (1) 2.61 / 54% (2) 2.69 / 50% (2) 2.88 / 42% (2) 3.66 / 6% (1)

Reference 3.51 / 23 % 3.75 / 23% 3.76 / 18% 3.95 / 16% 3.86 / 4%

Table 3: Average human judgments and catastrophic error translation rates over all submitted systems and the
reference translations (p <0.05). The systems’ rank for each translation direction is shown in parentheses. The
best system is highlighted.

However, this would not explain other error types,
which are defined in terms of mistranslation or mis-
matches between source and target content, such
as incorrect named entity translation (NAM). We
will analyse the data for that, as well as make it
available.

6 Conclusions

The second edition of this WMT shared task fo-
cused on testing MT systems in more challenging
conditions than last year, in two ways: (i) by mak-
ing this in a zero-shot setting, where no training
set and no in-domain development set were pro-
vided, (ii) by biasing the selection of the test sets
to make them even harder to translate, for example,
by oversampling segments with toxic content. We
hoped to encourage participants in the other WMT
translation tasks to submit to this task.

Indeed, most participating teams submitted stan-
dard NMT models trained on other types of data
and other WMT tasks. Very few teams introduced
specific techniques for robustness, such as augment-
ing training data with synthetic noise. Perhaps not
entirely surprisingly, strong online systems, which
are trained on a large variety of text types and do-
mains, performed well according to both automatic
and human evaluation. The only few-shot submis-
sion, however, managed to outperform online sys-
tems in most test sets, even in those from a different

domain from the small training set provided. This
is an interesting outcome and shows that few-shot
settings are promising.

A new protocol was used for human evalua-
tion: for general quality, direct assessment was
replaced by likert scores with more detailed guide-
lines. The ranking of systems according to this
human evaluation does not always agree with that
given by BLEU, which is not surprising. According
to human evaluation, systems were ranked together
more often.

In addition to general quality, we also introduced
a flag for catastrophic errors, which is a novel way
to evaluate translations. The proportion of sen-
tences containing such errors seems a lot higher
than expected. This could be an artefact of the per-
ception of human annotators on what constitutes
a catastrophic error. This would explain why even
the reference translations are found to contain such
errors, albeit on a much smaller scale. In future
work we will carry out in depth analysis on the
annotation to investigate this high number of catas-
trophic errors in human and machine translations.
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(b) set1: En→Ja (avg. multi-error sentences: 28)
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(c) set2: Ja→En (avg. multi-error sentences: 24)
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Figure 3: Distribution of different types of catastrophic errors for all systems: Absolute count or each error type per
system, as well as proportion of sentences in each system that contain that error. The average number of sentences
labelled with multiple errors per system is reported in parentheses.
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Figure 4: Distribution of different types of catastrophic errors for all systems excluding OTH: Absolute count or
each error type per system, as well as proportion of sentences in each system that contain that error.
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guidelines for catastrophic errors.
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Abstract

We describe the University of Edinburgh’s
submissions to the WMT20 news translation
shared task for the low resource language pair
English-Tamil and the mid-resource language
pair English-Inuktitut. We use the neural ma-
chine translation transformer architecture for
all submissions and explore a variety of tech-
niques to improve translation quality to com-
pensate for the lack of parallel training data.
For the very low-resource English-Tamil, this
involves exploring pretraining, using both lan-
guage model objectives and translation us-
ing an unrelated high-resource language pair
(German-English), and iterative backtransla-
tion. For English-Inuktitut, we explore the use
of multilingual systems, which, despite not be-
ing part of the primary submission, would have
achieved the best results on the test set.

1 Introduction

The University of Edinburgh participated in the
WMT20 news translation shared task for English-
Tamil and English-Inuktitut in both translation di-
rections.1,2 Neither language pair benefits from
large quantities of parallel data, so we approach
training using different techniques to compensate
for this lack of data: pretraining and iterative back-
translation for English-Tamil and multilingual sys-
tems for English-Inuktitut. We use neural machine
translation (MT) and specifically the transformer
architecture (Vaswani et al., 2017): the base vari-
ant for the lower-resourced English-Tamil and the
big variant for the mid-resource English-Inuktit. In
both cases, significant improvements are seen when
compared to the in-house baselines tested, particu-
larly notable for pretraining for English-Tamil.

1The UEDIN participation for English-German is in a
separate submission.

2Code and models can be found at http://data.
statmt.org/wmt20_systems/.

Awaiting the results of the official human eval-
uation, we report the automatic evaluation scores
using BLEU (Papineni et al., 2002) as implemented
in sacreBLEU (Post, 2018). A summary of these
results on the dev and test sets can be found in Ta-
ble 1 for all UEDIN submissions. The details of our
submissions can be found in Section 2 for English-
Tamil and in Section 3 for English-Inuktitut.

Language direction Dev Test

EN→TA 12.30 8.40
TA→EN 21.00 16.60

EN→IN 27.0 8.2
IN→EN 48.8 23.0

Table 1: Summary of results for all UEDIN submis-
sions according to the automatic evaluation (BLEU).

2 English↔Tamil

As for our English↔Gujarati systems last year at
WMT19 (Bawden et al., 2019), we use pretraining
and data augmentation to tackle the low-resource
language pair English–Tamil. Our experiments
show that pre-training, training on backtranslated
data and then fine-tuning is useful in both direc-
tions, although we introduce slight variations in the
training and fine-tuning approaches used for each
language direction.

2.1 Data and pre-processing

Our models are trained in the constrained scenario,
using publicly available WMT20 data. We choose
to exclude the terminology-like Wikititles as well
as WikiMatrix3 from our training data, using only

3While term lists contain useful vocabulary, they can inun-
date the training data due to their large size. This can cause
translation problems due to the different nature of the text,
notably in terms of sentence length. The EN-TA portion of
WikiMatrix corpus is very noisy adn so this is excluded too.

92



Data type #sentences Corpora

Parallel en–ta 340,995 PMindia, Tanzil, NLCP, PIB, MKB, EnTam
Monolingual en (in-domain) 653,606,835 News (crawl, discussions, commentary)
Monolingual en (out-of-domain) 101,692,093 Europarl, Wiki dumps
Monolingual ta (in-domain) 668,008 News crawl
Monolingual ta (out-of-domain) 1,553,160 Wiki dumps

Parallel de–en 43,675,462 Europarl, News commentary, Paracrawl, WikiMatrix, Tilde Rapid

Table 2: Data used for the Tamil-English models. Note that we also use German-English data for some of our
experiments as a form of pretraining.

the corpora shown in Table 2. We use both paral-
lel data and monolingual data for English-Tamil
and also exploit parallel data available for English-
German as a form of pre-training.

All data was first cleaned, keeping sentences of
3–100 (untokenised) units, for which the length ra-
tio between the parallel sentences is maximum 2.2,
and do not contain more than 50% non-alphabetic
characters or more than 50% of words without an
alphabetic character.4 We deduplicate the data and
normalise punctuation using Moses (Koehn et al.,
2007). We then apply subword segmentation using
SentencePiece (Kudo and Richardson, 2018) and
the BPE strategy (Sennrich et al., 2016).5

2.2 Approach used

We adopt a three-step approach to training our mod-
els, consisting of: (i) pre-training model parame-
ters using either an mBART language model or a
translation model for the highly resourced De-En
language pair, (ii) iterative backtranslation to pro-
duce synthetic parallel data of increasing quality,
and (iii) final model creation consisting of fine-
tuning pretrained models using both genuine paral-
lel and backtranslated data. We provide the details
of these three steps below.

Pre-training We experimented with several pre-
training objectives: language modelling using
XLM (Lample and Conneau, 2019a) or mBART
(Liu et al., 2020), and MT pre-training using a
higher-resourced language pair (namely English-
German). Using a higher-resourced language pair
for pretraining, even if this pair is unrelated to the
language pair on which the model is fine-tuned, has

4An alphabetic character is one belonging to the language
in question: the Latin alphabet for English and the Tamil script,
which is an abugida script.

5All models are learnt jointly over the languages used
for training (English, Tamil and in one case German too).
The vocabulary size is dependent on the model trained and is
specified in the experimental details below.

shown to be an effective and simple way of boost-
ing performance (Kocmi and Bojar, 2018; Aji et al.,
2020). For the De-En models, we had to choose
between (i) initialising only model parameters and
(ii) preserving all model and training parameters
from the parent model (similar to Grundkiewicz
et al. (2019)). We chose the first option as it pro-
duced better results in our experiments.

For mBART pretraining, we use all Tamil and
English monolingual data without shuffling or
deduplication. We tag the input segments with
a language tag and a domain tag: either in-domain
(news) or out-of-domain as in (Caswell et al., 2019).
For XLM pretraining we use the deduplicated and
shuffled corpus (since cross-sentence context is not
needed) and we subsample the English because of
computing cost. We also use domain tags, with lan-
guage information provided in the form of language
embeddings as per the standard implementation.
For De-En pre-training, we use all De-En parallel
data described in Table 2, with a joint English-
Tamil-German vocabulary. We experiment with
pretraining models in the two directions (De→En
and En→De) and find that the De→En model pro-
duces better results when fine-tuned on TA-EN
data.

System EN→TA TA→EN
dev test dev test

Parallel-only baseline 5.10 3.10 10.10 10.60

XLM 7.44 5.00 13.44 10.90
mBART 7.40 4.65 14.00 13.40
De-En 7.30 5.00 13.60 14.20

Table 3: Comparison of pre-training methods for
EN↔TA (BLEU) after fine-tuning on parallel data.

Table 3 shows the results of each of the pretrain-
ing methods once they have been fine-tuned on
Ta-En parallel data: the results are very similar
and all methods perform substantially better than
the baseline, which is trained on parallel data only
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but optimised in terms of training parameters and
subword segmentation. We choose to use De-En
pretraining for our final models and a mixture of
De-En and mBART pretraining for intermediate
MT models used for data augmentation (see the
next paragraph).

Iterative backtranslation Data augmentation
by backtranslating monolingual data has long
been used in MT to provide greater amounts of
in-domain parallel data in low resource settings
(Bertoldi and Federico, 2009; Bojar and Tamchyna,
2011). We use backtranslation to translate the
monolingual in-domain English and Tamil texts
into the other language using an intermediate MT
model and use the resulting synthetic parallel data
to train new MT models.

We apply this iteratively (Hoang et al., 2018), as
shown in Figure 1, to produce successively better
MT models, initialising the models at each stage
using either mBART or De-En pretraining. The in-
termediate MT models used to produce backtrans-
lations are in white and the final models, which are
then fine-tuned (as specified in the section entitled
Final model creation) are in grey.

Pretrained 
mBART

Pretrained 
mBART

Pretrained 
mBART

Pretrained 
De–En

Pretrained 
De–En

EN-TA:

TA-EN:

Pretrained 
mBART

Pretrained 
De–En

1

2

3

4

5

Backtranslations produced
by A, used to train B

Legend A B

Iterative backtranslation Final models

Figure 1: Iterative backtranslation process

1. We first train a Ta→En model initialised with
mBART pretraining and fine-tuned on parallel
data only. We then use this model to backtrans-
late all monolingual Tamil data into English.

2. We use the resulting backtranslated data to-
gether with the genuine parallel data to train
an mBART-pretrained En→Ta model. After
early stopping, we continue training using the
genuine parallel data only. We then use this
model to backtranslate 5M sentences of in-
domain English data into Tamil.6

6The En→Ta backtranslations at this step and the follow-

3. We use this new backtranslated data together
with the genuine parallel data oversampled
7 times to train a second mBART-pretrained
Ta→En model. After early stopping, we con-
tinue training using genuine parallel data only.
We then use this model to backtranslate all the
monolingual Tamil data.

4. We repeat step 2 with this latest backtranslated
data, generating the final backtranslations to
be used for the Ta→En direction.

5. We use 5M of these final backtranslations
along with the Ta-En genuine parallel data
oversampled 15 times to fine-tune a De-En
pretrained model and use this to generate
the final backtranslations to be used for the
En→Ta direction.

The results of the iterative backtranslation steps
on the dev set can be found in Table 4. They show
increasing BLEU scores at each successive step.

EN→TA TA→EN
System Pretraining BT dataset dev test dev test

1 mBART - - - 14.00 13.40
2 mBART 1 10.50 5.68 - -
3 mBART 2 - - 18.60 15.19
4 mBART 3 11.30 6.65 - -
5 De-En 4 - - 19.30 -

Table 4: Results (BLEU scores) for the successive mod-
els used for backtranslations (BT) (as shown in Fig-
ure 1). Each row uses backtranslations produced by
the system from the previous row.

System EN→TA

Parallel-only baseline 5.10

(i) mBART pretraining 7.40
XLM BT 9.90
mBART BT 10.50
De-En BT 10.40

(ii) De-En pretraining 7.30
XLM BT 9.30

Table 5: Dev set results (BLEU scores) for alternative
backtranslation schemes for system 2 from Figure 1.

In addition to the described strategy, we also ex-
perimented with training different pretrained mod-
els using backtranslations produced by different

ing steps are filtered using the same processing as described
in Section 2.1, filtered using dual conditional cross-entropy
filtering (Junczys-Dowmunt, 2018) and the top sentences are
selected to train the next step.
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models (e.g. training an mBart pretrained model
on XLM-produced backtranslations). We report a
small selection of these experiments here for one
of the backtranslation steps, comparing the use of
alternatives to system 2 (from Figure 1). These re-
sults are shown in Table 5: (i) a pretrained mBART
model trained on backtranslations from each of
the pretrained models, and (ii) a pretrained De-En
model trained on XLM backtranslations. For this
particular step of the iterative process, training a
pretrained mBART model on backtranslations pro-
duced by the pretrained mBART model produced
the best scores, explaining why this was chosen.

Final model creation Our final models are pre-
trained De-En models (in grey in Figure 1). After
pretraining, the finalisation of these models fol-
lows a two-step training strategy to incorporate the
synthetic and genuine parallel data:

1. We first train our models on the synthetic
data described previously (20M sentences
for Ta→En and just over 2.1M sentences for
En→Ta).

2. We then fine-tune the models on a mixture of
parallel and synthetic data.

This approach of pre-training on synthetic data
and fine-tuning on genuine and synthetic data has
been found to work well for other tasks (Junczys-
Dowmunt and Grundkiewicz, 2016; Grundkiewicz
et al., 2019). For the second step, we adopt differ-
ent strategies for each language direction, depend-
ing on which worked best. For Ta→En, we fine-
tune on genuine parallel data and 500k of the top
scored backtranslations.7 For En→Ta we fine-tune
on a mixture of genuine parallel data, synthetic data
produced using multi-agent dual learning (MADL;
Wang et al., 2019; Kim et al., 2019) and the top
1M backtranslations. This MADL data comprises
a mixture of forward translations and backtransla-
tions of the parallel data created using intermediate
models in both directions.

We also carried out preliminary experiments
with multilingual training using other Indian lan-
guages and experiments with phrase-based MT us-
ing Moses (Koehn et al., 2007) but they did not
achieve good results.

7Scoring is done using dual conditional cross-entropy fil-
tering as specified in Footnote 6.

2.3 Experimental settings

We use the Marian toolkit (Junczys-Dowmunt et al.,
2018) for all models except for those using XLM
pretraining, for which we use the Facebook XLM
toolkit (Lample and Conneau, 2019b). All mod-
els trained (including those used to produce back-
translations) use the Transformer-base architecture
(Vaswani et al., 2017) with default hyperparameters
according to the Marian or XLM implementation
(6 encoder and 6 decoder layers, embedding dimen-
sion of 512, 16 heads, feedforward dimension of
2,048, standard learning rate warm-up).

Parallel-only baseline Our parallel-only base-
line is trained with a joint vocabulary of size 5,414
for Ta-En and 418 for En-Ta. The En-Ta model
was trained with a small batch size of 1000 tokens.
mBart and XLM models are trained with a joint
vocabulary size of 20,000 SentencePiece BPE sub-
words (including special tokens for language and
domain tags, masking and sentence separators).

mBART training English and Tamil sentences
are mixed in equal amounts in each batch. We
use our re-implementation of mBART using Mar-
ian.8 We deviate from the original implementation
by always using two sentences per input segment,
whereas the original paper used as many sentences
as they could fit into the 512-token limit. The noise
hyperparameters are the same as the original paper
(35% of tokens are masked in contiguous spans
of an average of 3.5 tokens. Masked spans do not
cross sentence boundaries). Unlike XLM, we do
not use online backtranslation during pre-training.
We train until early stopping based on an held-out
non-parallel dataset generated using the same noise
function as the training data. During monolingual
pretraining we early stop after the validation score
(measured every 5,000 updates) does not improve
for 10 consecutive times. When training on back-
translations or finetuning on parallel data we early
stop on the parallel development corpus, measuring
the valdation score every 500 updates.

De-En pretraining For models with De-En pre-
training, we trained a SentencePiece model with a
vocabulary size of 32k on roughly equal amounts of
Tamil, English and German data (subsampling Ger-

8We implement an online “training harness” that reads
monolingual sentences in English and Tamil, converts them
to mBART training examples by applying noise and sends
them to the Marian training process. Code and training scripts:
https://github.com/Avmb/marian-mBART
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man and English). The final MT vocabulary size is
49,213 as it is based on using all German-English
data for training. The models are trained using tied
target embeddings, a learning rate of 0.0002, the
Adam optimiser (Kingma and Ba, 2015) and opti-
miser delay of 2 on 4 GPUs. We train all models
until convergence based on the BLEU score on the
held-out dev set provided for the task.

2.4 Results
Table 6 shows the final automatic evaluation score
of our submissions for both directions on the dev
set and the test set, including an ablation of the
various components: pretraining using the De-En
MT data (and fine-tuned on parallel data), addition
of synthetic data to this setup and finally fine-tuning
of the resulting model as specified previously.

System EN→TA TA→EN
dev test dev test

Parallel-only baseline 5.10 3.10 10.10 10.60

Our final models
Pretraining (De-En) 7.30 5.00 13.60 14.20
+ synthetic data 11.90 7.90 18.80 12.60
+ fine-tuning 12.30 8.40 21.00 16.60

Table 6: EN↔TA results (BLEU scores) for the succes-
sive steps in the creatino of our final models. The Last
row represents the primary submission systems.

The best results (8.40 for En-Ta and 16.60 for Ta-
En) are achieved with all three approaches to train-
ing. We found that ensembling did not improve
our results and therefore our submitted systems are
single models. We note that our final approach sees
a big difference in the BLEU score between the dev
and test sets. While BLEU scores are not directly
comparable across datasets, the drop is quite sig-
nificant and could indicate a domain shift between
the two sets. Our models rely heavily on the use of
backtranslated data and therefore could be adapting
to translationese, which is rewarded in the dev set
but not in the test set.

3 English↔Inuktitut

Compared to English-Tamil, the English-Inuktitut
language pair is relatively well-resourced at ap-
proximately 1.3M sentence pairs. As such we were
able to train conventional bilingual Transformer
systems, which formed the basis of our submission.
We also trained multilingual systems, but opted not
to use these in our submission as results on the
dev set did not appear to be promising (although

evaluation proved challenging for this pair due to
overlap between the training and dev data). Post-
submission evaluation showed that our multilingual
systems actually outperformed our submitted sys-
tems on the test sets.

3.1 Data and Preprocessing
We used all of the Nunavut Hansard data provided
by the task organisers. For Inuktitut→English, this
was supplemented with a similar volume of syn-
thetic data, back-translated from the English side
of the Europarl and News Crawl corpora. The only
additional monolingual Inuktitut data was 163k
sentences of common-crawl data, which we back-
translated for the English→Inuktitut system.

We developed two multilingual systems:
English→ {Inuktitut,German,Russian} and
{Inuktitut,German,Russian} → English. The
Russian and German languages were selected due
to the availability of suitable volumes of data in
the domains of interest (news and parliamentary
proceedings). Both multilingual systems used
the same dataset, which contains genuine iu-en,
synthetic iu-en, genuine de-en, and genuine
ru-en in a ratio of approximately 1:1:2:2 (both
systems used all of the synthetic data, regardless of
back-translation direction). Table 7 lists all of the
corpora used for the multilingual systems

Lang. Pair Size Corpus

en-iu 1,310k Nunavut Hansard
en-iu 650k Synthetic (from en Europarl)
en-iu 650k Synthetic (from en News 2019)
en-iu 163k Synthetic (from iu CommonCrawl)
en-de 361k News Commentary
en-de 1,817k Europarl
en-de 400k Paracrawl
en-ru 1,000k Yandex
en-ru 1,600k UN

Table 7: Data used for the multilingual English-
Inuktitut models. Size is given in sentence pairs.

For the bilingual systems, our preprocessing
pipeline consisted of corpus cleaning and seg-
mentation. For corpus cleaning, we used the
clean-corpus-n.perl script from the Moses
toolkit (Koehn et al., 2007). This applies a maxi-
mum length threshold of 80 as well as removing
empty sentences and sentence pairs with length
ratios greater than 9:1.

For segmentation, we trained language-specific
SentencePiece models (Kudo and Richardson,
2018) with a vocabulary size of 32,000 BPE sub-
words and a vocabulary threshold of 50.
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Preprocessing was identical for the multilingual
systems except that for the English→ {de,iu,ru}
we added a token to each source sentence to specify
the target language (as in Johnson et al. (2017)).

After the release of the test set, the task organ-
isers reported that some test sentences had been
enclosed in extraneous quotes. For our submission,
and for post-submission evaluation, we removed
outer quotes prior to translation for any test sen-
tence that began and ended with a double quote
character.

3.2 Experimental Settings
We used the Nematus toolkit (Sennrich et al., 2017)
for all models. For preliminary systems, our hyper-
parameter settings matched the ‘base’ configuration
of Vaswani et al. (2017). We used these systems
for back-translation. For the multilingual systems
and final bilingual systems, our settings matched
Vaswani et al. (2017)’s ‘big’ configuration. We
used a batch size of 16,384 tokens for all models.

Since the bilingual ‘big’ systems looked the most
promising during development, we trained a second
model for each direction and used ensembling in
our submission systems.

3.3 Results
Table 8 shows the automatic evaluation scores for
our submitted ensemble systems as well as individ-
ual bilingual systems and multilingual systems.

Post-submission evaluation on the test set shows
that the multilingual systems outperformed the
bilingual systems, which is in contrast to the re-
sults obtained on the dev sets during system devel-
opment. We suspect that the large differences in
BLEU between dev/test and bilingual/multilingual
to overlap between the Nunavut training and dev
data. We found that a large proportion of dev sen-
tences were present in the training data, although
many were short, frequently used phrases, such as
‘Thank you, Mr. Speaker.’ and ‘The motion is car-
ried.’ During development we tried filtering the dev
set to reduce overlap at the sentence level. This low-
ered the scores, but still produced the same overall
order: bilingual big > bilingual base > multilin-
gual and so we used this result to guide our decision
on which systems to submit. With hindsight, we
suspect that the prevalence of formulaic, but not
necessarily identical, constructions in the text may
be a complicating factor and that more aggressive
filtering of the dev set may have produced more
robust results. Compared to the bilingual base or

multilingual models, the bilingual big models have
more capacity available for memorisation of the
training data and it seems that our filtering was not
enough to counter this effect.

4 Conclusion

In this submission we focused on a low-resource
language pair (English-Tamil) and a medium-
resource language pair (English-Inuktitut). All our
translation systems are based on the Transformer
architecture. We found it beneficial to use mono-
lingual data in the form of backtranslations. In
the case of En-Ta, we saw notable gains by using
pretraining using both the denoising autoencod-
ing (mBART) objective and multilinguality in the
form of German-English pretraining. However, we
were not able to gain any quality from multilingual
training on data for other Indian languages. For
English-Inuktit, multilinguality did not appear to
help on the dev set, but was found, post-submission,
to help on the test set.

In general, we found that English-Tamil is a
much more challenging task, where pretraining
is absolutely necessary to reach acceptable qual-
ity, while for English-Inuktit reasonable translation
quality can be achieved using only parallel data.
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Abstract

This paper describes the Global Tone Commu-
nication Co., Ltd.’s submission of the WMT20
shared news translation task. We partici-
pate in four directions: English to (Khmer
and Pashto) and (Khmer and Pashto) to En-
glish. Further, we get the best BLEU scores
in the directions of English to Pashto, Pashto
to English and Khmer to English (13.1, 23.1
and 25.5 respectively) among all the partic-
ipants. Our submitted systems are uncon-
strained and focus on mBART (Multilingual
Bidirectional and Auto-Regressive Transform-
ers), back-translation and forward-translation.
Also, we apply rules, language model and
RoBERTa model to filter monolingual, paral-
lel sentences and synthetic sentences. Besides,
we validate the difference of the vocabulary
built from monolingual data and parallel data.

1 Introduction

We participated in the WMT shared news transla-
tion task and focus on the bidirections: English and
Khmer, English and Pashto. We applied fairseq(Ott
et al., 2019) as our develop tool and use trans-
former(Vaswani et al., 2017) as the main archi-
tecture. The primary ranking index for submitted
systems is BLEU (Papineni et al., 2002), therefore
we apply BLEU as the evaluation matrix for our
translation system. For Khmer, we use polyglot 1

as the tokenizer before evaluation.
For data preprocessing, the basic method in-

cludes punctuation normalization for all language.
Further, according to the different language charac-
teristics. Tokenization, truecase and byte pair en-
coding (BPE) (Sennrich et al., 2015b) are applied
for English, and sentencepiece (Kudo and Richard-
son, 2018) is applied for Khmer and Pashto. Be-
sides, human rules, language model and RoBERTa
model (Liu et al., 2019) are also involved to clean

1https://github.com/aboSamoor/polyglot

parallel data, monolingual data and synthetic data.
Regard to the techniques on model training, back-
translation (Sennrich et al., 2015a) and forward-
translation are applied to verify whether these tech-
niques could improve the translation performance
especially in low-resource condition.

We all know that it is more difficult to train a
model in low-resource condition, because it suffers
from data sparsity and out-of-vocabulary problem.
Normally knowledge distillation (Kim and Rush,
2016) is a good way to generate synthetic data. But
in this task we suppose that knowledge distillation
can only generate 100 thousand to 1 million par-
allel sentences due to the size of provided data.
Therefore, we use forward-translation with mono-
lingual data to generate more synthetic data. Here
forword-translation refers to translate the source
sentences to target language, and clean synthetic
data.

This paper is arranged as follows. We firstly
describe the task and show the data information,
then introduce how we do data filtering, includ-
ing human rules, language model and RoBERTa
model. After that, we describe the techniques on
low-resource condition and show the conducted ex-
periments in detail of all directions, including data
preprocessing, model architecture, back-translation
and forwor-translation. At last, we analyze the
results of experiments and draw the conclusion.

2 Task Description

The task focuses on bilingual text translation in
news domain and the provided data is show in Ta-
ble 1, including parallel data and monolingual data.
For the direction between English and Khmer, the
parallel data is mainly from ParaCrawl v5.1 and
shared task on parallel corpus filtering (mostly from
OPUS (Tiedemann, 2012)), as well as the direction
between English and Pashto. Another, monolin-
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language number of sentences
en-ps parallel data 1M
en-km parallel data 4.17M
en monolingual data 16.9M
ps monolingual data 4.2M
km monolingual data 12.7M
en-ps development set 3162
en-km development set 2378
en-ps devtest set 2698
en-km devtest set 2309

Table 1: Task Description.

gual data we used are News crawl both for English,
Common Crawl and Wiki dumps both for Khmer
and Pashto. All directions we participated are new
for this year, we use wikipediadev as our develop-
ment set and wikipediadevtest as our test set.

3 Data Filtering

The methods of data filtering are mainly the same
as we did in last year (Bei et al., 2019), including
human rules and language model. Further, another
methods we used this year are as follows:

Clean repeated translation sentences in synthetic
data. For example, we often see the translation
like: I want to eat an apple apple apple apple apple,
when translating a source language sentence with
repeated words until the end of the sentence. In
this task, we made a simple clean strategy which is
to remove the sentences that repeat one word four
times, two words three times or three words two
times.

Clean synthetic data by RoBERTa model. In or-
der to clean synthetic data, especially from forword-
translation, we represent the source and target sen-
tences by RoBERTa model and calculate the cosine
distance. Remove the sentences with low score or
without translation (the source sentence and target
sentence are same).

4 Forward-translation

In low-resource condition, out-of-vocabulary is a
problem. There is a difference between the test
scenario and training scenario, which means the
words appear in test set may be not existed in train-
ing vocabulary. Back-translation is a common way
to extend the word vocabulary. However, with
the generated synthetic data from back-translation,
only target vocabulary can be enriched. To extend
the source side vocabulary, we use source-to-target

configuration value
architecture transformer
word embedding 512
Encoder depth 5
Decoder depth 5
transformer heads 2
size of FFN 2048
attention dropout 0.2
dropout 0.4
relu dropout 0.2

Table 2: The FLoRes model architecture.

configuration value
architecture transformer
word embedding 768
Encoder depth 6
Decoder depth 6
transformer heads 12
size of FFN 3072
attention dropout 0.1
dropout 0.1
relu dropout 0

Table 3: The mBART model architecture.

model to translate the source monolingual data to
target side. Further, it is necessary to clean the
forward-translation sentences to avoid cascading
error for the next training. We use RoBERTa to
represent the source and target sentence and cal-
culate the cosine distance. Remove the sentences
with low score or without translation (the source
sentence and target sentence are same).

5 Experiment

5.1 Model architecture

• Baseline Table 2 shows the baseline model
architecture.

• mBART We fine-tune on mBart model to get
better translation. Table 3 shows the model
architecture.

• Big transformer We use transformer big
model to train our model with fairseq. The
model configuration and training parameters
is almost same as last year we use. In order
to training more stable in low-resource condi-
tion, we add layer normalize before encoder
and decoder.
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5.2 Training Step
This section introduces all the experiments we set
step by step and Figure 1 shows the whole flow.

• Date Filtering Following the task of Paral-
lel Corpus Filtering and Alignment for Low-
Resource Conditions, we use the LASER-
based scores to filter the raw parallel sentences
and extract 5 million words England tokens.

• Baseline. We use FLoRes (Guzmán et al.,
2019) architecture to construct our baseline in
low-resource condition.

• Fine-tuning on mBART. In such low-
resource condition, we fine-tune on mBART
model with filtered sentences.

• Back-translation. We use fine-tuned model
to translate the target sentence to source side,
and clean synthetic data with language model
and RoBERTa model. Mix cleaned back-
translation data and parallel sentences and
fine-tune on mBART model.

• Forward-translation. Source side sentences
are translated to target side, and cleaned by
language model and RoBERTa model. Mixed
with cleaned back-translation data, forward-
translation data and parallel sentences, fine-
tune on mBART model.

• Monolingual vocabulary. To enrich the vo-
cabulary further, we preprocess the monolin-
gual data and build the vocabulary as model
vocabulary. Here, we normalize the punctua-
tion of all data by nomalize-puncuation.perl
in Moses toolkit (Koehn et al., 2007). We ap-
ply tokenizer and truecaser in Moses toolkit
for English. Finally, BPE (Byte Pair Encod-
ing) (Sennrich et al., 2016) is applied on tok-
enized English and sentencepiece is applied
on Pashto and Khmer. The BPE and sentence-
piece merge operation are both 32000. There-
fore, the vocabulary of monolingual data is set
to 32500. We use these vocabularies as model
vocabulary and train big transformer model.

• Joint training. Repeat back-translation step
and forward-translation step by best model,
until there is no improvement.

• Ensemble Decoding. We use GMSE Algo-
rithm (Deng et al., 2018) to select models to
obtain the best performance.

6 Result and analysis

Table 4 and Table 5 show the BLEU score we eval-
uated on development set for English to Pashto,
Pashto to English, English to Khmer and Khmer to
English respectively.

For fine-tuning on mBART model, we find that it
is the most effective method with an improvement
from 0.56 to 3.62 BLEU score in low-resource con-
dition. And back-translation gets the improvement
from 0.17 to 3.04 BLEU score. Forward translation
and monolingual vocabulary enrich the information
in low-resource condition, with improvement of
0.16 to 0.74 BLEU score and 0.69 to 0.94 BLEU
score respectively. Further, joint training and en-
semble decoding slightly increase the performance
with 0.31 to 0.4 BLEU score and 0.15 to 0.4 BLEU
score.

7 Summary

This paper describes GTCOM’s neural machine
translation systems for the WMT20 shared news
translation task. For all translation directions, we
build systems mainly base on mBART model and
enrich information by back-translation, forward-
translation and using monolingual vocabulary with
data filtering, including calculating cosin distance
by RoBERTa model, language model and so on.
The effect of increasing information is also depen-
dent on data filtering. Finally, we submit the on-
line system including English to Pashto, Pashto to
English, Khmer to English and English to Khmer
with almost same methods in this paper. Another,
we also submit our online system from English to
Tamil and Tamil to English.
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Figure 1: The whole work flow.

model en2ps ps2en
baseline 5.73 8.37
fine-tuning on mBART 9.35 11.98
+ back-translation 9.97 12.15
+ forward-translation 10.15 12.31
+ monolingual vocabulary 10.88 13.25
+ joint training 11.19 13.69
+ Ensemble Decoding 11.34 14.09

Table 4: The case-sensitive BLEU score between En-
glish and Pashto.
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Abstract

This paper describes DiDi AI Labs’ submis-
sion to the WMT2020 news translation shared
task. We participate in the translation direc-
tion of Chinese→English. In this direction,
we use the Transformer as our baseline model,
and integrate several techniques for model en-
hancement, including data filtering, data selec-
tion, back-translation, fine-tuning, model en-
sembling, and re-ranking. As a result, our
submission achieves a BLEU score of 36.6 in
Chinese→English.

1 Introduction

We participate in the WMT2020 news translation
shared tasks in Chinese→ English direction. For
this translation direction, we train several variants
of Transformer (Vaswani et al., 2017) models on
the provided parallel data enlarged with synthetic
data from monolingual data. We experiment with
several techniques proposed in the past translation
tasks and adopt effective ones as components of
our system.

Our data preparation pipeline consists of data fil-
tering, data augmentation, and data selection. For
data filtering, we filter sentence pairs based on lan-
guage model scoring, alignment model scoring, etc.
For data augmentation, we experiment with itera-
tive back-translation (Sennrich et al., 2016; Edunov
et al., 2018) methods and iterative knowledge distil-
lation (Freitag et al., 2017) methods. We leverage
source-side monolingual data by applying iterative
knowledge distillation, and target-side monolingual
data by back-translation methods, including greedy
search, beam search, and noised beam search. For
data selection, we select an in-domain corpus with
N-grams language models and binary classifiers. A
tri-gram token-level language model and a bi-gram
character-level language model are introduced for
English and Chinese respectively. Out-of-domain

sentences which have similar scores as in-domain
sentences are chosen. We also treat data selection
as a text classification problem, and use BERT (De-
vlin et al., 2019) as the basic classifier. In this way,
we collect a corpus of high-quality in-domain train-
ing data, which improves translation performance
significantly.

To enhance a single model, we use several
variants of Transformer, including Transformer
with relative position attention (Shaw et al., 2018),
Transformer with larger feedforward inner (FFN)
size (8, 192 or 15, 000), and Transformer with re-
versed source. We then ensemble these models
with adequate model diversity and data diversity to
further improve the performance.

Domain conflicts influence the translation per-
formance significantly. For example, there exist
differences between written English and spoken
English. Usually, a model cannot do the best in
all domains due to the conflicts. In this work, we
propose to obtain domain information with unsu-
pervised clustering and exploit this information for
translation. Specifically, we partition the training
data, dev data, and test data into different clusters,
and translate each cluster part of the test set with the
model fine-tuned on the corresponding training set.
Exploiting domain information helps improve the
translation significantly. Details will be discussed
in Section 3.

This paper is structured as follows: Section 2
describes variants of Transformer we used in the
competition. In Section 3, we introduce several
techniques for model enhancement, including data
filtering, back-translation, fine-tuning, model en-
sembling. Section 4 presents experimental settings,
results and analysis. Finally, in Section 5 we draw
a brief conclusion of our work in the WMT2020.
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2 Model

2.1 Transformer
The Transformer adopts a sequence-to-sequence
structure, using stacked encoder and decoder layers
of self-attention. Encoder layers consist of a self-
attention layer followed by a feed-forward layer.
Decoder layers consist of a masked self-attention
layer, an encoder-decoder attention layer, and a
feed-forward layer to incorporate source informa-
tion and generate texts. The residual connections
(He et al., 2016) and layer normalization (Ba et al.,
2016) are introduced in the encoder and decoder
layers for better convergence. In contrast to recur-
rent neural networks, the Transformer implicitly
leverages relative and absolute position informa-
tion in its structure. The Transformer introduces
position encoding based on sinusoids in its inputs
to incorporate position information.

In the competition we use Transformer Big as
the baseline model, in which both the encoder and
decoder have 6 layers, the number of heads is 16,
the hidden size is 1, 024, and the feedforward inner
(FFN) size is 4, 096.

2.2 Transformer with Relative Position
Attention

The original Transformer leverages position infor-
mation by taking absolute positional embeddings
as inputs and does not explicitly capture the infor-
mation in its structure. Thus the original Trans-
former cannot leverage position information effi-
ciently. Here we used relative positional embed-
dings in the self-attention mechanism proposed in
Shaw et al. (2018) for the encoder layers and de-
coder layers. We do an ablation study and find
that the model with relative positional embedding
has faster convergence and better performance than
Transformer Big. We adopt Transformer with rela-
tive position attention as a basic architecture in the
final ensemble model.

2.3 Transformer with Larger FFN Size
Since increasing the model size can help improve
the performance on the NMT tasks, we experi-
ment with Transformer with a larger embedding
dimension, FFN size, number of heads, and num-
ber of layers. We find that using a larger FFN size
(8, 192 or 15, 000) gives a reasonable improvement
in the performance while maintaining a manage-
able network size. We adopt a Transformer with
FFN size of 8, 192 and a Transformer with FFN

size of 15, 000 as basic models in the final ensem-
ble model, which has a larger inner dimension of
feed-forward network than Transformer Big. Since
Transformer with a larger FFN size is more likely
to overfit, we set the dropout rate from 0.1 to 0.3
and use a label smoothing rate of 0.2.

2.4 Transformer with Reversed Source

We reverse the source sentences of the bilingual cor-
pus and train a Transformer with source reversed.
In this way, the model can learns a different mean-
ing of the positional embeddings, which helps cap-
ture the source sentences from a different perspec-
tive. Viewing source in a reversed order provides
another kind of model diversity and data diversity
and presents positive effects in the final model en-
semble.

3 System Overiew

3.1 Data Filtering

Previous works (Sun et al., 2019; Xia et al., 2019;
Guo et al., 2019) show that the translation perfor-
mance improves as the quality of parallel corpus
improves. We filter the training bilingual corpus
with the following schemes:

• Normalize punctuation with Moses scripts

• Filter out the sentences longer than 120 words
or sentences including a single word more
than 40 characters.

• Filter out the sentences which contain HTML
tags or duplicated translations.

• Filter out the sentences whose languages de-
tected by fastText1 (Joulin et al., 2017) are not
identical to the translation direction.

• Filter out the sentences whose alignment
scores obtained by fast-align2 (Dyer et al.,
2013) are low.

• Filter out the sentences whose n-gram scores
from language models are low.

• Filter out the sentences whose length ratio
between the source and target are not in range
of 1 : 3 and 3 : 1

1https://github.com/facebookresearch/fastText
2https://github.com/clab/fast align
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In this paper, we also filter out noisy sentence
pairs with the translation acceptability filter pro-
posed in (Zhang et al., 2020). Specifically, we
feed the sentence pair (s, t) into multilingual BERT,
which accepts two-sentence input due to its next-
sentence prediction objective. Instead of using the
[CLS] token representation, we use a Convolutional
Neural Network (CNN) layer that takes the BERT
output and generates the final representation of the
pair. Our experiments show that using CNN layer
pooling achieves marginal gains over [CLS] pool-
ing. We use the softmax probability as the degree
of parallelism and filter the sentences. The trans-
lation quality of the model boosts with the data
filtering strategies.

3.2 Large-scale Back-Translation

The provided monolingual data contains a certain
amount of noise, in which noise may affect the
translation quality implicitly. Therefore, we adopt
the data filtering schemes described in Section 3.1.

Previous work (Edunov et al., 2018) shows that
leveraging the back-translation mechanism on the
large-scale monolingual corpus can help improve
the translation quality. Edunov et al. (2018) in-
vestigates several methods to generate synthetic
source sentences, including greedy search, beam
search, sampling top-K outputs, adding noise to
beam search output, and adding noise to input sen-
tences.

• Both greedy search and beam search are ap-
proximate algorithms to identify the maxi-
mum a-posteriori (MAP) output, i.e. the sen-
tence candidate with the largest estimated
probability given an input. This leads to less
rich translations and is particularly problem-
atic for text generation tasks such as back-
translation.

• Sampling top-K method selects the k most
likely tokens from the output distribution, re-
normalizes, and samples from this restricted
set. This method is a trade-off between MAP
and unrestricted sampling.

• Adding noise to input sentences or beam
search outputs can help improve the quality
and robustness of the translation.

We experiment with the above methods and ob-
serve that language pairs with abundant parallel

corpus like Chinese→ English obtain obvious im-
provement with beam search and adding noise. In
our back-translation scheme, we add noise to in-
put sentences, and use a beam search to produce
the synthetic sentences. In particular, we delete
words, replace words by a filler token and swap
words according to a random permutation with the
probability of 0.05.

Zhang et al. (2018) proposed an iterative joint
training of the source-to-target model and target-to-
source model for the better quality of synthetic data.
Specifically, in each iteration, the target-to-source
model is responsible for generating synthetic par-
allel training data for the source-to-target model
using the target-side monolingual data. At the same
time, the source-to-target model is employed for
generating synthetic bilingual training data for the
target-to-source model using the source-side mono-
lingual data. The performance of both the target-to-
source and source-to-target model can be further
improved iteratively. We stop the iteration when
we can not achieve further improvement.

Since there are amounts of genres in both paral-
lel and synthetic data, we adopt a language model
to divide data into a coarse domain-specific corpus.
We train multiple language models on different
types of monolingual data (News crawl, Gigaword,
etc.), and score the sentences with the language
models. We select the top 600K sentences for each
domain. In the final submission, we adopt an itera-
tive joint training scheme and train models on both
bilingual and synthetic data of different genres to
improve translation quality.

3.3 Knowledge Distillation

Alternate knowledge distillation (Hinton et al.,
2015; Freitag et al., 2017) and ensemble iteratively
is adopted in the competition to further boost the
performance of a single model. We simply use an
ensemble model as the teacher model and boost
the single student model by data augmentation. In
our experiments, we use Transformer Big, Trans-
former with relative position, Transformer with
larger FFN size, and Transformer with reversed
source as basic models. For each model type, we
ensemble other model types as the teacher model
to boost the model performance. For example, the
ensemble model of a Transformer with relative po-
sition, a Transformer with larger FFN size, and a
Transformer with reversed source are adopted as
a teacher model to improve the performance of a
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Transformer Big.
Considering that distillation from a poor-quality

teacher model is likely to hurt the student network
and thus results in an inferior performance, we
selectively use distillation in the training process.
In our experiments, we filter out data according
to the sentence-level BLEU scores whose English
translations lower than 28.

3.4 In-domain Data Selection and
Fine-tuning

Domain adaptation plays an important role in im-
proving the performance towards given test data.
A practical method for domain adaptation is train-
ing on the large-scale data and then fine-tuning on
the in-domain data (Luong and Manning, 2015).
We select the small in-domain corpus with several
approaches, including N-grams language model
similarity and binary classification.

N-grams: We adopt the algorithm proposed in
Duh et al. (2013); Axelrod et al. (2011), which se-
lects sentence pairs from the large out-of-domain
corpus that are similar to the in-domain data. In
our work, we train a tri-grams token-level language
model for English and a bi-grams character-level
language model for Chinese. We use the parallel
texts as the out-of-domain corpus and all available
test sets in the past WMT tasks and News Com-
mentary as the in-domain corpus. We score the
sentence pairs with bilingual cross-entropy differ-
ences as follows:

CE(HI−SRC , HO−SRC)+CE(HI−TGT , HO−TGT ) (1)

where we denote out-of-domain corpus as O, in-
domain corpus as I . HI−SRC denotes language
models over the source side and HI−TGT denotes
language models over the target side on in-domain
data. HO−SRC denotes language models over the
source side andHO−TGT denotes language models
over the target side on out-of-domain data. CE
denotes the cross-entropy function which evaluates
the differences between distributions.

Finally, we sort all sentence pairs and select the
top 600K sentences with the lowest scores to fine-
tuning the parameter of the model.

Binary Classification: We also treat in-domain
data selection as a text categorization problem.
There are two categories: in-domain (1) and out-
of-domain (0). We use the pre-trained language
model BERT as the basic classifier. For the fine-
tuning data, all available newstest data and News

Commentary are regarded as positive data, and ran-
domly sampled data from the large-scale corpus are
regarded as negative data. Then BERT is exploited
to score the sentence pairs. We sort all sentence
pairs and select the top 600K sentences with the
highest scores as fine-tuning data.

All the in-domain data obtained by the above
methods are adopted to fine-tuning the single model
and provide about a 2 BLEU scores improvement.

3.5 Model Ensemble

Ensemble learning is a widely used technique in
the real-world tasks, which provides performance
improvement by taking advantages of multiple sin-
gle models. In neural machine translation, a prac-
tical way of the model ensemble is to combine
the full probability distribution over the target vo-
cabulary of different models at each step during
sequence prediction. We experiment with the max,
avg, and log-avg strategies, and find the log-avg
strategy achieves the best performance. We im-
plement a model ensemble module in OpenNMT3

(Klein et al., 2017). In our experiments, we observe
that simply enlarging the size of ensemble models
does not necessarily improve translation perfor-
mance. However, brute-force search of all models
is prohibitively expensive and unrealistic. As the
number of models increases, the decoding of the
ensemble will take more time than a single model
and exceed the limits of computer resource capac-
ity. Therefore, we adopt a greedy model ensemble
algorithm (Li et al., 2019) as shown in Algorithm
1.

Since model and data diversity are important
factors for an ensemble system, we train diverse
models with different initialization seeds, different
parameters, different architectures, and different
training data sets. All the models are fine-tuned to
achieve superior performance.

3.6 Domain Style Translation

Translation performance differs in different topic
domains. For intuitive explanation, we take native
style and translation style as an example, and our
topic domains are generated by using unsupervised
clustering, not limited to these two styles. Native
style and translation style are much different. A
single model cannot do the best in both styles. For
the Chinese → English task in WMT 2017 and
2018, the source side of both dev set and test set

3https://github.com/OpenNMT/OpenNMT-tf
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Algorithm 1: An simple ensemble algo-
rithm based on greedy search
Input: a model list Ωcand sorted by the

scores on development data.
Output: a final model list Φfinal

1 for all combination of 2 models that model
∈ top-8 models do

2 obtain translation by ensemble decoding
and evaluate with BLEU score;

3 end
4 Choose the best 2 model combination as the

initial Φfinal;
5 while there is tiny improvement as the

model number increases do
6 choose one single model from the rest of

Ωcand to the Φfinal which performs
better when combined with Φfinal;

7 end

are composed of two parts: documents created orig-
inally in Chinese (translation style) and documents
created originally in English (native style). For the
Chinese→English task, if the Chinese sentences
are created from native Chinese corpus, then the
corresponding English sentences are in translation
style, so the model fine-tuned on these parallel sen-
tences helps with translation style. Similarly, if the
English sentences are created from native English
corpus, the model fine-tuned on these sentences
helps with native style. Previous work (Sun et al.,
2019) shows exploiting translation style and native
style achieves much better performance. In our
work, we classify sentences into different topic cat-
egories (not limited to translation style and native
style), and translate each specific part of the test
set with the model fine-tuned on the corresponding
training set.

Domain Label: We use pre-trained BERT mod-
els to extract [CLS] vector as the sentence embed-
ding and obtain two clusters by K-Means clustering.
We use the cluster id as the domain label.

Domain Classification: Pre-trained BERT mod-
els are fine-tuned as a text classification task, based
on the source and target side with the domain label
we defined above. In this way, we can select several
fine-tuning data w.r.t. different topic domains.

Decoding Stage: Since the test data is composed
of a mixed-genre data, we first classify the domain

of each sentence in the test set and obtain the proba-
bilities corresponding to each domain. Then we ap-
ply a weighted ensemble method to integrate NMT
models. Specifically, when computing the output
probability of the next word, we multiply the out-
put probability in each domain-specific translation
model with the corresponding domain probability
of each sentence.

3.7 Re-ranking
We obtain n-best hypotheses with an ensemble
model and then train a re-ranker using k-best MIRA
(Cherry and Foster, 2012) on the validation set. K-
best MIRA works with a batch tuning to learn a
re-ranker for the n-best hypotheses. The features
we use for re-ranking are:

• Length Features: length ratio and length dif-
ference between the source sentences and hy-
potheses

• NMT Features: scores from the ensemble
model

• Language Model Features: scores from multi-
ple n-gram language models

4 Experiments and Results

4.1 Experiment Setup
Our implementation of the Transformer models is
based on the version 2.3.0 of OpenNMT-tf. We use
Transformer Big as a basic model. Transformer Big
has 6 layers in both encoder and decoder respec-
tively, where each layer consists of a multi-head at-
tention sublayer with 16 heads and a feed-forward
sublayer with inner dimension 4096. The word
embedding dimensions and the hidden state dimen-
sions are set to 1024 for both encoder and decoder.
In the training phase, the dropout rate Pdropout is
set to 0.1. Variants of Transformer described in
Section 2 are adopted in the competition.

In the training phase, we use cross entropy as the
loss function and apply label smoothing of 0.1. We
use Adam (Kingma and Ba, 2014) as our optimizer,
with parameters settings β1 = 0.9, β2 = 0.98
and ε = 10−8. The initial learning rate is set to
10−4 for training and 10−5 for fine-tuning. The
models are trained on 4 GPUs for about 500, 000
steps. Each model learns from data randomly sam-
pled from the whole corpus, including bilingual
data, synthetic data from back-translation, and syn-
thetic data from knowledge distillation. Models
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Transformer Big Transformer with
relative position attention

Transformer with
larger FFN size

Transformer with
reversed source

baseline 26.01 26.23 26.12 26.08
+ data augmentation 27.02 27.03 27.13 26.69
+ In-domain data finetuning 29.33 29.49 29.62 29.18
+ model ensemble 29.72
+ domain style weighted 31.77
+ reranking* 31.86

Table 1: BLEU evaluation results on the WMT 2018 Chinese→ English test set (* denotes the submitted system)

newstest19
baseline 26.19
+ data augmentation 27.45
+ In-domain data finetuning 37.23
+ model ensemble 37.64
+ domain style weighted 38.59
+ reranking 38.99

Table 2: BLEU evaluation results on the WMT 2019
Chinese→ English test set

newstest18 newstest19
NEU (Li et al., 2019) 30.9 34.2
MSRA (Xia et al., 2019) 30.9 39.3
Baidu (Sun et al., 2019) 31.83 38
ours 31.86 38.99

Table 3: Comparison with related work on the WMT
2018 and 2019 Chinese→ English test set

used in iterative back-translation and knowledge
distillation are trained for 200, 000 steps. We vali-
date the model every 1, 000 steps on the develop-
ment data and save the checkpoints with the best
BLEU scores. After training, we average the last 10
checkpoints for every single model of the general
domain.

In the fine-tuning phase, we use the averaged
model obtained in the training phase as pre-train
weights for domain models, and train with in-
domain data selected as in Section 3.4 for 10, 000
steps without early stop. After fine-tuning, we aver-
age the last 10 checkpoints for every single model
of the specific domain.

For evaluation, we adopt the cased BLEU scores
calculated with SacreBLEU (Post, 2018).

4.2 Pre-processing and Post-processing
In pre-processing, we conduct data filtering, to-
kenization, subword encoding. For Chinese sen-
tences, we use the DiDi tokenizer for tokenization.
For English data, we do punctuation normalization
and use Spacy4 tokenizer for tokenization. We filter
parallel sentences as described in Section 3.1. Fi-
nally, we collect a preprocessed bilingual training

4https://github.com/explosion/spaCy

data consisting of 10M parallel sentences and 20M
synthetic sentences. We adopt subword encoding
for Chinese → English. Specifically, we learn a
BPE with 40K merge operations, in which 37.8K
and 27.8K subword tokens are adopted as Chinese
and English vocabularies separately.

In the post-processing phase, we conduct un-
known (UNK) words replacement, de-tokenization,
punctuation, and numerals normalization. UNK
words are simply removed in the sentences. We use
the Moses scripts to true-case and de-tokenize the
English translations.

4.3 Chinese→ English

We adopt methods in Section 3 for Chinese →
English task. Firstly we adopt techniques of itera-
tive back-translation and knowledge distillation for
generating synthetic parallel data based on mono-
lingual data. We combine the synthetic data and
bilingual data as the training data and randomly
split training data into 6 portions and do experi-
ments to obtain 3 most effective portions. We train
several models with different initialization seeds,
different training datasets, and different architec-
tures with the sampled synthetic data and bilingual
data. In this way, we obtain models with diversity.
After that, we fine-tune the model with different
in-domain data. Next, we do the model ensem-
ble by exploiting the translation domain style and
choose the best model on development data as the
final submission. Here we use WMT 2018 test
set and WMT 2019 test set as our development
data. Finally, we adopt several re-ranking and post-
processing methods to obtain the final submission.

Table 1 shows the results on WMT 2018 test
data of Chinese→ English. As shown in the table,
data augmentation with iterative back-translation
and knowledge distillation consistently improve the
BLEU score. Fine-tuning with selected in-domain
corpus plays an important role in our system, which
helps achieve improvement about more than a 2
BLEU score. We observe that ensemble with log-
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avg strategy achieves slight improvement, which
may be caused by the conflicts between different
topic domains. To alleviate domain conflicts, we
incorporate the domain style information, which
achieves 2.15 improvement over the best single
model. We also observe a relatively slight improve-
ment with re-ranking. The reason may be that we
use the training data to train both the re-ranker and
the NMT models, which produces similar scores
while dealing with the same sentences. Similar
conclusions can be drawn from Table 2.

Table 3 shows the BLEU comparisons with re-
lated works on the WMT 2018 and WMT 2019
test sets. From the table, we observe that our sys-
tem achieves the best performance on the WMT
2018 test set and the second best performance on
the WMT 2019 test set. This demonstrates the
effectiveness of the proposed system.

In our final submission, the model is an ensem-
ble of 6 models, including 2 Transformer, 1 Trans-
former with relative position attention, 2 Trans-
former with larger FFN size, and 1 Transformer
with reversed source. We do translation with
beam size=10 and length penalty=1.4. Finally, we
achieve a cased BLEU score of 36.6 in WMT 2020
Chinese→ English competition.

5 Conclusion

In this paper, we present our NMT systems for
WMT2020 news translation shared tasks in Chi-
nese→ English translation direction. Our final sys-
tem achieves substantial improvement over base-
line systems by integrating the following tech-
niques:

1. Data filtering

2. Data augmentation, including iterative back-
translation, knowledge distillation, etc.

3. Fine-tuning with in-domain data

4. Model ensemble and leverage domain topic
information

As a result, our submitted system achieves a 36.6
BLEU score in the Chinese→ English direction of
WMT 2020 news translation shared tasks.
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Abstract

This paper describes Facebook AI’s submis-
sion to WMT20 shared news translation task.
We focus on the low resource setting and par-
ticipate in two language pairs, Tamil ↔ En-
glish and Inuktitut↔ English, where there are
limited out-of-domain bitext and monolingual
data. We approach the low resource problem
using two main strategies, leveraging all avail-
able data and adapting the system to the tar-
get news domain. We explore techniques that
leverage bitext and monolingual data from all
languages, such as self-supervised model pre-
training, multilingual models, data augmenta-
tion, and reranking. To better adapt the trans-
lation system to the test domain, we explore
dataset tagging and fine-tuning on in-domain
data. We observe that different techniques pro-
vide varied improvements based on the avail-
able data of the language pair. Based on the
finding, we integrate these techniques into one
training pipeline. For En → Ta, we explore
an unconstrained setup with additional Tamil
bitext and monolingual data and show that fur-
ther improvement can be obtained. On the test
set, our best submitted systems achieve 21.5
and 13.7 BLEU for Ta→ En and En→ Ta re-
spectively, and 27.9 and 13.0 for Iu→ En and
En→ Iu respectively.

1 Introduction

We participate in the WMT20 news translation task
in two low resource language pairs (four direc-
tions), Tamil↔ English (Ta→ En and En→ Ta)
and Inuktitut↔ English (Iu→ En and En→ Iu).
These language pairs are challenging due to the
lack of in-domain bitext training data and limited
monolingual data. For Tamil, the available bitext
corpora are from various sources; however, none
of the sources is in the news domain, and each
corpus is in limited size or noisy. Inuktitut encom-
passes the challenges present for Tamil, but is even

more challenging because the quantity of available
monolingual data is even less than the bitext data.

We explore techniques that leverage available
data from all languages. First, we investigate su-
pervised learning together with pre-training using
mBART (Liu et al., 2020). Second, inspired by
the recent success of improving low resource lan-
guages through multilingual models (Arivazhagan
et al., 2019; Tang et al., 2020), we explore the
utility of multilingual models, in the form of mul-
tilingual pretraining and subsequent fine-tuning.
Third, we leverage the monolingual data of the
source and target languages using data augmen-
tation techniques, such as back-translation (Sen-
nrich et al., 2015) and self-training (Ueffing, 2006;
Zhang and Zong, 2016; He et al., 2019). Follow-
ing Chen et al. (2019), we apply these techniques
iteratively. Fourth, we use noisy-channel model
reranking (Yee et al., 2019) to further boost per-
formance. The reranking uses language modeling
to select a more fluent hypothesis, which requires
monolingual data in the target language.

Additionally, we investigate how adding substan-
tially more unconstrained data can further improve
the performance of En→ Ta system. We incorpo-
rate data from bitext mining efforts such as CCMA-
TRIX (Schwenk et al., 2019) and CCALIGNED (El-
Kishky et al., 2019), as well as additional mono-
lingual data from CCNET (Wenzek et al., 2019)
curated from CommonCrawl. The additional data
is used for iterative back-translation and to train
stronger language models for noisy-channel rerank-
ing.

In a complementary direction, we investigate
ways to adapt the translation system to the target do-
main. We explore controlled generation by adding
dataset tags to indicate domain. Furthermore, we
fine-tune our system on the in-domain data.

For all language directions, we obtain our fi-
nal systems by fusing a combination of the tech-
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niques mentioned above. We observe that the bulk
of the improvements in our systems are from it-
erative back-translation and self-training, except
the En → Iu system where we only have excep-
tionally limited quantities of Inuktitut monolingual
data. Noisy-channel reranking provides further im-
provement on top of strong systems, especially for
to-English directions where we have high-quality
news-domain monolingual data to train a good lan-
guage model. Each of the other techniques, includ-
ing dataset tagging, fine-tuning on in-domain data,
and ensembling also provides nice improvements.

2 Data

For the constrained track, we use monolingual
data from all languages provided in WMT20 for
mBART pre-training (Liu et al., 2020), and we use
bitext data between English and other languages
for training the system from scratch or fine-tuning
the pretrained mBART models. We also require
English, Tamil, and Inuktitut monolingual data for
techniques such as back-translation, self-training,
and creating language models for noisy-channel
reranking. For low resource languages, Tamil and
Inuktitut, we use all the available monolingual data,
e.g. NewsCrawl + CommonCrawl + Wikipedia
dumps for Tamil, and CommonCrawl for Inukti-
tut. For English, we only use NewsCrawl as the
monolingual data because it is sufficiently large,
high-quality, and in the news domain.

For the unconstrained track, we use Tamil mono-
lingual data and Tamil-English mined bitext data
from external sources based on CommonCrawl.
The details are described in Section 2.2.

2.1 Data filtering

2.1.1 Bitext data
For each data source for each language pair,
we remove duplicate sentence pairs and use
fastText (Joulin et al., 2016a,b) language iden-
tification to remove sentence pairs where either the
source or the target sentence is not predicted as the
expected language. The resulting size of the bitext
data of each language pair is shown in Appendix
Table A.1.

2.1.2 Monolingual Data
We use monolingual data after fastText lan-
guage identification filtering from all languages
provided in WMT20 to train our mBART model.
CommonCrawl contains a large quantity of data,

but is also quite noisy as it is crawled from the
web. Furthermore, the sentences are not in the
news domain. To clean the data and select the sen-
tences closer to the news domain, we apply the in-
domain filtering method described in (Moore and
Lewis, 2010) for languages that have NewsCrawl
monolingual data. First, we train two n-gram lan-
guage models (Heafield, 2011) on NewsCrawl and
CommonCrawl respectively. Then, for each sen-
tence from CommonCrawl, we obtain scores from
these two language models, compute the differ-
ence between normalized log-probability, and we
remove the lowest-scoring sentences. We heuristi-
cally examine the data and remove the bottom 30%-
60% of sentences. Concretely, the scoring function
is HNC(s) − HCC(s), where s is the sentence,
HNC(s) and HCC(s) are the word-normalized
cross entropy scores for sentence s by n-gram lan-
guage model trained on NewsCrawl and Common-
Crawl data respectively.

We concatenate sentences from different sources
and remove duplicate sentences for each language.
We show the detailed dataset statistics in Appendix
Table A.2.

2.2 Unconstrained setup for Tamil

In the unconstrained track, additional data can be
used. We incorporate two additional sources of
data: noisy bitext from data mining and monolin-
gual data.

2.2.1 Mined bitext data

We use mined bitext data from CCMA-
TRIX (Schwenk et al., 2019) and CCALIGNED (El-
Kishky et al., 2019), two complementary mining
strategies. Both approaches use the web data from
unconstrained CommonCrawl to identify noisy
bilingual matched pairs. CCMATRIX embeds
monolingual sentences using LASER (Schwenk
and Douze, 2017) multilingual sentence em-
beddings. To identify matching bitext pairs,
the distance from each sentence to each other
sentence is calculated based on the distance in the
embedding space. For CCALIGNED, documents
that could correspond to bitext pairs are aligned
first at the document level, then at the paragraph
level, and finally at the sentence level. In total,
we include 2M aligned English-Tamil mined
sentences.
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2.2.2 Monolingual data

We used additional Tamil monolingual data from
CommonCrawl snapshots between 2017-26 to
2020-10 extracted by CCNET (Wenzek et al., 2019).
We break down the document-level structure from
CCNET into sentences and apply further processing.
We concatenate all the snapshots of the additional
monolingual data, deduplicate the sentences, apply
fastText language identification and remove
sentences are not predicted as Tamil. The final data
results in 125M sentences. Subsequently, we con-
catenate the unconstrained monolingual data with
constrained monolingual data, and we use them
for back-translation and training Tamil language
model.

3 System overview

We use the Transformer (Vaswani et al., 2017)
as our model architecture for all of our systems.
To better train models with datasets in different
sizes, we use random search to select the hyper-
parameters that achieve the best BLEU score on
the validation set. We use sentencepiece (Kudo
and Richardson, 2018) to learn the subword units
to tokenize the sentences. The details of selected
hyper-parameters are listed in Appendix D. All
our systems are trained with fairseq1 (Ott et al.,
2019).

3.1 Dataset tag

Training and decoding the model with an indication
of domain (such as a specified dataset tag) (Kobus
et al., 2016) is a technique that allows us to con-
trol the output domain of the trained system. Simi-
larly, Caswell et al. (2019); Chen et al. (2019) show
that adding specific tag to back-translated and self-
translated data can improve model performance.
We add dataset tags to all of our systems described
in this paper, by pre-pending a domain specific
tag to the source sentence during training. At test
time, we sweep over all the possible tags that are
used during training including “no tag”, and we
choose the tag that achieves the best BLEU score
on validation set. We find that when training with
dataset tag, the supervised systems are 0.9 and 0.5
BLEU score higher than the system trained without
dataset tag for Ta→ En and En→ Ta respectively.
See results in Table 1.

1https://github.com/pytorch/fairseq

3.2 Baseline systems

We investigate a variety of baseline approaches as
the starting point for our models. For both Tamil
and Inuktitut languages, we explore four different
baseline systems, (1) bilingual supervised, (2) mul-
tilingual supervised, mBART pretraining with (3)
bilingual and (4) multilingual fine-tuning. These
systems are trained with constrained bitext and
monolingual data. We will then improve these
baseline models, as described in subsequent sec-
tions.

3.2.1 Bilingual supervised
To train the base bilingual systems, we pre-pend the
dataset tag to the source sentence to differentiate
data from different corpus and concatenate all data
sources for that language.

3.2.2 Multilingual supervised
Arivazhagan et al. (2019) shows that multilingual
model can improve the model performance of
medium and low resource languages, as multilin-
gual models are often trained on greater quantities
of data compared to bitext models. Thus, we in-
vestigate if multilingual supervised models can be
stronger starting points. We use all the bitext data
between English and other languages provided in
WMT20 to train many-to-one (XX→ English) and
one-to-many (English→ XX) models. One chal-
lenge of multilingual training is different language
directions have different quantities of data, and
the high resource language can starve for capacity
while low resource language can benefit from the
transfer. To balance the trade-off between learning
and transfer, we follow Arivazhagan et al. (2019)
with a temperature-based strategy to sample sen-
tences from different languages. Furthermore, for
each direction, we optimize the transfer by select-
ing the best temperature and model checkpoint
based on the BLEU score of the target language
pair validation set.

3.2.3 mBART-pretraining with bilingual and
multilingual fine-tuning

For mid and low resource languages, the quantity of
available bitext may be low, but large resources of
monolingual data exist. This monolingual data can
be used in the form of pre-training, followed by sub-
sequent fine-tuning into translation models. We use
mBART (Liu et al., 2020) – a multilingual denois-
ing pre-training approach – to pre-train our systems,
which has shown substantial improvements com-
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pared to training the model from scratch. First, we
pre-train mBART across 13 languages (Cs, De, En,
Fr, Hi, Iu, Ja, Km, Pl, Ps, Ru, Ta, Zh) on all mono-
lingual data provided by WMT 20. For pretraining,
we used a batch size of 2048 sequences per batch
and trained the model for 240K steps. We learn
the SPM jointly on all languages. We sample the
same amount of sentences from monolingual data
of all languages to learn a vocabulary of 130, 000
subwords. In the fine-tuning stage, we use exactly
the same data sources as the bilingual supervised
model and multilingual supervised model. For mul-
tilingual fine-tuning, previously people have built
bitext translation systems by fine-tuning pretrained
mBART models. Recent work Tang et al. (2020)
extended this to multilingual fine-tuning, which can
create multilingual translation models from multi-
lingual pre-trained models. Different from Tang
et al. (2020), we tune the temperature rate sepa-
rately for the four language directions we focus on.
In the multilingual fine-tuning stage, we use ran-
dom search to sweep over dropout, learning rate,
and temperature sampling factor, and we select the
model checkpoint based on the BLEU score evalu-
ated on the target language pair validation set.

3.3 Iterative back-translation (BT)

Back-translation (Sennrich et al., 2015) is an ef-
fective data augmentation technique to improve
model performance with target side monolingual
data. The method starts from training a target to
source translation system, which is subsequently
used to translate the monolingual data in the tar-
get language back to source language. Then the
synthetic back-translated dataset is concatenated
with the raw bitext data to train the source to tar-
get translation model. After the source to target
model is improved, the same technique can be ap-
plied again to train the back-translation system in
the reversed direction. We repeat the process for
several iterations until no significant improvement
is obtained.

In all of our back-translation systems, we follow
Chen et al. (2019) to add dataset tags to both raw
bitext data and back-translated data. We upsample
the bitext data, and the upsampling ratio is selected
based on parameter sweeping and validating the
resulting improvement on the validation set. Beam
search with beam size 5 is used when generating
the synthetic sentences.

3.4 Noisy-channel reranking (NCD)
Reranking is a technique that uses a separate model
to score and better select hypotheses from the n-
best list generated by the the source to target model.
To rerank our system output, we use the noisy-
channel model (Yee et al., 2019) as the scoring
model (Ng et al., 2019; Chen et al., 2019). Given
a source and target sentence pair (x, y), the noisy-
channel model scores it with

logP (y|x) + λ1 logP (x|y) + λ2 logP (y) (1)

where logP (y|x), logP (x|y) and logP (y) are
the forward model, backward model and language
model scores. The weights, λ1 and λ2, are tuned
through random search on the validation set. All
of our submitted test set hypotheses are ranked and
selected by noisy-channel reranking.

The language models used in noisy-channel
reranking are Transformers. For constrained track,
we use the monolingual data as described in Sec-
tion 2 to train the language models for English,
Tamil. For Inuktitut, we find that the monolin-
gual data is very limited and even smaller than
the size of bitext data, therefore we concatenate
the CommonCrawl data with the Inuktitut side of
the bitext data together to train the Inuktitut lan-
guage model. For unconstrained Tamil language
model, we train on the constrained data with the
additional unconstrained data extracted by CCNET
as described in Section 2.2. The SPM size, model
hyper-parameters, and evaluation of the language
models can be found in Appendix B.

3.5 Self-training (ST)
Self-training (Ueffing, 2006; Zhang and Zong,
2016; He et al., 2019) is a method that leverage
monolingual data in source language to improve
the system performance. We use the trained source
to target translation system to translate monolin-
gual data in source language to target language.
Similar to BT, the synthetic dataset can be concate-
nated with bitext data to train the source to target
model again. We follow Chen et al. (2019) and use
the noisy-channel model to select the top synthetic
sentence when decoding from monolingual data
into the source language. We inject the same types
of noise to the source side of synthetic data as He
et al. (2019).

Shen et al. (2019); Chen et al. (2019) both show
that self-training can provide complementary im-
provement in addition to back-translation, espe-
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Model Ta → En En → Ta Iu → En En → Iu

w/o tag 15.6 8.5 31.4 16.1
with tag 16.5 9.0 31.3 16.1

Table 1: Systems trained with and w/o dataset tags. The
BLEU score is reported on validation set. We sweep all avail-
able dataset tags when decoding on validation set and report
the best performing dataset tag. The BLEU scores of each
dataset tag are reported in Appendix C

cially when (1) there is lack of target side mono-
lingual data, (2) source side monolingual data is
much similar to the domain of test set compared
with target side monolingual data, and (3) the de-
coding method outperforms greedy decoding on the
source to target model. Therefore, we experiment
self-training on En→ Iu due to greater quantities
of in-domain source side monolingual data, on Iu
→ En in Nunavut Hansard domain with Inuktitut
side of bitext data due to much more in-domain
monolingual data on the source side, and on Ta→
En because we observe great improvement from
noisy-channel reranking. However, we only ob-
serve significant improvement on Ta→ En system.

3.6 Fine-tuning (FT) on validation set

Fine-tuning is a technique to adapt the model to the
target domain when the initial model is not trained
with training data in the target domain. In both
Tamil and Inuktitut, none of the training data is
in news domain as the test data, therefore we fine-
tune our final systems on a portion of the validation
data and evaluate on the rest of hold-out validation
data. For Tamil systems, we split the validation
data with a 75-25 split, where 75% of the data is
used for fine-tuning and 25% of the data is used
for evaluation. Ta → En and En → Ta systems
are fine-tuned and evaluated on the same split of
validation dataset. For Inuktitut systems, we split
the validation set based on the domain — Nunavut
Hansard or news. For each domain, we split the
validation data with a 75-25 split for fine-tuning
and evaluation. We fine-tune our best performing
Iu→ En and En→ Iu systems in domain on the
corresponding validation set split.

4 Results

In this section, we describe the details of our sys-
tems, and we report SACREBLEU (Post, 2018)
on the validation set for intermediate iterations and
ablations. For our validation set fine-tuned systems,
we report the BLEU score on our validation holdout

set split. Our general strategy for all language direc-
tions was to identify the best performing baseline
setting, then iteratively improve upon the baseline
using back-translation and self-training. Finally,
we apply noisy-channel reranking and fine-tuning
on validation set to create our final submission.

4.1 Baseline

We explore four different baseline approaches as
described in Section 3.2 for each language direction
in the constrained setup, Inuktitut↔ English and
Tamil↔ English. The detailed results are shown
in Table 2.

First, bilingual models are trained with bilin-
gual bitext data. Next, we focus on multilingual
training. The multilingual supervised models are
trained with all the available bitext data provided
by WMT20. We use the same SPM as described in
Section 3.2.3. For both bilingual and multilingual
models, we initialize the model weights either ran-
domly or with pre-trained mBART model weights.
Therefore, for each language direction, we have
four combinations, bilingual supervised, multilin-
gual supervised, mBART + bilingual fine-tuning
and mBART + multilingual fine-tuning. We use
dataset tags for all systems, and we sweep the tag
that performs the best when decoding on the vali-
dation set. Additional details and hyper-parameters
are provided in the Appendix D.

For to-English directions, both multilingual mod-
els and mBART pretraining can get better model
performance than bilingual supervised model as
shown in Table 2. For Ta→ En direction, mBART
+ multilingual fine-tuning performs the best with
20.4 BLEU, which outperforms bilingual super-
vised system by 3.2 BLEU score. For the Iu→ En
direction, mBART + bilingual fine-tuning works
the best and gets 32.9 BLEU score, which outper-
forms bilingual supervised baseline by 2.8 BLEU
score. However, for from-English directions, we do
not observe similar advantages with either multilin-
gual model or mBART pretraining, and a properly
tuned bilingual supervised model achieves the best
results for both directions. We get 8.0 BLEU score
for En→ Ta direction, and we get 16.1 BLEU score
for En→ Iu direction.

4.2 Tamil systems

4.2.1 Constrained Ta→ En system
For the Ta → En system, we first use the En →
Ta bilingual baseline system (ensemble) to gener-
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System Ta → En En → Ta Iu → En En → Iu

bi. 17.2 8.0 29.7 16.1
multi. 18.2 7.1 30.7 15.8
bi-FT? 18.9 8.0 32.9 16.1
multi-FT? 20.4 7.4 32.5 16.0

Table 2: BLEU scores of baseline systems evaluated on the
validation set. ? Pre-trained on mBART.

ate back-translation data from English NewsCrawl
data. We then train our first iteration back-
translation system (“iter1-BT”) with upsampled
bitext (upsampling ratio tuned on the validation
set). Similarly, we train our second iteration back-
translation system (“iter2-BT”) with upsampled
bitext and back-translation data generated by En
→ Ta iter1-BT system (ensemble). The iter2-BT
system (ensemble) is then used to generate ST data
from Tamil NewsCrawl, CommonCrawl and Wiki
data. We combine it with iter2-BT system’s data to
train the iter2-BT+ST system. Finally, we fine-tune
this system on the validation set and apply noisy-
channel reranking to select the hypotheses. We
explore Transformer models of different capacities
and choose Transformer big (with 8K feed-forward
dimension) for a good balance of performance and
training speed. For the iter2-BT+ST system (and its
ensemble/finetuned version), we further enlarge the
encoder to 10 layers given higher data abundance.
We can see from Table 3 that our training pipeline
improves model performance steadily (≥ 1.3 vali-
dation BLEU) after iterations, and in-domain fine-
tuning as well as noisy-channel reranking are very
helpful to alleviate the effects of train-test domain
mismatch.

4.2.2 Constrained En→ Ta system

For the En → Ta system, we first use the
mBART+multi-FT baseline system for Ta → En
to generate back-translation data from the mono-
lingual data. We add different back-translation
dataset tags based on the source of monolingual
data and train our first iteration back-translation
system (“iter1-BT”) by tuning upsampling ratios
on the bitext and back-translation datasets. For the
model architecture, we explore the options of train-
ing Transformers from scratch and fine-tuning a
pretrained mBART model and find that the former
performs better with ensembles. Doing one iter-
ation of training with back-translation data gives
5.8 BLEU increase (Table 3). We further train the
second iteration back-translation system (“iter2-

System Ta → En En → Ta

baseline 20.4 8.0
+ ensemble 21.2 9.0
iter1-BT 23.4 13.8
+ ensemble 24.8 14.1
iter2-BT 25.6 14.2
+ ensemble 26.4 14.3
+ NCD 28.5 14.4

eval on valid holdout

iter2-BT 26.2 14.6
iter2-BT+ST 27.5 -
iter2+FT on valid 28.0 18.7
+ ensemble 28.3 19.0
+ NCD 29.8 19.5

unconst. eval on valid holdout

iter2-BT - 15.2
iter2-BT+FT - 19.6
+ ensemble - 19.6
+ NCD - 20.2

Table 3: Results of Tamil systems. We report the BLEU
scores on newsdev2020 validation set.

BT”) with back-translation data generated from the
best iter1-BT Ta→ En system. As the gain from
the second iteration is small (0.4 BLEU), we do
not continue for the third iteration. Noisy-channel
reranking is applied with the best systems from
both language directions and the Tamil language
model (Appendix B). We observe little gain (0.1
BLEU) and suspect it’s due to the high perplexity of
the language model. Further fine-tuning the iter2-
BT model on the validation set gives 4.1 BLEU
score improvement on the validation holdout set.

system Iu → En

NH News Combined

baseline 42.4 19.2 32.9
+ ensemble 42.4 19.4 32.9
iter1-BT 43.3 24.1 35.1
+ ensemble 43.8 24.6 35.7
eval on valid holdout
iter1-BT 46.1 24.3 35.0
iter1-BT+FT on valid 47.3 31.1 38.4
+ ensemble 48.2 31.7 39.2
+ NCD 49.0 32.8 40.2

Table 4: Results of Iu → En systems. We report BLEU scores
on both domain-split and the whole newsdev2020 validation
set

4.2.3 Unconstrained En→ Ta system
For the unconstrained track, we first used the it-
eration1 + back-translation ensemble model to
back-translate the additional monolingual data
from CommonCrawl. Subsequently, we combined
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system En → Iu

NH News Combined

baseline 24.5 5.3 16.1
+ ensemble 24.8 5.6 16.3
iter1 24.8 (ST) 5.5 (BT) 16.3
+ ensemble 25.0 (ST) 5.8 (BT) 16.5
eval on valid holdout
iter1 27.6 (ST) 5.4 (BT) 15.5
iter1+FT on valid 28.9 14.5 20.8
+ ensemble 28.9 15.1 21.1
+ NCD 28.9 16.6 22.0

Table 5: Results of En → Iu systems. We report BLEU scores
on both the domain-split and whole newsdev2020 validation
set.

back-translated data from unconstrained monolin-
gual sources with back-translated data from WMT
monolingual data from English and Tamil, with the
WMT bitext and mined Ta → En data. We used
the same BPE and vocabulary as the constrained
system. The data was deduplicated, and the valida-
tion and test data removed if an exact match was
present in the training data. The mined data was ad-
ditionally cleaned to remove sentences longer than
250 BPE tokens, as well as bitext pairs where the
length between the source and target was greater
than 2.5x difference. Subsequently, we trained
a large Transformer sequence-to-sequence model
on the total combined data using various data do-
main tags. After training was complete, we further
fine-tuned on the validation set, as described in
Section 4.2.2. We applied noisy-channel reranking
when decoding test data. The forward model is en-
sembled with two of the best performing fine-tuned
models. The backward model is the best perform-
ing model in Section 4.2.1, which is ensembled
with two fine-tuned models. The language model is
unconstrained Tamil language model described in
Section 3.4. We rerank from best 20 hypothesises
generated by ensembled forward model, and we
achieve 20.2 BLEU score on validation set.

4.3 Inuktitut systems
The Inuktitut validation and test set are composed
of data from two different domains, the proceed-
ing of the Legislative Assembly of Nunavut from
Nunavut Hansard (NH) and news. We find that the
model can be further improved if we optimize our
translation training pipeline for these two domains
separately, and therefore we train and report BLEU
score separately for each domain. We also report
the BLEU score on the whole validation set, where
we use the domain-specific system to decode on the

portion of the corresponding domain, concatenate
the hypothesises and compute the BLEU score.

4.3.1 Constrained Iu→ En systems
For the Iu → En system, we use En → Iu bilin-
gual supervised system described in Section 4.1 for
back-translation. The model used for decoding is
an ensemble of 3 En→ Iu models, and we decode
from the English NewsCrawl data. We concatenate
the back-translated data with bitext data and sweep
the upsampling ratio of the bitext data to find the
best ratio. We experiment with both mBART pre-
training + bilingual fine-tuning and training from
scratch, and we find that mBART + bilingual fine-
tuning works better on Nunavut Hansard domain
of validation set, and training from scratch works
better on news domain. The hypothesis is that the
English NewsCrawl monolingual data for back-
translation is in-domain with the news domain val-
idation set and there is huge amount of English
NewsCrawl data, so the advantage of pretraining
is not significant. We also experiment with self-
training on Iu→ En direction in Nunavut Hansard
domain, where we use the source to target model
(ensembled) to decode from the Inuktutit side of
Nunavut Hansard 3.0 parallel corpus with noisy-
channel reranking; however, we do not observe any
improvement. The best result at the first iteration
is from the back-translation system, which outper-
forms baseline system by 2.2 BLEU score (Table 4),
where most of the gain comes from improvement
on news domain.

We do not observe gains for doing the second
iteration of back-translation for Iu→ En system,
and we suspect that it is due to lack of improvement
for our En→ Iu model from supervised approach
to the first iteration. We then fine-tune the best iter-
ation 1 Iu→ En models on validation data for each
domain. The final domain-specific systems are en-
sembled from the fine-tuned models and followed
by noisy-channel reranking. To use noisy-channel
reranking for Nunavut Hansard domain, we fine-
tune the English language model described in 3.4
on English side of the Nunavut Hansard 3.0 train-
ing data provided in WMT20. The best Iu→ En
system we submit has 40.2 BLEU score on our
validation holdout set.

4.3.2 Constrained En→ Iu systems
We experiment with both self-training and back-
translation with the best baseline systems reported
in 4.1 to improve En→ Iu system. For self-training,
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we use ensembled supervised En→ Iu model and
beam decoding with beam size 5 to decode from
English monolingual data. We decode from the
English side of Nunavut Hansard 3.0 parallel cor-
pus to train the model for Nunavut Hansard do-
main, and we decode from the English NewsCrawl
data for news domain. However, we do not ob-
serve improvement for news domain, and there is
only mild improvement (0.3 BLEU) for Nunavut
Hansard domain as shown in Table 5. For back-
translation, we use iteration 1 Iu → En news do-
main model from 4.3.1 to decode constrained Inuk-
titut CommonCrawl data. We get no improvement
on Nunavut Hansard domain and mild improve-
ment (0.2 BLEU) on news domain. We use self-
training system for Nunavut Hansard domain and
back-translation system for news domain, and it
achieves 16.3 BLEU score on the validation set,
which is merely 0.2 BLEU score improvement over
baseline system. We then fine-tune the best systems
we get on domain-specific validation set splits, fol-
lowed by ensembling and noisy-channel reranking.
The fine-tuning is very effective for the news do-
main, where we get 9.1 BLEU score improvement.
This is expected because we do not have any train-
ing data from news domain. Our final submitted
system achieves 22.0 on our validation holdout set.

Submitted system BLEU

Ta → En 21.5
En → Ta 12.6
En → Ta (unconst.) 13.7
Iu → En 27.9
En → Iu 13.0

Table 6: Results of our best submitted systems of each direc-
tion. We report BLEU scores on newstest2020.

5 Conclusion

This paper describes Facebook AI’s Transformer
based translation systems for the WMT20 news
translation shared task. We focused on two low-
resource languages pairs, Tamil ↔ English and
Inuktitut↔ English, and we explored the same set
of techniques, including dataset tagging, mBART
pretraining and fine-tuning, back-translation and
self-training, fine-tuning on domain-specific data,
ensembling, and noisy-channel reranking. We
demonstrated strong improvements by stacking
these techniques properly on three language di-
rections, Ta → En , En → Ta , and Iu → En .
The En→ Iu direction is difficult to improve due

to lack of target side monolingual data. Surpris-
ingly, self-training does not work on En→ Iu either
even we have huge amounts of in-domain English
side monolingual data. We are interested in contin-
ued exploration on how to better leverage source
side monolingual data to improve En → Iu and
other low resource languages where we do not have
enough target side monolingual data.
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A Constrained data

In this section, we list the statistics for all the con-
strained datasets we use to build for our systems.

Bitext data Table A.1 shows the bitext data we
used for multilingual systems. We use all bitext
data between English and other 11 languages pro-
vided in WMT 20 except a couple of sources. We
do not include the data back-translated by other sys-
tem to avoid introducing bias. We do not include
CzEng 2.0 for Czech nor CCMT for Chinese due
to human mistake. We follow the filtering steps
described in Section 2.1.1, and the size of dataset
for each language pairs are listed in Table A.1.

Monolingual data Table A.2 shows the list of
monolingal data we use for mBART-pretraining
with 13 languages. We follow Section 2.1.2 to filter
the monolingual data, and we list the amount of
data before and after the filtering step.

B Language model used in noisy-channel
reranking

Language model is required in the noisy-channel
reranking system. We learn the BPE subwords
with sentencepiece, and we train the Transformer
based causal language models with fairseq in
fp16 mode. The model size and hyper-parameters
are tuned based on the perplexity of newsdev2020
validation sets per language. We describe the data
and hyper-parameters of each language below, and
we report the perplexities in Table B.1.

English language model We train our English
language model with the high quality NewsCrawl
data provided by WMT 20. We use the same fil-
tering steps in Section 2.1.2 for NewsCrawl. We
learn the BPE with 32K vocabulary size. We train
the transformer-based model with 36 transformer
layers, 1280 embedding dimension size, 5120 ffn
dimension size, 20 attention heads and resulting in
749M parameters. The optimizer is Adam (Kingma
and Ba, 2015) optimizer with beta1 = 0.9 and
beta2 = 0.98. We use polynomial decay learn-
ing rate scheduler with 0.005 learning rate and 0.1
dropout rate. The maximum tokens are 4096 for
each batch per GPU, and we train with 64 GPUs for
58K updates. As we show in Table B.1, this model
achieves 23.3 perplexity on English side of Ta-En
newsdev2020 set, 25.3 perplexity on news portion
of Iu-En newsdev2020 set, and 29.7 perplexity on
Nunavut Hansard portion of Iu-En newsdev2020

set. The perplexity on news validation sets are
lower than none-news validation set. We use the
English language model to rerank Ta→ En system
and news domain of Iu→ En system.

To better rerank Iu → En hypothesises for
Nunavut Hansard domain, we fine-tune the En-
glish language model on English side of Nunavut
Hansard 3.0 parallel corpus. The perplexity on
Nunavut Hansard portion of Iu-En newsdev2020
set is significantly improved from 29.7 to 8.1.
We use the fine-tuned English language model to
rerank the Nunavut Hansard domain of Iu→ En
system.

Tamil language model We train the Tamil lan-
guage model for constrained En→ Ta system with
all the available Tamil monolingual data prepro-
cessed in Section 2.1.2. The BPE vocabulary size
is 32K. We train the transformer-based language
model with 24 transformer layers, 1024 embedding
size, 4096 ffn embedding size, 16 attention heads
and resulting in 335M parameters. We use Adam
optimizer with beta1 = 0.9 and beta2 = 0.98.
We use polynomial decay learning rate scheduler
with 0.005 learning rate and 0.1 dropout rate. The
maximum tokens are 8192 for each batch per GPU,
and we train with 16 GPUs for 46K updates. The
model achieves 61.8 perplexity on Tamil side of
Ta-En newsdev2020 set.

For unconstrained En→ Ta system, we use both
constrained Tamil monolingual data and the addi-
tional Tamil monolingual data described in Sec-
tion 2.2. We share the same 32K BPE vocabulary
as constrained Tamil language model. We use a
larger transformer model with 32 transformer lay-
ers, 1024 embedding size, 4096 ffn embedding size,
8 attention heads. We use Adam optimizer with
beta1 = 0.9 and beta2 = 0.98. We use cosine
learning rate scheduler with 0.0001 learning rate
and 0.3 dropout rate. The maximum tokens are
3072 for each batch per GPU, and we train with 32
GPUs for 69K updates. The model achieves 40.6
perplexity on Tamil side of Ta-En newsdev2020 set,
which is better than the constrained Tamil language
model.

Inuktitut langauge model The Inuktitut lan-
guage model is trained with Inuktitut side of
Nunavut Hansard 3.0 parallel corpus and the con-
strained Inuktitut monolingual data provided by
WMT 20. The BPE vocabulary size is 5K. We
train the transformer-based language model with
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6 transformer layers, 512 embedding size, 4096
ffn embedding size, 8 attention heads and resulting
in 34M parameters. We use Adam optimizer with
beta1 = 0.9 and beta2 = 0.98. We use inverse
square root learning rate scheduler with 0.0005
learning rate and 0.3 dropout rate. The maximum
tokens 2048 for each batch per GPU, and we train
with 8 GPUs for 89K updates. The model achieves
34.9 perplexity on Nunavut Hansard domain of Iu-
En newsdev2020 set, and 81.69 perplexity on news
portion of Iu-En newsdev2020 set.

C The effect of dataset tag at decoding
time

We train our systems with dataset tag, and we
sweep the dataset tags by add different tags to the
same validation set and select the best performing
tag. Table C.1 and C.2 show the system perfor-
mance across different dataset tags.

First, we observe that sweeping the best perform-
ing dataset tag at decoding time is necessary. Using
“no tag” to decode works the best for both Ta→
En and En→ Ta systems; however, using specific
dataset tags works better for Iu→ En and En→ Iu
systems. Second, the large BLEU score variations
when decoding with different dataset tags show that
the tags help the model to better adapt to different
domains.

Overall, systems trained with dataset tags works
better than trained without dataset tag as we show
in Table 1.

D Hyper-Parameters

In this section, we report the hyper-parameters we
use. For all of our translation systems, we use trans-
former based encoder-decoder model with shared
embedding across encoder, decoder input and out-
put embedding. We use Adam optimizer with
beta1 = 0.9 and beta2 = 0.98, inversed square
root learning rate scheduler, and 4000 warm-up
steps with linearly increased rate. The loss is cross-
entropy with label smoothing (Szegedy et al., 2016).
We use the same batch sizes with maximum num-
ber of tokens 4096, and all models are trained with
fp16. We sweep other hyper-parameters with ran-
dom search, and we select the best performing
system based on the evaluated BLEU scores on
validation sets.

mBART pretraining We train the denoising
mBART model with the constrained monolingual

data from 13 languages described Section 2.1.2.
We learn joint BPE across all languages with vocab-
ulary size 130K. The transformer based encoder-
decoder model has 12 encoder and decoder lay-
ers, 1024 embedding dimension, 4096 ffn embed-
ding dimension and 16 attention heads, resulting
in 487M parameters. We train the model with
0.0003 learning rate, 0.1 dropout rate, and no label-
smoothing. We train the model with 256 GPUs for
240K updates.

Tamil systems For Ta → En, the best perform-
ing systems are mBART+multilingual fine-tuning
model for baseline system, back-translation system
for iteration 1 and BT+ST system for iteration 2.
We report the hyper-parameters of the best perform-
ing system at each iteration in Table D.1.

For En→ Ta, the best performing systems are
bilingual supervised model for baseline system,
back-translation system for iteration 1 and itera-
tion 2. We report the hyper-parameters of the best
performing system at each iteration, including the
unconstrained system in Table D.2.

Inuktitut systems For Iu → En, the best base-
line system is the mBART pretraining with bilin-
gual fine-tuning. In iteration 1, we tune the model
separately for Nunavut Hansard domain and news
domain. The best Nunavut Hansard domain model
is mBART pretraining with bilingual fine-tuning on
bitext and news back-translated data, and the best
news domain model is the back-translation model
train from scratch. For En→ Iu, the best baseline
system is bilingual supervised model. Similar to
Iu→ En system, we tune the model separately for
Nunavut Hansard domain and news domain in it-
eration 1. The best system for Nunavut Hansard
domain is self-training model train from scratch,
and the best system for news domain is the back-
translation model train from scratch. We report the
hyper-parameters of the best performing Iu→ En
and En→ Iu systems at each iteration in Table D.3
and D.4.
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Language pair # of sentences (M) Missing datasetsRaw Cleaned
Cs-En 9.3 8.6 CzEng2.0, back-translated news
De-En 48 45.9
Hi-En 1.48 1.27
Iu-En 0.77 0.77
Ja-En 18.2 16.2

Km-En 4.4 2.46
Pl-En 11.6 10.6
Ps-En 1.13 0.58
Ru-En 43.5 32.8 back-translated news
Ta-En 0.71 0.62
Zh-En 19.6 15.8 CCMT, back-translated news

Table A.1: En-XX bitext data used for bilingual and multilingual systems. For each language pair, we use all available sources
released in WMT20 except the datasets that are listed in the table.

Language # of sentences (M) SourcesRaw Cleaned
Cs 355 287 NCL, NC, CC
De 3528 1355 NCL, NC, EP, CC
En 4264 2685 NCL, NC, ND, EP, CC, Wiki
Fr 5853 1455 NCL, NC, ND, EP, CC
Hi 45 43.4 IITB

Iu 0.9 0.9 Nunavut Hansard parallel corpus 3.0,
CC

Ja 1776 1182 NCL, NC, CC
Km 12.1 11.3 CC, Wiki
Pl 1459 1183 NCL, EP, CC
Ps 5.9 5.4 CC, Wiki
Ru 1261 665 NCL, NC, CC
Ta 30.3 29.4 NCL, CC, Wiki
Zh 1677 806 NCL, NC, CC

Table A.2: Monolingual data used for mBART pretraining and back-translation. The abbreviation in the sources column
represent the following, CC: CommonCrawl, EP: Europarl, NC: NewsCommentary, NCL: NewsCrawl, ND: NewsDiscussions,
Wiki: Wikipedia

Target language
Training data

BPE size
PPL on newsdev2020

source # of sentences Ta-En Iu-En (NH) Iu-En (news)
English NewsCrawl 190M

32K
23.3 29.7 25.3

+ FT on
English side of NH

77.6 8.1 27.1

Tamil
CommonCrawl, NewsCrawl,
Wikipedia

30M
32K

61.8 - -

unconst. Tamil
constrained Tamil data,
CommonCrawl in Sec. 2.2

155M 40.6 - -

Inuktitut
Inuktitut side of Nunavut Hansard 3.0,
CommonCrawl

860K 5K - 34.9 81.7

Table B.1: Statistics of language models for each language.

Tag Ta → En En → Ta

None 16.5 9.0
mkp 15.4 8.0
nlpc 15.6 6.8
pib 15.5 8.6
pmindia 15.5 8.7
tanzil 11.9 0.6
ufal 16.1 8.2
wikimatrix 4.0 6.4
wikititles 15.8 8.5

Table C.1: Tamil bilingual supervised single model performance when decoding on validation set with different dataset tags.
The BLEU score is evaluated newsdev2020 validation set.
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Tag Iu → En En → Iu

None 29.7 15.8
Nunavut Hansard 31.3 16.0
wikititles 30.1 16.1

Table C.2: Inuktitut bilingual supervised single model performance when decoding on validation set with different dataset tags.
The BLEU score is evaluated on newsdev2020 validation set.

System Subword
(size) # params layers embed

size
ffn

embed size
attention

heads
learning

rate dropout label
smoothing # GPUs

Baseline system
(mBART+multi-FT)

BPE
(130K) 487M 12 1024 4096 16 0.0001 0.2 0.2 16

iter1 (BT) Unigram
(16384) 293M 6 1024 8192 16 0.0005 0.1 0.1 8

iter2 (BT+ST) Unigram
(16384) 378M 10 1024 8192 16 0.001 0.2 0.2 64

Table D.1: Hyper-parameters of the best performing Ta→ En systems.

System Subword
(size) # params layers embed

size
ffn

embed size
attention

heads
learning

rate dropout label
smoothing # GPUs

Constrained Tamil
Baseline system
(bilingual
supervised)

Unigram
(16384) 31M 3 512 2048 8 0.0005 0.3 0.1 8

iter1 (BT) BPE
(20K) 314M 10 1024 4096 16 0.0007 0.3 0.3 8

iter2 (BT) BPE
(20K) 314M 10 1024 4096 16 0.0007 0.2 0.3 8

Unconstrained Tamil

iter2 (BT) BPE
(20K) 1.2B 10 2048 8192 16 0.0001 0.3 0.1 8

Table D.2: Hyper-parameters of the best performing En→ Ta systems.

System Subword
(size) # params layers embed

size
ffn

embed size
attention

heads
learning

rate dropout label
smoothing # GPUs

Baseline system
(mBART+bi-FT)

BPE
(130K) 487M 12 1024 4096 16 3e-5 0.1 0.1 16

NH-domain:
iter1-BT
(mBART+bi-FT)

BPE
(130K) 487M 12 1024 4096 16 1e-4 0.2 0.2 16

news-domain:
iter1-BT

BPE
(5K) 559M 12 1024 8192 16 0.001 0.2 0.2 64

Table D.3: Hyper-parameters of the best performing Iu→ En systems.

System Subword
(size) # params layers embed

size
ffn

embed size
attention

heads
learning

rate dropout label
smoothing # GPUs

Baseline system
(bilingual
supervised)

BPE
(5K) 122M 4 1024 4096 8 0.001 0.3 0.3 4

NH-domain:
iter1-ST

BPE
(5K) 152M 5 1024 4096 16 0.0005 0.2 0.2 4

news-domain:
iter1-BT

BPE
(5K) 152M 5 1024 4096 16 0.001 0.2 0.2 4

Table D.4: Hyper-parameters of the best performing En→ Iu systems.
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Abstract

This paper describes our submission for the
English-Tamil news translation task of WMT-
2020. The various techniques and Neural
Machine Translation (NMT) models used by
our team are presented and discussed, in-
cluding back-translation, fine-tuning and word
dropout. Additionally, our experiments show
that using a linguistically motivated subword
segmentation technique (Ataman et al., 2017)
does not consistently outperform the more
widely used, non-linguistically motivated Sen-
tencePiece algorithm (Kudo and Richardson,
2018), despite the agglutinative nature of
Tamil morphology.

1 Introduction

In this paper we present the neural machine transla-
tion (NMT) systems submitted to the WMT-2020
English-Tamil (EN→TA) news translation task.
This task is challenging mainly for two reasons:

1. Differing syntax: English is an Indo-
European language which is fusional and
SVO (Subject-Verb-Object). On the other
hard, Tamil is part of the Dravidian language
family and is a SOV language that is agglu-
tinative. A good NMT system is expected to
discern the various morphological forms on
the Tamil target side.

2. Scarcity of training data: Prior toWMT-2020,
there existed only a few corpora for paral-
lel EN-TA sentences (Ramasamy et al., 2012;
Germann, 2001). This left us with the choice
of either only utilizing the low amount of par-
allel sentences or finding out ways of artifi-
cially enlarging the training data.

Through our submission we wish to provide solu-
tions to the following questions:

• Is linguistically motivated subword segmen-
tation beneficial for EN-TA translation?

• Can the addition of TAmonolingual data com-
pensate for the small amount of parallel EN-
TA sentences despite the domain mismatch?

• Can fine-tuning on a corpus of Indian news
improve quality on the WMT news transla-
tion task?

We start our paper with a short description of
the Tamil language before delving into the vari-
ous techniques adopted by our submitted NMT sys-
tems.

2 Tamil Language

Tamil is a Dravidian language spoken by around
80 million people. Tamil morphology is agglutina-
tive and suffixal, i.e words are formed by suffixing
morphemes to a lemma (Annamalai et. al 2014,
cited in Sarveswaran et al. (2019)). Tamil suffixes
can be either derivational (marking a change in
PoS and/or meaning) or inflectional. In particu-
lar, nouns in Tamil are inflected for number, gen-
der, case and animacy while verbs are inflected for
tense, mood, aspect, negation, interrogation, infor-
mation about emphasis, speaker perspective, sen-
tience or rationality, and conditional and causal re-
lations. Table 4 shows examples of the case forms
in singular for the noun Çìதகம ’book’.
All the aforementioned statements substantiate

the fact that Tamil morphology is highly complex.
In fact, Ramasamy et al. (2012) identified 716 in-
flectional rules for nouns and 519 rules for verbs.
Furthermore, designing a translation system for
Tamil is challenging given the lack of training data
(compare the sizes of Japanese and Tamil parallel
datasets in WMT 2020, both agglutinative, how-
ever having vastly different training data; 25M sen-
tences and 630k, respectively).

126



3 Previous Work

One of the earliest automatic translation systems
for English→Tamil was by Germann (2001). They
created a hybrid statistical/rule-based machine
translation (SMT) system and trained it on only
5k EN-TA parallel sentences. Ramasamy et al.
(2012) created SMT systems (phrase-based and
hierarchical) that were trained on a much larger
dataset of 190k parallel sentences. They also per-
formed pre-processing steps involving morpholog-
ical rules based on Tamil suffixes that improved
upon the BLEU score of the baseline model (from
9.42 to 9.77). Their dataset (henceforth called
UFAL) became the default benchmark for EN-TA
translation systems until 2019, and we also use it in
our experiments as an additional (general-domain)
development set.
To the best of our knowledge, there have

only been a handful of NMT systems trained on
EN→TA. For the Indic languages multilingual
tasks of WAT-2018, Sen et al. (2018), Dabre et al.
(2018) and Ojha et al. (2018) reported BLEU
scores for EN→TA. The Phrasal-based SMT sys-
tem of Ojha et al. (2018) with a score of 30.53
BLEU outperformed the NMT systems of Sen
et al. (2018) (11.88) and Dabre et al. (2018)
(18.60), suggesting that the NMT systemswere not
suitable for translating a highly morphological lan-
guage such as Tamil. However, the following year,
Philip et al. (2019) outperformed Ramasamy et al.
(2012) on the UFAL dataset with a BLEU score of
13.05. They report that techniques such as domain
adaptation and back-translation can make training
NMT systems on low-resource languages possible.

4 Datasets

For our constrained systems, we restrict ourselves
to the datasets provided by WMT.

Parallel Table 1 presents the various parallel cor-
pora along with their size and genre. The various
corpora come from various sources and differ con-
siderably in size. We also observe a very large dif-
ference in number of tokens between the two lan-
guages, with around 5 times more English tokens
than Tamil tokens.

Monolingual Table 2 presents the monolingual
Tamil corpora used in our experiments. Monolin-
gual data is about 3 times larger than the parallel
data in terms of tokens.

4.1 Pre-processing
For both parallel and monolingual data, the follow-
ing steps are carried out sequentially:

• Sentences are tokenized and segmented by
one of the segmentation algorithms described
in the following section.

• Sentences longer than 150 tokens are re-
moved.

• Sentences whose target to source ratio is be-
low 0.7 are retained. This ratio is calculated
based on the sentence lengths.

• Similar to Philip et al. (2019), a language
match threshold is applied. Sentences rated
98% or higher are retained.

• Duplicate sentences are removed.

5 Methods

5.1 Segmentation
We compare two segmentation techniques: data-
driven subwords and linguistically motivated sub-
words.

Subword segmentation refers to fully data-
driven, non linguistically motivated segmenta-
tion algorithms (Sennrich et al., 2016c; Kudo
and Richardson, 2018) that generate sub-words
based on simpler frequency criteria to attain a pre-
determined vocabulary size. In our experiments
we try out different vocabulary sizes as well as gen-
erating the subwords either individually for each
language or jointly learning on both. The Senten-
cePiece (SP) implementation (Kudo and Richard-
son, 2018) is used to perform this segmentation.

Linguistically Motivated Vocabulary Reduc-
tion (LMVR) is an unsupervised morphological
segmentation algorithm based on Morfessor Flat-
Cat (Kohonen et al., 2010; Grönroos et al., 2014)
and proposed by Ataman et al. (2017). LMVR
works by imposing an extra condition on the cost
function of Morfessor so as to favour vocabularies
of the desired size. When comparing regular Sub-
word tokenization to LMVR, Ataman et al. (2017)
report a +2.3 BLEU improvement on the English-
Turkish translation task. Similar to SP, we need
to set the vocabulary size prior to running the seg-
mentation. LMVR models are trained separately
for Tamil and English, which are then used to seg-
ment the respective datasets.
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Name Domain EN Tokens(k) TA Tokens(k) Sentences(k)

Wikititles Wikipedia 215 18 95
PMI Political 707 87 40
UFAL Mixed (News, Bible & Cinema) 3893 514 166
Koran Religious 2366 586 92
MkB Political (Speech) 104 15 6
PIB Indian Press 1123 149 61
NLPC Mixed 65 8 7

Wikimatrix Mixed 2178 503 158

Total 10669 1885 625

Table 1: Approximate sizes (in thousands) of the Parallel Corpora used for training the NMT models

Name Domain TA Tokens(k) Sentences(k)

Wikipedia Dumps Wikipedia 4034 1669
News crawl News 1496 709

PMI Political 207 99

Total 5737 2477

Table 2: Approximate sizes (in thousands) of the Tamil Monolingual Corpora

5.2 Back-translation

In order to artificially increase the training data,
we employ back-translation (BT) (Sennrich et al.,
2016b). We consider two variations of this ap-
proach:

TaggedBT was presented by Caswell et al.
(2019) and is similar to the original BT technique
of Sennrich et al. (2016b), with the major dif-
ference being the addition of a special tag (here
<BT>) in front of every back-translated English
sentence. Caswell et al. (2019) had shown that this
simplemanoeuvre resulted in a higher BLEU score
when compared to untagged BT based NMTs.

StupidBT Rather than performing actual BT
which is expensive, Burlot and Yvon (2018) carry
out the following:

1. Copy the target side data to the source side.

2. Prepend each token on the source side with a
special id. For example, the token tablet be-
comes bt_tablet.

This simple and cost-effective technique was
shown to perform almost on a par with regular BT
on the English→French translation task.

5.3 Fine-tuning

Fine-tuning or transfer learning (Pan and Yang,
2010) is an effective technique to address a domain
mismatch between the training set and the testset.
While the testset consists of excerpts from newspa-
pers, the training set consists of corpora with gen-
res ranging from religious, political to movie subti-
tles. In fact, only a third of UFAL is news-oriented.
A strategy to circumvent the domain mismatch is
to fine-tune a pre-trained NMT system on a more
domain specific dataset. Unfortunately the UFAL
corpus is not domain tagged, so the news-only sen-
tences cannot be easily retrieved.
We also excluded the PIB dataset due to its

small size and large amount of almost identical sen-
tences.
We hence perform fine tuning on the PMI

dataset: This dataset consists of the sentences that
were crawled from the Prime Minister of India’s
blog, with matters that are mostly political in na-
ture. Despite the different content, we expect this
corpus to be the closest in genre to the testset
among the remaining parallel corpora.

5.4 Word Dropout

First introduced in Gal and Ghahramani (2016),
the word dropout technique was modified by Sen-
nrich et al. (2016a) to randomly drop tokens in-
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stead of types during training. They reported an
increase of 4-5 BLEU for the English↔Romanian
language pair. Furthermore, Sennrich and Zhang
(2019) report that introducing word dropout into
NMT systems in low-resource settings leads to im-
provements in BLEU scores. We would hence like
to investigate if the same improvements can be ob-
served for EN-TA.

6 Experimental Setup

All our NMTs are developed using Fairseq (Ott
et al., 2019). Following the architecture setup of
Philip et al. (2019) the Transformer-Base imple-
mentation (BASE) is used, with slight changes to
a few parameters, which are explained below. The
encoder and decoder are both set to 5 layers with
embedding dimension of 512 and 8 attention heads.
The hidden layer dimension is 2048 and layer nor-
malization is applied before each encoder and de-
coder layer. Other parameters were set as follows:
dropout (0.001), weight decay (0.2) and batch size
of 4k tokens. Our loss function is cross-entropy
with label smoothing of 0.2. The model is trained
for 100 epochs with early stopping criterion set to
3.

Segmentation The various segmentation algo-
rithms are trained on the training data prior to
the translation task. We report results with the
following vocabulary sizes: 5k (source-target
joint), 5k/5k, 10k/10k, 15k/15k and 20k/20k
(source/target disjoint).

Back-Translation In order to perform BT, we
first need to train aNMTmodel in the reverse direc-
tion, i.e. TA→EN. A Transformer based architec-
ture is also used here. Our best configuration was:
embedding and decoder having 6 layers, embed-
ding layer having 512 dimensions and 6 attention
heads with the rest of the parameters set as BASE.
This model achieves a BLEU score of 18.27 on the
UFAL TA-EN testset.

Fine-Tuning For the fine-tuning step, we take
the pretrained BASE models and continue training
them on the PMI dataset. An exhaustive search is
done to find the best configurations for the fine tun-
ing. The parameters with which we experimented
are the learning rate, batch size, dropout and the
value of label smoothing. Eventually we selected
the following fine-tuning setup: learning rate of
0.002, batch size of 128, dropout of 0.3, label

smoothing with factor of 0.3, and early stopping
after 5 epochs without improvements.

Word Dropout Following Sennrich and Zhang
(2019) we set the source word dropout to 0.3, i.e.
the probability of a source word, in a batch, being
dropped prior to training is 0.3.

7 Results

We report BLEU scores on three testsets: the
UFAL testset (Ramasamy et al., 2012), half of
the WMT2020 devset (DEV)1 and the official
WMT2020 testset. Given the rich morphology
of Tamil, we also report CHRF scores (Popović,
2015) on the WMT2020 testset. We ran the pro-
gram chrF++.py2 with the arguments -nw 0 -b 3 to
obtain the CHRF score.
From prior experimentation we found that a

jointly trained SP model resulted in better BLEU
when compared to separate training for each lan-
guage, and hence perform themajority of SP exper-
iments in Table 3 using a joint segmentation. On
the other hand, LMVR being linguistically moti-
vated is supposed to be trained independently for
each language.
The last two contrastive experiments (Exp8.2

and Exp11.2) were run after the evaluation phase
to better assess the impact of LMVR on translation
quality in our best systems.
The following observations can be made based

on the results:

Differences across testsets The trends are often
inconsistent across testsets. Exp2 gave the high-
est BLEU score on UFAL (11.8) but a low BLEU
score for DEV andWMT. On the other side, Exp11
(and Exp11.2) provided us the highest BLEU score
on the official WMT testset, but a low 10.5 for
UFAL. These variations could be attributed to the
nature of the testsets and our training regime. Be-
cause we focused on improving our NMT systems
to adapt to the news genre of WMT testset, this re-
sulted in loss of translation accuracy of the UFAL
testset, which was a mixture of three domains (one
of them being news).

Effect of Back-translation Across both seg-
mentation techniques, back-translation proved to
be beneficial. Despite previously reported re-
sults, we found that fully fledged back-translation

1We randomly select one half of the WMT2020 devset for
validation and use the remaining half for evaluation (DEV).

2https://github.com/m-popovic/chrF
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System Segment. Dict.size BLEU CHRF
UFAL DEV WMT WMT

Exp1 BASE SP 5k 11.2 8.5 5.1 42.8
Exp2 BASE +StupidBT SP 5k 11.8 8.6 5.1 41.9
Exp3 BASE +TaggedBT SP 5k 11.7 8.9 5.4 44.3

Exp6 BASE +TaggedBT LMVR 5k/5k 11.1 9 5.6 40.1
Exp7 BASE +TaggedBT LMVR 10k/10k 11.2 9.2 5.6 43.6
Exp8 BASE +TaggedBT LMVR 15k/15k 11.1 9.3 6.0 48.1
Exp9 BASE +TaggedBT LMVR 20k/20k 11.2 9.2 5.9 45.9

Exp11 BASE +TaggedBT+FT LMVR 15k/15k 10.2 9.7 6.0 46.1
Exp13 BASE +TaggedBT+WD+FT LMVR 15k/15k 10.7 10.2 6.5 50.9

Exp8.2 BASE +TaggedBT SP 15k/15k 11.3 9.1 6.3 44.2
Exp11.2 BASE +TaggedBT+FT SP 15k/15k 10.5 9.7 6.6 47.2

Table 3: English-Tamil results on three datasets: the general-domain UFAL (Ramasamy et al., 2012), our news de-
velopment set (DEV) and the official WMT2020 news testset (WMT). Exp11 (in bold) was our official submission
to WMT2020. SP refers to SentencePiece and LMVR to (Ataman et al., 2017). Dictionary size is given as one
number for source-target joint segmentation, or as two numbers for source/target size when disjoint. FT and WD
stand for fine-tuning and word dropout, respectively.

(TaggedBT) works considerably better than its
cheaper approximation (StupidBT) on DEV, but
not on the UFAL testset. While DEV reported in-
creases of +0.3 (Exp2 vs. Exp3), a drop of -0.1 in
BLEU was seen for UFAL. This could be due to
the fact that Newscrawl was a major constituent of
the monolingual corpora, that were used to train
the TaggedBT systems. Also, when comparing
a BASE system to one with TaggedBT (Exp1 vs.
Exp3), we find an increase of +0.3 in BLEU.Given
the DEV result, we decided to use fully fledged
TaggedBT for the rest of our experiments.

SP vs. LMVR Based on our initial experiments,
LMVR seemed to outperform SP. For instance,
when comparing the TaggedBT systems with SP
and LMVR (Exp3 vs. Exp9) we see a +0.5 increase
in BLEU.
However, after the official submission, we per-

formed additional contrastive experiments to ac-
count for LMVR having a much larger and disjoint
vocabulary size (see Exp 8.2 vs. Exp8 and Exp11.2
vs. Exp11). In both settings, the linguistically mo-
tivated segmentation was actually outperformed
by SentencePiece (+0.3 higher BLEU score on
WMT). On the other hand, results were inconclu-
sive when looking at the CHRF scores: namely,
LMVR ismuch better than SP in the non fine-tuned
system (Exp8 vs. Exp8.2), but slightly worse in the
fine-tuned system (Exp11 vs. Exp11.2). These re-

sults seem to reveal a complex interplay between
the effect of domain adaptation and the choice of
an optimal segmentation strategy.

Effect of vocabulary size For our BT model
with LMVR segmentation, we report the scores
for four different vocabulary sizes (Exp6 to Exp9):
among these, 15k for each language (Exp8) gives
the best BLEU score of 9.3 on DEV. Therefore we
use this size for the remaining experiments.

Effect of fine tuning When we compare mod-
els to their counterparts that were additionally fine-
tuned, we observe a slight increase in the DEV
BLEU score for the LMVR systems (compare
Exp8 vs. Exp11) but unfortunately no effect on the
WMT testset. This is probably due to the fact that
the dataset on which we fine-tuned (PMI) was not
close enough to the domain of the news translation
testset.

Effect of word-dropout Word dropout was in-
troduced to our best system, that is the one us-
ing TaggedBT and a LMVR vocabulary size of
15k/15k. The resulting system (Exp13) turned out
to be our best performing system overall, but was
not ready in time for the official submission. We
find that the addition of word dropout resulted in a
BLEU increase of +0.5 on DEV and WMT, and a
large CHRF increase (+4.8) on WMT, which con-
firms the usefulness of this technique on a new lan-
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Case Case Marker Tamil SP LMVR

Nominative −∅
Çìதð Çìத+கð Çìத+கð

puththagam puththa+gam puththa+gam
’book’

Accusative
−அ Çìதகம Çìதக+ம Çìத+க+ம
−a puththagama puththaga+ma puththa+ga+ma

’the book’

Dative
−உå¾ ÇìதகÈå¾ Çìதக+È+å¾ Çìத+கம+உå¾
−ukku puththagamukku puththaga+mu+kku puththa+gam+ukku

’to/for the book’

Genitive
−ஓட Çìதகேமாட Çìதக+ேமாட Çìத+க+ேமா++ட
−ooda puththagamooda puththaga+mooda puththa+ga+moo+da

’the book’s’

Instrumental
−ஆல Çìதகமால Çìதக+ð+ஆல Çìத+க+மா++ல
−aala puththagamaala puththaga+m+aala puththa+ga+maa+la

’by the book’

Sociative
−ஓட Çìதகேமாட Çìதக+ேமாட Çìத+க+ேமா++ட
−ooda puththagamooda puththaga+mooda puththa+ga+moo+da

’along with the book’

Locative
−ல Çìதகðல Çìத+கð+ல Çìத+கð+ல
−la puththagamla puththa+gam+la puththa+gam+la

’in the book’

Ablative
−லÊíÄ ÇìதகðலÊíÄ Çìத+கð+ல+ÊíÄ Çìத+கð+ல+ÊíÄ
−larundhu puththagamaala puththa+gam+la+rundhu puththa+gam+la+rundhu

’from the book’

Table 4: Different inflections of the Tamil singular nounÇìதகð. Columns SP and LMVR show the segmentations
resulted by the SentencePiece (SP) and LMVR algorithms respectively.

guage pair.

8 Analysis

We also performed two small qualitative studies
on the best systems based on segmentation. First,
we compare how the segmentation algorithms seg-
ment the Tamil word Çìதகð ’book’.
Secondly, using the example of the word book

we observe how the systems translate the word to
and from Tamil (Table 5).

Segmentation Table 4 shows how the word Çì-
தகð and its various case forms are segmented
by the segmentation techniques. The main differ-
ences that we observe are:

• LMVR and SP generated the same segmenta-
tion for three cases: nominative, locative and
ablative.

• LMVR always generated segmentations with
the base sub-word Çìத/puththa for all the
case forms while SP generated the segments

Çìத/puththa or Çìத/puththaga. This con-
firms the observations of Ataman et al.
(2017), that LMVR produces more morpho-
logical segments.

• LMVR, on average, resulted in more seg-
ments per token than SP.

Translation Quality For the compound comic-
book, the SP system translates it as நைகçÀைவ
Çå/nakaiccuvai puk, i.e. comedy book, with the
wordÇå/puk being a direct transliteration for book
and hence incorrect. On the other hand, LMVR
provides the correct translation.
There were in total two occurrences of the nom-

inative form of the Çìதகð/puththagam, which
were correctly translated by the two systems. The
same was observed for the locative form Çìத-
கðல/puththagamla.
An example where both systems fail to trans-

late the phrase by the book as in the sentence “I
have every reason to believe they have done every-
thing by the book and ...”. The SP system provides
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English Tamil SP LMVR

comic-book கா�å Çìதக நைகçÀைவ Çå கா�å Çìதக
kaamik puththga nakaiccuvai puk kaamik puththga

book Çìதகð Çìதகð Çìதகð
puththagam puththagam puththagam

in the book Çìதகðல Çìதகðல Çìதகðல
puththagamla puththagamla puththagamla

notebook Çìதகìைதì Çìதகê� ¾ ïேபÂ
puththagaththait puththagatti kurippetu

by the book சêடìைதï Çìதகமாô ¤�ïப�
cattattaip puththagamaal vithippati

Table 5: Qualitative Analysis of the Tamil wordÇìதகð/puththagam alongwith selected translations of the English
word book

a grammatically correct form for book (ablative),
it is however semantically incorrect. Meanwhile,
the LMVR system generates the word ¤�ïப-
�/vithippati meaning ’by rule’ while the reference
word has the meaning சêடìைதï(bill).
Finally we observed with the word notebook

that SP generated a non-existent word and LMVR
provided an another translation for the English
word notebook.
In the future, we aim to conduct in-depth analy-

sis on what and which morphological features are
captured by the NMT systems.

9 Conclusion
Although our results were not competitive with
the other submissions for the EN-TA task, our pa-
per presents the various settings that leads to an
improvement in EN-TA translation. Mainly, we
found that linguistically motivated subword seg-
mentation (Ataman et al., 2017), which was pre-
viously shown to benefit translation from/into var-
ious non-Indian languages, does not consistently
outperform the widely used SentencePiece seg-
mentation despite the agglutinative nature of Tamil
morphology. We also found that, for our English-
Tamil systems, fully-fledged back-translation re-
mains more competitive than its cheaper alterna-
tive (Burlot and Yvon, 2018). And finally, we ob-
serve a noticeable CHRF gain when adding word
dropout (Sennrich et al., 2016a) to our best model.
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{carlos.escolano,marta.ruiz,jose.fonollosa}@upc.edu,

TALP Research Center
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Abstract
In this article, we describe the TALP-UPC
participation in the WMT20 news translation
shared task for Tamil-English. Given the low
amount of parallel training data, we resort
to adapt the task to a multilingual system to
benefit from the positive transfer from high
resource languages. We use iterative back-
translation to fine-tune the system and benefit
from the monolingual data available. In order
to measure the effectivity of such methods, we
compare our results to a bilingual baseline sys-
tem.

1 Introduction

Modern NMT systems such as Transformer re-
quire large amounts of training data in order to
obtain good generation results. For this reason, low
resource languages represent a good opportunity
to explore new techniques to treat data more effi-
ciently and benefit from available sources of data
like monolingual corpora.

From the WMT20 news tasks proposed lan-
guages we are presenting our results on the English-
Tamil language pair, Tamil is an official language
from India, Sri Lanka, and Singapore having ap-
proximately 75 million native speakers. It belongs
to the Dravidian family, originated in Asia.

Two principal reasons can make Tamil a chal-
lenging language for machine translation: script
and agglutination. Tamil’s script consists of 12
vowels and 18 consonants plus one special char-
acter, allowing the combination of 247 possible
characters. Compared to the Latin script employed
by most western languages, it is an order of magni-
tude higher in the number of possible characters.

Also, by agglutination, suffixes can be added to
root words to form new ones. These words can
lead to multiple words in the target language in the
context of machine translation, which may affect
attention and decoding in NMT systems.

This work discusses the system proposed for
the evaluation in which we combine the use of
multilingual parallel data with monolingual data
to boost the performance of our proposed NMT
system.

2 Low Resource NMT

Modern NMT systems benefit from having hun-
dreds of thousands or even millions of parallel sen-
tences. When working with low resource language
pairs, the two main approaches are the use of mono-
lingual corpora and multilingual NMT. While par-
allel data may be difficult to obtain for low resource
languages, monolingual data is usually more avail-
able, as it does not require any additional labeling.

A common approach to benefit from mono-
lingual data is back-translation (Sennrich et al.,
2016a), which consists of translating a monolingual
corpus to generate synthetic corpora that can be
later employed to continue training. Similar tech-
niques create a synthetic pseudo-parallel corpus
through a pivot language (Casas et al., 2019) that
can be then trained similarly to back-translation
when data is available between the desired lan-
guage pair and a pivot high resource language.
More recently, iterative back-translation (Hoang
et al., 2018) was proposed. This technique allows
the system to generate synthetic data while updat-
ing the system, so better the new data improves as
the system trains. On the other hand, several works
on Multilingual NMT have shown benefits for low
resource language pairs by allowing positive trans-
fer from the high resource languages, boosting the
performance of the low resource ones. Different
architectures have been proposed that show this be-
havior, from universal models where all parameters
are shared between all languages (Johnson et al.,
2017), to architectures that share a common device
that maps representations into a shared represen-
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tation space (Firat et al., 2016; Zhu et al., 2020),
to architectures that do not share parameters (Es-
colano et al., 2019; Escolano et al.; Schwenk and
Douze, 2017).

In the context of the WMT20 Tamil-English
news shared task, as the provided parallel data
is limited, we resorted to a combination of both
proposed methods by incrementally train the new
language pair into a Multilingual NMT system us-
ing the provided parallel data, to later fine-tune the
system using iterative-back-translation with mono-
lingual corpora.

3 Related Work

Previous works (Choudhary et al., 2018) have
shown that Indian languages are usually a challenge
for NMT systems due to their difference in terms
of vocabulary and grammar compared to western
languages such as English. Also, standard pre-
processing methods do not always work well with
them, so specific solutions are required to obtain
good results.

In the context of NMT, previous systems, such
as MIDAS (Choudhary et al., 2018), proved that
the use of subword units leads to significant im-
provements in translation quality when applied to
Tamil by preventing Out of Vocabulary words in at
generation time.

4 Corpora and Data Preparation

All proposed systems in this work are constrained
using exclusively data provided by the task’s or-
ganization. The multilingual initial system was
trained using Europarl v8, for all translation di-
rections between English, French, Spanish, and
German. For English-Tamil PMIndia, Tanzil v1,
The UFAL EnTam corpus, The NLPC UOM En-Ta
corpus, Wikimatrix, and Wikitiles. As monolingual
Tamil data, we used News Crawl, while for English,
we used News-commentary.

We processed all non-Tamil data following
Moses (Koehn et al., 2007) scripts provided by the
organization. For each one, we applied punctua-
tion normalization, tokenization, and true-casing.
Then each language is independently tokenized us-
ing BPE (Sennrich et al., 2016b) with 32 thousand
operations. Table 1 the estatistics for each lan-
guage. Tamil data has been tokenized at word-level
using Indic-NLP (Kunchukuttan, 2020) and then
tokenized with BPE with 16 thousand operations.

corpus lang sentences words

DE-EN
DE 1758872 40265543
EN 1758872 40265543

DE-ES
DE 1663458 37698204
ES 1663458 40808518

DE-FR
DE 1681466 37410662
FR 1681466 43056346

EN-ES
EN 1769606 41803882
ES 1769606 43156309

EN-FR
EN 1770112 41211543
FR 1770112 45196313

Table 1: Corpus statistics in number of words and sen-
tences for the language pairs of the Multilingual initial
system.

corpus lang set sentences words

EN-TA
EN

train 494310 7355160
test 1275 29774

TA
train 494310 15163570
test 1275 66564

EN EN train 608912 14995557
TA TA train 504320 6426186

Table 2: Corpus statistics in number of words and sen-
tences for the English-Tamil parallel data and English
and Tamil monolingual training sets.

Table 2 show the statistics for the parallel Englist-
Tamil data as well as the monolingual corpora used.

As test set, we used 1275 lines extracted from the
development set provided from the organization,
keeping the remaining ones as validation set.

5 System Description

In this section, we are going to discuss the details
of the pipeline followed to create the translations
systems for this submission, including the multilin-
gual supervised pretraining and the unsupervised
fine-tuning using monolingual corpora.

5.1 Multilingual Supervised Pretraining

Methodology. Following the proposed model in
(Escolano et al., 2020), new languages can be added
to the system without retraining the system, just
using parallel data to one of the initial ones. In this
work, we added Tamil using the provided parallel
data to English. To train the new Tamil to English
translation direction, a new Tamil encoder is added
to the system with the previous English encoder
frozen, to prevent the model from affecting the per-
formance of the remaining pairs. Training with the
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Figure 1: Training pipeline. Step 1 Supervised preptraining, Step 2 Unsupervised fine-tuning.

frozen decoder induces the new encoder to learn
a similar representation to the ones already in the
multilingual model. In addition, as the English de-
coder has been trained with more data from all the
language pairs in the Multilingual NMT system,
we have positive transfer from the frozen modules
to the new ones, boosting the translation perfor-
mance compared to the bilingual NMT baseline.
Following the same principles, the English-Tamil
translation direction is trained by freezing the En-
glish encoder and training the Tamil decoder to
force the shared representation. In this case, we
also notice the positive transfer compared to the
baseline trained with just parallel data. See in Fig-
ure 1 the schema of the supervised pretraining that
we have just described.

Implementation. For this work, all encoders and
decoders were implemented using the Transformer
(Vaswani et al., 2017) architecture, with 6 layers, 8
heads, 512 embedding size, and 2048 feed-forward
size for each of them, and everything was imple-
mented using Fairseq’s(Ott et al., 2019) 0.6 release.
The multilingual NMT model was trained in a sin-
gle NVIDIA TITAN XP for 50 thousand updates
using adam optimizer with 0.001 as learning, 4000
warmup updates and updating every 16 batches of
2000 tokens. Adding Tamil-English and English-
Tamil directions to the system took approximately
45 thousand updates using the same parameters and
GPU configuration.

5.2 Monolingual Unsupervised Fine-tuning

Methodology. The previous process has bene-
fited from the additional corpus from the Multi-
lingual NMT system, but as stated before, mono-
lingual data is another common source of improve-
ment for NMT systems. In this section, we are
going to discuss how we added monolingual data
to the previously described model. To employ the
monolingual data available in our system, we de-
fine an autoencoder using the already trained en-
coder and decoder modules in the given language.
These modules are not trained to regenerate the
input, we introduce an adaptor, between both mod-
ules, responsible for processing the representation
generated and output a new one understood by the
decoder. Taking advantage of the architecture, we
can use one of the decoders to greedy decode the
representation created and encode it back with one
the encoders, to compute the reconstruction of the
monolingual input. Figure 1 showcases in ”unsu-
pervised fine-tunning” how is process is applied in
our work to use both Tamil monolingual data with
an English adaptor and English data with the Tamil
adaptor.

In this work, both encoder and adaptor were
frozen, and only the final decoder was updated. As
future work, then encoder could be also trained,
improving the representations generated at each
training epoch.

Implementation. As the rest of the architecture,
this process has been implemented using the same
GPU and parameter configuration, in this case for
approximately 6 thousand updates.
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5.3 Post-processing

Once our model is fully trained the apply an addi-
tional step of checkpoint averaging in which the n
checkpoints containing the weights of the network
are combined using the defaults script provided by
Fairseq.

In this work, given that the corpus was small
we saved checkpoint every epoch of approximately
400 updates and averaged the last 4 checkpoints
saved.

Finally, to generate the final submissions, de-
truecasing and detokenization using the scripts pro-
vided by Moses to the English outputs, while Indic-
NLP detokenization is applied to the Tamil ones.

6 Experiments and Results

The motivation for this work was to explore the
combination of both positive transfer and monolin-
gual data in a low resource task such as English-
Tamil Translation.

To test our hypothesis we trained a bilingual
baseline with just the parallel data available for the
task and compared its results to an incremental us-
ing adaptation to a multilingual NMT system and
monolingual fine-tuning to measure the impact of
each measure in the final performance. All con-
figurations have the same architecture and number
of parameters and have been tested on the same
1275 lines extracted from the newsdev2020 Tamil-
English set.

To introduce some context about the multilin-
gual system, we evaluated its performance using
newstest13 as test set, and the performance English
performance ranged from 20.31 BLEU points from
the English-German translations direction, to 29.74
for English-French. When English is the target
language the results vary from 24.54 for German-
English, to 27.75 for Spanish-English. About the
impact of positive transfer from Multilingual NMT,
Tables 4 and 3 show that both directions benefit
from adding Tamil into the MNMT system with
improvement of 1.58 and 4.09 BLEU points re-
spectively, approximately a 40% better than the
bilingual baseline in both directions.

When looking at the monolingual fine-tuning
results, we can observe that the English to Tamil
translation direction benefits more (2.65 BLEU)
from the technique than the Tamil to English di-
rection (1.02 BLEU). This difference in the per-
formance may be explained by the difference in
the training of both decoders. While the Tamil de-

coder has been trained just with the parallel data
for the task, the English decoder was trained with
the multilingual NMT system with more data avail-
able, which may lead to a more robust model to
fine-tuning.

Finally, looking at the checkpoint averaging re-
sults, in both directions it leads to a small improve-
ment, less than 0.2 BLEU, showing limited impact
in the final results.

System BLEU ∆BLEU
Baseline 3.42 -
Multilingual 5.00 1.58
+ Mono 7.65 2.65
+ Checkpoint Avg 7.92 0.27

Table 3: Results measured in BLEU of the English to
Tamil Translation direction.

System BLEU ∆BLEU
Baseline 6.51 -
Multilingual 10.6 4.09
+ Mono 11.62 1.02
+ Checkpoint Avg 11.8 0.18

Table 4: Results measured in BLEU of the Tamil to
English Translation direction.

7 Conclusions

In this paper, we described the TALP-UPC partici-
pation in the WMT20 news translation shared task
for Tamil-English. The motivation of this work
was to explore the combination of multilingual
transfer from high resource languages and mono-
lingual data applied to low resource NMT. Our
experiments showcase the effectiveness of adapt-
ing low resource languages pre-trained multilin-
gual systems and how it introduces positive transfer
compared to a bilingual baseline system. Also it
shows that monolingual data can be successfully
introduced into the system and that it can boost the
performance of the system. As future work, we
could explore the fine-tuning of both encoder and
decoder during the monolingual unsupervised fine-
tuning in order to help the system produce better
synthetic data as the training takes place.
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Abstract

This paper describes our submission to the
WMT20 News translation shared task in En-
glish to Japanese direction. Our main ap-
proach is based on transferring knowledge
of domain knowledge and linguistic charac-
teristics by pre-training the encoder-decoder
model with large amount of in-domain mono-
lingual data through unsupervised and super-
vised prediction task. We then fine-tune the
model with parallel data and in-domain syn-
thetic data which is generated by iterative
back-translation. For additional gain, we gen-
erate final results with an ensemble model and
re-rank them with averaged models and lan-
guage models. Through these methods, we
achieve +5.42 BLEU score compared to the
baseline model.

1 Introduction

This paper describes our submission to the WMT20
News translation task in English to Japanese di-
rection. In this year, English-Japanese directions
have newly established in News Translation Shared
Task. The English-Japanese translation is not easy
to deal with because of the difference in word or-
der and the rich morphological characteristics of
Japanese. Nevertheless, recent architectures for
Neural Machine Translation (NMT), such as Trans-
former (Vaswani et al., 2017), show reasonable
results when we have enough parallel data. Un-
fortunately, however, there is not much in-domain
parallel data provided for English-Japanese task.
To solve this issue, in this paper, we suggest the it-
erative knowledge transfer system which pre-trains
the model with in-domain monolingual data.

Our system is based on Transformer architecture.
We pre-train the model to transfer linguistic char-
acteristics and domain knowledge of monolingual
data. Although there are various pre-training meth-
ods for NMT, MASS (Song et al., 2019) is adopted

in our system since MASS pre-trains the encoder
and the decoder jointly and uses both labeled data
and unlabeled data as the training data. To sup-
plement insufficient in-domain parallel data, we
generate synthetic data by back-translation from
in-domain monolingual data. We also add some
noise to the synthetic data. We then pre-train the
model with the synthetic parallel data for super-
vised method and the monolingual data for unsu-
pervised way. In fine-tuning step, we train the
model with parallel corpus and perform the back-
translation with in-domain data for iterative fine-
tuning. In addition, we adopt an ensemble and aver-
aging methods which are simple but very effective
to improve performance in deep learning. With en-
semble and average models, we apply noisy chan-
nel re-ranking which shows higher performance
compared to R2L re-ranking (Yee et al., 2019).
Through these methods, we achieve +5.42 BLEU
score (Papineni et al., 2002; Post, 2018) compared
to the baseline model.

2 Approach

Our system aims to encourage knowledge extrac-
tion of domain knowledge and linguistic charac-
teristics by iteratively performing pre-training and
fine-tuning. In this section, we explain techniques
we use in each step.

2.1 Pre-training strategy
MASS is a masked sequence to sequence pre-
training method for the encoder-decoder based lan-
guage generation tasks (Song et al., 2019). The
advantage of MASS is that it uses the encoder-
decoder framework to predict the masked part
given the masked sentence. Several consecutive
tokens in a sentence are randomly masked; the
encoder takes them as input, and the decoder is
trained to predict masked tokens. This method al-
lows MASS to learn the capability of representation
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extraction. In this paper, we adopt both supervised
and unsupervised prediction methods of MASS.
There are plenty of in-domain monolingual corpus
but insufficient in-domain parallel corpus. Thus,
we generate synthetic data by back-translation and
apply supervised prediction task. In addition, we
use large amount of out-domain monolingual cor-
pus for unsupervised prediction task to encourage
the ability of language modeling.

Let x ∈ X as an monolingual source sentence,
and m is the number of tokens of sentence x. We
denote x\u:v as an modified sentence of x where
its position u to v are masked, 0 < u < v < m.
xu:v denotes the original sentence fragment of x
from u to v. Those sentences can have different
fragment positions u and v for each. In the sen-
tence fragment, we replace each masked token to
a special symbol [M], so the number of words in
the sentence is not changed. Then, we train model
with the masked sentence x\u:v to predict the sen-
tence fragment xu:v. Supervised setting is used
also where bilingual sentence pair (x, y) ∈ (X ,Y)
can be leveraged for pre-training. It is trained to
predict y from the input x\u:v. The log likelihood
in the entire setting is as follows:

L(θ; (X ,Y)) =
1

|Y|
∑

(x,y)∈(X ,Y)

logP (y|x\u:v; θ)

+
1

|X |
∑

(x,y)∈(X ,Y)

logP (x|y\u:v; θ)

+
1

|X |
∑

x∈X
logP (xu:v|x\u:v; θ)

+
1

|Y|
∑

y∈Y
logP (yu:v|y\u:v; θ)

(1)

P (y|x\u:v; θ) and P (x|y\u:v; θ) denote the prob-
ability of translating a masked sequence to an-
other language. This prediction task encourages
the encoder to extract meaningful representations
of masked input tokens in order to predict the un-
masked output sequence.

2.2 Noised back-translation

Inspired from the noised back-translation (Edunov
et al., 2018; Wu et al., 2019), we add noise to
the train corpus. Let X and Y denote two lan-
guages, and let X and Y denote two correspond-
ing sentence corpora, a set of all sentences. Let
B = {(xi, yi)Ni=1} denote the bilingual training

corpus, where xi ∈ X , yi ∈ Y , and N is the
number of sentence pairs. Let Mx = {xj}Nx

j=1

and My = {yj}Ny

j=1 denote sets of monolingual
sentences, where Nx and Ny are sizes of each
set, xj ∈ X , yj ∈ Y . We then train models
fb : X 7→ Y and gb : Y 7→ X on the given bilin-
gual data B. Then, we build the following two
synthetic datasets through the trained models:

B̄sx = {(x, fb(x))|x ∈Mx},
B̄sy = {(y, gb(y))|y ∈My},
B̄tx = {(fb(x), x)|x ∈Mx},
B̄ty = {(gb(y), y)|y ∈My}

(2)

where B̄sx, B̄sy can be seen the forward translation
of source-side monolingual data of X and Y and
B̄tx, B̄ty can be seen the backward translation of
target-side monolingual data of X and Y .

We build following noise versions of the aug-
mented datasets for training.

B̄nx = {(σ(x), σ(y))|(x, y) ∈ (B̄sx ∪ B̄ty)},
B̄ny = {(σ(y), σ(x))|(y, x) ∈ (B̄sy ∪ B̄tx)} (3)

where σ(x) denote the noised sentence of x, which
consists of two types of noise: deleting tokens
with probability 0.05 and swapping tokens in the
sentence, implemented as a random permutation
over the tokens with the uniform distribution but
restricted to swapping words no further than three
positions apart, where three is set empirically.

2.3 Noisy channel re-ranking

Noisy channel re-ranking method (Yee et al., 2019)
is derived from Bayes’ rule.

p(y|x) =
p(x|y)p(y)

p(x)
(4)

Let x as a source sequence and y as a target
sequence. Since p(x) is constant for all y, only
the channel model p(x|y) and the language model
p(y) determine y when x is given. Score used for
re-ranking can be calculated as follows:

α ∗ logp(y|x) + β ∗ logp(x|y) + γ ∗ logp(y)

|y|p
(5)

where α, β, γ are tunable weight, and p is length
penalty for target length |y|.
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3 Experiments

3.1 Data

Data statistics The training data of the entire sys-
tem is shown in Table 1. We use News Commentary
(NC) data as another validation set in addition to
newsdev2020 (devset).

Dataset Lines
Parallel Data

Wiki Titles v2 0.7M
WikiMatrix 3.89M
Japanese-English Subtitle Corpus 2.8M
The Kyoto Free Translation Task 0.44M
TED Talks 0.24M

Monolingual Data (En)
Europarl v10 2.29M
News Commentary v15 0.6M
News Crawl 23.35M
News Discussions 63.51M

Monolingual Data (Ja)
News Crawl 3.44M
News Commentary v15 2983
Common Crawl 1773.97M

Table 1: Training corpora for our system

Preprocessing We use recaser in Moses (Koehn
et al., 2007) to recase Japanese-English Subtitle
Corpus where English side is lowercased. We also
normalize punctuation marks and tokenize English
corpus with Moses. We use Mecab (Kudo, 2006) to
tokenize Japanese corpus. We adopt Sentencepiece
(Kudo and Richardson, 2018); separate vocabs with
32K tokens are generated for each language. Sepa-
rate vocabs show higher score in BLEU than a joint
vocab in English-Japanese.

Filtering We first filter the parallel corpus based
on length; sentences with more than 800 characters
are removed from the training data. We then filter
the training corpus with LangId (Lui and Baldwin,
2012). If LangIds of source or target side are mis-
matched, we filter out this data.

Data selection Unlike English, there are not
enough news data in Japanese, so we select data
from Common Crawl and use them as in-domain
data. To obtain data close to in-domain, we classify
sentences into in-domain and out-domain based on
the perplexity of in-domain and out-domain lan-
guage model (Moore and Lewis, 2010).

Figure 1: Illustration of training sequences of our sys-
tem, where pre-trained models PT ∗ on both side are
identical but separated for clarity.

Let PPLin(s) as the perplexity for sequence s
with the in-domain language model andPPLout(s)
as same with the out-domain language model. To
classify sentences as close to in-domain, We calcu-
late a score as follows:

S = PPLout(s)− PPLin(s) (6)

We train in-domain and out-domain language
models respectively with KenLM (Heafield, 2011).
The in-domain language model is trained with
News Crawl corpus and the out-domain language
model is trained with Common Crawl corpus.

3.2 Experimental setting
Our system is based on Transformer-big model
on Fairseq (Ott et al., 2019)1, which consists of
6-layers encoder and decoder each with 1024 em-
bedding & hidden size and 4096 feed-forward
layer size. Our system is trained using MASS2

on 16×V100 GPUs, both in pre-training and fine-
tuning.

3.3 Pre-training
Our entire training sequence is described in Fig-
ure 1. For the phase 0, we randomly sample 10M

1https://github.com/pytorch/fairseq
2https://github.com/microsoft/MASS
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sentences X0 and Y 0 from each mono corpus for
unsupervised prediction task and use all available
parallel corpus D0 for supervised task. We prepare
two separated prediction tasks, supervised and un-
supervised setups respectively. For the supervised
setup, we randomly mask entire input tokens in
each sentence by 30% probability. In the unsuper-
vised setup, we mask the fragment by replacing
consecutive tokens with symbol [M] from random
start position u. It first chooses 30% from input
tokens, and each i-th token will be replaced as (1)
an unchanged i-th token by 80% of the time, (2) a
random token by 10% of the time, and (3) a masked
token [M] by 10% of the time. After pre-training
of model PT 0, two fine-tuned models NMTx→y

and NMTy→x are trained with the parallel corpus,
English-Japanese and Japanese-English direction
respectively.

Lang Lines Remark
en 20M
ja 20M

ja*-en 5M Randomly filtered
en*-ja 5M LM-based filtered

Table 2: An amount of training corpora for pre-
training. ∗ means back-translated data from correspond
monolingual corpus.

In the beginning of next phase, we create a new
setup and train the model with training data men-
tioned in Table 2. We add noised synthetic data X ′

and Y ′ to create following version of training data.
It consists of B̄sx, B̄sy, B̄nx and B̄ny . Xm and Y m

consist of 20M mono corpora for unsupervised pre-
training. 5M English mono corpus are randomly
chosen from mono corpus, and 5M Japanese mono
corpus are selected based on Equation 6; they are
represented as Xp and Y p in Figure 1. Then, 5M
mono corpora are translated with NMTx→y and
NMTy→x respectively.
PT 1 model is trained with above train corpus.

Then, we train two fine-tuned models, NMT 1
x→y

and NMT 1
y→x separately with parallel corpora in

Table 3.

3.4 Iterative fine-tuning

After pre-training in phase 1, we create fine-tuned
models with parallel corpus D0 and synthetic cor-
pus X ′′ and Y ′′.

Inspired from joint training (Zhang et al., 2018),
we perform back-translation and fine-tune steps

Lang Lines Domain Remark
English - Japanese

en-ja 7M out
en*-ja 3M in

Japanese - English
ja-en 7M out

ja*-en 7M in Randomly filtered

Table 3: An amount of training corpora for fine-tuning

iteratively in phase 2. Synthetic corpora for each
steps are replaced to a newly generated ones from
developed models, which are represented as X ′′

and Y ′′ in Figure 1.

3.5 Advance decoding

We improve our final result with noisy channel
re-ranking method (Yee et al., 2019). The small
difference is we use the different direct model for
scoring instead of using the same model used for
generation. To generate y, we first ensemble three
models with final back-translated models, consider-
ing validation sets. We generate 44 n-bests results
with 44 beam size with ensemble models. Then,
we re-rank the results according to Equation 5. The
direct model for scoring is the averaged model of
three models used for ensemble. This is faster
and shows better results compared to the ensemble
model. The channel model is an average model in
the opposite direction. For language model, we use
Transformer-big model, trained only with News do-
main monolingual corpus. Finally, we tune weights
of each model and length penalty with validation
sets.

3.6 Experimental Results

Step Model Dev
Baseline 17.62

Phase 0 MASS 19.16
Phase 1 MASS 19.23

+ Noise 19.31
Phase 2 Back-translation Iter1 23.59

Back-translation Iter2 23.91
Ensemble 24.05
+ Beam 44 24.21
Re-ranking(devset) 24.73
Re-ranking(NC) 23.55

Table 4: En-Ja BLEU scores on WMT20 devset
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Model Test
Baseline 20.51
Ensemble + Beam 44 25.05
Re-ranking(devset) 24.41
Re-ranking(NC) 25.93

Table 5: En-Ja BLEU scores on WMT20 test set.

The results of English to Japanese direction are
shown in Table 4 and 5. Our final submission’s
BLEU score is 5.42 higher than the baseline model.

For evaluation, multi-bleu.perl3 is used after to-
kenizing with Mecab in Japanese. The base-
line model is trained only with parallel data in
Transformer-big architecture and is decoded with
beam size 4. It shows great performance improve-
ment when MASS is applied. When using synthetic
data and adding noise to data in pre-training steps
(Phase 1), it shows better results compared to it
with only parallel data (Phase 0). Back-translation
with the in-domain monolingual data increases the
BLEU score most, and the score increases further
in the next iteration. The ensemble model and large
beam size also show better BLEU score.

For the test set, we replace symbol £ to ”pound”
in source sentences as pre-processing. We re-rank
and tune the parameters based on News Commen-
tary parallel data set which shows better results
than tuning with devset. Since we select best mod-
els based on devset in previous steps, using devset
in re-ranking seems to result in overfitting.

The final result of our submission is shown in Ta-
ble 6. Characters based tokenizer and SacreBLEU4

are used for evaluation in Ocelot.

Submission SacreBLEU chrF
English-Japanese 41.0 0.351

Table 6: Automatic evaluation on WMT20 test set in
Ocelot.

4 Conclusions

In this paper, we describe our submission to
the WMT20 news translation task in English to
Japanese direction. Our main approach is based
on transferring knowledge from large amount of
monolingual data by pre-training the model itera-

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

4https://github.com/mjpost/sacrebleu

tively using MASS. We then improve the system
with several effective methods: noised and itera-
tive back-translation, in-domain data selection, and
re-ranking. Through these methods, we achieve
competitive results compared to the baseline and
prove that the iterative knowledge transfer system
we proposed is effective.
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Abstract

In this paper, we describe the submis-
sion of Tohoku-AIP-NTT to the WMT’20
news translation task. We participated in
this task in two language pairs and four
language directions: English↔German and
English↔Japanese. Our system consists of
techniques such as back-translation and fine-
tuning, which are already widely adopted in
translation tasks. We attempted to develop new
methods for both synthetic data filtering and
reranking. However, the methods turned out
to be ineffective, and they provided us with
no significant improvement over the baseline.
We analyze these negative results to provide
insights for future studies.

1 Introduction

The joint team of Tohoku University, RIKEN
AIP, and NTT (Tohoku-AIP-NTT) participated
in the WMT’20 shared news translation task in
two language pairs and four language directions:
English→German (En→De), German→English
(De→En), English→Japanese (En→Ja), and
Japanese→English (Ja→En).

At the very beginning of this year’s shared task,
we planned to employ the following two enhance-
ments at the core of our system. The first enhance-
ment is the noisy synthetic data filtering (Koehn
et al., 2018) to better utilize the millions of back-
translated synthetic data. However, as we analyze
in Section 5.1, this filtering turned out to be in-
effective. The second enhancement is the rerank-
ing of n-best candidates generated a the model.

∗ Shun conducted most of the experiments for both
En↔De and En↔Ja. Takumi preprocessed En↔Ja data.
Ryuto trained fasttext word vectors and implemented the post-
ensemble method. Takumi and Ryuto worked on synthetic
data filtering approaches. Makoto back-translated monolin-
gual corpus for all language directions. Shun, Makoto, and
Takumi developed an effective fine-tuning strategy. Jun imple-
mented the entire reranking module and organized the team.
Everyone contributed to writing this paper.
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Figure 1: Overview of our system.

Given a collection of scores from multiple gen-
erative/translation models, our reranking module
selects the best candidate. We attempted to develop
sophisticated machine learning based methods for
optimizing the weight of each score. However, we
found that those methods are not as effective as the
simple grid search on the BLEU score (details in
Section 3.7 and Section 5.3).

Eventually, we designed our system as a com-
bination of techniques that are already widely
adopted in the shared task, such as back-translation
and fine-tuning. The overview of our system is
shown in Figure 1. We achieved the first place
in De→En on automatic evaluation and obtained
strong results in other language directions.
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2 Dataset and Preprocessing

2.1 Bitext

For both En↔De and En↔Ja, we used all bitexts
that are available for a constrained system.
En↔De Following Ng et al. (2019), we applied
language identification filtering (langid)1 to the
bitext. In this filtering, sentence pairs were re-
moved if a supposedly English/German sentence is
identified as a non-English/German sentence. Then,
we applied the clean-corpus-n script avail-
able in the Moses toolkit (Koehn et al., 2007) and
removed sentence pairs that are either too long
and/or their length ratio is too large2. These two
filtering processes provided us with approximately
44M sentence pairs. Then, we trained and ap-
plied the Moses truecaser independently for
each language. We also trained byte-pair encoding
(BPE) (Sennrich et al., 2016c) models using the
sentencepiece (Kudo and Richardson, 2018)
implementation. For BPE training, we used only a
subset of the parallel corpus (Europarl, NewsCom-
mentary, and RAPID) to prevent extremely rare
characters from contaminating the vocabulary and
the subword segmentation.
En↔Ja Similar to En↔De, we applied
langid to clean bitext, but we did not use
clean-corpus-n since the Japanese text is not
segmented. Instead, we simply removed sentence
pairs in which the English sentence is longer than
500 tokens. Eventually, we obtained about 17M
sentence pairs. We used truecaser for the En-
glish side only, because case information does
not exist in the Japanese language. We indepen-
dently trained the BPE merge operation on the
bitext. We set the character coverage option3 of
sentencepiece to 1.0 and 0.9998 for English
and Japanese, respectively.

2.2 Monolingual Corpus

The origins of the monolingual corpus in our sys-
tem are the Europarl, NewsCommentary, and en-
tire NewsCrawl (2008-2019) corpora for English
and German, and the Europarl, NewsCommentary
and CommonCrawl corpora for Japanese. Sim-
ilarly to bitext preprocessing in Section 2.1, we
applied langid filtering to all monolingual cor-

1https://github.com/saffsd/langid.py
2We set the minimum length to 1, the maximum length to

250, and the maximum ratio to 3.0.
3--character coverage

pora. These corpora are used for large-scale back-
translation (Section 3.3).

3 System Overview

3.1 Base Model and Hyperparameter

The well-known Transformer model (Vaswani
et al., 2017) is our base Encoder Decoder model.
Specifically, we started with the “Transformer (big)”
setting described by Vaswani et al. (2017) and in-
creased the feed-forward network (FFN) size from
4,096 to 8,192. Ng et al. (2019) reported that this
larger FFN setting slightly improves the perfor-
mance; we also confirmed it in our preliminary
experiment.

Table 1 shows a list of hyperparameters for
model optimization. We employed an extremely
large mini-batch size of 512,000 tokens using the
delaying gradient update technique (Bogoychev
et al., 2018; Ott et al., 2018). This is because pre-
vious studies showed that a large mini-batch size
leads to a faster convergence (Ott et al., 2018) and a
better generalization (Popel and Bojar, 2018; Baw-
den et al., 2019; Morishita et al., 2019). We also
used a large learning rate of 0.001 to further ac-
celerate the convergence (Goyal et al., 2017; Ott
et al., 2018; Liu et al., 2019). We use the fairseq
toolkit (Ott et al., 2019) for the entire set of exper-
iments. Every reported BLEU score is measured
using SacreBLEU (Post, 2018).

3.2 Subword Size

For En↔De, we used the subword size of
32,000, which is commonly used in previous stud-
ies (Vaswani et al., 2017; Ng et al., 2019). For
En↔Ja, we conducted a hyperparameter search for
a suitable subword size; Morishita et al. (2019) em-
pirically showed that a small subword size (e.g.,
4,000) is superior to those commonly adopted in
the literature (e.g., 16,000 and 32,000). Given their
findings, we searched for the subword size in the
following range: {4000, 8000, 16000, 32000}.

Table 2 shows that the largest subword size
achieves the best performance, which is inconsis-
tent with the result of Morishita et al. (2019). One
explanation for this result is that Morishita et al.
(2019) conducted an experiment on the ASPEC
corpus, whose size (approx. 3M) is much smaller
than that of the bitext available for the En↔Ja task.
That is, the bitext available for the En↔Ja task is
sufficiently large for the model to learn a mean-
ingful representation for each subword unit that is
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Base Model

Architecture Transformer (big) with FFN size
of 8,192

Optimizer Adam (β1 = 0.9, β2 = 0.98, ε =
1× 10−8)

Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3
Gradient Clipping 1.0
Label Smoothing εls = 0.1 (Szegedy et al., 2016)
Mini-batch Size 512,000 tokens
Number of Updates 40,000 steps for En↔De and

80,000 steps for En↔Ja
Averaging Save checkpoint for every 2,000

steps and take an average of last
10 checkpoints

Uni-directional Language Model

Architecture transformer lm big setting
available in fairseq

Optimizer Adam (β1 = 0.9, β2 = 0.98, ε =
1× 10−8)

Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.0005
Dropout 0.1
Gradient Clipping 1.0
Weight Decay 0.0
Mini-batch Size 512,000 tokens
Number of Updates 50,000 steps

Masked Language Model

Architecture RoBERTa-base (Liu et al., 2019)
Optimizer Adam (β1 = 0.9, β2 = 0.98, ε =

1× 10−8)
Learning Rate Schedule Polynomial decay
Warmup Steps 10,000
Max Learning Rate 0.0005
Dropout 0.1
Gradient Clipping 1.0
Weight Decay 0.01
Mini-batch Size 2,048 sentences
Number of Updates 125,000 steps

Table 1: List of hyperparameters for each model.

close to the word level. Thus, we also used the
subword size of 32,000 for En↔Ja.

3.3 Large-scale Back-translation

We used the back-translation technique (Sennrich
et al., 2016b) to generate large-scale synthetic data.
First, we trained models on the bitext for all lan-
guage pairs. Second, for each language, we fed
the monolingual corpus (Section 2.2) to the model.
Here, we used the beam search of width 6 and
length penalty of 1.0. Finally, we applied length
and ratio filtering to the model outputs4. The size

4For En↔De, we removed sentence pairs that contain
sentences longer than 250 tokens. For En↔Ja, we removed
sentence pairs such that the English sentence is longer than 250

Subword Size En→Ja

4,000 19.2
8,000 19.6

16,000 19.4
32,000 19.7

Table 2: Effectiveness of different subword sizes on the
validation set of En↔Ja task.

En→De De→En En→Ja Ja→En

No filtering 336M 236M 1777M 236M
After filtering 328M 230M 235M 230M

Table 3: Number of sentence pairs in the synthetic data
of each language pair

of the synthetic data that we generated for each
language direction is shown in Table 3. The size of
the synthetic data for En→Ja, which is generated
from CommonCrawl, is extremely large. Thus, we
randomly subsampled the synthetic data of En→Ja
so that its size roughly matches those of De→En
and Ja→En.

We searched for an effective setting for incor-
porating the synthetic data. As the most straight-
forward starting point, we simply combined bitext
and synthetic data and trained the model. Here,
we upsampled the bitext so that the model sees the
bitext and synthetic data at a 1:1 ratio (Ng et al.,
2019). Table 4 shows the result. Here, naively us-
ing the synthetic data (BASE+BT) decreased the
performance of the model trained with the bitext
only (BASE). Given this result, we considered the
following two enhancements:
Tagged Back-translation We used the tagged
back-translation technique (Tagged-BT) (Caswell
et al., 2019), which prepends a special tag token
(e.g., 〈BT〉) to the source sentence of synthetic
data. This simple technique can inform the model
about the origin of the given training data, i.e.,
whether the sentence pair is back-translated. Marie
et al. (2020) empirically demonstrated that the
model trained with such tagged data can avoid
overfitting to the synthetic data. In Table 4, the
Tagged-BT (BASE+TAGGED-BT) successfully im-
proves the performance from BASE except for
the newstest2019. We suspect that the perfor-
mance does not improve on newstest2019 because
it does not contain the “translationese” text, i.e.,
human-generated translations, which are reported
to be the main source of improvement of back-

tokens, or the Japanese sentence is longer than 500 characters.
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newstest

Setting 2014 2018 2019

BASE 32.2 47.3 42.2
BASE+BT 32.1 45.9 38.8
BASE+TAGGED-BT 33.0 48.0 42.0
BASE (l = 9)+TAGGED-BT 33.1 49.6 42.7
BASE (l = 12)+TAGGED-BT 33.4 49.4 42.3

Table 4: Effectiveness of using the synthetic data on
En→De

translation (Bogoychev and Sennrich, 2019; Marie
et al., 2020).
Deeper Model We also considered increasing
the model size to take advantage of a massive
amount of training data. Specifically, we increased
the number of layers l from 6 to 9 and 12 (Wang
et al., 2019). Table 4 shows that the performances
of BASE (l = 9)+TAGGED-BT and BASE (l =
12)+TAGGED-BT are almost comparable. We de-
termined that BASE (l = 9)+TAGGED-BT is the
best option by considering the model performance
and training efficiency regarding the GPU memory
constraints.

3.4 Fine-tuning

Fine-tuning the model with an in-domain news cor-
pus is acknowledged as an extremely important
technique for boosting the performance (Sennrich
et al., 2016b; Junczys-Dowmunt, 2019; Ng et al.,
2019; Bawden et al., 2019). We fine-tuned our
models as follows:
En↔De For En↔De, we fine-tuned the model
with a collection of newstest2008-2018 and evalu-
ated its performance on newstest2019. For En→De,
we only used sentence pairs whose source sentence
is originally written in English, i.e., we never used
texts with translationese on the source side for fine-
tuning. Similarly, for De→En, we used sentence
pairs whose source sentence is originally written in
German. This way, we ensured that our model does
not overfit to the translationese texts; since new-
stest2019 does not contain translationese texts (Bar-
rault et al., 2019), we expected that newstest2020
does not contain translationese either.

We fine-tuned the model for 200 iterations with
a mini-batch size of 20,000 tokens. During the
fine-tuning, we fixed the learning rate to 1e-06
for De→En and 1e-05 for En→De. We saved the
model every 20 iterations and took an average of
the last eight saved models for decoding.
En↔Ja For fine-tuning, we used the Kyoto Free

Translation Task (KFTT) corpus and NewsCom-
mentary as the clean bitext and NewsCommentary
as the news bitext. We fine-tuned the models by a
two-step procedure, that is, we first fine-tuned with
the clean bitext for 2,000 steps. Then we fine-tuned
with the news bitext for 200 steps. We found that
the validation performance of this two-step proce-
dure is slightly better than that of the fine-tuning
with the news bitext only.

3.5 Ensemble
We used the model ensemble method to improve
the performance. First, we trained four models with
different random seeds. These models were then
simultaneously used for computing the score of
each candidate during the beam search decoding.

3.6 Right-to-Left Models
We used Right-to-Left (R2L) models for rerank-
ing the n-best candidates from Left-to-Right (L2R)
models. R2L models generate sentences in reverse
order. Suppose that conventional L2R models gen-
erate sentences from the beginning-of-the-sentence
(BOS) to the end-of-the-sentence (EOS); R2L mod-
els generate from EOS to BOS. This reranking
technique was independently proposed by Liu et al.
(2016) and Sennrich et al. (2016a) to mitigate the
search error of L2R models, which may occur
around EOS. We trained four R2L models and used
their scores for reranking the n-best candidates gen-
erated by L2R models (Section 3.5). Specifically,
we computed the score of each candidate with both
L2R models and R2L models. Then, we took the
sum of the two scores and obtained the final score.
We sorted this final score and then selected the
candidate with the highest score.

3.7 Reranking
We also applied a reranking method based on the
scores of several translation (or generative) models,
which is closely related to one iteration of Mini-
mum Error Rate Training (MERT) (Och, 2003) of-
ten used in Statistical Machine Translation (SMT).
The underlying idea is to find the balance of likeli-
hood independently computed from the models.

Suppose we have a set of candidate output sen-
tences for each input in either the validation (train-
ing phase) or the test (evaluation phase) sets. In
our case, we independently generated n-best candi-
dates using the L2R and R2L models, and obtained
2n candidates in total for each. Here, let Ci repre-
sent the set of the obtained 2n candidates of the
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i-th input.
Next, Pj(e) ∈ [0, 1] denotes the score of the can-

didate e ∈ Ci obtained from the j-th model, where
j ∈ {1, . . . , J}. Let wj ∈ [0, 1] be a weighting
factor of the j-th model, and w = (w1, . . . , wJ)
be the vector representation of the weighting factor.
We then obtained the most likely candidate êi,w
from Ci given the i-th input and w as follows:

êi,w = argmax
e∈Ci

{
J∑

j=1

wj log(Pj(e))

}
. (1)

Finally, for the parameter estimation of w, we
explored ŵ by using the following optimization
problem:

ŵ = argmax
w∈Gw

{
SacreBLEU(Êw)

}
, (2)

where Êw = (êi,w)
I
i=1 and Gw represent a set of

values that wj can take, namely, [0, 1]J .
For the reranking experiment, we prepared the

following generative and translation models to com-
pute Pj(e).
Source-to-Target L2R and R2L Model The
Source-to-Target L2R and R2L models are the
same as that used for the candidate generation; the
ensemble of four L2R models and four R2L models
compute the score of each candidate.
Target-to-Source L2R and R2L Model The
Target-to-Source (T2S) model translates a sequence
in a reverse direction, that is, it translates a given
target sequence to a source sequence. For example,
if a candidate sentence is generated by the En→De
model, we use the De→En model for computing
the T2S score.
Uni-directional Language Model We used the
uni-directional language model (UniLM) to com-
pute the likelihood of the decoded target sequence.
To do this, we trained the Transformer-based lan-
guage model (Baevski and Auli, 2019) for all lan-
guages on monolingual data. We obtained two dis-
tinct scores from two normalization methods: (1)
simply dividing by the target sequence length (Yee
et al., 2019) and (2) SLOR (Pauls and Klein, 2012;
Lau et al., 2020). A list of hyperparameters is
shown in Table 1.
Masked Language Model We also used the pre-
trained masked language model (MLM) (Devlin
et al., 2019) for computing the score. Specifi-
cally, we trained the RoBERTa-base (Liu et al.,
2019) setting available in fairseq on monolin-
gual data. First, we computed the unnormalized

log-probabilities by the method described by Wang
and Cho (2019). Then, we normalized the proba-
bility by (1) dividing by the sequence length and
(2) PenLP (Vaswani et al., 2017; Lau et al., 2020).
A list of hyperparameters is shown in Table 1.

Because the uni-directional language model and
MLM both have two distinct variations, we used a
total of six models, namely, J = 6.

3.8 Post-processing

We converted the decoded target sequence from a
sequence of subwords to tokens. Then we applied
the Moses detruecaser to English and German
sequences. We also applied language-specific post-
processing as follows:
En↔De We observed that the rare tokens such as
Greek letters in the source sequence are sometimes
translated into 〈UNK〉. We handled 〈UNK〉 in the
decoded sequence by copying the corresponding
token from the source sequence. We determined
the corresponding token by finding the token that
does not exist in one of the source-side or target-
side vocabularies.
En→Ja We did not take any special measures
for 〈UNK〉5. We replaced the English style comma
“，” and period “．” with the Japanese style “、”
and “。” respectively.
Ja→En We observed that the model translates
the Japanese vertical bar “｜” to 〈UNK〉. Thus, we
replaced all 〈UNK〉 with “|”.

3.9 Post-ensemble

Kobayashi (2018) proposed the method of tak-
ing the ensemble of multiple models after de-
coding the sequence, namely, post-ensemble
(POSTENSEMBLE). The underlying idea of
POSTENSEMBLE is to choose “majority-like” can-
didates by comparing the similarities among can-
didates. He applied POSTENSEMBLE to the ab-
stractive summarization task and reported that the
performance is superior to that of the conventional
ensemble.

We used POSTENSEMBLE in En→Ja6. Specifi-
cally, we adopted the PostCosE variant in which
the cosine similarity is used as a similarity met-
ric. We created 300 dim fasttext word vectors (Bo-
janowski et al., 2017) on the Japanese monolingual
corpus.

5In fact, we never observed 〈UNK〉 in the decoded test set.
6Kobayashi (2018) introduced POSTENSEMBLE as the

method that replaces the conventional ensemble. Instead, we
used two ensemble methods simultaneously.
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4 Results

Performance on the Validation Set We show
the validation performance of our system in Table 5.
We used newstest2019 and the official validation
set for En↔De and En↔Ja, respectively, for the
validation data. The table shows the effectiveness
of incorporating each technique described in Sec-
tion 3. Each technique consistently improves the
performance in most cases. In addition, it is note-
worthy that both En→De and De→En models sig-
nificantly outperform the performance of the best
system from last year’s shared task (WMT’19).
Performance on the Test Set We show the test
set performance that we measured in the OCELoT
system7 in Table 6. The system provides us with
the SacreBLEU score and the chrF score (Popović,
2015).

We used the following models for POSTENSEM-
BLE of Ja→En: (1) model (f) (Table 5), (2) Model
(f) with the ensemble of eight models, in which four
models are fine-tuned with the clean bitext and the
other four models are fine-tuned with the news bi-
text, and (3) Model (2) without n-best candidates
from the R2L model.

The performance of En→Ja appears significantly
better than the validation performance reported
in Table 5; this is because OCELoT computes
the BLEU score with character-level segmentation,
whereas we used the MeCab-based word-level seg-
mentation8. We also computed the BLEU score
with the MeCab-based segmentation for reference
and obtained 25.8 points.

5 Analysis

In this section, we introduce several negative results
from our preliminary experiments. Our attempts in-
clude the following: (1) filtering synthetic data, (2)
incorporating forward-translation, and (3) develop-
ing a more sophisticated reranking method. We
also analyze the issue regarding the use of brackets
in the En→Ja task.

5.1 Negative Results on Synthetic Data
Filtering

We applied corpus filtering to the synthetic data
created in Section 3.3. The goal of this filtering is
to extract and utilize the “clean” subset of synthetic
data that may contribute to the model performance.

7https://ocelot.mteval.org/
8The use of the MeCab-based segmentation is recom-

mended by SacreBLEU.

For each of the sentence pairs in the synthetic data,
we assigned scores that represent the likelihood of
being a sentence pair (Section 5.1.1). Then, we
regarded these scores as features for classification;
we trained a model classifying clean and noisy sen-
tence pairs (Section 5.1.2). Finally, on the basis of
the confidence scores of the classifier, we extracted
the presumably clean subset of the synthetic data.

5.1.1 Features
Pointwise HSIC We computed the score for
each sentence pair using the pointwise Hilbert-
Schmidt independence criterion (PHSIC) (Yokoi
et al., 2018), which is a kernel-based co-occurrence
measure. Given a set of sentence pairs, PHSIC can
assign a high score to a sentence pair that is con-
sistent with the rest of the sentence pairs. To do
this, PHSIC utilizes kernel functions and calcu-
lates the sentence similarity. Yokoi et al. (2018)
applied PHSIC to machine translation corpus filter-
ing and reported promising results. Thus, we also
employed PHSIC for synthetic data filtering.

First, we learned the parameters of the PHSIC
matrix with a cosine kernel by using all sentence
pairs in the bitext, which are represented as sen-
tence embeddings. Then, we used this trained ma-
trix to compute the scores for the synthetic data. We
used the following two methods for computing the
sentence embeddings: (1) the weighted sum of fast-
text vectors (Bojanowski et al., 2017) by smoothed
inverse frequency (SIF) weighting (Arora et al.,
2017) and (2) the average of final hidden states of
the pre-trained MLM. Here, the fasttext vector is
the same as the one used for post-ensemble (Sec-
tion 3.9), and MLM is the one from the reranking
(Section 3.7). The word frequency for SIF weight-
ing is calculated from the monolingual corpus.
Cross-entropy from T2S Model We computed
the word-normalized conditional cross-entropy us-
ing the T2S translation model. For example, the
synthetic data generated using the En→De model
are scored using the De→En model.

5.1.2 Training a Classifier
We trained a linear support vector machine model
that classifies clean and noisy sentence pairs. To
train the classifier, we used newstest2009-2019 and
the official validation set as clean sentence pairs for
En↔De and En↔Ja, respectively. We generated
the noisy sentence pairs by randomly adding the
noise presented by Wang et al. (2018) to the clean
sentence pairs.
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ID Setting En→De De→En En→Ja Ja→En

(a) BASE (Section 3.1) 42.4 42.0 19.7 21.6
(b) BASE (l = 9)+TAGGED-BT (Section 3.3) 42.7 42.5 22.0 23.9
(c) (b) + fine-tuning (Section 3.4) 44.9 42.3 23.1 24.4
(d) (c) × 4 (Section 3.5) 45.5 42.8 23.9 25.4
(e) (d) + 4 × (c)-R2L (Section 3.6) 45.4 43.6 24.2 25.9
(f) (e) + reranking (Section 3.7) 45.7 43.8 24.9 26.2

- The best system in WMT’19 44.9 42.8 - -

Table 5: Effectiveness of each technique: we use newstest2019 and official validation set for En↔De and En↔Ja
respectively. The best result from WMT’19 is unavailable for En↔Ja, because this task has newly appeared this
year.

Direction Setting / ID BLEU chrF

En→De (f) (Table 5) 37.5 0.647
De→En (f) (Table 5) 43.8 0.690
En→Ja (f) (Table 5) 40.1 0.343
Ja→En POSTENSEMBLE 25.5 0.536

Table 6: Performance on WMT’20 Test Set: refer to
Table 5 for model ID.

After training, we classified each sentence pair
in the synthetic data. The confidence score of the
classifier was used as an overall score that repre-
sents the “cleanness” (i.e., quality) of the sentence
pair.

5.1.3 Results

We investigated the effectiveness of the synthetic
data filtering. First, we sorted the synthetic data
according to the score computed with the classi-
fier (Section 5.1.2). Then, we used the top r% of
synthetic data for training.

Table 7 shows the results of synthetic data filter-
ing with varying r. We trained the En→De model
using the BASE+TAGGED-BT setting. The results
showed that our filtering does not seem to im-
prove the performance over the baseline (r = 100).
One of the possible reasons for this ineffective-
ness is the quality of the sentence embeddings used
for PHSIC. That is, the use of fasttext and pre-
trained MLM might be inappropriate. Utilizing
more powerful sentence encoders such as Sentence-
BERT (Reimers and Gurevych, 2019) and Univer-
sal Sentence Encoder (Cer et al., 2018) is an in-
teresting option to explore in the future; however,
the methods of acquiring such resources in the con-
strained setting is not trivial.

newstest

Amount of Synthetic Data Used: r (%) 2014 2018 2019

100 33.0 48.0 42.0
50 32.9 48.4 42.3
33 33.1 47.9 42.2
25 32.9 48.5 42.4

Table 7: Effectiveness of corpus filtering on En→De.

newstest

Setting 2014 2018 2019

BASE 32.2 47.3 42.2
BASE+TAGGED-BT 33.0 48.0 42.0
BASE+TAGGED-FT 31.7 46.7 42.1
BASE+TAGGED-BT+TAGGED-FT 33.1 48.3 42.4

Table 8: Effectiveness of incorporating forward-
translation and back-translation on En→De.

5.2 Effectiveness of Incorporating
Forward-Translation

Forward-translation (Burlot and Yvon, 2018) is a
technique similar to back-translation; the differ-
ence is that while back-translation uses the target-
side monolingual data, forward-translation uses the
source-side monolingual data to generate synthetic
data. Bogoychev and Sennrich (2019) reported that
forward-translation is effective for improving the
translation of texts that are originally written in the
source language (i.e., non-translationese texts).

To determine if we can take the best of the two
techniques, namely, forward-translation and back-
translation, we combined the synthetic data and
trained the model. As described in Section 3.3, we
prepended a distinct tag to each data source: 〈FT〉
and 〈BT〉 for data generated by forward-translation
and back-translation respectively. Then, we upsam-
pled the bitext, so that the model is fed with the
bitext and synthetic data at a 1:0.5:0.5 ratio.

Table 8 shows the result. The model in-
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Input Only one member of the family, then 15-year-old Cassidy Stay, survived.
Reference 家族の中で、ただ一人、当時15歳だったカシディ・ステイさんだけが一命を取り留めた。
Model Output 当時15歳のキャシディ・ステイ(Cassidy Stay)だけが生き残った。

Input Madam Needjan, pledged the association’s support to the hospital and called on other associations to emulate
the gesture.

Reference マダム・ニージャンは、協会の当病院への支援を約束し、他の団体もこうした行為に追随する
よう呼びかけた。

Model Output マダム・ニージャン(Madam Needjan)は、協会が病院を支援することを約束し、他の協会にこの
ジェスチャーを模倣するよう求めた。

Figure 2: Error analysis of En→Ja translation.

corporating both back-translation and forward-
translation (BASE+TAGGED-BT+TAGGED-FT)
achieves the best result, however, the improve-
ment was marginal. In addition, the perfor-
mance of the model with forward-translation only
(BASE+TAGGED-FT) was worse than that of the
baseline (BASE) in all datasets. Given this result,
we only used back-translation and kept the training
procedure as simple as possible in our final system.

5.3 Negative Result on Reranking

We actually investigated several different types of
reranking algorithms other than the standard grid
search described in Section 3.7. For example, we
experiment withed optimizing model weights by
machine learning based methods such as those us-
ing support vector machines, XGBoost (Chen and
Guestrin, 2016), and deep neural networks. Un-
fortunately, none of them worked well. In this
competition, we only used the model scores for the
reranking. This setting immediately leads the over-
fitting to the development sets, and hard to extract
meaningful generalized weights (rules) that also
work well for unseen test data. The development
of the methods that can further and consistently im-
prove the quality of translations is our future work
for the next year.

5.4 Japanese Text and Brackets

Figure 2 shows examples from the validation set
of the En→Ja task. These examples illustrate the
weakness of our model, in which the named enti-
ties are often inappropriately translated. According
to the references in the figure, the named entities
must be translated from alphabetical characters to
katakana (カタカナ), e.g., Cassidy Stay toカシ
ディ・ステイ. Although our model successfully
translates the named entities in most of the cases,
the model also copies original alphabetical char-
acters into the brackets. For example, the model
translates Madam Needjan toマダム・ニージャ

ン(Madam Needjan). These alphabetical charac-
ters damage the BLEU score. We can remove the
extra brackets by the rule-based post-processing;
however, we find that this naive operation hurts the
brevity penalty.

This extra bracket problem seems to reflect the
way that the named entities are written in the
En↔Ja training data such as KFTT. We should
have considered special preprocessing measures in
advance to alleviate this problem.

6 Conclusion

In this paper, we described the submission of the
joint team of Tohoku, AIP, and NTT (Tohoku-AIP-
NTT) to the WMT’20 news translation task. We
participated in the En↔De and En↔Ja transla-
tion. In preliminary experiments, we attempted
new techniques such as synthetic data filtering,
forward-translation, and sophisticated reranking.
However, none of them was effective. In the sub-
mission, we used several standard techniques such
as back-translation and fine-tuning. As a result,
we achieved the best BLEU score on De→En and
strong results in other directions.
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Abstract

We describe the National Research Council
of Canada (NRC) submissions for the 2020
Inuktitut–English shared task on news trans-
lation at the Fifth Conference on Machine
Translation (WMT20). Our submissions con-
sist of ensembled domain-specific finetuned
transformer models, trained using the Nunavut
Hansard and news data and, in the case of
Inuktitut–English, backtranslated news and
parliamentary data. In this work we ex-
plore challenges related to the relatively small
amount of parallel data, morphological com-
plexity, and domain shifts.

1 Introduction

We present the National Research Council of
Canada (NRC) Inuktitut–English1 machine trans-
lation (MT) systems in both translation directions
for the 2020WMT shared task on news translation.
Inuktitut is part of the dialect continuum of Inuit

languages, the languages spoken by Inuit, an In-
digenous people whose homeland stretches across
the Arctic. Included in this continuum are Indige-
nous languages spoken in northern Canada, includ-
ing but not limited to the Territory of Nunavut.
The term Inuktut is used by the Government of
Nunavut (2020) to describe Inuit languages spoken
inNunavut, such as Inuktitut and Inuinnaqtun. The
majority of the Inuit language text provided for the
shared task comes from ᓄᓇᕗᒥ ᒪᓕᒐᓕᐅᕐᕕᐊ
(Nunavut Maligaliurvia; Legislative Assembly of
Nunavut) through the Nunavut Hansard, the pub-
lished proceedings of the Legislative Assembly of
Nunavut. The Nunavut Hansard is released pub-
licly by the Government of Nunavut in Inuktitut
and English (also an official language of Nunavut),
and with their generous assistance was recently

1Abbreviated iu and en using ISO 639-2 codes.

processed and released for use in building MT sys-
tems (Joanis et al., 2020).2

In this work, we examined topics related to mor-
phological complexity and writing systems, data
size, and domain shifts. Our submitted systems are
ensembled domain-specific finetuned transformer
models, trained using Nunavut Hansard and news
data and, in the case of Inuktitut–English, back-
translated news and parliamentary data. We mea-
sured translation performance with BLEU (Pap-
ineni et al., 2002),3 metrics specific to the produc-
tion of Roman text in Inuktitut, and human evalua-
tion (to be reported). We hope that human evalua-
tion will provide insight as to whether the current
state of the art is sufficient to start building com-
puter aided translation tools of interest and use to
Inuit language translators, or whether more work
is needed to make the systems usable.

2 Related Work and Motivation

Initial experiments on building neural machine
translation (NMT) systems for Inuktitut–English
using the most recent Nunavut Hansard corpus are
reported in Joanis et al. (2020). Earlier work in-
cludes Micher (2018) and Schwartz et al. (2020),
and, predating the recent wave of NMT, Martin
et al. (2003), Martin et al. (2005), and Langlais
et al. (2005). There has also been work on mor-
phological analysis of Inuktitut, including Farley

2Though we note that Inuktitut, Inuinnaqtun, English, and
French may all be spoken in the House, we use the term Inuk-
titut in describing our MT systems for two main reasons: 1)
the official website describes the Nunavut Hansard as being
published “in both Inuktitut and English” (Legislative Assem-
bly of Nunavut, 2020) and 2) because we wish to make clear
the limitations of our work; there is no reason to expect that
the systems built using the data provided for WMT will per-
form well across various Inuit languages and dialects (or even
across a wider range of domains).

3Computed using sacreBLEU version 1.3.6
(Post, 2018) with mteval-v13a tokenization:
BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a.
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(2009) and Micher (2017). In this work, we fo-
cus mainly on approaches that are not language-
specific, but that are motivated by specific chal-
lenges of translating relatively low-resource, mor-
phologically complex languages; thus they are also
not entirely language-agnostic.

2.1 Language Typology and Writing Systems
Inuit languages are highly morphologically-
complex; many Inuktitut words consist of a large
number of morphemes, and can translate to entire
phrases or clauses in English (Mallon, 2000;
Micher, 2017; Joanis et al., 2020).4
Moreover, these morphemes are not easily seg-

mented from one another, as they exhibit phono-
logical changes at morpheme boundaries. That is
to say, a given morpheme may be spelled in a num-
ber of different ways (or may even appear to merge
with a neighbouring morpheme) depending on the
morphemes adjacent to it. This means that auto-
matic segmentation approaches may not be opti-
mal. Nevertheless we try using them, and see if
we can mitigate some of those challenges via ex-
periments on joint vs. disjoint vocabularies and in-
serting noise into the segmentation process.
English is written in the Roman script

(ISO 15924: Latn), while the Inuktitut data
used for this task is primarily written in syllabics
(ISO 15924: Cans).5 There is some Roman text
in the Inuktitut side of the data and some syllabics
text in the English side of the data, though the
former is much more common than the latter.

2.2 Domains and Recency Effects
The Inuktitut–English training corpus released for
WMT 2020 consists of parliamentary transcrip-
tions and translations from the Legislative Assem-
bly of Nunavut (Joanis et al., 2020), while the de-
velopment and test sets are a mix of parliamentary
text and news text, the latter drawn fromNunatsiaq
News.6 These two domains are quite different
from one another, and in our initial baseline exper-
iments (training only on parliamentary data), we
observed very low BLEU scores when translating
news data. As we wished to build a constrained
system, our only source of Inuktitut news was the

4The Inuktut Tusaalanga website provides an overview of
grammar: https://tusaalanga.ca/node/1099

5A number of different writing systems, including both
syllabics and Roman orthography, are used to write Inuit lan-
guages. Inuit Tapiriit Kanatami (ITK) is in the process of cre-
ating a unified writing system (Inuit Tapiriit Kanatami, 2020).

6https://nunatsiaq.com/

data in the development set. In order to retain the
ability to use news data in the development and test
sets, we utilized an approach of dividing the news
development data into thirds, including a third in
the training set, using a third as part of the valida-
tion set, and holding the remaining third out as test.
The Nunavut Hansard is known to exhibit re-

cency effects, i.e., when testing on a recent subset
of the corpus, training on a recent subset is better
than training on an early subset (Joanis et al., 2020).
Although we have not fully examined the reasons
behind this, it could be due to topic shift, a shift in
the named entities in the corpus, changes in tran-
scription and translation practices, or any combi-
nation of these and more.
We consider tagging domain as one approach to

this. Sennrich et al. (2016a) use side constraints
(tags) in order to control English–German MT out-
put formality. Yamagishi et al. (2016) add informa-
tion about voice (e.g. active/passive) to Japanese–
English translation via source-side tags. Johnson
et al. (2017) also use tags at the start of source
sentences, in their case to indicate what language
themultilingual translation system should translate
into.7 One might consider domain to fall some-
where between these use cases; Kobus et al. (2017)
use domain tags to influence translation in a multi-
domain setting. Caswell et al. (2019) use tags to
indicate when data has been backtranslated.

3 Data

While the parallel text size for this language pair
is quite small compared to high-resource language
pairs in the news translation task, Inuktitut is one
of the few Indigenous languages in Canada (or pos-
sibly the only) for which there exists enough par-
allel text (with any other language) to train robust
statistical or NMT systems outside of the strictly
low-resource paradigm (Littell et al., 2018). Thus
we expect that it should be helpful to incorporate
available monolingual data.
We trained our baseline models using the full

1.3 million line Nunavut Hansard 3.0 (NH) parallel
corpus. For IU-EN, we also used a random sub-
selection of 1.3M sentences of English Europarl
v10 (Koehn, 2005; Tiedemann, 2012) and 1.3M
sentences of English 2019 News data8 backtrans-
lated into Inuktitut (Section 5.4). We did not use

7Wang et al. (2018) add a target-side tag.
8From theWMT 2020 task page: https://www.statmt.

org/wmt20/translation-task.html
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Wiki Titles or Common Crawl Inuktitut data.9 We
incorporated the news portion of the development
data in training our models to alleviate the domain
mismatch issue (Section 5.1).

4 Preprocessing and Postprocessing

We first applied an internal script to convert control
characters to spaces as well as normalizing spaces
and hyphens; this was effectively a no-op for the
Nunavut Hansard parallel corpus, but removed
some problematic characters in the monolingual
training data. Parallel training corpora were then
cleaned with the Moses clean-corpus-n.perl
script (Koehn et al., 2007), using a sentence length
ratio of 15:1 and minimum and maximum lengths
of 1 and 200, respectively. For monolingual train-
ing data, the second cleaning step consisted of re-
moving empty lines. For Inuktitut, we used the
normalize-iu-spelling.pl script provided by
the organizers.
We then performed punctuation normalization.

This included specific en and iu normalization
scripts, to more accurately capture and retain in-
formation about directional quotation marks, dif-
ferent types of dashes, and apostrophes, normal-
izing to the most common form. For Inuktitut,
this included treating word-internal apostrophes
as U+02BC modifier letter apostrophe.10 Ap-
pendix C provides a detailed description. After this
preliminary normalization, we applied the Moses
normalize-punctuation.perl script, with the
language set to en (or backing off to en, as there are
currently no Inuktitut-specific rules implemented).
Having noted that some of the lines in the

training data contained more than one sentence
(which results in unintended tokenization behav-
ior), we next performed sentence splitting using
the Portage sentence splitter (Larkin et al., 2010)
on each side of the training data before feeding it
to the Moses tokenizer (using aggressive hyphen
splitting). Sentences that had been split were then
re-merged following tokenization.
We trained joint byte-pair encoding (BPE; Sen-

nrich et al., 2016c) models on the full Nunavut
Hansard parallel training data using subword-nmt,
then extracted English and Inuktitut vocabularies

9Appendix E provides additional detail about noise and
other concerns with the Common Crawl data.

10The apostrophe sometimes represents a glottal stop, so
when it appeared between syllabic characters, we treated it as
a letter that should not be tokenized.

separately.11 Using a joint BPE model improves
performance on Roman text in Inuktitut output
(Section 5.2 and Appendix B).
As postprocessing, we de-BPE the data, run the

Moses detokenizer, and then convert the place-
holder tokens from our normalization scripts to
their corresponding symbols (dashes, apostrophes,
quotation marks, etc.).12

5 Experiments

All models were typical transformers (Vaswani
et al., 2017) with 6 layers, 8 attention heads, net-
work size of 512 units, and feedforward size of
2048 units, built using Sockeye (Hieber et al.,
2018) version 1.18.115. We have changed the de-
fault gradient clipping type to absolute, used the
whole validation set during validation, an initial
learning rate of 0.0001, batches of ∼8192 tokens,
and maximum sentence length of 200 tokens. We
have optimized for BLEU. Custom checkpoint in-
tervals have been used during training, with fi-
nal systems using between 2 and 11 checkpoints
per epoch, consistent within sets of experiments
(e.g., vocabulary size sweeping). For finetuning,
the checkpoint interval is set to 9, resulting in
about 2 checkpoints per epoch for news and 13 for
Hansard. For finetuning, we used an initial learn-
ing rate of 0.00015 (decreasing by a factor of 0.7
if there was no improvement after 8 checkpoints).
Decoding was done with beam size 5.
In the following sections, we describe the ex-

periments that led to our submitted systems. Our
final systems were trained on a mix of news and
Hansard data (Section 5.1), using joint BPE (Sec-
tion 5.2), BPE-dropout (for EN-IU; Section 5.3),
tagged backtranslation (for IU-EN; Section 5.4),
finetuning (Section 5.5), ensembling, and the use
of domain-specific models (Section 5.6).

11When extracting the BPE vocabulary (which we then
used consistently for all experiments) and when applying the
BPE model, we used a glossary containing the special tokens
produced in preprocessing, Moses special tokens, and special
tags (Section 5.4), to ensure they would not be split.

12During the task test period, we noted that the test data
contained spurious quotation marks, wrapping some entire
sentences. After notifying the organizers and confirming that
those were produced in error, we handled them as followed:
removed the straight quotes that surrounded complete lines,
preprocessed, translated, and postprocessed the text that had
been contained inside of them, and then reapplied the quotes
to the output. There is not an exact match between the source
and target for these spurious quotes, so this approach is effec-
tive but not an oracle.
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5.1 Training and Development Splits
In baseline experiments, training only on the
Nunavut Hansard training data provided, we noted
a major difference in BLEU scores between the
Hansard and news portions of the development
set. While BLEU scores should not be compared
directly across different test sets, the magnitude
of this difference (in the EN-IU direction, BLEU
scores in the mid-20s on Hansard and in the mid-
single digits on news) and the knowledge of differ-
ences between parliamentary speech and the news
domain suggested that there was a real disparity,
likely driven by train/test domain mismatch.
To test this we divided the news portion of the

development set in half, maintaining the first half
as development data, and adding the second half to
the training corpus. Adding half the news nearly
doubled the BLEU score on the held out half of
the news data, if we duplicated it between 5 and 50
times (to account for howmuchmore Hansard data
was available).13 Initial experiments on vocabu-
lary types and sizes were performed in this setting
(Section 5.2).
For the remainder of our experiments, we

switched to a setting where we divided the news
data into three approximately equally sized thirds;
to maintain most documents separate across splits,
we split the data into consecutive chunks. Most
experiments were run with the first third added to
training data, the second third as part of the devel-
opment set alongside the Hansard development set,
and the final third as a held-out test set. This per-
mitted additional experiments on finetuning (Sec-
tion 5.5) with a genuinely held-out test set.14 For
our final systems, we ensembled systems that had
been trained on each of the thirds of the news de-
velopment data.

5.2 BPE
Ding et al. (2019) highlight the importance of
sweeping the number of subword merges (effec-
tively, vocabulary size) parameter, particularly in
lower-resource settings. We swept a range of dis-
joint BPE size pairs (see Appendix A for details of

13Adding all of the data would not have allowed us to eval-
uate the outcome on news data, and not including any news
data in the development set also hurt performance.

14An alternative approach would be to select pseudo in-
domain data from the Hansard, by finding the Hansard data
that is most similar to the news data (Axelrod et al., 2011;
van derWees et al., 2017). While this may be worth exploring,
we felt the extreme discrepencies between news and Hansard
merited examination with gold in-domain data.

vocabulary size and sweep), and found that disjoint
1k vocabularies performed well for IU-EN, while
the combination of disjoint 5k (EN) and 1k (IU) vo-
cabularies performed well for EN-IU (on the basis
of averaged Hansard development and news devel-
opment BLEU score).
As noted in Section 2.1, the Inuktitut data is

written in syllabics. However, it contains some
text in Roman script, in particular, organization
names and other proper nouns. Over 93% of the
Roman tokens that appear in the Inuktitut develop-
ment data also appear in the corresponding English
sentence. The ideal behavior would be for a system
to copy such text from source to target. When the
BPE vocabulary model is learned jointly the sys-
tem can learn a mapping between identical source
and target tokens, and then learn to copy. When
the vocabulary is disjoint, there may not be iden-
tical segmentations for the system to copy, posing
more of a challenge. Appendix B provides details
of our experiments on joint vocabulary for success-
fully producing Roman text in Inuktitut output.
Due to the similarity in BLEU scores, and for

simplicity and consistency, the remainder of our
experiments in both directions were performed
with jointly learned (and separately extracted) BPE
vocabularies. We experimented with joint BPE vo-
cabulary sizes of 1k, 2k, 5k, 10k and 15k.

5.3 BPE-Dropout
Knowing that the morphology of Inuktitut may
make BPE suboptimal, we chose to apply BPE-
dropout (Provilkov et al., 2020) as implemented
in subword-nmt in an attempt to improve perfor-
mance. BPE-dropout takes an existing BPEmodel,
and when determining the segmentation of each
token in the data randomly drops some merges at
each merge step. The result is that the same word
may appear in the data with multiple different seg-
mentations, hopefully resulting in more robust sub-
word representations. Rather than modifying the
NMT system itself to reapply BPE-dropout dur-
ing training, we treated BPE-dropout as a prepro-
cessing step. We ran BPE-dropout with a rate of
0.1 over both the source and target training data 5
times using the same BPE merge operations, vo-
cabularies and glossaries as before, concatenating
these to form a new extended training set.15
In our initial baseline experiments (without
15We also experimented with 11 and 21 duplicates of the

training data, and dropout rates of 0.2; we did not observe
major differences between the settings.
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news data in training), we found that BPE-dropout
was more helpful in the IU-EN direction (+∼0.4
BLEU) than in the reverse (+∼0.2 BLEU). After
incorporating a third of the news data in training,
we found the reverse: a small increase for IU-EN
(+∼0.1) and a slightly larger increase for EN-IU
(+∼0.3).

5.4 Tagging and Backtranslation
By incorporating news data into our training set
(Section 5.1), we improve performance on news
data. However, the approach is sensitive to the
number of copies of news data added, which can
decrease performance on both Hansard and news
data if not carefully managed. Both English news
data and monolingual English parliamentary data
(from Europarl) are plentiful in WMT datasets, so
we incorporated them into our models via back-
translation (Sennrich et al., 2016b).
We apply approaches from Kobus et al. (2017)

and Caswell et al. (2019): tagging source data
domain (<NH> or <NEWS>) and (for IU-EN)
tagging backtranslated source data (<BT>). Tag-
ging domain appears to be particularly important
for translating into Inuktitut, with between 1.4 and
2.4 BLEU points improvement on a subset of the
news development test and minimal effect on the
Hansard development data scores.
For backtranslation, we chose random samples

of Europarl and WMT 2019 news data, experi-
menting with 325k, 650k, and 1.3M lines each,
with 1.3 million performing best.16 Ablation ex-
periments with just news or just Europarl data
showed less promise than the two combined. We
did not perform backtranslation of Inuktitut (see
Appendix E).
We performed two rounds of backtranslating the

randomly sampled 1.3M lines each of Europarl and
WMT 2019 news data. The first round (BT1) used
our strongest single 5k joint BPE (with dropout)
EN-IU system at the time. The second round
(BT2) used a stronger three-way ensemble, with
improved performance on both Hansard and news.
We experimented with combinations of tags for

the backtranslated data (other parallel corpora have
source domain tags unless otherwise stated):

• tagging all backtranslated data with <BT>;
• tagging backtranslated data with both <BT>
and domain tags, where the domain tag

16This was the largest size tested; it remains possible that
increasing it evenmore could lead to even better performance.

matches the closest parallel corpus domain,
i.e., <BT> <NH> or <BT> <NEWS>.17

• tagging backtranslated data with just a do-
main tag matching the closest parallel corpus
domain, i.e. <NH> or <NEWS>.

• tagging all backtranslated data with <BT>,
but not domain tagging the parallel corpora.

• tagging nothing.

As Table 1 shows for IU-EN translation, us-
ing backtranslated Europarl and news text clearly
helped translating news text (as much as 8.0
BLEU) while only slightly impacting the transla-
tion of Hansard text. Without any backtranslated
text, using domain tags (<NH> for Hansard and
<NEWS>) appears to have a small positive effect
on Hansard translation, and none on news (con-
trary to what we observed in the EN-IU direction).
The main observation from these experiments

was that it was most important to distinguish back-
translation from true bitext (an observation similar
to those noted in Marie et al. (2020)). Our best re-
sults were observed with no tags for the bitext and
the <BT> tag for the backtranslated data. These
experiments finished after the deadline, so our fi-
nal submission uses the the next best combination:
domain tags for bitext and <BT> tags for back-
translation.18

5.5 Finetuning
After building models with domain tags and back-
translation (in the case of IU-EN), we turned to
finetuning to see if there was room to improve.
For systems that had been trained on Hansard

data concatenated with the first third of the news
development data, we experimented with finetun-
ing on just that same first third of news data (us-
ing the second third for early stopping and the final
third for evaluation), as well as both the first and
second thirds (using the final third for both early
stopping and evaluation). These approaches im-
proved translation performance in terms of BLEU
on the remaining third, with the use of more news
data being more effective.19

17We also experimented with using novel tags for the
domains of the backtranslated data (<PARL> and <EN-
NEWS>) with and without additional<BT> tags, but found
this had approximately the same effect as combining the back-
translation and domain tags, so we omit it from Table 1.

18Additional details of the backtranslation systems and
these experiments are in Appendix D.

19We expect that training onmore of the news data from the
start (i.e., two thirds) might improve performance even more,
but for our initial experiments we chose to use one third in
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Backtranslation Data Bitext Source Tag Backtranslation Tag NH News.03 Avg
— — — 41.0 18.0 29.5
— <NH|NEWS> — 41.3 18.0 29.7
BT1 — — 41.0 22.9 32.0
BT1 <NH|NEWS> <NH|NEWS> 41.0 21.6 31.3
BT1 <NH|NEWS> <BT> <NH|NEWS> 40.9 23.5 32.2
BT1 <NH|NEWS> <BT> 40.7 23.8 32.3
BT2 — — 40.8 23.6 32.2

[FINAL] BT2 <NH|NEWS> <BT> 41.0 25.1 33.1
BT2 — <BT> 40.9 26.3 33.6

Table 1: Backtranslation tag experiments on: IU-EN 15k Joint BPE, NH + News.01 (duplicated 15 times), 1.3M
EuroParl, 1.3MNews. Cased word BLEU scores measured on Hansard (NH) and last third of news (News.03; final
718 lines) portions of newsdev2020-iuen.

We also found that we were able to improve
translation of Hansard data by finetuning on re-
cent data. Joanis et al. (2020) observed recency
effects when building models with subsets of the
data. Here we take that observation a step further
and find that finetuning with recent data (Hansard
training data from 2017, which was already ob-
served in training) produces BLEU score improve-
ments on Hansard development data on the order
of 0.5 BLEU into English, and on the order of 0.7
BLEU into Inuktitut (Tables 2 and 3).20
Despite the use of domain tags, finetuning on

one domain has negative results for the other (see
Tables 2 and 3).

5.6 Ensembling and Hybrid Model
Our hope was to build a single system to trans-
late both news and Hansard but, in the end, we
found that our attempts at finetuning for the combi-
nation of news and Hansard were outperformed by
systems finetuned to one specific domain. Main-
taining a held-out third of news data allowed us
to measure performance of ensembled models on
news data, so long as we only ensembled systems
that had not trained on that held-out data. In or-
der to create our final submissions, we chose fine-
tuned systems based on the held-out third, and
then ensembled them with the assumption that the
strong ensemble with access to the full news de-
velopment data would outperform the individual
systems or pairs of systems trained on subsets. In
order to enable us to measure improvements on a held-out set;
see Section 5.6 for our efforts to use ensembling to balance the
usefulness of training onmore data with the ability to measure
progress during preliminary experiments.

20Note that there is a fine distinction between the two set-
tings here: when finetuning on recent Hansard data, the sys-
tem is training on data it has already seen. When finetuning
on news data, we expose the system to some data it has al-
ready seen (one third of the news data) and some data that it
has not trained on (another third of the news data).

System NH ND NH News Full
Dev. 3 Test Test Test

Base: NH+ND.1 24.7 11.7 16.7 11.6 14.1
Base: NH+ND.2 24.7 11.3 16.7 11.2 13.9
Base: NH+ND.3 24.7 – 16.9 12.2 14.5
Ensemble 25.0 – 17.1 13.3 15.1
F.t. ND.{1,2} 21.5 13.5 15.0 12.2 13.8
F.t. ND.{2,3} 21.9 – 15.0 13.2 14.4
F.t. ND.{3,1} 20.9 – 13.8 13.1 13.7
Ens.: F.t. ND 21.7 – 14.9 14.1 14.8
F.t. NH (from 1) 25.4 11.9 16.9 11.3 14.0
F.t. NH (from 2) 25.4 11.0 16.8 11.0 13.9
F.t. NH (from 3) 25.3 – 16.8 11.3 14.0
Ens.: F.t. NH 25.7 – 17.5 12.9 15.1
Final hybrid 25.7 – 17.5 14.1 15.8

Table 2: BLEU scores of 10k joint BPE EN-IU systems.
The best performer is in bold. ND=News dev., indexed
by thirds. F.t.=Finetuning. Dashes mean a score should
not be computed due to test/training data overlap.

general, we found that ensembling several systems
(using Sockeye’s built-in ensembling settings) im-
proved performance. However, this had some lim-
its: for EN-IU if we combined a strong news sys-
tem whose performance on Hansard had degraded
too much with a strong Hansard system whose per-
formance on news had degraded, the final result
would be poor performance on both domains.
Our solution to this was simple: decode news

data with an ensemble of models finetuned on
news, and decode Hansard data with an ensemble
of models finetuned on Hansard. Our final submis-
sions are hybrids of domain-specific systems.21

6 Submitted Systems

6.1 English–Inuktitut

Our primary submission for EN-IU is a hybrid
of two joint BPE 10k ensembled systems with

21This leaves questions open, e.g., if a Hansard system
trained without any news data would perform as well or better
on Hansard test data than one trained with news data.
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System NH ND NH News Full
Dev. 3 Test Test Test

BT1:NH+ND.1 40.7 23.8 29.0 21.6 25.6
BT2:NH+ND.1 41.0 25.1 29.3 22.1 25.9
BT2:NH+ND.2 41.1 25.1 28.9 22.9 26.1
BT2:NH+ND.3 41.1 – 28.7 22.6 25.9
Ensemble 41.7 – 29.6 24.8 27.4
F.t. ND.{1,2} 39.9 26.7 28.5 23.9 26.4
F.t. ND.{2,3} 39.6 – 28.2 23.8 26.1
F.t. ND.{3,1} 40.1 – 28.4 23.7 26.2
Ens.: F.t. ND 40.9 – 29.1 25.8 27.6
F.t. NH (from 1) 41.6 23.6 29.0 21.0 25.3
F.t. NH (from 2) 41.5 24.6 28.9 22.8 26.1
F.t. NH (from 3) 41.5 – 28.8 21.6 25.5
Ens.: F.t. NH 42.4 – 29.9 24.3 27.3
Final hybrid 42.4 – 29.9 25.8 28.0

Table 3: BLEU scores of IU-EN systems. The best
performer is in bold font. ND=News dev., indexed by
thirds. F.t.=Finetuning. Dashes mean a score should
not be computed due to test/training data overlap.

domain tags. To translate the Nunavut Hansard
data, we used an ensemble of three systems, all
finetuned on 2017 Hansard data using only the
Hansard development data for validation during
finetuning. The three base systems used for fine-
tuning were trained on the full Hansard along with
the first, second, or third news third (duplicated 15
times), respectively, with BPE-dropout on both the
source and target sides.
To translate the news data, we again used an

ensemble of three base systems trained with BPE-
dropout on both the source and target sides: a base
system trained on all Hansard data with the first
third of news data (duplicated 15 times) finetuned
on the first and second third of news data, another
such base system trained instead with the second
third of news data (duplicated 15 times) and fine-
tuned on the second and third third of news data,
and a final base system trained with the third third
of news data (duplicated 15 times) and finetuned
on the first and third thirds. The hybrid system had
a BLEU score of 15.8 on the test data (Table 2).

6.2 Inuktitut–English
Our primary submission for IU-EN is a hybrid of
two joint BPE 15k ensembled systems with do-
main tags (for news and Hansard bitext) and back-
translation tags (for the backtranslated data). Due
to time constraints, we did not run BPE-dropout.
Like the EN-IU direction, we built three baseline
systems. All baseline systems were trained on the
full Hansard training data, along with 1.3 million
lines of backtranslated Europarl data and 1.3 mil-
lion lines of backtranslated news 2019 data. The

three baseline systems differed in which third of
newswas used for training, as described for EN-IU.
Backtranslation was performed using an ensemble
of the three baseline systems used for the EN-IU
task (joint BPE 10k, BPE-dropout).
We performed finetuning on news and recent

Hansard in the same manner as for EN-IU. The
news test data was translated with the ensem-
ble of news-finetuned systems, while the Hansard
test data was translated with the ensemble of the
Hansard-finetuned systems. The final system had
a BLEU score of 28.0 on the test data (Table 3).

7 Conclusions and Future Work

We have presented the results of our IU-EN and
EN-IU systems, showing that a combination of
BPE-dropout (for EN-IU), backtranslation (for IU-
EN), domain-specific finetuning, ensembling, and
hybrid systems produced competitive results. We
performed automatic evaluations of the submitted
systems in terms of BLEU, chrF (Popović, 2015),
and YiSi-1 (Lo, 2020). Our EN-IU system per-
formed best out of the constrained systems in terms
of BLEU (15.8, +2.5 above the next-best system),
chrF (37.9, +1.7 above the next-best), and YiSi
(82.4, +0.5 above the next-best). Our IU-EN sys-
tem performed third-best out of all systems in
terms of BLEU (28.0, -1.9 below the best sys-
tem), third-best in terms of chrF (48.9, -2.0 below
the best system), and third-best in terms of YiSi-1
(92.3, -0.6 behind the best system).22
There remains a wide range of future work to

be done to improve translation for this language
pair. There is still space to improve Roman text
output in Inuktitut, perhaps even as simply as an au-
tomatic postediting approach. Different subword
segmentations (or ones complementary to BPE-
dropout like He et al. (2020)), particularly ones
that capture morphological and phonological as-
pects of Inuktitut may also be promising.
In terms of adding monolingual data, we ex-

pect that improved data selection for backtrans-
lated data (i.e., to increase topic relevance) may
be useful, as would additional Inuktitut monolin-
gual data. Due to time constraints, we were unable
to complete BPE-dropout for IU-EN systems; we
expect this would have resulted in improved per-
formance.

22We do not have information about whether any of these
systems were unconstrained. It is also worth noting that the
highest-ranked systems differed depending on themetric used,
so we await human evaluation.
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Domain finetuning remains a challenge given
the very small amount of parallel news data avail-
able. We did experiment with mixing Hansard and
news data for finetuning, but, contrary to Chu et al.
(2017), were unable to outperform news-only sys-
tems on news. It may be worth trying approaches
designed to prevent catastrophic forgetting in do-
main adaptation (Thompson et al., 2019).
The real test, of course, will be human evalua-

tion; are the systems producing output that might
be usable, whether for computer aided translation
(via postediting or interactive translation predic-
tion) or for use in other downstream applications?
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A Data and BPE Sizes

For reproducibility, we show the data sizes after
cleaning in Table 4. Exact sizes for BPE vocabu-
laries (including codes, and extracted vocabulary
sizes) are shown in Table 5.
For IU-EN, we tried disjoint (Inuktitut, English)

models with BPE size pairs: (500,500), (1k,1k),
(5k,5k), (10k,10k), (500,5k), (1k,5k), and (5k,10k).
For EN-IU, we tried disjoint (English, Inuktitut)
models with BPE size pairs: (500,500), (1k,1k),
(5k,5k), (10k,10k), (5k,1k), (10k,1k), (10k,5k).
The typological differences between English and
Inuktitut motivated these experiments on vocabu-
lary sizes, testing whether unbalanced sizes may
be better than balanced sizes when using disjoint
vocabularies. Our intuition was that smaller vo-
cabulary sizes for Inuktitut and larger vocabulary
sizes for English might lead to mappings between
vocabulary items that were closer to one-to-one.
We also tried using SentencePiece Unigram

models (Kudo, 2018) trained for the same size
pairs, but they did not yield improvements in
BLEU score, so we used subword-nmt for the re-
mainder of our experiments.

B Roman Text in Inuktitut Output

When Roman text appears in the Inuktitut side of
the Hansard, that same text almost always appears
in the English side of the data. In the test data, this
is the case for all but 9 of the 151 Roman tokens on
the Inuktitut side of the data (over 94%).23 Thus
we expect a good NMT system should learn to pro-
duce Roman output that matches some portion of
the Roman text in the English input (or at least, that
should be true for most Roman text it produces).
When the BPE vocabulary model is learned

jointly, this task has the potential to be trivial: the
system simply needs to learn which source vo-
cabulary tokens are the same as which target vo-
cabulary tokens and then copy them, and RNN-
based NMT systems are known to be able to use
context in order to do this (Knowles and Koehn,
2018). When the BPE vocabularies are learned
independently, however, such words may be bro-
ken into different sequences of subwords on the
source and target sides, a more challenging task
for the system to handle. Intuitively, the system

23Of the 9 exceptions, 6 were cases where one side used an
abbreviation and the other expanded it, 1 was a plural/singular
distinction, 1 was a capitalization difference, and 1 was a
spelling difference.

must learn to spell to do this successfully. This
led us to experiment with joint vocabulary mod-
els. We measured precision, recall, and F1 aver-
aged across Hansard and news development data
for Roman words (whole words, after de-BPE, but
prior to detokenization) for systems trained using
disjoint vocabulary models and those with vocabu-
laries trained jointly (but extracted separately). We
found comparable BLEU scores between the two
settings, but found that average F1 was higher in
the joint setting.
In Table 6, we see three systems from an early

set of experiments with identical BLEU scores (the
best out of their respective vocabulary size and
data balancing sweeps; the disjoint system had the
news data repeated 30 times, while the 2k joint sys-
tem had it repeated 10 times and the 10k joint sys-
tem had it repeated 30 times). The joint systems
had higher F1 scores, particularly driven by im-
provements in precision (on Hansard, an increase
from 30.9% precision to 38.7% and 35.7% and
on news an increase from 28.1% to 49.2% and
43.2%).
Nevertheless, as evidenced by the relatively low

F1 scores, there best systems still make some er-
rors, as shown in the example below:

Src: Mr. Speaker, the Indspire Awards represent
the highest honour the indigenous community
presents to its people.

Ref: ᐅᖃᖅᑏ, ᑖᒃᑯᐊ ᐱᑖᖑᖃᑦᑕᖅᑐᑦ
ᑭᒡᒐᖅᑐᐃᓂᖅ ᐳᖅᑐᓂᖅᐹᒥᒃ,
ᐅᐱᓐᓇᖅᑐᒥᐅᑕᑯᓗᐃᑦ
ᓄᓇᖃᖅᑳᖅᑐᕕᓂᕐᓄᑦ ᑕᕝᕗᖓ
ᐃᓄᖁᑎᖏᓐᓄᑦ.

MT: ᐅᖃᖅᑏ, ᑖᒃᑯᐊ Inspiration
Award-ᖑᓂᕋᖅᑕᐅᔪᑦ ᖁᑦᑎᓂᖅᐹᒥᒃ
ᓄᓇᖃᖅᑳᖅᑐᒥᓂᕐᓄᑦ ᑐᓂᓯᖃᑦᑕᕐᒪᑕ
ᐃᓄᖁᑎᒥᓄᑦ.

There are in fact two errors in this MT output:
first, the system generates Roman text that it per-
haps ought not to have generated, and second it
does not successfully copy Indspire, instead pro-
ducing Inspiration. This suggests that, although
using joint BPE has improved Roman text output
in Inuktitut, there is still room for additional im-
provement. Our final submission had an F1 score
of 27.4 (41.3% precision and 20.5% recall)
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Data set Sentences IU words EN words
Nunavut Hansard 3.0 1299349 7992376 17164079
Nunavut Hansard 3.0 (2017 only) 40951 275248 582480
News (from newsdev2019-eniu) 2156 24980 44507
EN Europarl v10 (full) 2295044 56029587
EN Europarl v10 (subselect) 1300000 31750842
EN News.2019 (full) 33600797 836569124
EN News.2019 (subselect) 1300000 32380145

Table 4: Dataset sizes (post cleaning) of data used in our experiments. Of the monolingual data, only the subselec-
tion was used, not the full dataset.

BPE model Codes IU Vocab EN Vocab
IU 1k 573 1006
EN 1k 794 995
IU 2k 1573 2000
EN 2k 1794 1978
IU 5k 4573 4991
EN 5k 4794 4895
IU 10k 9573 9989
EN 10k 9794 9749
JNT 1k 557 977 519
JNT 2k 1557 1919 1086
JNT 5k 4557 4480 2754
JNT 10k 9557 8597 5071
JNT 15k 12590 12590 7038

Table 5: BPE codes and extracted vocabulary sizes
using subword-nmt with the --total-symbols flag.
Single language BPEmodels are indicated by ISO code
and joint models by JNT.

C Preprocessing and Postprocessing

In this appendix, we provide detail about our ad-
ditional language-specific preprocessing and post-
processing.

C.1 Preprocessing
Our additional preprocessing focuses on quotation
marks, apostrophes, and some other punctuation.
We first describe English-specific preprocessing.
We normalize double quotation marks to three

distinct special tokens, -LDQ-, -RDQ-, and -UDQ-
(left, right, and unknown double quote, respec-
tively), separated from any surrounding char-
acters by a space. For directional quotation
marks (‘LEFT DOUBLE QUOTATION MARK’
(U+201C) and ‘RIGHT DOUBLE QUOTATION
MARK’ (U+201D)), this is a simple substitution.
For straight quotations (‘QUOTATION MARK’
(U+0022)), we apply the following heuristics:

System BLEU Ave. F1
Disjoint BPE: IU 1k, EN 5k 24.7 24.2
Joint BPE 2k 24.7 25.9
Joint BPE 10k 24.7 27.6

Table 6: Comparison of best disjoint and joint BPE sys-
tems trained using Nunavut Hansard and half of the
news data as training, scored with BLEU and with Ro-
man text F1 averaged over the Hansard development
data and the other half of the news development data.
These were early systems trained without tags or back-
translation.

those followed by a space are right, those preceded
by a space are left, those followed by punctuation
(period, comma, question mark, semicolon) are
right, those at the beginning of a line are left, those
at the end of a line are right. All that remain are
considered unknown.
For single quotes or apostrophes (‘LEFT

SINGLE QUOTATION MARK’ (U+2018)
and ‘RIGHT SINGLE QUOTATION MARK’
(U+2019)), we do as follows. We first convert
any instances of ‘GRAVE ACCENT’ (U+0060)
to the right single quote (this is rare but manual
examination of the training data suggests that they
are used as apostrophes). We then convert any
instances of left and right single quotation marks
to special (space-separated) tokens -LSA- and
-RSA-, respectively. We next consider ‘APOS-
TROPHE’ (U+0027). That token followed by a
space is mapped to -RSA-, while any instances
preceded by a space are mapped to -LSA-. Any
that are sandwiched between alphanumeric char-
acters (a-z, A-Z, 0-9) are treated as a word internal
apostrophe, -RSI-. Remaining ones preceded by
alphanumeric characters are mapped to -RSA-,
while those followed by alphanumeric characters
are mapped to -LSA-. Any remaining at this point
are mapped to -ASO- (other).
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We also map ‘EN DASH’ (U+2013) to -NDA-
and ‘EM DASH’ (U+2014) to -MDA- (as ever,
keeping these special tokens space-separated from
remaining text).

For Inuktitut, we use similar substitutions, not-
ing the differences below. This is run after
the spelling normalization script provided. For
quotation marks, any instances of ‘LEFT SIN-
GLE QUOTATION MARK’ (U+2018) followed
immediately by ‘RIGHT SINGLE QUOTATION
MARK’ (U+2019) are treated as -LDQ-, while
any instances of two ‘RIGHT SINGLE QUOTA-
TION MARK’ (U+2019) in a row are treated
as -RDQ-. Double apostrophe is first mapped to
‘QUOTATION MARK’ (U+0022). Those straight
double quotes preceded or followed by punctua-
tion (period, comma, question mark, semicolon)
are treated as -RDQ-. We expand the earlier al-
phanumeric matching to include the unicode char-
acter range 1400-167F, which contains all syllabics
present in the data.

There are five observed types of single quotes
or apostrophes in the data. The most com-
mon is ‘RIGHT SINGLE QUOTATION MARK’
(U+2019), appearing more than 9000 times, fol-
lowed by ‘APOSTROPHE’ (U+0027), appearing
more than 1300 times, followed by ‘GRAVE AC-
CENT’ (U+0060), over 600 times, ‘LEFT SIN-
GLE QUOTATION MARK’ (U+2018), which ap-
pears fewer than 200 times, and ‘ACUTE AC-
CENT’ (U+00B4), which appears very rarely.
We first map the grave accent to ‘RIGHT SIN-
GLE QUOTATION MARK’ (U+2019). Then, for
the remaining four types, if they appear within
syllabics (range U+1400 to U+167F), we map
them to ‘MODIFIER LETTER APOSTROPHE’
(U+02BC). This is important because this is then
treated as a non-breaking character for the pur-
poses of Moses tokenization. It often represents
a glottal stop, which should be treated as part of
the word, not necessarily as something to split on.
When one of the four types appears at the end
of a word, it is treated as a -RSA- if a left sin-
gle apostrophe was observed before it in the sen-
tence. Any remaining at the ends of syllabic words
are treated as modifier letter apostrophe. Any of
the four that appear between non-syllabic alphanu-
meric characters are mapped to -RSI-. Remaining
left single quotation marks are mapped to -LSA-,
while remaining right single quotations and acute
accents are mapped to -RSA-. Apostrophes are

then mapped in the same manner as English, with
the addition of the syllabic range to the alphanu-
meric range.

C.2 Postprocessing

The postprocessing is done to revert the place-
holder tokens to appropriate characters and is done
after de-BPE-ing and Moses detokenization.

For English, we do as follows. The place-
holder -LDQ- and any spaces to the right of it
are replaced with ‘LEFT DOUBLE QUOTATION
MARK’ (U+201C), while -RDQ- and any spaces to
the left of it are replaced with ‘RIGHT DOUBLE
QUOTATION MARK’ (U+201D), and -UDQ- is
replaced with ‘QUOTATION MARK’ (U+0022)
with no modification to spaces.

The -RSI- token and any surrounding spaces
are replaced with ‘RIGHT SINGLEQUOTATION
MARK’ (U+2019), -RSA- and any spaces preced-
ing it are replaced with ‘RIGHT SINGLEQUOTA-
TION MARK’ (U+2019), -LSA- and any spaces
following it are replaced with ‘LEFT SINGLE
QUOTATION MARK’ (U+2018), and -ASO- is
replaced with ‘APOSTROPHE’ (U+0027).

The em-dash placeholder is replaced with an
em-dash without surrounding spaces, while the en-
dash placeholder is replaced with an en-dash with
surrounding spaces. We also perform some other
small modifications to match the most common
forms in the original text: spaces around dashes
and forward slashes are removed, times are re-
formatted (spaces removed between numbers with
colons and other numbers), space between greater
than signs is removed, space is removed before
asterisks, spaces are removed following a closing
parenthesis that follows a number, three periods in
a row are replaced with ‘HORIZONTAL ELLIP-
SIS’ (U+2026), space is removed after asterisk that
begins a line, space is removed after the pound
sign, and space is removed between a right apos-
trophe and a lowercase s.

For Inuktitut, the postprocessing is similar, with
the following changes/additions: the modifier let-
ter apostrophe is replaced with the ‘RIGHT SIN-
GLE QUOTATION MARK’ (U+2019), no spaces
are placed around the en-dash, and spaces are re-
moved between a close parenthesis followed by an
open parenthesis.
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D Backtranslation Details

Here we describe details of our backtranslation
experiments. The first pass (BT1) employed our
strongest English–Inuktitut system at the time,
trained on the Nunavut Hansard bitext plus the
first third of the news bitext (from newsdev2020-
eniu) using 5k joint BPE with BPE-dropout on
both source and target. Later, we backtranslated
the data a second time (BT2) using a stronger
three-way ensemble of systems, each of which was
trained on the NH corpus and a different third of
the news bitext from newsdev2020-eniu using 10k
joint BPE with BPE-dropout on both source and
target. This ensemble improved the BLEU score
on the NH portion of newsdev2020-eniu by 0.5
BLEU (from 24.5 to 25.0); while we could not
measure the improvement of the 3-way ensemble
on news data, an ensemble of two of these systems
(trained using one of the first two thirds of news)
yielded a 1.5 boost in BLEU measured on the fi-
nal news third (from 12.1 to 13.6) over the system
used for the first round. Thus the ensembled sys-
tem used for this second round of backtranslation
was stronger at translating both parliamentary and
news data.
With BT1 backtranslated data, positive effects

came from ensuring that backtranslated data and
true bitext are tagged differently. Tagging the
backtranslated source with the exact same domain
tags as the parallel data leads to a decrease in per-
formance of 1.7–2.2 BLEU for translating news; it
is even worse (by 1.3 BLEU on news) than using
no tags at all.
While most round one (BT1) backtranslation

tagging methods yielded news data BLEU in-
creases between 0.4 and 0.8 (over not tagging),
a larger improvement of ≥1.5 BLEU occurred
when using our second round of backtranslated
data (BT2); notably, the worst system trained us-
ing BT2 scores only 0.1 BLEU (average) below
the best BT1 system. Our best performance was
achieved using BT2 backtranslations with <BT>
tags but no domain tagging (for either the paral-
lel or backtranslated source). It outperformed the
next best system by 1.2 BLEU on news; unfor-
tunately those experiments did not complete be-
fore the deadline. Thus our submitted system used
the best available systems at the time for addi-
tional finetuning: domain tags on parallel data and
<BT> tags on the backtranslated data.
Each of the individual systems that contributed

to our final Inuktitut–English system combina-
tion used 1.3 million lines of Europarl (tagged
as <BT>), 1.3 million lines of news (tagged
as <BT>), approximately 1.3 million lines of
Nunavut Hansard (tagged as <NH>), and 719 or
718 lines of news (tagged as <NEWS> and dupli-
cated 15 times).

E Inuktitut Common Crawl and
Additional Data

We did not use any data from Inuktitut Common
Crawl in our submissions. In our initial experi-
ments, we found it generally harmed translation
quality. Nevertheless, we provide here some ob-
servations from our analysis, in the hopes that
they are useful to other researchers. First, the
Common Crawl data provided contains fairly large
amounts of non-Inuktitut data. This includes noise,
such as long sequences of characters (like lists of
characters) as well as text art (such as English
words spelled using visually similar syllabics and
other characters, e.g., ᕼEᒪᒪO). There is also text
in several other languages and dialects, includ-
ing, but likely not limited to: ᓇᔅᑲᐱ (Naskapi),24
ᓀᐦᐃᔭᐍᐏᐣ (Plains Cree), and ᓄᓇᕕᒻᒥᐅᑎᑐᑦ
(Nunavimmiutitut, an Inuit language spoken in
Nunavik).25 Of particular note is the latter, which
– while it is the only one of the three within the
Inuit dialect continuum that includes Inuktitut – is
an Inuit language (sometimes called the Nunavik
dialect of Inuktitut) that makes use of one addi-
tional column in the syllabary (ᐁ, ᐯ, ᑌ, ...,
or ai, pai, tai, ...). Those characters do not ap-
pear in the Hansard, thus rendering it impossible
for our systems to translate them exactly without
some form of modification, even if they might oth-
erwise share similarities with words that appear in
the Hansard. Removing characters that were not
observed in the Hansard data (which helps filter
out some non-Inuktitut language data) and filter-
ing out potential text art results in a much smaller
Common Crawl data set, less than half the size of
the original.
While additional monolingual or bilingual data

would likely benefit English to Inuktitut transla-
tion, we encourage non-Inuit researchers who plan
to perform data collection to do so in collabora-
tionwith Inuit communities and language speakers.

24Text appears to be scraped from the Naskapi Community
Web Site, http://www.naskapi.ca/.

25https://www.kativik.qc.ca/our-schools/
resources/
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The efforts of Inuit language experts at Pirurvik
Centre were vital to the analysis of the data used
for this task (Joanis et al., 2020), collected through
communications with Nunatsiaq News and the
Government of Nunavut with the goal of selecting
data usable for this translation task, both in terms
of public availability and language. Aside from the
machine learning related risks of accidentally col-
lecting data from other languages and labeling it as
Inuktitut (as we observed in the Common Crawl
data), there are also ethical concerns. While it
does not focus specifically on language data, the
National Inuit Strategy on Research (NISR, Inuit
Tapiriit Kanatami, 2018) highlights as a priority
“Ensuring Inuit access, ownership and control over
data and information” and focuses on partnership
with Inuit organizations, transparency, and data
sharing to end exploitative research practices and
build research relationships that respect Inuit self-
determination.26 The NISR contains a discussion
of potential harms of research done without rela-
tionships to the communities impacted by it, with
both Inuit-specific concerns and concerns from a
broader history of colonialism. Lewis et al. (2020)
provide a discussion of guidelines for Indigenous-
centred AI from a variety of Indigenous perspec-
tives (though not specifically from Inuit perspec-
tives), including topics of ethics, data sovereignty,
and responsibility and relationships in AI. Build-
ing and maintaining community relationships and
collaborations can help ensure that data is handled
and shared in ways that respect cultural values
and Indigenous intellectual property,27 which out-
siders may not be familiar with. A full discussion
of these topics is beyond the scope of this paper,
but we raise the discussion here as part of the pro-
cess of working towards best practices in building
respectful research relationships that centre com-
munity goals at all steps of the research process.

F Statement on Avoiding Conflicts of
Interest

In their work on ethical considerations in shared
tasks, Parra Escartín et al. (2017) raise the is-
sue of actual or perceived conflicts of interest be-
tween task organizers and participants. We pro-
vide the following information in the interest of
transparency.

26https://www.itk.ca/wp-content/uploads/2018/
04/ITK_NISR-Report_English_low_res.pdf

27United Nations Declaration on the Rights of Indigenous
Peoples, Article 31.

The data for the shared task on Inuktitut-English
was collected by researchers at the National Re-
search Council of Canada (NRC) in collabora-
tion with the Pirurvik Centre.28 The team of re-
searchers at NRC was divided into two groups:
those working on task organization and those par-
ticipating in the shared task (the latter group are the
authors of this paper). In order to prevent unfair ad-
vantages to the task participants, the organizers did
not discuss the web source or details of the evalua-
tion set with the participants at any time before the
submission of the systems.
We did communicate with the organizers to re-

ceive clarification regarding the spurious quotes in
the test data; the response to this was distributed to
the full WMT mailing list.

28https://www.pirurvik.ca/
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Abstract
This paper describes CUNI submission to the
WMT 2020 News Translation Shared Task for
the low-resource scenario Inuktitut–English in
both translation directions. Our system com-
bines transfer learning from a Czech–English
high-resource language pair and backtransla-
tion. We notice surprising behaviour when us-
ing synthetic data, which can be possibly at-
tributed to a narrow domain of training and test
data. We are using the Transformer model in a
constrained submission.

1 Introduction

The rapid development of Neural Machine Transla-
tions (NMT) systems helped NMT in approaching
human translation quality for high-resource lan-
guage pairs like Chinese–English (Hassan et al.,
2018) or English–Czech (Popel et al., 2020). This
is not true for a low-resource scenario, where the
lack of a large quantity of parallel data limits the
performance of an NMT system. Thus, in recent
years the research focused on low-resource NMT
become important.

In this paper, we describe our approach to low-
resource NMT of Inuktitut–English. We use the
standard Transformer-big model (Vaswani et al.,
2017) and apply two techniques to improve the per-
formance on the low-resource language, namely
transfer learning (Kocmi and Bojar, 2018) and
backtranslation (Sennrich et al., 2016). We used
a similar approach in WMT19 for Gujarati and
Kazakh machine translation (Kocmi and Bojar,
2019).

Training low-resource model solely on authentic
parallel data results in poor performance, and that
results in low quality of generated backtranslation
of monolingual data as well. Hence transfer learn-
ing is as an excellent method to first improve the
performance of the NMT system that is later used
for backtranslation of monolingual data.

2 Background

In this section, we describe the technique of transfer
learning, backtranslation, and models that we used
for training Inuktitut–English models.

2.1 Transfer Learning

Kocmi and Bojar (2018) presented a method of
transfer learning that uses a high-resource language
pair to train the “parent” model. After the training
convergence, the parent training data are replaced
with the training data of the low-resource language
pair (“child”). Then the technique of fine-tuning
continues without changing any parameters, reset-
ting moments, nor changing the learning rate.

This technique has one shortcoming, and that
is the problem with vocabulary mismatch. Kocmi
and Bojar (2018) overcome this problem by prepar-
ing a shared vocabulary for all languages in both
parent and child language pairs in advance. Their
approach is to prepare a mixed subword vocabulary
from the concatenation of training corpora for both
languages.

We use their balanced vocabulary approach that
combines an equal amount of parallel data from
both training corpora, under-sampling the high-
resource language pair as needed. Hence the low-
resource language subwords are represented in the
vocabulary with roughly the same prominence as
the high-resource language pair ones.

Kocmi (2019) showed that parent and child lan-
guage pairs do not have to be linguistically related,
and more crucial criterion is the amount of par-
ent parallel data. For this reason, we have selected
Czech–English as a parent language pair, because it
is one of the most resource-full languages allowed
for WMT 2020.
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2.2 Backtranslation

The amount of available monolingual data typi-
cally exceeds the amount of available parallel data.
One of the techniques for using monolingual data
in NMT is called backtranslation (Sennrich et al.,
2016). It uses a model trained in the reverse direc-
tion to translate monolingual data to the source lan-
guage of the first model. Backtranslated sentences
are then aligned with their monolingual sentences
to create synthetic parallel corpora. The standard
practice is to mix the authentic parallel corpora
with the synthetic ones, although it is not the only
possible approach. Popel (2018) obtained better
results by repeatedly alternating between the train-
ing on the authentic and the synthetic portion of
the parallel data instead of mixing them. We got
inspired with this approach, and after training on
synthetic data, we add a step to fine-tune again with
authentic parallel data.

The performance of the backtranslation model
is essential. Especially in the low-resource sce-
nario, where the baseline models trained only on
the authentic parallel data have a poor score, and
they generate very low quality backtranslated data.
Therefore, we first improve the performance of
baseline with the transfer learning and generate the
synthetic data of better quality.

Synthetic data can be noisy; therefore, we re-
move synthetic sentence pairs containing repetitive
patterns, which is often a case of bad translation.
We also remove sentences that contain Latin script
in Inuktitut translations as Inuktitut has its script.
This filtration reduced the number of synthetic sen-
tences from 51.7M to 45.5M sentences.

2.3 Datasets and Model

All our models are trained only on the data al-
lowed for the WMT 2020 News shared task. We
use all available parallel data for Inuktitut–English
prepared by Joanis et al. (2020). We use Czech–
English corpus CzEng20 created by Kocmi et al.
(2020) as a parent language pair. This corpus con-
tains 61M authentic parallel sentences and also two
sets of synthetic parallel sentences of similar size.
For training parent model, we used all authentic
parallel data plus one set of synthetic data with
authentic English part. We ignored synthetic data
with authentic Czech. The reason is that we assume
the child model transfers knowledge mainly for the
English language that is shared between both par-
ent and child language pair. Additionally, we use

Lang. pair Sent. pairs Words (CS/IU) Words (EN)
CS–EN 137.2M 1913M 2176M
IU–EN 1.3M 8M 17M
Mono EN 51.7M - 1756M

Table 1: More details on the training sizes of train-
ing corpora. Columns with words show number of
words separated by space. All data are from http:

//statmt.org/wmt20/.

monolingual English sentences from News Crawl
2018 and 2019 for backtranslation step. Results in
section 3 are computed based on official WMT20
testset for Inuktitut–English (Joanis et al., 2020).
All used training data are presented in table 1. We
remove empty lines from Inuktitut–English training
set.

As for the model, we use the Transformer “big
single GPU” configuration as described in Vaswani
et al. (2017), model which translates through an
encoder-decoder with each layer involving an at-
tention network followed by a feed-forward net-
work. We use the version 1.11 of sequence-to-
sequence implementation of Transformer called
tensor2tensor.1

Popel and Bojar (2018) documented best prac-
tices to improve the performance of the model.
Based on their observation, we use the Adafactor
optimizer with inverse square root decay and 16000
warmup steps. Based on our previous experiments
(Kocmi et al., 2018), we set the maximum number
of subwords in a sentence to 100. The benefit is
that the batch size can be increased to 4500 for
our GPUs. The experiments are trained on a single
GPU NVidia GeForce 1080 Ti or Quadro P5000.

3 Results

All reported results are calculated on the testset
of WMT 2020 and evaluated with case sensitive
SacreBLEU (Post, 2018).2 The evaluation is done
on unmodified outputs of our system. For final
WMT20 submission, we have automatically cor-
rected quotes to match the source. This step is not
used for results in table 2.

The baseline models in table 2 are trained on the
authentic data only. We have not focused on the
backtranslation step for EN→IU as there are only
165k monolingual Inuktitut sentences available.

In IU→EN “Transfer from CS–EN” we get an
1https://github.com/tensorflow/

tensor2tensor
2The SacreBLEU signature is BLEU + case.mixed + num-

refs.1 + smooth.exp + tok.13a + version.1.4.6

172



Training dataset IU→EN EN→IU
Authentic (baseline) 20.10 9.52

Transfer from CS–EN 22.98 10.41
Synthetic + auth 20.91 -
Authentic only 25.38 -

Table 2: Test set BLEU scores of our setup. Except
for the baseline, each column shows improvements ob-
tained after fine-tuning a model one line up on different
datasets.

improvement of almost 3 BLEU. For a model,
where we used a mix of “synthetic and authen-
tic” data that is generated by our EN→IU model,
we can notice a performance dropped from 22.98
to 20.91. However, following with fine-tuning this
model again with authentic data, we get an increase
in performance to 25.38. This is unexpected be-
haviour. Our understanding is that it could be at-
tributed to a narrow domain of train and testset
containing mainly speech transcripts. At the same
time, the synthetic data are generated from En-
glish news articles, which is a more general domain.
Therefore, while the model is trained on the general
domain, it loses score on a domain-specific testset.
This could be tested if we could obtain a testset
on a different domain than speech transcription;
however, we do not have such testset available.

During training on synthetic data, the model
learns a general domain and loses performance on
domain-specific testset to 20.91 BLEU, however af-
ter fine-tuning again on authentic domain-specific
data only it reaches the highest performance of
25.38 BLEU.

4 Conclusion

We participated in the low-resource Inuktitut–
English in the WMT 2020 News Translation Shared
Task. We combined transfer learning with the back-
translation and obtained significant improvements.

Surprisingly, we found out that although training
the model on backtranslated data decreases the per-
formance of the system in terms of BLEU score;
it is still helpful when continued with fine-tuning
on authentic data. We believe this is mainly be-
cause the Inuktitut–English training and test data
are from a narrow domain of legal texts.
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Abstract

This paper describes Tilde’s submission to the
WMT2020 shared task on news translation
for both directions of the English↔Polish lan-
guage pair in both the constrained and the un-
constrained tracks. We follow our submissions
form the previous years and build our base-
line systems to be morphologically motivated
sub-word unit-based Transformer base models
that we train using the Marian machine trans-
lation toolkit. Additionally, we experiment
with different parallel and monolingual data
selection schemes, as well as sampled back-
translation. Our final models are ensembles of
Transformer base and Transformer big models
which feature right-to-left re-ranking.

1 Introduction

This year, we developed both constrained and un-
constrained NMT systems for the English↔Polish
language pair. We base our methods on the sub-
missions of the previous years (Pinnis et al., 2017b,
2018, 2019) including methods for parallel data
filtering from Pinnis (2018). Specifically, we lean
on Pinnis (2018) and Junczys-Dowmunt (2018) for
data selection and filtering, (Pinnis et al., 2017b)
for morphologically motivated sub-word units and
synthetic data generation, Edunov et al. (2018) for
sampled back-translation and finally Morishita et al.
(2018) for re-ranking with right-to-left models. We
use the Marian toolkit (Junczys-Dowmunt et al.,
2018) to train models of Transformer architecture
(Vaswani et al., 2017).

Although document level NMT as showcased by
(Junczys-Dowmunt, 2019) have yielded promising
results for the English-German language pair, we
were not able to collect sufficient document level
data for the English-Polish language pair. As a
result, all our systems this year translate individual
sentences.

The paper is further structured as follows: Sec-
tion 2 describes the data used to train our NMT
systems, Section 3 describes our efforts to identify
the best-performing recipes for training of our final
systems, Section 5 summarises the results of our
final systems, and Section 6 concludes the paper.

2 Data

For training of the constrained NMT systems, we
used data from the WMT 2020 shared task on
news translation1. For unconstrained systems, we
used data from the Tilde Data Library2. The 10
largest publicly available datasets that were used
to train the unconstrained systems were Open Sub-
titles from the Opus corpus (Tiedemann, 2016),
ParaCrawl (Banón et al., 2020) (although it was
discarded due to noise found in the corpus), DGT
Translation Memories (Steinberger et al., 2012),
Microsoft Translation and User Interface Strings
Glossaries3 from multiple releases up to 2018, the
Tilde MODEL corpus (Rozis and Skadiņš, 2017),
WikiMatrix (Schwenk et al., 2019), Digital Corpus
of the European Parliament (Hajlaoui et al., 2014),
JRC-Acquis (Steinberger et al., 2006), Europarl
(Koehn, 2005), and the QCRI Educational Domain
Corpus (Abdelali et al., 2014).

2.1 Data Filtering and Pre-Processing
First, we filtered data using Tilde’s parallel data fil-
tering methods (Pinnis, 2018) that allow discarding
sentence pairs that are corrupted, have low content
overlap, feature wrong language content, feature
too high non-letter ratio, etc. The exact filter con-
figuration is defined in the paper by (Pinnis, 2018).

Then, we pre-processed all data using Tilde’s
parallel data pre-processing workflow that nor-

1http://www.statmt.org/wmt20/translation-task.html
2https://www.tilde.com/products-and-services/data-

library
3https://www.microsoft.com/en-us/language/translations
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Scenario Lang. Raw Filtered
pair Tilde +DCCEF

(c) En → Pl 10.8M 6.5M 4.3M
Pl → En 4.3M

(u) En → Pl 55.4M 31.5M 23.3M
Pl → En 24.1M

(u) w/o PC En → Pl 48.8M 27.0M 21.6M
Pl → En 21.3M

Table 1: Parallel data statistics before and after filter-
ing. (c) - constrained, (u) - unconstrained, “w/o PC” -
“without ParaCrawl”.

malizes punctuation (quotation marks, apostro-
phes, decodes HTML entities, etc.), identifies non-
translatable entities and replaces them with place-
holders (e.g., e-mail addresses, Web site addresses,
XML tags, etc.), tokenises the text using Tilde’s reg-
ular expression-based tokeniser, and applies true-
casing.

In preliminary experiments, we identified also
that morphology-driven word splitting (Pinnis et al.,
2017a) for English↔Polish allowed us to increase
translation quality by approximately 1 BLEU point.
The finding complies with our findings from previ-
ous years (Pinnis et al., 2018, 2017b). Therefore,
we applied morphology-driven word splitting also
for this year’s experiments.

Then, we trained baseline NMT models (see
Section 3.2) and language models, which are nec-
essary for dual conditional cross-entropy filtering
(DCCEF) (Junczys-Dowmunt, 2018) in order to
select parallel data that is more similar to the news
domain (for usefulness of DCCEF, refer to Sec-
tion 3.3). For in-domain (i.e., news) and out-of-
domain language model training, we used four
monolingual datasets of 3.7M and 10.6M sen-
tences4 for the constrained and unconstrained sce-
narios respectively. Once the models were trained,
We filtered parallel data using DCCEF. The parallel
data statistics before and after filtering are given in
Table 1.

For our final systems, we also generated syn-
thetic data by randomly replacing one to three con-
tent words on both source and target sides with
unknown token identifiers. This has shown to in-
crease robustness of NMT systems when dealing
with rare or unknown phenomena (Pinnis et al.,
2017a). This process almost doubles the size of

4The sizes correspond to the smallest monolingual in-
domain dataset, which in both cases were news in Polish.
For other datasets, random sub-sets were selected.

the corpora, therefore, this was not done for the
datasets that were used for the experiments docu-
mented in Section 3.

For backtranslation experiments, we used all
available monolingual data from the WMT shared
task on news translation. In order to make use of
the Polish CommonCrawl corpus, we scored sen-
tences using the in-domain language models and
selected top-scoring sentences as additional mono-
lingual data for back-translation.

Many of the data processing steps were sped
up via parallelization with GNU Parallel (Tange,
2011).

3 Experiments

In this section, we describe the details of the meth-
ods used and experiments performed to identify
the best-performing recipes for training of Tilde’s
NMT systems for the WMT 2020 shared task on
news translation. All experiments that are de-
scribed in this section were carried out on the con-
strained datasets unless specifically indicated that
also unconstrained datasets were used.

3.1 NMT architecture

All NMT systems that are described further have
the Transformer architecture (Vaswani et al., 2017).
We trained the systems using the Marian toolkit
(Junczys-Dowmunt et al., 2018). The Transformer
base model configuration was used throughout the
experiments except for the experiments with the big
model configuration that are described in Section 5.
We used gradient accumulation over multiple physi-
cal batches (the --optimizer-delay parameter in Mar-
ian) to increase the effective batch size to around
1600 sentences in the base model experiments and
1000 sentences in big model experiments. The
Adam optimizer with a learning rate of 0.0005 and
with 1600 warm-up update steps (i.e., the learning
rate linearly rises during warm-up; afterwards de-
cays proportionally to the inverse of the square root
of the step number) was used. For language model
training, a learning rate of 0.0003 was used.

3.2 Baseline models

We trained baseline models using the Transformer
base configuration as defined in Section 3.1. The
validation results for the baseline NMT systems are
provided in Table 2. As we noticed last year that
the ParaCrawl corpus contained a large proportion
(by our estimates up to 50%) (Pinnis et al., 2019)
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System En→ Pl Pl→ En

Constrained
Baseline 21.67 32.69
+DCCEF 22.19 33.45

Unconstrained
Baseline 21.86 33.08
+DCCEF 22.51 30.86
Baseline w/o ParaCrawl 24.29 29.47
+DCCEF 22.60 28.59

Table 2: Comparison of baseline NMT systems trained
on data that were prepared with and without DCCEF.

of machine translated content, we trained baseline
systems with and without ParaCrawl. It can be seen
that when training the En→ Pl unconstrained sys-
tem using ParaCrawl, we loose over 2 BLEU points.
This is because most machine translated content
is on the non-English (in this case Polish) side.
For the Pl→ En direction, the machine-translated
content acts as back-translated data and, therefore,
does not result in quality degradation. Further, our
Pl→ En systems are trained using ParaCrawl, and
En→ Pl systems – without ParaCrawl.

3.3 Dual Conditional Cross-Entropy
Filtering

After the baseline systems, we analysed whether
DCCEF allows improving translation quality. The
validation results in Table 2 show that translation
quality increases for the constrained systems, but
degrades for the unconstrained systems. Further,
we used DCCEF only for the constrained scenario
systems.

3.4 Back-translation

We used monolingual data back-translation to adapt
the NMT systems to the news domain. Edunov et al.
(2018) has shown that using output sampling in-
stead of beam-search during back-translation yields
better-performing NMT systems. Hence, we ex-
clusively used output sampling for monolingual
data back-translation. However, due to the abun-
dance of monolingual data for both translation di-
rections, we experimented with different rates of
upsampling and back-translated data cutoff to de-
termine whether translation performance doesn’t
degrade in the presence of a too small proportion
of bitext data during training.

Another dimension of inquiry was with different

strategies for data filtering in the preparation of
the back-translated data. Ng et al. (2019) have de-
scribed a method for domain data extraction from
general domain monolingual data using domain
and out-of-domain language models. We compared
said method with a simpler alternative of using only
an in-domain language model for in-domain data
scoring. We sorted the monolingual data according
to the scores produced by the in-domain language
model or by the combination of in-domain and
out-of-domain language model scores and experi-
mented with different cutoff points when selecting
data for back-translation.

Considering the above, we carried out experi-
ments along two dimensions – 1) monolingual data
selection strategy, which was either combined or
in-domain, signifying whether the combined score
of both language models or just the score from
the in-domain language model was used, respec-
tively, and 2) the bitext and synthetic data mixture
selection strategy, which was one of:

• original ratio – all available bitext data for
the translation direction were combined with
all back-translated data having a score ≥ 0,
when using the combined selection strategy,
or N top-scoring back-translated sentences,
when using the in-domain selection strategy,
where N was selected to match the amount of
synthetic data selected in the combined case.

• upsampled 1:1 – the same amount of synthetic
data was selected as with the original ratio
data mixture selection strategy, but bitext was
upsampled to match the amount of synthetic
data.

• cutoff {1:1, 1:2, 1:3} – all available bitext data
for the translation direction were combined
with N top-scoring back-translated sentences
where N was chosen so that the ratio of bitext
to synthetic data was either 1:1, 1:2 or 1:3.

As a result of the above, we ended up with 96.8M
sentences (14% retained) from the English mono-
lingual corpus and 137M (99% retained) sentences
from the Polish monolingual corpus after apply-
ing the combined data selection strategy. Conse-
quently, the same amount of data was selected for
the in-domain data selection strategy in the case
of original ratio and upsampled 1:1 data mixture
selection strategies (i.e. when not doing cutoff ).
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orig.
ratio

ups.
1:1

cutoff

1:1 1:2 1:3

En → Pl
combined 23.35 24.01 24.52 24.72 -
in-domain 22.10 22.92 25.02 25.28 25.24

Pl → En
combined 31.19 33.45 33.29 33.60 -
in-domain 29.67 - 33.40 33.28 -

Table 3: En→ Pl back-translation experiment results.

The results for back-translation experiments are
presented in Table 3. The systems use the DCCEF-
filtered constrained datasets and therefore are di-
rectly comparable to the constrained DCCEF sys-
tems in Table 2.

For our final systems, we use the combined se-
lection strategy for Pl → En and the in-domain
selection strategy for En→ Pl. For unconstrained
systems, we identified that there is no significant
difference between translation quality; we used
the combined selection strategy for both language
pairs.

3.5 QHAdam optimizer

Last year (Pinnis et al., 2019) we used the QHAdam
optimizer (Ma and Yarats, 2018) for model training,
however, we hadn’t treated QHAdam and Adam
the same in the experimental process, having dedi-
cated substantially more effort to optimizer hyper-
parameter tuning for QHAdam than Adam. To
make an unbiased comparison of the two optimiz-
ers, we trained corresponding system variants using
QHAdam for the combined cutoff 1:2, in-domain
cutoff 1:2 and in-domain cutoff 1:3 systems from
Section 3.4 in the En → Pl translation direction.
The BLEU scores for the experiments are found
in Table 4. We see that QHAdam performs no bet-
ter than Adam. We had also done more extensive
experiments comparing QHAdam to Adam for a
range of learning rate and warm-up step parameter
settings on a different dataset, which showed a sim-
ilar trend, however we do not present those results
here. As a result, we didn’t choose QHAdam over
Adam in this year’s competition.

We note, however, that we used the recom-
mended safe defaults for the QHAdam’s hyper-
parameters – v1 = 0.8, v2 = 0.7 – and we haven’t
performed a search over these values which could
have yielded different results.

combined
cutoff 1:2

in-domain cutoff

1:2 1:3

Adam 24.72 25.28 25.24
QHAdam 24.86 24.98 25.00

Table 4: BLEU scores for the QHAdam experiments in
the En→ Pl translation direction.

3.6 Right-to-Left Re-Ranking

Morishita et al. (2018) report improving the trans-
lation performance by using right-to-left (R2L) re-
ranking. The method employs a right-to-left model
to re-score the n-best list outputs of a regular –
left-to-right – model by multiplying both models’
translation probabilities. We implement R2L re-
ranking the same as Morishita et al. (2018), but
opted to use n-best lists with n = 12 (instead of
n = 10).

The R2L re-ranking experiments were per-
formed during the final stages of the competition,
hence the baseline systems for those experiments
were the final systems that were being prepared for
submission to the news translation task. Therefore
we present the results in Table 5 in the Results sec-
tion. We find similar improvements as Morishita
et al. (2018), albeit they are slightly smaller.

4 Final Systems

We chose the best performing system variants from
Section 3 to serve as a base for the final submission
for the news translation task. For the constrained
scenario, we trained final systems using parallel
data that were filtered with Tilde’s filtering meth-
ods and DCCEF, back-translated monolingual data
using a ratio of 1:2 (different data selection meth-
ods were applied for both translation directions),
and synthetic data featuring unknown phenomena.
For the unconstrained scenario, we trained final sys-
tems using parallel data that were filtered only with
Tilde’s filtering methods, back-translated monolin-
gual data that were selected using the combined
data selection strategy using a ratio of 1:1, and
synthetic data featuring unknown phenomena. All
models were trained using the Adam optimiser.

When preparing the final systems, we also em-
ployed R2L re-ranking (see Section 3.6), ensem-
bling of the best three models, and trained Trans-
former models using the big model configuration.
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Constrained Unconstrained

Pl→ En
Base 33.48 32.63
+R2L 34.34 33.29
Big 33.79 33.15
+R2L 34.83 33.45
Ensemble of 3 34.19 33.39
+R2L 34.80 33.53

En→ Pl
Base 25.64 26.12
+R2L 26.24 26.52
Big 25.59 26.47
+R2L 26.70 26.78
Ensemble of 3 26.07 26.86
+R2L 26.73 27.12

Table 5: Final system evaluation results (BLEU scores)
on validation data (bold marks best scores; submitted
systems are underlined).

5 Results

The BLEU scores for the systems that were eval-
uated for the final submission are shown in Ta-
ble 5. The results show that right-to-left reranking
increased translation quality for all systems. For
the En→ Pl translation direction, the best results
were achieved when using ensembles of three mod-
els and better results were achieved by the uncon-
strained systems. However, for the Pl→ En transla-
tion direction, the unconstrained systems achieved
lower results than the constrained systems. The
best results were achieved by the Transformer big
model; ensembling did not improve results.

In overall, the results differ from what we have
observed in previous years. Back-translation for
Pl → En did not improve results, which raises a
question of a possible domain mismatch between
the monolingual data we back-translated and the
development data. Unconstrained systems are
only slightly better than constrained systems for
En → Pl and even subpar for the Pl → En trans-
lation direction, which shows that current NMT
methods are not able to benefit from larger datasets.
Hence, having in-domain data is more important.

6 Conclusion

In this paper, we described Tilde’s NMT systems
for the WMT shared task on news translation. This
year, we trained constrained and unconstrained sys-
tems for the English↔Polish language pair. We de-

tailed the methods applied and the training recipes.
During our experiments, we identified several

avenues of possible further research. We saw that
larger datasets even after applying data selection
methods did not allow improving translation qual-
ity (at least not significantly). We made a simi-
lar observation also previous years when partici-
pating in WMT. We saw in our results also that
back-trannslation did not yield positive results for
En → Pl. We hypothesise that there may be a
domain mismatch between the data we used for
training and the newsdev2020 dataset. However,
this requires further investigation.
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Mārcis Pinnis, Rihards Krišlauks, Daiga Deksne, and
Toms Miks. 2017a. Neural Machine Translation
for Morphologically Rich Languages with Improved
Sub-word Units and Synthetic Data. In Proceed-
ings of the 20th International Conference of Text,
Speech and Dialogue (TSD2017), volume 10415
LNAI, Prague, Czechia.
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Marcin Szymański, Paweł Przybysz
Samsung R&D Institute Poland

Abstract

This paper describes the submission to the
WMT20 shared news translation task by Sam-
sung R&D Institute Poland. We submitted
systems for six language directions: English
to Czech, Czech to English, English to Pol-
ish, Polish to English, English to Inuktitut and
Inuktitut to English. For each, we trained a
single-direction model. However, directions
including English, Polish and Czech were de-
rived from a common multilingual base, which
was later fine-tuned on each particular direc-
tion. For all the translation directions, we
used a similar training regime, with iterative
training corpora improvement through back-
translation and model ensembling. For the
En→ Cs direction, we additionally leveraged
document-level information by re-ranking the
beam output with a separate model.

1 Introduction

Since the Transformer architecture became the stan-
dard model in Neural Machine Translation, recent
advancements in the field have come from two tech-
niques. The first one is deepening the model by
adding more layers, mainly in the encoder part, in
order to model more complex dependencies (Ra-
ganato and Tiedemann, 2018; Wang et al., 2019a;
Wu et al., 2019). This, however, poses problems
during the training – too deep models are much
harder to train due to the gradient vanishing prob-
lem (Zhang et al., 2019). The second technique
consists in improving the quality of training data by
removing spurious translations (Koehn et al., 2019)
and making the data easier to learn through the
teacher-student methodology (Hinton et al., 2015;
Kim and Rush, 2016; Tan et al., 2019).

In this submission, we decided to leverage both
techniques. We deepened the model with a lexical-
shortcuts transformer modification. We also iter-
atively improved the synthetic corpora by train-

ing better and better translation models, back-
translating and distilling the data in each step.

The remainder of this paper is structured as fol-
lows: Section 2 introduces the data used for train-
ing, Section 3 shows baseline NMT models and our
experiments. In Section 4 we describe our training
regime and results. Section 5 is for conclusions.

2 Data

2.1 Data Filtering

We used all the parallel data available in the con-
strained settings. We filtered the parallel data with a
two-step process. First, we used a simple heuristics
for general clean-up:

• remove pairs where any of the sentences is
longer than 1500 characters

• remove sentences with characters not in the
Unicode range specific to a given language
pair

• remove pairs based on a length-ratio thresh-
old.

We then de-duplicated the data and used the fast-
align1 tool to filter out pairs basing on the align-
ment probability between the source and the target
(Table 1). For monolingual data, we used only the
general clean-up procedure.

2.2 Data Pre-Processing

We used the normalize-punctuation.perl2

script from the Moses package on all the training
data. For the En ↔ Iu directions, we used
the alignment provided by the organizers, and

1github.com/clab/fast_align
2github.com/moses-smt/mosesdecoder/

scripts/tokenizer/normalize-punctuation.
perl
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Orig. + clean-up + fast-align
En↔ Cs 62.5M 61.8M 43.4M
En↔ Iu 2.6M 1.2M 1.1M
En↔ Pl 11.2M 10.7M 8.6M

Table 1: Number of sentences in the parallel corpus
originally, after simple rule-based cleaning-up, and af-
ter filtering out sentence pairs based on alignment prob-
ability.

decided to stick to the Inuktitut syllabics, without
romanization.

For tokenization and segmentation, we used Sen-
tencePiece3 (Kudo and Richardson, 2018). For
the En↔ Cs and En↔ Pl directions, we started
with a multilingual translation model that was later
specialized towards each direction separately. For
these 3 languages, we had to use a single, joint
vocabulary with 32, 000 pieces and a unigram lan-
guage model (ULM) tokenization scheme. For the
En ↔ Iu directions, we used a joint vocabulary
with the ULM tokenization scheme and 16, 000
pieces.

3 NMT System Overwiev

All of our systems are trained with the Marian
NMT4 (Junczys-Dowmunt et al., 2018) framework.

3.1 Baseline systems for En↔ Cs and En↔
Pl

We started with strong baselines, i.e. transformer
models (Vaswani et al., 2017), which we will now
refer to as transformer-big. This model consists
of 6 encoder layers, 6 decoder layers, 16 heads, a
model/embedding dimension of 1024 and a feed-
forward layer dimension of 4096.

The model is regularized with a dropout between
transformer layers of 0.2 and a label smoothing of
0.1. We also used layer normalization (Lei Ba et al.,
2016) and tied the weights of the target-side em-
bedding and the transpose of the output weight ma-
trix, as well as source- and target-side embeddings
(Press and Wolf, 2017). Optimizer delay was used
to simulate bigger batches, updating weights every
16 batches, Adam (Kingma and Ba, 2015) was used
as an optimizer, parametrized with a learning rate
of 0.0003 and linear warm-up for the initial 32, 000
updates with subsequent inverted squared decay.

For each language pair, we trained both uni- and

3github.com/google/sentencepiece
4github.com/marian-nmt/marian

Uni Bi Quadro
Quadro-

huge
En→ Cs 26.1 25.4 24.4 26.0
Cs→ En 32.4 31.4 30.5 32.7
En→ Pl 26.1 25.4 26.2 27.3
Pl→ En 30.0 30.3 31.0 32.3

Table 2: SacreBLEU scores on newsdev2020 for
baseline trainings, for various model capacities: uni-
directional models, bi-directional models and quadro-
directional transformer-big. Quadro-huge stands for
the quadro-directional model with the transformer-
huge parameters.

Corpora size Pre-training BLEU
En→ Pl 0.25M

√
20.4

0.25M - 16.5
0.5M

√
21.8

0.5M - 19.4
8.6M

√
25.1

8.6M - 26.1
Pl→ En 1M

√
27.1

1M - 25.7
8.6M

√
29.1

8.6M - 30.0

Table 3: SacreBLEU scores on newsdev2020 for En
↔ Pl trainings, with and without pre-training. 8.6M
corpora size means all the available training data was
used.

bi-directional models. We also examined the ef-
fect of using multilingual data to train a quadro-
directional model on concatenated En↔ Cs and
En↔ Pl corpora. The En↔ Pl corpora were up-
sampled 5 times to match size. <2XX> tokens
were appended to each sentence to indicate the
target language. The results on newsdev2020 are
presented in Table 2.

3.2 Baseline system for En↔ Iu

As the parallel corpora for En↔ Iu are significantly
smaller than for the other pairs, we decided to start
with a transformer model with a smaller number
of parameters i.e. transformer-base. All our base
models were bi-directional.

The model consists of 6 encoder layers, 6 de-
coder layers, 8 heads, a model/embedding dimen-
sion of 512 and a feed-forward layer dimension of
2048. We examined the effect of vocabulary size
on the model quality, and obtained the best results
for the vocabulary size of 16, 000 (Table 4). Basing
on our previous experience, we also examined an
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Vocab size BLEU
En→ Iu 16k 15.1

32k 15.1
64k 15.0

Iu→ En 16k 28.3
32k 27.9
64k 27.6

Table 4: SacreBLEU scores on newsdev2020 for En
↔ Iu bi-directional trainings, for different sizes of the
sentencepiece vocabulary.

unbalanced encoder/decoder configuration with a
deeper encoder (8 layers) and a more shallow de-
coder (4 layers). The result was 28.3 (+0.0) for Iu
→ En and 15.3 (+0.2) for En→ Iu, compared to
the base case. We used this model as a reference
for the following experiments.

3.3 Multilingual Denoising Pre-training
Liu et al. (2020) recently proposed a method for
pre-training sequence-to-sequence models with
an auto-encoder-based denoising objective. Pre-
training a complete encoder-decoder model allows
for later direct fine-tuning on the translation ob-
jective, with parallel corpora. In our experiment,
we sampled 250M sentences from CommonCrawl
for Czech, English and Polish (i.e. 750M in total).
During training, we randomly cropped up to 25%
tokens from each sentence, and taught the model
to predict the original sequence. We used the same
architecture as in baseline trainings. Next, we used
the best checkpoint to warm-start training on the
parallel data. Table 3 presents our results for vary-
ing sizes of the training corpus (the smaller corpus
is a random subset of the parallel data). We observe
that, although our implementation works well for
low-resource setting, it leads to quality drop when
all the parallel data is used. Accordlingly, we used
this pre-training method only for the En↔ Iu di-
rections.

3.4 Lexical Shortcuts
Since our quadro-directional model showed promis-
ing results, we decided to try to examine the ef-
fect of deepening and enlarging the model. We in-
creased the feed-forward layer dimension to 8192,
and the number of encoder layers to 12. The rest
of the parameters is the same as in transformer-big.
He et al. (2019) demonstrated that, with a fixed
number of layers, it was more efficient to have a
deeper encoder than decoder. It also makes de-

Pl En Cs
Newscrawl 3.7M 230M 80.5M
+ Moore-Lewis 96.5M - -

Table 5: Number of sentences in monolingual datasets
after clean-up and domain-based filtering.

coding for back-translation much faster. To help
with gradient propagation, we implemented Lexi-
cal Shortcuts (Emelin et al., 2019) in the encoder.
We used the feature-fusion version of the gating
mechanism. The results are summarized in the
Quadro-huge column in Table 2. This model out-
performed the baseline in all the directions, except
one. We decided to use this system in further train-
ings.

3.5 Back-Translation with Language Model
Back-translation (Sennrich et al., 2016) is a com-
mon strategy of utilizing monolingual data in train-
ing NMT systems. For English and Czech, the
amount of monolingual in-domain data in the
Newscrawl data set is big enough, so for this
language pair we used only the monolingual set.
Yet for Polish, the Newscrawl is very limited in
size, hence we decided to use Moore-Lewis filter-
ing (Moore and Lewis, 2010) to extract in-domain
data from CommonCrawl.

With this additional monolingual corpus, we
had over 80M in-domain news sentences for each
language (Table 5). We used those monolingual
datasets to train an in-domain RNN-style language
model for each of the three languages, using the
same common vocabulary as the one in the trans-
lation models. This allowed us to easily ensemble
this language model with a translation model dur-
ing decoding, as described in Gulcehre et al. (2015).
For each iteration of the back-translation, we used
an ensemble of the top 4 NMT models available
w.r.t. the dev-set score for the particular direction
and the in-domain language model. The weights of
the models were optimized through a grid-search.

3.6 Noisy Channel Model Reranking
Re-ranking the beam output is a method used to
improve translation quality by the re-scoring hy-
pothesis from a forward model. The noisy channel
model (Yee et al., 2019) approach was used with
success by Facebook in their submission to the
WMT19 news translation task (Ng et al., 2019).
Based on the Bayes’ rule, given a target sequence y
and a source sentence x, for every hypothesis from
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the beam output, we calculate

logP (y | x) + λ1 logP (x | y) + λ2 logP (y)

and use this score to re-rank the beam outputs. We
model P (y | x) with the forward model, P (x |
y) with the backward model and P (y) with the
language domain model. The weights λ1 and λ2
are tuned on the dev-set.

When we used this method for our baseline uni-
directional systems, we noticed significant BLEU
improvements: 26.9 (+0.8) on newsdev2020 for
the En→ Pl direction. However, there was no im-
provement when applied to translations produced
with strong ensembles of both the domain language
models and the translation models, trained on the
back-translated data. In our final submission, we
used this method only for the Iu→ En and En→
Iu directions.

3.7 Multi-Agent Dual Learning
In our submission, we used the simplified version
of Multi-Agent Dual Learning (MADL) (Wang
et al., 2019b), proposed in Kim et al. (2019), to
generate additional training data from the parallel
corpus. We generated n-best translations of both
the source and the target sides of the parallel data,
with strong ensembles of, respectively, the forward
and the backward models. Next, we picked the
best translation from among n candidates w.r.t. the
sentence-level BLEU score. Thanks to these steps,
we tripled the number of sentences by combining
three types of datasets:

1. original source – original target,

2. original source – synthetic target,

3. synthetic source – original target,

where the synthetic target is the translation of the
original source with the forward model, and the
synthetic source is the translation of the original
target with the backward model.

3.8 Document Level Reranking
For the En↔ Cs translation directions, the training
data is aligned on the document level. To make use
of this information, we implemented the method
presented in Voita et al. (2019). The method as-
sumes one has access to consecutive tuples of sen-
tences in the target language. Using the backward
and forward models, one should translate the tu-
ples with the sentence-level based systems, and

then train the model to predict the original tuple,
basing on the two-way translated data. As we al-
ready have access to the document-level aligned
translations from the CzEng 2.0 corpus (Kocmi
et al., 2020), we could do the translation just once.
We experimented only with the En→ Cs direction.
We selected tuples of 4 consecutive sentences in
English, translated each sentence independently,
and glued the translations back together. We used
a special token to indicate the end of the sentence.
See Table 9 in the Appendix for an example of
the training data. However, when we utilized this
model to “repair” the newsdev2020 dev-set transla-
tions, we noticed a quality drop. We decided to try
a different approach, and used the document-level
repair model to re-rank the beam output. The proce-
dure is similar to a greedy search for the best path
through n-best lists of forward model translations.
It is described with Algorithm 1.

Algorithm 1 Document Level Reranking

Input: {trnb(sj)} - n-best list (b = 1..N ) with
translations of sentence sj

Input: Lrepair({saj}j=1..4, {sbj}j=1..4)− likeli-
hood computed with repair model for two 4-
sentence sequences

Output: Re-ranked translations rep
1: for all paragraph in test-set do
2: i = 0
3: for all sentence si in paragraph do
4: if i < 4 then
5: repi = trn1(si)
6: else
7: seq1 = repi−3, . . . , repi−1, trn

1(si)
8: seqb = repi−3, . . . , repi−1, trn

b(si)
9: repi = argmax

b=1..N
Lrepair(seq1, seqb)

10: end if
11: i += 1
12: end for
13: end for

Although on the dev-set we didn’t see much
difference in the BLEU score, manual inspection
showed some promising results. We decided to
apply this method to our best-scoring system and
saw a 0.1 improvement in the BLEU score on the
test-set.

3.9 Post-Processing

For all the translation directions we participated in,
we normalized the system outputs with a series of
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regular expressions:

• substitute English quotation marks (“ ... ”)
with Czech/Polish ones (,, ... ”),

• if a source starts/ends with a quotation mark,
we make sure so does the translation,

• remove word repetitions,

• replace consecutive sequences of white-
spaces with a single one,

• if a source ends with a punctuation mark (e.g.
?.!), we substitute the last character of the
translation with it,

• replace three consecutive dots with an ellipsis,

• replace hyphens with en dashes.

4 Results

4.1 English→ Polish

The model for the English→ Polish direction was
derived from the multilingual quadro-huge model
– similarly to the other models for directions with
Polish, Czech or English. The successive steps and
respective BLEU scores are reported in Table 6.

We started with fine-tuning the quadro-
directional model on the parallel data for the spe-
cific direction. Next, we used an ensemble of our
best models to back-translate Newscrawl 2018 and
2019, we filtered it (3.5M sentences) and merged
with the parallel corpus (8.6M). The fine-tuning
gave us +1.5 BLEU improvement. We were able
to achieve an additional +0.9 BLEU with the rule-
based post-processing (see above). In the next step,
we used the MADL procedure to generate addi-
tional data. To further increase the amount of data
and its variability, we picked the top 2 best trans-
lations, according to the sentence-level BLEU in
the distillation process – instead of choosing just
one. Again, we up-sampled the original parallel
corpus twice. This procedure gave additional 52M
sentences (a 6-fold increase).

We back-translated all the monolingual in-
domain data (i.e. 89M after filtration) and used
both corpora to fine-tune the next generation model.
We augmented the data by randomly masking up to
10% of the input tokens with a random punctuation
mark, and observed yet another performance boost.
Using all these corpora, we trained another model
from scratch, hoping to get a less correlated model.

newsdev2020
System En→ Pl Pl→ En
Quadro-huge 27.3 32.3
+ finetune 27.4 32.8
+ ensemble 28.7 32.9
+ BT 28.9 33.7
+ post-process 29.8 -
+ ensemble 30.7 34.1
+ BT2 & MADL 31.4 34.4
+ masking 31.6 -
FRESH 30.2 32.9
+ ensemble 32.2 34.9
+ post-process - 35.0
+ test-dev tune 32.2 35.1
+ ensemble 32.4 35.4

newstest2020
WMT’20 SUBMISSION 27.6 34.3

Table 6: Successive improvements in the BLEU scores
on the English → Polish and Polish → English direc-
tions, computed with SacreBLEU.

Although the fresh model performance was poorer
than the previous best (30.2 BLEU vs. 31.6 BLEU),
the grid-search ensemble optimization included it
in the best ensemble. As a final step, we used
Moore-Lewis filtering to choose 1M Newscrawl
sentences that were closest to the concatenated
newsdev2020 and newstest2020. We translated
them with the best ensemble, and used it to fine-
tune our best-performing model. Again, we ran
ensemble optimization including this model into
the models reservoir. The optimal ensemble was
the one we submitted as the primary system.

4.2 Polish→ English

For the Polish to English direction, we proceeded
similarly to our solution for English to Polish. We
started with the quadro-huge model. We back-
translated Newscrawl 2018, filtered it (12M sen-
tences) and merged with the parallel corpus (8.6M).
We kept on training the fine-tuned quadro-huge
model, increasing the performance by 0.9 BLEU.
We used the same MADL procedure as before,
distilling 2 best translations for each source sen-
tence. We also back-translated Newscrawl 2007-
2017 (144M) and merged it with the MADL cor-
pus. With this corpus, single model performance
increased by +0.7 BLEU. We used the same corpus
to train a fresh model. Similarly to the English to
Polish direction, the fresh model performed poorer
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(32.9 BLEU) than the fine-tuned one (34.4 BLEU),
but – again – in ensemble it gave additional im-
provement. Finally, we fine-tuned on the 1M cor-
pora filtered out from Newscrawl in the domain of
the concatenated newsdev2020 and newstest2020,
and ensembled for the final submission.

4.3 English→ Czech
We started with fine-tuning the quadro-huge model
with only English to Czech parallel data and en-
sembling several models into one. This model spe-
cialization gave us +1.4 BLEU. Next, we back-
translated Newscrawl 2018 and 2019 in two fla-
vors: normally, and with adding Gumbel noise
(--output-sampling in Marian). Then, we
filtered the result (see section 2.1), obtaining 35M
sentences. With this additional corpus, the sin-
gle model performance improved by 0.9 BLEU.
In contrast to the Cs→ En direction, using back-
translations from CzEng 2.0 seemed to hurt the
model performance.

In the next iteration, we produced the MADL
corpus (120M) and merged it with back-translated
Newscrawl 2009-2017 (102M, with and without
noise) and used this data to train yet another model.
Finally, we ensembled this model with models
trained from scratch and fine-tuned on the 1M from
Newscrawl common with the concatenated news-
dev2020 and newstest2020. Before the last step –
document level re-ranking – we used the sentence-
splitter from NLTK (Bird et al., 2009) to pre-
process the testset. It was required because of our
systems being trained with sentence-level data and
in newstest2020 some of the segments contain mul-
tiple sentences. We translated the pre-processed
testset with the best ensemble, re-ranked on the
document level and finally glued back the trans-
lations together. The document level re-ranking
gave us -0.1 BLEU on the dev-set but +0.1 on the
test-set.

4.4 Czech→ English
Again, the specialization of the quadro-huge model
with only Czech to English data gave us almost
1 BLEU gain in performance. Next, we back-
translated Newscrawl 2018 and 2019 and filtered
it with our pipeline, obtaining 49M sentences. We
added the Newscrawl translations from CzEng
2.0 (79M) and the original filtered parallel corpus
(43M), ending up with 171M parallel sentences
as our training set. Using this data, we improved
the single model performance by 3.6 BLEU. Fine-

newsdev2020
System En→ Cs Cs→ En
Quadro-huge 26.0 32.7
+ finetune 26.5 33.5
+ ensemble 27.3 33.8
+BT 27.4 37.4
+ ensemble 28.5 37.7
+ post-process - 37.8
+ BT2 & MADL 28.8 38.6
FRESH 27.0 35.6
+ ensemble 29.1 38.7
+ test-dev tune 29.1 39.0
+ ensemble 29.4 39.7
+ post-process 31.3 -
+ doc-level re-rank 31.2 -

newstest2020
WMT’20 SUBMISSION 36.5 28.5

Table 7: Successive improvements in the BLEU scores
on the English → Czech and Czech → English direc-
tions, computed with SacreBLEU.

tuning on the MADL corpus (120M) and the back-
translated Newscrawl 2017 (25M) gave additional
+1.2 BLEU on the single model. Finally, we ensem-
bled them with a model trained from scratch and
fine-tuned on the 1M sentences from Newscrawl
that were similar to the concatenated newsdev2020
and newstest2020 w.r.t. the Moore-Lewis score.
For sentence splitting, we used the same splitter as
for En→ Cs. Results on the previous test-sets of
the final systems for the En↔ Cs directions, with-
out document level re-ranking, in the Appendix
(Table 10).

4.5 English↔ Inuktitut

In contrast to all the other directions, for Inukti-
tut we had much less monolingual data (10k after
cleaning) than bitext (1.1M). In the first step, we
back-translated the monolingual data with beam
10, and kept all the possible variants (0.1M sen-
tences). We also back-translated the English Eu-
roparl v10 corpus (2M), because we believed it
to help with the Hansard (Joanis et al., 2020) part
of the dev- and test-sets. We merged it with the
two-directional parallel data (2.2M) and trained
a bi-directional model, from scratch. We used it
for the general first iteration of the MADL corpus
(6.6M), and used all of the data to once more train
a model from scratch. Here we examined the ef-
fect of pre-training. We used the sample (10M)
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newsdev2020
System En→ Iu En→ Iu
Baseline 15.3 28.3
+ BT 15.5 29.9
+ MADL 15.5 30.4
+ masked mono 15.8 30.5
+ transformer-big 15.8 32.2
+ fine-tune 15.8 32.5
+ ensemble 16.2 32.7
+ MADL2 15.8 32.7
+ ensemble 16.3 32.9
+ noisy channel 16.4 33.2

newstest2020
WMT’20 SUBMISSION 11.0 25.6

Table 8: Successive improvements in the BLEU scores
on the English→ Inuktitut and Inuktitut→ English di-
rections, computed with SacreBLEU.

from the English Newscrawl 2019 and the Inuk-
titut part of the parallel data, up-sampled 5 times
(5.5M). With the pipeline approach, fine-tuning on
bitext was giving us similar results as training on bi-
text from scratch. Nevertheless, we were however
able to achieve some improvement, when training
a fresh model on the merged parallel and noised
monolingual data. We were able to achieve further
improvement with increased model size – 1024 em-
bedding dimension, 4096 forward dimension and
16 heads.

Next, we started fine-tuning on each direction
independently, using the parallel data for En→ Iu,
and 20-times up-sampled the parallel data (22M)
together with the back-translated Newscrawl 2018
and 2019 (48M) for Iu → En. Then, we used
an ensemble of models to once again generate
the MADL corpus, use it to fine-tune the uni-
directional models and the ensemble once again.
We used the Noisy Channel Reranking method and
saw some improvement on both the dev-set and the
test-set.

5 Conclusions

In this paper, we have described the submission to
the WMT20 shared news translation task by Sam-
sung R&D Institute Poland. All submitted systems
were constrained and utilized only the permitted
data. With our approach, we were able to leverage
two important techniques that improve the transla-
tion quality. One method was deepening the model,
while still being able to train it effectively. The

other one was filtering and improving the quality
of the training data and producing high quality syn-
thetic data. Our iterative approach of improving the
training data and improving the translation model
proved to be successful, showing gradual increase
in the BLEU scores.
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A Appendix

source ”To tys vymyslel mihotavé reflektory?” <SEP> ”...Ne. <SEP> V nanouffu nejsem moc
dobrá. <SEP> Přišel na ně můj přı́tel z Londýna.

target ”A vymyslel jste taky ty reflektorky?” <SEP> ”Ne. <SEP> V nanotechnologii tak dobrý
nejsem. <SEP> S tı́m přišel jeden můj známý z Londýna.

source A na čest svého domu, prohlašuji, že můj milovaný Robert.. . . -Určitě? <SEP> Radši se
podepiš s Jaimem Lannisterem, Králokatem. <SEP> To město je nudný. <SEP> Prosı́m,
Andrewe.

target ”A já prohlašuji na čest svého rodu, že můj milovaný bratr Robert...” <SEP> Dej tam serem
Jaimem Lannisterem, Králokatem. <SEP> Tohle město páchne... <SEP> Prosı́m!

source Řekla jsem: ”Čı́ byl nápad?” <SEP> Jejich modré oči byly jasné jako plavecký bazén.
<SEP> ”To přišel točenı́ Ernesto.” vzdálený Dezertér nebo lhář. <SEP> Byli jste dost dobřı́
přátelé?”

target ”Čı́ to byl nápad?” zeptala jsem se. <SEP> Podı́val se na mě zpřı́ma a jeho modré oči byly
průzračné jak studánky. <SEP> ”Earnesto s tı́m přišel.” <SEP> ”Byli jste dobřı́ kamarádi?”

Table 9: Example of the training data used to train the document-level re-rank model. Target is a quadruple
of consecutive sentences extracted from the CzEng 2.0 parallel corpus. Source is a translation of the matching
English sequence, produced on the sentence level.

En→ Cs Cs→ En

newstest2019 WMT‘19 best 29.9 -
SRPOL‘20 31.3 (+1.4) -

newstest2018 WMT‘18 best 26.0 33.9
SRPOL‘20 27. 4 (+1.4) 35.3 (+1.4)

newstest2017 WMT‘17 best 26.1 30.9
SRPOL‘20 27.7 (+1.6) 35.1 (+4.2)

Table 10: SacreBLEU scores of the final systems for the En↔ Cs directions, without document level re-ranking,
on test-sets from previous years.
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Abstract

We describe the joint submission of the
University of Edinburgh and Charles Uni-
versity, Prague, to the Czech/English track
in the WMT 2020 Shared Task on News
Translation. Our fast and compact stu-
dent models distill knowledge from a larger,
slower teacher. They are designed to offer a
good trade-off between translation quality
and inference efficiency. On the WMT 2020
Czech ↔ English test sets, they achieve
translation speeds of over 700 whitespace-
delimited source words per second1 on a sin-
gle CPU thread, thus making neural transla-
tion feasible on consumer hardware without
a GPU.

1 Introduction

The conventional set-up of the WMT Shared Tasks
on News Translation emphasizes translation qual-
ity (however measured) above all else. Constraints
on the data that may be used for training in the
‘constrained’ track establish a level playing field
in terms of the information available to the trans-
lation model and its training process, but there
are no constraints on the computational power and
effort spent to achieve the results. In contrast,
the WNGT Shared Task on Efficient Translation
(Heafield et al., 2020) encourages participants to
submit systems that are both accurate and efficient
during inference (i.e., translation). So far, there
has been little interaction between the two tasks.

With our joint submission between the University
of Edinburgh (UEDIN) and Charles University,
Prague (CUNI), we strive to bridge this gap. We
submitted small, efficient systems that distilled
knowledge from a more powerful teacher model
via sequence-level knowledge distillation (Kim and

1 Bogoychev et al. (2020) report translation speeds of
up to 3135 source words per second on a single CPU
thread; the actual throughput depends not only on
the computer hardware used for translation but also
on the distribution of translation segment lengths in
the test set.

Rush, 2016). In a nutshell, the procedure can be
described as follows:

1. Train a powerful teacher model on the available
training data set D.

2. Translate the source side of D plus avail-
able monolingual data in the source language
and appropriate text domain with the teacher
model to generate the training set D′.

3. Train a small student model on D′.

While the computational effort to first train a
teacher model and then distill its knowledge into
a student model is considerably greater than just
training the teacher — in addition to training the
teacher, we have to translate the training data and
then train a student on that data —, the advan-
tage is at inference time. Even the larger of the
two student models we present in this paper can
translate on a single CPU core at an acceptable
speed (cf. Tab. 4). Translation can further be sped
up by quantizing parameters to 8 bits of precision
and using Integer General Matrix Multiplication
(IntGEMM) for inference. Even though our sub-
missions to the WMT 2020 Shared Task on News
Translation were produced by unquantized floating
point models, we report performance numbers for
quantized models as well to demonstrate their effi-
cacy and show that they can speed up translation
by about 10% with negligible trade-offs in terms of
BLEU score over unquantized models.

All models used in this work are based on the
Transformer architecture (Vaswani et al., 2017).
Details are discussed in the sections below; the
hyper-parameter settings for each model are listed
in Tab. 1. The student models described in this
paper can be obtained via https://github.com/

browsermt/students.

2 Teacher Models

The teacher models were produced by CUNI, using
the Tensor2Tensor deep-learning toolkit (Vaswani
et al., 2018).2 The teachers were trained on the full

2 https://github.com/tensorflow/tensor2tensor
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Table 1: Transformer hyper-parameters for T2T teacher and Marian student models.

teacher student
parameter cs→en en→cs base tiny

vocabulary size (spm) 32K 32K 32K 32K
joint vocabulary yes yes yes yes
encoder layers 6 12 6 6
decoder layers 6 6 2 2
decoder auto-reg. self-attention self-attention SSRU SSRU
tied embeddings yes yes yes yes
embedding size 1024 1024 512 256
filter size 4096 4096 2048 1536
number of att. heads 16 16 8 8
att. key size 64 64 64 64
att. value size 64 64 64 64
checkpoints avg. 8 8 exp. smoothinga

back-translation block-BT block BT none none
beam search alpha 1.0 1.0 1.0 1.0
max training length 150 150 200 200

a Exponential smoothing with α = 0.0001.

CzEng 2.0 dataset (Kocmi et al., 2020),3 consist-
ing of genuine (authentic) parallel data as well as
monolingual news data translated by CUNI’s trans-
former systems from WMT 2018 (Popel, 2018) to
generate back-translated synthetic training data
(Sennrich et al., 2016). Rather than shuffling and
mixing authentic and synthetic training data, the
teacher models were trained on alternating blocks of
authentic and synthetic data (“block-regime back-
translation” (block-BT); Popel et al., 2020), spend-
ing about 10 hours of training time on each block.

The model parameters for the final teacher mod-
els were obtained by checkpoint averaging over the
last 8 checkpoints of the training process, saved in
hourly intervals.

The en→cs teacher model used in this work
also produced CUNI’s primary submission to the
WMT 2020 Shared Task on News Translation
(“CUNI-Transformer”; Popel, 2020). However, the
CUNI submission used a beam size of 4 instead of
8 as used in this work, resulting in a BLEU score
on the WMT 2020 en→ test set that is 0.2 lower
than the BLEU score reported in Tab. 4.

The cs→en teacher model used in this work has
only 6 encoder layers as opposed to the 12 en-
coder layers used in CUNI’s primary submission
to the Shared Task, resulting in a BLEU score on
the WMT 2020 test set that is 1.0 BLEU points
lower than the score achieved by the model used
for CUNI’s primary submission.

3 Student Models

The smaller, more efficient student models were
trained by UEDIN with the Marian NMT toolkit

3 http://ufal.mff.cuni.cz/czeng

(Junczys-Dowmunt et al., 2018a).4 The students
were trained on artificial training data produced
by knowledge distillation (Kim and Rush, 2016),
where the target side of the parallel data is the
teacher model’s translation of the source side. The
basic idea is that the teacher guides the student
towards translations that can be achieved with the
teacher’s knowledge.

3.1 Student Model Architectures

The student models use the architecture proposed
by Kim et al. (2019) with improvements by Bogoy-
chev et al. (2020). Apart from using fewer layers
and fewer dimensions in each layer, the main differ-
ence of the students from the conventional trans-
former architecture is the use of Simpler Simple
Recurrent Units (SSRU; Kim et al., 2019) instead
of the self-attention mechanism in decoder part of
the transformer. For the sake of simplicity, our stu-
dent models use exponential smoothing of model
parameters with a smoothing parameter of 0.0001
instead of the checkpoint averaging used to produce
the final teacher models.

For each translation direction, we trained two
models: a base transformer and a ‘tiny’ transformer
with fewer decoder layers and a smaller number of
embedding and filter dimensions; specifications are
shown in Tab. 1.

3.2 Data Preparation

To create artificial training data for the students,
we used the original parallel section of the CzEng
2.0 dataset but no back-translations. Instead, we
translated ca. 40 million sentences from the mono-

4 https://github.com/marian-nmt/marian
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Table 2: Data used for training the models (in millions of sentence pairs).

data set teacher student
cs→en en→cs cs→en en→cs

CzEng 2.0 parallel (original) 61.1m 61.1m
CzEng 2.0 parallel (pre-filtered) 42.3m 42.3m
Back-translated news (CzEng 2.0 ’mono’) 50.6m 76.2m
Teacher-translated news 50.1m 43.0m
Top 90% according to alignment score 83.2m 76.8m

Total used 111.7m 137.3m 83.2m 76.8m

lingual English NewsCrawl corpus5 (2018 and 2019)
for en→cs and 50 million sentences from the mono-
lingual Czech NewsCrawl corpus (2013–2019) for
cs→en.

Prior to translation with the respective teacher
model, we filtered and de-duplicated the data. Fil-
tering consisted of the following steps:

• Sentence-level deduplication.

• Removal of excessively long sentences (longer
than 120 space-separated tokens; note that the
sentence length limit for training in terms of
subword units was 200; cf Tab. 1).

• Removal of sentence pairs that were not iden-
tified as the correct language by the fastText
language identifier (Joulin et al., 2017, 2016)
Python module.6

• For parallel data, removal of sentence pairs
with length ratio larger than 2.5 (in terms of
words of untokenized text), i.e. the longer
sentence could not be more than 2.5 times as
long as the shorter one.

• Removal of sentences in which less than half
the words contain an alphabetical character
or less than half the characters belong to the
alphabet of the specific language.

We translated the cleaned data with the Ten-
sor2Tensor teacher model with a beam size of 8.
A small proportion of ‘odd’ sentences that had es-
caped our cleaning process, for example sentences
with several long URLs that resulted in very long
token sequences after segmentation into subword
units, forced us to use a relatively small batch size
of 8–24 sentences to avoid out-of-memory errors.
For load balancing, we split the translation load
into blocks of 10,000 sentences each and parallelized
the translation process over dozens of machines. Us-
ing comparatively many translation blocks gave us
flexibility in scaling the translation operation in
response to resource availability.

5 http://data.statmt.org/news-crawl/
6 https://pypi.org/project/fasttext/

Despite the small batch size, 32 of our 10,0000-
sentence input chunks still failed to translate due
to memory limitations. A cursory investigation
revealed that these often contained undesirable ma-
terial (such as Javascript and HTML code that had
somehow survived the filtering process), so that we
decided to simply discard those blocks of data.

We made no effort to optimize translation speed
and throughput for the teacher models in Ten-
sor2Tensor; translation time for a single 10,000-
sentence block was ca. 30–45 minutes, depending
on sentence lengths and hardware used.

Table 3: Distribution of teacher-produced trans-
lations chosen by sentence-level BLEU score over
their respective ranks in the decoder beam.

rank en→cs cs→en

1 32.22% 31.24%
2 15.20% 15.63%
3 12.25% 12.21%
4 9.79% 9.87%
5 8.89% 8.88%
6 7.73% 7.85%
7 7.26% 7.40%
8 6.67% 6.93%

For the authentic parallel data, we selected from the
8 top-scoring final translation hypotheses for each
source sentence the one with the highest sentence-
level BLEU score with respect to the original target
side of the data. Table 3 shows the distribution of
the hypotheses selected over the respective beam
ranks. For the monolingual data, for which we ob-
viously have no human reference translations, we
simply chose the highest-scoring translation. Sen-
tence pairs where the translation contained the
same whitespace-separated sequence of words three
or more times in a row, or the same sequence of
one or more characters in five or more subsequent
repetitions (which can happen when the recursive
decoder goes into a loop) were discarded.

We subsequently tokenized the synthetic teaching
data (source and translations by the teacher model)
with SentencePiece (Kudo and Richardson, 2018),
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using a joint vocabulary for both languages with
a size of 32,000 tokens. This vocabulary is also
used by the final systems. The tokenized training
data was word-aligned in both translation directions
with FastAlign (Dyer et al., 2013). Directional word
alignments were then symmetrized with the grow-
diag-final-and symmetrization algorithm (Koehn
et al., 2003).

These word alignments serve mainly three pur-
poses: (a) to guide the attention mechanism during
training of the student models (Liu et al., 2016)
with guided alignment (Chen et al., 2016); (b) to
produce shortlists of translation candidates to limit
the choice of target words that need to be considered
during inference (Junczys-Dowmunt et al., 2018b);
and (c) to give us a rough estimate of translation
quality via average per-token alignment scores for
each sentence pair. We used these scores to discard
the bottom 10% of our artificial training data.

Based on our experiments, the guided alignment
training is neither required for student model train-
ing, nor does it improve BLEU scores on the devel-
opment set. However, it encourages the guided de-
coder layer to mimic word alignments, which can be
useful in post-processing.7 We used default settings
from Marian for the guided alignment training.

3.3 Quantized Models

Floating point operations are computationally more
expensive than integer operations. However, as Han
et al. (2016) have shown, neural network inference
does not require the high precision of representation
and computation that 32-bit floating point numbers
offer. Devlin (2017) suggests a simple quantization
mechanism for quantizing parameters to 16-bit inte-
ger precision and notes that support for off-the-shelf
8-bit integer matrix multiplication is lacking. Bo-
goychev et al. (2020) fill that gap and provide an
8-bit quantization and fine tuning scheme for Mar-
ian based on the intgemm library;8 we used that
scheme for our models. The model parameters are
quantized offline from float32 to int8, and during
translation, the activations are quantized just prior
to each GEMM operation. The GEMM operation
is performed in 8-bit integers, and then the result
is de-quantized back to float32. Despite the extra
quantization and de-quantization involved, the in-
creased speed at which 8-bit integer multiplication
is performed more than compensates for it. Bo-
goychev et al. (2020) observe that smaller student
presets lose BLEU when quantized. In order to
counteract that, we perform model fine tuning fol-
lowing the work of Aji and Heafield (2020): We
replace the GEMM routine implementation with a
custom one that is damaged, according to the quan-

7 For example, for handling HTML tags in translated
texts.

8 https://github.com/kpu/intgemm

tization scheme and perform several thousand mini-
batch updates of the model. The damaged GEMM
implementation can only produce 255 unique float
values (corresponding to the 8-bit integer dequanti-
zation range) and the model quickly learns to work
with those values and recovers some of the BLEU
lost compared to untuned quantized model.

4 Results

In Table 4, we show the performance of the three
models in terms of BLEU scores for the WMT 2020
cs↔en test sets and translation speed. Teacher
models ran on an Nvidia GeForce GTX 1080 with
a batch size of 16. Student models were run on a
single CPU core on an Intel Intel(R) Xeon(R) CPU
E5-2680 0 @ 2.70GHz with a batch size of 64. It
should be noted that we made no effort to optimize
the teachers for translation speed.

Text segments in the WMT 2020 cs↔en test
sets are aligned at the paragraph level; we there-
fore split the provided segments into individual
sentences prior to translation with Moses-style sen-
tence splitting9 and restored paragraphs afterwards.

All BLEU scores were computed with
SacreBLEU.10 For the en→cs teacher model,
removing repetitions and adapting quotation marks
to Czech spelling conventions boosted the BLEU
score by 1.6 BLEU points; for student models,
this post-processing is not necessary. Having
been trained on post-processed teacher output,
the student models have learned this correctly.
Except where indicated, translation was with a
greedy search (beam size 1) and a shortlist of 50
translation candidates per source word.

Due to resource congestion, we were not able to
fully train the models by the submission deadline;
our submissions are based on the systems with
the best validation BLEU score available at the
time. For validation, we used the concatenation
of all parallel data for the respective translation
direction from the WMT test sets from the years
2008 through 2019 where the original language of
the data is the source language for the translation
direction in question.

In terms of BLEU score on the WMT 2020 test
set, the submitted primary system for cs→en is ca.
0.5 BLEU points below the final system; the en→cs
system incidentally outperforms the final system
by 0.5 BLEU points, as shown in Tab. 4.

9 https://github.com/ugermann/ssplit-cpp, which
is a C++ reimplentation of the Moses sentence split-
ter, currently covering only a subset of the languages
supported by the Moses Sentence splitter (no non-
roman scripts).

10 Post (2018); BLEU+case.mixed+lang.${src}-
${trg}+numrefs.1 +smooth.exp+test.wmt20+tok.13a
+version.1.4.13
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Table 4: BLEU results for teacher and student models (base, tiny) on the WMT20 test set.

cs→en en→cs
system BLEU timea words/sec. BLEU time words/sec.

teacher (no postprocessing)b 27.6 782 sec. 33 34.0 1131 sec. 39
teacher (with postprocessing)b 35.6 1131 sec. 39
base (float32, primary sub.)b 27.7c 424 sec. 61 36.3d 637 sec. 69
base (float32)b 28.2 294 sec. 88 35.8 465 sec. 95
base (float32) 27.9 101 sec. 256 35.7 151 sec. 292
base (8-bit quant., untuned) 27.5 90 sec. 287 34.4 136 sec. 324
base (8-bit quant., tuned) 27.8 88 sec. 294 35.3 136 sec. 324
base (8-bit quant., tuned, precompe) 27.9 89 sec. 291 35.7 135 sec. 326
tiny (float32) 27.0 38 sec. 681 34.7 59 sec. 746
tiny (8-bit quant., untuned) 25.6 34 sec. 761 31.9 55 sec. 815
tiny (8-bit quant., tuned) 26.9 35 sec. 739 32.9 55 sec. 815
tiny (8-bit quant., tuned, precompe) 26.9 35 sec. 739 32.8 53 sec. 830
a Inference time for core test set without additional test sets.
b Beam size 8; postprocessing: remove repetitions, adapt quotation marks to Czech conventions.
c After 65K updates, shortlist size 100.
d After 190K updates, shortlist size 100.
e Pre-computed scaling factor for quantization, see Sec. 5.1 in Bogoychev et al. (2020) for details.

5 Conclusion

We presented student models that distill knowledge
from a larger teacher model without loss in BLEU
performance. (In fact, for the WMT 2020 test set,
our larger student models technically outperform
the teacher in terms of BLEU, but we consider
that difference accidental.) At the same time, they
are significantly faster and do not require a GPU
for inference, making it possible to perform neural
machine translation on consumer-grade hardware
without the use of a GPU.
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Abstract

This paper describes the University of Ed-
inburgh’s Submission of German ↔ En-
glish systems to the WMT2020 Shared
Tasks on News Translation and Zero-shot
Robustness.

1 Introduction

This paper describes the University of Edinburgh’s
submission to the German-to-English and English-
to-German tracks in the WMT 2020 News Trans-
lation and Zero-shot Robust translation tasks. We
built our systems in three stages, loosely follow-
ing the procedure by Junczys-Dowmunt (2018b).
All translation models mentioned in this paper
were trained with the Marian toolkit (Junczys-
Dowmunt et al., 2018).

2 3-stage Build Process

We distinguish three types of training data pro-
vided for the tasks, shown in Table 1.

Table 1: Data available for training systems

corpus sentence( pair)s

High-quality parallel data
Europarl ca. 1.79 M
Rapid ca. 1.45 M
News Commentary ca. 0.35 M

Crawled parallel data
ParaCrawl 5.1 ca. 34.37 M
CommonCrawl ca. 2.40 M
WikiMatrix ca. 6.22 M
WikiTitles ca. 1.38 M

Monolingual crawled news data
German ca. 327.69 M
English ca. 233.50 M

2.1 Round 1: Training models for scoring
crawled parallel data

In the first round, we trained base transformer
models (Vaswani et al., 2017) with Sentence-

Piece subword segmentation (Kudo and Richard-
son, 2018) with a joint vocabulary of 32K tokens on
the high-quality parallel data. The joint vocabu-
lary remains the same for all models. We applied a
binomial sentence length model to remove from the
parallel data sentence pairs with an unreasonable
sentence length ratio. The model assumes that a
pair of sentences of lengths K and L is produced by
a series of K+L flips of a biased coin. The bias is
based on the corpus-level ratio of tokens; for Ger-
man and English, we determined that there are on
average 1.0723 English tokens per German token,
so the Null Hypothesis assumes that an English
word is generated with a probability of 51.75%,
and a German word with a probability of 48.25%.
For each sentence pair, we determine the p-value
of the Null Hypothesis; if it is less than 0.5%, the
sentence pair is discarded. This sentence filtering
filtered out less than 2% of the EuroParl data, ca
3.4% of the NewsCommentary data, and 11% of
the Rapid corpus. The numbers given in Table 1
are after filtering.

2.2 Selecting crawled parallel data

We used these models to compute the length-
normalized cross-entropy for each sentence pair in
the available crawled parallel data in both trans-
lation directions, and combined these two en-
tropies into the dual cross-entropy score (Junczys-
Dowmunt, 2018a). To bias data selection to-
wards the news domain, we also computed length-
normalized cross-entropy for each sentence with
a 5-gram language model1 trained on the respec-
tive monolingual news data for the target side and
added the two scores to obtain a single score for
ranking candidates. The top n candidates from the
crawled parallel data were pooled with the high-
quality parallel data for the second round of train-
ing. We experimented with the top 15 M, top 20 M,
and top 25 M candidates from the pool of crawled
parallel data. We did not put effort into cleaning
or filtering the data prior to scoring, as we assumed
that poor candidates would be detected by the dual
cross-entropy score.

1 https://github.com/kpu/kenlm
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For the German-to-English system, we unfortu-
nately committed a serious blunder that we did
not notice until shortly before submitting this sys-
tem description: instead of sorting in descending
order of ranking score, we accidentally sorted in de-
scending order of provenance label first and (also
lexicographically) ranking score second, so that
for the translation direction German→English, the
crawled data selection contained all of WikiMatrix
data, none of the CommonCrawl data, and a selec-
tion of ParaCrawl data. The selection error rate in
the Top-25M confiuration is ca 66% (i.e., 66% of
that data should not have been selected, and we
missed 66% of the data that we wanted to select).
As we used Round2-models for back-translation of
monolingual data, this error may have also tainted
the training of the English-to-German system.

2.3 Round 2: Big transformers for
back-translation

We then trained big transformer models for back-
translation of monolingual news data, using the
“top” (see above for our blunder on German-to-
English data selection) 25M candidates.

2.4 Back-translation of news data

We used single models to translate all of the news
data for German and English, adding a bit of noise
in the translation by adding Gumbel noise to the
output layer, thus adding some randomness to the
translation process.

2.5 Round 3: Training final models with
back-translation.

In the final round of training, we trained big
transformer models on a blend of back-translated
data (75%), crawled parallel data (15%) and high-
quality parallel data (10%). Due to the volume of
training data available for this round, we replaced
full shuffling of the data for each epoch by ran-
dom selection: we loop over each data source, fully
shuffling the latter two data sources (crawled and
high-quality parallel) in each iteration, but shuf-
fling the backtranslated news data only once and
then randomly selecting only 10% of the data in
each iteration. Reading separately from the three
data sources, the data feeder randomly selects one
data source at a time according to the aforemen-
tioned distribution of 75,15, and 10% and outputs
the next sentence pair in the queue.

3 Training details

For training, we experimented with variations on
learning rate, batch size, warmup, and norm clip-
ping. Due to an apparent bug in the implementa-
tion of norm clipping in Marian,2 the Marian au-

2 Gradients aren’t normalized but norm clipping isn’t
adjusted for batch size.

thors do currently not recommend to use norm
clipping with Marian.3 However, we found that
without it, training would occasionally fail due to
exploding gradients. Norm clipping also allowed
us to be more agressive with the learning rate,

Settings and BLEU scores4 on the validation set
(WMT19) are shown in Table 2. Effective batch
size was influenced by the GPU memory allocated
and the number of gradients accumulated before
a parameter update (“optimizer delay”). In prin-
ciple, doubling the optimizer delay should double
the batch size, but we found this not to be the
case in practice. An analysis after the fact re-
vealed that this was due to interactions between
automatically fitting batch sizes to available mem-
ory (--maxi-batch-fit), setting maxibatch size,
and the optimizer delay parameter that are cur-
rently not documented well for the Marian toolkit
and that we misunderstood.

For German-to-English, training on back-
translated data did not lead to improvements in
terms of BLEU on the validation set, so we ensem-
bled the 4 listed round-2 models for our primary
submission. We were able to boost the BLEU score
of the raw translation output by 1.3 BLEU points
with a simple post-processing step that simply ad-
justs quotations marks to German spelling conven-
tions.

For English-to-German, we submitted an ensem-
ble of the 8 round-2 models with the highest BLEU
score with respect to the validation set (WMT19).

Here, too, training on back-translated news data
did not lead to an improvement over the best
Round-2 model, so that we did not use any round-
3 model for the final submission. We were able
to boost performance by increasing the batch size
during training, which is in line with our find-
ings from last year (Bawden et al., 2019), but
the effect was much smaller this year. This
may be due to the fact that the initial model
(#10, English→German) was already trained with
a fairly large batch size.

4 Results

Table 3 shows the overlap (as measured in BLEU)
for all primary systems submissions to the News
Translation Task as released by the workshop or-
ganizers. We notice a few things. First, our data
selection blunder for the German-to-English sys-
tem has not catastrophically harmed final perfor-
mance. In fact, in terms of ranking with respect to
BLEU, our German-to-English system does better
than our English-to-German system.

3 Personal communication with R. Grundkiewicz.
4 All BLEU scores reported in this paper were
computed with SacreBLEU (Post, 2018);
BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.4.14.
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Table 2: Training details. See Section 3 for details.

cont. WMT19 transformer batch learning clip warmup crawled
run from BLEU type tokens rate norm update data

Round 1 German→ English

1 29.6 basic ca. 119K 0.0009 5 16K —

Round 2 German→ English

2 41.02 big ca. 84K 0.0009 5 16K 20M
3 41.21 big ca. 31K 0.0002 0 8K 20M
4 41.22 big ca. 81K 0.0003 0 16K 20M
5 41.47 big 0.0003 0 16K 25M

Round 3 German→ English

6 39.51 big ca. 124K 0.0002 0 8K 25M
7 5 41.04 big ca. 246K 0.0003 5 1K 25M

Round 1 English→ German

1 TBD basic ca. 119K 0.0009 5 16K —

Round 2 English→ German

2 41.63 big ca. 20K 0.0002 0 8K 20M
3 41.73 big ca. 83K 0.0003 0 16K 25M
4 41.85 big ca. 103K 0.0002 0 8K 20M
5 41.89 big ca. 185K 0.0009 0 26K 20M
6 42.02 big ca. 34K 0.0002 0 8K 20M
7 42.13 big ca. 144K 0.0003 0 16K 25M
8 42.49 big ca. 26K 0.0009 5 16K 15M
9 42.62 big ca. 56K 0.0002 0 8K 20M

Round 3 English→ German

10 31.23 big ca. 120K 0.0003 0 8K 25M
11 10 41.46 big ca. 120K 0.0002 5 – 25M
12 11 42.01 big ca. 205K 0.0002 5 – 25M
13 12 42.61 big ca. 334K 0.0002 0 – 25M
13 12 41.94 big ca. 339K 0.0002 0 – 25M
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Table 4: BLEU scores for the Zero-shot Robustness
Task

test set BLEU

en→de set 1 35.1
de→en set 1 38.8
de→en set 3 43.8

Second, the difference between the inde-
pendently created human reference translations
(REF1 and REF2) is larger than the difference be-
tween the top-performing automatic translations
and either of the systems. We conjecture that is
is due to the fact that individual translators will
have individual translation styles, whereas auto-
matically trained systems learn to emulate the “av-
erage” translator. However, this once again raises
the question about the validity of BLEU as a mea-
sure of translation quality.

Third, we find the high overlap between the top-
scoring automatic systems remarkable. This sug-
gests that under the constrained conditions, inde-
pendently systems do learn a very similar style of
translation.

For the Zero-shot Robustness Task, we used the
same systems as for for the News Translation Task.
We report BLEU scores for the Zero-Shot Robust-
ness Task in Table 4.
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Abstract

We describe our submission for the
English→Tamil and Tamil→English news
translation shared task. In this submission, we
focus on exploring if a low-resource language
(Tamil) can benefit from a high-resource
language (Hindi) with which it shares contact
relatedness. We show utilizing contact related-
ness via multilingual NMT can significantly
improve translation quality for English-Tamil
translation.

1 Introduction

In recent years, Neural Machine Translation (Lu-
ong et al., 2015; Bahdanau et al., 2015; Johnson
et al., 2017; Wu et al., 2018; Vaswani et al., 2017)
(NMT) has become the most prominent approach
to Machine Translation (MT) due to its simplicity,
generality and effectiveness. In NMT, a single neu-
ral network often consisting of an encoder and a de-
coder is used to directly maximize the conditional
probabilities of target sentences given the source
sentences in an end-to-end paradigm. NMT mod-
els have been shown to surpass the performance of
previously dominant statistical machine translation
(SMT) (Koehn, 2009) on many well-established
translation tasks. However, in order to obtain good
translation quality, NMT systems tend to require
very large parallel training corpora (Koehn and
Knowles, 2017). Such corpora are not yet available
for many language pairs.

The Indian subcontinent forms a linguistic area
where languages from the Dravidian and Indo-
Aryan families have been in contact for a long
time leading to significant sharing of vocabulary
and a convergence of linguistic features (Emeneau,
1956). Tamil is a major language from the Dra-
vidian language family spoken in Southern India
while Hindi is a widely spoken Indo-Aryan lan-
guage. Kunchukuttan and Bhattacharyya (2020)

estimate that lexical similarity between Hindi and
Tamil to be around 27% in terms of character
LCSR (Melamed, 1995), while multiple works
have shown that language representations of Tamil
and Hindi cluster in the same neighbourhood in a
multilingual vector space (Kudugunta et al., 2019;
Oncevay et al., 2020).

While English-Tamil parallel corpora is limited,
more parallel corpora is available for English-Hindi.
In this paper, we explore if English-Hindi can im-
prove English-Tamil machine translation due to the
similarities between Hindi and Tamil on account
of contact relatedness. To this end, we train mul-
tilingual NMT models for English-Hindi and En-
glish Tamil (and vice-versa). Previous work has ex-
plored whether high-resource languages can trans-
fer knowledge to genetically-related low-resource
languages (Nguyen and Chiang, 2017; Dabre et al.,
2017). In contrast, we explore if contact relat-
edness can benefit low resource languages. We
further explore if reducing the divergence between
Tamil and Hindi data by representing them in the
same script is beneficial. In addition, we explored
target agreement models, tagged and noisy back-
translation in our submission.

2 Neural Machine Translation

Given a bilingual sentence pair (x, y), an NMT
model learns its parameters θ by maximizing
the log-likelihood P (y|x; θ), which is usually
decomposed into the product of the conditional
probability of each target word: P (y|x; θ) =∏m
t=1 Pθ(yt|y1, y2, .., yt−1, x; θ), where m is the

length of sentence y.
An encoder-decoder framework (Bahdanau et al.,

2015; Luong et al., 2015; Gehring et al., 2017;
Vaswani et al., 2017) is usually adopted to model
the conditional probability P (y|x; θ). The encoder
maps the input sentence x into a set of hidden rep-
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resentations h, and the decoder generates the target
token yt at position t using the previously generated
target tokens y<t and the source representations h.
Both the encoder and decoder can be implemented
by different structure of neural models, such as
RNN (LSTM/GRU) (Bahdanau et al., 2015; Luong
et al., 2015), CNN (Gehring et al., 2017) and self-
attention (Vaswani et al., 2017). Besides the basic
component of the encoder and decoder, a source-
target attention mechanism (Bahdanau et al., 2015)
is usually adopted to selectively focus on the source
representations when generating a target token.

The Transformer (Vaswani et al., 2017) model is
the state-of-the-art NMT model relying completely
on self-attention mechanism to compute represen-
tations of its input and output without using re-
current neural networks (RNN) or convolutional
neural networks (CNN). In this work, we use the
Transformer architecture in all of our NMT mod-
els. We use smaller capacity networks compared
to Transformer-base, given the smaller size of the
parallel data.

3 Multilingual Learning for NMT

The objective of multilingual learning for NMT
is to construct a single model for translating to
and from multiple languages. Multilingual models
can help improve performance of low-resource lan-
guages by transferring from high-resource related
languages they are trained jointly with. Firat et al.
(2017) introduced a many-to-many system, which
still relied upon separate encoders and decoders for
each language along with a shared attention mecha-
nism. In contrast, Johnson et al. (2017) introduced
a “language flag”-based approach that shares the
attention mechanism and a single encoder-decoder
network to enable multilingual models. A language
flag or token is part to the input sequence to indi-
cate which direction to translate to. The decoder
learns to generate the target given this input. This
approach has been shown to be simple and effec-
tive and we use this in our multilingual models.
As mentioned earlier, we train a joint Hindi,Tamil
to English model as well as a joint English to
Hindi,Tamil model. Our hypothesis is that the con-
tact relatedness between Hindi and Tamil will help
transfer knowledge from Hindi to Tamil effectively.

Tamil and Hindi use different scripts. However,
it is possible to map almost all Devanagari (the
script used for Hindi) characters to Tamil charac-
ters. This mapping is deterministic but lossy since

the Tamil character set is smaller than the Devana-
gari character set. Such mapping will help to utilize
the lexical similarity between the two languages
directly. Hence, we convert all Hindi data to Tamil
script during a pre-processing step. We also report
results of our MultiNMT models without script
conversion of Hindi to Tamil.

4 Backtranslation

Backtranslation (BT) (Sennrich et al., 2016a) is
a widely used data augmentation method where
the reverse direction is used to translate sentences
from target-side monolingual data into the source
language. This synthetic parallel data is com-
bined with the actual parallel data to re-train the
model leading to better language modelling on the
target-side, regularization and target domain adap-
tation. Backtranslation is particularly useful for
low-resource languages. We use backtranslation to
augment our multilingual models. The backtransla-
tion data is generated by multilingual models in the
reverse direction, hence some implicit multilingual
transfer is incorporated in the backtranslated data
also.

4.1 Noisy and Tagged Backtranslation

Backtranslation typically uses beam search (Sen-
nrich et al., 2016a) or just greedy search (Lample
et al., 2018a,b) to generate synthetic source sen-
tences. Both are approximate algorithms to iden-
tify the maximum a-posteriori (MAP) output, i.e.
the sentence with the largest estimated probability
given an input. Beam is generally successful in
finding high probability outputs (Ott et al., 2018).
However, MAP prediction can lead to less rich
translations since it always favors the most likely al-
ternative in case of ambiguity. Edunov et al. (2018)
argue that this is also problematic for a data aug-
mentation scheme such as backtranslation. Beam
and greedy search focus on the head of the model
distribution which results in very regular synthetic
source sentences that do not properly cover the true
data distribution. Following the approach proposed
by Edunov et al. (2018), we apply noising to the
beam search outputs. In particular, we transform
source sentences with three types of noise: delet-
ing words with probability 0.1, replacing words by
a filler token with probability 0.1, and swapping
words which is implemented as a random permu-
tation over the tokens, drawn from the uniform
distribution but restricted to swapping words no
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further than three positions apart.
Caswell et al. (2019) showed that main purpose

of the synthetic noise is not to diversify the source
but simply to indicate that the given source is syn-
thetic. They proposed to prepend the input se-
quences of the synthetic data with a reserved token
like <BT> to indicate that the given source is syn-
thetic. In this paper, we experiment with both Noisy
BT and Tagged BT.

5 Target Agreement

Due to the autoregressive structure, current NMT
systems usually suffer from the so-called exposure
bias problem (Bengio et al., 2015): during infer-
ence, true previous target tokens are unavailable
and replaced by tokens generated by the model
itself, thus mistakes made early can mislead sub-
sequent translation, yielding unsatisfactory trans-
lations with good prefixes but bad suffixes. Such
an issue can become severe as sequence length
increases. Zhang et al. (2019) showed that the
impact of this can be reduced by augmenting the
training data with synthetic targets generated by a
left-to-right (L2R) and a right-to-left (R2L) trans-
lation model. The directionality of the synthetic
targets ensures that decoder input distribution be-
comes noisier (as happens at runtime) along one
side of the target. The augmented data thus serves
to reduce the divergence in the decoder input distri-
bution. This is especially relevant to low-resource
language scenarios where the model is not as robust
to the decoder input distribution.

6 Experimental Settings

6.1 Dataset

We train our models only on the parallel data pro-
vided for the task (see Table 1 for dataset details).
For backtraslation, we randomly selected 10M sen-
tences from the newscrawl 2019 English monolin-
gual corpora. For Tamil monolingual corpora, used
the entire newscrawl corpus (0.7M), Wikipedia cor-
pus and part of the CommonCrawl data made avail-
able for a consolidated corpus of 10M sentences.
We use IIT-Bombay Hindi-English parallel corpora
v2.0 (Kunchukuttan et al., 2018) containing 1.5M
parallel sentences to build our multilingual models.
We used UFAL’s Tamil-English dev set containing
1,000 parallel sentences for tuning our models.

Dataset # of Sentences
Wikititles 102,146
Wikimatrix 52,669
PMIndia 39,526
Tanzil (Koran) 93,540
NLPC UOM 8,945
PIB (CVIT@IIITH) 60,836
MKB (CVIT@IIITH) 5,744
UFAL 166,871
Total 530,277

Table 1: Tamil-English parallel corpus statistics.

6.2 Data Processing

We use the Moses (Koehn et al., 2007) toolkit1 for
lowercasing, tokenization and cleaning the English
side of the data. Both Tamil and Hindi data are first
normalized and then tokenized. The Hindi data
is mapped to Tamil script. We use the Indic NLP
library2 (Kunchukuttan, 2020) for text processing
of the Indic languages. We remove all sentences
of length greater than 80 words from our training
corpus. In all cases, we use BPE subword seg-
mentation (Sennrich et al., 2016b) with 32k merge
operations. In case of mulitlingual models, we
learn the BPE vocabulary jointly on the Hindi and
Tamil data.

6.3 Training Details

For all of our experiments, we use the fairseq (Ott
et al., 2019) toolkit3. We use the Transformer
model with 4 layers in both the encoder and de-
coder, each with 512 hidden units. The word em-
bedding size is set to 512 and 8 attention heads
are used. The training is done in batches of max-
imum 2048 tokens at a time with dropout set to
0.2. We use the Adam (Kingma and Ba, 2015) opti-
mizer to optimize model parameters with β1 = 0.9,
β2 = 0.98 and ε = 1e − 9 and we use the same
learning rate schedule as Vaswani et al. (2017).
We validate the model after each epoch via label
smoothed cross entropy loss and perplexity on the
development set. We train all our NMT models
till convergence where convergence is determined
by label smoothed cross entropy loss on the de-
velopment set. After translation at the test time,
we rejoin the translated BPE segments. Finally,

1https://github.com/moses-smt/mosesdecoder
2https://anoopkunchukuttan.github.io/indic nlp library/
3https://github.com/pytorch/fairseq
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we evaluate the accuracy of our translation models
using SacreBLEU (Post, 2018).

7 Results and Discussion

We report the SacreBLEU scores on the dev
sets and test sets provided in the WMT20 News
translation task for both the language directions:
Tamil→English (Table 2) and English→Tamil
(Table 3). We experimented with Multilingual
(MultiNMT), Backtranslation (BT), Noisy Back-
translation (noisyBT) and Tagged Backtranslation
(taggedBT) and Target Agreement (TA) models.

We observe that our multilingual models outper-
form the baseline bilingual models by significant
margins. On the newstest2020 set, we see an im-
prove of 2.9 and 1.5 BLEU points respectively in
the Tamil→English and English→Tamil directions
respectively. Note that the gains translating into
multiple targets is lower. However, when backtrans-
lated data is added we observe an improvement of
2.3 BLEU points in the en→ta quality. Note that
the backtranslation data was generated via the mul-
tilingual ta→en model, hence there is an implicit
benefit from multilinguality when using backtrans-
lation. Backtranslation also provides a good im-
provement in the en→ta. We see that representing
Indian language data in the same script was very
beneficial for ta→en translation, while it did not
help in the other direction. Having disjoint vocabu-
laries during generation possibly helps the model
learn distinct language models for Hindi and Tamil.

Our results indicate that Target Agreement and
Noisy and Tagged Backtranslation schemes are not
helpful in increasing the translation performance
of the NMT models for the language pairs of our
interest and requires more investigation on low re-
source language translation tasks. Further analysis
is needed to understand why backtranslation vari-
ants and target agreement did not show improve-
ments in our setting.

System newsdev2020 newstest2020
Transformer baseline 10.4 10.0

MultiNMT (no script conversion) 12.5 12.2
MultiNMT 13.0 12.9

MultiNMT+BT 19.1 14.2
MultiNMT+noisyBT 18.3 14.2
MultiNMT+taggedBT 17.6 13.5
MultiNMT+BT+TA 19.1 14.2

Table 2: Tamil→English (Ta-En) experiment results.

System newsdev2020 newstest2020
Transformer baseline 6.1 3.5

MultiNMT (no script conversion) 7.5 4.9
MultiNMT 7.4 5.0

MultiNMT+BT 11.5 7.3
MultiNMT+BT+TA 11.3 7.3

Table 3: English→Tamil (En-Ta) experiment results.

8 Conclusion

We believe contact relatedness can be utilized in the
multilingual NMT framework for improving low-
resource language translation. Our initial results
confirm this for English-Tamil translation aided by
English-Hindi data. In addition, we show, that the
popular data augmentation methods like backtrans-
lation further helps in increasing the translation
performance of Multilingual NMT models.
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Abstract

This report summarizes the Air Force Research
Laboratory (AFRL) machine translation (MT)
systems submitted to the newstranslation task
as part of the 2020 Conference on Machine
Translation (WMT20) evaluation campaign.
This year we largely repurpose strategies from
previous years’ efforts with larger datasets
and also train models with precomputed word
alignments under various settings in an effort
to improve translation quality.

1 Introduction

As part of the 2020 Conference on Machine Trans
lation (wmt, 2020) newstranslation shared task,
the AFRL human language technology team par
ticipated in the Russian–English portion of the
competition. We largely employed our strategies
from last year including languagebased filtering
of training corpora with fastText (Joulin et al.,
2016b,a), employing transformerbased (Vaswani
et al., 2017) translation models and once again ut
litizing system combination to fuse outputs from
OpenNMT (Klein et al., 2018), Marian (Junczys
Dowmunt et al., 2018) and Moses (Koehn et al.,
2007) systems. We also examine the effects of
training Marian models with externally generated
word alignments as described in (Alkhouli et al.,
2018).

2 Data processing

For purposes of training our systems, we use the
following parallel corpora: Commoncrawl (Smith
et al., 2013), Yandex1, UN v1.0 (Ziemski et al.,
2016), Paracrawl2(Esplà et al., 2019), Wikimatrix
(Schwenk et al., 2019), and backtranslated data
from our WMT17 system (Gwinnup et al., 2017)
as well as Edinburgh’s WMT17 system (Sennrich

1https://translate.yandex.ru/corpus?lang=en
2Version 1 Russian–English parallel data

et al., 2017) yielding a raw corpus of over 76.3 mil
lion lines.
We prepare training corpora in a similar manner

described in (Gwinnup et al., 2018), however this
year, we utilize SentencePiece (Kudo and Richard
son, 2018) with a 46kentry vocabulary3 for pro
cessing subword units instead of bytepair encod
ing (BPE) (Sennrich et al., 2016).

2.1 LanguageID based data filtering
As with last year’s efforts, we again employ fast
Text (Joulin et al., 2016b,a) to filter the various par
allel corpora with a utility examining the source
and target sentence pairs, discarding pairs where
either (or both) sentence in the pair falls below a
threshold score of 0.8. We wished to explore dif
ferent threshold values, but our team did not have
access to the majority of our computational assets
due to the COVID19 pandemic, limiting the band
width available for experiments.

We show the results of languageID based filter
ing in Table 1. On average, 76.79% of the original
training data is retained, with our WMT17 back
translated data retaining the largest percentage of
lines at 93.22%  this is interesting since that data
originated as English and was translated to Rus
sianwith a very shallowAmun (Hoang et al., 2018)
model. Again, Paracrawl yielded the least percent
age of retained lines at 42.90%, but is understand
able due to the “raw” nature of this particular re
lease.

2.2 Guided Alignment
Inspired by the results in (Alkhouli et al., 2018),
we’ve examined effects of using precomputed
word alignments as a guide during training; Marian
has a facility to train in this manner. Alignments
were generated using Fastalign (Dyer et al., 2013)

3This vocabulary size performed best in empirical testing
in our WMT19 submission.
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corpus unfiltered lines filtered lines percent remain

commoncrawl 723,256 655,069 90.57%
newscommentaryv15 319,242 286,947 89.88%
yandex 1,000,000 901,318 90.13%
un2016 11,365,709 9,871,406 86.85%
paracrawl 12,061,155 5,173,675 42.90%
wikimatrix 5,203,872 4,287,881 82.40%
wmt17afrlbt 8,921,942 8,317,107 93.22%
wmt17uedinbt 36,772,770 29,074,022 79.06%

Total 76,367,946 58,567,425 76.69%

Table 1: Results of languageid based Russian–English corpus filtering with threshold of 0.8

on both “plain” and SentencePieceprocessed data;
MGIZA (Gao and Vogel, 2008) alignments were
only generated for the wordbased data. In order to
generate these alignments, the languageid filtered
corpus described in the previous section was fur
ther processed using Moses’s cleancorpusnratio
script as well as escaping various characters and
entities (such as ’ replaced with &amp;) yielding
a final corpus of 49,866,140 lines. Additionally, a
46k entry SentencePiece model is built on this cor
pus with userdefined vocabularies for the tokens
escaped during processing.
We use a Procrustes alignment projection script4

to effectively map alignments generated on whole
word tokens to the equivalent series of subword to
kens in the SentencePiece processed data. Compar
isons are drawn betweenMarian models trained on
these various conditions in Section 3.2.

3 Machine Translation Systems

This year, we focused systembuilding efforts on
the OpenNMT,Marian, andMoses toolkits. While
most of our experimentation builds off of previ
ous years’ efforts, this year we examine the effects
of “guidedalignment” training with the Marian
toolkit in an attempt to improve translation qual
ity.

3.1 OpenNMT

The OpenNMT system trained for this task used
the the configuration for a large transformer net
work.

We used the following network hyperparame
ters:

4https://bitbucket.org/ndnlp/procrustes/src/
master

• 1024 embedding size

• 4096 hidden units

• 12 layer encoder

• 12 layer decoder

• 16 transformer heads

• dropout 0.3

• attention dropout 0.1

• Tied embeddings for source, target and output
layers

• Layer normalization

• Label smoothing

• Learning rate warmup

The corpus was processed with SentencePiece
using a model with a vocabulary size of 40K
trained on the ruen corpus. The network was
trained for 10 epochs of this training data using
a batch size of 1562, with an effective batch size
of 24,992 using the lazy Adam (Kingma and Ba,
2015) optimizer. The final system was an average
of the last 8 checkpoints of the training. Check
points were saved every 5000 steps. The system
was then tuned with one epoch of newstest data
from years 20142017.

3.2 Marian
Our Marian systems also utilize the transformer ar
chitecture. We use the WMT14 newstest2014 test
set for validation during training and the following
network hyperparameters:

• 2048 hidden units
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• 6 layer encoder

• 6 layer decoder

• 8 transformer heads

• Tied embeddings for source, target and output
layers

• Layer normalization

• Label smoothing

• Learning rate warmup and cooldown

We first train a baseline system with the 58 mil
lion line corpus outlined in 2.1 and then train an
other baseline on the furtherfiltered 49 million
line corpus outlined in 2.2. Using the word align
ments generated earlier, we train systems utiliz
ing alignments on subwords using fastalign (ga
spmfastalign), alignments generated by project
ing wordbased fastalign alignments onto Sen
tencePiece tokens (gaprocrustedfastalign), and
wordbased MGIZA alignments onto Sentence
Piece tokens (gaprocrustesmgiza). Results for
decoding newstest2014 for each of these models
are shown in Table 2.

system name newstest2014

fullcorpus baseline 39.81
gabaseline 34.17
gaspmfastalign 33.06
gaprocrustesfastalign 33.49
gaprocrustesmgiza 31.92

Table 2: Experimental results for both baseline and
guidedalignment systems decoding WMT14 testset
measured in cased, detokenized BLEU.

We see that the best performing system is the
one trained on the larger corpus, which is not sur
prising. We also see that while none of the guided
alignment based approaches we tried scored higher
than the baseline on the smaller guidedalignment
corpus, using the fastalign projected alignments
performs better than the fastalign subwordbased
alignments by approximately 0.4 BLEU. We did
experience issues getting MGIZA to successfully
run on the 49 million line corpus, which may sug
gest additional processing of the training corpus is
necessary to generate “correct” alignments using
that approach. However, this specific MGIZA run
provided the word alignments used in the Moses

system described in the next section. This sug
gests more careful examination may be necessary
before drawing conclusions as to the efficacy of us
ing guided alignments to the Marian training pro
cess.

3.3 Moses

As in previous years, we trained a phrasebased
Moses (Koehn et al., 2007) systemwith the guided
alignment data outlined in Section 2.2 in order to
provide diversity for system combination. This
system employed a hierarchical reordering model
(Galley and Manning, 2008) and 5gram operation
sequence model (Durrani et al., 2011). The 5gram
English language model was trained with KenLM
(Heafield, 2011) on the constrained monolingual
corpus from our WMT15 (Gwinnup et al., 2015)
efforts. System weights were tuned with the Drem
(Erdmann andGwinnup, 2015) optimizer using the
“Expected Corpus BLEU” (ECB) metric.

3.4 System Combination

Once again, Jane (Freitag et al., 2014) system com
bination was used to combine various systems,
tuned on newstest2016. We were able to success
fully combine variations of three and four input
systems, with results discussed in the following
section.

4 Experimental Results

Results of decoding our various MT systems on
WMT test sets from 2014 through 2019 are shown
in Table 3.
Marianbase is an ensemble of 5 transformer

models trained with identical hyperparameters as
outlined in Section 3.2, with the exception of the
initial random seed and using the languageid fil
tered corpus described in Section 2.1. Individual
model weights are trained via Drem (Erdmann and
Gwinnup, 2015) as outlined in last year’s system.
Marianga is an ensemble of the four guided

alignment models described in Section 3.2:
gabaseline, gaspmfastalign, gaprocrustes
fastalign and gaprocrustesmgiza. Individual
model weights are also trained with Drem.
Onmtbase is the baseline system described in

Section 3.1 and onmttune is the system that was
further finetuned on newstest 20142017; Scores
on those test sets are not reported due to overfitting
during the fine tuning process.
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Variations of system combinations are also re
ported  again with the absence of onmttune due
to concerns of overfitting as newstest2016 is the
test set used for tuning the system combination pro
cess. Combinations of only two systems resulted
in a segmentation fault during processing due to
fragility in the combination process.
We entered System 8 as our primary submission

due to its performance gain on newstest2019 in a
general (nonfinetuned) setting, with the intuition
that this years test set would discuss similar topics
or issues as last years, while the earlier sets may
be dated. In contrast, we submit System 5 as an
alternative due to finetuning adapting the model to
the collection of recent test sets.

5 Conclusion

In addition to our “knowngood” approaches with
increased data to submit respectablyperforming
translation systems, we conducted several experi
ments with guided alignments. Although these sys
tems didn’t outperform our prior approaches, they
did figure into our final system combination sub
mitted to the evaluation.
The authors wish to thank David Chiang for

his implementation of the Procrustes alignment
projection script. The authors would also like to
thank Grant Erdmann, Emily Conway and Grace
Smith for their assistance in human evaluation of
MT output.
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Abstract

This paper describes Ubiqus’ submission to
the WMT20 English-Inuktitut shared news
translation task. Our main system, and only
submission, is based on a multilingual ap-
proach, jointly training a Transformer model
on several agglutinative languages. The
English-Inuktitut translation task is challeng-
ing at every step, from data selection, prepa-
ration and tokenization to quality evaluation
down the line. Difficulties emerge both be-
cause of the peculiarities of the Inuktitut lan-
guage as well as the low-resource context.

1 Introduction

Ubiqus participated in the English to Inuktitut news
translation task of WMT20. We performed a sin-
gle submission, based on an unconstrained mul-
tilingual setup. The approach consists of jointly
training a traditional Transformer (Vaswani et al.,
2017) model on several agglutinative languages in
order to benefit from them for the low-resource
English-Inuktitut task (Aharoni et al., 2019).

Though the dataset provided for the task is siz-
able, with more than a million segments, it’s quite
narrow domain-wise, as it comes from proceedings
of the Nunavut Hansard. The task being translation
of news, it’s expected to be a much wider domain.
For that purpose, we extended the task with datasets
of other - linguistically near - languages, as well as
in-house datasets introducing more diversity to the
domain.

All experiments were performed with the
OpenNMT (Klein et al., 2017) toolkit, with
Tokenizer 1 for data preprocessing and OpenNMT-
py 2 for model training and inference.

1https://github.com/OpenNMT/Tokenizer
2https://github.com/OpenNMT/OpenNMT-py

2 Data

2.1 Training corpora

Based on prior internal work on English-Inuktitut
translation tasks as well as other low-resource tasks,
we focused our experiments on multilingual setups.
Inuktitut is an agglutinative language, with a lot of
particularities. Some Uralic languages like Finnish
and Estonian can be considered close to Inuktitut
in some linguistic aspects.

Most of our experiments are unconstrained with
regards to the original WMT task in three ways:

• some datasets are taken from previous WMT
tasks (English-Finnish, English-Estonian);

• some datasets are not in the WMT scope
(more recent ParaCrawl3 versions);

• some datasets were built in-house at Ubiqus
Labs.

Some Inuktitut resources can easily be found on
the internet, mostly from official government of
Nunavut websites and initiatives. We performed
two sets of data retrieval: a first one based on paral-
lel crawling of multilingual websites, and a second
one based on manual retrieval of parallel docu-
ments (mostly in PDF format) which then were
automatically aligned with a commercial tool. In
prior experiments, we also built a set of parallel
news articles. Articles were manually retrieved
and aligned from both the Inuktitut 4 magazine,
which provides parallel versions of all its content
in English, French, Inuktitut and Inuinnaqtun, and
the Nunatsiaq News5 website, which provides part
of its content in both Inuktitut and English. We
decided not to include this last dataset because of

3https://paracrawl.eu
4https://www.itk.ca/category/inuktitut-magazine/
5https://nunatsiaq.com
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its high proximity with the newsdev2020 and new-
stest2020 of the task.

A summary of all the datasets used in the experi-
ments is available in Table 1.

2.2 Evaluation sets

During our experiments, we conducted evalua-
tion of the trained models with the provided
newsdev2020-eniu as well as the dev, devtest and
test parts of the Hansard dataset split. The latter
were deduplicated prior to evaluation.

As a big part of our experiments revolve around
multilingual aspects, we also used newstest2018-
enfi and newstest2019-enfi for English-Finnish, as
well as newstest2018-enet for English-Estonian.

Finally, we also conducted some evaluation over
the test part of our in-house dataset built from Inuk-
titut magazine.

2.3 Data selection and cleaning

Deduplication as well as a few steps of cleaning
were applied to every dataset. This consists of
removing segments where:

• average token length too short or too long;

• source is strictly equal to target;

• numbers do not match between source and
target side;

• source to target character ratio is too extreme.

The difference between raw and selected dataset
size is shown in Table 1. It is noticeable that
this step is especially important for our in-house
datasets, where automatically crawled and aligned
data is particularly messy. Also, it seems the
Nunavut Hansard dataset is quite clean but con-
tains a lot of duplicates.

2.4 Preprocessing and Tokenization

We decided to work on romanized Inuktitut. This
allows straightforward parameter and vocabulary
sharing in a basic bilingual English-Inuktitut setup,
as well as maximizing the potential benefits of pa-
rameter sharing in a multilingual setup. Hence,
all the Inuktitut data was romanized prior to any
other processing, and we only converted back our
newstest2020-eniu inferred hypothesis for submis-
sion.

All experiments were conducted on data tok-
enized with a BPE (Sennrich et al., 2016b) model

with 12,000 merge operations, learned on the con-
catenation of all datasets – both source and target –
presented in Table 1 (without any particular sam-
pling strategy). This leads to a final vocabulary
size of approximately 14k tokens. The choice of
a smaller number of BPE merge operations stems
from the agglutinative aspect of the language, lead-
ing us to think that dividing long tokens into more
subwords might be beneficial to learn and share
more useful representations. This seems to be also
the approach in the baseline system proposed in
(Joanis et al., 2020).

3 Experiments

3.1 Mixing languages
The method used to train models on multiple lan-
guages relies on the dataset weighting mechanism
which is implemented within OpenNMT-py (Klein
et al., 2020). When building batches, weightA ex-
amples are sampled from dataset A, then weightB
from dataset B, and so on. This allows to dynami-
cally subsample or oversample any specific dataset
or language pair when training.

In order to allow Many-to-Many translation in
a single shared model, we need to prepend each
source with a tag indicating the target language
(Johnson et al., 2017).

3.2 Bilingual only
Since we do not have any internal resource to assess
the Inuktitut output, we started some bilingual ex-
periments into English. With the English-Inuktitut
datasets only, we realized that even with a base
Transformer, the model converged very quickly
and gave similar results with several varying hyper
parameters. Also, changing the sampling weight
of each sub-dataset did not have much impact to
the final results. Moreover, English to Inuktitut
bilingual experiments gave very poor results on
our internal test set based on the Inuktitut Maga-
zine. We hypothesize that there was some kind of
overfitting to the Hansard domain. This is why we
decided to extend a multilingual set up with more
“news” based data.

3.3 Multilingual
We trained a few systems in the following order:

• first, a bilingual (and bidirectional) English-
Inuktitut system (base configuration Trans-
former) using the Nunavut dataset as well as
our in-house Web and Documents datasets;
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Dataset Origin Raw Selected

Nunavut Hansard v3.0 (Joanis et al., 2020) WMT EN-IU 2020 Task 2,550,682 737,375

?Europarl English-Finnish WMT EN-FI 2019 Task 1,969,624 1,564,994
?Europarl English-Estonian WMT EN-ET 2018 Task 651,236 566,815

?ParaCrawlv6 English-Finnish ParaCrawl Project 4,286,642 4,207,262
?ParaCrawlv6 English-Estonian ParaCrawl Project 1,785,161 1,755,013

?Public Documents Ubiqus 102,567 66,159
?Public Websites Ubiqus 2,035,594 31,025

Table 1: Characteristics of the datasets used in the experiments. Datasets marked with ? are considered out of the
constraints of the WMT English-Inuktitut task.

• next, we added the English-Finnish data;

• then, we added the English-Estonian data;

• finally, we increased the model size.

Results for these systems are summed up in
Table 3. We notice that multilingual setups are
truly multilingual, in the sense that they provide
output in the correct language, even though the
scores are not very competitive (approx. 30% be-
low the best scores at the time of the corresponding
WMT tasks).

We decided to retain the bigger model (medium
Transformer) for the submission. Bigger multi-
lingual models tend to be better with regards to
human evaluation, probably because the tasks are
better spread across the parameters. This can be
a problem in case of overfitting, which does not
seem to be the case here as the scores remain in
the same range. Also, the bigger model seems to
give marginally better results in the additional tasks
(Finnish and Estonian), which leads us to think it
will be more robust to new test sets.

The configuration used for the final submission
is the following:

• Corpora and weights: shown in Table 2.

• Tokenization: 12,000 BPE merge operations,
learned on the concatenation of all datasets.

• Model: Transformer Medium (12 heads,
dmodel = 768, dff = 3072), with Relative
Position Representations (Shaw et al., 2018).

• Training: Trained with OpenNMT-py on 6
RTX 2080 Ti, using mixed precision. Initial
batch size is around 50,000 tokens, final batch
size around 200,000 tokens. Training was
stopped at 100k steps. Averaging was done

Hansard 15

?Europarl en-et 2
?Europarl en-fi 2

?ParaCrawlv6 en-et 10
?ParaCrawlv6 en-fi 10

?Public Documents (Ubiqus) 5
?Public Websites (Ubiqus) 1

Table 2: Dataset weighting used for the submitted sys-
tem.

continuously through exponential moving av-
erage.

• Inference: Shown scores are obtained with
beam search of size 5 and average length
penalty.

4 Future work

Our experiments remain in a rather traditional Neu-
ral Machine Translation scope, with the only addi-
tion of multiple languages and dataset weighting.
Several paths can be explored from this starting
point, such as adding more data for the current
languages in the setup, authentic or synthetic (e.g.
via back-translation (Sennrich et al., 2016a)), or
adding other languages that might share some com-
mon characteristics, like Hungarian for instance.

Some additional work could also be explored on
the tokenization part. For simplicity, our first ap-
proach in this paper relies on a very simple shared
BPE approach. But, some more sophisticated ap-
proaches, maybe language-specific or morphologi-
cally adapted (Micher, 2018), may be worth explor-
ing.
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System nd20-eniu dev dev-test test IM nt18-enfi nt19-enfi nt18-enet

(Joanis et al., 2020) - 24.2 17.9 19.3 - - - -

en↔iu (base) 15.6 23.9 17.7 19.4 4.7 - - -

en↔iu/fi (base) 15.6 23.6 17.5 19.2 7.6 11.8 16.3 2.4
en↔iu/fi/et (base) 15.5 23.3 17.4 18.9 7.6 11.9 16.6 16.9
. en↔iu/fi/et (medium) 15.6 23.6 17.3 19.1 7.4 12.1 17.0 17.1

Table 3: BLEU (Papineni et al., 2002) scores for our various experiments, obtained with SacreBLEU (Post, 2018)
v1.3.7. The submitted system is marked with .. dev, dev-test and test refer to the Hansard dataset evaluation sets.
IM stands for Inuktitut Magazine.)

Finally, some more novel approaches could be
tried, like massive pre-training methods such as
BART (Lewis et al., 2019). A similar experimental
process could be followed, starting from only the
core languages of the task (English and Inuktitut),
then extending to other languages and observe the
impact.

5 Conclusion

Working on a new, unknown, language is always
challenging. Even more so when this language
is quite distant from any language you’re used to.
Also, automated metrics are far from being perfect
for such tasks, especially in the context of such a
particular language as Inuktitut.

Particularly for this task, human evaluation is
key. But, as data, it’s quite a scarce resource for
Inuktitut. More knowledge of the language would
be of tremendous help to better grasp the limits
or interesting leads of the various models. One
workaround can be to work on the opposite direc-
tion (Inuktitut to English), but there is no guarantee
the model would have similar behaviour for sim-
ilar tricks. And, some knowledge about Inuktitut
would still be needed to analyze model behavior
based on source inputs.
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Abstract

In this paper, we introduced our joint team
SJTU-NICT ’s participation in the WMT 2020
machine translation shared task. In this shared
task, we participated in four translation direc-
tions of three language pairs: English-Chinese,
English-Polish on supervised machine trans-
lation track, German-Upper Sorbian on low-
resource and unsupervised machine translation
tracks. Based on different conditions of
language pairs, we have experimented with
diverse neural machine translation (NMT)
techniques: document-enhanced NMT, XLM
pre-trained language model enhanced NMT,
bidirectional translation as a pre-training, ref-
erence language based UNMT, data-dependent
gaussian prior objective, and BT-BLEU
collaborative filtering self-training. We also
used the TF-IDF algorithm to filter the training
set to obtain a domain more similar set with the
test set for finetuning. In our submissions, the
primary systems won the first place on English
to Chinese, Polish to English, and German to
Upper Sorbian translation directions.

1 Introduction

Our SJTU-NICT team participated in the WMT20
shared task, including supervised track, unsu-
pervised, and low-resource track. During the
participation, we placed our attention on Polish
(PL) → English (EN) and English (EN) →
Chinese (ZH) on the supervised track, while on the
unsupervised and low-resource track, the German

∗ Corresponding authors. This paper was partially
supported by National Key Research and Development
Program of China (No. 2017YFB0304100), Key Projects
of National Natural Science Foundation of China (U1836222
and 61733011), Huawei-SJTU Long Term AI Project, Cutting-
edge Machine Reading Comprehension and Language Model.
Rui Wang was partially supported by JSPS grant-in-aid for
early-career scientists (19K20354): “Unsupervised Neural
Machine Translation in Universal Scenarios” and NICT tenure-
track researcher startup fund “Toward Intelligent Machine
Translation”.

(DE)↔ Upper Sorbian (HSB) both directions are
focused.

Our baseline system in supervised track is
based on the Transformer big architecture proposed
by Vaswani et al. (2017), in which its open-
source implementation version Fairseq (Ott
et al., 2019) is adopted. In the unsupervised and
low-resource track, we draw on the successful
experience of the XLM framework (Conneau et al.,
2019), and used the two-stage training mode of
masked language modeling (MLM) pre-training
+ back-translation (BT) finetune to obtain a very
strong baseline performance. Marian (Junczys-
Dowmunt et al., 2018) toolkit is utilized for training
the decoder in reranking using machine translation
targets instead of common GPT-style language
modeling targets.

In order to better play the role of WMT
evaluation in polishing the methods proposed or
improved by our team (He et al., 2018; Li et al.,
2018; Zhang et al., 2018; Zhang and Zhao, 2018;
Xiao et al., 2019; Zhou and Zhao, 2019; Li et al.,
2019b; Luo and Zhao, 2020), we divided the
three language pairs we participated in into three
categories:
1. Traditional language pair with rich parallel
corpus: EN-PL,
2. Language pair with document-level information:
EN-ZH,
3. Language pair with no or low parallel resources:
DE-HSB.

In the supervised PL→EN translation direction,
we based on the XLM framework to pre-train
a Polish language model using common crawl
and news crawl monolingual data, and proposed
the XLM enhanced NMT model inspired from
the idea of incorporating BERT into NMT (Zhu
et al., 2020). Besides, we trained a bidirectional
translation model of EN-PL based on the parallel
corpus and further finetuned it to the PL→EN
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direction.

In the supervised EN→ZH translation with
document information, we propose a document
enhanced NMT model based on Longformer
(Beltagy et al., 2020). The training of our proposed
document enhanced NMT model is split into
three stages. In the first stage, we pre-train the
Longformer document encoder with MLM target
on the document text in Wikipedia dumps, UN
News, and News Commentary monolingual corpus.
A conventional Transformer-big NMT model is
trained in the second stage. In the final stage, the
Longformer encoder and conventional Transformer
big NMT model are used to initialize the full
document-enhanced NMT model parameters, in
which the Longformer encoder is adopted to
extract representations for the document of an input
sequence, and then the document representations
are fused with each layer of the encoder and
decoder of the NMT model through attention
mechanisms.

In the unsupervised machine translation track
on DE-HSB, we experimented with the reference
language based UNMT (RUNMT) (Li et al., 2020b)
framework we proposed recently. Under this
framework, we choose English as the reference
language, and use the Europarl parallel corpus
of EN-DE to enhance the unsupervised machine
translation between DE and HSB. Specifically,
we adopted reference language translation (RAT),
reference language back-translation (RABT), and
cross-lingual back-translation (XBT) three training
targets with the help of the cross-lingual agreement
provided by the EN-DE parallel corpus to enhance
the unsupervised translation performance.

Due to the introduction of more explicit
supervision signals brought by parallel corpus in
the low-resource machine translation track on DE-
HSB, we discarded the use of the weaker agreement
provided by the reference language, conducted
joint training on the unsupervised back-translation
and the supervised (forward-)translation directly,
and introduced BT-BLEU based collaborative
filtering technology for further self-training. In
addition, inspired by our previous work (Sun et al.,
2020b), we also use MLM and translation language
modeling (TLM) to continue pre-training the model
while machine translation training.

In addition, in all basic NMT models, we
empower the training process with our proposed
data-dependent gaussian prior objective (D2GPo)

(Li et al., 2020a), so that the model can maintain
the diversity of the output. When the main
model training is finished, the TF-IDF algorithm
is employed to filter the training set according
to the input of the test set, a training subset
whose domain is more similar to the test set is
obtained, and then used to finetune the model for
reducing the performance degradation caused by
domain inconsistency. For the final submission,
an ensemble of several different trained models
outputs the n-best predictions, and used the
decoder trained with Marian toolkit to performs
reranking to get the final system output.

2 Methodology

2.1 XLM-enhanced NMT

Pre-trained language models such as ELMo (Peters
et al., 2018), BERT (Devlin et al., 2019), XLM
(Conneau et al., 2019), XLNet (Yang et al.,
2019), ALBERT (Lan et al., 2019) etc. have
recently demonstrated a very dominant effect on
natural language processing tasks. Several works
(Clinchant et al., 2019; Imamura and Sumita,
2019; Zhu et al., 2020) leveraged a pre-trained
BERT model for improving NMT and found that
BERT can bring significantly better results over the
baseline.

Since BERT and other pre-trained language
models are trained on large scale corpus beyond
the data provided by the WMT20 organizers, the
direct use of BERT will make the system submitted
unconstrained. Using an XLM model, a variant of
BERT, pre-trained from scratch on the monolingual
data provided by the official to enhance our NMT
model, is a good choice to keep the system
constrained. Moreover, the XLM model has
the advantages of simple training preprocessing,
low requirement for training environment that
no specialized hardware such as TPU is needed.
Inspired by the BERT-fused model proposed by
Zhu et al. (2020), we built a XLM-enhanced
model, in which we utilize XLM context-aware
representations to adaptively interact with all layers
in the NMT model with attention mechanism,
instead of serving it as input embeddings only.

In the XLM-enhanced model, XLM as an
additional encoder and the original encoder of
NMT constitute a dual-encoder structure, which
is very similar to our previous work (Li et al.,
2019a). The XLM-encoder attention and XLM-
decoder attention are essentially the same with the
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Representation Learning Frameworks (RLFs) we
proposed: Source-side fusion RLF (SRLF), Target-
side fusion RLF (TRLF), and both-side fusion
RLF (BRLF, which is a combination of SRLF and
TRLF). Specifically, in the SRLF, given a source
language input x, a Pre-trained Language Modeling
(PLM) encoder (like BERT, XLM) first encodes it
into a context-aware representation:

HP = PLMk(x), (1)

whereHP is the output of the k-th layer of the PLM
encoder. As PLM and NMT models adopt different
sub-word segmentation rules or algorithms and the
addition of special tokens are different, the input
sequence length of PLM and NMT encoders is
inconsistent or cannot correspond in every position.
Assuming that i represents the position of the input
sequence of NMT encoder, the hidden state H l

E

after fusion with HP in SRLF of the l-th layer is:

H l
E =

1

2
(attnS(H

l−1
E , H l−1

E , H l−1
E )

+attnP(H
l−1
E , HP , HP )),

(2)

where attnS is a multi-head self-attention layer
and attnP is the multi-head attention layer. HE

will eventually be output from the last layer as the
final representation.

In the TRLF framework, the dual-encoder
provides two encoded outputs; the decoder will
use both contexts at the same time. In the case of
layer l in the decoder, we have

H l
DS = attnMS(H

l−1
D , H l−1

D , H l−1
D ),

H l
D =

1

2
(attnEC(H

l
DS , HE , HE)

+attnPC(H
l
DS , HP , HP )),

(3)

where attnMS is the multi-head future-masked self-
attention layer, attnEC and attnPC are independent
multi-head attention layer for context query.

In the condition that SRLF framework is
only used, the representation of PLM is only
fused into the final representation HE in the
encoder side; then the decoder side continues
to use the original decoding ways: H l

D =
attnPC(H

l
DS, HE, HE). While the the TRLF

framework is only adopted, the output of NMT
encoder is HE = attnS(H

l−1
E , Hl−1E , Hl−1E ). A

BRLF framework is a combination of these two
frameworks.

Moreover, in the training of the RLFs, a same
drop-net trick proposed by Zhu et al. (2020) is

adopted to ensure that the features output by PLM
and the conventional encoder are fully utilized. In
this method, the interval of 0-1 is divided into three
parts according to the pre-set drop-net ratio pnet,
where [0, pnet2 ) is the probability of attending to
the final sum for the first attn in HL

E and HL
D,

[pnet2 , 1− pnet
2 ) is the probability for the whole HL

E

and HL
D equation, [1 − pnet

2 , 1] is the probability
for the second attn in in HL

E and HL
D.

2.2 Bidirectional NMT
Machine translation, in general, is unidirectional,
that is, from the source language to the target
language. The encoder-decoder framework for
NMT has been shown effective in large data
scenarios, and the more high-quality bilingual
training data, the better performance the model
tends to achieve. Recent works (Zoph et al.,
2016; Kim et al., 2019) on translation transfer
learning (Torrey and Shavlik, 2010; Pan and
Yang, 2009) from rich-resource language pairs
to low-resource language pairs demonstrate that
translation has some universal nature in essence
between different language pairs. As the source-
to-target (S2T) forward translation and target-to-
source (T2S) backward translation can be seen as
two special language pairs in bilingual translation,
it can make use of the translation universal nature
to improve each other, i.e., dual learning (He et al.,
2016). Based on this motivation, we developed a
bidirectional NMT model, in which the S2T and
T2S translation were trained and optimized jointly.
Therefore, the training data was doubled to make
better and full use of the costly bilingual corpus.

Given parallel corpus C = {(x(n), y(n))}Nn=1,
the bidirectional NMT model is trained in two
phase. In the first bidirectional translation as pre-
training phase, a joint training objective is used to
jointly maximize the likelihood of both translation
direction on the bilingual data:

L(θparent) =
N∑

n=1

(log p(y(n)|x(n))+log p(x(n)|y(n))),

(4)
where θparent is the parameters of the model,
namely parent model, obtained in this phase.

The second phase is unidirectional translation
fine-tuning. Although there are commonalities in
different translation directions, the differences are
also very obvious. To further expose the model to
the direction difference and improve the effect of
unidirectional translation, we further finetune the
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bidirectional pre-trained model on the bilingual
data. Take S2T translation as an example; the
model is optimized as follows:

L(θS→T ) =
N∑

n=1

log p(y(n)|x(n)), (5)

where θS→T is the parameters of child model which
is initialized with θparent. Similarly, the T2S child
model can also be obtained.

Due to the introduction of bidirectional
translation in one model, follow the practice
of Conneau and Lample (2019), shared sub-
word vocabulary and shared encoder-decoder
(source and target) embedding were employed
to improves the alignment of embedding spaces
across languages. In addition, since the encoder
and decoder need to be able to handle two
languages simultaneously, a language embedding
was used to indicate the language being processed,
so as to reduce confusion of the model.

2.3 Document-enhanced NMT
In spite of its success (Vaswani et al., 2017),
sentence-level NMT has been based on strong
independence and locality assumptions generally,
in which the interrelations among these discourse
(Jurafsky, 2000) elements were ignored. This
results in that the translations may be perfect at the
sentence-level but lack crucial properties of the text,
hindering understanding (Maruf et al., 2019). To
help to resolve ambiguities and inconsistencies in
translations, some MT pioneers (Bar-Hillel, 1960;
Xiong et al., 2013; Sennrich, 2018) exploit the
underlying discourse structure information of a
text to address this issue, while others (Bawden
et al., 2018; Voita et al., 2018; Jean and Cho, 2019;
Wang et al., 2019; Scherrer et al., 2019) extend
the translation units with the context or use an
additional context encoder and attention. It is worth
noting that the essence of the document-level NMT
claimed with additional context and attention is still
sentence-level MT, whose translation is still output
sentence by sentence. We named it as document-
enhanced NMT more precisely.

Due to computational efficiency and tractability
concerns, the document-enhanced NMT models
mostly used document embedding, document
topic information, and limited past or future
context sentences, etc., rather than the truly
whole document information. Recently, with the
increase in computational power available to us

and the well-designed neural network structures
(Dai et al., 2019; Kitaev et al., 2019; Beltagy
et al., 2020) for long sequence encoding, we are
finally in a position to employ the whole document
information for enhancing sentence-level NMT.
In addition, we argue that since long sequences
encoding is easier than decoding, truly whole
document-level translation is still a long way off,
since the bidirectional context is available in the
encoder, but only the past is visible by the decoder.

Longformer To make the long documents
processed with Transformer (Vaswani et al.,
2017) architecture feasible or easier, a modified
Transformer architecture named Longformer was
proposed by Beltagy et al. (2020), in which
the limitation for memory and computational
requirements is addressed with a novel self-
attention operation scales linearly with the
sequence length.

In Longformer, the original full self-attention
(O(n2) time and memory complexity) is sparsified
to makes it efficient for longer sequences. There
are three “attention patterns” for specifying pairs
of input locations attending to one another.

• Sliding Window Self-attention is performed
in a fixed-size window w and multiple stacked
layers of such sliding windowed attention
results in a large receptive field as analogs
to CNNs.

• Dilated Sliding Window Inspired by the
dilated CNNs (Oord et al., 2016), dilation
gaps of size d is introduced to the window
to further increase the receptive field without
increasing computation.

• Global Attention Though the receptive field
is enlarged by stacking multiple layers and
dilation in sliding window and dilated sliding
window attention patterns, some part of the
long sequence has the requirement for keeping
the full and global receptive field due to
the downstream tasks, so global attention is
introduced to make up this need.

In our document-enhanced NMT model, some
heads in multi-head attention are set to use the
sliding window pattern to focus on the local context
which was revealed very important (Kovaleva
et al., 2019), while others with dilation focus
on longer context. Besides, as Longformer is
incorporated into the NMT model, we perform
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global attention on the position of [CLS] token
in which the representation of the whole sequence
(i.e., the document embedding) is generated. This
makes the previous document-enhanced model
with document embedding as a special case of
ours. It is worth noting that since the sentence
being translated is part of the document, setting its
positions in the document to use global attention
pattern will improve the performance; but to
reduce the document computation and use cache
for acceleration (not recalculate the document for
each sentence), we only attend the [CLS] position
globally.

In our document-enhanced model, the Long-
former is first pre-trained with the masked language
modeling objective on the monolingual document
corpus. It is fixed throughout the NMT training
to reduce the model parameters optimized in the
training stage. Thus, Longformer can also be
thought of as a pre-trained language model, as it
provides a document context representationHP for
the NMT model, the integration of Longformer in
Document-enhanced NMT is consistent with the
XLM model in XLM-enhanced NMT.

2.4 Reference Language based UNMT

The rise of UNMT almost completely relieves the
parallel corpus curse, though UNMT is still subject
to unsatisfactory performance due to the vagueness
of the clues available for its core back-translation
training. Further enriching the idea of pivot
translation by extending the use of parallel corpora
beyond the source-target paradigm, we propose
a new reference language-based framework for
UNMT, RUNMT, in which the reference language
only shares a parallel corpus with the source, but
this corpus still indicates a signal clear enough to
help the reconstruction training of UNMT through
a proposed reference agreement mechanism.

Specifically, we proposed three kinds of
reference agreement utilization approaches in (Li
et al., 2020b): reference agreement translation
(RAT), reference agreement back-translation
(RABT), and cross-lingual back-translation (XBT).

RAT RAT utilizes the principle for translating
paired sentences into the target language T of the
source S and referenceR language. Since the input
the parallel, the both translation outputs should
be the same. Given a parallel sentence pair 〈s, r〉
between language S andR, we would ideally have
P(·|s; θS→T ) = P(·|r; θR→T ), where θS→T and

θR→T represent S → T and R → T translation
models respectively. However, as the two models
are trained on different data, the agreement may be
corrupted. Therefore, we combine the two models
to obtain the agreed-upon translation output t̃a:

t̃a ∼ P(·|s, r; θS→T , θR→T ), (6)

where P(·|s, r; θS→T , θR→T ) is

J∏

i=1

[
1

2
(P(·|s, t̃<i; θS→T ) + P(·|r, t̃<i; θR→T ))],

(7)
t̃<i indicates the decoded tokens before the i-the
generation step.

Finally, two synthetic sentence pairs 〈s, t̃a〉 and
〈r, t̃a〉 are used to train the models S → T and
R → T . Since the silver learning target is
optimized, the smoothed cross-entropy loss Lε is
used instead of the ordinary cross-entropy loss L.
The learning objective for RAT can be written as:

LRAT(S, T ,R) = Lε(θS→T ) + Lε(θR→T ), (8)

RABT With the regularized pseudo-parallel
sentences in RAT, we not only train the S → T
and R → T forward-translation models (as the
generation direction is the same as the training
direction), but also train the BT models, i.e., T →
S and T → R. The learning objective of RABT
can be described as:

LRABT(S, T ,R) = L(θT →S) + L(θT →R). (9)

XBT The parallel corpus between languages
S and R can not only bring agreement in the
translations of the same target language T , but also
cross-lingual agreement, that is, using the target
language as the bridge to form pivot translation
(Wu and Wang, 2007; Utiyama and Isahara, 2007;
Paul et al., 2009) patterns: S → T → R and
R → T → S. In XBT, paired sentences s and r
are translated to language T : t̃s and t̃r, and forms
two new pseudo-parallel pairs: 〈t̃s, r〉 and 〈t̃r, s〉,
which promote the training of translation T → R
and T → S. The objective function of XBT is:

LXBT(S, T ,R) = L(θT →R) + L(θT →S), (10)

2.5 CFST: Collaborative Filter for
Self-Training with BT-BLEU

Self-training, proposed by Scudder (1965), is a
semi-supervised approach that utilizes unannotated
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Algorithm 1 Classic Self-training

1: Train a base NMT/UNMT model fθS→T on C
2: repeat
3: Apply fθS→T to the unlabeled instances U
4: Select a subset Q ⊂ {(x, fθS→T (x))|x ∈
U}

5: Update model fθS →T on Q with self-
training objective and C with original objective

6: until convergence or maximum iterations are
reached

data to create better models. Recently, self-training
has been successfully applied to both NMT and
UNMT fields (He et al., 2019; Sun et al., 2020a),
especially for the unbalanced low-resource training
data scenarios.

Formally, in self-training strategy for ma-
chine translation, a parallel dataset C =
{(x(n), y(n))}Nn=1 in NMT and a unpaired
monolingual datasetD = {x(m)}Mm=1∪{y(n)}Nn=1

in UNMT is used to train the initial model. Then,
a subset of pseudo parallel data is incorporated to
update the model with a pseudo-supervised NMT
(PNMT) objective (including forward translation
and backward translation) for both NMT and
UNMT as shown in Algorithm 1. In NMT, a
large unlabeled dataset U = {x(j)}Lj=1 is used for
the synthesis of pseudo-parallel corpora. While
in UNMT, since the model is trained with back-
translation on unpaired monolingual data, the
pseudo-parallel corpora is synthesized by the
monolingual data, i.e., U = {x(m)}Mm=1.

Considering the translation quality can’t effec-
tively be evaluated across languages in machine
translation with only the monolingual data,
therefore the selection of the subset Q, is one
of the key factors for self-training. It is usually
selected based on some confidence scores (e.g. log
probability or perplexity, PPL) (Yarowsky, 1995),
but it is also possible for S to be the whole pseudo
parallel data (Zhu and Goldberg, 2009). In the
backward translation based on the pseudo-parallel
data, the DAE method widely used in UNMT can
alleviate the impact of the noise resulted from the
synthesized sentences on model training, since
the synthesized sentences are only used as input.
However, in the forward translation training, the
quality of noisy targets will directly affect the
success of the model training. Therefore, the
selection of synthetic parallel corpus becomes
particularly critical.

Algorithm 2 BT-BLEU based Collaborative Filter
1: Split U equally into two subsets U1 =

{x(j)}L/2j=1 and U2 = {x(j)}Lj=L/2+1
2: Apply fθS→T to the unlabeled instances U1 and
U2

3: Train two backward translation models f (1)θT→S

with {(fθS→T (x), x)|x ∈ U1} and f (2)θT→S
with

{(fθS→T (x), x)|x ∈ U2} respectively
4: Translate {fθS→T (x)|x ∈ U2} with model
f
(1)
θT→S

, while {fθS→T (x)|x ∈ U1} with model

f
(2)
θT→S

5: Calculate BT-BLEU B for two subsets:
BLEU(f

(2)
θT→S

(fθS→T (x)), x), ∀x ∈ U1 and

BLEU(f
(1)
θT→S

(fθS→T (x)), x), ∀x ∈ U2
6: Q = {(x, fθS→T (x))|x ∈ U1,B > γ} ∪
{(x, fθS→T (x))|x ∈ U2,B > γ}

We propose a collaborative filtering algorithm
based on BT-BLEU to select high quality pseudo-
parallel pairs, as shown in Algorithm 2. The BT-
BLEU, as defined in (Li et al., 2020b), is a BLEU
of x ∈ S and x̃ generated in the S → T → S
back-translation process. As long as the model of
T → S is fixed and the preference for translation
of certain sentences is reduced as much as possible,
BT-BLEU can reflect the translation quality of
S → T to some extent, because of the necessary
but insufficient condition that only the better the
translation of S → T is, the better the translation
of T → S can be.

To achieve the goal of reducing translation
preferences, we split the pseudo parallel set into
two subsets, ensure no overlap between two subsets.
The model trained on subset 1 is used for back-
translation on the subset 2, while the model
on subset 2 back-translate the subset 1. This
collaborative translation process enables the two
models not to see the sentences to be translated,
which guarantees the translation not relies on
tricks. Additionally, we found that the sentences
in different lengths have different difficulties for
back-translation; we further divide the sentences
into different bags according to their lengths and
use different BT-BLEU threshold γ for filtering.

2.6 TF-IDF Finetune

NMT has been prominent in many machine
translation tasks. However, in some domain-
specific tasks, only the corpora from similar
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Systems
Dev Test

BLEU BLEU chrF

Base Data:
Transformer big 25.8 - -
XLM-enhanced 26.8 - -

Base Data + ParaCrawl:
Transformer big 30.0 32.2 0.596
+D2GPo 30.9 - -
XLM-enhanced 31.4 - -
Bidirectional NMT 29.5 - -

+Finetune 31.2 - -
Ensemble 32.0 34.0 0.606

++TF-IDF finetune 32.3 34.2 0.609
++Re-ranking 32.5 34.6 0.610

Table 1: PL→EN performance (sacreBLEU and chrF
score) for different models.

domains can improve translation performance. If
a trained NMT model is evaluated on a domain
mismatch corpus, the translation performance
may even degrade. Therefore, domain adaptation
techniques are essential to solve the NMT domain
problem. It is a very common domain adaptation
approach to further finetune the translation model
trained on the domain-mixed corpus by using data
that is the same or similar to the test set in domain.
Therefore, we need to select sentences that are as
close to the input domain as possible in the domain-
mixed training set.

We argue that low-frequency words contain
more domain information than high-frequency
words, since low-frequency words are mostly
domain-specific nouns, etc., which may indicate
the topic directly. Therefore, we adopt the
TF-IDF algorithm to search and filter on the
whole training set. In fact, the improved version
of TF-IDF algorithm, BM25 (Robertson and
Zaragoza, 2009), is employed to calculate the
sentence similarity. BM25 is based on probabilistic
information retrieval theory, whose score for a term
q to a sequence Q is:

s(Q, q) =
IDF ∗ ((k + 1) ∗ TF)

(k ∗ (1.0− b+ b ∗ LQ
Lavg

) + TF)
, (11)

where IDF is the Inverse Document Frequency for
term q appears in the whole corpus, TF is the Term
Frequency for q in D, LQ represents the sequence
length, Lavg is the average length of corpus D, k
and b is the adjustable parameters.

With this scorer, every sequence will obtain a
BM25 vector on the terms of the corpus:

V = [s(Q, t), ∀t ∈ Dterms], (12)

whereDterms indicates the all terms set in corpusD.
We calculate the cosine similarity as final scores
between the query and every source sentence in
corpus, and ranked on the scores to get the top-
K pairs (K=1000 in our experiments) as the sub-
training set for finetuning.

3 Data Preprocessing and Model Setup

Before model training, we preprocessed the data
uniformly and customized the processing according
to the requirements of each model. We normalized
punctuation, remove non-printing characters, and
tokenize all data with the Moses tokenizer (Koehn
et al., 2007) except for the Chinese. For Chinese,
we removed the segmentation space in some
training data and then use PKUSeg (Luo et al.,
2019) toolkit to cut all Chinese sentences, so as to
obtain unified word segmentation annotations. We
use joint byte pair encodings (BPE) with 40K split
operations for subword segmentation (Sennrich
et al., 2016).

In XLM-enhanced NMT and Document-
enhanced NMT, we first train a basic NMT
(Transformer big) model on the sentence-level
data until convergence, then initialize the encoder
and decoder of the XLM-enhanced NMT and
Document-enhanced NMT full model with the
obtained model. The PLM-encoder attention
attnP and PLM-decoder attention attnPC are
randomly initialized.

EN-PL On the language pair EN-PL, we
explored performance in two training data settings.
The first is base data, including Europarl v10, Tilde
Rapid corpus, and WikiMatrix bitext data, whose
raw data is on the sentence-level. In the second
setting base data + paracrawl, we converted the
paragraph-level alignment data in Paracrawl to
sentence-level alignment and incorporated it with
the base data. In the conversion process, we
adopted the method and program proposed by
(Gale and Church, 1993) for aligning sentences
based on a simple statistical model of character
lengths, which uses the fact that longer sentences
in one language tend to be translated into longer
sentences in the other language, and that shorter
sentences tend to be translated into shorter
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Systems
19test Test

BLEU BLEU chrF

Transformer big 37.2 - -
+D2GPo 37.7 - -
XLM-enhanced 38.9 - -
Document-enhanced 39.2 - -
Ensemble 40.0 48.6 0.418

++TF-IDF finetune 40.2 48.8 0.422
++Re-ranking 40.5 49.1 0.427

Table 2: EN→ZH performance (charBLEU and chrF
score) for different models.

sentences. A probabilistic score is assigned to
each proposed correspondence of sentences, based
on the scaled difference of lengths of the two
sentences (in characters) and the variance of this
difference. This probabilistic score is used in
a dynamic programming framework to find the
maximum likelihood alignment of sentences.

For the Polish pre-trained XLM language model,
we used all NewsCrawl monolingual data and
some CommonCrawl monolingual data. Since the
CommonCrawl data is very large and noisy and
can potentially decrease the performance of LM
if it is used in its raw form. We apply language
identification filtering (langid; Lui and Baldwin
(2012)), keeping sentences with correct languages.
In order to filter out the sentences shorter than 5
words or longer than 150 words more precisely,
we re-split sentences using Spacy (Honnibal and
Montani, 2017) toolkit.

EN-ZH In EN-ZH, the pre-training of Long-
former as a document encoder is unique. As
described in (Beltagy et al., 2020), the Longformer
needs a large number of gradient updates to
learn the local context first; before learning to
utilize longer context. In the first phase of the
staged training procedure, an initial RoBERTa
(Liu et al., 2019) model implemented in Fairseq
(Ott et al., 2019) repository was trained on the
sentence-level text available. In each subsequent
phase, we trained the model on the paragraph text,
doubled the window size and the sequence length,
and halve the learning rate. For the paragraph
text, the Wikidumps and NewsCommentary v15
have document intervals and can be used directly,
while UN v1.0 has no document intervals but
the sentence order is not interrupted. Therefore,
we use the BERT Next Sentence Prediction

(NSP) classification model provided by Google
for document interval prediction to recover the
documents.

DE-HSB In RUNMT on EN-DE-HSB, Europarl
v10 EN-DE parallel corpus is used for EN-DE
NMT and RAT/RABT/XBT training1. Addition-
ally, the BPE size increases to 50K for three
languages. In CFST, the filtering threshold of BT-
BTBLEU is set to γ = 50.0.

4 Results and Analysis

Results and ablations for PL→EN2 are shown
in Table 1, EN→ZH in Table 2, unsupervised
DE↔HSB in Table 3 and low-resource DE↔HSB
in Table 4. We report case-sensitive SacreBLEU
scores using SacreBLEU (Post, 2018) for EN-PL,
DE-HSB, and BLEU based on characters for EN-
ZH. In the results, “+” means addition based on
baseline, and “++” means cumulative addition
based on the previous one.

In PL→EN, the introduction of ParaCrawl
data improves the baseline performance on the
dev dataset by about 4.2 BLEU. +D2GPo,
XLM-enhanced NMT, Bidirectional NMT, and
ensembling outperforms our strong baseline by 2
BLEU point. Finally, finetuning and reranking
further gives another 0.5 BLEU.

For EN→ZH, as with PL→EN, we see similar
improvements with +D2GPo, XLM-enhanced
NMT, ensembling and reranking. We also observe
that the addition of Document-enhanced NMT is
much more substantial, improving single model
performance by over 1.5 BLEU.

In the unsupervised track, we compared CLM,
MLM, and Explicit Sentence Compression (ESC)
pre-training approaches joint trained with BT in
the second stage of UNMT, respectively, and
found that MLM and ESC had similar effects
and were stronger than CLM. Moreover, the pre-
training baseline of MLM was stronger than that of
MASS. The combination of unsupervised training
of DE-HSB and supervised training of EN-DE
achieves the purpose of transfer learning, and the
improvement is greater than 3 BLEU. Based on
the conclusion of MLM and BT joint training
on the UNMT Baseline, we also got a similar

1Our systems in unsupervised track are not a constrained
unsupervised system due to the utilization of additional
parallel corpora.

2The team name for PL→EN submission is “NICT-rui” in
the OCELoT site to distinguish between different sub-teams.
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Systems
DE→HSB HSB→DE

Dev Test Official Dev Test Official

UnsupSMT (Artetxe et al., 2018) 17.1 14.7 - 13.8 12.6 -

MASS baseline 29.8 26.0 - 31.4 27.3 -
UNMT baseline 31.1 27.2 - 31.3 27.2 -

+CLM finetune 29.2 25.6 - 28.6 24.5 -
+MLM finetune 32.4 28.3 - 32.4 27.3 -
+ESC finetune 32.1 28.3 - 32.2 27.8 -

EN-DE-HSB MUNMT baseline 29.3 25.6 - 30.0 26.2 -
++EN-DE NMT 33.6 29.3 - 33.6 29.6 -
++MLM finetune 35.1 30.5 28.6 34.9 30.7 28.6
++RAT + RABT + XBT 47.8 41.8 40.3 40.6 35.9 32.8

Table 3: DE↔HSB unsupervised performance (sacreBLEU score) for different models.

Systems
DE→HSB HSB→DE

Dev Test Official Dev Test Official

UNMT baseline 31.1 27.2 - 31.3 27.2 -
++MLM finetune 32.4 28.3 - 32.4 27.3 -
++DE-HSB NMT 59.9 53.0 52.5 61.6 53.1 54.6
++TLM finetune 60.2 53.2 - 61.4 52.7 -
++CFST 61.3 54.5 60.2 62.2 53.9 55.6
++D2GPo 61.4 54.6 60.4 62.9 54.5 56.6

Ensemble+Re-ranking 61.5 54.7 60.7 63.3 56.1 58.5

EN-DE-HSB MUNMT baseline 29.3 25.6 - 30.0 26.2 -
++EN-DE NMT + MLM finetune 35.1 30.5 28.6 34.9 30.7 28.6
++DE-HSB NMT 59.8 53.0 - 62.0 53.7 -

Table 4: DE↔HSB low-resource performance (sacreBLEU score) for different models.

trend on the MUNMT system. In the final system,
the enhancement of RAT+RABT+XBT brought a
BLEU increase of 11.7 and 4.2, respectively.

In the low-resource track, the model in the
unsupervised track is used as the pre-trained model,
and DE-HSB NMT and BT are jointly trained. Due
to the DE-HSB parallel corpus, we can not only use
MLM for monolingual pre-training, but also use
TLM for cross-lingual pre-training. The addition
of CFST and D2GPo further improves the effect of
the model, indicating that these contributions are
orthogonal. In addition, comparing UNMT with
MUNMT given a parallel corpus, we found that
although MUNMT used more data, it did not bring
about a large enough effect improvement, so we
will leave it for future research.

5 Conclusion

This paper describes SJTU-NICT’s submission to
the WMT20 news translation task. For three typical
scenarios, we adopt different strategies. In this
work, we not only study the pre-trained language
model to enhance MT, but also consider the impact
of document information on translation. We
considered both the way of converting document
alignment into sentence alignment and the use of
BERT’s NSP to recover the structure of documents.
In addition, transfer learning from supervision is
taken into account in unsupervised translation, and
various means are used to enhance low-resource
translation. Our systems performed strongly
among all the submissions: we ranked 1st in
PL→EN, EN→ZH, and DE→HSB respectively,
and stayed Top-3 for the HSB→DE.
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2019. Analysing concatenation approaches to
document-level nmt in two different domains. In
Proceedings of the Fourth Workshop on Discourse
in Machine Translation (DiscoMT 2019), pages 51–
61.

H Scudder. 1965. Probability of error of some adaptive
pattern-recognition machines. IEEE Transactions
on Information Theory, 11(3):363–371.

Rico Sennrich. 2018. Why the time is ripe for
discourse in machine translation. In Second
Workshop on Neural Machine Translation and
Generation.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

228



Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama,
Eiichiro Sumita, and Tiejun Zhao. 2020a. Self-
training for unsupervised neural machine translation
in unbalanced training data scenarios. arXiv
preprint arXiv:2004.04507.

Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama,
Eiichiro Sumita, and Tiejun Zhao. 2020b. Unsuper-
vised neural machine translation with cross-lingual
language representation agreement. IEEE/ACM
Transactions on Audio, Speech, and Language
Processing, 28:1170–1182.

Lisa Torrey and Jude Shavlik. 2010. Transfer learning.
In Handbook of research on machine learning
applications and trends: algorithms, methods, and
techniques, pages 242–264. IGI global.

Masao Utiyama and Hitoshi Isahara. 2007. A
comparison of pivot methods for phrase-based
statistical machine translation. In Human Lan-
guage Technologies 2007: The Conference of the
North American Chapter of the Association for
Computational Linguistics; Proceedings of the Main
Conference, pages 484–491, Rochester, New York.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in neural information
processing systems, pages 5998–6008.

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan
Titov. 2018. Context-aware neural machine trans-
lation learns anaphora resolution. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1264–1274.

Xinyi Wang, Jason Weston, Michael Auli, and Yacine
Jernite. 2019. Improving conditioning in context-
aware sequence to sequence models. arXiv preprint
arXiv:1911.09728.

Hua Wu and Haifeng Wang. 2007. Pivot language
approach for phrase-based statistical machine trans-
lation. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
856–863, Prague, Czech Republic. Association for
Computational Linguistics.

Fengshun Xiao, Jiangtong Li, Hai Zhao, Rui
Wang, and Kehai Chen. 2019. Lattice-based
transformer encoder for neural machine translation.
In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 3090–3097, Florence, Italy. Association for
Computational Linguistics.

Deyi Xiong, Yang Ding, Min Zhang, and Chew Lim
Tan. 2013. Lexical chain based cohesion models for
document-level statistical machine translation. In
Proceedings of the 2013 conference on empirical
methods in Natural Language Processing, pages
1563–1573.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In Advances in neural
information processing systems, pages 5753–5763.

David Yarowsky. 1995. Unsupervised word sense
disambiguation rivaling supervised methods. In
33rd annual meeting of the association for
computational linguistics, pages 189–196.

Huan Zhang and Hai Zhao. 2018. Minimum
divergence vs. maximum margin: an empirical
comparison on seq2seq models. In International
Conference on Learning Representations.

Zhuosheng Zhang, Jiangtong Li, Pengfei Zhu, Hai
Zhao, and Gongshen Liu. 2018. Modeling multi-
turn conversation with deep utterance aggregation.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 3740–3752,
Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar parsing on Penn Treebank.
In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 2396–2408, Florence, Italy. Association for
Computational Linguistics.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao
Qin, Wengang Zhou, Houqiang Li, and Tieyan
Liu. 2020. Incorporating bert into neural machine
translation. In International Conference on
Learning Representations.

Xiaojin Zhu and Andrew B Goldberg. 2009. Introduc-
tion to semi-supervised learning. Synthesis lectures
on artificial intelligence and machine learning,
3(1):1–130.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 1568–1575.

229



Proceedings of the 5th Conference on Machine Translation (WMT), pages 230–238
Online, November 19–20, 2020. c©2020 Association for Computational Linguistics

Combination of Neural Machine Translation Systems at WMT20

Benjamin Marie Raphael Rubino Atsushi Fujita
National Institute of Information and Communications Technology

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289, Japan
{bmarie, raphael.rubino, atsushi.fujita}@nict.go.jp

Abstract
This paper presents neural machine trans-
lation systems and their combination built
for the WMT20 English↔Polish and
Japanese→English translation tasks. We show
that using a Transformer Big architecture,
additional training data synthesized from
monolingual data, and combining many NMT
systems through n-best list reranking improve
translation quality. However, while we
observed such improvements on the validation
data, we did not observe similar improvements
on the test data. Our analysis reveals that
the presence of translationese texts in the
validation data led us to take decisions in
building NMT systems that were not optimal
to obtain the best results on the test data.

1 Introduction

This paper describes the neural machine trans-
lation (NMT) systems and their combination
built for a participation of the National Insti-
tute of Information and Communications Technol-
ogy (NICT) in the WMT20 shared News Trans-
lation Task.1 We participated in three trans-
lation directions: Japanese→English (Ja→En),
English→Polish (En→Pl), and Polish→English
(Pl→En). All our systems are constrained, i.e., we
used only the parallel and monolingual data pro-
vided by the organizers to train and tune them, and
validated/selected our best systems exclusively us-
ing the official validation data provided by the or-
ganizers. We trained NMT systems with several
different frameworks and architectures, and com-
bined them, for each translation direction, through
n-best list reranking using informative features as
proposed by Marie and Fujita (2018). This sim-
ple combination method, associated with the ex-
ploitation of large tagged back-translated mono-
lingual data, improved BLEU scores on the official

1The team ID of our participation is “NICT Kyoto”.

validation data provided by the organizers. How-
ever, we did not observe these improvements on
the test data for which our baseline systems re-
mained the best. While we have rigorously se-
lected our systems according to their performance
on the validation data, the analysis of our results
reveal how easily we would have been able to
achieve BLEU scores among the best submissions
by choosing/selecting our best systems according
to their performance on the test data, as encour-
aged by the WMT submission process (Section 2).

The remainder of this paper is organized as
follows. In Section 2, we briefly describe the
WMT20 translation task. In Section 3, we intro-
duce the data pre-processing and cleaning. In Sec-
tion 4, we describe the details of our NMT sys-
tems’ architectures and frameworks. In Section 5,
we describe two different strategies that we used to
augment the training parallel data of our systems:
parallel data extraction from monolingual data and
backward/forward translations. Then, the combi-
nation of our NMT systems is described in Sec-
tion 6. Empirical results produced with our sys-
tems on the validation and test data are presented
in Section 7. We propose an analysis in Section 8
to better understand why our best systems on the
validation data are significantly worse on the test
data. Section 9 concludes this paper.

2 Description of the Task

The task is to translate texts in the news do-
main. For this purpose, news articles were sam-
pled from online newspapers from September–
November 2019. The sources of the test data
are original texts whereas the targets are human-
produced translations, i.e., participants are not
asked to translate translationese texts unlike past
WMT translation tasks. Although organizers also
mentioned that the provided validation data were
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created in the same way as the test data, they were
actually made half of translationese texts and half
of original texts. For the Inuktitut→English trans-
lation task, source texts to translate in the test data
were only translationese texts.

Training parallel and monolingual data were
provided for all language pairs. Participants were
asked to mention whether they used additional ex-
ternal data. We chose to participate in the con-
strained settings using only the provided data to
train our MT systems. Validation data were also
provided for each language pair. We used the en-
tire data to keep it sufficiently large for validation
purposes, even though half of it was made up of
translationese texts.

For collecting submissions, organizers relied on
a new framework: Ocelot.2 Each participant
was allowed to submit up to 8 submissions per
account but was not limited in the number of ac-
counts. Upon submission, Ocelot shows the cor-
responding chrF and BLEU scores computed us-
ing reference translations that were not released
during the competition. Participants could then
rely on these scores to select and validate their
best system on the test data.3 We chose to ignore
these scores obtained on the test data to remain in
a much more realistic scenario where we do not
have access to reference translations, i.e., we re-
lied only on the validation data to select our pri-
mary submission.

Primary submissions selected by the partici-
pants were then evaluated by humans which is the
official evaluation for WMT translation tasks.

3 Data Pre-processing and Cleaning

3.1 Data

As parallel data to train our systems, we used all
the provided data for all our targeted translation di-
rections, except the “Wiki Titles”4 corpus. As En-
glish monolingual data, we used all the provided
data, but sampled only 200M lines from the “Com-
mon Crawl” corpora, except the “News Discus-
sions” and “Wiki Dumps” corpora. For all other
languages, we used all the provided monolingual

2https://ocelot.mteval.org/
3We can read in the “competition updates” that this be-

havior was encouraged by the organizers: “Also added chrF
computation to give you more data points for your primary
submission selection. Submissions remain ordered by de-
creasing SacreBLEU score.”

4It contains only very short segments that are not sen-
tences. We therefore assume to be of limited use in NMT.

Language pair #sent. pairs #tokens

En–Pl 8.7M 239.5M (En) 310.0M (Pl)
En–Ja 15.2M 394.5M (En) 380.6M (Ja)

Table 1: Statistics of our pre-processed parallel data.

corpora but also sampled only 200M lines from
the “Common Crawl” corpora.

To tune/validate and evaluate our systems, we
used the official validation and test data provided
by the organizers.

3.2 Pre-processing and Cleaning

Since some corpora were crawled from the Web
and therefore potentially very noisy, we first per-
formed language identification on all the data to
keep only lines that have a high probability of be-
ing in the right language. We used fastText
(Bojanowski et al., 2017) and its large model for
language identification.5 We only retained sen-
tences that have a probability higher than 0.75 to
be in the right language. For the parallel data, if at
least one side of each sentence pair did not match
this criteria, we removed the pair from the corpus.

We used Moses (Koehn et al., 2007) punctua-
tion normalizer, tokenizer, and truecaser for En-
glish and Polish. The truecaser was trained on the
News Crawl 2019 corpora. Truecasing was then
performed on all the tokenized data. Then, for
the Pl–En language pair, we jointly learned 32k
BPE operations (Sennrich et al., 2016b) on the
concatenation of English and Polish News Crawl
2019 corpora. We performed sub-word segmenta-
tion using this vocabulary on the Polish and En-
glish parallel and monolingual data. For the Ja–
En language pair, we independently learned 32k
BPE operations on the English News Crawl 2019
corpus for English, 32k sentence piece (Kudo
and Richardson, 2018) operations on the Japanese
News Crawl 2019 corpus for Japanese, and then
applied the operations to perform sub-word seg-
mentation on the data in their respective language.

For further cleaning of the data, we applied
the script “clean-corpus-n.perl” from Moses to re-
move empty lines and sentences longer than 120
sub-word tokens. Tables 1 and 2 present the statis-
tics of the parallel and monolingual data, respec-
tively, after pre-processing.

5https://fasttext.cc/docs/en/
language-identification.html
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Language #lines #tokens

En (En–Pl) 328M 7.9B
En (En–Ja) 328M 7.7B
Ja 184M 4.8B
Pl 137M 3.2B

Table 2: Statistics of our pre-processed monolingual
data.

4 NMT systems

4.1 Architectures
Transformer Base and Big For our NMT sys-
tems, we chose the Transformer architecture
(Vaswani et al., 2017). In this paper, we refer to
Transformer Base and Big as the “base” and “big”
configurations from Vaswani et al. (2017)’s paper.
The architecture differences are as follows:

• Base: 512 embedding dimensions, 2,048 di-
mensions for the feed-forward, and 8 heads

• Big: 1024 embedding dimensions, 4,096 di-
mensions for the feed-forward, and 16 heads

Highway Transformer Residual connections
(RCs) (Srivastava et al., 2015a; He et al., 2016)
have been shown to increase forward and back-
ward information flow in deep neural networks
(Hardt and Ma, 2017) and thus are a crucial com-
ponent of the Transformer architecture. Remov-
ing them has a negative impact on training and
on the overall performances of the resulting model
(Bapna et al., 2018). However, incorporating RCs
through the addition operation as it is commonly
done in the Transformer network does not allow
for a distribution of weights between carrying or
transforming the input. An alternative, inspired
by the Highway Network (Srivastava et al., 2015b)
and implemented within the Transformer by Chai
et al. (2020), includes a trainable gating mecha-
nism that regulates the information flow. We ap-
plied a few modifications to the implementation
proposed in Chai et al. (2020): removing all layer
normalization operations, adding depth-aware pa-
rameter initialization (Junczys-Dowmunt, 2019;
Zhang et al., 2019), and initializing biases so that
the residual blocks are initially forced to carry in-
formation rather than transforming it (Srivastava
et al., 2015b).

4.2 Frameworks and Settings
Marian Our Models trained with the Marian
toolkit (Junczys-Dowmunt et al., 2018) were only

based on Transformer Base. We set the dropout at
0.1 and used the mini-batch-fit option of Marian
to have batches as large as allowed by the size of
the GPU memory. We used ReLU activation func-
tions and optimized the models using the Adam
optimizer with parameters β1 = 0.9, β2 = 0.98,
and ε = 1e−9, a learning rate initialized at 3e−4,
following a linear warm-up during 16k updates
and decaying based on the inverse square root
of the update number. Label smoothing was set
to 0.1. During training, mean cross-entropy was
evaluated on the entire validation data every 5,000
mini-batch updates and training was stopped af-
ter 5 consecutive times without an improvement of
the mean cross-entropy. Then, we selected the best
model that yielded the best BLEU score on the val-
idation data. For decoding, we fixed the beam size
at 12 and the length normalization at 1.0.

Fairseq Models trained with the Fairseq
toolkit were based on Transformer base and Trans-
former big. The former used a dropout rate of
0.1 and batches containing approximately 12k to-
kens with parameters updated every 2 batches.
The latter used a dropout rate of 0.3 and batches
containing approximately 8k tokens with param-
eters updated every 8 batches. Both configura-
tions shared decoder input and output embeddings,
trained with half-precision float numbers, used
ReLU activation functions, were optimized using
the Adam optimizer with parameters β1 = 0.9,
β2 = 0.98, and ε = 1e−9, a learning rate initial-
ized at 1.7e−7, following a linear warm-up during
4k updates until reaching 5e−4 and decaying based
on the inverse square root of the update number.
Label smoothing with a parameter 0.1 was ap-
plied during training. Whereas base models were
trained for 200 epochs, big models were trained
for 100 epochs. The entire validation data was
used for evaluation every epoch, while the best
BLEU scores on this data allow for checkpoint
saving. The parameters for decoding were fixed:
a beam size of 4 and a length penalty of 0.6.

5 Training Data Augmentation

5.1 Parallel Data Alignment

We extracted additional training parallel data from
the News Crawl monolingual corpora with the fol-
lowing procedure:

1. Jointly train bilingual word embeddings on
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Configuration En–Pl Ja→En #sent. pairsEn→Pl Pl→En #sent. pairs

w/o NC 26.3 30.4 0 20.3 0
w/ NC 26.4 30.6 257.4k 20.3 244.1k

Table 3: Results obtained on the validation data with Fairseq Big with and without using the additional parallel
data extracted from the News Crawl monolingual corpora, denoted “NC.” The columns “#sent. pairs” indicate how
many sentence pairs were extracted from the News Crawl monolingual corpora.

the provided parallel data using Bivec (Lu-
ong et al., 2015).

2. Make all possible bilingual sentence pairs
from News Crawl corpora in the source and
target languages.

3. For each sentence pair, compute the sim-
ilarity between the source and target sen-
tences using the bilingual word embeddings
trained with Bivec simply by measuring co-
sine similarity over the averaged word em-
beddings in each sentence as proposed by
Artetxe and Schwenk (2019).6

4. Finally, keep only the sentence pairs with
a score higher than a threshold among
{1.0, 1.0025, 1.05} and select the value that
results in the sentence pairs leading to the
highest BLEU score on the validation data
when mixing the selected sentence pairs with
the original parallel data for training NMT.

Table 3 gives an overview of the results obtained
with the additional sentence pairs extracted from
News Crawl. We did not observe significant im-
provements as we could only extract a very small
amount of useful sentence pairs. Nevertheless, we
decided to keep these additional data to train our
other NMT systems, since it did not appear harm-
ful according to BLEU. However, as we report in
Section 8, it was not the optimal choice to obtain
the best results on the test data.

5.2 Backward and Forward Translation of
Monolingual Data

Parallel data for training NMT can be augmented
with synthetic parallel data, generated through a
so-called back(ward)-translation, to significantly
improve translation quality (Bertoldi and Fed-
erico, 2009; Bojar and Tamchyna, 2011; Sennrich
et al., 2016a). We used the Fairseq Big sys-
tem, trained on the provided parallel data and

6We used the “Ratio” version of the scoring function.

the aligned News Crawl sentence pairs, to trans-
late target monolingual sentences into the source
language. Then, these back-translated sentences
were simply mixed with the original parallel data,
putting the synthetic side on the source side, to
train from scratch a new NMT system.

We also experimented with forward translation,
i.e., with the synthetic part on the target side,
and tagged back-translation (Caswell et al., 2019),
which simply adds a tag at the beginning of each
back-translation, as it has shown to lead to better
results, especially when translating texts in their
original language (Marie et al., 2020).

For English, we translated 50M sentences made
of the entire News Crawl 2019 corpus and ran-
domly added sentences from News Crawl 2018
corpus until we have 50M sentences. For Polish
and Japanese, we translated the entire News Crawl
corpora and added sentences from the Common
Crawl corpus until we have 50M sentences.

For each configuration, i.e., back-translation,
tagged back-translation, and forward translation,
we also experimented with sub-samples of 12.5M
(only with Marian), and 25M synthetic sentence
pairs, in addition to using the entire 50M sentence
pairs, for retraining the NMT systems. Table 4
gives an overview of the results for each config-
uration obtained on the validation data.

All configurations using back-translations (BT)
and tagged back-translations (TBT) were better
than the baseline system as expected. We also ob-
served very small differences in BLEU when in-
creasing the size of the back-translated data.

TBT improves over BT as expected (Caswell
et al., 2019), but only for Pl→En and Ja→En. On
the other hand, using forward translations signifi-
cantly decreased BLEU scores, as expected, since
it introduces NMT translations to the target side of
the training data (Bogoychev and Sennrich, 2019),
but again only for Pl→En and Ja→En. Our results
for En→Pl across all configurations remained sim-
ilar, which defies the findings of previous work on
back-translation and forward translation. We give
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System #sent. pairs En→Pl Pl→En Ja→En

Marian Base 0 24.4 29.1 18.1

BT
12.5M 26.1 32.1 21.1
25M 26.2 32.1 21.2
50M 26.3 31.7 21.1

TBT
12.5M 26.1 30.3 21.1
25M 26.1 32.3 21.2
50M 26.3 32.2 21.4

FWD
12.5M 26.3 29.7 18.3
25M 26.4 29.5 17.4
50M 26.3 29.6 16.4

Table 4: Results of Marian Base on the validation data obtained using synthetic parallel data as back-translations
(BT), tagged back-translations (TBT) or forward translations (FWD).

Feature Description

NMT models Scores given by each NMT model
LEX Sentence-level translation probabilities, for both translation directions
LM Scores given by a 4-gram language model trained on all the monolingual corpora in the target language
LEN Difference between the length of the source sentence and the length of the translation hypothesis, and

its absolute value

Table 5: Set of features used by our reranking systems. The “Feature” column refers to the same feature used in
Marie and Fujita (2018). The numbers between parentheses indicate the number of scores in each feature set.

some plausible explanations for this peculiarity in
our analysis in Section 8.

6 Combination of NMT systems

Our primary submissions for the tasks were the re-
sult of a simple combination of all our NMT sys-
tems through n-best list reranking. As demon-
strated by Marie and Fujita (2018), it can sig-
nificantly improve translation quality, even when
there is a large difference in translation quality be-
tween the combined systems. Following Marie
and Fujita (2018), our system combination works
as follows.

6.1 Generation of n-best Lists

We first independently generated the 100-best
translation hypotheses from each of all our NMT
models, and additional 12-best, with Marian, or
4-best with Fairseq. We then merged all these
lists generated by different systems, without re-
moving duplicated hypotheses.

6.2 Reranking Framework and Features

We rescored all the hypotheses in the list with
a reranking framework using features to better
model the fluency and the adequacy of each hy-
pothesis. This method can find a better hypothesis
in these merged n-best lists than the one-best hy-
pothesis originated by the individual systems. We

chose KB-MIRA (Cherry and Foster, 2012) as a
rescoring framework and used a subset of the fea-
tures proposed in Marie and Fujita (2018). All the
following features we used are described in de-
tail by Marie and Fujita (2018). As listed in Ta-
ble 5, it includes all scores given by all our NMT
models. We computed sentence-level translation
probabilities using the lexical translation probabil-
ities learned by mgiza on all the parallel training
data of our NMT systems. One 4-gram language
model trained on the target language model was
also used. To account for hypotheses length, we
added the difference, and its absolute value, be-
tween the number of tokens in the translation hy-
pothesis and the source sentence. The reranking
framework was trained on n-best lists generated
by decoding the entire validation data.

7 Results

Our main results are presented in the Table 6. Ac-
cording to the validation data, Fairseq Base is
as good as, or better than, Marian Base. Given
this observation, we trained Fairseq Big and
obtained even better results on the validation data.
BLEU scores are improved by up to 4.1 BLEU
points when using tagged back-translations (TBT)
on the validation data. Overall, the best sys-
tem is, as expected, the Reranker combining
all our systems with additional features. How-
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System En→Pl Pl→En Ja→En
Validation Test Validation Test Validation Test

Marian Base 24.4 21.2 29.1 31.9 18.1 19.1
Fairseq Base 24.4 21.8 30.3 32.4 19.4 18.7

Fairseq Big 26.4 21.9 30.9 31.5 20.4 19.3

Fairseq Big TBT 28.5 23.1 35.0 31.8 23.3 19.9

Reranker∗ 29.9 24.9 36.5 32.3 25.5 22.8

Table 6: Results of our main systems. Marian Base and Fairseq Base use the same training data and archi-
tecture. Fairseq Big uses Transformer Big and the additional training data extracted from News Crawl corpora.
Fairseq Big TBT is retrained from scratch on the tagged back-translations generated by Fairseq Big. The
system denoted with an “∗” is our primary system.

ever, surprisingly, the results on the test data
exhibited a significantly different pattern. For
instance, Marian Base performed very closely
to Fairseq Big on the test data. Even more
strikingly, we observed only small differences in
BLEU between Fairseq Big and Fairseq
TBT. For instance, for Pl→En, while we have 4.1
BLEU points of improvements on the validation
data, we have only 0.3 BLEU points of improve-
ments on the test data. Also for this translation
direction, Reranker outperforms Marian Base
by 7.4 BLEU points on the validation data but by
only 0.4 BLEU points on the test data.

To better understand the lack of correlation be-
tween our results on validation and test data, we
propose an analysis in the next section.

8 Analysis

Table 7 presents all our results for En↔Pl on the
validation data, separating the part in the original
and non-original languages, and the test data.

One obvious observation from these results is
that the BLEU scores on the test data are all very
close to the score of the validation data in origi-
nal language (Orig.). On the other hand, we also
observe that the ranking of the systems given the
BLEU score on the entire validation data does
not correlate well with the ranking of the systems
given the BLEU score on the validation data in the
original language. It means that the translationese
texts in the validation data had a negative impact
on all our decisions for selecting the best frame-
work, architecture, additional parallel sentences,
and so forth, and that we could potentially had bet-
ter results by taking our decisions by using only
the original texts in the validation data.

Translationese texts are particularly harmful for
training a Reranker, as we can observe for
Pl→En. Using them as training data for the

Reranker leads to significantly lower BLEU
scores (#14) while training it only on the original
texts of the validation data leads to our best BLEU
score (#15). For this translation direction, we also
observe large improvements of BLEU thanks to
back-translations on the validation data that comes
mainly from the translationese texts while trans-
lation quality drops when translating the origi-
nal texts in the validation and test data, as ex-
pected. This was compensated by using tagged
back-translations (#10-12) as suggested by Marie
et al. (2020).

Our observations are very different for the re-
verse translation direction. For En→Pl, training
Reranker on the entire validation data leads to
the best BLEU score, and it drops only slightly
when training only on the translationese texts.
Even more surprisingly, using back-translations
improves BLEU scores for both original and
translationese texts while using tagged back-
translations (#12) leads to BLEU scores identi-
cal to those obtained by using back-translations
(#9) for the original texts. These peculiarities ob-
served for Pl→En, associated with our observa-
tions in Section 5.2 that forward translations im-
proves BLEU, are in contradiction with the find-
ings in previous work as follows.

• Back-translations should decrease BLEU
scores for original texts (Edunov et al., 2020).

• Tagged back-translations should improve
BLEU scores for original texts (Marie et al.,
2020).

• Forward translation should lead to lower
BLEU scores for translationese texts (Bogoy-
chev and Sennrich, 2019).

A possible explanation is that the texts denoted as
“original” in the validation data and the test data,
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# System
En→Pl Pl→En

Arch. NC BT TBT Validation Test Validation TestOrig. Non-orig. All Orig. Non-orig. All

Individual Systems
1 Marian Base 21.4 28.7 24.4 21.2 32.0 26.7 29.1 32.3
2 Marian Base X 21.5 28.5 24.8 21.7 32.3 27.5 29.7 31.9
3 Fairseq Base 20.9 28.7 24.4 21.8 33.1 27.9 30.3 32.4
4 Fairseq Highway 21.1 29.6 25.0 21.8 32.6 28.5 30.6 32.6
5 Fairseq Big 22.7 30.7 26.3 22.3 31.2 30.3 30.7 32.5
6 Fairseq Big X 22.6 31.2 26.4 21.9 31.9 29.5 30.9 31.5

7 Marian Big X X 22.1 31.3 26.3 21.9 29.1 34.1 32.0 29.5
8 Fairseq Base X X 22.2 32.1 26.8 22.2 29.7 34.9 32.9 29.7
9 Fairseq Big X X 23.6 34.4 28.5 23.7 30.2 36.5 33.9 29.5

10 Marian Big X X 22.1 31.1 26.2 22.1 32.1 32.9 32.5 31.8
11 Fairseq Base X X 22.3 32.0 26.7 22.2 31.8 34.0 33.2 31.7
12 Fairseq Big X X 23.6 34.6 28.5 23.1 32.4 37.1 35.0 31.8

System Combination
13 Reranker∗ 25.6 35.2 29.9 24.9 33.1 38.7 36.5 32.3

14 Reranker Non-orig. 23.2 35.3 29.3 23.1 28.8 39.6 34.7 28.4
15 Reranker Orig. 25.4 33.9 29.1 24.7 35.0 33.8 34.4 34.8

Table 7: The system denoted with an “∗” is our primary system. The column “Arch.” stands for the Transformer
architecture, “NC” indicates the use of the News Commentary Corpus, “BT” and “TBT” indicate the use of back-
translation and tagged back-translation, respectively. “RerankerNon-orig.” and “RerankerOrig.” are variants
of Reranker that are trained on the validation data using only the part in the non-original and original languages,
respectively, while Reranker, our primary system, was trained on the entire validation data.

that were prepared similarly, do have some charac-
teristics of translationese that may come from the
translation of texts not in their original language or
the use of MT followed by post-editing. Compar-
ing our results with the results of other participants
will help us test this assumption.

9 Conclusion

We participated in three translation directions and
for all of them we did experiments with several
frameworks and architectures, also exploiting ad-
ditional synthetic parallel data made from mono-
lingual data. Combining all our systems led to
significantly better BLEU scores on the valida-
tion data. However, our analysis revealed that
the presence of translationese texts in the valida-
tion data led us to take sub-optimal choices that
prevented us from obtaining significantly better
BLEU scores on the test data. Selecting/validating
systems on the test data should not be possible, or
at least not an option. We thus suggest organiz-
ers to provide validation data that better matches
the characteristics of the test data, e.g., removing
translationese texts if none are in the test data.
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Abstract

We participate in the WMT 2020 shared news
translation task on Chinese→English. Our sys-
tem is based on the Transformer (Vaswani
et al., 2017) with effective variants and the
DTMT (Meng and Zhang, 2019) architec-
ture. In our experiments, we employ data
selection, several synthetic data generation
approaches (i.e., back-translation, knowledge
distillation, and iterative in-domain knowledge
transfer), advanced finetuning approaches and
self-bleu based model ensemble. Our con-
strained Chinese→English system achieves
36.9 case-sensitive BLEU score, which is the
highest among all submissions.

1 Introduction

Our WeChat AI team participates in the WMT 2020
shared news translation task on Chinese→English.
In this year’s translation task, we mainly focus
on exploiting several effective model architectures,
better data augmentation, training and model en-
semble strategies.

For model architectures, we mainly exploit two
different architectures in our approaches, namely
Transformers and RNMT. For Transformers, we im-
plement the Deeper transformer with Pre-Norm, the
Wider Transformer with a larger filter-size and the
average attention based transformer (Zhang et al.,
2018). For the RNMT, we use the deep transition
based DTMT (Meng and Zhang, 2019) model. We
finally ensemble four kinds of models in our sys-
tem.

For synthetic data generation, we explore various
methods for out-of-domain and in-domain data gen-
eration. For out-of-domain data generation, we ex-
plore the back-translation method (Sennrich et al.,
2016a) to leverage the target side monolingual
data and the knowledge distillation method (Kim
and Rush, 2016) to leverage the source side of
golden parallel data. For in-domain data generation,

we employ iterative in-domain knowledge transfer
to leverage the source-side monolingual data and
golden parallel data. Furthermore, data augmenta-
tion methods, including noisy fake data (Wu et al.,
2019) and sampling (Edunov et al., 2018), are used
for training more robust NMT models.

For training strategies, we mainly focus on the
parallel scheduled sampling (Mihaylova and Mar-
tins, 2019; Duckworth et al., 2019), the target de-
noising and minimum risk training (Shen et al.,
2016; Wang and Sennrich, 2020) algorithm for in-
domain finetuning.

We also exploit a self-bleu (Zhu et al., 2018)
based model ensemble approach to enhance our sys-
tem. As a result, our constrained Chinese→English
system achieves the highest case-sensitive BLEU
score among all submitted systems.

In the remainder of this paper, we start with an
overview of model architectures in Section 2. Sec-
tion 3 describes the details of our systems and train-
ing strategies. Then Section 4 shows the experimen-
tal settings and results. Finally, we conclude our
work in Section 5.

2 Model Architectures

In this section, we first describe the model archi-
tectures we use in the Chinese−→English Shared
Task, including the Transformer-based (Vaswani
et al., 2017) models and RNN-based (Bahdanau
et al., 2014; Meng and Zhang, 2019) models.

2.1 Deeper Transformer

As shown in previous studies (Wang et al., 2019;
Sun et al., 2019), deeper Transformers with pre-
norm outperform its shallow counterparts on vari-
ous machine translation benchmarks. In their work,
increasing the encoder depth significantly improves
the model performance, while they only introduce
mild overhead in terms of speed in training and
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inference, compared with increasing the decoder
side depth.

Hence, we train deeper Transformers with a deep
encoder aiming for a better encoding representation.
In our experiments, we mainly adopt two settings,
with the hidden size 512 (Base) and 1024 (Large).
We adopt a 30-layer encoder for Base models and
20/24-layer encoders for Large models. Further
increasing the encoder depth does not lead to a
significant BLEU improvement. To keep the total
trainable parameters the same among models, the
filter sizes of Base and Large models are 16384
and 4096, respectively. For training, the batch size
is 4,096 tokens per GPU, and we train each model
using 8 NVIDIA V100 GPUs for about 7 days.

2.2 Wider Transformer
Inspired by last year’s Baidu system (Sun et al.,
2019), we also train Wider Transformers with a
larger inner dimension of the Feed-Forward Net-
work than the standard Transformer Large system.
Specifically, two settings are used in our experi-
ments. With a filter size of 15,000, we set the num-
ber of encoder layers to 10, and with a filter size
of 12,288, we set the number of encoder layers to
12. The number of total trainable parameters of the
Wider Transformer is kept approximately the same
as our Deeper Transformers.

In our experiments, we also set the batch size to
be 4,096 and train the Wider Transformers with 8
NVIDIA V100 GPUs for about 7 days.

2.3 Average Attention Transformer
To introduce more diversity in our Transformer
models, we use Average Attention Transformer
(AAN) (Zhang et al., 2018) as one of our candi-
date architectures. The Average Attention Trans-
former replaces the decoder self-attention module
in auto-regressive order with a simple average at-
tention, and introduces almost no loss in model
performance.

We believe that even though the performance of
AAN does not drop in terms of BLEU, the output
distributions of AAN networks should be different
from the output distributions of original Transform-
ers, which brings diversity for the final ensemble.
This also complies with our findings in self-bleu
experiments (Section 3.6).

In practice, AAN models are trained for both the
Wider Transformer and Deeper Transformer. The
batch size and other hyper-parameters are kept the
same as its non-AAN counterpart.

2.4 DTMT
DTMT (Meng and Zhang, 2019) is the recently
proposed deep transition RNN-based model for
Neural Machine Translation, whose encoder and
decoder are composed of the well-designed tran-
sition blocks, each of which consists of a linear
transformation enhanced GRU (L-GRU) followed
by several transition GRUs (T-GRUs). DTMT en-
hances the hidden-to-hidden transition with multi-
ple non-linear transformations, as well as maintains
a linear transformation path throughout this deep
transition by the well-designed linear transforma-
tion mechanism to alleviate the vanishing gradient
problem. This architecture has demonstrated its su-
periority over the conventional Transformer model
and stacked RNN-based models in NMT (Meng
and Zhang, 2019), and also achieves surprising per-
formances on other NLP tasks, such as sequence
labeling (Liu et al., 2019) and aspect-based senti-
ment analysis (Liang et al., 2019).

In our experiments, we use the bidirectional deep
transition encoder, where each directional deep
transition block consists of 1 L-GRU and 4 T-GRU.
The decoder contains a query transition block and
the decoder transition block, each of which consists
of 1 L-GRU and 4 T-GRU. Therefore the DTMT
consists of a 5 layer encoder and a 10 layer decoder,
with a hidden size of 1,024. We use 8 NVIDIA
V100 GPUs to train each model for about three
weeks and the batch size is set to 4,096 tokens per
GPU.

3 System Overview

In this section, we describe our system used in the
WMT 2020 news shared task.

Figure 1 depicts the overview of our Wechat
NMT. Our system can be divided into four parts,
namely data filtering, synthetic data generation, in-
domain finetuning, and ensemble. The synthetic
generation part further includes the generation of
out-of-domain and in-domain data. Next, we will
illustrate these four parts.

3.1 Data Filter
Following previous work (Li et al., 2019), we filter
the training bilingual corpus with the following
rules:

• Normalize punctuation with Moses scripts.

• Filter out the sentences longer than 100 words,
or exceed 40 characters in a single word.
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Figure 1: Architecture of WeChat NMT system. For simplicity, the data filtering module is ignored in the overview.

NUM
Bilingual Data 20.7M
Chinese Monolingual Data 153.5M
English Monolingual Data 121.2M

Table 1: Statistics of all training data.

• Filter out the duplicated sentence pairs.

• The word ratio between the source and the
target words must not exceed 1:4 or 4:1.

We also filter the monolingual corpus with the lan-
guage model trained by the corresponding data of
the bilingual training corpus.

In our experiments, the bilingual training data is
a combination of News Commentary v15, Wiki
Titles v2, WikiMatrix, CCMT and the UN cor-
pus. The Chinese monolingual data includes News
crawl, News Commentary, Common Crawl and
Gigaword corpus. The English monolingual data
includes News crawl, News discussions, Europarl

v10, News Commentary, Common Crawl, Wiki
dumps and the Gigaword corpus. After data fil-
tering, statistics of all training data are shown in
Table 1.

3.2 Out-of-Domain Synthetic Data
Generation

Now, we describe our techniques for constructing
both out-of-domain and in-domain synthetic data.
The out-of-domain synthetic corpus is generated
via both large-scale back-translation and knowl-
edge distillation to enhance the models’ perfor-
mance for all domains. Then, we propose itera-
tive in-domain knowledge transfer, which transfers
in-domain knowledge to the huge monolingual cor-
pus (i.e., Chinese), and builds our in-domain syn-
thetic corpus. In the following sections, we elabo-
rate above techniques in detail.
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3.2.1 Large-scale Back-Translation
Back-translation is shown to be very effective to
boost the performance of NMT models in both
academic research (Hoang et al., 2018; Edunov
et al., 2018) and previous years’ WMT competi-
tions (Deng et al., 2018; Sun et al., 2019; Ng et al.,
2019; Xia et al., 2019). Following their work, we
also train baseline English-to-Chinese models with
the parallel data provided by WMT2020. Both the
Left-to-Right Transformer (L2R) and the Right-to-
Left Transformer (R2L) are used to translate the
filtered monolingual English corpus combined with
the English side of golden parallel bitext to Chinese.
Then the generated Chinese text and the original
English text are regarded as the source side and
target side, respectively.

In practice, it costs us 7 days on 5 NVIDIA V100
GPU machines to generating all back-translated
data.

3.2.2 Knowledge Distillation
Knowledge distillation (KD) is proven to be a pow-
erful technique for NMT (Kim and Rush, 2016) to
transfer knowledge from the teacher model to stu-
dent models. In particular, we first use the teacher
models to generate synthetic corpus in the forward
direction (i.e., Chinese→English). Then, we use
the generated corpus to train our student models.

In this work, with baseline Chinese→English
models (i.e., L2R and R2L) as teacher models, we
translate the Chinese sentences of the parallel cor-
pus to English to form our synthetic KD dataset.
The knowledge distillation costs about 2 days on
2 NVIDIA V100 GPU machines to generate all
synthetic data.

3.3 Iterative In-domain Knowledge Transfer
Since in-domain finetuning demonstrates substan-
tial BLEU improvements (Sun et al., 2019; Li et al.,
2019), we speculate that the parallel data and the
dev/test sets fall in different domains. Therefore,
adapting our models to the target domain in ad-
vance will provide gains over the dev/test sets and
give a better initialization point for in-domain fine-
tuning. To this end, we use knowledge transfer to
inject more in-domain information into our syn-
thetic data.

In particular, we first use normal finetuning (see
Section 3.5) to equip our models with in-domain
knowledge. Then, we ensemble these models and
use the ensemble model to translate the Chinese
monolingual corpus into English. For our ensemble

translator, we use 4 models with different architec-
tures. Next, we pair original Chinese sentences with
generated in-domain pseudo English sentences to
form a pseudo parallel corpus. So far, the in-domain
knowledge from ensembled models is transferred
to the generated pseudo-parallel corpus. Finally, we
retrain our model with both the in-domain pseudo-
parallel and out-of-domain parallel data.

We refer to the above process as the in-domain
knowledge transfer. In our experiments, we find
that iteratively performing the in-domain knowl-
edge transfer can further provide improvements
(see Table 2). For each iteration, we replace the in-
domain synthetic data and retrain our models, and
it costs about 10 days on 8 NVIDIA V100 GPU
machines. For the final submission, the knowledge
transfer is conducted twice.

3.4 Data Augmentation
Aside from synthetic data generation, we also apply
two data augmentation methods over our synthetic
corpus. Firstly, adding synthetic/natural noises to
training data is widely applied in the NLP fields
(Li et al., 2017; Belinkov and Bisk, 2017; Cheng
et al., 2019) to improve model robustness and en-
hance model performance. Therefore, we proposed
to add token-level synthetic noises. Concretely, we
perform random replace, random delete, and ran-
dom permutation over our data. The probability of
enabling each of the three operations is 0.1. We
refer to this corrupted corpus as Noisy data.

Secondly, as illustrated in (Edunov et al., 2018),
sampling generation over back-translation shows
its potential in building robust NMT systems. Con-
sequently, we investigate the performance of sam-
pled synthetic data. For back-translated data, we
replace beam search with sampling in its genera-
tion. For in-domain synthetic data, we replace the
golden Chinese with the back sampled pseudo Chi-
nese sentences. We refer to the data with sampling
generation as Sample data.

As a special case, we refer to the without aug-
mentation data as Clean data.

3.5 In-domain Finetuning
We train the model on large-scale out-of-domain
data until convergence and then finetune it on small-
scale in-domain data, which is widely used for do-
main adaption (Luong and Manning, 2015; Li et al.,
2019). Specifically, we take Chinese−→English test
sets of WMT 17 and 18 as in-domain data, and
filter out documents that are originally created in
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English (Sun et al., 2019). We name above fine-
tuning approach as normal finetuning. In all our
finetuning experiments, we set the batch size to
4096, and finetune the model for around 400 steps1

on the in-domain data.
Furthermore, the well-known problem of expo-

sure bias in sequence-to-sequence generation be-
comes more serious under domain shift (Wang and
Sennrich, 2020). To solve this issue, we further ex-
plore some advanced finetuning approaches and
describe details in the following paragraphs.

Parallel Scheduled Sampling. We apply a two-
pass decoding strategy for the Transformer de-
coder when finetuning, which is named as parallel
scheduled sampling (Mihaylova and Martins, 2019;
Duckworth et al., 2019). In the first pass, we obtain
model predictions as a standard Transformer, and
then mix the predicted sequence with the golden
target sequence. In the second pass, we feed the
above mixture of both golden and predicted tokens
as decoder inputs for the final prediction. Thus the
problem of the training-generation discrepancy is
alleviated in the finetuning stage. According to our
preliminary experiments, we set the proportion of
predicted tokens in mixed tokens to 50%.

Target Denoising. In the training stage, the
model never sees its own errors. Thus the model
trained with teacher-forcing is prone to accumu-
lated errors in testing (Ranzato et al., 2015). To
mitigate this training-generation discrepancy, we
add noisy perturbations into decoder inputs when
finetuning. Thus the model becomes more robust to
prediction errors by target denoising. Specifically,
the finetuning data generator chooses 30% of sen-
tence pairs to add noise, and keeps the remaining
70% of sentence pairs unchanged. For a chosen
pair, we keep the source sentence unchanged, and
replace the i-th token of the target sentence with
(1) a random token of the current target sentence
15% of the time (2) the unchanged i-th token 85%
of the time.

Minimum Risk Training. To further avoid the
problem of exposure bias, we propose to use min-
imum risk training (Shen et al., 2016) in the fine-
tuning stage, which directly optimizes the expected
BLEU score instead of the Cross-Entropy loss, and

1According our experiments, finetuning with more steps
will make the model easy to overfit on the small in-domain
data.

naturally avoids exposure bias. Specifically, the ob-
jective is computed by,

R(θ) =
S∑

s=1

∑

y∈S(x(s))
Q(y|x(s); θ, α)∆(y, y(s)),

(1)
where x(s) and y(s) are two paired sentences. ∆ de-
notes a risk function and S(x(s)) ∈ Y is a sampled
subset of full search space. Then, the distribution
Q is defined over space S(x(s)),

Q(y|x(s); θ, α) =
P (y|x(s); θ)α∑

y′∈S(x(s)) P (y′|x(s; θ)α .

(2)
In practice, we use 4 candidates for each source

sentence x(s). Although the paper claimed that sam-
pling generates better candidates, we find that the
beam search performs better in our extremely large
Transformer model. The risk function we used is
the 4-gram sentence-level BLEU (Chen and Cherry,
2014) and we tune the optimal α via grid search
within {0.005, 0.05, 0.5, 1, 1.5, 2}. Each model is
fine-tuned for a max of 1000 steps.

3.6 Ensemble
We split each training data into three shards among
Clean, Noisy and Sample data respectively, which
yields a total number of 9 shards. For each shard,
we train seven varieties (two Deeper transform-
ers, two Wider transformers, two AANs and one
DTMT) with different model architecture. Then we
apply four finetuning approaches on each model,
thus the total number of models is quadrupled
(about 200 models). For ensemble, it is difficult
and inefficient to enumerate over all combinations
of candidate models (e.g., grid search). Therefore
a pruning strategy for model selection is neces-
sary when ensemble. We try to greedily select the
top-performing models for the ensemble. However,
only slight improvement is obtained (less than 0.1
BLEU), as our models are too similar to each other
after finetuning.

To further promote diversity among candidate
models, we propose the self-bleu driven pruning
strategy for advanced ensemble. Specifically, we
take the translations of one model as hypothe-
ses and translations of other models as references.
Then we calculate the BLEU score for each model
to evaluate its diversity among other models. Mod-
els with small BLEU scores are selected for en-
semble, and vice versa. According to our experi-
ments, we observe that (1) AAN and DTMT show
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SETTINGS DEEPER WIDER AVEATT DTMT
Baseline 26.24 26.35 26.17 26.08
+ Back Translation 29.64 29.70 29.48 28.88

+ Finetune 35.71 35.89 35.80 35.03
+ 1st In-domain Knowledge Transfer 38.14 38.22 38.21 37.98

+ Finetune 38.36 38.25 38.13 37.85
+ 2nd In-domain Knowledge Transfer 38.32 38.29 38.34 38.05

+ Finetune 38.49 38.31 38.38 38.12
+ Advanced Finetune 39.08 39.12 38.93 38.66

+ Normal Ensemble 39.19
+ Advanced Ensemble? 39.89

Table 2: Case-sensitive BLEU scores (%) on the Chinese→English newstest2019, where ‘?’ denotes the submitted
system. For each model architecture, we report the highest score among the three shards of clean data.

FINETUNING APPROACH DEEPER WIDER AVEATT DTMT
Normal 38.49 38.31 38.38 38.12
Parallel Scheduled Sampling 38.76 38.84 38.93 –
Target Denoising 38.88 38.92 38.63 38.66
Minimum Risk Training 39.08 39.12 38.78 38.45

Table 3: Case-sensitive BLEU scores (%) on the Chinese→English newstest2019 for different finetuning ap-
proaches after the 2nd in-domain knowledge transfer. For each model architecture, we report the highest score
among three shards of clean data and bold the best result among different finetuning approaches.

a clear difference with other architectures; (2) data
sharding is effective to promote diversity, espe-
cially for models trained with Clean data; (3) dif-
ferent finetuning approaches cannot bring diversity
for the same model. Under the guidance of self-
bleu scores, our advanced ensemble models con-
sist of 20 single models with differences in model
architectures, data types, shards and finetuning ap-
proaches. As shown in Table 2, the advanced en-
semble achieves absolute improvements over the
normal ensemble (up to 0.7 BLEU improvements).

4 Experiments

4.1 Settings

All of our experiments are carried out on 15 ma-
chines with 8 NVIDIA V100 GPUs each of which
has 32 GB memory. We use cased BLEU scores cal-
culated with Moses2 mteval-v13a.pl script as eval-
uation metric. newstest2019 is used as the develop-
ment set. For all experiments, we use LazyAdam
optimizer with β1 = 0.9, β2 = 0.998 and ε = 10−9.
The learning rate is set to 2.0 and decay with train-
ing steps. We use warmup step = 8000. We set
beam size to 4 and alpha to 0.6 during decoding.

2http://www.statmt.org/moses/

4.2 Pre-processing and Post-processing

We segment the Chinese sentences with an in-house
word segmentation tool. For English sentences, we
successively apply punctuation normalization, tok-
enization and truecasing with the scripts provided
in Moses. To enable open-vocabulary, we use byte
pair encoding BPE (Sennrich et al., 2016b) with
32K operations for both Chinese and English sides.

For the post-processing, we apply de-truecaseing
and de-tokenizing on the English translations with
the scripts provided in Moses.

4.3 Main Results

Table 2 shows that the translation quality is largely
improved with proposed techniques. We observe a
solid improvement of 2.8∼3.4 BLEU for the base-
line system after back translation. In-domain fine-
tuning yields substantial improvements among all
model architectures, which are 6.07∼6.32 BLEU.
The finetuned Transformer models achieve about
35.89 BLEU scores, and the DTMT achieves a
35.03 BLEU score. These findings demonstrate
that the domain of training corpus is apart from the
target domain, and hence domain adaptation has
great potential in improving model performance in
the target domain.

As described in Section 3.3, we inject the in-
domain knowledge into our monolingual corpus.
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Two In-domain knowledge transfers provide an-
other up to 3.02 BLEU score gain (i.e., from about
35.03 to 38.05). The in-domain knowledge transfer
brings more improvement compared with the nor-
mal finetuned models. Besides, we find that models
further finetuned after in-domain transfer performs
slightly better (about 0.1 BLEU). The improvement
suggests that although in-domain transfer has al-
ready provided plenty of in-domain knowledge, it
still has room for in-domain finetuning. We fur-
ther apply advanced finetuning techniques to our
models, as described in Section 3.5. The advanced
finetuning further brings about 0.81 BLEU score
gains, and we obtain our best single model with
39.12 BLEU scores.

In our preliminary ensemble experiments, we
combine some top-performing models at each de-
coding step, but only achieve slight improvement
over single models (about 0.1 BLEU). With our
advanced ensemble strategies in section 3.6, fur-
ther improvements are achieved over the normal
ensemble (0.7 BLEU). As a result, our WMT 2020
Chinese→English submission achieves a cased
BLEU score of 36.9 on newstest2020, which is
the highest among all submissions.

4.4 Effects of Advanced Finetuning
Approaches

In this section, we describe our experiments on
advanced finetuning. Here we take clean models as
examples, but models trained with noisy data and
sampled data show similar trends.

As shown in Table 3, all three advanced finetun-
ing methods significantly outperform normal fine-
tuning. For Wider and Deeper Transformers, Mini-
mum Risk Training provides the highest BLEU
gain, which is 0.81. For the Average Attention
Transformer, Parallel Schedule Sampling improves
the model performance from 38.38 to 38.93. For the
DTMT model, Target Denoising performs the best,
improving from 38.12 to 38.66. These findings are
in line with the conclusion of Wang and Sennrich
(2020) that links exposure bias with domain shift.
For each type of model, we only keep the best-
performing finetuned one for the final model en-
semble.

5 Conclusion

In this paper, we introduce the system WeChat
submitted for the WMT 2020 shared task on
Chinese→English news translation. Our system

is based on the Transformer (Vaswani et al., 2017)
with different variants and the DTMT (Meng and
Zhang, 2019) architecture. Data selection, several
effective synthetic data generation approaches (i.e.,
back-translation, knowledge distillation, and itera-
tive in-domain knowledge transfer), advanced fine-
tuning approaches (i.e., parallel scheduled sam-
pling, target denoising, and minimum risk training)
and self-bleu based model ensemble are employed
and proven effective in our experiments. Our con-
strained Chinese→English system achieved 36.9
case-sensitive BLEU score which is the highest
among all submissions.
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Abstract 

This paper describes the PROMT 
submissions for the WMT 2020 Shared 
News Translation Task. This year we 
participated in four language pairs and six 
directions: English-Russian, Russian-
English, English-German, German-
English, Polish-English and Czech-
English. All our submissions are 
MarianNMT-based neural systems. We use 
more data compared to last year and 
update our back-translations with better 
models from the previous year. We show 
competitive results in terms of BLEU in 
most directions. 

1 Introduction 

This paper provides an overview of the PROMT 
submissions for the WMT 2020 Shared News 
Translation Task. This year we participate with 
neural MT systems for the third time. We 
participate in four language pairs and six 
directions. We describe our data preparation 
pipelines, models training setups and present the 
results on the newstest sets. 

The paper is organized as follows: Section 2 is 
a brief overview of the submitted systems. Section 
3 describes the data preparation, preprocessing 
and statistics in detail. Section 4 provides a 
detailed description of the systems. In Section 5 
we present and discuss the results. Section 6 
concludes the paper. 

2 Systems overview 

We submitted six systems based on the 
MarianNMT (Junczys-Dowmunt et al., 2018) 
toolkit: English-Russian, Russian-English, 
English-German, German-English, Polish-English 
and Czech-English. All systems are unconstrained 
(we use the allowed data, private data and 

publicly available unconstrained data like 
OpenSubtitles). The English-German and 
German-English systems have the same basic 
architecture. The English-Russian and Russian-
English systems are slightly different as we use 
separate vocabularies. The Polish-English system 
was trained jointly in both directions. The Czech-
English is a multilingual system trained to 
translate from Croatian, Serbian, Slovak and 
Czech to English. 

3 Data 

We use all data provided by the WMT organizers, 
private in-house parallel data and other publicly 
available data, mainly from the OPUS website 
(Tiedemann, 2012). The human parallel data for 
the German-English system is exactly the same as 
for the English-German system, the two systems 
only have different synthetic back-translated data. 
This also applies to the English-Russian and 
Russian-English systems. 

We use the Tatoeba sets as our validation sets 
and the newstest2019 is our test set. The reason 
why we choose the Tatoeba corpus for validation 
is that we aim at building general-domain (and not 
just news-domain) models. Besides, the Tatoeba 
corpus is available for many language pairs 
beyond the scope of the WMT Translation Task. 

We only do fine-tuning for the Czech-English 
system. This will be described in detail in Section 
3.4 below. 

3.1 Data filtering 

There are several stages in our data filtering 
pipeline. The statistics for the final training data 
are shown in Table 1. Note that for the 
multilingual Czech|Croatian|Serbian|Slovak-
English system the table provides statistics only 
for the Czech-English part. The size of the filtered 
versions of the Croatian, Serbian and Slovak parts 
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are 21.8M, 21.7M and 14M parallel sentences 
respectively (more than 95% of the Serbian data is 
OpenSubtitles). 

Basic filtering 

This includes some simple length-based and 
source-target length ratio-based heuristics, 
removing tags, lines with low amount of 
alphabetic symbols etc. We also remove lines 
which appear to be emails or web-addresses. In 
addition, we remove lines with rare words from 
the Bookshop and the OpenSubtitles corpora 
(using frequency lists built on large monolingual 
corpora including all monolingual data from 
WMT, private data and Wikipedia dumps). 

Deduplication 

We remove duplicate translations and keep only 
the most frequent translation for the source 
sentence if it repeats more than two times. This 

procedure is applied to some corpora, e.g. 
OpenSubtitles and MultiUN which contain a lot of 
various (and often incorrect) translations for 
common phrases. For example, the English phrase 
‘No.’ is encountered almost 100k times in the 
source side of the English-Russian OpenSubtitles 
corpus. It has more than 78k unique translations, 
second most popular among which is ‘Да.’ (‘Yes.’ 
in Russian). 

Language detection 

The algorithm is a fairly simple ensemble of three 
tools: pycld2 1 , langid (Lui and Baldwin, 
2012), langdetect2. 

                                                           
1 https://pypi.org/project/pycld2/ 
2 https://pypi.org/project/langdetect/ 

Parallel data filtering with NMT and 
language models 

We apply this step to all data. Last year we used 
our own algorithm based on Hunalign (Varga et 
al., 2005) and our inhouse classifier to identify 
and discard unparallel sentence pairs. This year 
we use a different approach. We score parallel 
data with NMT models in both directions. We also 
score the source and target sides of the data with 
statistical language models built on large sets of 
what we assume to be good-quality data 
(basically, the newscrawl data from the statmt.org 
website). The scores are normalized by sentence 
length and summed up. We also apply weights 
(from 0.1 to 0.3 depending on the corpus type) to 
the statistical LMs scores as we mostly rely on the 
scores produced by the NMT models. The data is 
then sorted according to the final scores, and we 
select a subset of the data according to a certain 
threshold set individually for different corpora by 

our linguists. 

3.2 Data preprocessing 

BPE 

Same as last year, we use the OpenNMT toolkit 
(Klein et al., 2017) version of byte pair encoding 
(BPE) (Sennrich et al., 2016b) to encode our data 
to subword units. The BPE merge operations are 
learnt in case-insensitive mode. Case-insensitive 
BPE model is very useful when dealing with 
noisy data (like, for example, OpenSubtitles 
where uppercase is often used to communicate 
emphasis) or legal and financial data where 
specific terms are written in title case or 
uppercase. News headlines are also often written 
in title case or uppercase. 

The OpenNMT preprocessor handles case as a 
feature assigned to each token. As MarianNMT 

 

German-English Russian-English Polish-English Czech-English 

#sent  #tokens EN  #sent  #tokens EN  #sent  #tokens EN  #sent  #tokens EN  

WMT 26.6 580.1 27.3 690.9 10.3 183.2 11.4 147.8 

OPUS 23.8 475.9 8.3 74.9 26.8 283.7 29.1 263.8 

Private 7.5 100.4 25.5 428.2 0.3 3.7 0.4 5.1 

Total 57.9 1156.4 61.1 1194.0 37.4 470.6 40.9 416.7 

Table 1: Statistics for the filtered parallel data in millions of sentences (#sent) and tokens (#tokens) for four 
language pairs. WMT stands for the data available for the News Task on the statmt.org/wmt20 website; 

OPUS is the data from the OPUS website apart from the data available for the News Task; Private stands for 
private company data. 
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does not support features yet, we perform a ‘trick’ 
similar to the one described in (Tamchyna et al., 
2017): instead of using a feature we insert special 
tokens <C> and <U> after sequences in title case 
or uppercase. For example, a source sentence 

World Championships 2017: Neil Black praises 
Scottish members of Team GB 
is converted to 

world <C> championships <C> 2017 : neil 
<C> black <C> pra@@ ises scottish <C> 
members of team <C> gb <U> 

We do not use truecaser in our pipeline as it is 
redundant. All data is tokenized using the Moses 
toolkit (Koehn et al., 2007) tokenizer with 
aggressive tokenization, then the OpenNMT BPE-
splitter is applied, after that we convert the case 
feature to separate tokens. 

General tendency for our models this year is to 
build smaller BPE models. 

English-Russian and Russian-English 

Same as last year (Molchanov, 2019), we train the 
models with separate vocabularies due to the 
Cyrillic nature of Russian alphabet. Therefore we 
build separate BPE models for source and target, 
but with less merge operations (16k for English 
and 32k for Russian) compared to last year (35k 
and 45k respectively). 

English-German and German-English 

We train a joint BPE model for the English-
German pair with 16k merge operations. We use a 
shared vocabulary and tie all embeddings for all 
translation models with joint BPE. 

Polish-English 

We train a joint BPE model for the Polish-English 
pair with 12k merge operations. 

Czech-English 

As was mentioned earlier, our Czech-English 
model is a multilingual model trained to translate 
from Czech, Croatian, Serbian and Slovak into 
English. Therefore we train a joint BPE model for 
all five languages with 24k merge operations. As 
part of Serbian data is in Cyrillic alphabet, we 
transliterate it into Latin using an inhouse 
transliteration tool. 

3.3 Synthetic data 

There are two types of additional synthetic 
training data described in detail below. The final 
size of the training data for the submitted systems 
is roughly 4 times the total size of the filtered data 
in Table 1 Table 1 for each language pair. 

Both types of synthetic data are used for 
training all submitted systems. We also tag all 
synthetic data following (Caswell et al., 2019), 
i.e., insert a special token <bt> at the beginning of 
each source line for back-translations etc. 

Back-translated data 

Back-translations (Sennrich et al., 2016a) are a 
common way to improve NMT models quality. As 
we aim at building general-domain models, we 
use data from Wikipedia dumps and news from 
statmt.org. We shuffle the Wikipedia data and 
randomly select a subset of appropriate size. The 
selected Wikipedia subset and the news subset are 
roughly equal in size. The size of the whole 
corpus used for back-translation is approximately 
equivalent to the size of human training data. 

For the English-Russian pair we use our last 
year’s English-Russian model to obtain back-
translations for the Russian-English model. Then 
we train the Russian-English model and use it to 
obtain back-translations for the final English-
Russian model. 

We also obtain back-translations for the 
German-English pair using our last year’s models. 

For the Polish-English and Czech-English pairs 
we build intermediate models using all available 
data excluding OpenSubtitles and Paracrawl. 

We score our back-translations with the 
opposite-direction NMT models to discard 
obviously bad translations. 

Replicated data with unknown words 

We apply the technique described in (Pinnis et al., 
2017) to create a synthetic parallel corpus. The 
procedure includes the following steps: first, we 
perform word-alignment of our initial parallel 
training corpus using the fast-align  tool (Dyer et 
al., 2013). Then, we randomly replace from one to 
three unambiguously (one-to-one) aligned tokens 
in both source and target parallel sentences with 
the special <UNK> placeholder. The same 
pipeline is applied to both the initial and back-
translated data. We train our models to reproduce 
the <UNK> placeholder in various contexts and 
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use this feature for handling named entities as 
described in Section 4.1 below. 

3.4 Data for fine-tuning 

We only do fine-tuning for the Czech-English 
system. The model is tuned on available parallel 
Czech-English data mixed with back-translations 
of the English news 2017-2019 from statmt.org. 
We use the newstest2017-2019 as our devset. 

4 Systems architecture 

This section describes the trained systems in 
detail. We train transformer (Vaswani et al., 2017) 
models for all submitted systems. We use the 
recipe available at the MarianNMT website3. The 
system configuration, hyperparameters and 
training steps follow those in the recipe. 

We use the transformer-big configuration for 
the English-Russian model. 

We train single models for all directions. 
We use the beam of size 6 and the --

normalize parameter is set to 0.6. 

4.1 Handling named entities 

We preserve several types of named entities 
(NEs): numbers, emails, alphanumeric sequencies 
etc. in the following way. First, we produce the 
baseline NMT translation without any processing. 
Then we validate the translation of NEs by 
comparing the system’s output to the source 
sentence. The validation is simple: we search for 
the corresponding strings (numbers, emails etc.) in 
the system’s output. If some of the NEs are not 
translated or are translated incorrectly, we replace 
the entities with the <UNK> placeholder in the 
source sentence and translate the sentence again 
allowing the decoder to generate unknown words 
in the output. Finally, we substitute the <UNK> 
placeholders in the output with their initial value. 
If the number of the <UNK> placeholders in the 
NMT system’s output is not equal to the number 
of the placeholders in the source sentence, we fall 
back to the baseline NMT translation without NEs 
processing. We do not do any specific processing 
for proper names. 

                                                           
3 https://github.com/marian-nmt/marian-
examples/tree/master/wmt2017-transformer 

5 Results and discussion 

In this section we present the BLEU (Papineni et 
al., 2002) scores for our systems on two test sets 
and the analysis of the results. 

The scores are presented in Table 2. Calculation 
is done using the multi-bleu-detok.perl 
script from the Moses toolkit. 

We significantly outperform our last year’s 
submissions for the News Task. 

Fine-tuning for the Czech-English system does 
not give us significant improvements in terms of 
BLEU. This may be because we didn’t perform 
any data selection this year. 

We are among the top 10 systems in the 
English<>Russian directions, however, we are 
substantially behind the top systems in other 
directions in terms of BLEU. We see two reasons 
for that. First of all, we pay much more attention 
to our Russian systems, thus, our last year’s 
Russian systems had already undergone several 
iterations of updated backtranslations and 
retraining and can be considered strong baselines. 
Second, we possess much more private high-
quality data for the English-Russian pair 
compared to other language pairs. 

System newstest2019  newstest2020 
English-Russian 

Model2019 29.5 21.7 
Model2020 32.3 23.3 

Russian-English 
Model2019 37.2 33.6 
Model2020 42.3 38.2 

Polish-English 
Model2020 - 31.3 

English-German 
Model2019 38.2 29.8 
Model2020 40.7 31.9 

German-English 
Model2019 32.4 34.9 
Model2020 39.4 39.6 

Czech-English 
Model2020 - 25.1 
Model2020 
tuned 

- 25.6 

Table 2: Results for different systems and 
directions. The submitted systems are marked in 

bold. Model2019 stands for our last year’s 
submitted systems which we consider the baseline. 
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6 Conclusions and Future work 

In this paper we have described our submissions 
for the WMT 2020 Shared News Translation Task. 
Overall we have made six submissions in four 
language pairs: English-Russian, English-German, 
Polish-English and Czech-English. 

We have documented the methodology used to 
prepare the training data, system training set-ups, 
the pipeline for handling NEs. 

We show competitive results in most directions. 
In future we plan to experiment once again 

with a shared vocabulary for the English-Russian 
models applying transliteration to the source side. 
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Abstract

The paper describes the submissions of the
eTranslation team to the WMT 2020 news
translation shared task. Leveraging the experi-
ence from the team’s participation last year we
developed systems for 5 language pairs with
various strategies. Compared to last year, for
some language pairs we dedicated a lot more
resources to training, and tried to follow stan-
dard best practices to build competitive sys-
tems which can achieve good results in the
rankings. By using deep and complex archi-
tectures we sacrificed direct re-usability of our
systems in production environments but eval-
uation showed that this approach could result
in better models that significantly outperform
baseline architectures. We submitted two sys-
tems to the zero shot robustness task. These
submissions are described briefly in this paper
as well.

1 Introduction

The European Commission’s eTranslation project1,
a building block of the Connecting Europe Facility
(CEF), has been set up to help European and na-
tional public administrations exchange information
across language barriers in the EU. More details
about the project can be found in (Oravecz et al.,
2019). Our participation in last year’s WMT shared
task marked an important step towards opening the
service to the coverage of additional, non-EU lan-
guages and to domains beyond the formal language
of EU institutions. Due to the encouragement and
insights we received from WMT 2019, a complete
set of general domain MT engines has meanwhile
been implemented and incorporated into the eTrans-
lation service.

This year the team participated in the news trans-
lation shared task with five different language pairs:
English→ German, Japanese→ English,

1https://ec.europa.eu/cefdigital/wiki/
display/CEFDIGITAL/eTranslation

English→ Polish, Russian→ English and English
→ Czech. The varying performance of these sys-
tems reflects the amount of resources dedicated to
their developments.

2 Data Preparation

This section briefly describes the data sets, the se-
lection, and filtering methods applied to the pro-
vided parallel and monolingual data in order to
increase the quality of trained models. We primar-
ily focused on constrained submissions, but due to
the low quality of our first En→Pl models trained
only on the constrained data set we switched to the
unconstrained scenario and chose to submit only
the unconstrained En→Pl system (see Section 4.3).

2.1 Data Selection and Filtering
In general, we made use of all provided original
parallel (OP) data to build baseline models for ref-
erence or back-translation. Some brief experiments
were made with the exclusion of one or the other
data set. However, the best baseline models were
trained when we used all OP data (except for the
UN Parallel Corpus for Ru→En, which, like last
year, did not improve the results). This year, where
we used it, we did not apply any advanced filtering
technique to ParaCrawl (except for JParaCrawl for
Ja→En) either, the 5.1 version proved to be usable
without further complex processing.

The domain distribution of the data sets was not
uniform across language pairs, which had some in-
fluence on the workflows we applied to specific lan-
guage pairs but the basic procedure of data cleaning
was similar in all cases.

As a general clean-up, we performed the follow-
ing steps on the parallel data2:

• language identification with FastText3 (Joulin
et al., 2016),

2For Japanese, these steps were not used.
3https://fasttext.cc/docs/en/

language-identification.html
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Data set En→De Ja→En En→Pl Ru→En En→Cs

Europarl v10 1.80M – 0.62M – 0.62M
Common Crawl 2.18M – – 0.78M 0.11M
News Commentary v15 0.36M 1.74k – 0.30M 0.25M
Rapid Corpus 1.12M – 0.25M – 0.28M
Wiki Titles v2 1.30M 0.59M 0.49M 0.05M 0.32M
Yandex – – – 1.00M –
(J)ParaCrawl 34.2M 8.63M 6.18M 4.25M 4.90M
WikiMatrix 5.47M 0.81M 0.55M 3.40M 1.92M
CzEng 2.0 – – – – 41.6M
TED Talks – 0.23M – – –
Subtitle Corpus – 2.80M – – –
Kyoto Free – 0.43M – – –

Total: 46.43M 13.49M 8.04M 9.78M 50.0M

Table 1: Number of segments in the filtered parallel data used for baseline models.

• segment deduplication with masked numer-
als4,

• deletion of segments where source/target to-
ken ratio exceeds 1:3 (or 3:1),

• deletion of segments longer than 100-150 to-
kens (depending on language pair),

• exclusion of segments without a minimum
number of alphabetic characters.

The above steps led to an average reduction of
about 10% of the training data.

We applied language specific filtering in Ja→En
to exclude segments which contained non-Latin
(Greek) or non-CJK character ranges, and in
En→Cs we added a sentence segmentation step
using Tikal5 to break up a large number of raw
segments merging several sentences. In the En→Pl
and Ru→En data sets, we filtered out segments
with more than 8 or mismatched numeric tokens,
and deleted segments filled with excessive punctu-
ation marks. The number of segments in the base
filtered data is shown in Table 1.

In the language pairs where we used monolin-
gual data to build language models or create syn-
thetic parallel text, we generally selected recent tar-
get language News Crawl data sets. For En→Pl, the
1.32B segments of the Polish Common Crawl were
ranked with a language model built on the News
Crawl data, and the top 2.15M segments were used

4We deleted duplicate segments regardless of differences
in numerals.

5https://okapiframework.org/

for back-translation. In the non-Japanese back-
translation data we performed some additional fil-
tering: we set a threshold on the maximum length
of a token (40-100) and the minimum ratio of let-
ters to digits in a segment (4), filtered out segments
with scrambled tokens (2019 German News Crawl)
or token (bigram) repetitions (En→Cs).

Depending on data availability we needed differ-
ent ways of creating development and test data sets.
For En→De and En→Cs, we used the 2018 test
set as validation set in the trainings and the 2019
test set as the test set to evaluate the trained mod-
els. We did not specifically make a source original
extraction from these data sets; the 2019 test set al-
ready contained only source original segments and
the 2018 set was only used for early stopping of
the training (see Section 3.2.2 for the use of source
original data sets in the trainings).

For Ru→En, we used the 2018 and 2019 test
sets for testing and 2500 segments randomly se-
lected from the combined 2012-2017 test sets. For
En→Pl, due to data sparsity, we used 500 segments
of the 2020 dev set for testing and the rest for vali-
dation. For Ja→En, the provided development set
was used to test the models during development,
while a random subset of 3000 segments from OP
was extracted to serve as validation set.

2.2 Pre- and Postprocessing

Similarly to our last year’s submissions (Oravecz
et al., 2019), in the default workflows, we generally
did not apply the standard pre- and postprocess-
ing steps of truecasing, or (de)tokenization, these
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did not have a noticeable effect on most of the re-
sults. We simply used SentencePiece (Kudo, 2018),
which allows raw text input/output within the Mar-
ian toolkit (Junczys-Dowmunt et al., 2018)6 in the
experiments. For certain language pairs, however,
some tailored processing steps were applied and
tested. These are described in detail in the language
pair specific result sections.

3 Trainings

Our access to computing resources is not unlim-
ited. Therefore, we did not have much room for
large scale experiments with either a wide range of
scenarios or extensive tuning of hyperparameters.
Nevertheless, as opposed to last year, where we
decided to stick only to simple setups and training
procedures, this year we tried more complex mod-
els and utilized significantly more data where it was
possible. In all experiments we used Marian, which
is the core tool of our standard NMT framework
in the eTranslation service. All trainings were run
as multi-GPU trainings on 2 or 4 NVIDIA V100
GPUs with 16GB RAM. Base transformers were
typically trained for 7 epochs for high resource
and 11 epochs for lower resource language pairs,
whereas big transfomers were generally trained
for 12 epochs for high and 30 epochs for lower
resource.

3.1 NMT Models

We trained base transformer models (Vaswani et al.,
2017) in all language pairs for the first baseline
models and for models used for back-translation to
gain efficiency in back-translating large amounts
of target monolingual data. To build the more com-
petitive systems we switched to big transformer
architectures; this in some cases led to significant
improvements but at the same time the rise in com-
puting costs was also substantial. This year we
also built 2–4 member ensembles from big trans-
formers for high resource language pairs; again a
high cost for a relatively smaller scale improve-
ment. For most of the hyperparameters we used the
default settings for the base transformer architec-
ture in Marian7 with dynamic batching and tying
all embeddings. To save time and resources, we
stopped the trainings if sentence-wise normalized

6We used default settings for Marian’s built-in Sentence-
Piece: unigram model, built-in normalization and no subword
regularization.

7See eg. https://github.com/marian-nmt/
marian-examples/tree/master/transformer.

cross-entropy on the validation set did not improve
in 5 consecutive validation steps. In the big trans-
former experiments, following recommended set-
tings for Marian, we doubled the filter size and the
number of heads, decreased the learning rate from
0.0003 to 0.0002 and halved the update value for
--lr-warmup and --lr-decay-inv-sqrt.

For En→De and En→Cs we set a 36k joint Sen-
tencePiece vocabulary, which seems to be more or
less in the standard range nowadays. We had some
previous experiments with other vocabulary sizes
but with no improvement. Ja→En models were
trained with a 32k vocabulary size, En→Pl with
32k, and Ru→En with 30k.

3.2 Improving Baseline Models

This section describes the methods we applied
to improve baseline models, such as building ad-
ditional synthetic data sets with back-translation
(Sennrich et al., 2016), using original parallel or
development data (where available) to continue the
training of already converged models and building
ensembles of deep models originally trained from
different seeds. Evaluation scores are reported in
Section 4.

3.2.1 Synthetic Data
Back-translation (BT) is a standard data augmen-
tation technique in neural machine translation, but
one which brings another set of tunable parame-
ters in the search for best settings as far as the
optimal amount of synthetic data, ratio of bitext
to back-translation data or methods to generate
the synthetic source are concerned (Edunov et al.,
2018; Hoang et al., 2018). Tagged back-translation
(Caswell et al., 2019) has recently been proposed as
a simple alternative to noising techniques, arguing
that it is the indication of the data being synthetic
that is relevant for the model. This has been justi-
fied in our experiments as well, therefore we used
this technique in all workflows for all language
pairs.

In the En→De system, we ran various exper-
iments with small amounts of BT data from the
2019 News Crawl (10M, 20M, 50M), which gave
some improvement in the base architectures. How-
ever, for the deeper models we back-translated
116M8 2016, 2017 and 2019 News Crawl segments
and used it as tagged synthetic data in the train-
ings (with segments longer than 75 tokens filtered

8From 170M after the filtering.
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out). As suggested by Ng et al. (2019) and Junczys-
Dowmunt (2019), we upsampled the original par-
allel data to a 1:1 ratio.9 This setup was a one
shot configuration, we had no time and resources
to experiment with using more BT data or other
OP-BT combinations. In En→Cs we followed a
similar procedure of back-translating recent News
Crawl data and upsampling the OP data to keep the
balance of the two types of data sets.

For Ja→En, we tried to use only News Crawl or
use it together with the News Discussions mono-
lingual data. Both setups gave similar results in
the end. In Ru→En, we first experimented with
the BT data provided by the University of Edin-
burgh but this was not beneficial so we decided
to use only translations produced by our own BT
systems. We translated 100M of the monolingual
English data (50M News Crawl (2017-2019) and
50M News Discussions (2018–2019)), and filtered
it down with LMs to 50.4M.

For En→Pl, we translated all of the available
Polish News Crawl (3.79M) as well as 2.15M of the
Polish Common Crawl (cf. Section 2.1). They were
subsequently filtered down to 3.7M and 1.97M.

3.2.2 Continued Trainings
This year we experimented with a two stage con-
tinued training process as a possible direction to
improve performance as domain adaptation (Lu-
ong and Manning, 2015). For En→De, we built a
transformer language model from the 2016, 2017
and 2019 filtered News Crawl data set (116M seg-
ments) and scored the German side of the original
parallel data. The scores created a ranking of OP
data from which we took the top 20M10 to continue
training of OP+BT trained models (as suggested by
Junczys-Dowmunt (2019)) until the BLEU score
on the test set increased (typically 2 epochs with an
increase of 1 point). In the second stage, we used
the 2008–2018 development sets (32.5k segments)
in the experiments and for the final submission we
extended it with the 2019 test set. We trained 4
epochs on this set and then for additional 2 epochs
we switched to a source original subset (14.5k)
to reach the highest BLEU score. This second
stage yielded a much smaller improvement than
last year. However, this year the starting models

9For En→De this meant taking the full OP dataset twice
and padding the rest with a subset of OP. This subset was from
a language model scored OP data set, see Section 3.2.2 for
more details.

10We tried 10M and the full 44.7M sets as well.

were more powerful already. Fine tuning on the
development set worked much better for Ja→En,
where we achieved more than 2 points BLEU score
(Table 3) increase on the best performing engine
by continuing the training until the first stall (20
epochs). The same procedure, however, did not
give any improvement for En→Cs.

3.2.3 Ensembles
For the En→De final submissions, we set up a 4
big transformer ensemble trained with the same
(best) configuration and workflow but with differ-
ent seeds. As reported in Section 4.1, this system
achieved the highest score and was submitted as
primary. In Ja→En, a two model ensemble did
not yield any improvement so it was not submit-
ted, in En→Cs, a two model ensemble was submit-
ted because it outperformed a three model one on
the development set. The Ru→En and the En→Pl
systems submitted were 3 model big transformer
ensembles the latter with only a minimal increase
in performance compared to the single models (cf.
Section 4.3).

3.2.4 Ineffective Methods
We make a brief mention of the methods that we
tried but did not lead to any increase in quality. In
particular, for En→De, we built two big R2L mod-
els for rescoring ensemble outputs but this tech-
nique did not yield any improvement. Therefore,
we stopped the experiments in this direction. We
also tried to improve the performance of the final
ensemble by adding a transformer type language
model trained for 2 epochs from the same German
News Crawl data we used in other components
(116M segments), but this setup did not help in any
weight combination we tested either.

In Ja→En, we tested various preprocessing
workflows including NFKC Unicode normaliza-
tion, replacing numbers with placeholders, and
also experimented with data selection using only
subsets of monolingual data (without News Dis-
cussions), subsets of News Commentary selected
by topic modelling and n-gram or transformer LM
based data selection for tuning, all with no improve-
ment in the results.

4 Results

We submitted one system for each of the five lan-
guage pairs. In this section we provide evaluation
scores for models at important stages in the exper-
iments, which reflect how the models got better
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as we tried various methods for improvement. All
results are reported in detokenized BLEU.11

4.1 English→German

Test sets

System Data 2019 2020

M1: Baseline 44.7M 41.9 32.7
M2: M1+BT+CT 64.7M 43.3 34.4
M3: M2+Tbig 232M 44.5 36.9
M4: M3+FT 232M+34.5k 44.8 37.2

M5: M4 ens 232M+34.5k 46.0 37.9

Table 2: Results for En→De models. The 2020 results
are post-submission with the updated (A) reference set.

In Table 2 we present the main stages of the
development of the En→De systems. Model 1
was our baseline model and used only the original
parallel data12 (Table 1), which was almost eight
times more (already including the full ParaCrawl)
than last year, and so the result on the 2019 test
set already equaled the performance of our best
submission model from last year (Oravecz et al.,
2019). Model 2 was the best single base trans-
former trained from OP extended with 20M tagged
back-translated (BT) segments and then with con-
tinued training (CT) on the language model scored
20M OP data subset. This yielded substantial im-
provement but was still far from the best setups.
For Model 3, we switched to the big transformer
architecture and used the large BT dataset (116M)
with the upsampled OP. The training procedure
was the same as in the previous system; the first
converged model was trained further with the LM-
scored OP subset as long as the BLEU score in-
creased. Clearly, this resulted in a more power-
ful system, further improving the result. The next
model (M4) was fine-tuned (FT) with the devel-
opment set, bringing a small but steady increase.
Finally the system we submitted was an ensemble
of four M4 models. As last year, a postprocessing
step normalizing German punctuation was run on
the final hypotheses.

This year the development of the best perform-
ing En→De system was dominated by brute force:

11sacreBLEU signatures: BLEU+case.mixed+
lang.en-de+numrefs.1+smooth.exp+tok.13a+
version.1.4.12

12We trained only with unique segments, this accounts for
the 1.7M decrease from the 46.43M in Table 1.

the more complex and resource demanding archi-
tectures performed significantly better, although
some careful selection and ranking of the training
data also played a role. We managed to train better
and better systems as we added more and more
resources, and it is very likely that without the lim-
itations in our training environment results could
have been further improved.

4.2 Japanese→English

System Property Score Increment

M1 baseline 20.42 –
M2 Bicl. filtering 21.35 +0.93
M3 Unicode filtering 21.53 +0.18
M4 normalization 22.13 +0.60
M5 truecasing 22.07 -0.06
M6 back-translation 23.48 +1.35
M7 balanced BT 23.73 +0.25
M8 fixed big numbers 23.97 +0.24
M9 big transformer 25.39 +1.42

M10 tuned with devset 27.58 +2.19

Table 3: Results for Ja→En models. The BLEU score
is measured on the development set.

Table 3 summarizes the results of the Ja→En
experiments. We trained more than 20 different
models from which we present those that produce
some increment in the BLEU score. The M1 base-
line model was trained from the original parallel
data, 13.4 million segments from the 7 constrained
resources. This baseline already contained some
minimal filtering of duplicates, deletion of markup
etc. The M2 model was filtered with Bicleaner
(Sánchez-Cartagena et al., 2018), where the filter
model was built from this training data. In the M3
system, we used a Unicode range filter, leaving seg-
ments containing text using characters only from
35 Unicode character ranges out of the possible
150. In the M4 model, this Unicode filtering was
applied before building the Bicleaner filter model.
The M5 model used truecasing on the English train-
ing and translation data. In M6, synthetic data from
back-translation of the monolingual English News
Crawl (33M), News Discussion (30M) and News
Commentary (0.6M) was added (and tagged). The
M7 model contains the same data but the origi-
nal parallel data was upsampled 3 times to keep
a 1:1 ratio to the back-translated data. In M8, we
normalized big Japanese numbers to match with
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millions and billions, which were frequently used
in the news domain. M9 was a big transformer
model built on 4 V100 GPUs. In model M10 (sub-
mitted), we tuned the big transformer model on the
development set.

4.3 English→Polish

Test sets

System Data 2020d 2020

M1: Baseline 8.00M 22.2 22.5
M2: M1+BTnews 11.0M 23.3 22.8
M3: M2+BT-Comm-Cr 13.0M 23.4 23.0

Unconstrained
M4: M3+OPUS+news 53.1M 24.2 23.8
M5: M4+Tbig 53.1M 26.0 24.9
M6: M5 ens 53.1M 26.0 25.0

M7: M6+FT 53.1M – 27.2

Table 4: Results for En→Pl models. The 2020 results
are post-submission.

Table 4 presents the main stages of the develop-
ment of the En→Pl systems. Model 1 was a base
Transformer and used only the original parallel data
(Table 1). Model 2 included the back-translated
News Crawl data, and Model 3 had the addition of
the back-translated Common Crawl subset. Each
step gave only a very modest improvement. At this
stage, we tried to make use of additional data sets
and switched to experimenting with unconstrained
systems. For Model 4, we added 40M segments
of filtered OPUS parallel data, and a small amount
of monolingual Polish proprietary data that was
back-translated into English. Model 5 is similar to
M4 but it is a big transformer, and Model 6 is an
ensemble built of three M5 models trained from
different seeds. All models for the ensemble were
fine-tuned for 24 epochs on 5.5k of domain-specific
data consisting of a thousand sentences from the
development set plus the manually selected back-
translated proprietary news data.

4.4 Russian→English

Table 5 gives a summary of the development stages
of the Ru→En systems. M1 and M2 are our base-
line systems. Initially, the WikiMatrix data (WM)
for Russian was corrupt and we built a baseline
without it. After a usable version was provided, we
trained another baseline system. M3 included some

Test sets

System Data 2019 2020

M1: Baseline 6.40M 37.3 33.7
M2: M1+WM 9.80M 38.9 35.3
M3: M2+BT 98.5M 39.1 37.2
M4: M3+Tbig ens 98.5M 40.1 38.0
M5: M3+Tbig+FT1 98.5M 39.6 36.6

M6: M3 ens+FT2 98.5M – 37.5

Table 5: Results for Ru→En models. The 2020 results
are post-submission.

50M of back-translated News Crawl and News Dis-
cussions data and the OP data of M2 upscaled to
a 1:1 ratio to the back-translated data. M4 is an
ensemble of 3 big transformer models trained with
the same workflow as M3 but with different seeds.
M5 is a single big transformer (one of the three
in M4) that was fine-tuned for 6 epochs on the
2012–2018 development sets. Finally, M6 is a 3
model ensemble of the fine-tuned models from M4,
but for submission fine-tuned on the 2012–2019
development sets.

4.5 English→Czech

Test sets

System Parallel data 2019 2020

M1: Baseline 45.0M 26.5 31.4
M2: M1+BT 166M 26.8 32.2
M3: M2+Tbig 166M 28.3 33.8
M4: M2+Tbig 166M 28.6 33.7

M5: M3+M4 ens 166M 28.9 34.4

M6: sent. seg. 166M – 35.7

Table 6: Results for En→Cs models. The 2020 results
are post-submission.

We trained only a few straightforward models
for the En→Cs system. The scores in Table 6
give the outcome of the evaluation of 6 simple se-
tups: Model 1 was a base transformer built on the
original parallel data (excluding ParaCrawl, which
decreased the score). The data for Model 2 was
extended with back-translated 2007-2019 News
Crawl. In various experiments, the pre 2019 News
Crawl data only gave a minor increase in BLEU,
the 2019 set was more useful. For the other mod-
els, we trained big transformers and built small
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ensembles. However, an ensemble of two outper-
formed the ensemble of three models in the end.
We tried continued training on the development
sets from the previous years, but it only led to a
drop in the score. As a basic post-processing step,
we applied double quote and ellipsis normalization.
The 2020 test set contained segments with multiple
sentences, so in the submission set we performed
some sentence segmentation in preprocessing be-
fore translation.

4.6 Zero Shot Submissions to the Robustness
Task

The best performing En→De (fine-tuned 4 member
big transformer ensemble) and Ja→En (fine-tuned
big transformer) systems were submitted without
any changes as zero shot models for the Robust-
ness Task. Interestingly, these zero shot models
(as well as most of the submissions from the other
participants), seemed to score better on these very
noisy test sets than on the news test sets, suggest-
ing that the training data used was not completely
news domain oriented and might already give good
support for diverse domains.

5 Conclusion

We described the submissions of the eTransla-
tion team to the WMT 2020 news translation
shared task on 5 language pairs: English-German,
Japanese-English, English-Polish, Russian-English,
and English-Czech. Like last year, we tried to
build the best possible systems in a relatively low-
resource production environment. But in contrast
to last year, we dedicated more resources to certain
language pairs, and tried more complex models
and utilized significantly more data where possible.
In particular, we experimented with various tech-
niques (big transformer models, synthetic data ob-
tained from tagged back-translation, two stage con-
tinued training process, ensembling up to 4 models)
and obtained significant improvements over base-
line models: from 4 to 7 BLEU points depending
on the language pair on the 2020 test sets. We
ranked competitively in all language pairs, reduc-
ing the gap from the best systems significantly from
last year.13 However, the submitted setups cannot
be reused in our production environment due to
their excessive demands on resources, but lessons
learnt from those experiments shall provide valu-
able insights to improve the eTranslation system

13For example, in En→De from 3 BLEU points to 0.9.

under its current constraints.14

For the production eTranslation service, with lan-
guage specific systems for all official EU and EEA
languages, finding the right balance between the
use of resources in production environments and
the best possible performance of models remains a
challenge for future work.
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Abstract

This paper describes the ADAPT Centre’s
submissions to the WMT20 News translation
shared task for English-to-Tamil and Tamil-to-
English. We present our machine translation
(MT) systems that were built using the state-of-
the-art neural MT (NMT) model, Transformer.
We applied various strategies in order to im-
prove our baseline MT systems, e.g. monolin-
gual sentence selection for creating synthetic
training data, mining monolingual sentences
for adapting our MT systems to the task, hy-
perparameters search for Transformer in low-
resource scenarios. Our experiments show that
adding the aforementioned techniques to the
baseline yields an excellent performance in the
English-to-Tamil and Tamil-to-English transla-
tion tasks.

1 Introduction

The ADAPT Centre participated in the News Trans-
lation Shared Task of the Fifth Conference of
Machine Translation (WMT20) in the English-to-
Tamil and Tamil-to-English language directions.
To build our neural MT systems we used the
Transformer model (Vaswani et al., 2017). Our
strategies to build the competitive MT systems for
the task include applying the state-of-the-art data
augmentation approaches (e.g. (Sennrich et al.,
2016a; Caswell et al., 2019)), selecting “pseudo” in-
domain monolingual sentences for the creation of
synthetic bitexts, mining monolingual source and
target sentences for the adaptation of neural MT
(NMT) systems, finding the optimal set of hyper-
parameters for Transformer as far as low-resource
translation is concerned.

The remainder of the paper is organized as fol-
lows. In Section 2, we present our approaches for
the MT system building. Section 3 first presents
details of the data sets used and then presents the
evaluation results with some discussions, while

Section 4 concludes our work with avenues for
future work.

2 Our Strategies to improve MT Systems

2.1 Data Augmentation

The data augmentation methods (Sennrich et al.,
2016a; Zhang and Zong, 2016; Burlot and Yvon,
2018; Poncelas et al., 2018; Bogoychev and Sen-
nrich, 2019; Caswell et al., 2019; Chen et al., 2019),
which usually employ the unlabeled monolingual
data in addition to limited bitexts, can positively
impact the MT system’s performance and are very
popular among the MT developers and researchers
(Barrault et al., 2019). In other words, use of
augmented bitexts that include synthetic data to
improve a NMT system is nowadays a common
practice, especially in the under-resource scenar-
ios. The synthetic training data whose target-side
sentences are original is more effective for domain
text translation and generation of fluent transla-
tions. In this task, in order to improve our baseline
Transformer models, we augmented our training
data with the target-original synthetic data. As
in Caswell et al. (2019), in order to let the NMT
model know that the given source is synthetic, we
tag the back-translated source sentences with an
extra token.

Note that we also tried applying the so-called
self-training1 strategy (Ueffing et al., 2007) to im-
prove our NMT systems. However, this method
does not bring any improvements in the Tamil-to-
English translation task, and deteriorates the perfor-
mance of the MT systems in the English-to-Tamil
translation task.

Iterative generation and training on synthetic
data can yield increasingly better NMT systems,

1Synthetic data for training is created by the MT system
itself (i.e. source-side is original) (Zhang and Zong, 2016;
Burlot and Yvon, 2018).
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especially in low-resource scenarios (Hoang et al.,
2018; Chen et al., 2019). Similarly, in order to
produce our final English-to-Tamil and Tamil-to-
English MT systems, we performed iterative train-
ing by back-translating new monolingual data with
the updated MT system and appending the resultant
synthetic data to the original training data in each
iteration.

2.2 Selecting pseudo In-Domain Sentences
In an attempt to improve the quality of our NMT
engines, we extracted monolingual sentences from
large monolingual data that are similar to the styles
of the in-domain data. Sentences of a large mono-
lingual corpus similar to the in-domain sentences
when selected based on the perplexity according
to an in-domain language model were found to be
effective in MT (Gao et al., 2002; Yasuda et al.,
2008; Foster et al., 2010; Axelrod et al., 2011;
Toral, 2013). As for NMT training, we believe
that synthetic parallel data created using pseudo
in-domain sentences can be better alternatives than
those selected randomly. Accordingly, we select
“pseudo” in-domain sentences from a large mono-
lingual corpus based on the perplexity scores ac-
cording to the in-domain language models. The
extracted sentences are then back-translated with
a target-to-source MT system to form synthetic
training data.

2.3 Mining Monolingual Sentences for the
Adaptation of the NMT models

Chinea-Rı́os et al. (2017) demonstrated that in case
of specialised domains or low-resource scenarios
where parallel corpora are scarce sentences of a
large monolingual data that are more related to
the test set sentences to be translated could be ef-
fective for fine-tuning the original general domain
NMT model. They select those instances from
large monolingual corpus whose vector-space rep-
resentation is similar to the representation of the
test set instances. The selected sentences are then
automatically translated by an NMT system that
is trained on a general domain data. Finally, the
NMT system is fine-tuned with the resultant syn-
thetic data. In a similar line of research, it has also
been shown that an NMT system built on general
domain data can be fine-tuned using just a few sen-
tences (Farajian et al., 2017, 2018; Wuebker et al.,
2018; Huck et al., 2019).

In our case, since English–Tamil is a low-
resource language-pair and have a little amount

of bitexts pertaining to the targeted domain (News),
we followed Chinea-Rı́os et al. (2017) and mined
those sentences from large monolingual data that
can be beneficial for fine-tuning the original NMT
models. In addition to mining source-side sen-
tences (Chinea-Rı́os et al., 2017), we also mined
target language sentences from large monolingual
corpus (Huck et al., 2019) when English is the
source language. However, our selection methods
are different to those of the other papers (Chinea-
Rı́os et al., 2017; Farajian et al., 2017, 2018; Wue-
bker et al., 2018; Huck et al., 2019) and are de-
scribed below.

Terms are usually indicators of the nature of a do-
main and play a critical role in domain-specific MT
(Haque et al., 2020). The target translation could
lose its meaning if the terminology translation is
not dealt with care. Therefore, we focused on min-
ing those sentences from a large monolingual cor-
pus that contain domain terms. For this, we made
use the approach of Rayson and Garside (2000);
Haque et al. (2014, 2018) for identifying terms in
the test set which is to be translated. This term
extraction method performs well even on a small
amount of sentences (Haque et al., 2014, 2018).
The goal is to identify those words which are most
indicative (or characteristic) of the test corpus com-
pared to a reference corpus. Haque et al. (2014,
2018) used a large corpus which is generic in nature
as a reference corpus. We adopted their approach
and used a large generic corpus in order to identify
terms in the test set. Additionally, in our second
setup, we used the training set on which the NMT
systems were trained as the reference corpus. The
intuition is to extract those terms or sequence of
words from the test set that do not occur or rarely
occur in the training set and convey representative-
ness of the test set. We merged the two sets of terms
extracted following the two setups above. Given
the resultant list of terms, we mine sentences from
monolingual corpus.

We observed that the WMT20 News develop-
ment text contains many named entities (NEs) and
many of them are out-of-vocabulary items. We also
found that our initial MT systems miserably failed
to translate many NEs. Therefore, we used Stan-
ford named entity recogniser (NER)2 (Finkel et al.,
2005) in order to identify NEs in the English test
set. As above, we used the extracted NEs in order
to mine sentences from a large monolingual corpus.

2https://nlp.stanford.edu/software/CRF-NER.html
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We build an English-to-Tamil transliteration system
and the extracted English NEs were transliterated
into Tamil. Note that we took 5-best Tamil trans-
lations for an English NE as in Huck et al. (2019).
These Tamil NEs were then used to mine Tamil
sentences from a large target monolingual corpus.

In order to build the English-to-Tamil translit-
eration system, we used the 2016 Named En-
tity Transliteration Shared Task (NEWS) dataset3

(Duan et al., 2016). We used our in-house machine
transliteration tool (Haque et al., 2009) in order to
prepare the English-to-Tamil transliteration system.

We could not apply this strategy in the Tamil-
to-English translation task since there is no pub-
licly available NER for Tamil. The source and tar-
get sentences that have been mined are translated
with the final source-to-target and target-to-source
NMT systems, respectively. This results in a set of
synthetic sentence-pairs. Source sentences whose
target-side is original are tagged with a special to-
ken (Caswell et al., 2019) (cf. Section 2.1). As in
Chinea-Rı́os et al. (2017), the original MT system
is finally fine-tuned on these synthetic segment-
pairs.

For mining monolingual sentences we create an
efficient Trie structure given the large monolingual
data. The idea is to store indices of the sentences
(i.e. we restrict this number to 50) for each n-gram
(upto trigram) of the corpus. Given the domain
terms of the in-domain text, we can instantly re-
trieve the sentences from corpus.

2.4 Tuning Hyperparameters for
Transformer

The NMT systems are Transformer models
(Vaswani et al., 2017). To build our NMT systems,
we used the MarianNMT (Junczys-Dowmunt et al.,
2018) toolkit. The tokens of the training, evaluation
and validation sets are segmented into sub-word
units using Byte-Pair Encoding (BPE) (Sennrich
et al., 2016b). Since English and Tamil are written
in their own scripts and have no overlapping charac-
ters, BPE is applied individually on the source and
target languages. Recently, Sennrich and Zhang
(2019) demonstrated that commonly used hyper-
parameter configuration do not lead to the best
results in low-resource settings. Accordingly, we
carried out a series of experiments in order to find
the best hyperparameter configuration for Trans-

3http://workshop.colips.org/news2016

former in our low-resource setting.4 In particular,
we played with some of the hyperparameters, and
found that the following configuration lead to the
best results in our low-resource translation settings:
(i) the BPE vocabulary size: 8,000, (ii) the sizes of
the encoder and decoder layers: 4 and 6, respec-
tively, (iii) learning-rate: 0.0005, (iv) dropout (Gal
and Ghahramani, 2016) between layers: 0.1. As
for the remaining hyperparameters, we followed
the recommended best setup from Vaswani et al.
(2017). The models are trained with the Adam
optimizer (Kingma and Ba, 2014), reshuffling the
training corpora for each epoch. The early stop-
ping criteria is based on cross-entropy; however,
the final NMT system is selected as per the highest
BLEU score on the validation set. The beam size
for search is set to 12. We make our final NMT
model with ensembles of 8 models that are sampled
from the training run.

3 Experiments and Results

3.1 Data sets
This section presents the data sets that were used
for system building. We used the monolingual
and bilingual data provided by the WMT20 task
organisers only. No external data has been used
for the MT system building. Table 1 presents the
corpus statistics. The parallel corpora released by

Parallel Data
sentences words (EN) words (TA)

train 350,142 6,489,872 5,763,047
test 1,000 23,259 17,966
dev. 989 23,415 17,901

Monolingual Data
English 17M Tamil 31M

Table 1: The data statistics.

WMT20 for the English–Tamil task are from dif-
ferent sources (e.g. Tanzil v15 (Tiedemann, 2012),
WikiMatrix6 (Schwenk et al., 2019) and PMIndia7

(Haddow and Kirefu, 2020)). We merged segment-
pairs of all data sources, and after applying stan-
dard cleaning scripts to the data we are left with

4This set of experiments were conducted on English-to-
Tamil only and using the bitexts only. The best hyperparameter
setup found in this task is used in the reverse translation task.

5http://opus.nlpl.eu/Tanzil-v1.php
6https://ai.facebook.com/blog/

wikimatrix/
7http://data.statmt.org/pmindia
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350K parallel segments (cf. row 3 of Table 1). As
for the monolingual data, we used News-Crawl8

and CommonCrawl9 corpora (cf. last row of Table
1).

We observed that the corpora of one language
(say, Tamil) contains sentences of other languages
(e.g. English), so we use a language identifier10 in
order to remove such noise. In order to perform
tokenisation for English and Tamil texts, we used
the standard tool11 in the Moses toolkit.

WMT20 released a development set of 1,989 sen-
tences (newsdev2020) whose domain is naturally
news. We used 1,000 sentences from newsdev2020
as test set, and we call the test set newstest1k. The
remaining sentences (989) are treated as the valida-
tion set.

3.2 The Baseline MT Systems

The BLUE scores of the NMT systems trained on
the authentic parallel corpus (cf. Table 1) are re-
ported in Table 2. These BLEU scores represent
the MT systems that were trained following the
best hyperparameter settings described in Section
2.4. Note that these MT systems serve our base-
lines. We refer the baseline MT system as Base.
We see from Table 2 that the English-to-Tamil and

newstest1k
English-to-Tamil 5.81
Tamil-to-English 12.20

Table 2: The BLEU score of the baseline MT systems.

Tamil-to-English MT systems produce 5.81 and
12.20 BLEU scores, respectively, on the respective
test sets. As expected, the translation quality from
the morphologically-rich to morphologically-poor
language improves.

3.3 The Improved MT Systems

We applied the pseudo in-domain sentence selec-
tion strategy described in Section 2.2 to the mono-
lingual corpora (cf. Table 1), and considered the
top-scored sentences for back-translation. Note
that the in-domain language models for sentence

8http://data.statmt.org/news-crawl
9http://data.statmt.org/

news-discussions/
10cld2: https://github.com/CLD2Owners/

cld2
11https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

selection were built on the PMI data whose domain
is news in nature. The development set sentences
(998 sentences; cf. Table 2) were also appended
to the PMI data. The BLEU scores on the MT sys-
tems trained on the augmented training data are
presented in Table 3. We stopped the iterative train-

newstest1k newstest2020
BLEU SacreBLEU

English-to-Tamil
Base+ 800K 8.12
Base+ 1.5M 9.35
Base+ 2.7M 9.45 5.4
Tamil-to-English
Base + 800K 18.33
Base + 1.5M 18.52
Base + 2.7M 19.41
Base + 3.3M 19.91 14.7

Table 3: The BLEU scores of the MT systems trained
on the interactively augmented training data.

ing process (cf. Section 2.1) when there were no
significant improvements in terms of the test set
BLEU scores. This training process provides us
with the improved MT systems. As can be seen
from Table 3, the final MT systems surpass the re-
spective baseline MT systems with large margins.

We translate the blind test sets (newstest2020)
for the English-to-Tamil and Tamil-to-English
translation tasks released by WMT20 by the best
MT systems (cf. Table 3). The blind test sets for
the English-to-Tamil and Tamil-to-English tasks
contain 6,988 and 997 segments, respectively. The
sacreBLEU (Post, 2018) scores of the best NMT
systems on newstest2020 are shown in the last col-
umn of Table 3.12

3.4 Fine-tuning the best NMT systems

This section presents the MT systems that were
prepared by the adaptation technique described in
Section 2.3. We mine the source and target mono-
lingual sentences from the large monolingual cor-
pora given the terms and NEs (and transliterated
NEs) extracted from newstest1k.13 As described in
Section 2.3, synthetic data is created by translating
the source and target sentences by the target-to-
source and source-to-target MT systems (cf. Table
3; the best MT systems), respectively. Finally, the

12The SacreBLEU scores were taken from OCELoT
https://ocelot.mteval.org

13Note that NEs were extracted from the English text only.
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best MT system is fine-tuned on the synthetic data.
The BLEU scores of the adapted MT systems on
newstest1k are reported in Section 4. When we
compare the original MT systems reported in Ta-
ble 3 with the adapted MT systems, we see that
(i) the English-to-Tamil adapted MT system pro-
duces a 1.55 BLEU points (corresponding to 16.4%
relative) improvement over the the original English-
to-Tamil MT system, and (ii) the Tamil-to-English
adapted MT system produces a 1.41 BLEU points
(corresponding to 7.08% relative) improvement
over the the original Tamil-to-English MT system.
The improvements are statistically significant.

newstest1k newstest2020
BLEU SacreBLEU

English-to-Tamil 10.80 6.1
Tamil-to-English 21.32 15.8

Table 4: The BLEU and SacreBLEU scores of the
adapted MT systems on newstest1k and newstest2020,
respectively.

As above, we create the English-to-Tamil and
Tamil-to-English adapted MT systems for the blind
test sets. Then, we translate the blind test sets with
the adapted MT systems. The sacreBLEU (Post,
2018) scores of the adapted MT systems on new-
stest2020 are shown in the last column of Table 4.
Again, the adaption strategy brings about moderate
improvements over the original MT systems, i.e. a
0.7 SacreBLEU points (corresponding to 13% rela-
tive) improvement for the English-to-Tamil transla-
tion and a 1.1 SacreBLEU points (corresponding
to 7.5% relative) improvement for the Tamil-to-
English translation.

4 Conclusion

This paper presents the ADAPT system description
for the WMT20 News Translation Shared Task. We
participated in the English-to-Tamil and Tamil-to-
English tasks. English–Tamil is a low-resource
language-pair and we used the data provided by
the WMT20 organisers only. Given the limited re-
sources provided for the tasks, we aimed to build
the competitive translation systems for the competi-
tion. For this, we applied a variety of strategies, e.g.
iterative data augmentation, selection of pseudo
in-domain sentences, and a novel strategy for the
adaptation of the NMT models to the task. We
found that the systematic addition of these tech-
niques to baseline yields excellent improvements

over the baseline.
This paper presented an effective adaptation

method for the NMT systems. This method is
found to be effective as far as the translation task
we participated in is concerned. In the future, we
aim to test on-the-fly adaptation method (Farajian
et al., 2017, 2018) to translate domain texts.
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Abstract

We describe our two NMT systems sub-
mitted to the WMT 2020 shared task in
English↔Czech and English↔Polish news
translation. One system is sentence level,
translating each sentence independently. The
second system is document level, translating
multiple sentences, trained on multi-sentence
sequences up to 3000 characters long.

1 Introduction

In this paper, we describe our two NMT
systems submitted to the WMT 2020 news
translation shared task: “CUNI-Transformer”
(Charles University Transformer, sentence-level)
and “CUNI-DocTransformer” (document-level).
We trained them for English↔Czech and the for-
mer one also for English↔Polish (no parallel
document-level data was provided for English-
Polish, thus we could not train the latter one).

2 Common settings

Both our systems are implemented in the Ten-
sor2Tensor framework (Vaswani et al., 2018) and
have the same Transformer (Vaswani et al., 2017)
architecture – transformer_big with 12 encoder lay-
ers instead of the default 6 (while keeping 6 layers
in the decoder). The 32k joint English-Czech sub-
word vocabulary is exactly the same as used by
Popel (2018) and Popel et al. (2019), which are
the systems we submitted to WMT in the last two
years. Also most of the hyperparameters (except
for the encoder depth) and the training regime are
the same.

The main improvement of our sentence-level sys-
tem relative to our last-year submission stems from
using slightly larger and better-filtered training data
– CzEng 2.0 (Kocmi et al., 2020b) with 61M authen-
tic parallel and 127M synthetic (back-translated)

sentence words (M)data set
pairs (M) EN CS

authentic 61 617 702
EN-mono (NewsCrawl 2016–2018) 76 1296 1474
CS-mono (NewsCrawl 2013–2018) 51 700 833

total 188 2613 3009

Table 1: Training data sizes (in millions). All the data
are taken from CzEng 2.0.

sentences (see Table 1), instead of CzEng 1.7 with
57M authentic parallel sentences.

We also enlarged our development-test set: we
concatenated WMT newstest 2008–2018, instead
of using newstest2016 only. WMT news tests
before 2020 did not have paragraph boundaries
marked. We thus prepared a version of our dev-
set where we joined together several consecutive
sentences randomly (except for titles not ended by
a punctuation) to simulate WMT2020 paragraph-
level setting.

Our document-level system was further im-
proved as described in Sections 3 and 4.

3 Document-level training

Our last-year document-level submission (Popel
et al., 2019) introduced a method of training-data
context augmentation, where multiple consecutive
sentences (within original documents) are merged
together into multi-sentence sequences (of parallel
source-target data). The sentences within each se-
quence are separated with a special token, so that
we can easily extract the sentence alignment after
decoding. The length of the sequences was lim-
ited by 1000 characters and 200 subwords (i.e. any
sequences longer than any of the limits in either
source or target were discarded from training).

An important aspect of this method is that it
extracts all possible sequences from the document-
level training data. For example, given a document
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Figure 1: Decoding overlapping multi-sentence se-
quences with our document-level model. Note that the
pre-context part may start not only on sentence bound-
aries (it improves the results slightly according our ini-
tial experiments).

with 5 sentences s1–s5, we extract sequences s1,
s1–2, s1–s3, s2, s2–s3, s2–s4, s3, s3–s4, s3–s5,
s4, s4–s5 and s5, while ignoring sequences s1–s4,
s1–s5 and s2–s5 because these are longer than the
limits. Note that this way of context augmenta-
tion implicitly upsamples sentences from longer
documents relative to sentences from shorter doc-
uments. A sentence appearing in N windows of
at most 1000 characters is present N times in the
augmented training data.

Thus this year, we simply sample non-
overlapping sequences of sentences: s1–s3, s4–s5.
There are many documents shorter than the lim-
its in CzEng 2.0, including many single-sentence
documents (from sources without document-level
annotation). Thus, there are naturally occurring
trainng sequences which are shorter than the limits
and we checked the model is capable of translating
also single sentences.

In addition to this change in data sampling, we
increased the sequence length limit to 3000 charac-
ters and 750 subwords.

4 Document-level decoding

There are many possible ways how to use
document-level models (trained as described in the
previous section) at decode time.

• We can translate single sentences, thus not us-
ing the advantage of document-level training.
This may serve as a baseline for comparison
with document-level decoding and we used
this for our last-year sentence-level submis-
sion “Transformer T2T 2019” (Popel et al.,
2019).

• We can split each input document into non-

overlapping multi-sentence sequences.

• We can split each input document into overlap-
ping multi-sentence sequences (with so-called
pre-context and post-context parts, which are
ignored in the final translation) as suggested
by Popel et al. (2019) and explained in Fig-
ure 1.

• We can use the overlapping sequences for
some kind of consensus decoding or ensem-
bling. We have not tried this option yet.

Because of the increased limits of training se-
quences, we increased also the decoding limits two
times: pre-context of up to 400 characters, main
content of up to 1000 characters and post-context
of up to 1800 characters minus the length of the
pre-context and main content.

5 Robust training with noising

To make the model more robust to real-world user-
generated data, we added a noise to the training
data. We followed an approach of Náplava and
Straka (2019) and made the source side of the train-
ing data more noisy by introducing both grammati-
cal and spelling errors. The basic set of noising op-
erations introducing grammatical errors consisted
of the following operations: token replacement
with one of its spelling dictionary proposals, to-
ken deletion and insertion and swapping of two
nearby words. Moreover, we also allowed to re-
place phrases with one of their most frequent vari-
ants, add or delete punctuation and allowed to strip
diacritics.

We applied this technique only to our
Czech→English sentence-level system by noising
the source=Czech side of both the authentic and
synthetic parallel data. In preliminary experiments,
we observed substantial improvements on artifi-
cially noised dev sets, but slight worsenings on
WMT dev sets, which contain just a very small
amount of typos and other errors (on the source
side). We thus decided to mix the noised train-
ing data with the original unnoised data 1:1. This
resulted in approximately the same BLEU on the
original dev sets as without noising, while keeping
the improved results on artificially noised dev sets.

For time constraints, we decided to not use
any noising in the document-level Czech→English
training, as well as in our English→Czech and
English↔Polish systems.
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6 Results

In Tables 2–5, we report BLEU scores on the new-
stest2020 for all the systems submitted to WMT.1

For English→Czech and English→Polish (Tables 2
and 4), we report also gender coreference accuracy
scores based on WinoMT testset results (Kocmi
et al., 2020a). For English→Czech, we report
also manual document-level quality evaluation by
Zouhar et al. (2020) of 269 WMT2020 test-suites
sentences (i.e. not sentences from newstest2020).
The official manual evaluation on newstest2020 is
not available yet.

We can see that while our DocTransformer was
not the best system according to BLEU, it scored
well according to the other two reported metrics,
being the best system in English→Czech and the
second-best in English→Polish. This could be
caused by the low reliability of BLEU (and other
metrics based on similarity with reference) for high-
quality MT, or by the domain mismatch – the test-
suites contain also other domains than news. Un-
fortunatelly, we cannot answer this question before
further analysis using the official WMT manual
evaluation, once it is done and published.

Finally, we present several translation examples
in the Appendix. The source English documents
were taken from the WMT2019 newstest and the
same examples were selected already by Popel
et al. (2019). Table 6 shows three examples where
the document-level model corrects a lexical error
of our 2019 sentence-level model. Interestingly,
two of these errors were fixed also by our this-
year sentence-level model, showing that the cross-
sentence context is not necessary for correct trans-
lation of these examples. Table 7 shows an error
of our 2019 document-level model, which is not
present in this-year models.

7 Conclusion

We suceeded to improve our baseline system CUNI-
T2T-2018 (Popel et al., 2019) by using better train-
ing data, doubling the encoder depth (to 12 layers)
and by robust training with source-side noising.
While all these three techniques are well-known,
we show improvements in improving the last-year
WMT state of the art in English-Czech transla-
tion. We improved also our document-level system
(CUNI-DocTransformer) by more careful data sam-

1The SacreBLEU signature is BLEU+case.mixed+
lang.$src-$trg+numrefs.1+smooth.exp+test.wmt20+tok.13a+
version.1.4.13.

BLEU g. coref TS fluency
system cased accuracy × adequacy

Online-B 41.11 (11) 56.9 (4) 83.3
OPPO 36.78 (3) 78.7 (2) 84.2
SRPOL 36.46 (2) 81.2 (5) 82.2
UEDIN-CUNI 36.27 (6) 72.5 (8) 79.5
CUNI-DocTransformer 35.67 (1) 83.6 (1) 85.1
eTranslation 35.67 (8) 70.9 (7) 80.5
CUNI-Transformer 35.40 (4) 78.0 (3) 83.4
CUNI-T2T-2018 35.08 (5) 77.6 (6) 81.0
Online-A 30.84 (9) 63.3 (9) 78.9
Online-Z 27.96 (7) 72.2 (10) 72.8
Online-G 25.28 (10) 62.0 (11) 71.7
zlabs-nlp 20.25 (12) 49.9 (12) 64.5

Table 2: Evaluation of English→Czech WMT20 sys-
tems. The systems are ordered by BLEU, ordering
by the other metrics is provided in parentheses. The
gender coreference accuracy scores are based on the
WinoMT testset results (Kocmi et al., 2020a). The
“TS fluency × adequacy” score is based on man-
ual document-level quality evaluation (Zouhar et al.,
2020).

BLEU
system cased

OPPO 29.91
CUNI-DocTransformer 29.22
Online-B 28.66
CUNI-Transformer 28.55
SRPOL 28.51
UEDIN-CUNI 27.66
Online-A 26.84
CUNI-T2T-2018 26.08
PROMT_NMT 25.57
Online-G 23.91
Online-Z 23.25
zlabs-nlp 21.76

Table 3: Evaluation of Czech→English WMT20 sys-
tems.

BLEU g. coref
system cased accuracy

SRPOL 27.56 (1) 71.2
eTranslation 27.20 (3) 68.8
Huoshan_Translate 26.09 (8) 65.7
OPPO 25.49 (4–5) 68.2
SJTU-NICT 25.45 (4–5) 68.2
Online-B 25.17 (12) 57.7
Tilde (1430) 24.93 (9) 64.8
NICT_Kyoto 24.91 (10) 64.2
Tilde (1425) 24.87 (11) 63.3
CUNI-Transformer 24.76 (2) 69.8
Online-G 23.73 (6) 67.3
Online-A 23.71 (13) 53.7
Online-Z 20.75 (7) 65.9
zlabs-nlp 18.64 (14) 46.1

Table 4: Evaluation of English→Polish WMT20 sys-
tems.
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BLEU
system cased

NICT-Rui 34.55
Huoshan_Translate 34.44
SRPOL 34.26
Online-B 33.92
OPPO 32.46
SJTU-NICT 32.16
CUNI-Transformer 31.90
NICT_Kyoto 31.85
Online-A 31.79
PROMT_NMT 31.19
Tilde 30.20
Online-G 29.86
Online-Z 28.64
zlabs-nlp 27.77

Table 5: Evaluation of Polish→English WMT20 sys-
tems.

pling which is not biased towards sentences from
longer documents.
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8 Appendix

source [...] to meet Craig Halkett’s header across goal. The hosts were content to let Rangers play in front of them,
knowing they could trouble the visitors at set pieces. And that was the manner in which the crucial goal came.
Rangers conceded a free-kick [...]

T2T-2019-sent A to byl způsob, jakým přišel rozhodující cíl (aim).
others A to byl způsob, jakým přišel rozhodující gól (goal).

source Elizabeth Warren Will Take "Hard Look" At Running For President in 2020, Massachusetts Senator Says
Massachusetts Senator Elizabeth Warren said on Saturday she would take a "hard look" at running for president
following the midterm elections. During a town hall in Holyoke, Massachusetts, Warren confirmed she’d
consider running. "It’s time for women to go to Washington and fix our broken government and that includes
a woman at the top," she said, according to The Hill. [...]

T2T-2019-sent Na radnici v Holyoke v Massachusetts Warrenová potvrdila, že uvažuje o útěku (escape).
T2T-2019-doc Na radnici v Holyoke ve státě Massachusetts Warrenová potvrdila, že o kandidatuře (candidacy) uvažuje.
T2T-2020-sent Na radnici v Holyoke v Massachusetts Warrenová potvrdila, že zváží kandidaturu (candidacy).
T2T-2020-doc Během jednání na radnici v Holyoke ve státě Massachusetts Warrenová potvrdila, že o kandidatuře (candi-

dacy) bude uvažovat.

source At 6am, just as Gegard Mousasi and Rory MacDonald were preparing to face each other, viewers in the UK
were left stunned when the coverage changed to Peppa Pig. Some were unimpressed after they had stayed
awake until the early hours especially for the fight. [...]

T2T-2019-sent Na některé to neudělalo žádný dojem, když zůstali vzhůru až do časných ranních hodin, zvláště kvůli rvačce
(brawl).

T2T-2019-doc Na některé to neudělalo žádný dojem, když zůstali vzhůru až do ranních hodin, zejména kvůli zápasu (match).
T2T-2019-sent Na některé to neudělalo žádný dojem poté, co zůstali vzhůru až do časných ranních hodin, zejména kvůli boji

(combat).
T2T-2020-doc Někteří nebyli ohromeni poté, co zůstali vzhůru až do ranních hodin, zejména kvůli zápasu (match).

Table 6: Three examples of errors by T2T-2019-sent (2019 sentence-level model) corrected by the document-level
models and in the first two examples also by T2T-2020-sent (sentence-level CUNI-Transformer from this paper).

source New cancer vaccine can teach the immune system to ’see’ rogue cells New cancer vaccine can teach the
immune system to ’see’ rogue cells and kill them Vaccine teaches immune system to recognise rogue cells as
part of treatment Method involves extracting immune cells from a patient, altering them in lab They can then
’see’ a protein common to many cancers and then reinjected A trial vaccine is showing promising results in
patients with a range of cancers. One woman treated with the vaccine, which teaches the immune system
to recognise rogue cells, saw her ovarian cancer disappear for more than 18 months. The method involves
extracting immune cells from a patient, altering them in the laboratory so they can "see" a protein common to
many cancers called HER2, and then reinjecting the cells.

T2T-2019-sent [...] buněk z pacienta [...] výsledky u pacientů [...] buněk z pacienta [...]
T2T-2019-doc [...] buněk z pacienta [...] výsledky u pacientů [...] buněk od pacientky (female patient) [...]
T2T-2020-sent Nová protinádorová vakcína může naučit imunitní systém „vidět“ nepoctivé buňky Nová vakcína proti rakovině

může naučit imunitní systém „vidět“ buňky darebáků a zabít je Vakcína učí imunitní systém rozpoznat
nepoctivé buňky jako součást léčby Metoda zahrnuje extrakci imunitních buněk z pacienta, jejich úpravu
v laboratoři Mohou pak „vidět“ bílkovinu, která je společná mnoha druhům rakoviny a pak ji znovu nasadit
Zkušební vakcína vykazuje slibné výsledky u pacientů s řadou nádorových onemocnění. Jedna žena léčená
vakcínou, která učí imunitní systém rozpoznávat nepoctivé buňky, se postarala o to, že jí na více než 18
měsíců zmizela rakovina vaječníků. Metoda spočívá v extrakci imunitních buněk z pacienta, jejich modifikaci
v laboratoři, aby mohli „vidět“ bílkovinu společnou mnoha druhům rakoviny zvanou HER2, a následném
reinjekci buněk.

T2T-2020-doc Nová protinádorová vakcína může naučit imunitní systém „vidět“ darebácké buňky Nová protinádorová vakcína
může naučit imunitní systém „vidět“ darebácké buňky a zabít je Vakcína učí imunitní systém rozpoznávat
darebácké buňky jako součást léčby Metoda spočívá v odebrání imunitních buněk z pacienta, jejich pozměnění
v laboratoři Mohou pak „vidět“ bílkovinu společnou pro mnoho druhů rakoviny a poté znovu použít Zkušební
vakcína vykazuje slibné výsledky u pacientů s řadou druhů rakoviny. Jedna žena léčená touto vakcínou, která
učí imunitní systém rozpoznávat darebácké buňky, viděla, jak její rakovina vaječníků zmizela na více než
18 měsíců. Metoda spočívá v odebrání imunitních buněk z pacienta, jejich pozměnění v laboratoři tak, aby
mohly „vidět“ bílkovinu společnou pro mnoho druhů rakoviny nazývanou HER2, a poté znovu použít buňky.

Table 7: Example of an inconsistency error by T2T-2019-doc. The other three models are consistent.
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Abstract

Translating to and from low-resource polysyn-
thetic languages present numerous challenges
for NMT. We present the results of our sys-
tems for the English–Inuktitut language pair
for the WMT 2020 translation tasks. We in-
vestigated the importance of correct morpho-
logical segmentation, whether or not adding
data from a related language (Greenlandic)
helps, and whether using contextual word em-
beddings improves translation. While each
method showed some promise, the results are
mixed.

1 Introduction

This paper presents the neural machine transla-
tion (NMT) systems submitted by the University
of Groningen to the WMT 2020 translation task1

between Inuktitut and English in both directions
(EN↔IU), describing both constrained and uncon-
strained systems where we investigated the follow-
ing research questions:

• RQ1. Does morphological segmentation ben-
efit translation with polysynthetic languages?
Existing NMT research showed that mor-
phological segmentation outperforms byte-
pair encoding (BPE) (Sennrich et al., 2016)
for some agglutinative languages. For ex-
ample, rule-based morphological segmen-
tation improved English-to-Finnish transla-
tion (Sánchez-Cartagena and Toral, 2016).
and unsupervised morphological segmen-
tation improved Turkish-to-English transla-
tion (Ataman et al., 2017). We investigate
if morphological segmentation also improves
translation performance for polysynthetic lan-
guages, and if effects differ depending on
translation direction.

1http://www.statmt.org/wmt20/
translation-task.html

• RQ2. Does the use of additional data from a
related language, Greenlandic (KL), improve
the outcome? Due to the scarcity of EN–IU
parallel data, we investigate if adding Green-
landic data to the Inuktitut data to train a multi-
lingual NMT system (Johnson et al., 2017),
improves the performance of the NMT sys-
tems on the unconstrained task (Zoph et al.,
2016).

• RQ3. Does the translation benefit from us-
ing contextual word embeddings? The use
of such embeddings has proven beneficial
for many tasks in natural language process-
ing (Devlin et al., 2019), including MT (Zhu
et al., 2020), so we deem it sensible to test this
for a polysynthetic language, which we will
do by means of masked language modelling
pre-training.

In section 2 we present the main data and evalu-
ation measures used. In section 3 we present exper-
iments with morphological segmentation methods.
Section 4 presents the results of our translation sys-
tems, and in section 5 we present our conclusions.

2 Corpora and Evaluation

The preprocessing followed the procedure of Joanis
et al. (2020), carrying out the following steps in or-
der: spelling normalisation and romanisation (only
for IU), punctuation normalisation, tokenisation,
and truecasing (only for EN). Parallel data is addi-
tionally filtered (ratio 15, minimum and maximum
length 1 and 200, respectively). As monolingual
data we use the Common Crawl (CC) corpus for
Inuktitut, and the 2019 version of Newscrawl for
English. For CC we also filter out duplicate lines,
lines of which more than 10% of the characters are
neither alphanumerical nor standard punctuation,
and lines that contain more than 200 words. These
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steps reduce the amount of data considerably, from
164,766 to 28,391 lines. Line deduplication is also
applied to Hansards.2

Since the parallel training data contains only
Hansards, we used part of the news from the dev
set as additional training data by splitting the news
part of the dev set: the first 1859 lines are used
for training and the last 567 for development. We
refer to these subsets as newsdevtrain and
newsdevdev, respectively.

Tables 1 and 2 show the parallel and monolin-
gual datasets, respectively, used for training after
preprocessing.

Words
Corpus Sentences EN IU
Hansards 769810 17303903 8236210
Newsdevtrain 1859 40154 24121

Table 1: Preprocessed EN–IU parallel training data.

Lang. Corpus Sentences Words
IU Common Crawl 28391 381805
EN Newscrawl 5000000 143776337

Table 2: Preprocessed monolingual training data.

During development, we evaluated our systems
on the news and Hansards portions of the devel-
opment set, separately. We used two automatic
evaluation metrics: BLEU (Papineni et al., 2002)
and CHRF (Popović, 2015). CHRF is our primary
evaluation metric for EN→IU, due to the fact that
this metric has been shown to correlate better than
BLEU with human evaluation when the target lan-
guage is agglutinative (Bojar et al., 2016). BLEU
is our primary evaluation metric for IU→EN sys-
tems, as the correlations with human evaluation
of BLEU and CHRF are roughly on par for EN
as the target language. Prior to evaluation the MT
output is detruecased (only EN) and detokenized
with Moses’ scripts.

3 Segmentation with intrinsic evaluation

Like many polysynthetic languages, Inuktitut has a
high degree of inflection and agglutination, leading
to very long words with a very high morpheme-to-
word ratio (Mager et al., 2018). By our estimation,

2We used Hansards for training with and without dedupli-
cation and the former led to better results.

Inuktitut has an average of around 4.39 morphemes
per word.

This means on average there are more potential
boundaries, as well as more actual segmentation
boundaries to locate per word, making segmenta-
tion particularly challenging.

Inconsistent segmentation harms an NMT
model’s ability to extract knowledge, because it
reduces the frequency and activation of all vocabu-
lary items during training, such that for each indi-
vidual element in the vocabulary is found in fewer
contexts. At inference, inconsistent segmentation
can result in morphs that are out-of-vocabulary,
resulting in information loss.

We hypothesize that linguistically correct seg-
mentation may be particularly beneficial for transla-
tion with polysynthetic languages because it could
provide more consistent isolation of concepts into
subwords.

We evaluated a broad pool of segmenters to de-
termine how close various methods can achieve lin-
guistically correct segmentation, comparing results
to reference segmentations obtained from the Inuk-
titut Computing GitHub repository3. This reposi-
tory contains 1096 Inuktitut words, manually seg-
mented at the National Research Council of Canada
(NRC).

Our experiments include: Rule-based with
Uqailaut4; Morfessor Baseline (semi-supervised)
(Creutz and Lagus, 2002); Morfessor FlatCat (semi-
supervised) (Grönroos et al., 2014); LMVR (unsu-
pervised) (Ataman et al., 2017); and Neural Trans-
former segmentation (supervised).

We used Uqailaut’s rule-based segmenter to cre-
ate additional annotated segmentations used to train
the supervised and semi-supervised systems. In to-
tal 600,000 segmentations of unique words from
the Hansard training dataset were created. All semi-
supervised and unsupervised systems were trained
with the Hansard training corpus. For training semi-
supervised methods, we use 60,000 of the collected
segmentations with Uqailaut as annotated training
data, and another 3,000 as validation data. For
LMVR we set the maximum lexicon size to 20,000.

Related to our work, a previous study (Kann
et al., 2018) compared segmentation methods based
on their ability to generate linguistically correct
segmentations for several low-resource Mexican
polysynthetic languages. Their proposed RNN-

3https://github.com/LowResourceLanguages/InuktitutComputing
4http://www.inuktitutcomputing.ca/Uqailaut/info.php
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based neural approach outperformed baselines of
other common approaches, so we also tested a neu-
ral segmentation method, but instead of an RNN
we use a Transformer architecture. We implement
this neural segmenter using Marian5. On the source
side, the unsegmented words are used as input data.
The corresponding segmented words are used as
target data. On the target side we denote the seg-
mentation boundary by adding a boundary token
(@), like in the following example:
Source: a k i r a q t u q t u t
Target: a k i r a q @ t u q @ t u t

We trained three neural segmentation models:
one on all 600,000 annotated segmentations, plus
two with 45,000 annotated segmentations, one with
only unambiguous annotations6 and one with a
random selection from the pool of 600,000.

Table 3 shows the intrinsic evaluation results.
Similar to Kann et al. (2018), the neural segmen-
tation model improves over existing segmentation
methods by a considerable margin. The neural
model trained on the 45,000 unambiguous data out-
performed the model trained on all the 600,000
segmentations, suggesting that the consistency of
the data is more important than the quantity. The
other segmenters clearly struggled with the long
words, often splitting words into a combination of
very long root, and very short morphs. FlatCat
scored the highest of the existing methods on both
F1 and accuracy.

Unfortunately, both the neural and rule-based
models sometimes fail to segment the input word.
This makes them unfit to use in a translation sys-
tem; since some words are left unsegmented, and
this leads to a very large vocabulary size which
hurts the translation performance. Micher (2017)
previously explored improving the coverage of the
Uqailaut morphological analyser with the use of an
RNN based approach. In Micher (2018), an SRNN
extension to the Uqailaut morphological analyzer
is used in an SMT system, and yields a statistically
significant improvement for IU→EN translation
compared to the unextended rule-based analysis.
Similar to their approach, we combined the best
performing models of the intrinsic evaluation, to
construct a custom 3-step segmenter to improve
the coverage. This method initially applies the
rule-based segmenter. If the rule-based segmenter
fails, it falls back on the Transformer (unambigu-

5https://marian-nmt.github.io/
6Out of the 600,000 words, Uqailaut produces unambigu-

ous segmentations for 45,000 words

Method F1 Acc. Fail (%)
M. Baseline 0.317 0.222 -
M. FlatCat 0.397 0.328 -
LMVR 0.296 0.240 -
Trf. (45K rand.) 0.378 0.297 -
Trf. (45K single) 0.680 0.539 0.09
Trf. (all 600K) 0.625 0.433 0.55
3-Step 0.741 0.696 -
3-Step + LMVR 0.292 0.258 -
Rule-based 0.716 0.681 11.50

Table 3: Results of the intrinsic evaluation for each seg-
mentation approach. The F1 score is calculated on seg-
mentation boundaries, while the accuracy is calculated
on the full segmentation. The fail statistic signifies the
percentage of words that the approach failed to recon-
struct for the methods for which that can occur.

ous 45K) model. For non-alphabetic tokens we
apply the BPE 5K model, because the Transformer
fails for these tokens.

Preliminary experiments with this approach still
resulted in a very large vocabulary size. To re-
duce the vocabulary size further and combine all
steps into a single model, afterwards we perform
vocabulary reduction using LMVR. We specify a
lexicon size of 20,000, which results in an actual
vocabulary size of 41,024. The vocabulary reduc-
tion applied to the 3-step model leads to a drop in
F1 and accuracy. This could be either because the
vocabulary reduction leads to fewer segmentation
boundaries per word, or because LMVR changes
the model too much.

4 Translation experiments

Unless mentioned otherwise, the translation models
are trained using Marian (Junczys-Dowmunt et al.,
2018) v1.9.0 on an Nvidia V100. The translation
models use the transformer model type with
default settings. We use the ce-mean-words
cost function. We perform a validation run every
5,000 update steps and apply early stopping after
the validation cost stalls 5 times in a row. The
model with the best translation score on the valida-
tion set (Section 2) is stored for each experiment.

4.1 Constrained Systems

Our constrained systems can be divided into four
groups according to the techniques used: tags,
backtranslation and domain-specific data (sec-
tion 4.1.1), morphological segmentation (4.1.2),
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contextual word embeddings (4.1.3) and ensem-
bling and fine tuning (4.1.4).

4.1.1 Initial Systems
In these systems, following Joanis et al. (2020),
we segment the training data with BPE (Sennrich
et al., 2016) separately on each language. 5,000
and 2,000 merges are performed on both languages
for MT systems into EN and IU, respectively.

Table 4 shows our initial constrained systems
and their results on the development set.

IU→EN EN→IU
System News Hansards News Hansards
1 14.73 29.62 40.29 52.97
2 17.96 29.7 47.47 54.20
3 17.24 28.88 51.31 53.86
4 22.24 30.05 NA NA

Table 4: Results of the initial constrained systems for
both translation directions and both dev sets. The
scores are BLEU (IU→EN) and CHRF (EN→IU). Best
result shown in bold.

Initial Systems System 1 is trained on Hansards.
System 2 adds newsdevtrain, oversampled (5
times) given its small size compared to the other
corpus used for training, i.e. Hansards (see Table 1).
This results in a notable improvement for news
(over 3 points into EN and over 7 into IU) and, as
expected, a minor difference for Hansards.

Tags System 3 differs from system 2 in that each
source sentence is preprended with a tag (<H> for
Hansards and<N> for news); this degrades results
into EN, but improves results into IU considerably
for news (almost 4 points), with minimal change to
Hansards.

Backtranslation In system 4 different amounts
of newscrawl 2019 were backtranslated and con-
catenated to the training data of previous systems
3 and 2, with (<B>) and without a tag, respec-
tively. This system is used only for IU→EN and its
best results were obtained with 1 million sentences
without tags; compared to system 2, adding back-
translation results in over 3 points improvement
for news (22.2 vs 18) and a smaller increase for
Hansards (30 vs 29.7).

We also explored the use of backtranslation for
EN→IU. CC (backtranslated into EN) was concate-
nated to the training data of the previous systems 3
and 2, with and without a tag, respectively. Results

IU→EN EN→IU
Model News Hans. News Hans.
BPE 5K 14.77 28.31 32.52 39.81
Morfessor 13.39 26.82 28.75 38.20
FlatCat 12.86 26.49 23.25 29.88
LMVR 14.98 27.50 34.84 41.25
Trf. (single) 11.31 24.56 31.34 39.33
3-St.+LMVR 15.25 28.06 34.51 40.54

Table 5: Results of the extrinsic evaluation for the se-
lected segmentation methods. Scores for IU→EN are
in BLEU, and for EN→IU are in CHRF. Best results
for each dataset and metric are in bold. All models are
trained only on the Hansard training data.

were very similar. We conjecture this was due to
its limited size and noisy nature, since it is web
crawled.

Topic-specific News Because the texts in both
dev sets concern (mostly) events in Nunavut,
we hypothesised that Nunavut-related news only
from our backtranslated news might be beneficial.
We selected only documents from the document-
delimited version of newscrawl that contain any
word from a topic list.7 Topic words were picked
due to being frequent in newsdevtrain and un-
ambiguosly related to Nunavut. 2,845 newssto-
ries were extracted, after preprocessing 150,472
sentences and 3,220,925 words. We trained sys-
tems with this topic-specific backtranslated news
as well as a similar amount of news randomly se-
lected. Contrary to our hypothesis, the random
news outperformed topic-specific news: 18.92 vs
20.2 BLEU on the news part of the dev set.

4.1.2 Morphological segmentation
We train translation models for the segmentation
methods described in Section 3. For these experi-
ments, the English data was segmented using BPE
with 5,000 merges. Results are reported in Ta-
ble 5. Both models that use LMVR for vocabulary
reduction perform well for translation into IU, out-
performing BPE on both Hansard and News data.
There seems to be no benefit from the use of a more
morphologically correct segmenter, as the highest
scoring segmenters on the intrinsic evaluation (Ta-
ble 3) generally performed worse on the extrinsic
evaluation.

Based on the results of this extrinsic evaluation,
we decide to use the BPE, LMVR, and 3-Step seg-

7Baffinland, Inuit, Inuits, inuits, Inuktut, Inuktitut, Iqaluit,
Kivalliq, Nunatsiaq, Nunavik, Nunavut and Savikataaq.
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mentations in our best systems so far (system 3 into
IU and 4 into EN, see Table 4). Different amounts
of BPE merges were tried for EN. The best results
were obtained with 32,000 into IU and 20,000 into
EN, whose results are reported in Table 6. The
LMVR segmenter improved the translation into IU
for the Hansard data, but not for news. For transla-
tion into EN there was no improvement from using
a different segmenter.

IU→EN EN→IU
System News Hans. News Hans.
Sys. 4 & 3 resp. 22.24 30.05 51.31 53.86
LMVR 21.89 29.20 50.36 54.45
3-Step + LMVR 21.79 29.66 50.19 52.18

Table 6: Results of the constrained systems that use
morphological segmentation for both translation di-
rections and both dev sets. The scores are BLEU
(IU→EN) and CHRF (EN→IU). Best results shown
in bold. The IU→EN models are based on system 4,
while the EN→IU models are based on system 3 (Sec-
tion 4.1.1).

4.1.3 Contextual Word Embeddings
With the recent success of pretrained contextual
embeddings in MT (Lample and Conneau, 2019;
Zhu et al., 2020), we try using this technique for
a polysynthetic language. Specifically, we use the
XLM model (Lample and Conneau, 2019), not only
as a means of having contextual embeddings, but
also to leverage available monolingual data for the
task. For our XLM experiments, pretraining uses
both masked language modeling (MLM) and trans-
lation language modeling (TLM). For the NMT
training step, we include both denoising and back-
translation for the monolingual data, as well as
the standard MT training with the parallel data.
Both the pretraining step and the NMT step use the
monolingual data and the parallel data.

Pretraining IU→EN EN→IU
No 19.32 48.36
Yes 18.58 49.10

Table 7: Comparison of pretrained and non-pretrained
XLM systems on the News dev set. The scores are
BLEU (IU→EN) and CHRF (EN→IU).

To observe the effect of language model pretrain-
ing, we train a model using the same data used
in system 4 (see Table 4), with 10,000 BPE joins

applied jointly to both languages.8 See results in
Table 7. Interestingly, the performance decreases
for IU→EN but increases for EN→IU when pre-
training is added. A possible explanation for this
is that Inuktitut stands to benefit more from pre-
training as it uses more of the total joint vocabulary
(around 90% of the tokens compared to 70%).

To use the existing monolingual data (Section 2),
we train XLM models with the News Crawl data
for English and Common Crawl data for Inuktitut,
as specified in Table 2. We also use Hansards and
Newsdevtrain oversampled 5 times for parallel
data. We try both tagging the data (with the Com-
mon Crawl data receiving its own tag, <C>) and
leaving it untagged. We report the results in Table
8. The results indicate an improvement with tagged
data in the EN→IU direction. This is consistent
with our observations with Marian-run models (sys-
tems 2 and 3 in Table 4). The XLM model results

Tagged IU→EN EN→IU
No 18.96 48.9
Yes 16.76 49.97

Table 8: Results of the XLM models using monolingual
data on the News dev set. Scores are BLEU (IU→EN)
and CHRF (EN→IU).

show that despite removing back-translated parallel
data, results are similar. This is almost certainly
due to the on-the-fly back-translation present in the
training scheme. The results for EN→IU are im-
proved, which is likely due to even a small amount
of Inuktitut Common Crawl data being indeed use-
ful for training.

The best result with XLM (19.32 BLEU for
IU→EN) is almost 3 points behind the result of
the system trained with Marian on the same data
(22.24, system 5 in Table 4). A difference between
these two systems is that XLM uses joint BPE
(since the encoder is shared by both languages),
while with Marian we used separate BPE models
for each language, following Joanis et al. (2020).
To have a fairer comparison, we train the same Mar-
ian model with joint BPE, which leads to a score
of 21.43, still 2 points ahead of the XLM model.

This difference in performance can be attributed,
we hypothesise, to two reasons: (i) the XLM mod-
els use a joint encoder and decoder for both lan-
guages so the model must learn to translate in both

8We apply BPE jointly as it follows the methods of Lample
and Conneau (2019).
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directions and (ii) differences in implementation of
the Transformer model in both toolkits.

4.1.4 Ensembles

For our final submissions, we depart from the best
system so far (3 into IU and 4 into EN) and exper-
iment with the use of ensembling and fine-tuning
techniques. While some systems that used mor-
phological segmentation performed similarly to
those with BPE, their ensembles lagged behind.
We therefore focused on BPE-based systems. In
the following experiments we varied the value of
the decoder’s penalty length based on results on the
dev set (until now we had used the value 1.0): for
IU→EN we use 0.8 for news and 1.4 for Hansards
while for EN→IU 1.2 was used for both dev sets.
The results are shown in Table 9.

IU→EN EN→IU
System News Hans. News Hans.
best single system 22.38 38.41 51.83 54.35
ens normal 23.72 39.07 52.92 55.05
ens FT 24.01 39.72 53.19 55.31
ens normal + FT 24.25 39.67 53.46 55.39

Table 9: Results of the constrained systems that use
ensembling (referred to as ens) and fine tuning (FT)
for both translation directions and both dev sets. The
scores are BLEU (IU→EN) and CHRF (EN→IU). Best
results shown in bold.

Ensembles are built by training the same system
with different seeds (4 into EN and 3 into IU) and
picking the model from each training seed with
the highest score. These bring consistent improve-
ments for both directions and dev sets: from 0.66
points for IU→EN Hansards to 1.34 for news in
the same direction (row “ens normal” in Table 9).

We fine tune on newsdevtrain on its own
and together with backtranslated news (only into
EN) for the news dev set and on Hansards for the
Hansards dev set. The ensembles of fine-tuned
models bring consistent improvements compared
to ensembles of non fine-tuned systems (row “ens
FT” versus “ens normal” in Table 9). Finally, en-
sembling both fine-tuned and no fine-tuned sys-
tems (row “ens normal + FT” in Table 9) pushes
the scores further (except for Hansards IU→EN)
though rather slightly.

4.2 Unconstrained Systems
4.2.1 Data Acquisition
We use three additional parallel corpora that we
acquired. First, we use data from the Inuktitut mag-
azine9, which contains parallel articles about Inuit
culture and society in Inuktitut (IU), English (EN),
and French; we manually extracted the text (IU
syllabics, romanized IU, and EN) from several re-
cent issues. Second, we use data from a Kalaallisut
(KL) magazine10 containing parallel news articles
in Danish (DA) and KL. These texts were also
manually extracted. Thirdly, parallel data from 21
multilingual websites containing DA and KL texts,
was crawled using bitextor11.

4.2.2 MT with Unconstrained Data
These datasets are pre-processed just like the ones
from the constrained setup. In addition, we select a
subset using their sentence alignment confidence
score.12 The KL crawl is paired with Danish. We
performed language classification on the Danish
data using LangID13, removing any sentence pairs
not classified as Danish. Danish was translated
into English with a pretrained DA→EN system14

from OPUS-MT (Tiedemann and Thottingal, 2020).
Dataset details are presented in Table 10.

Words
Corpus Sentences EN IU/KL
IU Magazine 1134 29312 18152
KL Magazine 657 13009 7491
KL crawl 14778 277159 163468

Table 10: Preprocessed unconstrained parallel training
data.

We added these corpora atop the best constrained
systems (3 into IU and 4 into EN) one at a time and
evaluated on the news part of the dev set. Table 11
shows the results. Into EN, adding IU magazine
(for which we tried different oversampling values)
did not improve results. Due to this and time limi-
tations we did not add the remaining unconstrained

9Inuktitut Magazine, https://www.itk.ca/category/inuktitut-
magazine/.

10Atuagagdliutit, https://timarit.is
11https://github.com/bitextor/bitextor
12The datasets were aligned with Hunalign, which provides

a confidence score. We experimented with different thresholds
and based on results on the dev set and used 0.4 for IU and
KL magazines and 0.5 for KL crawl (Varga et al., 2007).

13https://github.com/saffsd/langid.py
14https://object.pouta.csc.fi/OPUS-MT-models/da-

en/opus-2019-12-04.zip
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data. Into IU, adding IU magazine (with a tag and
oversampled 5 times) resulted in a slight improve-
ment (51.9 vs 51.3). Adding to this KL magazine
(also oversampled 5 times) degraded results, as did
adding KL crawl (although to a lesser extent).

System IU→EN EN→IU
Best constrained (5, 3 resp.) 22.24 51.31
+ IU magazine 22.22 51.88
+ IU mag + KL mag 50.57
+ IU mag + KL crawl 51.27

Table 11: Results of the unconstrained systems for both
translation directions and both dev sets. The scores are
BLEU (IU→EN) and CHRF (EN→IU). Best results
shown in bold.

5 Conclusions

This paper has reported on the systems sub-
mitted by the University of Groningen to the
English↔Inuktitut translation directions of the
news shared task at WMT 2020.15 Our best results
were obtained using well-established techniques,
including oversampling domain-specific training
data, backtranslation, tags, fine-tuning and ensem-
bling.

The use of morphological segmentation (RQ1)
led to results that were on par with those obtained
by BPE in terms of automatic evaluation metrics.
One problem is that existing morphological seg-
menters for low-resourced languages like Inuk-
titut suffer from poor coverage, which impedes
making a complete comparison with more auto-
matic methods. The extrinsic comparisons between
segmenters showed that a more accurate morpho-
logical segmentation does not lead to improved
translation performance. We further found that
existing language agnostic segmenters struggle to
produce correct segmentations on Inuktitut, and
that neural methods appear to be more suitable for
polysynthetic languages (cf. (Kann et al., 2018)) .
Note also the importance of limiting the vocabulary
size of morphological segmentation for MT, which
could be explored further.

The use of additional data from Inuktitut did
improve the results slightly, but not the addition of
data from a related language, Greenlandic (RQ2).
The fact that its usefulness was limited could be
due to the fact that half of the test set was from a

15We will provide links to the additional datasets we used
in the camera-ready version.

specific domain for which considerable amounts of
data were already available to train (Hansards).

Finally, the use of contextual embeddings (RQ3),
led to mixed results since it resulted in an improve-
ment for one direction but a degradation for the
other.
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Abstract

In this paper we demonstrate our (OPPO’s)
machine translation systems for the WMT20
Shared Task on News Translation for all the
22 language pairs. We will give an overview
of the common aspects across all the systems
firstly, including two parts: the data prepro
cessing part will show how the data are pre
processed and filtered, and the system part
will show our models architecture and the tech
niques we followed. Detailed information,
such as training hyperparameters and the re
sults generated by each technique will be de
picted in the corresponding subsections. Our
final submissions ranked top in 6 directions
(English↔Czech, English↔Russian, French
→ German and Tamil → English), third in
2 directions (English → German, English →
Japanese), and fourth in 2 directions (English
→ Pashto and and English → Tamil).

1 Introduction

This paper describes the OPPO’s submission to
the Fifth Conference on Machine Translation
(WMT20) news translation shared task. We built
Transformer (Vaswani et al., 2017)based systems
for all the directions, and applied several well
known, widelyused techniques, such as large
scale backtranslation (Sennrich et al., 2016a) and
forwardtranslation, model ensemble and rerank
ing. Since all the systems share a roughly similar
data preprocessing and training methods, to avoid
duplication words, we will demonstrate the com
mon knowledge in Section 2 firstly, which will
be divided into two parts: the preprocessing part
shows the data preprocessing pipeline and data fil
tering pipeline, the latter is generally composed by
rulebased filtering and alignmentbased filtering;
the training part depicts the techniques we applied.
Detailed information, including training hyperpa
rameters, the results generated by each technique,

and some other explorations will be listed in each
corresponding direction in Section 3. Finally, we
will summarize the report and indicate our final
works. We used marian (JunczysDowmunt et al.,
2018) to implement our systems for English ↔
{Khmer, Russian, Tamil} and French ↔ German
task pairs, and fairseq (Ott et al., 2019) for the rest
1.

2 System Overview

We preprocess corpora in two stages. In the pre
processing stage, data is converted but not filtered.
The common pipeline of preprocessing including
the following steps:

• Remove nonutf8 characters

• Unescape html characters, e.g. “&gt;” is con
verted to “>”

• Normalize different kinds of spaces and punc
tuations

• Tokenization

• True case

The last three steps are all processed by moses
scripts. This pipeline is both applied for the paral
lel corpora and monolingual corpora, and true case
models are generally trained on the mixture of par
allel and monolingual datasets.
After preprocessing we filter the parallel cor

pora according to statistical information and align
ment information, set the thresholds according to
our previous experiences. For the statistic perspec
tive, we mainly focus on some heuristic rules, con
tain but not limited in

1Choice on the training framework is only depends on per
sonal habit.
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• Pairs of which the source side and the target
side are the same.

• Pairs contain blank lines.

• Pairs contain too long sentences (typically
those have more than 200 words).

• Pairs that have abnormal sourcetarget length
ratios. The sourcetarget length ratio is de
fined as the words count ratio between the
source and the target. Typically the upper
bound is 2.5 and the lower bound is 0.4.

• Pairs that have irregular characterword
length ratios. The characterword length ra
tio is defined as the ratio between the count of
characters and the count of words. Generally
the upper bound is 12 and the lower bound is
1.5.

• Pairs that contain too long words. The length
threshold for decidingwhether the word is too
long is 25 characters.

For the alignment perspective, we use fast_align
(Dyer et al., 2013) to acquire the alignment scores
from source to target and vice versa, then we aver
age the scores for each pair to calculate a data pair’s
sentencelevel alignment score. If a sentence pair’s
sentencelevel alignment score is lower than 15, it
will be expelled from the final dataset.
Having purified the corpus, we generally try to

boost our systems using the following techniques,
step by step:

1. Backtranslation and forwardtranslation. Us
ing the trained models to translate big vol
ume, monolingual corpus from the target side
to source side (i.e. backtranslation (Sennrich
et al., 2016a)) has been proved a very success
ful method in the past practices. In our experi
ments we can also see a general improvement
brought by this technique, but it is not always
the case. We also tried sampling based back
translation proposed in (Edunov et al., 2018),
and this is effective only in certain cases as
well. Furthermore, we found translating from
the monolingal corpus from source language
can also bring gains for themodels (consistent
with the phenomenon depicted in (Burlot and
Yvon, 2018)), but in this situation argmax
based beam search should always be applied.

We also followed (Hoang et al., 2018) to it
eratively backtranslate and forwardtranslate
the corpus for several times.

2. Finetune. Adding too many synthetic par
allel data generated by machine translation
models could potentially modify the latent
data distribution, and in some tasks the pro
vided monolingual dataset has a small differ
ence from the required domain (news), so af
ter having trained models from the mixture of
the original parallel corpus and the synthetic
dataset, we continue finetune our models on
the original parallel datasets only. Besides,
for some lowresource tasks (such as tasks on
Pashto and Khmer), even the official training
datasets have relatively lower qualities, there
fore only using training dataset to finetune
is still not enough. For these tasks, we took
one more step to finetune the models on the
official released validation set, and we can al
ways see a further improvement.

3. Ensemble. We generally train and finetune
several different models and compose them
into an ensemble model for a better result.

4. Reranking. With the ensemble model in the
hand, we usually generate kbest candidates
and use different scorers to score them. Scor
ers can be divided into three groups: forward
scorers are just another ensemble models
composed by the forward translation models
(models translate the source language to the
target language). Suppose we have trained 6
base forward models, typically we compose
all of them together to form a big ensemble
model for generating final results (this model
is also used as a scorer), and then additionally
enumerate all the 5combinations of them to
get another

(6
5

)
= 5 scorers. Sometimes we

furthermore enumerate all the 4combination
to get

(6
4

)
= 15more scorers for better rerank

ing. backward scorers are ensemble models
that actually backtranslation models (models
translate the target language to the source lan
guage), and language models are ensemble
language models of target language. For each
group of the scorers, we may use the leftto
right (l2r) models or righttoleft (r2l) mod
els. For the latter form, we reverse the words
orders for both source sentences and target
sentences and train the models. The scores
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generated by those scorers are used as fea
tures by the reranking model. For reranking,
we mostly applied KBatched MIRA (Cherry
and Foster, 2012) or noisy channel (Yee et al.,
2019).

3 Experiments Details

In this section we demonstrate our experiments de
tails for each direction. For brevity we will ig
nore the same preprocessing and techniques we in
troduced in the previous section, mainly focus on
how the techniques boosted the systems, and some
other unique observations we found during the ex
periments.

In the text we will sometimes use ISO6391
twoletter codes for each language for short. Map
ping between the abbreviations and full names can
be found in Table 1. For example, when talking
about the English → Chinese task, we may write
EnZh for short, capitalizing the first letter of the
ISO6391 codes for both source languages and
target languages. For the direction pairs that in
volve English, sometimes we use the nonEnglish
language to indicate the whole pair, e.g. “Russian
tasks” is used to indict the English ↔ Russian bi
directional task. As this report is in the news task
scope, we sometimes use “task” as a synonym of
“direction”, e.g. “EnZh task” means the direction
that translates English to Chinese.

By default, for every subtask we combine all
the official provided parallel corpora into a big
dataset then clean it, use the cleaned corpus to train
our baseline models. We strictly followed the re
quirement of the contest to use official released
datasets only, so the systems we built are all con
strained systems. If not mentioned, all of our base
line models are trained on the parallel corpus only,
and all the scores reported are calculated by sacre
BLEU (Post, 2018) based on the results which has
been removed BPE symbols, detruecased and deto
kenized. We always apply BPE subwords (Sen
nrich et al., 2016b) on the corpora, usually train
TransformerBig models and tie the input and out
put matrices of the decoder. For all the tasks, we
used Adam optimizer (Kingma and Ba, 2014). All
the main systems (i.e. submitted results) are gen
erated by the model listed in the last row of the
corresponding table in each task.

Language Name ISO6391 Code
Chinese zh
Czech cs
English en
French fr
German de
Inuktitut iu
Japanese ja
Khmer km
Pashto ps
Polish pl
Russian ru
Tamil ta

Table 1: ISO6391 codes for languages appear in news
task of WMT20

3.1 English ↔ Chinese
3.1.1 Data Preprocessing
Compared from the other languages in the shared
task, especially the languages which use alpha
betical writing systems, Chinese has three typical
characteristics, leading to three extra preprocess
ing steps we introduce below:

1. Chinese has two different writing systems:
simplified Chinese and traditional Chinese.
Following the statistical information mined
from the original parallel corpus, we con
verted all traditional Chinese characters to
their simplified counterparts.

2. Some websites use GB2312 to encode texts,
therefore could convert Latin letters, digit
characters and some other punctuation marks
into full width form. Besides of some partic
ular punctuation marks (full stops, commas,
question marks and exclamation marks), we
converted all the other symbols to half width
form.

3. Chinese does not have explicit words bound
aries, all the characters in the same clause are
connected together. We used pkuseg (Luo
et al., 2019) to segment words from the text.

It should be noted that Japanese also has these
three features, so the same process is also applied
in the English ↔ Japanese systems.
For data filtering stage, besides the heuristic

rules we demonstrated in the previous section, we
also compare the count of numbers and punctua
tion marks between source side and target side. If
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the difference on number counts is greater than 3
or the difference on punctuation marks counts is
greater than 5, the sentence pairs will also be re
moved.

3.1.2 Training

We combined the Chinese corpus and English cor
pus together to train BPE. The total BPE opera
tion merge counts is 36K. After learning BPE op
erations, we built vocabularies for each language
separately. The final vocabulary size for Chinese
is 42K and for English is 23K. The model ar
chitecture for both directions are all Transformer
big. For ZhEn task, we tried different hyperpa
rameters to train several models for getting en
semble model: learning rates ranged from 0.0003
to 0.0008, warmup steps fixed at 16,000, dropout
ranged from 0.2 to 0.3. For EnZh task, the hyper
parameters are all fixed (but tried different random
seeds): learning rate was 0.0003, warmup steps
was 15,000, feed forward network dimension was
15,000.
Entity substitution is experimented in the ZhEn

system. We use StanfordNLP (Qi et al., 2018) to do
the NER from parallel corpus and Chinese mono
lingual datasets (Because in Chinese monolingual
datasets an annotation usually follows a foreign
name). After having extracted all the entities, we
didn’t use alignment information to build the map
ping between Chinese entities and English entities,
but constructed such relationship just according to
cooccurrence frequency information: suppose an
entity “北京” occurs 50 times totally in the Chi
nese corpus from 20 sentences, and in the corre
sponding 20 English sentences “Beijing” occurs
51 times, “Shanghai” occurs 10 times, then we be
lieve “北京” can be translated to “Beijing” but not
“Shanghai”. With the entity mapping rules, we
then replace the entities in the sentence pairs by
different tags <tag1>, <tag2> ... and train mod
els. In the inference time, model generates results
with those tags, and we take another postedit stage
to recover the entities, using the mapping rules as
lookup tables.
Table 2 shows our systems for ZhEn task, and

3 shows our systems for EnZh task. For ZhEn,
we backtranslated 20M NewsCrawl and 17M
NewsDiscussion monolingual datasets from En
glish to Chinese, and forwardtranslated 13M Chi
nese monolingual dataset to English (including
XMU, LDC, etc.).

System BLEU Improvement
Baseline 28.8 /
+ Backtranslation 29.8 +1.0/+1.0
+ Forwardtranslation 34.5 +5.7/+4.7
+ Entity substitution 35.2 +6.4/+0.7
+ Finetuned by newstest2017 36.7 +7.9/+1.5
+ Ensemble & reranking 38.3 +9.5/+1.6

Table 2: Overview of our WMT20 Chinese → English
systems. In the “Improvement” column we report two
improvement amounts, the first one is the improvement
amount compared with the baseline model (absolute im
provement), and the last one is got from comparingwith
the previous step (relative improvement). Scorers for
reranking are composed by 3 forward lefttoright (l2r)
models, 3 forward righttoleft (r2l) models, 3 back
ward r2l models and 2 l2r Transformer language mod
els.

System BLEU Improvement
Baseline 38.6 /
+ Backtranslation (A) 39.1 +0.5/+0.5

+ Finetuned by parallel corpus 40.6 +2.0/+1.5
+ Finetuned by newstest2017 41.3 +2.7/+0.7

+ Forwardtranslation (B) 41.9 +3.3/+2.8
+ Ensemble 42.7 +4.1/+0.8
+ Reranking 43.2 +4.6/+0.5

Table 3: Overview of our WMT20 English → Chi
nese systems. BLEU scores are characterlevel. Model
trained by adding forwardtranslation data (systemB) is
directly compared with the one trained by adding back
translation data only (system A). The two phases fine
tune, which is effective for the systemA, has no obvious
impact on system B
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3.2 English ↔ Czech

3.2.1 Data Preprocessing
The officially released English ↔ Czech dataset
has a different format from the other subtasks.
The dataset, which is called CzEng 2.0 (Kocmi
et al., 2020), contains not only parallel sentence
pairs, but also the data source and three scores:
alignment score calculated by dual conditional
crossentropy filtering (JunczysDowmunt, 2018),
and language scores to show of how confident the
source is Czech and the target is English. This ex
tra information can further help us to filter the cor
pus.
Having noticed that both CsEn and EnCs tasks

would be evaluated on long, documentlevel news
datasets, and the CzEng dataset contains some
document information, we first analyzed the data
sources given in the dataset, to determine which of
them are near to the destination domain, and which
are far away. The data sources were observed from
four aspects: 1. Are the sentences more colloquial
or more formal? 2. How well the data is aligned?
3. Can the sentences form a paragraph? 4. Is the
corpus also in the news domain?
With the features of the given data sources, we

first set a hard condition to check whether a given
sentence pair could be kept, then set different prob
abilities to randomly drop some pairs from certain
data sources. Constrained by the paper length we
cannot list all of the rules for all the data sources
here, but we can take some examples. For the data
of which the source is news, we kept all of them; at
the other extreme, for the commoncrawl data, we
first removed all the data pairs of which the align
ment scores are below than 0.25, or the probabil
ities of the source sentences belonging to Czech
are less than 0.9, then we removed 40% of the re
mained data randomly.
As the original dataset contains some paragraph

information, we concatenated all the sentences that
were originally in the same paragraph with a de
limiter “|||” (for the sentences that come from the
data sources of subtitles, subtitleE and subtitleM,
we didn’t concatenate them). After the initial filter
ing, we kept 24.24 million data pairs (If we add in
the czengtest data, the total volume is 24.44 mil
lion pairs). The kept data were then processed and
filtered by the pipeline presented in the previous
section, and we finally got 14.4 million pairs. De
tailed preprocessing information can be found in
Table 4.

Step # Sentence pairs kept Retention rate
Initial filtering 24.44 M 
Deduplication 17.3 M 70.75%
Heuristic filtering 14.42 M 83.41%
Bad characters filtering 14.40 M 99.84%

Table 4: Preprocessing of the CzEng dataset. Official
provided dataset contains alignment information so we
didn’t calculate alignment scores again, directly reused
official information in the initial filtering step. In the
“bad characters filtering” step, we printed a character
frequency list from the dataset and set a threshold, re
moved all data pairs that contain irregular characters
whose frequencies are lower than the threshold.

System Score
fulldoc 25.7
shortdoc 26.3
nodoc 27.0

Table 5: Documentlevel model training experi
ments on the EnCs task. Scores are reported on
newstest2019 dataset

3.2.2 Model Training

As the evaluation for the En ↔ Cs tasks would
be documentlevel, we first experimented to see
if training a model on a dataset which contains
many very long sentences can generate better trans
lations for whole documents. We prepared the
datasets in three different ways: 1. Concatenat
ing all sentences that belong to the same document
(as indicated in the original data sources), noted
as “fulldoc”; 2. Concatenating three consecutive
sentences together, and select the middle one as the
final result from the generated translation, noted as
“shortdoc”; 3. No special preprocessing, one line
contains one sentence, noted as “nodoc”. The ex
periments results are shown in Table 5.
From the results we can find that no extra docu

ment related preprocessing is the best preprocess
ing, so we continued our improvement based on
the dataset which does not contain documentlevel
information. We first trained two models based on
the full CzEng 2.0 dataset (including all the offi
cial translated data). Models are all trained using
TransformerBig architecture with norm clipping
set to 0.1, dropout set to 0.3, gradient update fre
quency set to 8, maximum tokens in a batch set to
6000. Warmup steps and learning rate varied from
different experiments, the most common combi
nation is warmup steps set to 16,000 and learn
ing rate set to 0.001. During decoding the beam
size is 5 and length penalty is 2.5 for CsEn, 2 for
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Direction Dataset # Data pairs Score
CsEn All official released data 122 Million 34.0

CsEn
All official released data
+ 31M full sampling backtranslated data 153 Million 34.1

CsEn
30M data sampled from official released data
+ 31M full sampling backtranslated data 61.2 Million 34.2

EnCs All official released data 122 Million 28.6

EnCs
All official released data
+ 28M full sampling backtranslated data 150 Million 29.0

Table 6: Models prepared for the final backtranslation
and forwardtranslation. Czech monolingual datasets
are the combination of all officially provided
Newscrawl datasets, English monolingual datasets are
sampled from Newscrawl 2019.

EnCs. The score of the CsEn model on offline test
set (newstest2018) is 34.0 and the EnCs model
on validation set (newstest2019) is 28.6. We
use these two models backtranslated and forward
translated several data, mixed our synthetic dataset
with the original official whole datasets together,
and trained several models. Models which have
the best performances are selected for the final
backtranslation and forwardtranslation, which
are listed in Table 6.
We composed the models shown above as two

ensemble models, one for each direction, and did
another round of backtranslation and forward
translation again. For the EnCs task, we pre
pared two different final datasets as below. Two
datasets are all generated by randomnessbased
backtranslation, the difference is the full sampling
one sample output words in the full vocabulary,
whilst the topk one restricts the sampling pool in
the words that are listed in the topk highest prob
abilities for each step:

• Topk sampling based dataset, consists of
24 million data pairs from the original par
allel corpus, 54 million officially provided
forwardtranslated corpus (translated from
English monolingual corpus), 50 million top
10 sampling backtranslated corpus, and 15
million forwardtranslated corpus generated
by our own ensemble model.

• Full sampling based dataset, consists of
24 million data pairs from the original par
allel corpus, 54 million officially provided
forwardtranslated corpus (translated from
English monolingual corpus), 15 million
forwardtranslated corpus generated by our
own ensemble model, 31 million “old” full
sampling backtranslated data used in Table
6, and 36.7 million “new” full sampling back
translated data generated by ensemble model.

System BLEU Improvement
Baseline (parallel data only) 27.0 /
+ Officially provided synthetic data 28.6 +1.6/+1.6
+ Full sampling based backtranslated data 29.0 +2.0/+0.4
+ Ensemble 29.2 +2.2/+0.2
+ FDA finetune 29.7 +2.7/+0.5
+ Finetune by Newstest2018 & reranking 30.5 +3.5/+0.8

Table 7: Overview of our WMT20 English → Czech
systems. Scorers for reranking are composed by 16
forward lefttoright (l2r) models, 3 forward rightto
left (r2l) models, 3 backward r2l models and 3 l2r
Transformer language models. We relearned BPE af
ter adding in the officially provided synthetic data and
fixed it for the following steps. The BPE is learned sep
arately and the merge operations count is 36K.

The 36.7 million “new” backtranslated data
are generated after an extra cleaning step:
As we observed the results generated by full
sampling backtranslation sometimes contain
very bad sentences, we check howmany steps
the decoder scores below 10 when decoding
for a given input. If 20% of the step scores
for a given sentence are below 10, then we
discard the sentence pair.

We found the models trained by topk sam
pling based dataset are generally worse than those
trained by full sampling based dataset, therefore se
lected one topk sampling based model and three
full sampling based model to form the final ensem
ble model for decoding the test data. For the CsEn
task, The final dataset is composed by 24 million
original parallel data pairs, 24 million ensemble
knowledge distillation data pairs, 50 million topk
sampling backtranslated pairs, 10 million argmax
beam search backtranslated pairs, and 17 million
forwardtranslated pairs. We trained 4 models us
ing different learning rate (varied from 0.0008 to
0.0015) on this dataset, and finetuned them using
original parallel dataset (finetuning on EnCs mod
els does not bring any gains). The finetuned mod
els are used for the final ensemble model. We also
applied FDA algorithm (Biçici and Yuret, 2011) on
the parallel dataset, picked out 5 million sentence
pairs that are similar to the test set and finetuned
on this small dataset.
The overview of our EnCs system is listed in Ta

ble 7, and CsEn system is listed in Table 8

3.3 English ↔ German
For En ↔ De tasks, we generally followed the
process depicted in Section 2, cleaned 46.8 mil
lion data pairs and kept 30.6 million. For data
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System BLEU Improvement
Baseline 31.9 /
+ Officially provided synthetic data 34.0 +2.1/+2.1
+ Full sampling based backtranslated data 34.1 +2.2/+0.1
+ Original parallel data finetune 34.8 +2.9/+0.7
+ Ensemble 35.3 +3.4/+0.5
+ FDA finetune 35.5 +3.6/+0.2
+ Reranking 35.9 +4.0/+0.4

Table 8: Overview of our WMT20 Czech → English
systems. Scorers for reranking are composed by 16 for
ward lefttoright (l2r) models, 3 forward righttoleft
(r2l) models, 3 backward r2l models, 3 l2r Transformer
languagemodels and 1 all lowercased Transformer lan
guage model which does not apply BPE on the training
dataset.

System DeEn BLEU EnDe BLEU
Baseline 40.7 (/) 42.6 (/)
+ KD  44.9 (+2.3/+2.3)
+ Finetune on parallel corpus  45.3 (+2.7/+0.4)
+ Ensemble 41.9 (+1.2/+1.2) 45.9 (+3.3/+0.6)
+ Reranking 42.2 (+1.5/+0.3) 46.5 (+3.9/+0.6)

Table 9: Overview of our WMT20 German ↔ En
glish systems. Reranking follows noisychannel rerank
ing (Yee et al., 2019). BLEU scores are reported on
newstest2019. We learned BPE jointly for both tasks,
merge operation is 32K. Learning rate for training is
0.001 and warmup steps is 4000

preprocessing, we removed sentence pairs that
contain too many punctuation marks, and too
many [^A-Za-z] characters. In both directions
we found neither backtranslation nor forward
translation could yield any gains. In the EnDe
we found ensemble knowledge distillation (Freitag
et al., 2017) could improve the effect but in the
DeEn task it did not help. The overview of our En
↔ De system is listed in Table 9.

3.4 English ↔ Inuktitut

We just adapted the official preprocessing script
in the syllabic form to process the corpus. BPE
was learned independently and the merge opera
tions count is 16K. The overview of our En ↔ Iu
system is listed in Table 10.

System EnIu BLEU IuEn BLEU
Baseline 23.7 (/) 40.0 (/)
+ Backtranslation 23.8 (+0.1/+0.1) 40.5 (+0.5/+0.5)
+ Knowledge distillation  41.3 (+1.3/+0.8)
+ Ensemble 24.3 (+0.6/+0.5) 41.9 (+1.9/+0.6)
+ Reranking  43.7 (+3.7/+1.8)

Table 10: Overview of our WMT20 English ↔ Inukti
tut systems. Scores are reported on the official valida
tion set

System JaEn BLEU EnJa BLEU
Baseline 22.0 (/) 37.0 (/)
+ Backtranslation 24.5 (+2.5/+2.5) 41.4 (+4.4/+4.4)
+ Knowledge distillation 25.1 (+3.1/+0.6) 41.4 (+4.4/+0.0)
+ Ensemble 25.7 (+3.7/+0.6) 42.1 (+5.1/+0.7)
+ Reranking 26.1 (4.1/+0.4) 42.5 (+5.5/+0.4)

Table 11: Overview of our WMT20 English ↔
Japanese systems. Reranking follows noisychannel
reranking (Yee et al., 2019). BLEU scores are reported
on the offline official validation set, for EnJa, we report
the characterlevel score. We trained BPE separately
for both tasks, merge operations is 32K. Learning rate
for training is 0.0003 and warmup steps is 15000. We
tried two different feed forward network dimensions,
4096 and 15000, and found no big differences

3.5 English ↔ Japanese
Our En ↔ Ja systems generally follow our En ↔
Zh systems depicted before, the difference was the
upper bound of sentence length limit was set to 180
words, and we also set the lower bound to 3. For
Japanese word segmentation we usedmecab 2. We
cleaned 17.64 million parallel pairs and 13.7 mil
lion left. For backtranslation, we used 16 million
Japanese monolingual data and 13 million English
monolingual data. The overview of our En ↔ Ja
system is listed in Table 11
We tried to finetune the models using original

parallel dataset, but didn’t see any gain. After the
test dataset was released, we applied FDA algo
rithm and extracted 5000 sentences from the train
ing dataset which are the most similar to the test
data. These sentences are mixed with the origi
nal validation dataset together, then 500 sentences
are split out as a new validation set, the rest were
used to finetune the models. This step improved
our EnJa system by 1.3 BLEU and for JaEn it is
0.4 BLEU. However, as validation dataset changed
and the scores on the new validation dataset were
extremely high, this step is not listed in the Table
11.

3.6 English ↔ Khmer
For the Khmer tasks (and some other tasks in
the following), The data preprocessing stages are
slightly different from the way we depicted in the
second section, stricter in the filtering part, which
would remove the sentence pair if...

1. It is a duplicated example

2. The source or target side is empty
2https://taku910.github.io/mecab/
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3. It contains urls

4. It has words that contain more than 4 consec
utive repeated characters

5. It has unpaired quotation marks or parenthe
ses (not applicable for Khmer tasks, but ap
plied in the other tasks shown later)

6. The punctuation marks between the source
and the target cannot be matched (not applica
ble for Khmer tasks, but applied in the other
tasks shown later)

7. The length ratio between the source and target
is greater than 2.0 or less than 0.5 (for Khmer
is between 0.33 and 3)

8. More than half of the tokens are not from the
indicated language. We designed a regular ex
pression (noted as regex for short) for each
language according to its alphabet, if theword
failed to pass the regex, we say it is not from
the given language. For example, the regex
for English is [a-zA-Z'-]+

The maximum sentence length we allowed is
also set to 200 words.
Similar to Chinese and Japanese, Khmer does

not mark the words boundaries neither, so we used
SEANLP 3 to do the Khmer word segmentation.
After the cleaning, the 4.46 million pairs of sen
tences had 351K lines left.
It should be noted that the writing system of

Khmer, Khmer script, is an abugida, means vow
els do not have independent symbols, but are stuck
after/above/below/in front of the consonants they
follow. Roughly, the minimal meaningful unit of
Khmer is called Khmer Character Cluster (KCC
for short) (Huor et al., 2004), which should be re
garded as a whole but actually contains several
characters. Original BPE method would break
KCC, but this is not what we expect, so we made
some modification to keep it (the segmentation
tool we used also considered this language fea
ture). We combined Khmer corpus and English
to train BPE together, the BPE merge operations
count is 8K.
To train the model, we tried different learning

rate ranged from 0.0001 to 0.0004, and different
warmup steps from 2,000 to 32,000. The overview
of our Km ↔ En system is listed in Table 12. Base
linemodel is trained by Transformermini (4heads

3https://github.com/zhaoshiyu/SEANLP

System KmEn BLEU EnKm BLEU
Baseline 5.7 (/) 2.38 (/)
+ Backtranslation 13.0 (+7.3/+7.3) 10.15 (+7.77/+7.77)
+ Ensemble 13.6 (+7.9/+0.6) 10.56 (+8.18/+0.41)

Table 12: Overview of our WMT20 Khmer ↔ English
systems. We didn’t try finetune and reranking for these
two tasks. BLEU scores are reported on the official
offline validation set, reported on the wordlevel (dif
ferent from the online characterlevel evaluation). for
EnKm, the score is calculated by multibleu.

System EnPs BLEU PsEn BLEU
Baseline 6.0 (/) 12.3 (/)
+ Backtranslation 10.7 (+4.7/+4.7) 14.5 (+2.2/+2.2)
+ Knowledge distillation 10.7 (+4.7/+0.0) 14.8 (+2.5/+0.3)
+ Ensemble 11.0 (+5.0/+0.3) 15.4 (+3.1/+0.6)

Table 13: Overview of our WMT20 English ↔ Pashto
systems. BLEU scores are reported on the offline offi
cial validation set

Transformer composed by 4 layers, embedding di
mension set to 256, feed forward network dimen
sion set to 1024), learning rate ranged from 0.0008
to 0.001, warmup steps fixed at 40,000. For back
translation, we used all officially provided Khmer
monolingual data, and 27 million sentences for En
glish from NewsCrawl 2019 and NewsCommen
tary 2019.

3.7 English ↔ Pashto

Our Pashto systems used the similar process we de
scribed in the Japanese tasks. We cleaned the 1mil
lion original parallel dataset and kept 700K pairs.
BPE was jointly learned and the merge operations
count is 10000, but the source language does not
share vocabulary with the target. When training
the models, the learning rate was set to 9 × 10−4

and warmup steps was 6000. The overview of our
En ↔ Ps system is listed in Table 13
As what we did in the Japanese tasks, we

selected 10000 sentence pairs from the training
dataset according to the test data using FDA,
mixed them with official validation set and de
vtest set to finetune our models for 5 epoch, then
reranked the generated candidates. This improved
our EnPs system by 1.6 BLEU and for PsEn the
gain is 3.5.

3.8 English ↔ Polish

For En ↔ Pl tasks, we generally followed the
process depicted in En ↔ De tasks, cleaned 10.3
million data pairs and kept 5.265 million. The
overview of our En ↔ Pl system is listed in Table
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System EnPl BLEU PlEn BLEU
Baseline 24.9 (/) 30.0 (/)
+ Backtranslation 28.2 (+3.3/+3.3) 33.0 (+3.0/+3.0)
+ Knowledge distillation 28.8 (+3.9/+0.6) 34.6 (+4.6/+1.6)
+ Ensemble 29.9 (+5.0/+1.1) 35.1 (+5.1/+0.5)
+ Reranking 30.0 (+5.1/+0.1) 35.5 (+5.5/+0.4)

Table 14: Overview of our WMT20 English ↔ Polish
systems. Reranking follows noisychannel reranking.
BLEU scores are reported on official released valida
tion dataset.

14. Training methods listed are generally the same
as what we did for En ↔ De, the only difference
is we separately trained BPE for the two languages
(so obviously they no longer share the vocabulary),
but BPE merge operations count is still set to 32K.

3.9 English ↔ Russian

The data preprocessing for En ↔ Ru tasks is the
same as demonstrated in the En ↔ Km part, the only
difference is for Russian, our BPE merge opera
tions count is set to 36K. The official released par
allel dataset (without official synthetic dataset) is
reduced from 43.8 million pairs to 26.5 million af
ter the cleaning. For Russian tasks, we trained the
model with some extra rounds of backtranslation
and knowledge distillation, which are:

• In the first round backtranslation, we only
used all the official released data including
the synthetic part. After training had con
verged, we continued training on the parallel
dataset.

• In the second round backtranslation, we
added in the backtranslated results generated
by our models, and continued training again.

• In the knowledge distillation step, we added
in the knowledge distillation results on the
base of the dataset produced in the previous
step. After training had converged, models
are continue trained using the mixture of orig
inal parallel dataset and the knowledge distil
lation results.

Full results can be referred to Table 15.

3.10 English ↔ Tamil

Similar to Khmer, Tamil language also uses
abugida. So with the same idea, we need to de
termine the minimal unit to be separated during
BPE training. Here we see syllables as the min

System EnRu BLEU RuEn BLEU
Baseline 32.1 38.7 (/)
+ Bigger ffn dim 32.6 (+0.5/+0.5) 38.8 (+0.1/+0.1)
+ 1st. round backtranslation 32.7 (+0.6/+0.1) 39.0 (+0.3/+0.2)
+ 2nd. round backtranslation 33.6 (+1.5/+0.9) 39.6 (+0.9/+0.6)
+ knowledge distillation 34.1 (+2.0/+0.5) 40.4 (+1.7/+0.8)
+ Finetune 35.2 (+3.1/+1.1) 40.9 (+2.2/+0.5)
+ Ensemble 35.7 (+3.6/+0.5) 41.3 (+2.6/+0.4)
+ Reranking 35.5 (+3.4/0.2) 41.7 (+3.0/+0.4)

Table 15: Overview of ourWMT20 English↔Russian
systems. BLEU scores are reported on newstest2019.
“Bigger ffn dim” means we augmented the dimen
sion of fast forward layer to 8192. In the step “Fine
tune” we finetuned our models using the mixture of
newstest2017 and newstest2018

System EnTa BLEU TaEn BLEU
Baseline 7.6 (/) 14.4 (/)
+ Backtranslation 13.1 (+5.5/+5.5) 26.2 (+11.8/+11.8)
+ Finetune∗ 20.2 (+12.6/+7.1) 31.5 (+17.1/+5.3)
+ Ensemble∗ 20.4 (+12.8/+0.2) 32.5 (+18.1/+1.0)
+ Reranking∗ 21.6 (+14.0/+1.2) 32.7 (+18.3/+0.2)

Table 16: Overview of our WMT20 English ↔ Tamil
systems. BLEU scores are reported on newsdev2020.
Configurations can be referred to the Khmer tasks.
Steps with extra ∗ marks are evaluated in the tiny 200
lines new validation set.

imal unit, use opentamil 4 to separate syllables,
and use our modified subwordnmt to learn BPE
separations. Cleaning process is the same as we
described in the Khmer tasks, we cleaned all the
parallel corpora which contains 660K pairs, and
had 450K pairs left. For backtranslation, we used
all available Tamil monolingual corpus (27 million
lines totally) and 16million English sentences sam
pled from NewsCrawl 2019 and NewsCommen
tary 2019. BPE is learned jointly, the merge op
erations count is 10K. The overview of our En ↔
Ta system is listed in Table 16. In the finetune
stage, we randomly kept 200 sentences from the
newsdev2020 as the validation set, and the rest
1,789 sentences are used to finetune the model.

3.11 French ↔ German
Our Fr↔De systems generally followed the steps
we described in the Russian tasks, with two differ
ences. The first is that we have only one round
backtranslation, since for this task pair no official
backtranslation dataset was released; the second
is we didn’t continue training using parallel corpus
after the model had converged. Following the pro
cess described in the Khmer tasks, we cleaned the
13.7 million data pairs and kept 11 million. For

4https://github.com/
Ezhil-Language-Foundation/open-tamil
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System FrDe BLEU DeFr BLEU
Baseline 28.9 (/) 35.4 (/)
+ Backtranslation 36.2 (+7.3/+7.3) 36.4 (+1.0/+1.0)
+ knowledge distillation 36.2 (+7.3/+0.0) 36.6 (+1.2/+0.2)
+ Finetune 36.3 (+7.4/+0.1) 37.6 (+2.2/+1.0)
+ Ensemble (4 models) 36.7 (+7.8/+0.4) 37.9 (+2.5/+0.3)
+ Reranking 36.8 (+7.9/+0.1) 38.1 (+2.7/+0.2)

Table 17: Overview of our WMT20 French ↔ German
systems. BLEU scores are reported on newstest2019.
In the step “Finetune” we finetuned our models using
euelections_dev2019

backtranslation, we took 27 million French sen
tences (combination ofNewsCrawl 20172019 and
News Commentary datasets) and 40 million Ger
man sentences (from NewsCrawl 2019 only). We
jointly learned BPE for the two langauges, the BPE
merge operations count is 32K. We shared the vo
cabulary among the two languages and tied all em
bedding layers and output layer in the model. The
overview of our Fr ↔ De system is listed in Table
17.

4 Conclusion

This report described OPPO’s submissions to the
WMT20 news translation task. We use the sim
ilar data preprocess and filtering strategy for all
the tasks, contains statistical information based
rules and alignment information based rules. We
trained TransformerBig models for all the direc
tions and applied some mature techniques, like
backtranslation, ensemble model, finetune and
reranking, they generally all brought gains for the
final results. Our final submissions ranked top in
6 directions (English ↔ Czech, English ↔ Rus
sian, French → German and Tamil → English),
third in 2 directions (English → German, English
→ Japanese), and fourth in 2 directions (English
→ Pashto and and English → Tamil).
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Abstract

This paper presents our work in the WMT
2020 News Translation Shared Task. We par-
ticipate in 3 language pairs including Zh/En,
Km/En, and Ps/En and in both directions under
the constrained condition. We use the standard
Transformer-Big model as the baseline and ob-
tain the best performance via two variants with
larger parameter sizes. We perform detailed
pre-processing and filtering on the provided
large-scale bilingual and monolingual dataset.
Several commonly used strategies are used to
train our models such as Back Translation, En-
semble Knowledge Distillation, etc. We also
conduct experiment with similar language aug-
mentation, which lead to positive results, al-
though not used in our submission. Our sub-
mission obtains competitive results in the final
evaluation.

1 Introduction

This paper introduces our work for the WMT 2020
News Translation Shared Task. We participate
in three language pairs including Chinese/English
(Zh/En), Khmer/English (Km/En), Pashto/English
(Ps/En) and in both directions. After observation,
we consider that the officially provided dataset has
the acceptable size and quality therefore only par-
ticipate in the constrained evaluation. Our method
is mainly based on previous works but with fine-
grained data cleaning techniques and language pair
specific optimizations.

For each language pair, we perform careful multi-
step cleaning on the provided dataset and only keep
a high-quality subset for training. At the same time,
several strategies are tested in a pipeline including
Back-Translation (Edunov et al., 2018), Ensemble
Knowledge Distillation (Freitag et al., 2017; Li
et al., 2019), Forward Translation (Wu et al., 2019),
Fine-Tuning (Sun et al., 2019), and Ensemble and
Re-ranking (Ng et al., 2019a).

Due to the page limitation, we mainly introduce
our methods and experiments on the Zh-En and En-
Zh language pairs. Most of these methods are also
employed on the Km/En and Ps/En pairs. Special
optimizations regarding different language will be
introduced separately.

2 Data

In this section, we describe the size and source
of the dataset as well as our cleaning and filtering
techniques.

2.1 Data Source

2.1.1 Zh/En

We use both bilingual and monolingual text to train
the model. Regarding bilingual text, we merge
the data from CCMT (7M), Wiki Titles v1 (1M),
News Commentary v15 (0.4M) and a subset of UN
Parallel Corpus (9M). We also select 10 million of
Zh and En monolingual text from Xin Hua, XMU
and News crawl respectively for back translation.

2.1.2 Km/En

We use the Para Crawl v5.1 (4.17M), Khmer and
Pashto parallel data (0.29M) as the bitext corpus,
and select 10M monolingual text from Common
Crawl and news crawl 2018 for Km and En, respec-
tively.

2.1.3 Ps/En

Similar to Km/En, we also use the Para Crawl v5.1
(1M), Khmer and Pashto parallel data (0.03M) as
bitext and select 6.5M monolingual text from Com-
mon Crawl and news crawl 2018.

2.2 Data Pre-processing

For the Zh/En corpus, we use following operations
to pre-process the data:
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Zh-En Km-En Ps-En
Operation Zh-En (bi) Zh (mono) En (mono) Km-En (bi) Km (mono) En (mono) Ps-En (bi) Ps (mono) En (mono)

Original 21 21.4 18 4.46 12.59 10 1.05 6.6 4.71
+ Deduplication 20.9 21.3 17.9 4.30 12.57 9.99 1.05 5.99 4.70
+ Lang-id filtering 20.4 19.6 17.9 2.82 11.13 9.93 1.02 5.69 4.38
+ Length filtering 20.1 19 17.9 2.71 10.54 9.90 0.94 4.97 4.14
+ Fast-align filtering 19.5 - - 0.8 - - 0.54 - -
+ Data-selection 16.5 10 10 - - - - - -

Table 1: This table shows the remaining data size of performing specific data cleaning and selection operations,
where the unit is million (M). The bilingual (bi) and monolingual (mono) texts are both listed in the table for all
three language pairs.

• Regarding Chinese text, we tokenize the text
with Jieba1 tokenizer, and create the BPE
(Sennrich et al., 2016) vocab with 30K merge
operations.

• For English text, we use moses2 tokenizer and
generate a BPE vocab with 32K merge opera-
tions.

• Bitexts with length ratios (source/target)
greater than 3 are removed.

• Texts longer than 120 sub-tokens are removed.

• Texts with undesired fastText-langid (Joulin
et al., 2016b,a) are removed.

For the Km/En and Ps/En corpus, following op-
erations are performed on the data:

• Full-width texts are converted to half-width
texts.

• De-duplication is performed.

• Texts which the source or target is empty are
empty.

• Sentences with undesired fastText-langid
(Joulin et al., 2016b,a) are removed.

• SPM with regularization (Kudo and Richard-
son, 2018; Kudo, 2018) is used for both lan-
guage pairs.

• Fast-align (Dyer et al., 2013) is used to further
clean the corpus.

• Sentences with more than 100 sub-tokens are
removed.

1https://github.com/fxsjy/jieba
2http://www.statmt.org/moses/

During experiment, we notice that Km and Ps data
has relatively low qualities, which need to be fur-
ther cleaned in a stricter manner. Therefore, we
gradually increase the threshold of fast-align, and
remove about 50% of un-aligned text to improve
the training data quality. Detailed data size of each
step is shown in Table 1.

2.3 Data Selection
Data selection filters out bilingual or monolingual
out-of-domain text from a given corpora. We per-
form data selection on the Zh/En UN dataset, of
which the domain is different from news. To do
so, we train a classifier to select texts classified as
news from the UN corpus. In terms of the clas-
sifier, when selecting En→Zh bi-text, we sample
the target language (Zh) text from UN and non-UN
dataset with an equal size (e.g. 50000), and label
them with UN and news tags. Then, we train a
Fasttext (Bojanowski et al., 2017) classifier on the
sampled set, and score the leftover UN set with
the classification probability P (y = news|x) to
retrieve the top-k bi-text pairs, where k is set to
9M in the experiment. Note that even if the score
is lower than 0.5, we still keep the sample if its
rank is within top-k. This method is also used for
Zh→En selection. Note that the selected En→Zh
and Zh→En set can be overlapped but not exactly
the same.

From the experiment, we find that data selection
is quite effective in improving the BLEU score on
WMT 2019 test set compared to using entire UN set
with a 1.1 increase on Zh→En and a 1.6 increase
on En→Zh, respectively.

For the Km/En and Ps/En pairs, we do not em-
ploy the data selection strategy, but carefully eval-
uate the performance of different sources in the
training set and finally select the Common Crawl
(Km) and News Crawl (En) as the monolingual
corpus. KenLM (Heafield, 2011) is also used to
filter the data.
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3 System Overview

This section describes the model and techniques
of our work. We basically perform such strate-
gies sequentially. Our experimental result will be
presented on each part.

3.1 Model

Transformer (Vaswani et al., 2017) has been widely
used for machine translation in recent years, which
has achieved good performance even with the most
primitive architecture without much modifications.
Therefore, we choose to start from Transformer-
Big and consider it as a baseline. Two variants of
Transformer are also evaluated during the experi-
ments, which are the model with wider FFN lay-
ers proposed in (Ng et al., 2019b), and the deeper
encoder version proposed in (Sun et al., 2019).
Here, we call two variants Transformer-Large and
Transformer-Deep. Our models are implemented
with THUMT (Zhang et al., 2017), and trained on
a platform with 8 V100 GPUs.

3.2 Back Translation

Following (Edunov et al., 2018), we use back trans-
lation (BT) to improve the system performance.
However, unlike (Edunov et al., 2018), we use
beam search to decode the pseudo source text be-
cause in the experiment we find that results from
beam search is better than sampling.

To acquire better monolingual text, we also use
the method introduced in the data selection section
to filter the in-domain subset for BT. For Zh→En
and En→Zh direction, we use texts in target lan-
guage from our bilingual corpus as the in-domain
set, monolingual corpus as the out-of-domain set to
train the classifier, and finally select approximately
10 million of samples for each direction. The back
translated corpus are merged with the original cor-
pus, which improves the performance by 0.6 for
Zh→En and 1.3 for En→Zh. For the Km/En pair,
we use exactly the same method as Zh/En, but with
monolingual corpus from specific language, result-
ing in improvements of 5.33 and 2.55 in terms of
BLEU for Km→En and En→Km on the devtest
20. For Ps/En, BT is performed on the selected
data described in previous section, achieving im-
provements of 8.08 (Ps→En) and 2.89 (En→Ps) in
terms of BLEU on each direction.

3.3 Ensemble Knowledge Distillation

Ensemble Knowledge Distillation (Freitag et al.,
2017; Li et al., 2019) improves the performance
of a student model by distilling knowledge from
a group of trained teacher model into it. Compar-
ing with some soft label distillation methods, the
EKD for NMT is relatively straightforward, which
can be implemented by training the student on the
combination of the original training set and the
translation from the ensembled teacher model on
the training set. In our experiments we ensemble
four models as the teacher model to translate the
training set. Then, compute the BLEU for each
sentence against the ground truth target. We keep
2/3 of the top scored translations for distillation
and merge them into the original training set.

Generally speaking, EKD can be performed in
an iteration manner. However, this could bring
negative influence on the final ensemble. Therefore,
we only do it once. EKD improves the BLEU by
1.5 points on the Zh→En direction, but only 0.2
points on the En→Zh direction.

We didn’t perform the EKD on the Km/En and
Ps/En pairs due to the limitation of the corpus size.

3.4 Forward Translation

As described in (Wu et al., 2019), similar to back
translation, the monolingual corpus in source lan-
guage can also be used to create the forward trans-
lation text with a trained MT model, and the cre-
ated forward and backward translation corpus can
both be merged with the original bilingual data.
This strategy can enlarge the data size to a large
extent. There are basically four steps to perform
the forward translation. Take En→Zh as an exam-
ple: 1) train M models with EKD in both direc-
tion; 2) create pseudo corpus with the ensemble
of M models on the monolingual corpus in both
direction (SRC→TGT’, TGT→SRC’); 3) merge
the created corpus with others (BT + FT + EKD
+ bilingual ). 4) train a new model on the mixed
corpus. This technique improves the performance
by 1.0 in terms of BLEU on En→Zh direction and
0.4 BLEU on Zh→En direction. We also perform
this strategy on Km/En and Ps/En, which achieves
the improvements of 2.50 and 1.17 on En→Km
and Km→En directions; 0.18 and 0.65 on En→Ps
and Ps→En directions.

Note that the model trained with this technique
can be ineffective for ensemble, which means such
training strategy might decrease the model diver-
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sity.

3.5 Fine-tuning

Previous works demonstrate that fine-tuning a
model on in-domain data such as last year’s test
set could effectively improve the performance of
this year (Sun et al., 2019). In the experiment, we
fine-tune the model on the newstest18 for Zh→En
with 3000 tokens per batch for one epoch, success-
fully achieving 3.6 of BLEU improvements on the
newstest19. Furthermore, we keep the test corpus
with orilang as Zh from newstest18 for fine-tuning,
gaining an additional 1.0 BLEU increase. However,
this method only obtains 0.2 BLEU increase on the
En→Zh direction.

Km/En and Ps/En are newly introduced language
pairs in the evaluation this year, thereby have no
previous test sets. Since an additional devtest set
is provided in addition to the dev set, we fine-
tune models on the dev set and test on the de-
vtest set. The experiment shows that fine-tuning
could achieve 5.12 and 0.13 of improvements for
En→Km and Km→En; 0.59 and 0.79 for En→Ps
and Ps→En.

3.6 Ensemble

Six Transformer models are trained with different
seeds, including 2 deep, 2 big and 2 large variants.
The ensemble model improves the performance
by 1.0 on Zh→En and 0.4 on En→Zh in terms of
BLEU.

For Km/En and Ps/En pairs, we trained 4 and 6
Transformer-Deep models for Km/En and Ps/En.
However, due to the size limitation, the improve-
ments of ensemble is not significant for these two
language pairs.

3.7 Ensemble MT Fine-tuning

We perform an additional experiment, named En-
semble MT Fine-tuning. First of all, we fine-tune 6
models on the 18 test set and produce the transla-
tion (mt) with the ensemble of them on the 19 test
set. Then, we fine-tune the un-fine-tuned 6 models
with the mt, which surprisingly improves about 0.6
BLEU on En→Zh. But we see no improvements
on Zh→En. This experiment is also performed on
Km/En and Ps/En language pairs, but only obtains
limited improvements.

While submission, we fine-tune all 6 models on
18 test set and produce the mt with the ensemble
model on the 20 test set. We then use the mt of

Zh→En
System news2018 news2019

baseline 24.98 25.76
+ Data Selection 25.44 26.89 (+1.1)
+ Back-Translation 27.11 27.49 (+0.6)
+ EKD 27.18 29.06 (+1.5)
+ Forward-Translation 28.55 30.45 (+0.4)
+ Fine-tuning - 35.07 (+4.6)
+ Ensemble - 36.11 (+1.0)
+ Ensemble MT Fine-tune - 36.11 (+0.0)

2020 Submission 34.3

Table 2: The experimental result of Zh→En

En→Zh
System news2018 news2019

baseline 37.84 34.86
+ Data Selection 38.91 36.47 (+1.6)
+ Back-Translation 44.29 38.48 (+1.3)
+ EKD 44.19 38.68 (+0.2)
+ Forward-Translation 43.79 39.69 (+1.0)
+ Fine-tuning - 39.89 (+0.2)
+ Ensemble - 40.32 (+0.4)
+ Ensemble MT Fine-tune - 41.00 (+0.6)

2020 Submission baseline 46.0

Table 3: The experimental result of En→Zh

20 test set to fine-tune the original un-fine-tuned
model to get the final one.

3.8 Re-ranking

We also tested the noisy channel re-ranking pro-
posed in (Ng et al., 2019b). However, we do not
see consistent improvements on the news2019 and
devtest set, thus we give up using the strategy in
the submission for all three language pairs.

3.9 Similar Language Augmentation

We also investigate whether performing data aug-
mentation with corpora in similar languages can
boost system performances on low resource tasks
like En/Km and En/Ps. Inspired by (Kudugunta
et al., 2019) who propose the concept of language
similarity that can be measured by the SVCCA
score on hidden representations of a language pair.

We select top-two similar languages for Km and
Ps, by referring to the (Kudugunta et al., 2019).
We then collect a set of bilingual text from these
languages and mix them into the original training
set. For Ps, we collect bilingual corpus of Persian
(Fa) and Urdu (Ur) for augmentation, and create
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Km→En
System dev devtest

baseline 7.54 5.90
+ Strict Fast-align 10.63 8.69 (+2.79)
+ Back-Translation 16.48 14.02 (+5.33)
+ Forward-Translation 18.04 15.19 (+1.17)
+ Fine-tuning - 15.32 (+0.13)
+ Ensemble - 15.47 (+0.15)

2020 Submission 25.33

Table 4: The experimental result of Km→En

En→Km
System dev devtest

baseline 29.27 27.93
+ Strict Fast-align 41.39 37.72 (+9.79)
+ Back-Translation 44.61 40.27 (+2.55)
+ Forward-Translation 46.81 42.77 (+2.50)
+ Fine-tuning - 47.89 (+5.12)
+ Ensemble - 48.46 (+0.57)

2020 Submission 58.58

Table 5: The experimental result of En→Km. Note that
the BLEU score of the dev and devtest are calculated
with sentences tokenized with char-based tokenizer.

Ps→En
System dev devtest

baseline 5.43 6.9
+ Strict Fast-align 7.4 7.31 (+0.41)
+ Back-Translation 14.96 15.39 (+8.08)
+ Forward-Translation 15.87 16.04 (+0.65)
+ Fine-tuning - 16.83 (+0.79)
+ Ensemble - 17.25 (+0.42)

2020 Submission 23.1

Table 6: The experimental result of Ps→En

a mixed corpora (Ps:Fa:Ur=8:10:3) with a size of
2.6M, much larger than the original bitext corpus.
For Km, we collect Polish (Pl) and Corsican (Ca)
as the augmentation language (Km:Pl:Ca=2:2:1)
and mix them with the total size of 2.1M.

The experimental result shows that the augmenta-
tion improves the BLEU score by 1-3 points on all
directions compared to merely training on the origi-
nal training set, demonstrating that incorporate data
of similar languages for data augmentation is ef-

En→Ps
System dev devtest

baseline 4.15 4.3
+ Strict Fast-align 6.0 6.13 (+1.83)
+ Back-Translation 9.01 9.02 (+2.89)
+ Forward-Translation 9.3 9.2 (+0.18)
+ Fine-tuning - 11.02 (+0.59)
+ Ensemble - 11.44 (+0.42)

2020 Submission 12.1

Table 7: The experimental result of En→Ps

fective. However, this advantage disappears when
comparing with the strategy of using the Forward
and Backward Translation with original language
pair, because BT and FT fill the gap of the differ-
ence in the data size, and thereby fills the gap of
the performance.

Although this strategy works fine on a corpus
with limited size, it is not as feasible as BT. At the
same time, we understand that applying external
similar language corpora is not allowed in the con-
strained track, and finally give up this method. But
we would like to conduct further researches on this
direction.

4 Results

This section presents the experimental results for
each direction of all three language pairs in Table
2,3,4,5,6and 7, where the contribution of strategies
introduced in previous sections are listed in each
row.

5 Analysis

Here are several findings worthy of sharing during
our experiments:

• We test different combinations of model ar-
chitectures for ensemble, and find that the het-
erogeneous combinations often perform bet-
ter than homogeneous combinations when the
performance of each model is similar. We
suppose that heterogeneous architectures are
good at learning different kinds of patterns,
which is potentially effective for ensemble.

• While performing data selection, we also test
language models as described in (Ng et al.,
2019b), but found that fasttext performed bet-
ter than LMs. We consider this finding is
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relatively intuitive because the objective of
training the classifier could naturally distin-
guish features of inter-class samples and clus-
ter inner-class samples, which should be more
efficient than using LMs.

• When we perform back-translation and
forward-translation on Km/En pairs, we find
that no matter in which direction, monolin-
gual text from news domain performs con-
sistently better than that from wiki domain,
but the bilingual texts are actually from wiki.
The reason for the performance improvements
contributed by news corpus might be that the
size of the filtered bilingual corpus is small,
therefore requires to learn more semantic pat-
terns from BT and FT. Such semantic patterns
appear more often in news corpus and thus
surpass the loss caused by domain shifting.

6 Conclusion

This paper presents the submissions by HW-TSC
on the WMT 2020 News Translation Task. For
each direction in three language pairs, we perform
experiments with a series of pre-processing and
training strategies. The effectiveness of each strat-
egy is demonstrated. Our experiments on similar
language augmentation shows that corpora with
similar languages can be used for performance im-
provements in low resource scenarios. Our sub-
mission finally achieves competitive result in the
evaluation.
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Abstract

In this paper we introduce the systems IIE
submitted for the WMT20 shared task on
German↔French news translation. Our sys-
tems are based on the Transformer architec-
ture with some effective improvements. Mul-
tiscale collaborative deep architecture, data se-
lection, back translation, knowledge distilla-
tion, domain adaptation, model ensemble and
re-ranking are employed and proven effective
in our experiments. Our German→French sys-
tem achieved 35.0 BLEU and ranked the sec-
ond among all anonymous submissions, and
our French→German system achieved 36.6
BLEU and ranked the fourth in all anonymous
submissions.

1 Introduction

We participate in the WMT20 shared news
translation task in one language pair and
two language directions, German→French and
French→German. Our methods are based on tech-
niques and approaches used in submissions from
past years (Deng et al., 2018; Ng et al., 2019; Sun
et al., 2019; Li et al., 2019; Xia et al., 2019), in-
cluding the use of subword models (Sennrich et al.,
2016), iterative back-translation, knowledge distil-
lation, model ensembling and several techniques
we proposed recently (Wei et al., 2020b,a).

For our submissions of two language directions,
we adopt the deep transformer architectures (48-
layer) based on multiscale collaboration mecha-
nism (Wei et al., 2020b) as our baseline, which
outperformed the standard Transformer-Big
as well as shallower models significantly in terms
of translation quality. We also use an iterative
back-translation approach (Zhang et al., 2018) with
the controllable sampling to extend the back trans-
lation method by jointly training source-to-target
and target-to-source NMT models. Moreover, the

knowledge distillation (Freitag et al., 2017) is em-
ployed to leverage the source-side monolingual
data. For our final models, we apply a domain-
specific fine-tuning process and model ensembling,
and decode using noisy channel model re-ranking.

The paper is structured as follows: Section 2
describes the techniques we used, then section 3
shows the experimental settings and results. Fi-
nally, we conclude our work in Section 4.

2 Our Techniques

2.1 Multiscale Collaborative Deep Models
The structure of NMT models has evolved
quickly, such as RNN-based (Wu et al., 2016),
CNN-based (Gehring et al., 2017) and attention-
based (Vaswani et al., 2017) systems. Deep neural
networks have revolutionized the state-of-the-art in
various communities, from computer vision to nat-
ural language processing. We adopt the deep trans-
former model proposed by our work (Wei et al.,
2020b). Instead of relying on the whole encoder
stack to directly learn a desired representation, we
let each encoder block learn a fine-grained represen-
tation and enhance it by encoding spatial dependen-
cies using a bottom-up network. For coordination,
we attend each block of the decoder to both the
corresponding representation of the encoder and
the contextual representation with spatial depen-
dencies. This not only shortens the path of error
propagation, but also helps to prevent the lower
level information from being forgotten or diluted.
In this section we describe the details (as illustrated
in figure 1) of our deep architectures as below:

Block-Scale Collaboration. An intuitive exten-
sion of naive stacking of layers is to group few
stacked layers into a block. We suppose that the
encoder and decoder of our model have the same
number of blocks (i.e., N ). Each block of the en-
coder has Mn (n ∈ {1, 2, ..., N}) identical layers,
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Figure 1: Illustration of Multiscale Collaborative Deep
NMT Model. N is the number of encoder and de-
coder blocks. The n-th block of the encoder consists
of Mn layers, while each decoder block only contains
one layer.

while each decoder block contains one layer. Thus,
we can adjust the value of each Mn flexibly to in-
crease the depth of the encoder. Formally, for the
n-th block of the encoder:

Bn
e = BLOCKe(B

n−1
e ), (1)

where BLOCKe(·) is the block function, in which
the layer function F(·) is iterated Mn times, i.e.

Bn
e = Hn,Mn

e ,

Hn,l
e = F(Hn,l−1

e ;Θn,l
e ) + Hn,l−1

e ,

Hn,0
e = Bn−1

e ,

(2)

where l ∈ {1, 2, ...,Mn}, Hn,l
e and Θn,l

e are the
representation and parameters of the l-th layer in
the n-th block, respectively. The decoder works in
a similar way but the layer function G(·) is iterated
only once in each block,

Bn
d = BLOCKd(B

n−1
d ,Bn

e )

= G(Bn−1
d ,Bn

e ;Θ
n
d ) + Bn−1

d .
(3)

Each block of the decoder attends to the corre-
sponding encoder block.

Contextual Collaboration. To model long-term
spatial dependencies and reuse global representa-
tions, we define a GRU cellQ(c, x̄), which maps a
hidden state c and an additional input x̄ into a new
hidden state:

Cn = Q(Cn−1,Bn
e ), n ∈ [1, N ]

C0 = Ee,
(4)

where Ee is the embedding matrix of the source
input x. The new state Cn can be fused with each
layer of the subsequent blocks in both the encoder
and the decoder. Formally, Bn

e in Eq.(1) can be
re-calculated in the following way:

Bn
e = Hn,Mn

e ,

Hn,l
e = F(Hn,l−1

e ,Cn−1;Θn,l
e ) + Hn,l−1

e ,

Hn,0
e = Bn−1

e .

(5)

Similarly, for decoder, we have

Bn
d = BLOCKd(B

n−1
d ,Bn

e )

= G(Bn−1
d ,Bn

e ,C
n;Θn

d ) + Bn−1
d .

(6)

2.2 Back-Translation with Controllable
Sampling

Back-translation (BT) is an effective and com-
monly used data augmentation technique to incor-
porate monolingual data into a translation system.
Back-translation first trains an intermediate target-
to-source system that is used to translate monolin-
gual target data into additional synthetic parallel
data. This data is used in conjunction with human
translated bitext data to train the desired source-to-
target system.

In our work, we use an iterative back-translation
approach to jointly train source-to-target and target-
to-source NMT models. The process can be sum-
marized as below:

• step 1: we train both a source-to-target
model (M0

x→y) and a target-to-source model
(M0

y→x) using the human translated data.

• step 2: we useMt
x→y to translate source-side

monolingual data to target language, and use
Mt

y→x to translate target-side monolingual
data to source language, where t starts from
0.

• step 3: we combine both the human translated
data and pseudo data synthesized in step 2 to
further optimize the two NMT models respec-
tively.

• Repeat steps 2-3 until the models converge.

In practice, we repeat 3 times for steps 2-3. We
apply the controllable sampling strategy (Wei et al.,
2020a) to synthesize reasonable sentences which
are at both high quality and diversity.
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2.3 Knowledge Distillation and Ensemble

The early adoption of knowledge distillation
(KD) (Kim and Rush, 2016) is for model com-
pression. We use the same method as in Sun et al.
(2019) that adopts hybrid heterogeneous teacher:
base transformer, deep transformer, big transformer
and RNMT+ (Chen et al., 2018). For each individ-
ual model, we use the other two models as the
teacher model to further improve the performance.
In addition, model ensemble is also used to boost
the performance by combining the predictions of
above four models at each decoding step.

2.4 Domain-specific Fine-tuning

Fine-tuning with domain-specific data is a common
and effective method to improve translation quality
for a downstream task. After completing training
on the bitext and back-translated data, we train for
an additional epoch on a smaller in-domain corpus.
We first select 100K sentence-pairs from the bilin-
gual as well as pseudo-generated data according to
the filter method in Deng et al. (2018) and continue
to train the model on the filtered data.

2.5 Reranking

N -best reranking is a method of improving transla-
tion quality by scoring and selecting a candidate hy-
pothesis from a list of n-best hypotheses generated
by a source-to-target model. For our submissions,
we rerank the n-best hypotheses using two aspects
as follows:

log p(y|x) + λ1 log p(x|y) + λ2 log p(y) (7)

The weights λ1 and λ2 are determined by tuning
them with a random search on a validation set
and selecting the weights that give the best per-
formance.

3 System Overview

We submit constrained systems to both German to
French and French to German translations, with the
same techniques.

3.1 Dataset

We use all available bilingual datasets and select
10M bilingual data from WMT’20 corpora us-
ing the script filter interactive.py1. We
share a vocabulary for the two languages and ap-
ply BPE for word segmentation with 32K merge

1Scripts at: https://tinyurl.com/yx9fpoam.

System German→French
Dev Newstest19

MSC (48L) 28.9 33.2
+ Iterative BT 31.2 35.7
+ KD & Ensemble 32.3 36.5
+ Fine-tuning 32.9 37.2
+ Reranking 33.8 38.4
WMT’20 submission 35.0

Table 1: SacreBLEU scores on German→French.

System French→German
Dev Newstest19

MSC (48L) 22.8 31.7
+ Iterative BT 24.2 34.0
+ KD & Ensemble 25.1 34.7
+ Fine-tuning 25.9 35.4
+ Reranking 26.5 36.3
WMT’20 submission 36.6

Table 2: SacreBLEU scores on French→German.

operations. For monolingual data, we use 18M
German sentences and 18M French sentences from
Newscrawl, and pre-process them in the same way
as bilingual data. We split 9k sentences from the
“dev08-14” as the validation set and use newstest
2019 as the test set.

3.2 Model Configuration

We use the PyTorch implementation of Trans-
former2. We choose the Transformer base
setting, in which the encoder and decoder are of
48 and 6 layers, respectively. The dropout rate is
fixed as 0.1. We set the batch size as 4096 and the
parameter --update-freq as 16.

3.3 Results

Results and ablations for De→Fr Fr→De are
shown in Table 1 and 2, respectively. We re-
port case-sensitive SacreBLEU scores using Sacre-
BLEU (Post, 2018)3, using international tokeniza-
tion for German↔French.

German→French For De→Fr, iterative BT im-
proves our baseline performance on newstest 2019

2https://github.com/pytorch/fairseq
3SacreBLEU signatures:

BLEU+case.mixed+lang.de-fr+numrefs.1+smooth.exp+
test.wmt19+tok.13a+version.1.2.11,
BLEU+case.mixed+lang.fr-de+numrefs.1+smooth.exp+
test.wmt19+tok.13a+version.1.2.11
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by about 2.5 BLEU. The addition of KD and model
ensemble improves single model performance by
0.8 BLEU, but combining this with fine-tuning and
reranking gives us a total of 2 BLEU. Our final sub-
mission for WMT20 achieves 35.0 BLEU points
for German→French translation (ranked in the sec-
ond place).

French→German For Fr→De, we see similar
improvements with iterative BT by about 2.3
BLEU. KD, ensembling, and fine-tuning add an ad-
ditional 1.4 BLEU, with reranking contributing 0.9
BLEU. Our final submission for WMT20 achieves
36.6 BLEU points for French→German translation
(ranked in the fourth among anonymous submis-
sions).

4 Conclusion

This paper describes CAS IIE’s submission to the
WMT20 German↔French news translation task.
We investigate extremely deep models (with 48
layers) and exploit effective strategies to better uti-
lize parallel data as well as monolingual data. Fi-
nally, our German→French system achieved 35.0
BLEU and ranked the second among all anony-
mous submissions, and our French→German sys-
tem achieved 36.6 BLEU and ranked the fourth in
all anonymous submissions.
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Abstract

This paper describes our VolcTrans system on
WMT20 shared news translation task. We par-
ticipated in 14 translation directions. Our basic
systems are based on Transformer (Vaswani
et al., 2017), with several variants (wider or
deeper Transformers, dynamic convolutions).
The final system includes text pre-process,
data selection, synthetic data generation, ad-
vanced model ensemble, and multilingual pre-
training.

1 Introduction

We participated in the WMT2020 shared
news translation task in 14 directions:
English↔Chinese, English↔German,
French↔German, English↔Polish,
English↔Tamil,English↔Pashto,English↔Khmer,
covering language pairs from high to low resources.
In this year’s translation task, we mainly focus on
exploiting self-supervised and unsupervised meth-
ods for NMT to make full use of the monolingual
data (Lin et al., 2020; Yang et al., 2019).

We aims at building a general training frame-
work which can be well applied to different trans-
lation directions. Our models are mainly based
on the Transformer (Vaswani et al., 2017). Tech-
niques used in the submitted systems include iter-
ative back-translation, knowledge distillation. We
also employed several tricks to improve in-domain
BLEU scores, typically in-domain transfer learn-
ing. We also experimented with a multilingual pre-
training technique which we proposed recently (Lin
et al., 2020).

2 Baseline Models

We apply two different NMT skeletons for the
shared news translation as our baseline systems.

∗Intern at ByteDance
† Intern at ByteDance

We use the implementations in Fairseq(Ott et al.,
2019). All models are trained with Adam optimizer
(Kingma and Ba, 2014). We use the “inverse sqrt
lr” scheduler with 4000 warm-up steps and set the
max learning rate to 5e-4. The betas are (0.9, 0.98).
During training, the batches are made of similar
length sequences, so we avoid extreme cases where
most sequences in the batch are short and we are
required to add lots of pad tokens to each of them
because one sequence of the same batch is very
long. We limit the batch size to 8192 tokens per
GPU, to avoid running out of GPU memory. Mean-
while, to achieve a larger batch size to improve the
performance(Ott et al., 2018), we set the parameter
“update frequency” to 8, and train the model on
8 GPUs, resulting in an actual batch token size =
8192 × 8 × 8. During training, we employ label
smoothing of 0.1 and set dropout rate (Hinton et al.,
2012) to 0.2.

2.1 Transformer
Following Sun et al. (2019); Wang et al.
(2018), we use different architectures for Trans-
former(Vaswani et al., 2017) to increase the model
diversity and potentially get a better ensemble
model.

• Transformer 15e6d: According to Sun et al.
(2019), a transformer with larger encoder
layer number can learn better representation
of source sentence and get better BLEU scores.
We increase the number of encoder layers
from 6 to 15 layers in the transformer big
architecture which is the same as the Deeper
Transformer in Sun et al. (2019).

• Transformer Mid 25e6d and Transformer Mid
50e6d: To get much better BLEU scores, we
further increase the encoder layer number
from 6 to 25 (Transformer Mid 25e6d) and 50
(Transformer Mid 50e6d) for the transformer
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big architecture. However, the model is too
large and can not be trained with GPU, so we
decrease the feed forward size from 4096 to
3072 and the embedding size from 1024 to
768.

• Transformer 15000ffn. According to Sun et al.
(2019), the performance of the Transformer
model is largely dependent on the dimensions
of feed forward network. We use the same ar-
chitecture as Bigger Transformer in Sun et al.
(2019) which increases the feed forward size
from 4096 to 15000, the attention dropout
from 0.1 to 0.3 and the relu dropout from 0.1
to 0.3. The number of encoder and decoder
layers remains 6.

• Transformer 128hdim and Transformer
256hdim. Bhojanapalli et al. (2020) shows
that a transformer model with larger attention
dimensions can also get better BLEU score.
We increase the head dimension from 64
to 128 (Transformer 128hdim) and 256
(Transformer 256hdim). The number of
encoder and decoder layers remains 6.

• DLCL 25layers. Li et al. (2019) proposes a
transformer variant call DLCL and shows that
this architecture can make deep transformer
get higher BLEU.

2.2 Dynamic Convolution
We also apply dynamic convolution (Wu et al.,
2019) architectures.

• Dynamic Convolution 7e6d: The dynamic
convolution model with 7 encoder layers and
6 decoder layers which is the same architec-
ture proposed in Wu et al. (2019).

• Dynamic Convolution 25e6d: We increase the
encoder layer number from 6 to 25. For layers
above 7, we set the kernel size to 31.

3 Experiment Techniques

3.1 Parallel Data Up-sampling
According to the experiments, data diversity mat-
ters for the whole system. Apart from splitting
the monolingual data into several disjoint parts,
we sampled the parallel data so that each model
has different deviations on the parallel data. We
tested bagging sampling (sample with replacement)
and up-sampling(sample with replacement under

the premise of using all data), experimental results
show that when the amount of parallel data is inad-
equate with respect to the amount of model param-
eters (such as French↔German, English↔Polish,
etc.), the bagging sampling method reduces the per-
formance of the model; while when the amount of
parallel data is abundant(such as English↔ Ger-
man), the bagging sampling method has no signifi-
cant effects on the performance. On the contrary,
the data up-sampling method never degrades the
performance of the model.

mRASP: Multilingual Pre-training We em-
ployed a pre-training method mRASP, which
pre-trains a universal multilingual neural machine
translation model and fine-tune it on specific lan-
guage directions. Basically, we pre-train a model
using the provided parallel data on WMT2020
of English↔Khmer, English↔Inuktitut,
French↔German, English↔Polish,
English↔Pashto, English↔Tamil, on a shared
vocabulary learned from the above parallel data
plus provided monolingual data of all related
languages. We learn a BPE sub-word vocabulary
with 6000 merge operations. We up-sample the
data from lower resource language data to balance
data amount and only keep tokens that occur more
than 10 times. Finally, we obtain a joint vocabulary
of about 28000 tokens.

We fine-tuned the pre-trained model, for
low-resource directions: Pashto→English,
English↔Khmer and English↔Tamil. The
baseline model initialized by this method performs
better than the randomly initialized baseline
model by a large margin. We pre-trained three
mRASP models using the same training data:
Transformer big, Transformer 15000ffn and
Dynamic Convolution. We report in Table 1
the best score in each setting and direction, and
find that mRASP significantly outperforms the
baseline.

3.2 Tag Back-Translation

Recently, back-translation (Edunov et al., 2018)
is a standard method to improve the translation
quality by leveraging the large scale monolingual
data. Starting from WMT19, the source of the test
set is the natural text and the of the test set is the
translationese text. We find the tag back-translation
(Caswell et al., 2019) method can achieve better
BLEU compared with previous methods proposed
in Edunov et al. (2018).
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Testset Ps→En En→Km Km→En En→Ta Ta→En

Random 10.2 39.3 12.7 7.4 14.0
w/ mRASP 13.8 42.8 14.4 9.2 17.9

Table 1: Comparison between randomly initialized baseline model and model initialized from mRASP model

Data

Model 1

Model 2

Model 3

Ensemble
Model

Split

Figure 1: Data Diversity Matters for Final System

To improve the data diversity among single mod-
els before model ensemble, we generated the back-
translated data from different monolingual data
using different baseline models, as illustrated in
Figure 1. For high resource data (English, Pol-
ish, etc.), we divided monolingual data into several
parts, each containing 10M sentences. However,
for low resource data (Pashto), due to the lack of
monolingual data, we use all monolingual data for
all back-translation tasks.

3.3 Iterative Joint Training

Zhang et al. (2018) proposed an iterative joint train-
ing method for better usage of monolingual data
from source side and target side. In each itera-
tion, the S2T(source to target) model generates a
S2T(target to source) synthetic data from the source
side monolingual data and the T2S model generates
a T2S synthetic data from the target side mono-
lingual data. Then, the S2T and T2S model are
trained with the new T2S and S2T synthetic data
to improve the both models performance. In the
next iteration, the S2T and T2S model can gen-
erate synthetic data with better quality and their
performance can be improved further. We jointly
trained the S2T and T2S model until they converge.
Experiment results on English↔Polish shown in
Table 2

3.4 Knowledge Distillation

Recently, knowledge distillation has been widely
used to improve the performance of models (Sun
et al., 2019; Li et al., 2019). In our knowledge dis-
tillation method, student model is trained to fit the
output of teacher models. Concretely, we translate

Direction En→Pl Pl→En

Testset news20 dev news20 dev

Baseline 24.8 29.7
Iter 1 27.5 32.6
Iter 2 27.8 32.7
Iter 3 28.2 33.3

Table 2: Iterative Joint Training for English↔Polish

the source side monolingual data with an ensemble
teacher and a right-to-left(R2L) (Liu et al., 2016)
model teacher.

• Ensemble Model. We divided single models
in the last joint training iteration into k groups
(k=3 in our experiments, resulting in 3 models
in each group) and ensemble models in one
group to as the teacher model.

• R2L Model. We trained one R2L model for
each ensemble group using the same data as
anyone model in this group from the last iter-
ation.

We then use pseudo parallel data from ensem-
ble model as well as from R2L model to train the
student model, without employing parallel data.

3.5 Advanced Tricks

Top-k Checkpoint Average Different from the
conventional checkpoint average approach, which
is to average continuous K checkpoints, we aver-
age K checkpoints which have the highest BLEU
scores on the valid set, and find that this strategy
usually leads to significant BLEU improvements
over single checkpoints.

Random Ensemble We adopt a simple yet effec-
tive strategy in model ensemble. Rather than select
the best checkpoint from each model (a.k.a. greedy
search), we enlarge the search space: choose
one checkpoint from top-k checkpoints from each
model, and randomly select N combinations from
the entire search space, see Figure 2.
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Model 1 Model 2 Model 3 Model m

Ensemble
Model

choose 1 from top k choose 1 from top k

randomly select N combinations

……

Figure 2: Illustration of Random Ensemble

In domain Fine-tuning There exists a domain
mismatch between the obtained system trained with
provided parallel or monolingual training data and
the target test set. In order to alleviate this mis-
match, and to improve the translation performance
in the domain of the target test set, we fine-tune the
best single models with development sets for 1-2
epochs.

4 Settings and Results

For all news tasks, all ParaCrawl corpus is cleaned
by the script proposed by Xia et al. (2019). We
trained the baseline using the sampling method de-
scribed in Section 3.1 with different architectures
showed in Section 2. For the low resource language
pair (English↔Pashto), as showed in Section 3.1,
we pretrained three multilingual models with dif-
ferent model architectures (DLCL 25layers, Trans-
former 15000ffn and Dynamic Convolution 25e6d)
on all parallel data available in WMT20 except the
English↔Chinese to avoid a large dictionary1 and
fine-tuned the pre-trained models on the their own
parallel data with different data sampling strategies
to get 9 baseline models2. Then we applied the tag
back-translation, joint training, knowledge distilla-
tion and random ensemble methods as described
in Section 3 to get the final translation system. All
BLEU scores were reported with SacreBLEU(Post,
2018).

4.1 Chinese→English

Final Submission We submitted our VolcTrans
online system (unconstrained). The final submis-
sion achieves 36.6 BLEU. You can get access to
VolcTrans online system on http://translate.

volcengine.cn/.

1Large dictionary leads to large parameter size in embed-
ding

2We randomly combine sampling strategies and model
architectures to get 9 baseline models for each direction. The
performances of the 9 baselines is not the point, what we want
is the model diversity among single models

Direction En→Zh

Testset wmt19

Baseline 38.5
iterative BT 38.9
Ensemble KD 41.5
Ensemble System 42.0

BLEU on WMT20
44.9testset submission

Table 3: Results of English→Chinese by sacreBLEU

4.2 English→Chinese

For English→Chinese, we train English↔Chinese
jointly. We use all parallel data available: News
Commentary v15, Wiki Titles v2, UN Parallel Cor-
pus V1.0, CCMT Corpus and WikiMatrix. Af-
ter data filtering, XM parallel data remained. We
use MosesTokenizer for English and Jieba for Chi-
nese. After the pre-processing, separate BPE vo-
cabulary is learned with 32000 merge operations
for both English and Chinese on the parallel data.
We sample parallel data of ratio 100%, 110% and
120% with replacement from all parallel data. Then
we train 3 baselines with Transformer Mid 25e6d,
Transformer Mid 50e6d and Dynamic Convolu-
tion 25e6d architectures respectively, resulting in
9 baseline models. We employ Newscrawl data as
monolingual data for English. The total amount of
monolingual data is 90M, containing all Newscrawl
2019 data and others sampled from Newscrawl
2014 to 2018. For Chinese, we employ Newscrawl
data, CCMT data and LDC data. We split the
Chinese into 3 parts, each contains 8M sentences.
For iterative back translation stage and ensemble
knowledge distillation stage, each model is com-
bined with different English monolingual data part.
Since there are only 3 parts of Chinese monolingual
data, we use each part for 3 times at each stage. At
the ensemble knowledge distillation stage, we also
employ disjoint monolingual data as the distilling
data. The detailed results of our system is reported
in Table 3.

Final Submission We submitted the ensemble
system of the 9 single models after ensemble
knowledge distillation stage. The final submission
achieves 44.9 BLEU.

4.3 English↔German

For English↔German, we train both directions
jointly. We use all parallel data available: Eu-
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roparl v10, ParaCrawl v5.1, Common Crawl cor-
pus, News Commentary v15, Wiki Titles v2, Tilde
Rapid corpus and WikiMatrix corpus. After data fil-
tering, 28M parallel data remained. We use Moses-
Tokenizer for both English and German. After the
pre-processing, a joint BPE vocabulary is learned
with 6000 merge operations on the parallel data.
We sample parallel data of ratio 80%, 90% and
100% with replacement from all parallel data. Then
we train 3 baselines with Transformer Mid 25e6d,
Transformer Mid 50e6d and Dynamic Convolu-
tion 25e6d architectures respectively, resulting in 9
baseline models. We only employ Newscrawl data
as monolingual data for both German and English.
The total amount of monolingual data is 90M, con-
taining all Newscrawl 2019 data and others sam-
pled from Newscrawl 2014 to 2018. The 90M data
was divided into 9 disjoint parts, each containing
10M sentences, to jointly train 9 systems separately.
At the ensemble knowledge distillation stage, we
also employ disjoint monolingual data as the dis-
tilling data. The detailed results of our system is
reported in Table 4.

Direction En→De De→En

Testset news18 news19 news18 news19

Baseline 47.1 42.2 45.7 41.6
iterative BT 48.6 42.6 48.1 42.2
KD 49.7 44.3 48.4 43.3

Ensemble System 52.2 46.1 49.1 43.8

BLEU on WMT20
38.2 43.5testset submission

Table 4: Results of English↔German by sacreBLEU

Fine-tune In this step we use the development
sets to handle the domain mismatch problem in
WMT. For English→German direction, we fine-
tune some of the best single models on news2018
for 1-2 epochs, and then get the final ensemble
model from models with fine-tune and models with-
out fine-tune.

Final Submission For either direction, the final
submission is an ensemble system from single mod-
els with highest BLEU scores on development sets.
For the final English→German submission, we re-
placed the English quote with the German quote.
The final submissions on Test20 data achieve 38.2
BLEU for English→German direction and 43.5
BLEU for German→English direction.

4.4 French↔German
For French↔German, we train both directions
jointly. The overall parallel data contains 13M
sentences available including: Europarl v10,
ParaCrawl v5.1, Common Crawl corpus, News
Commentary v15, Wiki Titles v2 and WikiMatrix
corpus. We train 9 baseline models, each with dif-
ferent architectures (Transformer 15e6d * 2, Trans-
former Mid 25e6d, Transformer Mid 50e6d, Trans-
former 15000ffn, Transformer 128hdim, Trans-
former 256hdim and Dynamic Convolution 25e6d)
and each group of three models is combined with
3 different sampling strategies (no sample, up sam-
ple 120%, up sample 140%)3, resulting in 9 sin-
gle models for each direction. We only employ
Newscrawl data as monolingual data for both Ger-
man and French. The monolingual data contains
90M sentences, including all Newscrawl 2019 data
and others are sampled from Newscrawl 2014 to
2018. The data of 90M pairs is divided into 9
disjoint parts, each containing 10M sentences to
jointly train 9 systems separately. The detailed
experiment results are shown in Table 5.

Final Submission For either direction, the final
submission is an ensemble system of all 9 models
obtained after the knowledge distillation stage. For
the final German→French submission, we replaced
the English quote with the French quote. The final
submissions on Test20 data achieve 35.7 BLEU
for French→German direction and 35.3 BLEU for
German→French direction.

Direction Fr→De De→Fr

Testset news19 news19

Baseline 26.7 31.3
iterative BT 32.4 35.6
KD 32.7 36.8

Ensemble System 33.9 38.0

BLEU on WMT20
35.7 35.3testset submission

Table 5: Results of French↔German by sacreBLEU

4.5 English↔Polish
Our English↔Polish systems are based on Eu-
roparl v10, ParaCrawl v5.1, Wiki Titles v2, Tilde
Rapid corpus and WikiMatrix corpus. All data add

3There is little difference among the models with different
sampling ratios, what we are concerned about is the data
diversity caused by different sampling ratios.
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Direction En→Pl Pl→En

Testset news20 dev news20 dev

Baseline 24.8 29.7
iterative BT 27.8 32.7
KD 28.2 33.3

Ensemble System 28.7 34.0

BLEU on WMT20
26.1 34.4testset submission

Table 6: Results of English↔Polish by sacreBLEU

up to 8M sentences. We train 9 models with dif-
ferent architectures (Transformer 15e6d * 2, Trans-
former Mid 25e6d, Transformer Mid 50e6d, Trans-
former 15000ffn, Transformer 128hdim, Trans-
former 256hdim and Dynamic Convolution 25e6d)
and each group of three models is combined with
different sampling strategies (no sample, up sam-
ple 120%, up sample 140%) on both directions.
We only used Newscrawl as English monolingual
data. The English monolingual data contains 90M
sentences, including all Newscrawl 2019 data and
others sampled from Newscrawl 2014 to 2018. We
divide the data into 9 disjoint parts. Since Pol-
ish Newscrawl corpus only contains 3M sentences,
we additionally employ the Polish common crawl
data. We sample 90M sentences from the Polish
common crawl data which is then divided into 9 dis-
joint parts. Each part contains 10M common crawl
sentences and 3M Newscrawl sentences. Then we
apply the joint training and knowledge distillation
as described in Section 3. The detailed experiment
results are shown in Table 6.

Final Submission Our final submission is an
ensemble system consisting of all 9 models ob-
tained after the ensemble knowledge distillation
stage. The final submissions on Test20 data achieve
26.1 BLEU for English→Polish direction and 34.4
BLEU for Polish→English direction.

4.6 English↔Pashto

For English↔Pashto, we used all parallel data
containing 13M sentences available as follows:
ParaCrawl v5.1, Wiki Titles v2 and the Khmer
and Pashto parallel data. For Pashto→English,
we fine tune the three pre-trained models on all
data with different sampling strategies. Each pre-
trained model is fine tuned with three different
sampling strategies and we get 9 models. For
English→Pashto, we find that the models fine-

Direction En→Ps Ps→En

Testset news20 dev news20 dev

Baseline 8.4 10.2
+mRASP - 13.8
iterative BT 9.6 16.4
Ensemble System - 18.0

BLEU on WMT20
10.6 20.0testset submission

Table 7: Results of English↔Pashto by sacreBLEU

tuned from the pre-trained models have lower
BLEU score than the baseline model trained from
scratch, so we use the 9 baseline models which are
trained with different architectures and sampling
strategies. The English monolingual data has 90M
sentences containing all Newscrawl 2019 data and
others sampled from Newscrawl 2014 to 2018. We
divide the data into 9 groups. The detailed experi-
ment results are shown in Table 7.

Final Submission For Pashto→English, our fi-
nal submission is an ensemble model consisting
of all 9 models obtained after the ensemble knowl-
edge distillation stage. For English→Pashto, we
find the ensemble model has lower BLEU score
than the best single model, so we use the best
single model as our final submission. The final
submissions achieve 10.6 BLEU on wmt20 testset
for English→Pashto direction and 20.0 BLEU for
Pashto→English direction.

4.7 English↔Tamil

Direction En→Ta Ta→En

Testset news20 dev news20 dev

Baseline 7.4 14.0
+mRASP 9.2 17.9
iterative BT 11.8 23.8

BLEU on WMT20
7.9 19.7testset submission

Table 8: Results of English↔Tamil by sacreBLEU

For English↔Tamil, we use all parallel data
containing 533K sentences in total. We use all
provided Tamil monolingual data. Following the
procedure of English↔German, the English mono-
lingual data contains 90M sentences, including all
Newscrawl 2019 data and others sampled from
Newscrawl 2014 to 2018. The 90M data was di-
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vided into 9 disjoint parts, each containing 10M
sentences. For Tamil, we don’t apply tokenizer and
the raw text is directly split by BPE subword. We
fine-tune the three pre-trained models on all paral-
lel data with two different sampling strategies: no
sample and up sample 120%, resulting in 6 mod-
els. We then conduct back translation for one itera-
tion afterwards, each using one part of the English
monolingual data for generating English→Tamil
pseudo data, and all Tamil monolingual data for
generating Tamil→English pseudo data. The de-
tailed experiment results are shown in Table 8.

Final Submission For both English→Tamil and
Tamil→English directions, our final submission
is a single model. The final submissions achieve
7.9 BLEU for English→Tamil and 19.7 BLEU for
Tamil→English.

4.8 English↔Khmer

Direction En→Km Km→En

Testset news20 dev news20 dev

Baseline 39.3 12.7
+mRASP 42.8 14.4
iterative BT 46.5 16.9
Ensemble System - 17.8

BLEU on WMT20
51.8 17.6testset submission

Table 9: Results of English↔Khmer by sacreBLEU

For English↔Khmer, we used all parallel data
containing 4M sentences available as follows:
ParaCrawl v5.1 and the Khmer and Pashto parallel
data. For Khmer, we extract a dictionary from the
Khmer and Pashto parallel data. The km data in
this dataset is separated by a special token 2̆00b.
Loading this dictionary in the Jieba tokenizer, we
get a Khmer tokenizer. We preprocess the Khmer
data with our Khmer tokenizer followed by BPE
subword. We fine tune the three pre-trained models
on all data with different sampling strategies. Each
pre-trained model is fine tuned with three different
sampling strategies and we get 9 models. We use
all provided Khmer monolingual data. The English
monolingual data has 90M sentences containing
all Newscrawl 2019 data and others sampled from
Newscrawl 2014 to 2018. We divide the data into 9
groups. The detailed experiment results are shown
in Table 9.

Final Submission For Khmer→English, our fi-
nal submission is an ensemble model consisting
of all 9 models after the iterative back-transkation
stage. For English→Khmer, we find the ensemble
model has lower BLEU score than the best sin-
gle model, so we use the best single model as our
final submission. The final submissions achieve
51.8 BLEU on wmt20 testset for English→Khmer
direction and 17.6 BLEU for Khmer→English di-
rection.

5 Conclusion

This paper describes VolcTrans’s NMT systems
for the WMT20 shared news translation task. For
all directions, we almost adopted the same strate-
gies, except for low-resource language pairs, we
employed multilingual pre-training to boost the
baseline models. We found that splitting the mono-
lingual data into disjoint parts is an effective way to
increase data diversity among single models, which
is an important premise for building strong ensem-
ble models. Our final systems achieved significant
improvements, usually 3 to 5 BLEU scores, over
baseline systems by integrating techniques such as
tagged back-translation, iterative back-translation,
random ensemble, knowledge distillation.
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Abstract

This paper describes Tencent Neural Machine
Translation systems for the WMT 2020 news
translation tasks. We participate in the shared
news translation task on English ↔ Chinese
and English → German language pairs. Our
systems are built on deep Transformer and sev-
eral data augmentation methods. We propose
a boosted in-domain finetuning method to im-
prove single models. Ensemble is used to com-
bine single models and we propose an itera-
tive transductive ensemble method which can
further improve the translation performance
based on the ensemble results. We achieve a
BLEU score of 36.8 and the highest chrF score
of 0.648 on Chinese→ English task.

1 Introduction

Recently, Transformer (Vaswani et al., 2017), that
depends on self-attention mechanism , has signifi-
cantly improved the translation quality. It is widely
used as basic Neural Machine Translation (NMT)
models in previous WMT translation tasks (Wang
et al., 2018b; Li et al., 2019; Sun et al., 2019). In
this year’s translation task, our Tencent Transla-
tion team participated in three WMT2020 shared
news translation tasks, including Chinese → En-
glish, English→ Chinese and English→ German.
For the three tasks, we use similar model architec-
tures and training strategies. Four structures are
used and all of them are based on deep transformer
which are proven more effective than the standard
Transformer-big models (Li et al., 2019).

In terms of data augmentation, we adopt R2L
training (Zhang et al., 2019) to all the tasks. Mono-
lingual data is only used in English→ German task
following the back-translation manner (Sennrich
et al., 2016b). Different from the standard back-
translation, we add noise to the synthetic source

∗ Equal contribution. Correspondence to {frostwu,
brightxwang, vinnylywang, fangxuliu}@tencent.com.

sentence in order to take advantage of large-scale
monolingual text. In addition, we add a special
token to the synthetic source sentence to help the
model better distinguish the bilingual data and syn-
thetic data. The in-domain finetuning (Sun et al.,
2019) is very effective in our three experiments and
specially, we propose a boosted finetuning method
for English↔ Chinese tasks. We also take advan-
tage of the combination methods to further improve
the translation quality. The “greedy search ensem-
ble algorithm” (Li et al., 2019) is used to select the
best combinations from single models. Then for
English↔ Chinese tasks we propose an iterative
transductive ensemble (ITE) method based on the
translation results of the ensemble models. For En-
glish→ German task, we apply the noise channel
model for re-ranking (Yee et al., 2019).

This paper was structured as follows: Section
2 describes the dataset. We present the detailed
overview of our system in Section 3. The experi-
ment settings and main results are shown in Section
4. Finally, we conclude our work in Section 5.

2 Dataset

2.1 Chinese↔ English
The bilingual data used in Chinese ↔ English
task includes all the available corpus provided by
WMT2020: News Commentary v15, Wiki Titles
v2, UN Parallel Corpus V1.0, CCMT Corpus, Wiki-
Matrix, Back-translated news. The Chinese sen-
tences are segmented by jieba segmentor1 while
the English side is processed by Moses tokenizer.
We collect 18M sentence pairs after filtering.

2.2 English→ German
The bilingual data used in this task includes all the
available corpus provided by WMT2020. For the
Paracrawl part, We filter most of the data due to

1https://github.com/fxsjy/jieba.
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bad quality and collect 15M sentence pairs. To-
tally, 22M sentence pairs are used for training.
Both the languages are tokenized by tokenize.perl
script2. Then BPE is applied with 32K operations.
The vocabulary is shared with 32K unique words.
For monolingual data, we randomly select 80M
sentences from NewsCrawl2017-2019 for back-
translation and 45M are used for training after fil-
tering

2.3 Data Processing

Pre-processing To pre-process the raw data, we
apply a series of open-source/in-house scripts, in-
cluding full-/half-width conversion, Unicode con-
versation, punctuation normalization, tokenization
and true-casing. After filtering steps, we generated
subwords via BPE (Sennrich et al., 2016c) with
pre-defined merge operations of 32,000.

Filtering To improve the quality of data, we fil-
tered noisy sentence pairs according to their char-
acteristics in terms of language identification, du-
plication, length, invalid string and edit distance.
More specifically, we filter out the sentences longer
than 150 words. The word ratio between the source
and the target must not exceed 1:1.3 or 1.3:1. Ac-
cording to our observations, the filtering method
can significantly reduce noise issues including mis-
alignment, translation error, illegal characters, over-
translation and under-translation.

3 System Overview

3.1 Model Architecture

In our systems, we adopt four different model ar-
chitectures with TRANSFORMER (Vaswani et al.,
2017):

• DEEP TRANSFORMER (Dou et al., 2018;
Wang et al., 2019; Dou et al., 2019) is the
TRANSFORMER-BASE model with the 40-
layer encoder.

• HYBRID TRANSFORMER (Hao et al., 2019)
is the TRANSFORMER-BASE model with 40-
layer hybrid encoder. The 40-layer hybrid
encoder stacks 35-layer self-attention-based
encoder on top of 5-layer bi-directional ON-
LSTM (Shen et al., 2019) encoder.

2https://github.com/moses-
smt/mosesdecoder/tree/master/scripts/tokenizer/tokenizer.perl

• BIGDEEP TRANSFORMER is the
TRANSFORMER-BIG model with 20 en-
coder layers.

• LARGER TRANSFORMER is similar to
BIGDEEP model except that it uses 8192 as
the FFN inner width.

The main differences between these models are
presented in Table 1. To stabilize the training of
deep model, we use the Pre-Norm strategy (Li et al.,
2019). The layer normalization was applied to
the input of every sub-layer which the computa-
tion sequence could be expressed as: normalize→
Transform→ dropout→ residual-add. All models
are implemented on top of the open-source toolkit
Fairseq3 (Ott et al., 2019).

3.2 Data Augmentation

Data augmentation is a commonly used technique
to improve the translation quality. There are vari-
ous of methods to conduct data augmentation such
as back-translation (Sennrich et al., 2016a), joint
training (Zhang et al., 2018) etc. In this section, we
will introduce the methods we used in WMT2020.

3.2.1 Large-scale Back-translation
Back-translation is the most commonly used data
augmentation technique to incorporate monolin-
gual data into NMT (Sennrich et al., 2016a). The
method first trains an intermediate target-to-source
system, which is used to translate target monolin-
gual corpus into source. Then the synthetic parallel
corpus is used to train models together with the
bilingual data.

In this work we apply the noise back-translations
method as introduced in (Lample et al., 2018).
When translating monolingual data we use an en-
semble of two models to get better source transla-
tions. We follow (Edunov et al., 2018) to add noise
to the synthetic source data. Furthermore, we use
a tag at the head of each synthetic source sentence
as Caswell et al. (2019) does. To filter the pseudo
corpus, we translate the synthetic source into tar-
get and calculate a Round-Trip BLEU score, the
synthetic pairs are dropped if the BLEU score is
lower than 30. Notably, we only apply back trans-
lation to the English→ German task. We find that
back translation decrease the translation quality to
Chinese↔ English tasks in our experiments.

3https://github.com/pytorch/fairseq
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DEEP HYBRID BIGDEEP LARGER

Encoder Layer 40 40 20 20
Decoder Layer 6 6 6 6

Attention Heads 8 8 16 16
Embedding Size 512 512 1024 1024

FFN Size 2048 2048 4096 8192

Table 1: Hyper-parameters of different Transformer models used in our system.

3.2.2 R2L Training
The approach is proposed by (Zhang et al., 2019).
The main idea is to integrate the information of
Right-to-Left (R2L) models to Left-to-Right (L2R)
ones. Following this work, we translate the source
sentences of the parallel data with both a R2L
model and a L2R model, and use the translated
pseudo corpus to improve the L2R model. We drop
the pseudo parallel data if the BLEU score lower
than 15. This method is applied to all the three
tasks.

3.3 Finetuning

We use in-domain finetuning to further improve the
model performance on news domain as previous
study (Sun et al., 2019) shows that finetuning is
very effective on the WMT2019 news translation
tasks. For the three tasks, the finetuning is slight
different and we will introduce them seprately in
the following of this section.

Finetuning Zh→ En Models For this task, we
use all the previous development and test dataset as
in-domain corpusD that includes WMT2017 devel-
opment data, WMT2017 test data and WMT2018
test data. After training an NMT model M with
the above methods, we finetune W on D with the
same hyper parameters of training M . When test-
ing on the WMT2019 test set, we achieve about
4-5 BLEUs improvement. As the in-domain corpus
is very limited, we propose a boosted finetuning
method by using the R2L training method to boost
the finetuning process, which is named finetun-
ing (boost). In our final submission, we add the
WMT2019 test to D, the batch size is set to 2,048,
the finetuning finished after 3k training steps.

Finetuning En → Zh Models We select the
WMT2017 development data, WMT2017 test data
and WMT2018 test data as the in domain corpus D
in both tuning models and final submission which
is different from Zh→ En task. In addition, we do

not use R2L training or add WMT2019 test toD, as
we find this is useless. When finetuning, we reset
the optimizer and use a fixed learning rate of 8e-5.
The batch size is set to 1024 and the finetuning
finishes after 900 upates.

Finetuning En→ De Models We select the doc-
ument whose source side is originally in English
from all previous development and test dataset as
in-domain corpus D. Single models are trained
with the above methods are then finetune on D for
one epoch with a fixed learning rate of 1e-4. In our
final submission, the WMT2019 test set is added
to D for better performance improvement.

3.4 Re-ranking
We use noisy channel model re-ranking method
(Yee et al., 2019). This method is implemented in
Fairseq 4. Three features are used as following:

Source-to-Target Model Instead of a single
model, we use the ensemble model as source-to-
target model. Four well-trained single models are
used. The decoding beam size is set to 25. We
collect the log probability of each translation can-
didates.

Target-to-Source Model The target-to-source
model is the channel mode which is used to trans-
late the candidates back to source. We use a big
transformer model for target-to-source.

Language Models For language model, we train
a small GPT-2 model with FFN=8192 for target
monolingual data.

Tuning We use random search to choose values
in the range [0, 3) for λ1 , λ2 and length penalty.
The parameters are tuned on development set.

3.5 Ensemble
Model ensemble is a widely used technique in pre-
vious WMT workshops (Li et al., 2019; Sun et al.,

4https://github.com/pytorch/fairseq
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2019; Wang et al., 2018a) which can boost the per-
formance by combining the predictions of several
models at each decoding step. In our work, we use
two kinds of ensemble methods and finally the two
are combined for further improvements.

3.6 Greedy Based Ensemble

This method is proposed by Li et al. (2019). The
method adopts an easy operable greedy-base strat-
egy to search for a better single model combina-
tions on the development set. For more detail,
please refer to the original paper. We also train
single models with different hyper parameters to
ensure the diversity. We refer to this method as
Ensemble in the following.

3.7 Iterative Transductive Ensemble

Transductive ensemble (TE) is proposed by Wang
et al. (2020c). The key idea is that source input sen-
tences from the validation and test sets are firstly
translated to the target language space with mul-
tiple different well-trained NMT models, which
results in a pretranslated synthetic dataset. Then
individual models are finetuned on the generated
synthetic dataset. We propose an variation of TE,
the Iterative Transductive Ensemble (ITE) which is
based on Ensemble, as following:

Algorithm 1: Iterative Transductive En-
semble

Input: Single models Mm
1 , In-domain corpus D, En

1

is n different ensemble combinations
Output: Single models Mm

1

1 Translate D with En
1 and get D′1

n

2 Train each Mm
1 on D ∪D′1

n and get M ′1
m, then

Mm
1 = M ′1

m

3 t := 0
while not convergence do

4 Translate D with Mm
1 and get D′′1

n, then
D′1

n = D′1
n ∪D′′1

n

5 Train each Mm
1 on D ∪D′1

n and get M ′1
m, then

Mm
1 = M ′1

m

6 t := t + 1

7 return ,

4 Experiments and Results

4.1 Setups

The implementation of our models is based on
Fairseq 5. All the single models are carried out
on 8 NVIDIA V100 GPUs each of which have 32
GB memory. We use the Adam optimizer with

5https://github.com/pytorch/fairseq

β1 = 0.9 and β2 = 0.98. The gradient accumu-
lation is used due to the high GPU memory con-
sumption. The batch size is set to 8192 toknes per
GPU and the “update-freq” parameter in Fairseq
is set to 8. Specifically, for LARGE settings, the
batch size is 4096 and “update-freq” is 16. We
set max learning rate to 0.0007 and warmup-steps
to 4000. All the dropout probabilities are set to
0.1. We select the checkpoint with the lowest loss
on development set as the final checkpoint in each
training. We calculate sacreBLEU score 6 for all
experiments which is officially recommended. The
WMT2019 testset (test2019) is used as the devel-
opment set for all the tasks.

4.2 Chinese→ English

Table 2 shows the Chinese→ English translation
results on validation set. We train multiple single
models in each settings and report the best scores in
Table 2. The R2L method can significantly improve
the baseline by 2.45 BLEU scores. It is surprising
to find a gain of almost 5 BLEU improvement on
test2019 dataset. After we boost the in-domain
corpus, we can achieve 1 more BLEU on the DEEP
model. This illustrates that the finetuning is very
effective on the WMT2019 test set.

In our experiments, the ensemble models con-
sists of 5 single models: 1 HYBRID, 1 BIGDEEP,
3 LARGER models. As shown in the Table2, the
ensemble models outperform the best single model
by 1.06 BLEU score. We then apply transductive
ensemble to LARGER models and finally the per-
formance achieves 38.99. We also find that the
single models that applied TE cannot bring further
improvement to ensemble results. We do not apply
re-ranking to this task, as we find that the improve-
ment is insignificant. Our WMT 2020 Chinese→
English submission achieves a SacreBLEU score
of 36.8 and chrF score of 0.649.

4.3 English→ Chinese

Table 3 shows the English→ Chinese translation
results on validation set. We also train multiple
single models and report the best scores in the Ta-
ble. After applying R2L method, we achieve 0.4
to 1 BLEU. We can observe that the improvement
from finetuning is not as high as Chinese → En-
glish tasks, where only more 1 BLEU is gained.
We also find that the boosted finetuning is harmful
in this task, thus we omit the results. The ensemble

6https://github.com/mjpost/sacrebleu
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DEEP HYBRID BIGDEEP LARGER

Baseline 29.01 - - -
+R2L 31.46 31.42 32.07 32.41
+Finetuning 36.04 - - -
+Finetuning(boost) 37.02 37.23 37.38 37.62
Ensemble 38.68
ITE 38.99

Table 2: BLEU evaluation results on the WMT 2019 Chinese→ English test set.

DEEP BIGDEEP LARGER

Baseline 38.10 38.63 38.90
+R2L 39.09 39.01 39.31
+Finetuning - 40.72 40.68
Ensemble 41.46
ITE 42.26

Table 3: BLEU evaluation results on the WMT 2019
English→ Chinese test set.

BIGDEEP DEEP

Baseline 41.58 41.71
+R2L 43.05 42.73
+BT 44.37 44.06
+Finetuning 45.30 44.82
+Ensemble 45.7
+reranking 45.9
+PostProcessing 47.3

Table 4: BLEU evaluation results on the WMT 2019
English→ German test set.

setting consist of 4 models, that are 2 BIGDEEP, 2
LARGER models, which outperform the best single
model by 0.74 BLEU.

4.4 English→ German

Table 4 shows the results on English → German
translation. The baseline is the BIGDEEP model
using only bilingual data. R2L training boosts the
BLEU score from 41.58 to 43.05. After adding
back-translation, we further improve the BLEU
score to 44.37. The finetuning can further achieve
0.93 BLEU improvement on the BIGDEEP model.

In this task, the ensemble models consists of 4
single models: 1 DEEP, 2 BIGDEEP, 1 LARGER

models. As shown in Table 4, the ensemble models
outperform the best single model by 0.4 BLEU

score. We then apply noisy channel re-reranking
to ensemble results and finally achieve 45.9 BLEU
on the development set.

We apply a post-processing procedure. After
translating the source-side, we normalize the En-
glish quotations appearing in the German transla-
tions to German-style quotations. We find this can
improve the BLEU score on development set by
1.4 points.

5 Conclusion

This paper presents the Tencent Translation sys-
tems for WMT2020 Chinese→ English news trans-
lation tasks. We investigate various deep archi-
tectures to build strong baseline systems. Then
popular data augmentation methods such as back-
translation and R2L training are used to improve
the baselines. We also prove that in-domain fine-
tuning is very effective for news translation tasks
especially on Chinese→ English task. Finally, we
adopt the greed-based ensemble algorithm and pro-
pose an iterative transductive ensemble method for
further improvement.

It is worth mentioning a number of advanced
technologies reported in this paper are also adapted
to our systems for biomedical translation (Wang
et al., 2020b) and chat translation (Wang et al.,
2020a) tasks, which respectively achieve up to 1st
and 2nd ranks in terms of BLEU scores.
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Abstract

This review depicts our submission to the
WMT20 shared news translation task. WMT
is the conference to assess the level of machine
translation capabilities of organizations in the
word. We participated in one language pair
and two language directions, from Russian to
English and from English to Russian. We
used official training data, 102 million parallel
corpora and 10 million monolingual corpora.
Our baseline systems are Transformer mod-
els trained with the Sockeye sequence model-
ing toolkit, supplemented by bi-text data filter-
ing schemes, back-translations, reordering and
other related processing methods. The BLEU
value of our translation result from Russian to
English is 35.7, ranking 5th, while from En-
glish to Russian is 39.8, ranking 2th.

1 Introduction

We participated in WMT20 shared news transla-
tion task by building neural translation systems
for one language pair and two language direc-
tions, from English to Russian and from Russian
to English. Our systems are based on the frame-
work of the Transformer neural machine transla-
tion model, using many techniques and approaches,
including the use of BPE subword segmentation
for open-vocabulary translation with a fixed vo-
cabulary, large-scale back-translation,and model
ensembling.

Neural machine translation(Bahdanau et al.,
2014) has emerged as the most promising machine
translation approach in recent years, showing su-
perior performance on public benchmarks. The
proposed attention mechanism brought a new rev-
olution in the neural machine translation in most
cases, making the overall effect of translation much
better than before. Then, the Transformer(Vaswani
et al., 2017) that makes full use of the attention
mechanism demonstrated outstanding performance

and effectiveness. Up to now, most of work uses
the structure of Transformer, and its superiority has
been widely recognized.

Since the beginning of machine translation re-
search, the translation between Russian and En-
glish has been extensively developed.As early as
1954, Georgetown University in the United States
under the IBM company completed the English-
Russian machine translation experiment with the
IBM-701 computer, which opened the prelude of
machine translation research. During the period,
there are three core technologies, rule-based ma-
chine translation, statistical machine translation
and neural machine translation. However, as the
application field of machine translation became
more and more complex, the limitations of vari-
ous technologies started to become obvious. Due
to more application scenarios and higher require-
ments for accuracy, model optimization problems
appeared.

The translation between Russian and English is
extremely difficult because their linguistic features
are distinguished and the lexical composition and
grammatical structure of Russian are more com-
plicated than those of English. In the early pe-
riod,statistical machine translations were hoped
to be implemented through phrase-based meth-
ods(Marcu and Wong, 2002) and related techniques
for language models and translation models. These
methods have solved the Russian-English transla-
tion problems to a certain extent. Yet, at the same
time, there exists translation problems that are high
time cost and poor translation effect.

Since then, the emergence of neural machine
translation has brought new developments to
Russian-English machine translation. The basic
modeling framework for neural machine transla-
tion is an end-to-end sequence generation model,
a framework and method for transforming input
sequences into output sequences. There are two
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points in the core part. One is to represent the in-
put sequence through the encoder, and the other
is to obtain the output sequence through the de-
coder. In addition, for machine translation, neural
machine translation not only includes encoding
and decoding, but also uses RNN(Sutskever et al.,
2014) or other methods to encode sentence pairs.
It also introduces an additional mechanism, the at-
tention mechanism(Luong et al., 2015), to help us
to convert sequences. These innovations lead to
an increase in translation performance in compari-
son to earlier models. Later, Transformer appeared,
which greatly enhances the neural machine transla-
tion performance.

This paper is based on Transformer, a neural
machine translation network structure, to develop
a two-way evaluation task between Russian and
English. Taking into account the language char-
acteristics of Russian and English, we have done
appropriate operations in data preprocessing, in-
cluding removing duplicates, deleting unreasonable
sentence pairs, lowercase and Latinization opera-
tions, and judging sentence alignment problems,
removing the parallel corpus with problems. The
filtered parallel corpus is then sent to the model for
training and the training results are tested.After get-
ting the trained model, we start to consider using
the back-translation operation to augment the data,
continuing to filter the generated artificial corpus,
and put it into the model training together with the
original parallel corpus.

Finally, ensemble(Dietterich, 2000), average and
rerank(Shen et al., 2004) operations are imple-
mented on different models to improve the overall
performance of the translation system.

2 Background

Neural network machine translation is based on a
sequence-to-sequence overall structure consisting
of an encoder and a decoder. The encoder converts
the source language sentence into an intermediate
sequence result, and the decoder converts the in-
termediate sequence result into a target language
sentence. There is also the Attention mechanism
to help make the results perform better. In the con-
struction of the overall translation system, we used
a lot of excellent methods proposed earlier in the
literature.

The basic model used here is Transformer, intro-
duced by(Vaswani et al., 2017) . The transformer is
an attention-based structure proposed to deal with

tasks that require sequence models, such as ma-
chine translation. Traditional neural machine trans-
lation mostly uses RNN or CNN as the model base
of encoder-decoder, and Google’s latest Attention-
based Transformer model abandons the inherent
formula and does not use any CNN or RNN struc-
ture. The model works in high-level parallel pro-
cess, so training speed is also relatively fast while
improving translation performance. But it is still
computationally expensive.

Figure 1: Transformer Structure.

The structure of Transformer is shown in Fig-
ure 1. The model is divided into two parts: the
encoder and the decoder. The encoder is stacked
by six identical layers, each with two more sub-
layers. The first sub-layer is a long self-attention
mechanism, and the second sub-layer is a simple
fully connected feed forward network. A residual
connection is added outside the two layers, and
then layer normalization is performed. The output
dimensions of all sub-layers and embedding layers
of the model are dmodels; the decoder also stacks
six identical layers. However, in addition to the
two layers in the encoder, the decoder also adds a
third sub-layer, as shown in the figure which also
uses the residual and layer normalization.
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3 Data

We use all available bitext data which provided by
WMT for the Russian-English language pair. For
the monolingual data we use English and Russian
Newscrawl as well as a filtered part of Common-
crawl in Russian. We choose to use Russian Com-
moncrawl to augment our monolingual data due
to the relatively small size of Russian Newscrawl
compared to English.

3.1 Data preprocessing

For the Russian-English language pair, we applied
a series of preprocessing steps using scripts avail-
able in the Moses decoder(Koehn et al., 2007):

• replacing unicode punctuation,

• removing non-printing characters,

• normalizing punctuation,

• tokenization.

Also, we use joint byte pair encodings(BPE)
with 32K split operations for subword segmenta-
tion(Sennrich et al., 2015) for each language.

3.2 Data Filtering

The large datasets which were crawled from the
web would naturally be very noisy. And if they are
used in their original and raw format, it may reduce
the overall performance of the system. Clearning
up these datasets is an important step to achieve
good performance on any downstream tasks.

We applied two types of filters for data filter-
ing: one is rule-based heuristics and another are
filters based on language identification(Joulin et al.,
2016).

For the Russian-English bitext data we used
some data preprocessing methods to filter out them
including:

• removing the bitext sentence pairs with a fixed
length ratio above a certain threshold: for all
the datasets we used a threshold of 3.

• removing sentence pairs with too short sen-
tences: for all the sentences pairs we required
a minimum number of five words.

• removing sentence pairs with too long sen-
tences: we restricted all data to a maximum
length of 100 words.

En-Ru
No filter 112294588
+ length filter 102154821
+ langid filter 90826580

Table 1: Number of sentences pairs for different filter-
ing schemes.

En Ru
Newscrawl 33600797 22348032
+ langid filter 32538613 20989583

Table 2: Number of sentences pairs for different filter-
ing schemes.

Through observing the parallel data, we found
that there is a surprisingly large amount of text seg-
ments in a wrong language in all provided parallel
training data. So after some random inspection of
the data, it is necessary to apply off-the-shelf lan-
guage identifiers to the data for removing additional
erroneous text from the training data. We apply lan-
guage identification filtering called langid(Lui et
al., 2012)which can classify each sentence in the
parallel corpus.

So we can keep only sentence pairs with correct
languages on both sides. At last, we filter out about
15% of the original parallel data. See Table 1 for
details on the bitext dataset sizes.

For the monolingual English and Russian
Newscrawl data we also apply langid filtering. As
the monolingual Newscrawl data for Russian is
relatively smaller than that of English, we have
to augment the Newscrawl data for Russian with
monolingual data from commoncrawl corpus.But
there is a problem that the quality of commoncrawl
corpus is very poor but is also noisy.

4 Experiment

For this evaluation task, we first start from the data
preprocessing, through data expansion operations
to obtain the data that needs to be trained, and
then input the Transformer model for training. We
test the training results and finally ensemble re-
sults according to the model generated by different
strategies, average and rerank operations,for the
best results. Next, the specific experiment content
will be presented separately. The overall project
process is showed in Figure 2.
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Figure 2: Project Process.

4.1 Base System

Our base system is based on the Transformer archi-
tecture (Vaswani et al., 2017) as implemented in
Sockeye(Hieber et al., 2017). Due to the time cost
and hardware cost of the evaluation task, we choose
the basic version of Transformer. The encoder
and decoder respectively have 6 sub-layers and the
multi-head attention mechanism has 8 heads. The
word embedding vector size is 512. We trained all
our models using MXNET, which is the deep learn-
ing library that Amazon chose. The parameters
setting of our models are listed in Table 3.

After the above processing, we use the parallel
corpus which provided by the task organizers and
direct it into the model for training and testing. The
results of the base model can be used to generate
reverse translation data to augment the corpus and
continue training. The purpose is to maintain the
generalization ability and robustness of the model
to the greatest extent, and to provide reference for
other model training results.

4.2 Large-scale Back-translation

Back-translation(Edunov et al., 2018) is an effec-
tive method to improve neural machine translation
with monolingual data. It can incorporate mono-
lingual data into a translation system. Firstly,we
trained a baseline model that is used to translate
monolingual target data into additional synthetic
parallel data. This data is used in conjunction with
original bitext data the desired source-to-target sys-
tem.

In this work, due to the training time cost lim-
itation we respectively only selected 10 million
Russian and English sentences from the official
monolingual corpus for back translation opera-
tions. We used back-translations obtained by beam-
search(Edunov et al., 2018) from an ensemble of
two target-to-source models. We adopt the method
to tune the amount of bitext and pseudo-parallel
corpora the model is trained on. We found that a

ratio of 1:1 synthetic to bitext data can perform the
best.

4.3 Fine-tuning
Fine-tuning is a common and effective method to
improve machine translation quality especially for
a downstream task. When we complete training
on the original bitext and pseudo-parallel data, we
train an special epoch on a smaller domain-specific
data. It can make the model more sensitive to spe-
cific domain scenation and then get better results.
Here, we select a corpus with much similarity to
the test set from the training set to fine-tune the
trained model. The similarity scores between the
test corpus and the training corpus are sorted and
ranked. Then the parallel sentence pairs with higher
scores are found and the corpus is extracted as a
fine-tuning corpus. In this way, about 5,000 pieces
of data are obtained and this part of the corpus is
input into the previously trained model to obtain
the result of fine-tuning the model, so that it can
perform better on the test set.

4.4 Model Reranking
N-best reranking is a method of improving trans-
lation quality by scoring and selecting a candidate
hypothesis from a list of n-best hypotheses gener-
ated by a trained model. Extracting only one of the
highest-scoring statements from the translation re-
sults of the model as an output is not necessarily the
best result. So this strategy can be used to extract
the best three from each translation model result
as a candidate set. Then use some rules to rerank
and get the best one as the output result. The trans-
lated content thus obtained is the comprehensive
output of multiple results of each model. The rules
used here include weighted summation of beam
search score and the language model scores. The
first one is based on the beam score returned dur-
ing decoding, but different models have different
performances, so it is difficult to sort under a uni-
form metric. So we introduced different weights
for different models. Using beam score weight as
the final score for each translation result, the fi-
nal result was obtained by screening. The second
one gives scores of the generated translations using
the pre-trained language model. They are judged
from the linguistics itself and the sentences with
the highest scores are selected. The final result is
an output that combines the highest scores of the
two methods described above.

The above models also had different batch sizes,
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Parameters Transformer
optimizer adam
max-num-checkpoint-not-improved 16
num words 50000:50000
optimized-metric perplexity
max-seq-len 100:100
loss cross-entropy

Table 3: The parameters setting of Transformer are implemented by Sockeye .

comparison of the number of graphics cards and
vocabulary sizes in the training process. We ex-
tracted them for the optimal results. Finally, the
output is simply post-processed. In order to comply
with common practice in natural language process-
ing. However, due to the limitations of time and
hardware resources, not every experiment has been
refined and detailed totally, so there is still improve-
ment of results in the future.

4.5 Ensemble Model

Ensemble is a method that combines the results of
multiple models. The purpose of this is to comple-
ment the advantages of different models, make up
for the problems that fall into the local optimum
and get the results of the machine translation model
with better comprehensive effects. For the sake of
simplicity, only different initialization random seed
parameters are set for the same model. So training
of multiple models is performed, generally two or
three models, and finally the results of all models
are subjected to ensemble operation. By composing
and complementing multiple models, we obtain the
comprehensive optimal results of data translation.

5 Results

Results and ablations from Russian to English are
shown in Table 4, from English and Russian are
shown in Table 5. We report case-sensitive Sacre-
BLEU scores using SacreBLEU(Post, 2018). We
report all the case-sensitive BLEU(Koehn et al.,
2007) score of our submitted system on this year’s
test set.

5.1 Russian To English

From Russian to English, we can see that langid
filtering and ensembling improve our baseline per-
formance on this year’s test set by about 0.7 BLEU.
This is perhaps due to the addition of higher qual-
ity bitext data and improved data filtering tech-
niques. The addition of back-translated(BT) data

Type of Text Pair Bleu Improve
base-re RU-EN 33.1 0
filter-re RU-EN 34.2 +1.1

ensemble-re RU-EN 36.6 +2.4
fintune-re RU-EN 39.1 +2.5
rerank-re RU-EN 38.2 -1.1

Table 4: Russian-English Experiment Result.

Type of Text Pair Bleu Improve
base-re EN-RU 23.1 0
filter-re EN-RU 24.2 +1.1

ensemble-re EN-RU 24.5 +0.3
fintune-re EN-RU 24.8 +0.3
rerank-re EN-RU 24.6 -0.2

Table 5: English-Russian Experiment Result.

improves single model performance by about 0.3
BLEU, combining this with fine-tuning and ensem-
bling gives us a total of 3 BLEU. We composed
two models which have different random seeds and
then re-trained on the fine-tuning corpus. Finally,
applying reranking on top of these strong ensem-
bled systems gives another 1.4 BLEU.

5.2 English To Russian

From English to Russian, we observe similar trends
to Russian to English, with langid filtering and
ensembling improving performance of a baseline
system by 1.6 BLEU. Back-translatoin adds 1.5
BLEU, again mostly likely due to the lower quality
bitext data available. Also we composed two mod-
els which have different random seeds and then
re-trained on the fine-tuning corpus. Fine-tuning,
ensembling, and reranking add almost 3 BLEU,
with reranking contributing 1.2 BLEU.

6 Conclusions

This paper describes our submission to the WMT20
news translation task. In the evaluation task, we es-
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tablished a Russian-English bidirectional machine
translation system based on Transformer. For trans-
lations between Russian and English, we use the
same strategy of filtering bitext data, performing
beam-search back-translation on monolingual data.
Then we train strong individual models on a com-
bination of this data. Each of these models is fine-
tuned and ensembled into a final system that is
used for decoding with model reranking. In the
final list, we got 2th in Ru-En, and 5th in En-Ru.
Good results have been obtained in limited time
and hardware resources, which is also in line with
the industry’s demands for service construction. In
the whole experiment process, we also gained a lot
of experience in data processing and experimental
design, which will be of great help in later research
and study. We will continue to improve the pre-
vious experiments, strive to get better results, and
see what rankings can eventually be achieved, in
preparation for the next year.
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Abstract

This paper describes the DeepMind submis-
sion to the Chinese→English constrained data
track of the WMT2020 Shared Task on News
Translation. The submission employs a noisy
channel factorization as the backbone of a doc-
ument translation system. This approach al-
lows the flexible combination of a number of
independent component models which are fur-
ther augmented with back-translation, distilla-
tion, fine-tuning with in-domain data, Monte-
Carlo Tree Search decoding, and improved un-
certainty estimation. In order to address per-
sistent issues with the premature truncation of
long sequences we included specialized length
models and sentence segmentation techniques.
Our final system provides a 9.9 BLEU points
improvement over a baseline Transformer on
our test set (newstest 2019).

1 Introduction

The WMT2020 Shared Task on translating news
data from Chinese into English provides a chal-
lenging test for machine translation systems and
an ideal domain for researchers to evaluate new
techniques. The DeepMind submission to the con-
strained data track is based on the modular noisy
channel document translation architecture advo-
cated by Yu et al. (2020). In this formulation, the
posterior probability of a translation is the product
of the unconditional probability of the output doc-
ument (the language model) and the conditional
probability of the translation from the output to
source (the channel model). By assuming sentences
within a document are independently translated, we
can train the channel model using readily available
parallel sentences, rather than being reliant on less
numerous parallel documents, and the language
model on monolingual documents. This modular
approach allows the components of the system to be

∗*Equal contribution.

implemented and optimized independently while
at inference time, when we reason over the pos-
terior distribution of translations given the source
document, conditional dependencies between trans-
lations are induced by the language model prior.

The core of our document-level translation ar-
chitecture is the noisy channel reranker. It requires
proposal, channel, and language models, each of
which is optimized separately using different tech-
niques and approaches. For the proposal and chan-
nel models we use Transformer models (Vaswani
et al., 2017) (§4.1) with data augmentation (§4.2),
such as back translation (Edunov et al., 2018), dis-
tillation (Kim and Rush, 2016; Liu et al., 2016),
and forward-translated parallel documents. We fur-
ther improve these sequence-to-sequence (seq2seq)
models by fine-tuning them with in-domain data
(§4.3). To improve the robustness of the reranker
we apply adversarial training and contrastive learn-
ing methods for uncertainty estimation (§4.4). Fi-
nally, we include candidate translations generated
by Monte-Carlo Tree Search (MCTS) (§B) in order
to improve the diversity of the candidate pool for
the reranker. Our language models are based on
the Transformer-XL architecture (Dai et al., 2019)
and optimized with distillation and fine-tuning with
in-domain data (§5).

During development, we observed weaknesses in
our system’s translations for long sentences, largely
due to premature truncations. We developed several
techniques to mitigate this issue such as sentence
segmentation (breaking sentences into logical com-
plete segments) and training specialized models
with synthetically constructed long sequences to
generate additional proposals for our reranker (§A).

Experiments show that the aforementioned tech-
niques are very effective: our system outper-
forms the Transformer baseline by 9.9 BLEU
points on our test set (newstest2019). Our final
system achieves a BLEU score of 35.4 on the
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Chinese→English news test set of WMT2020.

2 Document Translation via Bayes’ Rule

Following Yu et al. (2020), we model document
translation via Bayes’ rule. We define X =
(x1,x2, . . . ,xI) as the source document with I
sentences, and similarly, Y = (y1,y2, . . . ,yJ) as
the target document with J sentences, where xi

and yj denote the ith sentence in the source docu-
ment and the jth sentence in the target document
respectively. We assume that I = J .

The translation of a document X is determined
by finding the document Ŷ , where p(Ŷ | X) is
maximal.

Ŷ = argmax
Y

p(Y |X)

= argmax
Y

p(X | Y )︸ ︷︷ ︸
channel model

× p(Y )︸ ︷︷ ︸
language model

. (1)

We further assume that sentences are independently
translated, and that the sentences within a docu-
ment admit a left-to-right factorization according
to the chain rule. Therefore, we have

Ŷ ≈ argmax
Y

|Y |∏

i=1

p(xi | yi)× p(yi | Y <i), (2)

where Y <i = (y1, . . . ,yi−1) denotes a document
prefix consisting of the first i− 1 target sentences.

The advantages of this formulation is that dur-
ing training the translation models can be learned
from parallel sentences and monolingual docu-
ments which are vastly available in practice un-
like parallel documents. During test time, when a
source document is observed, conditional depen-
dencies between the translation of the source sen-
tences are created in the posterior.

2.1 Reranking

Because of the global dependencies in the poste-
rior distribution, decoding in the aforementioned
document translation model is computationally ex-
pensive. Following Yu et al. (2020), we use an aux-
iliary proposal model q(y | x), that approximates
the posterior distribution using a direct model, to
focus our search on promising parts of the output
space. We then carry out the reranking process
using an iterative beam search, over candidates
generated by the proposal model q, to optimize the

objective:

O(X,Y <i,yi) = λ1 log pPM(yi | xi)+

λ2 log pAM(yi | xi)+

λ3 log pCM(xi | yi)+

log pLM(yi | Y <i)+

λ4|yi|+
O(X,Y <i−1,yi−1), (3)

where pPM is the proposal probabilities model, pAM
is the adversarially trained proposal model (§4.4.1),
pCM is the channel model (§4.4.2), pLM is the lan-
guage model (§5.1), and |y| denotes the number of
tokens in the sentence y. The weights of compo-
nent models (λs) are hyperparameters to be tuned
in experiments.

In practice, we generate for each source sentence
xi in the document X , a series of candidates yi,
using the proposal model q. As all of the terms in
the objective, except for pLM, only involve indepen-
dent target sentences, they can be computed ahead
of time in a scoring phase. The scored candidates
are then passed to the reranker, where the language
model is evaluated on the successive prefixes ex-
plored by the search, and which outputs the final
document Ŷ .

Iterative beam search The algorithm starts with
k complete documents using randomly selected
candidates for each of the source sentences. We
then iterate through every source sentence xi, re-
placing the randomly picked initial candidate with
every available candidate yi. We pick the top k
scoring complete documents and continue iterat-
ing over the document. Unlike traditional beam
search used by Yu et al. (2020), we go through
every sentence in the document multiple times, un-
til the top 1 translation converges (usually 2 to 4
full iterations). This allows for context from latter
sentences in the document to inform the choice of
earlier candidates.

Iterative beam search found improvements in
the model objective over traditional beam search
in 63% of the documents in our test set. Improve-
ments in objective did not translate in a stable im-
provement in BLEU or META scores (Eqn. 4) –
in fact those scores were slightly reduced for a
number of documents. Nevertheless, an informal
human evaluation of translated documents showed
preference for iterative beam search.

Selection of the hyperparameters λ We per-
form a grid search over the hyperparameters λ to
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maximize a metric on the validation set. The metric
we use is the following META score, combining
corpus-level BLEU, TER, METEOR, and the 0.1-
quantile of per-document BLEU, such that:

(1−META)4 =TER×
(1− BLEU)×
(1−METEOR)×
(1− q0.1(BLEU)). (4)

When several configurations of hyperparameters
achieve values of META very close to the maxi-
mum (within 0.02), we pick the one maximizing
BLEU and/or minimizing the L2 norm of the λs,
considered as a vector. This corresponds to an
intuitive prior towards giving more weight to the
language model.

3 Training Data

To train all of the models used in our system, we
made use only of the constrained data provided to
shared task participants. In this section, we discuss
the preprocessing and normalization techniques
we carried out in an attempt to reduce spurious
uncertainty in the modeling problem.

Text preprocessing We carried out the following
text normalization steps prior to use in any models:

• Text normalization. Unicode canonicalization
(NKFD from), replacement of common mul-
tiple encoding errors present in training data,
standardization of quotation marks into “direc-
tional” variants, conversion of any traditional
Chinese characters into simplified forms. Re-
placement of non-American spelling variants
with American spellings using the aspell li-
brary.1

• Segmentation into words. Chinese was seg-
mented into word-like units using the Jieba
segmentation tool.2 Punctuation was split
from English words using a purpose-built li-
brary. These processes were not completely
invertible, but they could be undone with sim-
ple rules so as to generate presentation-ready
English and Chinese.

• True-casing. Words containing only an ini-
tial capital letter that occurred at the start of

1http://wordlist.aspell.net/
varcon-readme/

2https://github.com/fxsjy/jieba

a sentence were replaced with the capitalized
variant that occurred most frequently in other
positions of the English monolingual training
data. Thus, in the previous sentence the ini-
tial token would have been words rather than
Words.

Subword units To encode text into sub-word
units, we used the sentencepiece tool (Kudo
and Richardson, 2018). For seq2seq models (i.e.,
the channel model and proposal models), we
trained the segmentation model on the first 10 mil-
lion sentences of the parallel training corpus,3 us-
ing joint source and target unigram (Kudo, 2018)
subword segmentation algorithm with a target vo-
cabulary of 32K tokens and minimum character
coverage of 0.9995, which resulted in 32,768 word
pieces.4 For the language model, we used the En-
glish side alone with the same vocabulary size and
a character coverage of 1.0.

4 Proposal and Channel Models

The proposal model, used to generate candidate
translations, and the scoring models (proposal
probability model, adversarially-trained proposal
model, channel model), used to compute features
for the reranker, are seq2seq models. We describe
here how we train and use them.

4.1 Sequence-to-Sequence Model

All our models are based on the Transformer ar-
chitecture (Vaswani et al., 2017). We increased
the inner dimension of the feed-forward network
from 4,096 to 8,096 and decreased the model size
(dmodel) from 1,024 to 512, which allowed us to
use 12 layers with 16 attention heads each. Addi-
tionally, we tied the source and target embedding
layers. Following (Vaswani et al., 2018), we ap-
plied layer normalization to the input of every sub-
layer as opposed to its original placement after the
element-wise residual addition. We used different
dropout values for different components: 0.1 for
the multi-head attention, 0.05 in the feed-forward
network, and finally 0.3 after the sub-layer. Learn-
ing rate schedule and dropout were found using
the Batched Gaussian Process Bandits (Desautels
et al., 2014) algorithm as implemented by Vizier
(Golovin et al., 2017). All other hyperparameters

3NC followed by CWMT, WikiTitles and UN.
4We tried both larger vocabulary sizes and separate vo-

cabularies but neither of these led to an improvement for our
system.
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were decided upon using grid search. During train-
ing, we used a maximum sequence length of 96.
For decoding, we used beam search with beam size
6, and set the length penalty alpha to 0.8, and a
maximum decoding length of 384. Multi model
ensembling was done via softmax output averaging
as described in (Freitag et al., 2017).

4.2 Data Augmentation

In this section, we introduce how we augment data
based on the given bilingual data and monolingual
data. When we train the proposal and channel
models, we use all the augmented data along with
the original bilingual data.

Back-translation We perform back-translation
from monolingual English data using fine-tuned
channel models (English→Chinese) with top-k
sampling following (Edunov et al., 2018) with
k = 50 during decoding. We used the same in-
domain monolingual data as described in §5.2. We
score the back-translated data with fine-tuned pro-
posal (Chinese→English) models, and filter them
based on the quantiles of length ratios, sequence
log-probability and cross-entropy between one-hot
empirical translations and logits from the scorer
model. The filtering helped to reduce the size of
data from 43.4M to 29.9M paired sentences.

Forward translation to generate synthetic par-
allel documents We applied a version of our sys-
tem to monolingual Chinese documents from Gi-
gaword to get synthetic English documents. We
only kept documents having between 4 and 25 sen-
tences, we rejected outliers according to their prob-
abilities under the language model, the channel
model, and to the overall objective. These were
then used to train subsequent versions of the for-
ward (Chinese→English) models.

Data distillation We use knowledge distillation
(Kim and Rush, 2016) to do distillation on the
original dataset. Specifically, we translate the
source-side of the bilingual data using previously
trained proposal models (including Right-to-Left
(Liu et al., 2016) and Left-to-Right models) and
generate distilled candidates. The generated sen-
tences are filtered if BLEU scores are below 30
(Wang et al., 2018; Sun et al., 2019). We then train
models on the filtered data along with the original
bilingual data and back-translation data. We repeat
this process three times using models trained on
newly generated data from the previous iteration.

We empirically do not find Right-to-Left models
significantly differ from Left-to-Right models in
performance. Qualitatively we find that distilled
data correct few errors in the original bilingual data.

4.3 Fine-tuning

Fine-tuning with in-domain data has been an ef-
fective approach for improving translation quality
as shown by existing work (Sun et al., 2019; Ng
et al., 2019). After training the proposal models
with the mix of real and synthetic parallel data, we
fine-tuned the models with CWMT and a subset
of newstest2017 and newstest2018 which were not
used for validation.

4.4 Improving Uncertainty Estimation

To improve the robustness of noisy channel rerank-
ing, we explore two approaches for improving un-
certainty estimation of the seq2seq scoring models.

4.4.1 Adversarially Trained Proposal Models
To simulate different wordings and noises in source
and candidate sentences, we follow Cheng et al.
(2019) to train the models on noisy adversarial
inputs and targets. We use bidirectional language-
models to provide the noisy candidates and select
the candidates with highest loss (i.e., adversarial
source-target inputs). During the training, we op-
timize the original loss with clean source-target
pairs, the language model losses for source and tar-
get sides, and the adversarial loss using adversarial
source-target inputs. In the final scoring, we use
an ensemble of eight adversarially trained models
with few differences from Cheng et al. (2019): (a)
We explore training with and without the language
model losses. Though the models trained without
the language model loss generate quite noisy sen-
tences, we empirically find this approach still helps
the overall performance. (b) In addition to using
the clean hard-labels for the noisy source-target
pairs for the adversarial loss as in the original work,
we explore a variation using a KL loss between
the adversarial source-target logits and the clean
source-target logits. We find this variant also im-
proves the overall performance.

4.4.2 Contrastive Channel Models
When scoring candidates, we want the channel
models to be sensitive to translation noise (dropped
words, permutation, or blanked words) (Edunov
et al., 2018). Hence, we develop contrastive train-
ing (Yang et al., 2019; Welbl et al., 2020) to train
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the models such that it will be more robust in esti-
mating the channel probabilities. Specifically, we
use n-gram Transformers (Chelba et al., 2020) with
the contrastive loss:

max {log p(x̃ | y) + η − log p(x | y), 0} , (5)

where x̃ denotes a noisy version (random word
deletion, blank, or permutation) of x, and p(x̃ | y)
is the perturbed loss term. We ensemble 8 models
with a few variants for final channel model scoring.
These variants consist of the followings: (1) We use
η = {0.01, 0.001}. (2) We use n-gram transformer
with n = 2, 8. (3) We use models with perturbing
source sentences p(x̃ | y) and models with perturb-
ing target sentences p(x | ỹ). (4) Instead of using
the contrastive loss, we include two models trained
to minimize the perturbed loss terms directly. (5)
Unlike Yang et al. (2019), where the authors firstly
train with the maximum likelihood objective and
then finetune with the contrastive loss, we find it
empirically works better to train models with lin-
early increased weights (increasing from 0 to 1
during training) to the contrastive loss (Eq. (5))
along with the original negative log likelihood loss.

4.5 Filtering Candidate Translations
After obtaining candidate translations from strong
proposal models, we filter out candidates with
length ratio outside of [e−1, e1], or which do not
end with end-of-sentence punctuation when the
source does, or with more than 4 consecutive iden-
tical tokens, or which are excessively compressible,
indicating repeated contents, according to the fol-
lowing. We learn a piece-wise linear ordinary least
squares model of the zlib-compressed length of
true English sentences from their uncompressed
length in UTF-8, using the English side of the
training data. We then reject candidates the actual
compressed length of which is more than 12 stan-
dard deviations below their predicted compressed
length.

5 Language Model

In this section, we describe the architecture of the
language models we used and how we trained them.

5.1 Model
The auto-regressive document language model is
a Transformer-XL (Dai et al., 2019), with atten-
tion memory length of 512. Following Rae and

Model Train Data Fine-tuning PPL

Transformer-XL Raw No 29.4
Transformer-XL In domain No 27.4
+ memory + BANN In domain No 26.7
+ memory + BANN In domain Yes 24.3

Table 1: Language model perplexities per token on the
validation set

Razavi (2020), we also used 4-layer blocks of
short and long (128-128-128-512) attention memo-
ries, capturing short-range correlations in the ear-
lier layers and long-range correlations in the later
ones. This led to a 20% speedup of training, and
helped the model generalize better to the valida-
tion set. We also used knowledge distillation in
our Transformer-XL model with a setup similar to
Born Again Neural Networks (BANN) (Furlanello
et al., 2018), where we regularize the original loss
function with term based on the cross-entropy be-
tween the new models outputs (student) and the
outputs of the original (teacher) model.

Let L denote cross entropy loss function, y one-
hot encoded label, s and t outputs of the student
and teacher model respectively, then the BANN
loss is defined as follows:

LBANN =
T∑

i=1

L(yi, si) + λ · L(ti, si). (6)

We trained our student network on the loss func-
tion in Eqn. 6 and found that λ = 1 had the best
validation perplexity.

5.2 Data
The English data used to train our language models
was prepared as described in §3.

In-domain document data for LM training
We found that training LMs on a subset of train-
ing data that was more closely aligned with the
validation set vastly improved the perplexity on
the validation and test sets (≈ 10%). To select
a well-aligned subset of training data, we ranked
the training data according to TF-IDF similarity
with each validation document and collected the
top 1,000 documents for each validation query to-
gether, to form our training data for the LM training.
We also tried mixing this sub-sampled in-domain
data with the raw data using different weights (es-
sentially equivalent to up-weighting the in-domain
data) and found that using purely in-domain data
outperformed all other mixing schemes in terms
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System BLEU

Big Transformer 28.1
+ Data augmentation (§4.2) 33.6
+ Fine-tuning (§4.3) 35.8
+ Ensembling (§4.1) 36.6
+ Reranking (§2.1) 37.2
+ Length-targeting improvements (§A) 38.0

Table 2: SacreBLEU scores on newstest2019 Chinese-
English.

of held-out perplexities and thus, the in-domain
data became our training dataset. As an auxiliary
benefit, the model trained on the in-domain dataset
(340K iterations) also converged much earlier than
the one trained on the raw dataset (500K iterations).

Similar to the sequence model fine-tuning out-
lined in §4.3, we also fine-tuned our trained lan-
guage model in order to align the model more
closely with the language constructs and domain
information in our test data. Table 1 shows the
perplexity numbers on the validation set obtained
by different train data and model variants described
above on the validation dataset.

6 Experiments and Results

We use the original Chinese subset of newstest2017
and newstest2018 as our validation set and new-
stest2019 as our test set.

The candidate translations for the reranker are
generated by 8 ensemble models (6 from each).

Table 2 presents the results of our models on
the test set. We report case-sensitive SacreBLEU
scores (Post, 2018). Both data augmentation and
fine-tuning significantly improve the performance.
Ensembling and noisy channel reranking gives
about 0.8 and 0.6 BLEU boost, respectively. Fi-
nally, our specialized methods for handling long
sequences (described in §A) yield a further 0.8
BLEU improvement.

In our final submitted system, we tune the
weights of component models and the hyperpa-
rameters of sentence segmentation models using
a combination of our validation set and test set.
For the candidate translations of the reranker, apart
from the existing 48 proposals generated by 8 en-
semble models, we include additional 48 proposals
generated by 8 ensemble models which are fine-
tuned with CWMT, newstest2017, newstest2018,
and newstest2019. We also include translations

generated by MCTS decoding (§B) in our non-
primary system. We find that adding a feature
marking the length of source sentences longer than
60 words helps the reranker handle long sentences
better. We therefore include this feature in addi-
tion to proposal probability, adversarial proposal
probability, channel probability, language model
probability, and length bonus (Eqn. 3).

Our system achieves a 35.4 BLEU score on new-
stest2020.

7 Conclusion

This paper describes the DeepMind submission to
the WMT2020 news Chinese-English translation
task. Using the noisy channel model (Yu et al.,
2020) as our core document translation system, we
optimized its component models using data aug-
mentation, fine-tuning with in-domain data, MCTS
decoding (§B), and knowledge distillation. We
also addressed premature termination in long sen-
tences by training specialized length expert mod-
els and segmenting long sentences into multiple
shorter sentences (§A). We have demonstrated the
marginal contributions of these methods in our anal-
ysis and our final system comprising all these meth-
ods outperforms the Transformer baseline by 9.9
BLEU points on newstest2019.
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In the appendix, we additionally include the de-
scription of our specialized methods for handling
long sequences and the MCTS decoding algorithm.
The candidate translations generated by MCTS de-
coding are added to the candidate pool of the noisy
channel reranker in our non-primary system.

A Length Considerations

The WMT Chinese evaluation data presents docu-
ments as a sequence of segments. These segments
are sentence-like units that were delimited in the
original article by either unambiguous structural
transitions, such as the end of a headline, or unam-
biguous end-of-sentence punctuation (.!?). How-
ever, in some contexts, a complete Chinese sen-
tence may be ended with a comma (Xue and Yang,
2011). This leads to disproportionately more seg-
ments in the evaluation data being multi sentence
than in the training data, which consists primarily
of paired sentences, phrases, and words. Since gen-
eralization from short sequences to longer ones is
a weakness of neural sequence to sequence mod-
els (Lake and Baroni, 2018), to ensure that our
candidate pool contains adequate translations of
long sentences, we had special handling for long
sequences.

A.1 Length Analysis

There is a strong linear relationship between the
number of Chinese words in the source segment
and the number of English words in the translation
(Figure 1 Left). The translations from our initial
system were able to match this relationship when
the source segment contained less than 60 words.
After this point, the translations became too short.
Inspection of these translations showed that the pri-
mary cause of failure was emitting the EOS token
too early. Since the translations were good up to the
point of truncation, we focused on methods to pre-
vent early termination. Our final pool consisted of
candidates from our original proposal models only
for sentences that had less than 80 words and the
rest were generated from the techniques outlined
here.

A.2 Length Experts

We trained a number of length expert models with
a sequence length of 384 tokens. As few (≤ 1%)
sentences in the training data were longer than our
default sequence length, we used a mixture of real
parallel data, synthetic data as described in §??, and

concatenation of consecutive synthetic sentences to
train these length experts. In addition, we also used
the original proposal models which were further
fine-tuned with long sequences(≥ 60 tokens) as
additional length experts. These specialized models
to handle longer sentences were used to generate
proposals for sentences between 60 and 100 words.

A.3 Sentence Segmentation

We found that a lot of the long (≥ 60 words) sen-
tences in our dataset had complete sentences con-
catenated with commas, semicolons, full-stops, ex-
clamations and question marks. While the latter
ones are all conclusive end of sentences, commas
are ambiguous as an end of sentence. Hence, we
built a comma classifier that distinguished com-
mas that signify end-of-sentence from the normal
commas. While training data for this classifier was
generated as outlined in (Xue and Yang, 2011), our
classification model had feed-forward layers on top
of the Transformer encoders (further fine-tuned on
this task) that we trained for our translation task.
During inference time, we recursively split every
sentence on standard end-of-sentence punctuation
and then semicolons followed by terminal com-
mas (as determined by the comma classifier), into
reasonably sized segments (10-60 words); Very
short segments (< 10 words) were merged with
their neighboring segments. After this first wave of
splits, if long segments (≥ 60 words) still persisted,
we further split them recursively on all colons, com-
mas and reverse commas into segments between
40-60 words. Each segment was then translated
independently using our translation models. This
segmentation procedure was used to generate pro-
posals for all sentences that had more than 60 space-
separated words.

Sentence remerging model For each split of a
sentence, we obtain a list of candidate translations,
and need to combine this. For n splits with k trans-
lations each, we have kn translations in total. Pro-
vided n and k are reasonable, we can enumerate
these, but it is still too many candidates to present
directly to our global reranker, so we need to have a
“local” reranker that will select the best k′ of these.

To select these, we define a reranking model in
terms of our usual features (language model log
probability for the remerged sentence to ensure co-
herence, channel log probabilities for the remerged
candidate, sum of the direct translation log proba-
bilities for each segment, and the total length). We
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Figure 1: Relationship between the number of white space separated words on normalized text translation pairs.
Left is the ground truth for our validation and test datasets. Middle is our initial candidate pool for this data while
Right is our pool including candidates from length expert models and our segmentation technique. The black line
is the maximum likelihood fit under |yi| ∼ N (β · |xi|, σ) with the dotted grey dashed lines representing the 3σ
bounds.

select the remerged candidates k′ maximizing an
approximate lower bound of the corpus-BLEU.

Approximation to BLEU The weights of the
features are learned so as to minimize an approx-
imation to the expected negative log BLEU score.
For the reference sentence y and hypothesis ŷ, the
negative expected log BLEU score is defined as:

L = −E
[
min{0, 1− |y|/|ŷ|}+
4∑

i=1

log ci(ŷ,y)− log ri(y)
]
,

where ci is a function that counts the clipped i-
gram matches against a reference, and ri counts
the i-grams in a reference (Papineni et al., 2002).

Although our model assigns probabilities inde-
pendently to sentences, BLEU is defined on an
entire corpus, and because of the nonlinear func-
tions in BLEU, we cannot compute this expectation
tractably. We therefore approximate it by moving
the expectations inside the nonlinear functions:

L ≈ −
[
min{0, 1− |y|/E[|ŷ|]}+
4∑

i=1

logE[ci(ŷ,y)]− log ri(y)
]
.

In this approximation, the corpus-level expecta-
tions for i-gram counts and the length can be com-
puted tractably using the linearity of expectation.
To obtain a learning algorithm, we differentiate
this quantity with respect to the weightings of the
scoring models and perform gradient descent.

Even with our small number of features, this
objective has many local optima and in practice we
run the optimizer starting from different positions
and find a solution that obtains a high BLEU score
and highly weights the language model (during
development, we noticed that a higher weight to
LM probabilities corresponded to noticeably more
fluent translations, even if there was little difference
in BLEU).

B MCTS Candidates

The candidate pool generated by the sequence to
sequence model optimize the search space that is
favorable according to those models and may fail
find certain translations that score poorly according
to sequence to sequence models, but receive high
scores from the noisy channel model. In order to in-
clude such translations into the candidate pool, we
employ Monte Carlo Tree Search (MCTS), to opti-
mize the noisy channel objective directly. MCTS
does not require a partial translation evaluation
function, as opposed to Beam Search, making it an
appropriate choice for decoding non-factorizable
objective functions.

We define the translation environment as a pro-
gressive left-to-right language generation process,
where each state sy defines a sequence of tokens
y, and each action aw appends a word type w at
the end of the sequence generating a new state sy′ .
When an action appends the end of sentence token,
a terminal state is generated. The reward R for
terminal states corresponds to a log-linear combi-
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nation of model scores φ ∈M as follows:

R(sy) = exp

(∑

i∈M
λiφi(y)

)
, (7)

where λ denotes the weights attributed to each of
the models. Our MCTS decoder is composed of
two optimization processes running simultaneously.
The former aims at finding the optimal state R(sy)
for each of the sentences in the validation and test
sets. The latter maximizes the correlation between
the BLEU score on the validation set by optimizing
the weights λ.

B.1 Monte Carlo Tree Search with Log
Linear Models

MCTS decodes a sentence by growing a search
tree. Each node in the tree corresponds to a state
but adds additional statistics in order to optimally
expand the search tree. Expansion is achieved by
applying actions to existing nodes in the tree, gen-
erating child nodes. The search process starts with
a tree with root node, which corresponds to an
empty translation, and gradually expands the tree
by append new words to existing nodes in the tree.

Each MCTS iteration performs the following
four steps: selection, expansion, simulation and
backpropagation.

The selection step aims at choosing the most
likely node in the tree to generate the optimal
translation. We employ a standard criteria UCT
(Upper Confidence Bounds for Trees (Kocsis and
Szepesvri, 2006)), which selects nodes recursively
starting from the root according to the following
criteria:

UCT(s) = Q(s) + b

√
2 lnN(s′)
N(s)

,

where s denotes the current node and s′ is the par-
ent node. N(s) denotes the number of times s
was traversed by the selection process and Q(s)
denotes the average reward obtained from s in the
N(s) traversals. b is a constant that quantifies the
trade-off between exploitation and exploration. We
set it to b = 1 in our experiments.

In general the average value Q(s) is computed
by accumulating the reward V (s) obtained one any
traversals containing s, then computing Q(s) =
V (s)
N(s) . However, as our reward function (Eqn. 7) is
concurrently updated by optimizing the weights λ,
we store the accumulative individual scores Vi(s)

of each of the models φi. Prior to a MCTS iteration,
we update λ and compute Q(s) as follows:

Q(s) =
exp(

∑
i∈M λiVi(s))

N
.

This allows changes to the weights to be directly
reflected in the entire search tree without the re-
computation of any tree statistics. As for models
M , we trained 9 proposal models and 7 channel
models with the architecture defined in §4.1, and 8
language models with the architecture defined in
§5.1.

Once a node s is selected, a new child s′ is added
to the tree in the expansion step.

The simulation step attempt to compute the ex-
pected reward for s′. This is generally accom-
plished by performing multiple random rollouts
starting from state s′, where actions are sampled
from an uniform distribution until a terminal state
is found. These states are then scored according to
Eqn. 7. The estimate of the expected reward of s′

is computed as the mean of the scores of different
rollouts. However, the sparsity underlying natural
language generation and the computational com-
plexity of the scoring function makes this practice
computationally challenging. Rather than perform-
ing multiple rollouts that sample from an uniform
distribution at each timestamp, we perform a single
rollout that runs greedy decoding starting from the
translation prefix defined from state s′. As it is
computationally expensive to perform decoding for
each MCTS iteration, use a light-weight proposal
model trained on the same data, but with a simpler
architecture. For this purpose, we reduce the archi-
tecture described in §4.1 into a single layer seq2seq
layer with 128 hidden units. While this network
underfits the data, we found that this trade-off is de-
sirable as it reduces the large dimensionality of the
vocabulary to the few examples that are sensible at
each prefix leading to a significant speed-up. The
quality of the found translation remains unaltered
as the reward is still computed with the full models.

Finally, each of the model scores Vi(s′) is prop-
agated to all nodes from the root to s′ in the back-
propagation step.

B.2 Pairwise Reranking Optimization

In order to optimize the weights λ in Eqn. 7, we
we employ the weight optimization method for
log-linear models described in (Hopkins and May,
2011), which allows us to optimize our log-linear
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model with respect to the non-differentiable objec-
tive function that is BLEU. This method, denomi-
nated as PRO, approximates the objective function
by training a binary classifier, such that two trans-
lations y and y′ respect the following equality:

g(y) > g(y′)⇔
∑

i∈M
λi(φi(y)− φi(y′)) > 0,

where g is the objective function, namely BLEU.
Thereby, this requires the generation of pairs y and
y′, where the LHS property holds. These samples
are then used as data to train the model defined in
the RHS.

We generate the data by sampling from the
MCTS tree for each sentence pair in the devel-
opment set. As Q(s) is the expected score of a
log-linear model with probabilities as components
φ, we expect that Q(s) is bounded in the [0, 1] in-
terval. Thus, at node s′, the probability of sampling
child s is given by Q(s)∑

c∈C(s′) Q(c) , where C(s) de-

notes all children of node s′. Once a leaf node
is found, if it’s terminal we sample its translation,
otherwise we sample the translation obtained from
its rollout.

Both MCTS search and PRO optimization are
executed in parallel, as the former needs optimal
weights in order to optimally grow the search tree,
and the latter needs the search tree to generate can-
didates. Thus, at each iteration, the PRO optimizer
samples from the most updated version of the tree
for each data point in the development set, and up-
dates the set of weights λ, which are then used in
the subsequent MCTS iterations.
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Abstract
This paper describes NiuTrans neural ma-
chine translation systems of the WMT20
news translation tasks. We participated
in Japanese↔English, English→Chinese,
Inuktitut→English and Tamil→English total
five tasks and rank first in Japanese↔English
both sides. We mainly utilized iterative back-
translation, different depth and widen model
architectures, iterative knowledge distillation
and iterative fine-tuning. And we find that
adequately widened and deepened the model
simultaneously, the performance will signif-
icantly improve. Also, iterative fine-tuning
strategy we implemented is effective during
adapting domain. For Inuktitut→English and
Tamil→English tasks, we built multilingual
models separately and employed pretraining
word embedding to obtain better performance.

1 Introduction

This paper describes the NiuTrans submis-
sions to the WMT20 news tasks, including
English→Chinese (EN→ZH), Tamil→English
(TA→EN), Inuktitut→English (IU→EN) and
Japanese↔English (JA↔EN) five directions and
all of our systems were built with constrained data
sets. Some useful methods in the WMT18 (Wang
et al., 2018) and WMT19 (Li et al., 2019) sub-
missions are also reused this time, such as model
ensemble, knowledge distillation (KD) et al., and
we explore some novel approaches this year.

For this participation, we experimented with
some deeper and wider Transformer (Vaswani et al.,
2017) architectures to get reliable baselines, nu-
cleus sampling (Holtzman et al., 2020) in back-
translation to generate more suitable pseudo bilin-
gual sentences, more effectively fine-tuning strat-
egy to adapt domain. Particularly in the low-
resources tasks, {TA,IU}→EN, we built multilin-
gual neural machine translation by using some sim-
ilar language to get better performance and further

replaced decoder’s word embedding by an English
pretraining Transformer language model’s which
trained by two monolingual in-domain data cor-
pora.

Furthermore, we presented a new fine-tuning pat-
tern which could significantly improve the BLEU
score on the test set, and it worked well on all five
tasks whether it is a low or rich resource. We care-
fully rethought this strategy and found the main
gain came from domain adaptation and improved
inferior translations.

Our systems and this paper followed six main
steps:1) data preprocessing and filter, 2) iterative
back-translation to generate pseudo bilingual data,
3) using different model architectures to enhance
the diversity of translation, 4) iterative knowledge
distillation by in-domain monolingual data, 5) itera-
tive fine-tuning with in-domain using small training
batch, 6) translation post-process.

2 System Overview

2.1 Data Preprocessing and Filtering

For EN→ZH and JA↔EN tasks, we first normal-
ized the punctuation in Chinese and Japanese mono-
lingual data by using Moses (Koehn et al., 2007)
normalize-punctuation.perl script. En-
glish and Inuktitut sentences were segmented by
Moses, while Chinese, Japanese and Tamil used Ni-
uTrans (Xiao et al., 2012), MeCab1 and IndicNLP2

separately for word segmentation. After convert-
ing numbers and punctuation into English pattern,
and then we normalized English words in Japanese
sentences to Japanese by using Sudachi (Takaoka
et al., 2018).

As previous work (Wang et al., 2018) indicated
that it’s important to clean data strictly, so this year

1https://github.com/taku910/mecab
2https://github.com/anoopkunchukuttan/indic nlp library
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we used a stricter data filter scheme than Li et al.
(2019) and the rules were following:

• Filter sentences length ratio lower than 0.4 or
upper than 3 and punctuation ratio more than
0.3.

• Remove sentences that have the long word
which consist of more 40 characters or words
more than 200.

• Remove repeated n-gram translation and re-
peated sentences except for IU.

• Filter out the sentences whose alignment
scores obtained by fast-align are lower than
-6.

• Detecting language and delete other languages
or have a special HTML label.

• Filter sentences in which parentheses on both
sides do not correspond.

• Use Unicode to filter sentences that other char-
acters more than 10.

And when we cleaned monolingual data still
employed those rules and particularly there were
some lines which include two or more sentences,
we write a script to cut them into several sentences.

2.2 Iterative Back Translation
Back-translation is an effective way to boost trans-
lation quality by using mono data to produce
pseudo training parallel data. Also, it can alleviate
domain adapted problems by carefully choosing
the in-domain target data. As Edunov et al. (2019);
Bogoychev and Sennrich (2019) stated, due to the
test target side only consisted of manual transla-
tions, back translation didn’t bring evident BLEU
increase on the test set. Despite our experiments
proved that the deeper architectures still showed
apparent improvements as the number of data in-
creases.

As Li et al. (2019) stated, it’s crucial to select in-
domain mono data for back-translation. After pick-
ing out English mono data, we first used 50 million
news data to train a language model (LM) built with
Transformer structures, then ranked cleaned mono
data which scored by trained language model be-
fore. However, it’s hard to find massive in-domain
data for other languages to train a neural LM, so the
better choice was using a statistical method, in here
we selected XenC toolkit3 (Rousseau, 2013). The

3https://github.com/antho-rousseau/XenC

in-domain data consisted of the valid set source
side and News Commentary high-quality mono
data. For avoiding the short sentence ranked too
high, each score was multiplied by a length penalty
when using both approaches to score these data.

We chose a sample base model as our back-
translation model rather ensemble model which
may gain a little improvement, but needed spending
huge decoding time. For multilingual model back-
translation, we followed Johnson et al. (2017)’s
work adding a target language label in the source
side, so translations could be adapt to the target
language.

This year we also followed previous work
Edunov et al. (2019) and we added a new pseudo
data produce methods–Nucleus Sampling, accord-
ing to Holtzman et al. (2020)’s work. For all tasks
we participated in, we first employed the beam
search approach to generate the best translations as
pseudo data and the scale of the pseudo was about
1:1 to real data. Then merge those data to retrain
model and do back-translations again. Repeated
those steps until the valid set BLEU have few in-
creases then stop iterative back-translation process-
ing. Notably, during the second back-translation,
for EN→ZH task we used topk sampling and the k
is 10 following last year, while for JA↔EN tasks,
nucleus sampling method which the p was set 0.9
preferred better comparing topk, whereas for other
tasks, {TA,IU}→EN, simply sampling was better.

2.3 Multilingual Model

For TA→EN and IU→EN, building a multilin-
gual model is a simple and effective way to boost
performance because of knowledge transfer. For
TA→EN task, we added six other similar languages
and only one language Russian (RU) for IU→EN
task, because there were no other languages witch
a relationship with IU. For TA, We up-sampled
the TA data then shuffled all the train data so that
each training batch could have TA data with high-
probability. As for IU, we only added 0.3 million
RU high quality data, then we directly merged two
languages as training data. To enhance the effect
of transfer learning, we utilized only one model
which all the language shared the same parameters
including word embeddings and vocab. Bilingual
data were reused to fine-tune the model for adapt-
ing parameters to the target language after model
convergence.
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Model Tag Depth Hidden Size Filter Size RPR Attention
Base 6 512 2048 7

Big 6 1024 4096 7

Deep25 25 512 2048 7

Deep25-filter 25 512 4096 7

Deep30-RPR 30 512 2048 3

DLCL35-RPR 35 512 2048 3

DLCL40-RPR 40 512 2048 3

Deep15-filter-768-RPR 15 768 4096 3

Table 1: Transformer Architectures.

2.4 Model Architectures and Ensemble
Inspired by deep network Wang et al. (2019), we
tried to use simple deep, or deep and wide network
architectures based on the Transformer to explore
the relationship of performance and model param-
eters. We mainly carried out experiments on the
structures of the model in Table 1. And we kept
six decoder layers unchanged because it only could
gain a few improvements tough many model pa-
rameters increased.

Deep Network: This model structure simply
changes encoder layers, hidden size and other
hyper-parameters based on vanilla Transformer.

DLCL Network: For a deeper network, we em-
ployed DLCL (Wang et al., 2019) to get more di-
verse models.

Filter size: This hyper-parameter represents the
dimension size of feed-forward network (FFN) and
simply increasing this could bring some improve-
ments (Wang et al., 2018; Sun et al., 2019; Bawden
et al., 2019). Notably, when using the deep Trans-
former architecture, the training time and model
parameters will increase sharply with the augment
of the FFN size.

RPR and relative length: The relative position
representation (RPR) (Shaw et al., 2018) improves
self-attention by adding relative position informa-
tion. The relative length which we set 8 is the key
parameter of this method.

For choosing models to ensemble, we utilized
the ensemble search method which used a script
to traverse all possible combinations then recorded
the best one. For JA↔EN, we chose 6 of 10 while
other tasks were 4 of 10.

2.5 Iterative KD and Fine-tuning
Sun et al. (2019) showed the self-learning strat-

egy is a very effective approach to improve perfor-
mance when the test set only composed of man-
ual translations and we mainly reused (Li et al.,
2019) iterative KD strategy to implement self-
learning. Specifically, we designed a new iterative
fine-tuning process which consists of three steps:
1)using ensemble models to decode valid and test
source side sentences then fine-tune models with
those pseudo data, 2) fine-tune with the valid set
by a small training batch and learning rate, 3) self-
learning with in-domain data which chose by only
test source side. Repeat these steps two or three
times according to the increase of the valid score
in the third step. Figure 1 shows these steps. No-
tably, for being consistent with the composition of
the test set, we picked out the data that the source
side is real while the target side is manual from the
previous valid set. In this way, we found that itera-
tive fine-tuning can promote news title translation
quality.

2.6 Reranking

For JA↔EN tasks, we followed the Ng et al. (2019),
using a neural language model, and a reverse trans-
lation model. Different from the last year, we used
several length penalties to generate more candi-
dates.

2.7 Post Editing

For tasks to the English side, we only confirmed
the numbers whether to generate correctly by de-
signing a rule-based script which generated two
lists for source and target sentences separately. For
EN→ZH, the strategy was the same as the last
year Li et al. (2019) and particularly dealt with
the name’s translation by using rules to delete
the English name copy in Chinese sentences. For
EN→JA task, we transferred English punctuation
to Japanese pattern.
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Figure 1: Iterative fine-tuning process

3 Experiment

3.1 Experiment Settings

For all tasks, we implemented the Transformer-
Base as our baseline and all of our architectures
were pre-normalize Wang et al. (2019) for stable
training except Transformer-Big. We implemented
models based on Fairseq (Ott et al., 2019) and
trained on eight 2080Ti GPUs. We used Adam
optimizer (Kingma and Ba, 2014) during training,
β1 = 0.9, β2 = 0.997 for pre-normalize architectures
and training batch was 2048 token while we accu-
mulated gradient 4 times for achieving bigger batch
size. We shuffled the training data before generate
training batch and the training batch each epoch,
so we didn’t consider the document information.
The max learning rate and warmup-steps we set
were 0.002 and 8000 separately for deep models
but 0.0016 and 16000 for deep and wide models.
During training, we used fp16 to accelerate training
with few performance damage. Training 15 epoch
was enough for most Tasks, while 20 epoch was
better for EN→ZH task and we implemented Li
et al. (2020)’s methods to accelerate training. To
get more robust models, the last 5 checkpoints were
saved every 5000 steps for EN→ZH and JA↔EN
tasks but every epoch for TA→EN,IU→EN tasks
were average ensemble. During back-translation,
we followed Hu et al. (2020)’s approaches to accel-
erate decoding when generating pseudo data.

3.2 JA↔EN Results

For JA↔EN tasks, we chose ParaCrawl v5.1, New
Commentary v15, WikiMatrix, Japanese-English
Subtitle Corpus, The Kyoto Free Translation Task
Corpus, TED Talks total six parallel data corpus
about 14.35 million and News crawl, News Com-

mentary, Common Crawl , TED Talks 4 Japanese
monolingual data corpus about 1.7 billion. After
the data filter, 12 million parallel data was left and
11 million selected by the neural language model
was used as training data. Cleaning several billion
low-quality monolingual data will cost too much
time, so here we shuffled all the data then split it
into dozens of parts, one of which was 20 million.
Finally we used total eight of them, each piece
was carefully cleaned. Before we also used BPE
(Sennrich et al., 2016) models with 32,000 merge
operations for both sides to reduce UNK size in
vocabulary.

We implemented back-translation two times, the
first was beam search while the second was Nucleus
Sampling to generate translations. Each time we
selected 12 million mono data sampled from all
the remaining data. Tough the second time didn’t
increase significantly compared with the first time,
the performance was further improved with the
increase of the model parameters. Considering the
training time, we finally chose 35 million training
data on both sides. Notably, as the official stated
that the test target side only consists of manual
translations, so the back-translation didn’t bring too
many improvements, only +0.55 and +2.1 BLEU
separately in two tasks.

In order to get more diverse models for ensemble
and achieve better results, we trained total 10 mod-
els including that eight with different architectures
which have been shown in Table 1 and other two
with different training data which consisted of 11
million bilingual data and 12 million pseudo data
produced by the first back-translation. Then we
searched from all the models to find the best combi-
nation of 6 out of 10 models. And Table 2 showed
that the ensemble is still a robust and effective way
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JA→EN EN→JA
System Valid Test Valid Test
Baseline 19.9 20.4 33.2 34.8
+ 12M Beam 21.0 20.8 36.5 36.8
+ 12M Nucleus 21.2 21.0 36.7 36.9
Deep15-filter-768-RPR 23.2 22.9 39.1 39.3
+ Iterative KD 24.4 24.6 39.8 40.1
+ Iterative fine-tuning 25.6 26.2 40.7 41.6
+ Ensemble 25.8 26.5 41.1 41.9
+ Post Edit 26.4 26.6 42.1 42.8

Table 2: BLEU scores on JA↔EN tasks

to boost translation quality.
We implemented iterative KD process twice and

each time chose 0.3 million monolingual data using
ensemble model to decode then trained 3 to 5 epoch
according to the dev PPL. Then we iteratively fine-
tuned the models three and two times for JA→EN
and EN→JA separately. And interestingly in some
real case, the translation of the news titles was
significantly improved after iteratively fine-tuning.

As Table 2 shows, iterative KD and fine-tuning
strategies could significantly increase the BLEU on
the test set.

We used the reranking model like Ng et al.
(2019), though it could boost 0.3 BLEU on dev
set, it didn’t get benefits on the test set. During
post edit, we mainly checked the number accord-
ing to the source side, it also could on EN→JA
task.

3.3 EN→ZH Results

In EN→ZH task, we employed News Commentary
v15, UN Parallel Corpus V1.0, Back-translated
news, CCMT Corpus total four corpora, and after
data filter, 10 million data were sampled to train
out baseline model. We set wmt18 and wmt19 test
as the valid set and mainly referred wmt19 set. In
the back-translation, 10 million mono data were
sampled from News crawl, News Commentary and
Common Crawl three corpora then used the base-
line model decode by beam search strategy during
the first time. During the second time, we still uti-
lized the same amount of pseudo data while topk
sampling which the k is 10 were used to translation
mono sentences. From Table 3, we could find that
back-translations didn’t perform well. Finally 30
million data in total were used to train 10 mod-
els, different from other tasks, here we searched
the best two combinations of 4 out of 10 models

System news2019 news2020
Baseline 35.4 40.8
+ 10M Beam 36.3 41.6
+ 10M TopK 36.1 41.5
Dlcl25-RPR 38.7 44.2
+ Iterative KD 39.4 45.4
+ Iterative fine-tuning 39.8 45.9
+ Ensemble 40.1 46.7
+ Post Edit 40.3 47.3

Table 3: BLEU (%) scores on EN→ZH task

for iterative KD strategy to ensure the diversity of
models.

Then we implemented three times iterative KD
and each time sampled 10 million in-domain source
data. Table 3 showed that it’s a very effective
method to get 0.8 improvements. Furthermore, we
fine-tuned models iteratively three times to domain
adaptation and improved +0.5 BLEU. Due to im-
plementing two ensemble combinations to decode
sentences, at last model ensemble was still effec-
tive to gain 0.8 improvement. According to the
WMT19 test, we adjusted the name’s translations
pattern during the post edit step then resulting in a
0.6 BLEU performance increase.

3.4 IU→EN Results

In IU→EN task, we only used Nunavut Hansard
Inuktitut-English Parallel Corpus 3.0 total 1.3 mil-
lion sentences. After the data filter, 1.1 million data
was left to build the baseline model. Though ro-
manization Inuktitut data directly was not effective,
it performed better than baseline when build a mul-
tilingual system by adding 0.3 million Russia data
which has the most similar semantic with Inukti-
tut. After that, we implemented data augmentation
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System Valid Test
Baseline 29.6 21.3
+ Romanization 29.3 21.0

Multilingual baseline 30.2 21.6
+ 1.3M Beam 30.6 22.2
+ 1.3M Sampling 30.9 22.2

Deep15-filter-768-RPR 32.5 23.5
+ Knowledge Distillation 32.5 25.4
+ Iterative fine-tuning 49.3 28.4
+ Ensemble 49.3 28.6
+ Post Edit 49.7 29.1

Table 4: BLEU (%) scores on IU→EN task

by using the multilingual model to back-translate
mono data iteratively twice and each time using 1.1
million data which equaled the true training sen-
tences. Interestingly, the bigger and wider models
improved translation quality distinctly proving it’s
a robust way whether the training data is rich or
not.

Then we first fine-tuned the multilingual model
to the target language by using 1.1 million bilin-
gual data several epochs. According to the valid
source set, ensemble models were used to decode
monolingual in-domain 0.1 million data which was
chosen by XenC and gained 1.85 BLEU improve-
ment. Then fine-tuned models only once, because
different from the bilingual model, the multilin-
gual model didn’t perform very well during the
fine-tuning stage.

Finally we selected four models to ensemble
and gained 0.18 increase, because different models
were too similar after fine-tuning. And we fixed the
punctuation and the score improved 0.52 BLEU.
During the post process, we fixed the number and
punctuation translation.

3.5 TA→EN Results

The Ta→EN task is similar to IU→EN but more
complicated, because more data corpus and lan-
guage can be used to build the multilingual sys-
tem. Specifically, we total used {Hindi (HI), Kan-
nada (KN), Malayalam (ML), Punjabi (PA), Telugu
(TE), Urdu (UR)}→EN total six other languages,
17 million sentences according to Kudugunta et al.
(2019)’s work showed similar languages with TA.
From Table 5, it can be seen that using similar
languages to build a multilingual system can in-
deed improve the performance. Also, using iter-
ative back-translation is still an effective way but

System Valid Test
Baseline 12.8 13.2
Multilingual baseline 14.2 15.1
+ 0.5M Beam 19.2 15.7
+ 1M Beam 20.9 16.6
Deep15-filter-768-RPR 22.8 19.0
+ Knowledge Distillation 23.4 20.6
+ Iterative fine-tuning 23.6 20.7
+ Ensemble 23.8 21.0

Table 5: BLEU (%) scores on TA→EN task

couldn’t add too much pseudo language data be-
cause this will make the real target language data
account for the whole data was too small, which
leaded to performance damage. During the back-
translation process, due to too many languages in
one model, we followed Johnson et al. (2017)’s
approach to build a reverse model to ensure trans-
lation quality.

For the model architectures we used, the wide
and deep model was still very effective and im-
proved 2.33 BLEU comparing with the base model.
Also it performed better than simple deepen model
layers. After finishing KD and fine-tuning, finally
gain 1.92 improvements.

4 Conclusions

This paper introduced our submissions on WMT20
five tasks and our main exploration is using more
diversified architectures, improving a iterative fine-
tuning strategy and utilizing several similar lan-
guages to build a multilingual model on low-
resource tasks. And we experimented with iter-
ative back-translation by different decoding strate-
gies, using pre-trained embeddings in multilingual
models. On the whole, all of our systems per-
formed competitively and ranked 1st on JA↔EN
both sides.
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Abstract
This paper describes a test suite submissi-
on providing detailed statistics of linguistic
performance for the state-of-the-art German-
English systems of the Fifth Conference of
Machine Translation (WMT20). The analysis
covers 107 phenomena organized in 14 catego-
ries based on about 5,500 test items, including
a manual annotation effort of 45 person hours.
Two systems (Tohoku and VolcanTrans) appe-
ar to have significantly better test suite accu-
racy than the others, although the best system
of WMT20 is not significantly better than the
one from WMT19 in a macro-average. Addi-
tionally, we identify some linguistic phenome-
na where all systems suffer (such as idioms, re-
sultative predicates and pluperfect), but we are
also able to identify particular weaknesses for
individual systems (such as quotation marks,
lexical ambiguity and sluicing). Most of the
systems of WMT19 which submitted new ver-
sions this year show improvements.

1 Introduction

Fine-grained evaluation has recently had increa-
sing interest on several natural language processing
(NLP) tasks. Focusing on particular issues gives
the possibility to analyse the automatic output in
ways that cannot be seen by generic metrics. This is
of particular importance in the era of deep learning,
which has led to high performances and differences
that are relatively difficult to distinguish. Additio-
nally, detailed evaluation can provide indications
for the improvement of the systems and the da-
ta collection, or allow focusing on phenomena of
the long tail that might be of particular interest for
certain cases (e.g. social biases; Stanovsky et al.,
2019).

The most common method for fine-grained or fo-
cused evaluation are the test suites (also known as
challenge sets or benchmarks; Guillou and Hard-
meier, 2016; Ribeiro et al., 2020). These are test

sets engineered in a particular way, so that they
can test the performance of NLP tasks on concrete
issues (Müller et al., 2018; Bawden et al., 2018).

This paper is presenting the use of such a test
suite for the evaluation of the 11 German→English
Machine Translation (MT) systems that participa-
ted at the Shared Task of the Fifth Conference of
Machine Translation (WMT20; Barrault et al.,
2020). The evaluation applies the DFKI test sui-
te on German-English, via 5,514 test items which
cover 107 linguistically motivated phenomena orga-
nized in 14 categories. After a reference in related
work (Section 2), we explain shortly the structure
of the test suite (Section 3) and present the results
(Section 4) and the conclusions (Section 5).

2 Related Work

The use of test suites was introduced along with
the early steps of MT in the 1990’s (King and Fal-
kedal, 1990; Way, 1991; Heid and Hildenbrand,
1991). With the emergence of deep learning, re-
cent works re-introduced test suites that focus on
the evaluation of particular linguistic phenomena
(e.g. pronoun translation; Guillou and Hardmeier,
2016) or more generic test suites that aim at com-
paring different MT technologies (Isabelle et al.,
2017; Burchardt et al., 2017) and Quality Estimati-
on methods (Avramidis et al., 2018). The test suite
track of the Conference of Machine Translation has
already taken place two years in a row, allowing
the presentation of several test suites, focusing on
various linguistic phenomena and supporting dif-
ferent language directions. These include work in
grammatical contrasts (Cinkova and Bojar, 2018),
discourse (Bojar et al., 2018), morphology (Bur-
lot et al., 2018), pronouns (Guillou et al., 2018)
and word sense disambiguation (Rios et al., 2018).
When compared to the vast majority of the previous
test suites, the one presented here is the only one
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Lexical Ambiguity
Er las gerne Novellen.
He liked to read novels. fail
He liked to read novellas. pass
Phrasal verb
Warum starben die Dinosaurier aus?
Why did the dinosaurs die? fail
Why did the dinosaurs die out? pass
Why did the dinosaurs become extinct? pass
Ditransitive Perfect
Ich habe Tim einen Kuchen gebacken.
I have baked a cake. fail
I baked Tim a cake. pass

Table 1: Examples of passing and failing MT outputs

that performs a systematic evaluation of more than
one hundred phenomena on the state-of-the-art sys-
tems participating in WMT20.

3 Method

The test suite is a test set that has been devised ma-
nually with the aim to allow testing the MT output
for several linguistic phenomena. The entire test
suite consists of subsets that test one particular phe-
nomenon each, through several test items. Each test
item of the test suite consists of a source sentence
and a set of correct and/or incorrect MT outputs. At
the evaluation time, the test items are given as input
to the MT systems and it is tested on whether the
respective MT output consists a correct translation.
By observing the amount of the test items that are
translated correctly, one can calculate the perfor-
mance of the MT systems regarding the respective
phenomenon.

The evaluation presented in this paper is based
on the DFKI Test Suite for MT on German to Eng-
lish, which has been presented in Burchardt et al.
(2017) and applied extensively in the WMT shared
task of 2018 (Macketanz et al., 2018) and 2019
(Avramidis et al., 2019). The current version inclu-
des 5,560 test items in order to control 107 pheno-
mena organised in 14 categories. Some sample test
items can be seen in Table 1 whereas a more detai-
led list of test sentences with correct and incorrect
translations can be found on GitHub1.

3.1 Application of the test suite

The construction of the test suite has been thorough-
ly explained in the papers from the previous years
(Avramidis et al., 2018, 2019) and depicted in Figu-
re 1 (steps a-c). The test items of the test suite are

1https://github.com/DFKI-NLP/TQ_
AutoTest

given as input to the MT systems (step d). Their
MT outputs are tested using a set of rules (regular
expressions or fixed strings), each rule specific for a
phenomenon, that defines whether the translations
are correct with respect to the tested phenomenon
(step e). When the automatic application of the ru-
les cannot lead to a clear decision on whether the
translation is correct or not, the test item is left with
a warning. The warnings are consequently resolved
by human annotators with linguistic knowledge,
who inspect the MT output, provide a clear judg-
ment and also augment the set of the rules to cover
similar cases in the future (step e).

For every system we calculate the phenomenon-
specific translation accuracy as the the number of
the test sentences for the phenomenon which were
translated properly, divided by the number of all
test sentences for this phenomenon:

accuracy =
correct translations
sum of test items

Each phenomenon is covered by at least 20 test
items2, whereas the same test items are given to
multiple systems to achieve comparisons among
them. In order to achieve a fair comparison among
the systems, only the test items that do not contain
any warnings for any of the systems are included
in the calculation.

In order to define which systems have the best
performance for a particular phenomenon, all sys-
tems are compared with the system with the hig-
hest accuracy. When comparing the highest scoring
system with the rest, the significance of the com-
parison is confirmed with a one-tailed Z-test with
α = 0.95. The systems whose difference with the
best system is not significant are considered to be
in the first performance cluster and indicated with
boldface in the tables.

3.2 Experiment setup

In the evaluation presented in the paper, MT out-
puts are obtained from the 11 systems that are part
of the news translation task of the Fifth Conference
on Machine Translation (WMT20). These are 6
systems submitted by the shared task participants,
one baseline system from the shared task of the
biomedical domain (WMTBiomedBaseline; Baw-
den et al., 2020) and 4 online commercial systems
whose output has been obtained by the workshop
organizers and therefore have been anonymized

2with the exception of 7 phenomena which have 9-19 items
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Er las gerne Novellen.

1. He liked to read novellas.
2. He liked to read novels.

regex: (+) novellas  (-) novels

1. He liked to read novellas.
2. He liked to read novels. 
3. He liked to read short stories. 
4. He liked reading novellas. 
5. He liked to read a novel. 
                      ...

1. ✓ 
2. ✗
3. ?
4. ✓
5. ?
  ...

⇨ ⇨

 
produce paradigms apply 

regex
⟲

check

 

a.

b.

c.

d. e. f.

1. ✓ 
2. ✗
3. ✓
4. ✓
5. ✗
  ...

 

write regular expressions

fetch sample translations

⇨

fetch more translations

Figure 1: Example of the preparation and application of the test suite for one test sentence

(Online-A, B, G and Z). The submitted systems
are OPPO (Shi et al., 2020), PROMT (Molchanov,
2020), Tohoku-AIP-NTT (Kiyono et al., 2020), UE-
din (Germann, 2020), VolcTrans (Wu et al., 2020)
and Zlabs, whereas a 7th system under the name
“yolo”was ignored because it contained arbitrary
translations. Unfortunately, contrary to previous
years, very few system descriptions were provided
by the time this paper was written and it is therefo-
re not possible to associate linguistic performance
with system types and settings.

As explained earlier, the application of the test
suite on the output of the 11 systems left about
10% of unresolved warnings which needed to be
manually edited. A human annotator with linguistic
background devoted about 45 working hours in
order to resolve 99% of them (resulting into 5,514
valid out of 5,560 total items).

4 Results

The accuracy of each system per linguistic catego-
ry is briefly shown in Table 5 whereas the detailed
statistics depicting the accuracy for every linguistic
phenomenon, grouped in the respective linguistic
categories are shown in Table 7. Since every catego-
ry and every phenomenon have a different amount
of test items, the average scores, shown in the last
rows of the tables, are computed in three diffe-
rent ways: The first aggregates the contributions of
all test items to compute the average percentages
(micro-average), the second (Table 5) computes the
percentages independently for each category and
then takes the average (hence treating all catego-
ries equally; category macro-average) and the third
(Table 7) computes the percentages independently
for each phenomenon and then takes the average
(hence treating all phenomena equally; phenome-

non macro-average). The significantly best systems
for every category or phenomenon are bold-faced.

Very high scores do not necessarily mean that the
MT of the respective grammatical phenomenon has
been solved, but rather that the current test items
of the test suite (which was engineered with the
emergence of the first neural MT systems in 2017)
are unable to expose difficulties of the systems. The
artificial nature of the test suite and the variable
number of test items per category and phenomenon
should also be taken in consideration when doing
comparisons between categories and phenomena.

4.1 Comparison between systems

Two systems are standing out for their overall
performance. Tohoku achieves the best category
macro-averaged accuracy of 88.1%, whereas it is
sharing the first position with VolcTrans based on
their micro-averaged accuracy (85.3-85.4%). The
systems UEdin, Online-B, Online-G and Online-
A are next. Tohoku and VolcTrans are also the
best performing systems for all linguistic catego-
ries, whereas UEdin is losing in one category and
Online-A is losing in two categories.

Two systems, WMTBiomedBaseline and ZLabs
show very low performances and are assumed to
be non state-of-the-art systems. We will therefore
exclude these two systems from the discussion and
conclusions for phenomena and categories. Where-
as no description was available for ZLabs, the lower
performance of the WMTBiomedBaseline can be
attributed to the fact that it was trained with only
56% of the parallel training data used by Tohoku
and no synthetic data. Among the rest of the sys-
tems, the worst performing one is Online-Z, achie-
ving the lowest accuracy (74% on both micro- and
macro-average), being on par with the best systems
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Verb Valency
Ich erinnere mich seiner.
I remember his. fail
I remember him. pass
False Friends
Er las gerne Novellen.
He liked to read novels. fail
He liked to read novellas. pass

Table 2: Examples of linguistic categories with lower
accuracy with passing and failing MT outputs

on only 6 categories.
BLEU scores (Papineni et al., 2002) on the of-

ficial test-set are also calculated for further com-
parison. The order of the systems based on BLEU
seems to correlate with the order given by the ca-
tegory macro-average with the exception of one
system (OPPO). Since BLEU scores are calcula-
ted on a different test set, further investigation is
needed to confirm if this correlation is of any signi-
ficance. According to the official human evaluation
campaign (Barrault et al., 2020, table 11), the first
nine systems are tied, so it is hard to compare this
system order with theirs.

4.2 Linguistic categories

The average accuracy regarding the linguistic cate-
gories ranges in relatively high numbers, between
68.9% and 97.3%. The categories with the highest
accuracy in average are the negation (97.3%), the
composition (85.3%), the subordination (85.3%)
and the named entinties and terminology (82%).
The ones with the lowest accuracy are the multi-
word expressions (MWE), the ambiguity, the fal-
se friends and the verb valency (68.9-71.5%).

When one tries to identify weaknesses of parti-
cular systems, OPPO is suffering mostly concer-
ning function words and long distance dependen-
cies (LDD) / interrogatives. Online-Z and PROMT
have issues with ambiguity and several systems ha-
ve issues with punctuation. Some of these issues
are discussed in a more fine-grained level below.

The comparison of the state-of-the-art systems
with the low-resource WMTBiomedBaseline indi-
cates that some categories, such as ambiguity and
composition, are particularly sensitive to low re-
sources, as their accuracy is proportionally lower
than other categories if compared to the respective
category accuracies of the state-of-the-art systems.

Table 2 contains examples from the two low ac-
curacy categories verb valency and false friends.
Verb valency refers to the arguments that are being

controlled by the predicate. Certain verbs require
a specific grammatical case. In our example, the
German verb sich erinnern (to remember) requires
a genitive object, in this case seiner. Seiner, howe-
ver, can also mean his as in the possessive pronoun,
which explains the mistranslation of I remember
his.

False friends are words in different languages
that look similar and are therefore often mistaken
for being translations of one another, even though
their meanings differ. The German noun Novelle
does not translate to novel, but to novella or short
story. While you would expect a human to make
these kind of translation errors, it is surprising to
see that also MT systems are prone to mistransla-
ting false friends.

4.3 Linguistic phenomena

The accuracy regarding individual linguistic phe-
nomena has a wide range, between very low scores
(15%) and full success (100%). The phenomena
which all systems had difficulty to handle were the
idioms and the resultative predicates, with most
systems scoring only 20% and 26% respectively.
However, the overall performance on these phe-
nomena has improved: last year only 3 systems
could achieve this performance, with the majority
of the systems having 5-10% less accuracy. Mo-
dal pluperfect is also ranging very low, scoring
between 2.2% and 50.6% and similar is the case
for its negated version. Other moods of the pluper-
fect make it particularly difficult for some systems,
e.g. PROMT and Online-Z suffer in translating the
ditransitive and intransitive pluperfect.

When trying to find the cases that consist a weak-
ness for particular systems, Online-Z indicates one
of the lowest scores in punctuation, which appears
to derive from the fact that the system removes
all quotation marks. A similar issue is observed
with Online-G and OPPO which could correctly
convey almost half of the quotation marks, whe-
reas another two systems have some way to go.
Interestingly enough, despite strongly depending
on preprocessing, quotation marks are a common
issue, since similar cases have been noted in pre-
vious years. In other phenomena, Online-Z has a
very low accuracy for sluicing whereas PROMT is
relatively weak concerning lexical ambiguity.

Table 3 contains further translation examples
from linguistic phenomena with low accuracy. A
resultative predicate is a construction that consists
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Resultative Predicate
Sie trinkt die Tasse leer.
She drinks the cup empty. fail
She empties the cup. pass
She is drinking the whole cup. pass
Intransitive Pluperfect
Sie hatten geschlafen.
They were sleeping. fail
They had slept. pass
Sluicing
John mag die Nudeln nicht, aber er weiß
nicht, warum.
John doesn’t like the noodles but he doesn’t
know why. fail
John doesn’t like the noodles, but he doesn’t
know why. pass
Lexical Ambiguity
Das Gericht gestern Abend war lecker.
The court last night was delicious. fail
The dish last night was delicious. pass

Table 3: Examples of linguistic phenomena with low
accuracy with passing and failing MT outputs

of a verb and an adjective in which the verb descri-
bes an action and the adjective describes the result
of that action. In many cases, resultative predicates
lead to translation errors as they do not exist in
English and a literal translation leads to an ungram-
matical translation, as can be seen in the example.
Since none of the systems could produce a cor-
rect output for this sentence, we have provided two
possible correct translations here as examples.

Intransitive verbs do not require further objects
(as opposed to transitive or ditransitive verbs). Plu-
perfect is a tense which is used in German to des-
cribe completed actions that have taken place in the
past. It should be translated to English in pluperfect
as well. In the example, the incorrect translation
contains past progressive were sleeping instead of
the correct had slept.

Sluicing is a type of ellipsis that can occur in di-
rect and indirect interrogative clauses. A wh-word
precedes the part of the sentence that contains the
ellipsis. In our example, all constituents followi-
ng the wh-word are elided: John mag die Nudeln
nicht, aber er weiß nicht, warum er die Nudeln
nicht mag. Sluicing exists in both German and
in English: John doesn’t like the noodles, but he
doesn’t know why he doesn’t like the noodles. One
difference between the German and the English
sluicing sentence is that in German there are two
commas, while in English there is only one. Since
this phenomenon concerns the complete sentence,
punctuation should be correct when translating a
sentence containing sluicing. In our example, the

WMT categ. macro- micro-

2018 81.0 84.1
2019 87.4 83.0
2020 88.0 85.1

Table 4: The accuracy (%) of the best system of each
year as measured over 5,555 test items that were com-
mon over the last years. The scores that are significantly
higher in each column are boldfaced

missing comma leads to fail.
The fourth example in the Table contains the le-

xical ambiguity Gericht. Gericht can either mean
court or dish but the context provided in the sen-
tence (war lecker, English: was delicious) serves as
disambiguation so that only a translation referring
to dish (or to food in some way) can be a pass. Any
translation referring to court/courthouse/tribunal
or the like is a fail.

4.4 Comparison with previous years

One can notice some improvements on the over-
all performance of the best system, as compared
with the previous two years. As seen in Table 4
from 2018 to 2019 there was a 6.4% improvement
on the macro-averaged accuracy but there was no
significant improvement from 2019 to 2020. The
best system of 2019 was not submitted in 2020
and this is unfortunate, as it performed better than
this year’s best system in four categories (mostly
regarding ambiguity; Table 6). When considering
micro-averaged accuracy, there is significant impro-
vement since last year (2.1%), but the best system
of 2018 is competing with the one of this year, due
to its high performance regarding verb tense/mood.

One can also consider the improvement of indi-
vidual systems submitted to WMT from one year
to another, starting from 2018. This year, only 5 of
the 2019 systems submitted their new version and
the yearly difference of their test suite accuracy can
be seen in Table 6. The accuracy is measured over
the test items that are common over all three years
(or at least the last two).

All systems indicate considerable improvements
on the macro-average since the previous year, ran-
ging between 2,4% and 8,5%. Online-G had a ma-
jor improvement for a second year in a row (21.6%
in total), whereas it is the only system that achieved
such an improvement without having an accuracy
drop for any of the linguistic categories, whereas it
improved 6 categories for more than 10%. PROMT
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had improvement in all categories apart from verb
tense/aspect/mood, UEdin deteriorated in verb ten-
se/aspect/mood, whereas Online-B deteriorated in
composition, named entity/terminology and punc-
tuation.

The linguistic categories that improved mostly
in average are the long distance dependencies /
interrogatives, the verb valency, the ambiguity
and the punctuation.

5 Conclusions and further work

In this paper we present the results of the applicati-
on of the DFKI test suite in the output of the state-
of-the-art MT systems participating in the Shared
Task of the Fifth Conference of Machine Transla-
tion (WMT20). Based on about 5,500 test items,
we present detailed accuracies regarding 107 phe-
nomena organized in 14 categories. Additionally,
the evolution of systems submitted also in previous
years is observed.

The best system of this year is not significantly
better than the one from 2019 in a macro-average,
but one can see significant improvement from two
years ago. The systems that seem to have the best
accuracies are Tohoku and VolcanTrans. The phe-
nomena that most systems face difficulties are
again this year the idioms, the resultative predicates
and some moods of the pluperfect, whereas some
systems still have issues with quotation marks and
lexical ambiguity.

As discussed previously, the high accuracies
achieved for particular phenomena or categories
raise questions on whether these phenomena are
getting solved, or whether the test suite (which was
originally built to challenge the systems from 2017)
should raise the difficulty by including more test
items.

In further work, we would like to be able to
associate the performance on specific phenomena
with decisions related to decisions during the de-
velopment of the systems, once there is enough
information about this process for all systems.
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Magdaléna Rysová. 2018. EvalD Reference-Less
Discourse Evaluation for WMT18. In Proceedings
of the Third Conference on Machine Translation,
pages 545–549, Belgium, Brussels. Association for
Computational Linguistics.

Aljoscha Burchardt, Vivien Macketanz, Jon Dehdari,
Georg Heigold, Jan-Thorsten Peter, and Philip Wil-
liams. 2017. A Linguistic Evaluation of Rule-Based,
Phrase-Based, and Neural MT Engines. The Prague
Bulletin of Mathematical Linguistics, 108:159–170.

351



Franck Burlot, Yves Scherrer, Vinit Ravishankar,
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Abstract

Gender bias in machine translation can man-
ifest when choosing gender inflections based
on spurious gender correlations. For exam-
ple, always translating doctors as men and
nurses as women. This can be particularly
harmful as models become more popular and
deployed within commercial systems. Our
work presents the largest evidence for the phe-
nomenon in more than 19 systems submit-
ted to the WMT over four diverse target lan-
guages: Czech, German, Polish, and Russian.
To achieve this, we use WinoMT, a recent auto-
matic test suite which examines gender coref-
erence and bias when translating from English
to languages with grammatical gender. We ex-
tend WinoMT to handle two new languages
tested in WMT: Polish and Czech. We find that
all systems consistently use spurious correla-
tions in the data rather than meaningful con-
textual information.

1 Introduction

Bias in machine learning occurs when systems pick
up correlations which are useful for specific train-
ing datasets, but are not indicative for the task that
the dataset represents.

In the context of machine translation (MT), gen-
der bias can occur when translating from languages
without grammatical noun genders, such as English
or Turkish, to a language with gender inflections,
such as Spanish, Polish, or Czech. In such cases,
the translation model needs to assign gender in-
flection in the target language based on contextual
cues in the source text. For example, when trans-
lating the English sentence “The doctor asked the
nurse to help her in the operation” to Spanish, the
model needs to produce the female inflected “doc-
tora” based on the feminine English pronoun “her”.

∗ Part of work performed while at Charles University.

Recently, Stanovsky et al. (2019) created a
challenge set and an automatic evaluation metric,
dubbed WinoMT, to examine whether popular MT
models are capable of correctly capturing and trans-
lating such information from English into a diverse
set of 8 target languages with grammatical gender.
They found that all six tested systems, composed
of four commercial and two academic models, con-
sistently relied on gender role assignments in the
data regardless of context. In our example above,
models would prefer to translate the doctor using
masculine inflections, despite the context suggest-
ing otherwise.

In this work, we apply the WinoMT test suite on
the submissions to the News shared task of WMT
2020. In addition to testing the phenomenon on a
large number of models, we extend the WinoMT to
the Polish and Czech languages, tackling unique
language-specific challenges. We thoroughly ana-
lyze the extent of the phenomena for the tested lan-
guages and systems, as well as its correlation with
the widely-used BLEU evaluation metric (Papineni
et al., 2002), finding that systems with worse perfor-
mance (in BLEU) make more errors for female pro-
fessions than errors for male professions. On the
other hand, better-performing systems (in BLEU)
make more errors related to anti-stereotypical pro-
fessions (e.g. female doctors, or male nurses).

Similarly to the conclusions of Stanovsky et al.
(2019), we find that all systems consistently per-
form better when the source texts exhibit stereotyp-
ical gender role assignments (e.g., male doctors, fe-
male nurses) versus non-stereotypical assignments
(e.g., female doctors, male nurses), indicating that
these models rely on spurious correlations in their
training data, rather than on more meaningful tex-
tual context. We hope that this evaluation will be
used as a standard evaluation metric for MT as a
means to track the improvement of this socially
important aspect of translation.
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2 Background: WinoMT

WinoMT was created as a concatenation of two
coreference test suites: WinoGender (Zhao et al.,
2018a) and WinoBias (Rudinger et al., 2018). Each
instance in these datasets is a single English sen-
tence, presenting two entities, identified by their
profession (e.g., “teacher”, “janitor”, or “hair-
dresser”) and a single pronoun referring to one of
them based on the context of the sentence. For
example, in the sentence “The physician hired
the secretary because he was overwhelmed with
clients”, the marked pronoun refers to the physi-
cian. In contrast, in “The physician hired the secre-
tary because he had good credentials” the pronoun
likely refers to the secretary. Both datasets are
created with an equal amount of stereotypical gen-
der role assignments (e.g., the first example) and
non-stereotypical assignments (e.g., the second ex-
ample). Both works found that coreference systems
performed much better on the stereotypical role as-
signments than they did on the non-stereotypical
ones, concluding that systems relied on training cor-
relations between pronoun gender and professions
rather than the syntactic and semantic information
in the input sentence.

Stanovsky et al. (2019) use these two corpora
to test gender bias in machine translation in the
following manner:

1. An MT model is used to translate these cor-
pora into a target language with grammatical
gender.

2. A language-specific, target-side morphologi-
cal analysis identifies the gender of the trans-
lated entity (e.g., the physician in the first ex-
ample above).

3. The gold and predicted genders are compared
between the English and target sentence.

Following this procedure, they tested four com-
mercial systems and two state-of-the-art academic
models on eight diverse target languages: Spanish,
French, Italian, Hebrew, Arabic, Ukrainian, Rus-
sian, and German. In all of their experiments, they
found that similarly to coreference models, MT sys-
tems are prone to make gender-biased predictions.

In Section 3, we describe our extension of
WinoMT to two additional languages tested in
WMT 2020: Czech and Polish, and in Section 4 we
use the extended test suite to evaluate WMT sub-

mission on a total of four target languages: Czech,
German, Polish, and Russian.

3 New Target Languages: Polish and
Czech

In this section, we describe our extension of
WinoMT for Czech and Polish. The methods and
analyses for both target languages are done by the
first two authors, who are native speakers in the
respective language.

For both languages, we followed the approach
of WinoMT, where translated sentences are first
aligned by fast_align (Dyer et al., 2013), followed
by automatic morphology analysis.

Besides, we notice that the automatic alignment
and existing tools sometimes fail leading to “un-
known” gender decision. For both Czech and Pol-
ish, it could not recognise on average 10–15% test
examples.

Fortunately, both languages have rich morphol-
ogy where gender can be often identified from the
word form. Therefore, we have created a list of
the most often translations of each profession in all
cases. Example of such a list is in Table 1. We use
this list to the first check if the gender can be recog-
nised solely based on the word form. In case that
the word is not in our predefined list or if both the
male and female version are possible. We revert to
language-specific automatic analysis, as described
below.

This step significantly reduced the number of un-
recognised genders. In Section 3.4, we discuss the
number of unrecognised genders of the profession.

3.1 Czech analysis

For translated professions in Czech that were not re-
solved by the predefined list, we use the automatic
morphology tagger MorphoDiTa (Straková et al.,
2014). This tool uses a morphological dictionary
and estimates regular patterns based on common
form endings, by which it clusters morphological
“templates” without linguistic knowledge of Czech.

When analysing Czech, we ignore all examples
that test neutral form, as Czech does not use neutral
case as a grammatical structure allowing both gen-
ders.1 Additionally, we ignore a few idiosyncratic
edge cases: The word “advisee” cannot be directly

1In a few cases, the neutral form can be created by inac-
curate translation, when replacing a profession with a place,
where the professional works. For example, “hairdresser” can
be replaced by “hair saloon” which is neutral in Czech.
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Profession Gender Possible forms

Chef Male šéfce, šéfka, šéfko, šéfkou, šéfku, šéfky, náčelnice, náčelnici, náčelnicí, ...
Chef Female šéf, šéfa, šéfe, šéfem, šéfovi, šéfu, náčelník, náčelníka, náčelníkem, ...
Cashier Male pokladní, pokladního, pokladním, pokladnímu
Cashier Female pokladní

Table 1: Example of a list of possible forms for a given profession and gender (some forms are missing). Some
professions have several possible translations; in this example “chef” has two possible translations. In Czech, most
of the forms are distinct between male and female form. However, it is not always the case as can be seen for
example for “cashier”, where both male and female can have the form “pokladní”. In those cases, we need to rely
on automatic annotation based on the context of the whole sentence.

translated into Czech, while “guest” and “mover”
do not have a female counterpart.

Altogether, we exclude 470 examples from
WinoMT, reducing its size for Czech analysis to
3418 examples.

Lastly, certain translated professions have the
same form for both male and female, for example,
the word “vedoucí” (“supervisor”, either male or
female). In such cases, our analysis cannot cor-
rectly assign correct gender. Therefore we mark
these example as a correct with the use of the gold
data.

3.2 Polish analysis

For translated professions in Polish that are not
found in the prepared list of possible word forms,
we conduct an automatic morphological tagging
to find their grammatical gender. For that purpose,
we use a recently released spaCy model (Honnibal
and Montani, 2017) with tagger for Polish (Tuora
and Kobyliński, 2019), which relies on dictionary-
based morphology analysis performed by Mor-
feusz (Woliński, 2014).

Similarly to Czech, in Polish, there are no names
of professions with a neutral gender. Therefore for
Polish analysis, we also ignore test cases for neural
form. Additionally, we do not evaluate gender for
the professions that do not have a polish translation,
i.e. “advisee” and “mover”. This reduces the Polish
testset to 3136 examples.

In Polish, it is possible to indicate gender for
almost all profession names. In most cases, it can
be formed by changing the suffix of the word. Nev-
ertheless, for specific occupations, female coun-
terparts created by derivation are rarely used and
do not appear in major language dictionaries. For
such professions, a feminine variant is obtained by
adding a word indicating gender in front – usually
“pani(ą)” (“mrs.”) before the masculine form of

the occupation name. In our evaluation, we accept
both variants.

We have identified 16 professions without femi-
nine derivations in the on-line version of the Gram-
matical Dictionary of Polish (Woliński and Kieraś,
2016). These words are: “appraiser”, “driver”,
“electrician”, “engineer”, “firefighter”, “investiga-
tor”, “mechanic”, “pathologist”, “plumber”, “sci-
entist”, “sheriff”, “surgeon”, “taxpayer”, “veteri-
narian”, “witness”, and “guest”. We decided to
keep these test cases because we observed a few
interesting examples of correctly translating gen-
der for them (as discussed in section 4.3) and see a
potential for further improvement.

3.3 Human Annotation

We conducted a human evaluation of gender bias
for the two new languages. We sampled 300 in-
stances from the output of all systems; each sample
was annotated by two Czech and two Polish native-
speakers, with a third annotator resolving differ-
ences. Following the human evaluation protocol of
Stanovsky et al. (2019), annotators were shown an
entity in English and the translated sentence. They
were asked to provide the gender of the entity in
the target language.

We then compared human annotations with the
output of our morphological analysers in both lan-
guages. The inter-annotator agreement was high:
96.3% for Czech and 98.6% for Polish. Finally,
the performance of both system was good enough
to support further analyses — the Czech analyser
achieved 96.3% accuracy, while the Polish analyser
achieved 98.8%. Both of these numbers surpass the
average performance reported in (Stanovsky et al.,
2019) of 87%.

Furthermore, our whitelisting approach for
Czech can resolve almost all cases. From our
WMT20 testsuite evaluation, it resolved all but
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284 sentences out of 46,656 evaluated by all sys-
tems. We conducted a human annotation over these
284 sentences and found out that our automatic
approach can correctly resolve 64.3 % examples.
Likewise for Polish, whitelist approach failed in
only 1,533 out of 47,267 examples, where it needed
to rely on the morphology evaluation. We selected
300 random sentences from this subset for human
evaluation. The agreement between our morphol-
ogy algorithm and annotators was 78.7%. We have
to stress that those are the most challenging exam-
ples and most often incorrect translations.

3.4 Unrecognized Gender

When neither whitelisting nor contextual morpho-
logical analysis recognise gender properly, our au-
tomatic assigns an “unknown” gender. This hap-
pens mostly for erroneous translations, when the
translation does not contain the profession at all
(for example when “hairdresser” is translated as
a “hair salon”), or when an error is made by the
alignment or morphology annotation.

We consider two approaches for handling such
unrecognised genders. We could ignore examples
with “unknown” gender, or we can count them as
errors. The former approach would change the ratio
between male and female professions differently
for each system; in other words, each system would
have a testset of different size based on its perfor-
mance. The latter approach, on the other hand,
will punish systems for an error is in the analysis.
We follow WinoMT, where the latter approach is
selected.

To estimate the implication of this choice, in
Table 2 we present the average percentage of “un-
known” genders when a gold label is male or fe-
male. The percentage is averaged across all sys-
tems. We can notice that number of unknowns is
a minimal form all languages except Russian, and
the difference between unrecognised male and fe-
male professions is small. Therefore, it should not
skew the results of the analysis.

We observe that the errors are usually due to the
translation issue. For example, in Czech, the sys-
tem with the most unrecognised genders is also the
worst-performing in terms of BLEU. This system
(“zlabs-nlp”) has 248 unrecognised professions out
of the whole testset, while the average for all sys-
tems is 90, and it has a performance of 20.3 BLEU
score, while the second-worst system has a perfor-
mance of 25.3 BLEU.

Target Language Unknown Male Unknown Female

Czech 1.33% 1.30%
German 1.61% 1.38%
Polish 1.37% 1.84%
Russian 12.89% 13.53%

Table 2: The percentage of “unknowns” for gold male
or female labels, averaged across all submissions for a
target language.

The Russian analysis cannot recognise more than
12% of professions. We believe that this could be
improved in the future with the whitelisting ap-
proach as was done for Czech and Polish.

4 Evaluation

We continue with the analysis as described by
Stanovsky et al. (2019). For each system, we com-
pute three metrics that represent their ability to re-
solve gender coreference; or how often the systems
resolve the gender-based on stereotypical genders
of professions. All results are in Table 3.

4.1 Results

Overall accuracy. First, the overall system Ac-
curacy (abbreviated as “Acc”) is calculated as a
percentage of instances in which the translation
preserved the gender of the profession from the
original English sentence. We find that most sys-
tems perform better than random guessing. One ex-
ception is the Russian language, where all systems
perform worse than random guessing. This could
be related to a problematic analysis as mentioned
in Section 3.4, where all systems are penalised for
“unknown” genders, which results in lowering their
accuracy. Overall, the system with the best accu-
racy is CUNI-DocTransformer on the Czech lan-
guage. This system has been trained on a document-
level instead of separate sentences, which may have
helped it learn to resolve coreference better than
sentence-level systems. Among systems that par-
ticipated in all four languages, OPPO performs
the best, also outperforming commercial systems
(anonymised as “online-X”).

Gender-based performance analysis. Second,
we compute the difference ∆G in performance (F1
score) between male and female translated pro-
fessions. ∆G=0 means that the system makes an
equal number of errors on both male and female
professions. This should be the correct case in ideal
conditions as there is an equal number of male and
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Translation System Czech German Polish Russian
Acc ∆G ∆S Acc ∆G ∆S Acc ∆G ∆S Acc ∆G ∆S

OPPO 78.7 4.7 30.0 75.9 -1.9 16.9 68.2 14.5 28.4 43.2 28.1 12.2
zlabs-nlp 49.9 38.3 16.3 71.9 1.1 8.5 46.1 50.3 4.3 36.3 37.8 6.7
eTranslation 70.9 11.0 34.5 71.3 2.9 18.0 68.8 11.8 29.0 - - -
SRPOL 81.2 3.4 24.3 - - - 71.2 12.0 27.6 - - -
CUNI-Transformer 78.0 5.6 31.8 - - - 69.8 14.1 30.6 - - -
CUNI-DocTransformer 83.6 2.2 22.7 - - - - - - - - -
CUNI-T2T-2018 77.6 5.5 28.1 - - - - - - - - -
UEDIN-CUNI 72.5 9.4 28.9 - - - - - - - - -
AFRL - - - 69.7 5.8 14.7 - - - - - -
Tohoku-AIP-NTT - - - 70.4 1.3 23.2 - - - - - -
UEDIN - - - 66.6 9.0 18.7 - - - - - -
WMTBiomedBaseline - - - 49.5 34.5 5.9 - - - - - -
Huoshan_Translate - - - 63.8 8.0 24.5 65.7 18.5 30.7 - - -
PROMT_NMT - - - 65.7 7.2 17.7 - - - 44.3 23.8 14.0
NICT_Kyoto - - - - - - 64.2 19.6 32.2 - - -
SJTU-NICT - - - - - - 68.2 15.6 26.1 - - -
Tilde (1425) - - - - - - 63.3 19.1 32.3 - - -
Tilde (1430) - - - - - - 64.8 17.7 23.2 - - -
ariel197197 - - - - - - - - - 34.1 29.6 15.5

online-a 63.3 21.7 21.7 74.5 0.1 12.5 53.7 37.8 21.9 39.1 35.9 10.2
online-b 56.9 29.7 19.2 68.3 2.9 19.4 57.7 31.9 21.3 37.8 36.9 10.4
online-g 62.0 22.5 25.9 62.2 12.0 16.0 67.3 17.5 27.7 47.7 16.2 17.5
online-z 72.2 8.2 30.9 73.6 0.6 12.4 65.9 16.0 35.1 44.4 25.6 12.5

Table 3: The evaluation on WinoMT testset for translation systems submitted to WMT 2020. Acc indicates over-
all gender accuracy (% of instances the translation had the correct gender), ∆G denotes the difference in per-
formance (F1 score) between masculine and feminine scores, and ∆S is the difference in accuracies between
pro-stereotypical and anti-stereotypical gender role assignments.

female examples in WinoMT. Positive ∆G indi-
cates that the system makes fewer errors for male
professions and more errors with female profes-
sions. Almost all systems perform significantly
better on male professions. This could be a result
of training data that contains more male examples
than female ones. However, we observe that many
systems have ∆G close to zero. An interesting situ-
ation is in Czech analysis, where there is a broad
range of ∆G values.

Stereotypical vs non-stereotypical examples
Third, we measure the difference ∆S in perfor-
mance (F1 score) between stereotypical and non-
stereotypical gender role assignments. The stereo-
typicality of the profession was determined based
statistics provided by the US Department of Labor
(see Zhao et al. (2018b)). ∆S in Table 3 shows that
all systems have a significantly better performance
when presented with pro-stereotypical assignments
(e.g., a female nurse), while their performance de-
teriorates when translating anti-stereotypical roles
(e.g., a male receptionist). These analyses indicate
that all MT systems are gender-biased, prone to
translate gender inflexions based on training set
correlations rather than contextual cues in specific

input instances.

4.2 Gender Bias vs BLEU

Another interesting comparison is between the over-
all translation performance of a system and its
observed gender bias. Unfortunately, the official
WMT human annotation was not available to us at
the time of writing. Instead, we evaluate the per-
formance of all systems with the automatic BLEU
metric (Papineni et al., 2002). The evaluation is
done with official WMT20 testset (Barrault et al.,
2020) and the SacreBLEU implementation (Post,
2018).2

In Fig. 1 we present pairwise relationships and
correlations between our metrics (Accuracy, ∆G,
∆S) and BLEU. We observe that correlation be-
tween gender accuracy and BLEU is moderately
strong (Pearson’s ρ 0.66). There is a significant
negative association between ∆G and both gender
accuracy and BLEU, meaning that systems scor-
ing high in those metrics perform similarly well
on male and female examples. We observe a low
positive correlation between BLEU and ∆S and
a moderate positive correlation between gender

2SacreBLEU signature is: BLEU+case.mixed+numrefs.1
+smooth.exp+tok.13a+version.1.4.14

361



40

50

60

70

80
A

cc
ur

ac
y

ρ = -0.85 ρ = 0.58 ρ = 0.66

0

20

40

∆
G

ρ = -0.38 ρ = -0.72

10

20

30

∆
S

ρ = 0.21

25 50 75 100

Accuracy

20

25

30

35

40

B
L

E
U

0 25 50

∆ G
0 20 40

∆ S
20 40

BLEU

Language

Czech
German
Polish
Russian

Figure 1: Relationships between gender accuracy, ∆G, ∆S and BLEU. Each point represents evaluation of one
system’s output. ρ in the upper right is Pearson’s correlation coefficient between row and column variables.

accuracy and ∆S . It implies that the system well-
performing in the automatic evaluation may overfit
to examples with stereotypical gender.

4.3 Qualitative Analysis

In our analysis of new target languages: Czech
and Polish, we have observed several linguistic
phenomena that affect gender bias of translations.
We illustrate them with exemplary translations of
WinoMT test sentences in Table 4.

In Polish, feminine forms of some words are not
commonly used, e.g., “mechanic” and “veterinar-
ian”. We provide a complete list of occupations is
in Section 3.2. According to our expectations, such
words are especially problematic for evaluated sys-
tems. The female gender was correctly assigned
in only 1.5% of the translations. Interestingly, in
some cases, a word indicating female gender is

added, even though it is not used in a source sen-
tence (see in Table 4), such a translation is marked
as correct.

5 Conclusions

We have extended analysis by Stanovsky et al.
(2019) with Czech and Polish languages.

We showed that current systems, both commer-
cial and academic, perform worse in gender coref-
erence when profession in question is female. This
is amplified if the system in question has lower
translation quality.

Moreover, systems rely for translations on stereo-
typical genders of professions instead of correct
gender coreference resolution. We showed that
with increasing translation quality, models make
fewer errors in general, but rely more often on the
stereotypical genders.
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Source [Target lang.] Translation Phenomenon

The librarian waved at the me-
chanic and walked away from
her.

[PL] Bibliotekarka pomachała
do mechanika i od niej
odeszła.

Female form for “mechanic”
in Polish is rarely used, hence
it did not occur in output of the
evaluated translation systems.

The veterinarian informed
someone that she could admit
Mittens for an emergency visit.

[PL] Pani weterynarz poin-
formowała właściciela, że
może przyjąć Mitens na nagłą
wizytę.

Word “weternenarz” has a mas-
culine gender, but translation
correctly captures gender by
adding word “pani” (“mrs.”).

The chief thanked the nurse
and handed him a present.

[CS] Sestřička poděkovala
primáři a dala jí dárek.

There is a missmatch in transla-
tion, as female form “jí” refers
to male “primáři”. Moreover,
it swapped actors in the trans-
lation.

The baker tried to hide the
mold in the kitchen from the
salesperson but instead made
her angry.

[CS] Prodavač si všiml
pekařovy nechutné kuchyně a
řekl mu, aby přestal prodávat
chleba.

In this translation, the profes-
sion is in adjective, which we
are unable to detect by our
analysis.

Table 4: Examples of interesting linguistic phenomena observed for translation of WinoMT sentences into new
target languages. Words in blue, red, and orange indicate male, female and neutral entities, respectively.

This is mainly a problem with the MT training
data, that usually contain more examples of stereo-
typical professions in contrast to anti-stereotypical
ones.
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ing Polish language tools and resources in Spacy.
In Proceedings of PP-RAI 2019 Conference, pages
210–214, Wrocław. Department of Systems and
Computer Networks, Faculty of Electronics, Wro-
claw University of Science and Technology.
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Abstract

This paper reports on our participation with the
MUCOW test suite at the WMT 2020 news
translation task. We introduced MUCOW at
WMT 2019 to measure the ability of MT sys-
tems to perform word sense disambiguation
(WSD), i.e., to translate an ambiguous word
with its correct sense. MUCOW is created au-
tomatically using existing resources, and the
evaluation process is also entirely automated.
We evaluate all participating systems of the
language pairs English → Czech, English ↔
German, and English→ Russian and compare
the results with those obtained at WMT 2019.
While current NMT systems are fairly good at
handling ambiguous source words, we could
not identify any substantial progress – at least
to the extent that it is measurable by the MU-
COW method – in that area over the last year.

1 Introduction

At WMT 2019, we introduced the MUCOW (mul-
tilingual contrastive word sense disambiguation)
test suite (Raganato et al., 2019) and evaluated
the news task submissions of nine translation di-
rections with it.1 We observed that systems gen-
erally performed quite well on word sense dis-
ambiguation, but found a big gap between in-
domain and out-of-domain disambiguation perfor-
mance for some translation directions, in particu-
lar with constrained systems.

For WMT 2020, we reuse the same test suite
for the same language pairs. This gives us the
opportunity to measure the advancement of ma-
chine translation within a year. We expect the
larger training data sets and the model improve-
ments to have a small but positive impact on trans-
lation quality in general, and word sense disam-
biguation performance in particular.

1The MUCOW test suite is available at http://
github.com/Helsinki-NLP/MuCoW.

2 The MUCOW test suite

MUCOW (Raganato et al., 2019) is a language-
independent method for automatically building
test suites to assess the capabilities of MT systems
to disambiguate between ambiguous words in the
source language. The version of MUCOW used
for WMT 2019 involves the following steps:

1. Identify ambiguous source nouns and their
translations, using word-aligned and tagged
parallel corpora from the OPUS collection
(Tiedemann, 2012).

2. Cluster the translations into senses. First,
we query BabelNet (Navigli and Ponzetto,
2012), a wide-coverage multilingual encyclo-
pedic dictionary, to assign senses (synsets) to
words. Second, we refine the results with
the SW2V sense embeddings (Mancini et al.,
2017).

3. Select sentences with ambiguous words and
assign them sets of correct and incorrect tar-
get translations.

We evaluated the systems participating in the
WMT 2019 news translation task with MUCOW
for the language pairs English → Czech, English
↔ German, English ↔ Finnish, English ↔ Rus-
sian, and English↔ Lithuanian.

A substantial amount of MUCOW sentences
and senses come from the OpenSubtitles2018 cor-
pus, but most systems participating at WMT are
tuned towards the news domain and therefore are
not expected to handle lexical choices of collo-
quial speech reliably. Therefore, we distinguished
between in-domain and out-of-domain synsets: a
synset is considered out-of-domain if more than
half of its example sentences come from movie
subtitles.
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Example containing ambiguous word Correct translations Incorrect translations

It occurred to me that my watch might be broken. Armbanduhr, Uhr Wache
I hope you didn’t get distracted during your watch. Wache Armbanduhr, Uhr

In winter, the dry leaves fly around in the air. Luft, Luftraum, Aura Miene, Ausdruck
He remained silent for a moment, with a thoughtful but contented air. Miene, Ausdruck Luft, Luftraum, Aura

Harry had to back out of the competition because of a broken arm. Arm Waffe
So does the cop who left his side arm in a subway bathroom. Waffe Arm

Drain the pasta and return the pasta to the pot. Blumentopf, Kochtopf,
Topf, Nachttopf

Marihuana, Gras

Where did those idiots get all of this pot anyhow? Marihuana, Gras Blumentopf, Kochtopf,
Topf, Nachttopf

Table 1: Examples of test suite instances of the English–German test suite. The ambiguous (English) source word
is highlighted in bold, and correct and incorrect (German) translations – as inferred by the MuCoW procedure –
are given. Senses classified as out-of-domain are shown in italics. Note that some example sentences may further
restrict the set of correct translations.

Language Source Target In-dom Out-dom Sen-
pair words synsets synsets synsets tences

EN–CS 98 200 29 171 1843
EN–DE 176 362 220 142 3337
DE–EN 217 461 329 132 4268
EN–RU 97 199 40 163 1814

Table 2: Sizes of the MUCOW data sets compiled for
WMT 2019 and 2020.

In Raganato et al. (2020), we report on an ex-
tended version of MUCOW that covers the follow-
ing aspects:

• The selection of data sources is improved to
reduce noise and domain effects.

• The sense inference process is streamlined
and relies on lemmatization instead of word
alignment, leading to better coverage espe-
cially for morphologically rich languages.

• In addition to test sets, the composition of
training data is also defined to guarantee that
competing translation models are evaluated
on fair grounds.

Since it was not possible to restrict the training
data of participating WMT systems, we decided
to reuse the WMT 2019 version again for WMT
2020, with exactly the same sentences. This al-
lows us to trace the year-over-year evolution of
translation quality with respect to lexical disam-
biguation. Therefore, the MUCOW analysis is re-
stricted to the language pairs and translation di-
rections that were already part of the WMT news
task in 2019, namely English → Czech, English
↔ German, and English→ Russian.

MUCOW data sets are created specifically for
each language pair and translation direction (for
details, see Raganato et al., 2019). Each entry con-
sists of a sentence in the source language, the am-
biguous source word, a list of correct target words
(the correct target synset), a list of incorrect target
words (the incorrect target synset), and informa-
tion about the domain of the synsets. The partici-
pants only see the source sentences, not the meta-
data. Table 1 shows a few example sentences taken
from the English–German test suite. The main
statistics of the test suites used for WMT 2020 are
reported in Table 2.

3 Evaluation and Results

The source language sentences were sent to the
WMT participants as part of the test set, and we
received the translations in the target language for
evaluation. We then checked if any of the correct
or incorrect target words listed in the metadata file
could be identified in the translation output.

Although the sentences were selected to con-
tain the uninflected base forms both in the source
and target languages, we could not assume that
all translation systems would output base forms.
Hence, if neither correct nor incorrect target words
could be identified in the tokenized translations,
we lemmatized them and searched the target
words again in the lemmatized version.2 Depend-
ing on the morphological properties of the target
language, lemmatization substantially increased
the coverage (see Table 3). Between 2019 and
2020, the average coverage has remained constant

2We used the Turku neural lemmatizer with pretrained
models (Kanerva et al., 2019).
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Language Avg. coverage Avg. coverage
pair (tokenized) (tok. + lemmatized)

EN–CS 63.16% 75.82%
61.77% 74.87%

EN–DE 69.43% 72.08%
66.52% 69.26%

DE–EN 83.10% 84.41%
83.06% 84.51%

EN–RU 65.13% 80.13%
58.88% 73.29%

Table 3: Average coverage of target words among
WMT 2019 (in gray italics) and WMT 2020 (in black)
primary submissions.

for DE–EN, slightly increased for EN–CS and
EN–DE, and substantially increased for EN–RU.
We assume that these increases are mostly due to
the different number and composition of the sub-
missions.

We report precision, recall and F1-score for
in-domain senses and out-of-domain senses sep-
arately. Precision and recall are computed as fol-
lows:3

Precision =
# examples with correct target words

# examples with either correct
or incorrect target words

Recall =
# examples with correct target words

# total examples

The results are shown in Tables 4 to 7, with
WMT 2019 and 2020 submissions side-by-side.

For all four examined translation directions, the
best 2019 results were beaten in 2020. However,
one of the best-performing systems in 2019, Face-
book FAIR, did not participate in 2020. The Face-
book FAIR system is characterized by high pre-
cision rates, whereas the winning 2020 systems
(such as Tohoku-AIP-NTT or Online-G) benefit
from higher recall. This shift suggests that the
denominator of the precision computation comes
closer to the one of the recall computation, or in
other words that the translations themselves be-
come more accurate. Further analysis will be re-
quired to substantiate this claim.

Interesting year-over-year comparisons can be
observed for the Online-G system: it produces al-
most identical results in both years for English–
German and English–Russian, but shows substan-
tial improvements for the German–English direc-
tion.

3Examples that contained both correct and incorrect target
words were counted as incorrect.

The overall result distributions show a slight
upward trend in WSD performance for English–
German and German–English, but less so for
English–Czech and English–Russian. Since the
participating systems differed over the years, it
is of course difficult to draw any reliable conclu-
sions.

For most language pairs, the in-domain and
out-of-domain synsets produce similar rankings.
Just like in 2019, English–Czech is an exception,
where – contrarily to all expectations – an online
system shows the best in-domain performance and
a research system the best out-of-domain perfor-
mance.

4 Conclusion

In this paper, we report our participation with the
MUCOW test suite at the WMT 2020 news trans-
lation task. MUCOW is an automatically built
WSD test suite for machine translation that re-
lies on large parallel corpora, the multilingual lex-
ical resource BabelNet and language-independent
synset embeddings.

We find that state-of-the-art NMT systems are
fairly good at handling ambiguous source words,
but that no substantial progress – at least to the ex-
tent that it is measurable by the MUCOW method
– has been made in that area over the last year.
Among the top-performing systems, we observe
a shift from high precision to high recall, hinting
at general improvements in translation quality. It
will therefore be particularly instructive to see how
well the WSD test suite results correlate with hu-
man evaluation scores and with recently proposed
evaluation metrics that are based on semantic rep-
resentations of the translations (Gupta et al., 2015;
Shimanaka et al., 2018).
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English–Czech In-domain synsets Out-of-domain synsets All synsets

Submission Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

SRPOL 97.15 84.45 90.36 80.38 73.78 76.94 83.22 75.67 79.27
CUNI-Transformer 95.53 84.23 89.52 80.00 72.75 76.21 82.65 74.76 78.51
CUNI-T2T-2018 96.80 85.82 90.98 79.54 71.78 75.46 82.55 74.26 78.19
CUNI-Trf-T2T-2018 96.76 84.75 90.36 79.85 71.71 75.56 82.77 74.01 78.15
CUNI-Trf-T2T-2019 95.60 85.66 90.36 79.58 71.57 75.36 82.38 74.04 77.99
CUNI-DocTrf-T2T 95.60 85.66 90.36 79.58 71.57 75.36 82.38 74.04 77.99
CUNI-DocTransformer 97.19 85.51 90.98 79.06 71.08 74.86 82.23 73.65 77.70
eTranslation 95.20 85.61 90.15 76.13 70.15 73.02 79.48 72.92 76.06
OPPO 96.03 86.43 90.98 74.35 68.55 71.33 78.23 71.81 74.88
CUNI-DocTrf-Marian 96.00 85.71 90.57 72.45 68.51 70.42 76.61 71.69 74.07
UEDIN 96.30 83.27 89.31 72.96 67.85 70.31 77.02 70.70 73.72
UEDIN-CUNI 95.98 85.36 90.36 71.24 66.07 68.56 75.69 69.65 72.54
Online-A 95.49 83.51 89.10 69.89 67.28 68.56 74.34 70.33 72.28
Online-G 96.77 85.11 90.57 68.74 65.41 67.04 73.76 69.17 71.39
Online-Y 97.57 84.86 90.77 61.57 63.73 62.63 67.93 68.03 67.98
Online-Z 97.57 84.86 90.77 61.67 61.01 61.34 68.19 65.82 66.98
parfda 95.02 75.27 84.00 68.16 58.44 62.93 72.85 61.57 66.74
Online-B 98.44 88.11 92.99 57.50 59.80 58.63 65.12 65.74 65.43
Online-X 95.70 87.81 91.59 57.35 58.89 58.11 64.54 64.83 64.68
Online-A 95.88 83.21 89.10 58.36 58.25 58.30 65.17 63.33 64.24
Online-B 97.93 83.16 89.94 57.02 57.24 57.13 64.46 62.63 63.53
zlabs-nlp 95.55 84.59 89.73 47.21 47.68 47.45 56.61 55.65 56.13

Table 4: Results for English–Czech. WMT 2019 submissions are displayed in gray italics.

English–German In-domain synsets Out-of-domain synsets All synsets

Submission Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Tohoku-AIP-NTT 83.17 77.09 80.01 55.53 57.93 56.71 73.82 71.11 72.44
Facebook FAIR 83.43 76.99 80.08 56.29 55.10 55.69 74.48 70.05 72.19
Online-B 82.52 77.27 79.81 52.48 56.45 54.39 72.40 70.88 71.63
Microsoft-sentence-level 83.18 77.14 80.05 52.81 51.92 52.36 73.31 69.27 71.23
OPPO 81.81 76.48 79.05 52.58 55.23 53.87 72.01 69.89 70.93
Huoshan Translate 82.05 77.16 79.53 50.24 53.32 51.73 71.50 69.89 70.68
eTranslation 81.99 75.36 78.53 51.44 52.77 52.09 71.82 68.38 70.05
Online-B 83.37 74.78 78.85 51.92 50.66 51.28 73.04 67.30 70.05
Microsoft-document-level 81.76 75.68 78.60 47.21 48.11 47.65 70.54 67.29 68.88
Online-Y 81.29 75.30 78.18 46.37 48.21 47.27 69.87 67.12 68.47
AFRL 81.82 73.96 77.69 45.73 45.33 45.53 70.16 65.28 67.63
Online-G 81.44 73.76 77.41 46.61 45.44 46.02 70.21 65.09 67.55
Online-G 81.44 73.76 77.41 46.61 45.44 46.02 70.21 65.09 67.55
Online-A 81.26 73.45 77.16 45.72 43.05 44.35 70.00 64.09 66.92
DFKI-NMT 80.70 74.37 77.41 44.95 42.04 43.44 69.54 64.39 66.87
PROMT NMT 79.62 72.84 76.08 42.65 47.05 44.74 67.24 65.24 66.23
MLLP-UPV 79.90 73.60 76.62 44.03 39.63 41.72 68.90 63.01 65.82
LMU-CTX-TF-Single 79.55 72.51 75.86 43.93 41.99 42.94 68.23 63.13 65.58
UEDIN 78.55 75.47 76.98 37.42 39.56 38.46 65.61 64.90 65.25
NEU 78.39 73.50 75.86 41.91 41.53 41.72 66.83 63.75 65.25
eTranslation 80.44 71.00 75.43 43.47 40.48 41.92 68.69 61.65 64.98
MSRA.MADL 80.53 71.97 76.01 41.79 35.63 38.46 68.88 60.67 64.51
UCAM 78.21 72.70 75.35 40.41 37.28 38.78 66.61 61.77 64.10
Online-A 79.21 72.05 75.46 40.48 36.44 38.35 67.37 61.09 64.07
Helsinki-NLP 78.34 72.52 75.32 39.06 36.65 37.82 66.24 61.57 63.82
PROMT NMT 78.08 72.40 75.13 36.99 34.16 35.52 65.61 60.77 63.10
Online-Z 75.61 69.71 72.54 41.06 43.03 42.02 64.18 61.62 62.87
JHU 77.80 71.48 74.50 37.77 29.35 33.04 66.47 58.08 61.99
UdS-DFKI 78.27 70.54 74.21 35.68 30.16 32.69 65.72 58.10 61.68
Online-X 71.01 72.71 71.85 34.36 40.47 37.17 59.07 63.16 61.05
zlabs-nlp 77.33 66.55 71.54 36.78 28.87 32.35 65.36 54.70 59.55
TartuNLP-c 77.32 66.29 71.38 33.02 26.13 29.17 64.34 53.85 58.63
WMTBiomedBaseline 73.59 57.02 64.25 31.91 15.52 20.88 63.33 42.82 51.09
EN DE Task 64.54 23.14 34.06 38.41 5.64 9.84 59.43 16.62 25.97

Table 5: Results for English–German. WMT 2019 submissions are displayed in gray italics.
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German–English In-domain synsets Out-of-domain synsets All synsets

Submission Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Online-G 80.35 86.75 83.43 51.37 75.37 61.10 72.78 84.40 78.16
Facebook FAIR 80.78 85.80 83.21 52.77 72.56 61.10 73.55 82.99 77.99
Tohoku-AIP-NTT 80.52 86.32 83.32 48.56 72.84 58.27 72.21 83.62 77.50
OPPO 80.03 86.14 82.97 47.83 71.74 57.39 71.69 83.25 77.04
Online-B 80.36 83.75 82.02 48.79 69.68 57.39 72.16 80.88 76.27
Huoshan Translate 78.11 86.00 81.86 45.05 71.06 55.14 69.53 83.06 75.70
Online-B 77.88 83.81 80.73 45.50 66.51 54.04 69.58 80.31 74.56
Online-G 77.62 83.76 80.57 45.62 65.43 53.76 69.48 80.02 74.38
Online-A 77.86 83.58 80.62 41.39 64.50 50.42 68.50 79.91 73.77
Online-Y 76.82 84.51 80.48 41.93 61.71 49.93 68.10 79.97 73.56
DFKI-NMT 77.64 83.35 80.39 41.08 63.02 49.74 68.31 79.42 73.45
RWTH Aachen 77.62 84.30 80.83 36.96 60.92 46.01 67.30 80.02 73.11
MSRA.MADL 77.95 84.36 81.03 36.73 56.26 44.44 67.78 79.08 73.00
UCAM 76.79 84.04 80.25 35.38 55.71 43.28 66.54 78.77 72.14
MLLP-UPV 77.26 83.24 80.14 35.85 54.92 43.38 67.02 77.93 72.06
PROMT NMT 75.14 83.75 79.21 38.74 60.85 47.34 65.95 79.33 72.02
Online-A 75.77 83.08 79.26 37.47 63.15 47.04 65.87 79.40 72.00
UEDIN 75.57 85.08 80.05 32.86 57.69 41.87 64.84 80.23 71.72
NEU 75.26 83.50 79.16 32.49 55.93 41.11 64.49 78.58 70.84
JHU 74.94 83.68 79.07 31.56 51.38 39.10 64.31 77.79 70.41
Online-Z 73.89 80.53 77.07 38.32 63.67 47.85 64.56 77.34 70.37
UEDIN 74.26 81.62 77.77 32.21 45.89 37.85 64.28 74.70 69.10
PROMT NMT 70.05 81.34 75.27 32.02 43.94 37.05 61.20 73.70 66.87
Online-X 67.04 80.29 73.07 31.98 62.47 42.31 57.77 77.07 66.04
TartuNLP-c 71.11 77.22 74.04 29.29 46.31 35.88 60.68 71.48 65.64
WMTBiomedBaseline 69.23 70.34 69.78 23.05 22.63 22.84 59.54 60.05 59.79
zlabs-nlp 62.87 76.50 69.02 19.67 30.10 23.79 52.87 67.53 59.30

Table 6: Results for German–English. WMT 2019 submissions are displayed in gray italics.

English–Russian In-domain synsets Out-of-domain synsets All synsets

Submission Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Online-G 96.11 89.64 92.76 75.44 74.52 74.98 80.46 78.35 79.39
Online-G 95.56 89.58 92.47 75.11 74.85 74.98 80.05 78.58 79.31
Facebook FAIR 95.49 88.28 91.75 67.68 71.54 69.56 74.40 76.01 75.20
Online-B 94.97 89.01 91.89 63.86 71.67 67.54 71.35 76.44 73.81
OPPO 95.07 90.84 92.90 62.31 69.38 65.65 70.42 75.33 72.79
Online-B 95.08 91.10 93.05 62.12 69.05 65.40 70.31 75.16 72.66
USTC-MCC 95.30 90.08 92.62 59.35 71.08 64.69 68.02 76.54 72.03
NEU 94.43 89.21 91.75 59.31 70.98 64.62 67.74 76.18 71.71
Online-A 94.78 90.55 92.62 58.24 69.21 63.25 67.18 75.34 71.03
Ariel197197 95.66 85.97 90.56 61.40 66.77 63.97 69.70 72.12 70.89
Online-Y 95.37 91.38 93.33 57.47 69.02 62.72 66.80 75.51 70.89
PROMT NMT 94.25 90.77 92.47 60.61 65.69 63.05 69.15 72.63 70.84
Online-A 91.14 89.40 90.26 55.29 68.28 61.10 64.00 74.35 68.79
PROMT NMT 93.48 91.49 92.47 56.78 63.76 60.07 66.18 71.61 68.79
Online-X 93.65 89.92 91.75 52.53 67.35 59.02 62.53 74.12 67.83
Online-Z 95.80 88.83 92.18 53.95 60.97 57.24 64.56 69.13 66.76
zlabs-nlp 94.99 89.27 92.04 51.56 60.78 55.79 62.54 69.27 65.73
TartuNLP-u 90.91 84.01 87.32 51.44 56.17 53.70 61.41 64.11 62.73
Rerank-er 94.98 78.91 86.20 55.54 33.78 42.01 68.17 45.36 54.47
NICT 89.19 25.52 39.68 46.99 5.88 10.46 63.90 10.33 17.78

Table 7: Results for English–Russian. WMT 2019 submissions are displayed in gray italics.
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Abstract

Even though sentence-centric metrics are
used widely in machine translation evaluation,
document-level performance is at least equally
important for professional usage. In this paper,
we bring attention to detailed document-level
evaluation focused on markables (expressions
bearing most of the document meaning) and
the negative impact of various markable error
phenomena on the translation.

For an annotation experiment of two phases,
we chose Czech and English documents trans-
lated by systems submitted to WMT20 News
Translation Task. These documents are from
the News, Audit and Lease domains. We show
that the quality and also the kind of errors
varies significantly among the domains. This
systematic variance is in contrast to the auto-
matic evaluation results.

We inspect which specific markables are prob-
lematic for MT systems and conclude with an
analysis of the effect of markable error types
on the MT performance measured by humans
and automatic evaluation tools.

1 Introduction

This paper presents the results of our test suite for
WMT20 News Translation Task.1

The conclusion of Vojtěchová et al. (2019), a last
year’s similar effort, states that expert knowledge
is vital for correct and comprehensible translation
of professional domains, such as Audits or Lease
agreements. Furthermore, even MT systems which
make fewer mistakes and score above others in
both automatic and manual evaluations are prone
to making fatal errors related to markable conflicts,
which render the whole document translation unus-
able.

1http://www.statmt.org/wmt20/
translation-task.html

In this study, we aim to organize and describe
a more detailed study with a higher number of an-
notators. We show three evaluation approaches:
(1) automatic evaluation, (2) fluency and adequacy
per document line and (3) detailed markable phe-
nomena evaluation. We compare the results of this
evaluation across the three domains and try to ex-
plain why all of these evaluations do not produce
the same ordering of MT systems by performance.

This paper is organized accordingly: Section 1.1
defines the term “Markable”, Section 1.2 describes
the examined documents and Section 2 introduces
the two phases of our annotation experiment and
shows the annotator user interface in Section 2.3. In
Section 3, we discuss the results from both phases
and also automatic evaluation. The main results of
this examination are shown in Section 3.5 and spe-
cific markable examples are discussed in Section 4.
We conclude in Section 5.

1.1 Markable Definition
A markable in this context is an occurrence of any
technical or non-technical term or expression that
satisfies at least one of the following conditions:

1. The term was translated into two or more dif-
ferent ways within one document.

2. The term was translated into two or more dif-
ferent ways across several translations.

3. Two or more terms were translated to a spe-
cific expression in one document but have dif-
ferent meanings.

To be a markable, the term or expression does
not have to be a named entity, but it must be vital to
the understanding of the document. In the same or-
der we show examples which satisfy the definition
conditions.

1. bytem – It was translated within one document
into an apartment and a residence.
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Document Sentences Direction
Markable

occurrences
Description

Lease 29
cs→en 73

Housing lease agreement
en→cs 70

Cars 18 cs→en 11
Brno Grand Prix competition article +

highway accident report

Audit 90
cs→en 28

Supreme Audit Office audit report
en→cs 18

Speech 13 en→cs 15 Greta Thunberg’s U.N. speech article

Total 269 - 215 -

Table 1: Summary of examined documents with translation directions, number of lines and number of markable
occurrences.

2. rodné čı́slo – It was translated in one transla-
tion to social security number and in another
translation to identification number.

3. nájemce, podnájemce – They have different
meanings and in one document they were both
translated to tenant.

Markables were proposed first by the annotators
in the first phase of annotation in Section 2.1 and
then filtered manually by us.

1.2 Test Suite Composition

We selected 4 documents, 2 of which were trans-
lated in both directions totalling 6 documents. We
chose 2 from the professional domain (Audit and
Lease) and 2 from the News domain. The overview
of their size is shown in Table 1. The number
of markable occurrences is highly dependent on
the document domain with the Agreement domain
(Lease document) containing the most occurrences.

All of the MT systems are participants of the
News Translation Task, and we test their perfor-
mance even outside of this domain. Most of them
were bi-directional, and we join the results from
both directions when reporting their performance.
The only exceptions are eTranslation (only en→cs)
and PROMT NMT (only cs→en).

1.3 Data and Tools Availability

All of the document translations and measured data
are available in the project repository. Furthermore,
the used online markable annotation tool written
in TypeScript and Python is documented and also
open-source.2

2github.com/ELITR/wmt20-elitr-testsuite

2 Annotation Setup

For both phases of this experiment, we used 10
native Czech annotators with English proficiency.
None of them were professional audit or legal trans-
lators. Because each annotator annotated only one
or two documents, the aggregated results across
domains, labelled as Total, are of less significance
than the results in individual domains.

2.1 Manual Document Evaluation

In this phase of the experiment, we wanted to mea-
sure the overall document translation quality and
also to collect additional markables for use in the
following experiment part. We showed the anno-
tators the source document (in Czech) with a line
highlighted and then underneath all its translation
variants (in English). The current line was also
highlighted. Next to every translation was a set of
questions related to the just highlighted lines:

• Adequacy: range from 0 (worst) to 1 (best)
measuring how much the translated message
is content-wise correct regardless of grammat-
ical and fluency errors.
• Fluency: range from 0 (worst) to 1 (best)

measuring the fluency of the translation, re-
gardless of the relation of the message to the
source and the correct meaning.
• Markables: A text area for reporting mark-

ables for the second phase.
• Conflicting markables: checkbox for when

there is a markable in conflict (e.g. the termi-
nology change) with a previous occurrence
in the document. This corresponds to the
first condition in the markable definition in
Section 1.1. The default value was No (no

372



conflict) because the distribution was highly
imbalanced.

Bojar et al. (2016) summarize several methods
for machine translation human evaluation: Fluency-
Adequacy, Sentence Ranking, Sentence Compre-
hension, Direct Assessment, Constituent Rating
and Constituent Judgement. For our purposes,
we chose a method similar to Fluency-Adequacy
as one of the standard sentence-centric methods.
The difference to the method described is that we
showed all the competing MT systems at once,
together with the whole document context. Ulti-
mately, we would like the users to rate Fluency-
Adequacy of the whole documents, but we sus-
pected that asking annotators to read the whole
document and then rating it on two scales would
yield unuseful biased results.

2.2 Manual Markable Evaluation

In the following phase, we focused on markables
specifically. For every markable in the source, we
asked the annotators to examine 11 phenomena. If
the given phenomenon is present in the examined
markable occurrence, a checkbox next to it should
have been checked (Occurrence). Further on a
scale 0–1 (not at all–most) the annotator should
mark how negatively it affects the quality of the
translation (Severity). We list the 11 phenomena
we asked the annotators to work with:

• Non-translated: The markable or part of it
was not translated.
• Over-translated: The markable was trans-

lated, but should not have been.
• Terminology: The translation terminology

choice is terminologically misleading or er-
roneous.
• Style: An inappropriate translation style has

been selected, such as too formal, colloquial,
general.
• Sense: The meaning of the whole markable

translation is different from what was intended
by the source.
• Typography: Typographical errors in trans-

lation such as in capitalization, punctuation,
special character or other typos.
• Semantic role: The markable has a different

semantic role in translation than in the source.
Without any specific linguistic theory in mind,
we provided four basic roles for illustration:
agent (story executor), patient (affected by the

event), the addressee (recipient of the object in
the event), effect (a consequence of the event).
• Other grammar: Other grammatical errors

such as bad declension or ungrammatical form
choice.
• Inconsistency: A different lexical translation

option than the previous occurrence was used.
It is enough to compare only with the previous
occurrence and not with all of them.
• Conflict: The translation conflicts with an-

other markable or term in the document. This
and another markable translates to the same
word.
• Disappearance: The markable does not ap-

pear in translation at all.

The choice to focus on markables was motivated
by the aim to find a way to measure document-
level performance using human annotators. A good
markable translation is not a sufficient condition
for document-level performance, but a necessary
one. This approach is similar to Constituent Rank-
ing/Judgement described by Bojar et al. (2016)
with the difference that we chose to show all the
markable occurrences in succession and in all trans-
lations in the same screen. We showed the whole
translated documents context so that the annotators
could refer to previous translations of the markable
and the overall context.

2.3 Interface

Figure 1 shows the online interface for the second
phase of this experiment. The first text area win-
dow contains the source document (e.g. in English).
Below it are several translations (e.g. in Czech).
Next to each translation is a set of questions. In the
source, the current markable occurrence, to which
the questions relate, is always displayed in dark
blue. The current sentence is highlighted in the
translations with light blue. The target words which
probably correspond to the current markable (via
automatic word alignment) are highlighted in dark
blue as well. This alignment is present only for
quick navigation as it is not very accurate. In trans-
lations, the remaining occurrences of a given mark-
able are highlighted in green to simplify checking
for inconsistency.

The FOCUS button is used to scroll to the current
line in all text areas in case the user scrolled the
view to examine the rest of the document.

In the first phase, the annotators could return to
their previous answers and adjust them, but before
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Figure 1: Online interface for markable annotation with highlighted segments. The 12 other translations are in the
rest of the page, not fully visible here.

continuing to the next line, they had to fill in the
current fluency and adequacy. In the second phase,
the annotators could freely return to their previous
answers and adjust them. The most straightfor-
ward approach for them was to annotate a single
markable occurrence across all MT systems and the
switch to the next one as opposed to annotating all
markable occurrences in the first translation, then
all markable occurrences in the second translation,
and similarly the rest.

As soon as we aggregate the statistics over mul-
tiple documents (or even translation directions),
the effects of which particular annotator annotated
which document can start playing a role, but we
hope they cancel out on average.

3 Results

3.1 Automatic Evaluation

We measured the system quality using BLEU (Pap-
ineni et al., 2002) against a single reference. The
results sorted by the score across all documents are
shown in Table 2. BLEU scores across different test
sets are, of course, not comparable directly. Only
a very big difference, such as that of eTranslation

for News and Audit (39.43% and 23.23%) suggests
some statistically sound phenomena. We measured
the standard deviation across MT systems within
individual domains: News (6.19), Audit (2.34) and
News-Lease (2.74). The Audit domain was gener-
ally the least successful for most of the submitted
systems (see Table 3) and the Lease domain was
more stable in terms of variance. The MT system
BLEU variance over annotated lines hints that the
better the system, the higher variance it has. This
may be because most of the best MT systems are fo-
cused on News and fail on other domains, while the
lower performant MT systems are low performant
systematically across all domains.

3.2 Overall Manual Evaluation

From the first phase (Section 2.1) we collected
13×328 = 4264 line annotations. From the second
phase (Section 2.2) we collected 13×499 = 6487
markable annotations. The average duration for
one annotation of one translated line in the first
phase was 25s, while one annotation of one system-
markable occurrence in the second phase took only
8s.

Fluency and Adequacy correlate per line together
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Online-B 7.94

CUNI-DocTransformer 5.02

eTranslation 8.13

SRPOL 3.08

OPPO 5.23

CUNI-Transformer 2.36

CUNI-T2T-2018 3.92

PROMT NMT 2.83

UEDIN-CUNI 5.03

Online-A 4.64

Online-G 4.21

Online-Z 3.54

zlabs-nlp 3.60

Table 2: MT system results measured by BLEU to-
gether with standard deviation measured from all sen-
tences. Sorted by the first column. Full black box indi-
cates 40% BLEU, empty 15% BLEU.

strongly (0.80), and their product correlates neg-
atively (-0.33) with the number of wrong mark-
ables. Because of this strong correlation and also
the need to describe the result of the first phase
by one number, we focus on Fluency×Adequacy.
Table 3 shows the average Fluency×Adequacy as
well as the average number of reported wrong mark-
ables per line.

Document Mult. Mkbs. BLEU
Audit→cs 0.95 0.08 28.61±5.13

Audit→en 0.81 1.23 32.68±5.07

Lease→cs 0.78 0.33 33.50±4.96

Lease→en 0.78 0.30 35.44±4.94

News→en 0.74 0.65 30.68±5.05

News→cs 0.65 0.83 38.67±4.93

Average 0.79 0.73 33.57±4.93

Table 3: Document average (across all systems) of
Fluency×Adequacy (Mult.), number of reported wrong
markables per line (Mkbs.) and BLEU.

3.3 MT System Performance

The performance per MT system and domain can
be seen in Table 4. The reference translation re-
ceived a comparably low rating in especially the
Audit domain and fared best in the News domain.
We see this as a confirmation of the last year’s ob-
servation and a consequence of using non-expert
annotators, who may have not annotated more com-
plex cases thoroughly and were more content with
rather general terms and language than what is cor-
rect for the specialized auditing domain.

No system has shown to be risky (high average
but also with high variance). The last column in
Table 4 shows, that the better the system, the more
consistent it is (lower variation across documents).
This did not occur with BLEU.

The ordering of systems by annotator assessment
is slightly different than by automatic evaluation
(Section 3.1). The automatic evaluation correlates
with annotator rating (Fluency×Adequacy) with
the coefficient of 0.93 (excluding Reference).

To
ta

l

N
ew

s

A
ud

it

L
ea

se

St
d

D
ev

CUNI-DocTransformer 0.46

OPPO 0.46

CUNI-Transformer 0.47

Online-B 0.48

SRPOL 0.48

CUNI-T2T-2018 0.50

eTranslation 0.51

UEDIN-CUNI 0.51

PROMT NMT 0.49

Online-A 0.51

Reference 0.52

Online-Z 0.53

Online-G 0.54

zlabs-nlp 0.57

Table 4: MT system results measured by
Fluency×Adequacy together with standard devia-
tion measured from Total. Sorted by the first column.
Full black box indicates 100%, empty 40%.
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Notable is the distinction in the performance of
eTranslation in the Audit domain. Its BLEU in this
domain (23.23%, Table 2) was below average, how-
ever it performed best of all submitted MT systems
in terms of Fluency×Adequacy (98.62%, Table 4),
above Reference. Closer inspection revealed that
the translations were very fluent and adequate but
usually used vastly different phrasing than in the
Reference, leading to very low BLEU scores.

Source:
In the vast majority of cases, the obligations arising
from contracts for financing were properly imple-
mented by the beneficiaries.
Reference:
Ve většině přı́padů byly závazky vyplývajı́cı́ z
podmı́nek podpory přı́jemci řádně plněny.
eTranslation: (BLEU: 9.24%)
VeVeVeVeVeVeVeVeVeVeVeVeVeVeVeVeVe velké většině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padůvětšině přı́padů přı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádněpřı́jemci řádně plnili
povinnosti vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́vyplývajı́cı́ ze smluv o financovánı́.................
CUNI-DocTransformer: (BLEU: 41.21%)
V naprosté většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́většině přı́padů byly závazky vyplývajı́cı́
ze smluv o financovánı́ přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.přı́jemci řádně plněny.

Figure 2: Example translations by eTranslation and
CUNI-DocTransformer together with Source and Ref-
erence. N-grams present in Reference are underlined.

The example in Figure 2 shows activization
(opposite of passivization) in the translation by
eTranslation (the beneficiaries fulfilled their obli-
gations) instead of (obligations were fulfilled by
the beneficiaries). This resulted in much lower n-
gram precision and BLEU score in general, even
though the sentence is fluent and more adequate
than both the Reference and translation by CUNI-
DocTransformer.

3.4 Markable Phenomena and Systems
Table 5 shows an overview of types of markable
phenomena with the average number of occur-
rences and Severity across systems. For all sys-
tems, Terminology and Conflicting markables had
the most significant impact on the translation qual-
ity. These two categories clearly differ in Severity
with markable conflicts being much more severe
than terminological mistakes.

Inconsistency, Typography and Disappearance
phenomena also heavily impacted the translation
quality, although with varying distribution of Oc-
currences and Severity.

Reference differs from MT systems by hav-

ing higher average Occurrence, but lower average
Severity (first column in Table 5). Furthermore, the
Reference had a higher number of Inconsistence
occurrences, but with lower Severity. This means
that most of these Inconsitencies were not actual
errors. This is expected, as careful word choice
variation improves the style and requires having an
overview of previously used terms in the document.

Over-translation occurred rarely and in those
cases, mostly in names (example shown in Fig-
ure 3). Other grammar manifested itself most
severely in gender choice when translating sen-
tences with person names without any gender indi-
cation from English to Czech. Similarly, Style was
marked mostly in direct speech translation. The
system used informal singular form addressing in-
stead of plural. These two phenomena are shown
in Figure 4.

Source & Reference: Karolı́na Černá
Translation: Caroline Black

Figure 3: Example of overly-translated named entity, it
is the name of one of the parties in the Lease agreement.

Source:
“How dare you?” Thunberg’s U.N. speech inspires
Dutch climate protesters
Reference:
“Jak se opovažujete?” projev Thunbergové v OSN
inspiroval nizozemské protestujı́cı́ proti změnám
klimatu
Translation:
“Jak se opovažuješ?” Thunbergův projev OSN in-
spiruje nizozemské klimatické demonstranty

Figure 4: Example of bad translation style.

Noteworthy is the correlation between phenom-
ena across systems. The highest values were be-
tween Sense and Terminology (0.89), Terminol-
ogy and Inconsistency (0.83) and Sense and Other
grammar (0.82). There is no straightforward expla-
nation of this correlation except the obvious that
a good system is good across all phenomena. The
correlation in the last phenomena pair suggests that
the Other grammar category is too coarse and con-
tains other subcategories.

3.5 Markable Phenomena and Domains
The results of markable phenomena across different
domains is shown in Table 6.
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CUNI-DocTransformer

Reference

eTranslation

CUNI-Transformer

OPPO

Online-B

Online-A

CUNI-T2T-2018

SRPOL

UEDIN-CUNI

PROMT NMT

Online-G

zlabs-nlp

Online-Z

Table 5: Model results across 11 phenomena measured on markables together with their average. Each box is split
into two bars: average Occurrence (left) and average Severity (right). Full left and right bars indicate occurrence
in 20% of all markable instances and 100% Severity, respectively. Rows are sorted by Occurrence×Severity in the
first column and columns, excluding Average, by the phenomena average Occurrence×Severity.

The second to last column is the correlation
(across systems) between Occurrence×Severity
and the BLEU score. The last column in Table 6
shows the correlation (across systems) between
the two human scores: Occurrence×Severity and
Fluency×Adequacy from the first phase of this ex-
periment.

Since both BLEU and Fluency×Adequacy are
positive metrics (the higher the score, the better the
performance) and Occurrence×Severity is an error
metric (the higher the number, the worse the perfor-
mance), high negative correlations mean, that the
metrics are mutually good performance predictors.

The strongest correlations are: Conflicting
(-0.58), Non-translated (-0.55) and Semantic role
(-0.41). Except for Non-translated, the reason is
clear: BLEU is unable to check grammatical rela-
tions and never looks across sentences. We find the
fact, that BLEU result was in agreement with error

marking for these phenomena, to be positive.
Positive correlations (i.e. mismatches) were

reached for Disappearance (0.28) and Over-
translated (0.33), which is somewhat surprising
because here BLEU has a chance to spot these er-
rors from the technical point of view: shorter output
could fire brevity penalty and missing terms where
the exact wording is clear because they appear al-
ready in the source should decrease BLEU score.
The overall correlation between Occurrence×Se-
verity and Fluency×Adequacy is more significant
than the correlation with BLEU. The most corre-
lating variables are: Sense (-0.84), Other gram-
mar (-0.84), Terminology (-0.81) and Inconsistency
(-0.59).

Interesting is the markable phenomena Disap-
pearance and Sense because of their high differ-
ence in correlations between BLEU and human
score correlations.
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Average -0.45 -0.79

Terminology -0.38 -0.81

Conflicting -0.58 -0.45

Inconsistency -0.36 -0.59

Typography -0.31 0.25

Sense -0.29 -0.84

Disappearance 0.28 -0.46

Non-translated -0.55 -0.50

Style -0.07 -0.44

Over-translated 0.33 -0.37

Other grammar -0.37 -0.84

Semantic role -0.41 -0.24

Table 6: Document domain average (across all
systems) of markable phenomena. Sorted by
Occurrence×Severity in the first column. Full left
and right bars indicate occurrence in 20% of all
markable instances and 100% Severity, respecively.
The last two columns show correlation between
Occurrence×Severity and BLEU and user ratings from
Phase 1, respectively.

3.6 Annotator Agreement

We would like to bring attention to inter-annotator
agreement for the second annotation phase. Table 7
lists the following metrics, which are computed
pairwise and then averaged:

Plain inter-annotator agreement (IAA) reports
the percentage of pairs of annotations where the
two annotators agree that a given phenomenon was
or was not present. IAA shows high numbers in all
cases but it is skewed by the heavily imbalanced
class distribution: most often, a phenomenon is not
present; see the left sides of squares in the leftmost
column in Table 6 for distribution reference.

Cohen’s Kappa (Kappa), measured also pairwise,
isolates the effect of agreeing by chance and reveals
that a good agreement is actually reached only in
the cases of Disappearance, Terminology and Over-
translated, which are less ambiguous to annotate.
It is unclear what is the reason behind the low Kap-

Phenomenon IAA Kappa Corr. Corr.+
Disappearance 0.90 0.43 0.52 0.06
Typography 0.95 0.20 0.55 -0.13
Sense 0.91 0.17 0.73 -0.09
Style 0.94 0.24 1.00 0.19
Terminology 0.90 0.41 0.07 -0.03
Inconsistency 0.88 0.13 0.18 -0.08
Non-translated 0.94 0.20 0.64 0.30
Conflicting 0.77 0.02 1.00 0.62
Other grammar 0.96 0.10 1.00 -0.35
Semantic role 0.97 -0.01 - 0.43
Over-translated 0.98 0.37 1.00 1.00

Table 7: Annotator agreement of Occurence marking
(Inter Annotator Agreement and Cohen’s Kappa) and
agreement in Severity (two versions of Pearson Corre-
lation) with respect to every markable phenomenon.

pas, but we speculate that it is due to insufficient
attention of the annotators: they would perhaps
agree much more often that an error occurred but
they were overloaded with the complexity of the
annotation task and failed to notice on their own.

Plain Pearson Correlation (Corr.) was measured
on Severities in instances where both annotators
marked the phenomenon as present. This, however,
disregards the disagreement in cases one annota-
tor did not mark the phenomenon. For this, we
also computed Corr.+, which examines all pairs in
which at least one annotator reported Severity and
replaces the other with zero.

We observe a big difference in the correlations.
In cases where both annotators agreed that there
was an error they tend to agree on the severity of
the mistake, except Terminology and Inconsistency.
If the cases where only one annotator marked the
error are included, then the agreement on Severity
is non-existent, except Over-translation and Con-
flicting translation.

3.7 Translation Direction

We also examined how the language translation
directions affect the results. Most notable is CUNI-
DocTransformer, which performs worse when
translating into Czech. With only 0.01% higher
Occurence of markable phenomena, the Severity
increased by 20.81%. This is not something which
we observed in other systems. The translation
into Czech brought on average 0.01% higher Oc-
currence, but the Severity on average dropped by
3.99% when switching from English→Czech to
Czech→English. The explanation supported by
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the data is that in translation into English, CUNI-
DocTransformer did not make any mistakes (or
native Czech annotators did not detect them) and in
translating into Czech, more issues were detected.
Since the average Severity is measured across all
phenomena, then the higher Severity in specific
markable cases (Over-translated, Sense, Style and
Disappearance) raised the overall average.

4 Annotation Examples

In the following figures (Figure 5, Figure 6 and
Figure 7) we show annotated excerpts with BLEU,
Fluency, Adequacy and markable phenomena sever-
ities. References are here to convey the Czech
source segment meanings. They were not shown
to the annotators. Examined markables are under-
lined.

Reference:
This Supplement No. 1 is written and signed in 2
(in wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin words: two) copies, each of which is valid for
the original.
Translation:
This Appendix 1 is drawn up and signed in two
copies, each of which has the validity of the origi-
nal.

BLEU: 23.59%, Fluency: 1, Adequacy: 0.9
Disappearance: 1

Figure 5: Example sentence markable (in wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin wordsin words) an-
notation from Czech Lease document, translated by
OPPO.

The example in Figure 5 focuses on intentional,
key information duplication (for clarity and secu-
rity reasons) of the number of signed copies. This
duplication was however omitted in the translated
output. The output is otherwise fluent and even
received higher fluency than the Reference, which
has an average fluency of 0.8.

Noteworthy is also another markable visible
in the same figure, namely the referred section
name: Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1. Even though this word is
different from the markable in the Reference:
Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1Supplement No. 1, it is used consistently across
the whole document. Another variant of the trans-
lation is: Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1Amendment No. 1. OPPO, together with
Online-Z are the only systems which translated this
markable correctly and consistently. Most of the
systems (zlabs-nlp, Online-A, Online-B, Online-G,
UEDIN-CUNI, CUNI-T2T-2018) switched incon-

sistently between the lexical choice. Other systems
(SRPOL, eTranslation, CUNI-Transformer, CUNI-
DocTransformer) were consistent in the main word
choice, but not either in capitalization or number
(e.g. Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1Appendix No. 1 and Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1Appendix 1).

Word variability (i.e. inconsistency) is often
used to make the text more interesting, but in this
context, it is vital that the term is translated consis-
tently. Most of the systems, which outperformed
even the Reference, made a severe error in this
case.

Reference:
The most expensive item to be paid before the
Grand Prix is the annual listinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglisting fee. This year, the
fee was around 115 million Czech crowns. ”Masses
of people who come to Brno to see the Grand Prix
spend money here for their accommodation, food
and leisure activities, which should more or less bal-
ance out the cost associated with the organization
of the event, including the listinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglisting fee,” economist
Petr Pelc evaluated the situation.
Translation:
The most expensive item is a breakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdown fee every
year before the Grand Prize. This year was about
a hundred fifteen million crowns. ”Mass of peo-
ple who will come to Brno at the Grand Prix will
spend money on accommodation, food or entertain-
ment, which should more or less balance the costs
associated with organizing the event, including the
unifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifying fee,” the economist Petr Pelc assessed.

BLEU: 26.59%, Fluency: 0.6, Adequacy: 0.4
Terminology: 1, Sense: 1, Inconsistency: 1

Figure 6: Example sentence markable (listing feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting fee) an-
notation from Czech News document, translated by
CUNI-T2T-2018.

Figure 6 shows a listing feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting feelisting fee incorrectly trans-
lated as breakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdownbreakdown and unifying feeunifying feeunifying feeunifying feeunifying feeunifying feeunifying feeunifying feeunifying feeunifying feeunifying feeunifying feeunifying feeunifying feeunifying feeunifying feeunifying fee. This mark-
able translation is interesting in the fact that sys-
tems were again very inconsistent with the mark-
able translation choice. The wrong lexical choices
were: landinglandinglandinglandinglandinglandinglandinglandinglandinglandinglandinglandinglandinglandinglandinglandinglanding, pavingpavingpavingpavingpavingpavingpavingpavingpavingpavingpavingpavingpavingpavingpavingpavingpaving, parkingparkingparkingparkingparkingparkingparkingparkingparkingparkingparkingparkingparkingparkingparkingparkingparking, refillrefillrefillrefillrefillrefillrefillrefillrefillrefillrefillrefillrefillrefillrefillrefillrefill, landfilllandfilllandfilllandfilllandfilllandfilllandfilllandfilllandfilllandfilllandfilllandfilllandfilllandfilllandfilllandfilllandfill,
securitysecuritysecuritysecuritysecuritysecuritysecuritysecuritysecuritysecuritysecuritysecuritysecuritysecuritysecuritysecuritysecurity, zalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́hozalistovacı́ho, leasingleasingleasingleasingleasingleasingleasingleasingleasingleasingleasingleasingleasingleasingleasingleasingleasing, drop-indrop-indrop-indrop-indrop-indrop-indrop-indrop-indrop-indrop-indrop-indrop-indrop-indrop-indrop-indrop-indrop-in, back-upback-upback-upback-upback-upback-upback-upback-upback-upback-upback-upback-upback-upback-upback-upback-upback-up,
reforestrationreforestrationreforestrationreforestrationreforestrationreforestrationreforestrationreforestrationreforestrationreforestrationreforestrationreforestrationreforestrationreforestrationreforestrationreforestrationreforestration, clearanceclearanceclearanceclearanceclearanceclearanceclearanceclearanceclearanceclearanceclearanceclearanceclearanceclearanceclearanceclearanceclearance, referralreferralreferralreferralreferralreferralreferralreferralreferralreferralreferralreferralreferralreferralreferralreferralreferral, paddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpadding fee and
stamp dutystamp dutystamp dutystamp dutystamp dutystamp dutystamp dutystamp dutystamp dutystamp dutystamp dutystamp dutystamp dutystamp dutystamp dutystamp dutystamp duty. Good translations were: listinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglistinglisting and
registrationregistrationregistrationregistrationregistrationregistrationregistrationregistrationregistrationregistrationregistrationregistrationregistrationregistrationregistrationregistrationregistration fee.

Online-B and CUNI-DocTransformer made
good and consistent lexical choices. SRPOL made
good lexical choices but switched between them.
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In this instance, this would not be an error, because
consistency is not vital for interpreting the text.

The translation by CUNI-T2T-2018 in Figure 6
is not wrong only because of this markable transla-
tion choice, but also by poor fluency. The BLEU
score, however, does not suggest, that there is any-
thing fundamentally wrong with the translated seg-
ment despite the meaning being distorted.

Reference:
In Art. III of the Sublease agreement, entitled
“Term of the Lease,” the tenant and the lesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelessee
agreed that the apartment in question would be
rented to the tenant for a fixed period from 13th
May 2016 to 31st December 2018.
Translation:
In art. III of the apartment lease agreement, called
”sublease period”, the tenant and the tenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenant agreed
that the apartment in question will be left to the
tenant for use for a fixed period from 13. 5. 2016
to 31. 12. 2018.

BLEU: 31.95%, Fluency: 0.7, Adequacy: 0.5
Terminology: 0.5, Sense: 0.25, Conflict: 1,

Other grammar: 0.25

Figure 7: Example sentence markable (lesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelessee) an-
notation from Czech News document, translated by
Online-G.

The last example, in Figure 7, concerns itself
with conflicting markables. In this case, two dis-
tinct markables (tenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenant and lesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelesseelessee) were merged
into one translation tenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenanttenant. This is a very funda-
mental error because, in the Lease agreement, these
two markables refer to the two parties, which enter
the contract.

Again, the BLEU does not suggest that anything
is wrong with the translation. It could be even
higher (51.06%) were it not for the localized date
format in the Reference.

5 Conclusion

In this article, we compared three approaches to
document translation evaluation. We saw that non-
expert annotators rate most MT systems higher
than Reference with Fluency and Adequacy, but
Reference ranks better than most of them when
inspecting markable phenomena and their Severity.
Inspecting specific instances in detail, we found out
that MT systems made errors in terms of markables,
which no human translator would do.

Relating the current observation with the impres-
sion last year, we conclude that annotators lacking
in-depth domain knowledge are not reliable for an-
notating on the rather broad scales of Fluency and
Adequacy but they are capable of spotting term
translation errors in the markable style of evalua-
tion. This is important news because expert annota-
tors can not be always secured. Unfortunately, the
inter-annotator agreement remains generally low,
possibly due to a high cognitive load with many
systems annotated.

We further examined these markable phenomena
and showed that especially Sense, Other grammar
and Terminology kinds of errors negatively influ-
ence the Fluency and Adequacy the most. For
BLEU the variables of highest importance were
Non-translated and Conflicting errors.

In future work, we would like to examine more
of the kinds of markable errors in modern MT sys-
tems and their influence on the translation quality.
This description could then help researches focus
on specific parts of their MT systems.

Furthermore, we would like to explore possible
automated metrics, which would help in determin-
ing whether the document meaning remained intact
with respect to markables.

Annotating markables appears to be easier for
human annotators and more reliable for non-expert
ones, and the results gave us more insight into the
systems’ performance than the Fluency-Adequacy
method.
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Abstract
We investigate different approaches to trans-
late between similar languages under low re-
source conditions, as part of our contribution
to the WMT 2020 Similar Languages Transla-
tion Shared Task. We submitted Transformer-
based bilingual and multilingual systems for
all language pairs, in the two directions. We
also leverage back-translation for one of the
language pairs, acquiring an improvement of
more than 3 BLEU points. We interpret our
results in light of the degree of mutual intelli-
gibility (based on Jaccard similarity) between
each pair, finding a positive correlation be-
tween mutual intelligibility and model perfor-
mance. Our Spanish-Catalan model has the
best performance of all the five language pairs.
Except for the case of Hindi-Marathi, our bilin-
gual models achieve better performance than
the multilingual models on all pairs.

1 Introduction

We present our findings from our participation
in the WMT 2020 Similar Language Translation
shared task, which focused on translation between
similar language pairs in low-resource settings.
Similar languages share a certain level of mutual in-
telligibility that may aid the improvement of trans-
lation quality. Depending on the level of closeness,
certain languages may share similar orthography,
lexical, syntactic, and or semantic structures which
may make translation more accurate.

The level of mutual intelligibility is such that
speakers of one language can understand another
language without prior instruction in that other lan-
guage. They can also communicate without the
use of a lingua franca which is a link or vehicular
language used for communicating between speak-
ers of different languages (Gooskens, 2007). It
is important to mention that, sometimes, the level
of intelligibility varies in both directions. For in-
stance, Slovene - Croatian intelligibility is said to

be asymmetric such that speakers or Slovene can
understand spoken and written Croatian better than
speakers of Croatian understand Slovene (Gol-
ubović and Gooskens, 2015).

Machine translation of similar languages has
been explored in a number of works (Hajic, 2000;
Currey et al., 2016; Dabre et al., 2017). This can
be seen as part of a growing need to develop mod-
els that translate well in low resource scenarios.
The goal of the current shared task is to encourage
researchers to explore methods for translating be-
tween similar languages. We also view the shared
task as useful context for studying interaction be-
tween degrees of similarity and mutual intelligibil-
ity on the one hand, and model performance on
the other hand. We explore the use of bilingual
and multilingual models for all the 5 shared task
language pairs. We also perform back-translation
for one language pair.

In the remainder of this paper, we discuss related
literature in Section 2. We explain the methodology
which includes a description of the Transformer
model, back-translation and beam search in Sec-
tion 3. In Section 4, we describe the models we
developed for this task and we discuss the vari-
ous experiments we perform. We also describe the
architectures of the models we developed. Then
we discuss the evaluation procedure in Section 6.
Evaluation is done on both the validation and test
sets. We conclude with discussion and the insights
gained from this task in Section 7.

2 Related Work

Translation between similar languages has recently
attracted attention. Different approaches have been
adopted using state-of-the-art techniques, methods,
and tools to take advantage of the similarity be-
tween languages even in low resource scenarios.
Approaches that have been effective for other ma-
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chine translation tasks have proven to achieve suc-
cess in the context of similar language translation
as well.

NMT models, specifically the Transformer archi-
tecture, has been shown to perform well when trans-
lating between similar languages (Baquero-Arnal
et al., 2019; Przystupa and Abdul-Mageed, 2019).
The use of in-domain data for fine-tuning has also
proven to be of remarkable benefit for this task.
This problem has also been tackled both by using
character replacement to leverage the orthographic
and phonological relationship between closely re-
lated mutually intelligible language pairs (Chen
and Avgustinova, 2019). A new approach was also
introduced for this task using a two-dimensional
method that assumes that each word of the target
sentence can be explained by all the words in the
source sentence (Baquero-Arnal et al., 2019).

Within the realm of MT for low resource lan-
guages, recent work has focused on translation us-
ing large monolingual corpora due to the scarcity
of parallel data for many language pairs (Lample
et al., 2018, 2017; Artetxe et al., 2018b). These
approaches have leveraged careful initialization of
the unsupervised neural MT model using an in-
ferred bilingual dictionary, sequence-to-sequence
language models, and back-translation to achieve
remarkable results. The bilingual dictionary is
built without parallel data by using an unsuper-
vised approach to align the monolingual word em-
bedding spaces from each language (Conneau et al.,
2017; Artetxe et al., 2018a). Since parallel data is
not available in sufficiently large quantities, back-
translation is used to create pseudo parallel data.
The monolingual data of the target language is
translated into the source using an existing transla-
tion system (e.g., one trained with available gold
data). The output is then used to train a new MT
model (Sennrich et al., 2015a). Weak supervision
caused by back-translation results in a noisy train-
ing dataset. This eventually can affect translation
quality.

More recent works adopt different approaches
to manage noise in back-translation. For in-
stance, phrase based statistical MT models are in-
troduced as a posterior regularization during the
back-translation process to reduce the noise and
errors of the data generated (Ren et al., 2019). An-
other method (Artetxe et al., 2019b) uses cross lin-
gual word embeddings incorporated with sub-word
information. The weights of the log-linear model

is then tuned through an unsupervised process and
the entire system is jointly refined in opposite direc-
tions to improve performance. This method outper-
forms previous SOTA model with about 5-7 BLUE
points. A re-scoring mechanism that re-uses the
pre-trained language model to select translations
generated through beam search has also been found
to improve fluency and consistency of translations
(Liu et al., 2019). Yet another approach, combines
cross-lingual embeddings with a language model
to make a phrase-table (Artetxe et al., 2019a). The
resulting system is then used to generate a pseudo
parallel corpus with which a bilingual lexicon is
derived. This approach can work with any word or
cross-lingual embeddings techniques.

3 Methodology

Motivated by the success of Transformers and back-
translation, we develope a sequence-to-sequence
approach using the Transformer architecture per-
form back-translation for one language pair. For
decoding, we use Beam Search (BS). BS is an
heuristic decoding strategy based on exploring the
solution space and selecting a sequence of words
that maximize the overall likelihood of the target
sentence. During the translation, we hold a beam
of β sequences (beam size) which are iteratively
extended. At each step, β words are selected to
extend each of the sequences in the beam, so the
output is β2 candidate sequences (hypotheses), we
retain only the β highest score hypotheses for the
next step (top-β candidates) (Koehn, 2009). In
all our experiments we use beam size of 5 whilst
decoding.

3.1 Transformer

Our baseline models are based on the Transformer
architecture. A Transformer (Vaswani et al., 2017)
is a sequence-to-sequence model that does not have
the recurrent architecture present in Recurrent
Neural Networks (RNNs). It uses a positional en-
coding that can remember how sequences are fed
into the model. These positions are added to the
embedded representation (n-dimensional vector) of
each word. Transformers have been shown to train
faster than RNNs for translation tasks.

The encoder and decoder in a Transformer model
have modules that consist mainly of multi-head
attention and feedforward layers. The attention
mechanism is based on a function that operates on
Q (queries), K (keys), and V (values). The query
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is a vector representation of one token in the input
sequence, K refers to the vector representations of
all the tokens in the input sequence. More informa-
tion about the Transformer are in (Vaswani et al.,
2017).

3.2 Back-translation

We perform back-translation using the monolingual
model developed for the Croatian-Slovene (HR-
SL) language pair. We use the best HR-SL model
checkpoint that acquire the highest BLEU score
on the DEV set to translate the monolingual HR
data. This produces synthetic Slovene (SL) data
which we then use as the source language while the
original monolingual data is used as target when
training the SL-HR model. We combine this data
with the initial training data.

Due to time constraints, we used only a subset
of the monolingual data with a beam size of 5.

3.3 Jaccard Similarity

Jaccard similarity compares similarity, diversity,
and distance of data sets (Niwattanakul et al., 2013).
It is calculated between two data sets in our case
two languages) A and B by dividing the number of
features common to the two sets (their intersection)
by the union of features in the two sets, as in (1)
below:

J(A,B) =
|A ∩B|
|A ∪B| (1)

We use tokens, identified based on white space,
as features when we calculate Jaccard.

4 Experiments

4.1 Model Architecture

Our neural network models are based on the Trans-
former architecture (as described in Section 3)
implemented by Facebook in the Fairseq toolkit.
The following hyper-parameter configuration was
used: 6 attention layers in the encoder and the
decoder, 4 attention heads in each layer, embed-
ding dimension of 512, maximum number of to-
kens per batch was set to 4, 096, Adam optimizer
with β1 = 0.90, β2 = 0.98, dropout regular-
ization was set to 0.3, weight-decay was set at
0.0001, label − smoothing = 0.1, variable learn-
ing rate set at 5e−4 with the inverse square root, lr-
scheduler and warmup− updates = 4, 000 steps.
We used the label smoothed cross-entropy criterion,
and gradient clip-norm threshold was set to 0.

5 Data

We used all the parallel data for all language
pairs http://www.statmt.org/wmt20/similar.

html. The task was constrained so we did not add
any additional data to develop our models. We
used the monolingual data for the SL-HR language
pair for back-translation. Table 2 shows the size of
the data in terms of the number of sentences and
words for each language pair while Table 1 shows
example source and corresponding outputs from
our bilingual and multilingual models for each lan-
guage pair. We also calculated the jaccard similar-
ity for the training data we used for the tasks. “Jac-
card similarity” measures the similarity between
two text documents by taking the intersection of
both and dividing it by their union. Linguists mea-
sure these intersections (Oktavia, 2019; Gooskens
and Swarte, 2017) between languages to determine
the level of mutual intelligibility as well as classify
languages as dialects of the same language or dif-
ferent languages. We calculated Jaccard similarity
for each language pair.

5.1 Pre-processing
Pre-processing was by a regular Moses toolkit
(Koehn et al., 2007) pipeline that involved tok-
enization, byte pair encoding and removing long
sentences. We applied Byte-Pair Encoding (BPE)
(Sennrich et al., 2015b) operations, learned jointly
over the source and target languages. For each lan-
guage pair, we used 32k split operation for subword
segmentation (Sennrich et al., 2016b). We run ex-
periments with Transformers under three settings,
as we explain next.

5.2 Models
We develop both bilingual and multilingual models
using gold data for all pairs. For one pair, we also
use back-translation with one bilingual model. We
provide more details next.

5.2.1 Bilingual Models
In this setting, we build an independent model for
each language pair. We develop models for both
directions for all language pairs, thus ultimately
creating 12 models (6 for each direction). We train
each model on 1 GPU for 7 days.

5.2.2 Multilingual Models
We develop two multilingual models that translates
between all languages; a model for each direction
(2 models overall) (Johnson et al., 2017). We add
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Model Pair Sentence Translation

Es-Ca
Diseña stickers para soñar Dissenya stickers per soyir

Mueva el diez de corazones al nueve de corazones . Mobles el deu de garrons al nou de garrons .

Es-Pt
Diseña stickers para soñar Design stickers para sonhar

Mueva el diez de corazones al nueve de corazones . Muda o dez corações para nove corações .

Sl-Hr
Vesel pomladni pozdrav ob novi izdaji Bisnode novičk . Sretan proljetni pozdrav na novom izdanju Bisnode Vijesti .

B
ili

ng
ua

lM
od

el

Z lepimi pozdravi , S lijepim pozdravima ,

Sl-Sr
Danes ni enostavno slediti vsem informacijam , ki so pomembne za poslovanje . Danas nije lako pratiti sve informacije koje su važne za poslovanje .

Iščete podatke za drugo državo ? Tražite podatke za drugu zemlju ?

Es-Ca
Mueva el diez de corazones al nueve de corazones . Muva el 10 de coração al 9 de coraons .

el cuatro de diamantes el quatre de diamants

Es-Pt
Luche en el aire con un avión enemigo Luche en l aire amb un avió enemigo

Entonces , ¿ qué salió mal ? Então , o que saiu mal ?

Sl-Hr
Objašnjenje - Indeks plaćanja Datum : Objašnjenje – Indeks plaćanja Datum :

M
ul

til
in

gu
al

M
od

el

Poštovani , Poštovani ,

Sl-Sr
Iščete podatke za drugo državo ? Tražite podatke za drugu zemlju ?

Vesel pomladni pozdrav ob novi izdaji Bisnode novičk . Sretan proljetni pozdrav uz novo izdanje Bisnode novosti .

Table 1: Examples sentences from the various pairs and corresponding translations based on the bilingual and
multilingual models. Examples are from the DEV set.

Language #sentences #words
hi 43.2K 829.9K
mr 43.2K 600K

H
i-M

r

mono-hi 113.5M 4.74B
mono-mr 4.9M 112.6M
es 11.3M 150.4M
ca 11.3M 163M

E
s-

C
a

mono-es 58.4M 1.5B
mono-ca 28M 763.7M
es 4.15M 86.6M
pt 4.15M 82.5M

E
s-

pt

mono-es 58.4M 1.47B
mono-pt 11.4M 233.9M
sl 17.6M 113.09M
hr 17.6M 117.73M

Sl
-H

r

mono-sl 46.25M 770.6M
mono-hr 64.5M 1.24B
sl 14.1M 79.1M
sr 14.1M 86.1M

Sl
-S

r

mono-sl 46.2M 770.6M
mono-sr 24M 489.9M

Table 2: Number of sentences and words for the train-
ing data used for each language pair

a language code representing the target language
as the start token for each line of the source data.
We train each model on 4 GPUs for 7 days. We
use the same hyper-parameters values set for the
bilingual models. Multilingual models enable us to
determine the impact of learning similar languages
with a shared representation.

5.2.3 Bilingual Model with Back-translation
For the third approach, we combine back-
translation with the bilingual translation model for
the SL-HR language pair. We incorporated the
monolingual data to do this. This was influenced

by report (Sennrich et al., 2016a) in literature on
the significant improvement of translation quality
when monolingual data is incorporated into train-
ing data through back-translation. We were able to
test the effect of back-translation on one model.

6 Evaluation

We evaluated both the DEV and TEST sets. We
used the best-checkpoint metric with BLEU score
to evaluate the validation set at each iteration. We
used a beam size of 5 during the evaluation . We
de-tokenized from BPEs back into words.

6.1 Evaluation on DEV set

We report the results on the DEV sets for each lan-
guage pair in Table 3. These models were trained
without the monolingual data except the SL-HR
pair with the asteriks.

Pair Bilingual Models Multiling. models
hi-mr 12.14 16.35
mr-hi 10.63 01.02
es-ca 74.85 16.13
ca-es 74.24 64.57
es-pt 46.71 26.41
pt-es 41.12 05.81
∗sl-hr 36.89 -
sl-hr 33.28 09.25
hr-sl 55.51 07.94
sl-sr 40.80 32.80
sr-sl 39.80 06.97

Table 3: Evaluation in BLEU on the development set
for the different language pairs. The asteriks shows the
model with back-translation
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The bilingual models outperform the multi-
lingual models for all language pairs except the
hi-mr language pair.

6.2 Evaluation on TEST
In order to evaluate the test data, we removed the
byte-pair code from the test set. We used the
fairseq-generate mode while translating the test
set. We show results on the test set in Table 4.

Pair Bilingual Models Multiling. models
hi-mr 0.49 -
es-ca 41.74 8.49
ca-es 45.23 45.86
es-pt 23.35 17.06
pt-es 24.26 21.55
*sl-hr 20.92 22.26
hr-sl 14.94 7.37
sl-sr 14.7 20.18
sr-sl 19.46 11.37

Table 4: The BLEU scores for some of the models on
the test set. The language pair with the asterisks has
back-translation 1

6.3 Discussion
We used the Jaccard similarity to measure the level
of mutual intelligbility. Figure 1 shows a posi-
tive correlation between the BLEU scores and the
Jaccard similarity between each language pair. 2

This relationship hold both for the bilingual and
multilingual models. One exception is the Slovene-
Serbian pair (SL-SR) where higher similarity does
not translate into higher BLEU. For example, the
SL-SR BLEU is below the SL-HR BLEU even
though the latter pair has a higher similarity score.
Interpreting Jaccard to mean mutual intelligibility,
our findings imply a higher intelligibility is corre-
lated with higher BLEU scores. However, there is
a need to further investigate this relationship due to
the SL-SR we observe.

7 Conclusion

We described our contribution to the WMT2020
Similar Languages Translation Shared Task. We
developed both bilingual and multilingual mod-
els for all pairs, in both directions. We showed
back-translation to help improve performance on
one pair. We also showed how mutual intelligi-
bility between a pair of languages ( measured by
Jaccard similarity) positively correlate with model

2We multiplied the jaccard similarity by 100 to reduce the
range of values on the y axis.

Figure 1: Interaction between performance in BLEU
and Jaccard similarity.

performance (in BLEU). Future work can focus on
exploiting other similarity metrics and providing
a more in-depth study of mutual intelligibility be-
tween similar languages and how it interacts with
MT model performance both in bilingual and mul-
tilingual models. The utility of back-translation on
pairs we have not studied can also be fruitful.
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Abstract

This paper illustrates our approach to the
shared task on similar language translation in
the fifth conference on machine translation
(WMT-20). Our motivation comes from the
latest state of the art neural machine transla-
tion in which Transformers and Recurrent At-
tention models are effectively used. A typi-
cal sequence-sequence architecture consists of
an encoder and a decoder Recurrent Neural
Network (RNN). The encoder recursively pro-
cesses a source sequence and reduces it into a
fixed-length vector (context), and the decoder
generates a target sequence, token by token,
conditioned on the same context. In contrast,
the advantage of transformers is to reduce the
training time by offering a higher degree of
parallelism at the cost of freedom for sequen-
tial order. With the introduction of Recurrent
Attention, it allows the decoder to focus effec-
tively on order of the source sequence at dif-
ferent decoding steps. In our approach, we
have combined the recurrence based layered
encoder-decoder model with the Transformer
model. Our Attention Transformer model en-
joys the benefits of both Recurrent Attention
and Transformer to quickly learn the most
probable sequence for decoding in the target
language. The architecture is especially suited
for similar languages (languages coming from
the same family). We have submitted our sys-
tem for both Indo-Aryan Language forward
(Hindi to Marathi) and reverse (Marathi to
Hindi) pair. Our system trains on the paral-
lel corpus of the training dataset provided by
the organizers and achieved an average BLEU
point of 3.68 with 97.64 TER score for the
Hindi-Marathi, along with 9.02 BLEU point
and 88.6 TER score for Marathi-Hindi testing
set.

1 Introduction

This paper focuses on establishing a neural ma-
chine translation model using Encoder-Decoder ar-

chitecture to translate between Hindi-Marathi sen-
tence pairs. We are utilizing an attention mecha-
nism approach by employing the combination of re-
currence based RNN Encoder-Decoder layers (Cho
and et al., 2014) and latest machine translation tech-
nique the Transformers (Vaswani et al., 2017) to ad-
dress the complexity of WMT-20 similar language
data-set (Hindi-Marathi). The motivation behind
combining RNN and Transformer architecture is
taken from the paper (Huang et al., 2020) to utilize
the benefits of both. The formulated machine trans-
lation system has numerous applications. It can be
used in advertising campaigns to reach native users.
The media industry can employ this technology for
generating subtitles and broadcasting multilingual
news to cover a wide range of native subscribers
of a region. Moreover, these systems can provide
native vernaculars in social media to increase the
activities of indigenous individuals of a native lan-
guage. Additionally, Search engines can also adopt
this method to display relevant results to clients in
their region-specific native language.

The paper is composed of three further sections.
The second section will display our proposed ap-
proach to solve the problem of Hindi-Marathi trans-
lation, followed by a discussion on designed exper-
iments for training the model and mechanism for
generating the results. Lastly, we will illustrate
contributions and future work.

2 Methodology

The paper proposes a novel approach called At-
tention Transformer shown in Fig. 1 to translate
between Hindi and Marathi text. In the figure, two
encoder and decoder layers are illustrated. The ini-
tial N Encoder-Decoder layers contain RNN units
in the form of LSTMs, which get stacked on top of
each other. First, the initial encoder layer processes
the tokenized input and generates a context vec-
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tor. The initial decoder layer consumes the context
vector generated by the neighboring encoder layer.
Plus, it takes the target output as its input while
training by utilizing the concept of teacher force
training (Goyal and et al., 2016). Next, the pro-
cessed outputs of both the initial Encoder-Decoder
layer gets presented as input to the transformer
model.

Figure 1: This Figure shows bird’s-eye view of the pro-
posed Attention Transformer Model

In the Transformer model, we can observe the
second Encoder and Decoder layer stacked on the
top of positional input-output embedding layers. In
the Transformer, the positional input-output em-
bedding layer receives the output of the initial
Encoder-Decoder layer as its input. The role of
the positional embedding layer is first to convert
its input, which comes from the previous RNN
based Encoder-Decoder layer into d-dimensional
space where d is the output size of the embedding
layer and add a positional encoding vector to it.
As a result, all similar words relative to their po-
sitions in the training sentences will get cluster
together. The working of the positional encoding
vector is presented in the paper (Vaswani et al.,
2017). Next, the outputs of the positional embed-
ding layer get passed to Encoder-Decoder layers
of Transformer. An individual Encoder-Decoder
layer of Transformer contains a multi-head atten-
tion mechanism followed by a feed-forward layer,

and a Transformer can have N number of such
layers. The multi-head attention mechanism and
feed-forward layer works, as illustrated in the pa-
per (Vaswani et al., 2017), and their outputs are
normalized. To train the model, we can apply the
teacher forcing mechanism while during testing, a
start token is initially required for the decoder to
start the decoding process. After that, we can let
the decoder to generate the output tokens in a loop
by utilizing its current output as input to the next
time frame until it produces the end token.

3 Experimental Studies

We have used Two human-level translation evalua-
tion criteria, which are BLEU (Papineni and et al.,
2002) and TER (Snover and et al.) scores and
two general evaluation metrics that are Sparse Cat-
egorical Accuracy and Mean Loss. This section
will first discuss the preparation of training data-
set and baseline models, followed by training pro-
cedures plus their outcomes. And then, we will
move towards explaining the results of the testing
procedure. It is important to note that all experi-
ments given below are performed using TPU with
180 TFlops, and 64 GB High Bandwidth Memory
(HBM) provided by Google Colab, plus an imple-
mentation of the experiment is located in the Colab
notebook (implementation).

3.1 Data-set

Initially, we have a Hindi-Marathi parallel training
corpus of 44,685 sentence pairs. We have applied
a simple rule to filter out all sentence pairs having
the length higher than 24 words. After using this
filtering rule on the data-set, we are left with 35,215
sentence pairs on which we have applied 80%-20%
split to extract out training and development data.
We have separated 100 records from the dev-set,
and treat it as unseen data to perform a comparison
with the baseline models. The table 1 shows the
division of the data-set.

The reason for the maximum length based fil-
tration of the data-set is with an increase in the
maximum length of a sentence in the data-set, the
complexity of the model increases, hence the train-
ing time increases. Although vocabulary size and
hyper-parameters of the model also play a signifi-
cant role in the training time per Epoch. Plus, we
are motivated to keep our model simple as much
as possible because the quality of the predicted
translation gets affected, and it becomes difficult to
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DATA-SET CONTENTS
Data-set total sentence pairs 44,685
Filtered data-set sentence pairs 35,215
Training set sentence pairs 28,172
Development set sentence pairs 6,943
Records for comparison with baseline
models

100

Hindi vocabulary size in filtered data 31,417
Marathi vocabulary size in filtered data 53,639

Table 1: The table shows the division of the data-set

debug the model as it grows more complex.

3.2 Baseline Models

We have selected the Bahdanau (Bahdanau and
et al., 2014) and Transformer (Vaswani et al., 2017)
model as a baseline model to compare the perfor-
mance of our model. We have used their Tensor-
Flow implementation officially given at (Tensor-
Flow, a) and (TensorFlow, b). In our experiment,
we have extracted 100 records from the dev-data,
which serves as unseen data and helps us to com-
pare the goodness of our proposed model with
the selected baseline models. We have trained the
model on the Marathi-Hindi dataset, with the men-
tioned parameters in TensorFlow documentation,
and recorded that the Bahadanau model gets an
average BLEU score of 0.13, while the transformer
gets an average BLEU score of 20.

3.3 Selecting Hyper-parameters

The first essential hyper-parameter is to decide the
maximum number of words a source or target sen-
tence can have in a single given instance of a train-
ing sentence. However, it’s a fantasy to develop
a model that handles infinite words in the train-
ing instance. But as a result, it leads to infinite
training time, which is undesirable. We have run
the attention transformer model with the top 1000
records after filtering the dev-set with the various
maximum number of words a source and target sen-
tence can have and recorded their training time as
shown in the chart below. In Fig 2, we can notice
that increment in the maximum number of words
a sentence can have produces a drastic impact on
training time. We have selected 24 as the maximum
number of words a sentence can have in our data-
set to achieve comparable performance in practical
training time.

After filtering the data-set based on the maxi-

Figure 2: The figure shows line graphs illustrating
the training time on filtered data-sets having different
lengths of maximum words in a sentence.

mum number of words, a sentence can have. The
next essential thing is to choose an appropriate
batch size for the model. We have executed the
Attention transformer model with different batch
sizes on dev-set and noted their impact on training
time per epoch. The Fig. 3 illustrates that the in-
crement in batch size helps to reduce training time
up to an extent after that it reduces the efficiency
of the model. We have selected 16 as batch size, as
it gives minimum training time per epoch for the
model.

Figure 3: The figure shows a line graph illustrating the
training time per epoch for different batch sizes.

In addition to that, to keep the training time of
Attention Transformer practical, with a TPU of
180 TFlops and 64 GB High Bandwidth Memory
(HBM). We have set the number of initial RNN
based Encoder-Decoder layers to one and the num-
ber of the second Transformer Encoder-Decoder
layer to two. Plus, the number of attention heads in
the multi-head attention layer of the Transformer
encoder-decoder layer is set to 8, and all other
hyper-parameters for transformer model are kept
as suggested in the paper (Vaswani et al., 2017).
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3.4 Training the Model

In training, we have not augmented the original
form of the given sentences in the data-set. In the
pre-processing step, we have only removed punctu-
ation from the sentences and fed the filtered data to
the model, which sums up to 35,215 sentence pairs.
We have used the selected hyper-parameters from
previous subsections to train the model, which are
obtained by optimizing dev data. In addition to
that, to keep track of our models’ performance, we
have used the Sparse Categorical Cross Entropy
function as our loss function for evaluating train-
ing predictions, which is an integer version of the
Categorical Cross Entropy function the details can
be observed in the notebook (implementation)

3.5 Dealing with Over-Fitting and Unseen
Vocabulary at Test Time

To save the model from overfitting, we have kept
the training procedure straight-forward by applying
a simple rule to train the model until it provides a
BLEU score of 0.7 or the performance of BLEU
score asymptotes after ten epochs. While train-
ing, we have collected average BLEU scores, TER
score, Accuracy, and Mean Loss across batches
over an epoch to track the performance of the
model as shown in (implementation).

Moreover, to deal with new input vocabulary
at test time, we have employed a simple trick by
generating a miscellaneous token at the time of to-
kenization. The miscellaneous token gets included
in the vocabulary of the model at train time. And
the model learns to deal with this token based on its
neighbors. During test time, while tokenization, if
the input sentence contains any unseen vocabulary,
then we exchange that word with the miscellaneous
token.

3.6 Comparison With Baseline Model

We have trained the baseline models and our pro-
posed attention transformer model on the Marathi-
Hindi data-set at the end of each epoch, we have
recorded the training time. This per epoch train-
ing time will allow us to measure the quickness in
the model to finish a training epoch. Fig. 4 below
states the comparison of cumulative training time
of all three models. It can be seen clearly that the
Bahdanau model takes a huge amount of training
time as compared to the other two models. We
were able to run only 10 epochs for the Bahdanau
model in approximately 9 hours. On the other hand

Transformer and Attention, Transformer models
are very quick, it takes approximately 7 minutes to
train an epoch of both the models. However, over
the time it can be seen in the graph that the base-
line Transformer model is slightly quicker than our
proposed Attention Transformer model.

Figure 4: The figure shows comparison of cumulative
training time of Bahdanau, Transformer and Attention
Transformer model.

Figure 5: The figure shows comparison of progress in
Sparse Categorical Accuracy as we continue to train
the Bahdanau, Transformer and Attention Transformer
model.

Next, to measure the progress in translation per-
formance as we continue to train the model, we
have recorded average Sparse Categorical Accu-
racy, BLEU score, Sparse Categorical cross entropy
loss, and TER scores at the end of each epoch as
shown in Fig. (5, 6, 7, 8) respectively. This track
of per epoch training performance helps us to vi-
sualize the progress of the model in learning the
translation probability distribution, plus we can
also utilize this information to find out the most
active model that fits translation distribution in the
least number of epochs.

In the Fig. 5 and 6, we can notice that the Bah-
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danau model is quickest to adapt translation proba-
bility distribution compared to other models as it
has shown approximately exponential increment in
accuracy and BLEU scores over the initial train-
ing epochs. The transformer model is following
a relatively linear path in learning the probability
distribution.

Figure 6: The figure shows comparison of progress
in BLEU score as we continue to train the Bahdanau,
Transformer and Attention Transformer model.

The reason behind the wining performance of the
Bahdanau model is it’s inherent recursive nature
to model the sequence to sequence tasks, which
helps it to learn the positional order of the given
sequence. The Transformer lacks this recursive
nature and uses a sinusoidal positional encoding
scheme to get the awareness of the position of a
word in a sentence, which is not as effective as Bah-
danau’s inherent recursive nature. But this recur-
sive nature hinders the Bahdanau model to exploit
parallelism due to this Bahdanau model takes more
time to finish a training epoch as compare to the
Transformer model.

The Attention Transformer takes the benefits
of both the Bahdanau and the Transformer model.
The initial layer of RNN helps the Attention Trans-
former to learn the positional order of the given
sequence, plus the stacked Transformer above it al-
lows the Attention Transformer to apply maximum
parallelism. In the Fig. 5 and 6, we can notice that
the Attention Transformer has given a relatively
intermediary performance as compare to the other
two models because we have kept the number of
RNN and Transformer layers almost equal. If we
increase the number of RNN layers in the Attention
Transformer model it will start behaving more like
the Bahdanau model likewise, if we increase the
number of transformer layers then it will act more

like the Transformer model.
Similarly, we can use the same argument to rea-

son about the displayed behavior of the perfor-
mance of the Bahdanau, Transformer, and Atten-
tion Transformer model in Fig. 7 and 8

Figure 7: The figure shows comparison of decrements
in loss as we continue to train the Bahdanau, Trans-
former and Attention Transformer model.

Figure 8: The figure shows comparison of decrements
in TER score as we continue to train the Bahdanau,
Transformer and Attention Transformer model.

Finally, we have utilized the trained Bahdanau,
Transformer, and Attention Transformer model to
translate 100 unseen records from Marathi to Hindi,
which we have initially separated from the dev data-
set. The Fig. 9 below displays the performance
of the trained models on the scale of 0-1 BLEU
points, the Bahdanau model fails to capture the
distribution of unseen data, while the Transformer
model performs relatively good. Attention Trans-
former gives comparatively better performance on
average as it shows high BLEU scores for many of
the instances.
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Figure 9: The figure shows comparison of calculated
BLEU scores on the scale of 0-1 from the predictions
of Bahdanau, Transformer and Attention Transformer
model on the unseen 100 records which we have sepa-
rated from the development data.

3.7 Testing Results

We have developed two instance models of Atten-
tion Transformer using the procedure mentioned
above for both predicting Marathi sentences when
Hindi sentences are given as input and predicting
Hindi sentences when Marathi sentences are pro-
vided as input. We have achieved BLEU points
of 3.68 and a TER score of 97.64 for the Hindi-
Marathi test pair. Plus, BLEU points of 9.02 and
the TER score of 88.68 for the Marathi-Hindi test
data-set.

4 Conclusion

This paper has presented a supervised deep neural
translation-based approach called Attention Trans-
former as a tool to perform translation between
similar pair of languages (Hindi-Marathi). We
have developed a novel Neural Translation method
called Attention Transformer to transmute from
Hindi source to Marathi and vice-versa by combin-
ing the classical recurrence based encoder-decoder
approach and Transformers working mechanisms.
All supervised translation approaches need paral-
lel corpora as their data-set to learn the probabil-
ity function of generating translation from source
to target. We have solely utilized the WMT-20
Hindi-Marathi parallel corpus as the training data-
set for the Attention Transformer model having
44,685 sentence pairs and used two human-level
evaluation criteria, BLEU plus TER scores, to eval-
uate the Attention Transformer model. We have
achieved BLEU points of 3.68 and a TER score of
97.64 for the Hindi-Marathi test pair. And, BLEU
points of 9.02 with the TER score of 88.68 for the
Marathi-Hindi test data-set. The future work under

this domain includes applying stochastic optimiza-
tions like a genetic algorithm to find the best pos-
sible combinations of hyper-parameter to model
the probability distribution of source to the tar-
get language. Furthermore, we can also stack a
reinforcement learning paradigm on a developed
supervised neural translation model to create a self-
autonomous personalized environment for learning
the probability function, which continuously gets
updated by taking real-time feedback from the user.
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Abstract

This paper reports the results for the Machine
Translation (MT) system submitted by the NL-
PRL team for the Hindi – Marathi Similar
Translation Task at WMT 2020. We apply
the Transformer-based Neural Machine Trans-
lation (NMT) approach on both translation di-
rections for this language pair. The trained
model is evaluated on the corpus provided by
shared task organizers, using BLEU, RIBES,
and TER scores. There were a total of 23
systems submitted for Marathi to Hindi and
21 systems submitted for Hindi to Marathi in
the shared task. Out of these, our submission
ranked 6th and 9th, respectively.

1 Introduction

In the last decade and a half, neural machine trans-
lation (NMT) (Sutskever et al., 2014) has achieved
great success in automatically translating human
language text, outperforming statistical machine
translation (SMT) (Koehn et al., 2003). Both the
system require very large corpus sizes to train and
evaluate the results. They, however, don’t work
very well for low resource data (He et al., 2016;
Koehn and Knowles, 2017; Dowling et al., 2018).
Translation from or to low resource languages is the
major challenges faced by today’s NMT systems.

Different methods have been proposed to over-
come the data sparsity problem for low resource
languages by researchers around the world. These
include using monolingual data (Wu et al., 2019),
fine-tuning (Miceli Barone et al., 2017) the high
resource monolingual and parallel data on low re-
source data, back translation (Hoang et al., 2018),
etc. They succeed up to some extent, but the suc-
cess is limited, as the reported results show when
compared to those for resource rich languages.

In this paper, we use the Transformer network-
based NMT system (Vaswani et al., 2017) because
it is among the state of the art models for machine

translation. The work reported for this shared task
is an extension of the work done by (Kumar and
Singh, 2019) for similar languages task for 2019,
which had also used a transformer based NMT
system.

2 Similar Languages

Two languages are considered similar or closely
related if they are close relatives in terms of the
linguistic family of the linguistic family tree (or
forest), or if the speakers of the two languages
are in close contact over a long period of time.
Contact over a long period leads to the exchange
of cognates and loanwords between the speakers,
sometimes even grammatical constructs.

Leveraging the close similarity of languages is
one way to overcome the problem of data scarcity.
Using similar features between such languages and
improving translation is one of the directions for
research for low resource machine translation.

For this submission, the motives behind conduct-
ing the shared task experiments are:

• To find out whether it is advantageous to
use transformer-based NMT for similar lan-
guages.

• Whether using the SentencePiece 1 library
without tokenization is beneficial for trans-
lation between similar languages or not.

3 Submitted System

We submitted two systems, namely,
Marathi→Hindi and Hindi→Marathi. Both
are the NMT systems trained on a Transformer
(Vaswani et al., 2017) network. In this experiment,
we did not tokenize data using any tokenizer.
We directly applied SentencePiece library on
the corpus. We found that directly applying

1https://github.com/google/sentencepiece
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Parameters Value
Encoder and decoder layers 5
Encoder embedding dimension 512
Decoder embedding dimension 512
Encoder attention heads 2
Decoder attention heads 2
Dropout 0.4
Attention dropout 0.2
Optimizer Adam
Learning rate scheduler inverse sqrt
Learning rate 1e-3
Minimum learning rate 1e-9
Adam-betas (0.9, 0.98)
Number of epochs 100

Table 1: Hyperparameters used in our experiment

SentencePiece for preprocessing of data gives a
better result. Since both the languages come under
the category of morphologically rich and similar
languages, directly applying SentencePiece on
their corpus is advantageous. SentencePiece breaks
the sentences into morphemes and phonemes. It
extracts loanwords and cognate pairs. Breaking
of sentences into subwords helps the neural
translation network to learn better translations,
and to generalize this knowledge to translate
and produce unseen words, partly due to jointly
developing the subword vocabulary.

4 Data

We trained the model on total 49434 number of
Hindi - Marathi parallel corpus which belongs to
three domains: News, PM India and Indic WordNet.
Validation is done on total 1411 sentences. For
testing, a total of 1941 sentences were used.

5 Experiment setup

We used fairseq 2 sequence to sequence encoder-
decoder framework to train and evaluate the system.
For hyper-parameter settings, we used the settings
reported by (Guzmán et al., 2019) as these setting
work well on low resource languages. Table 1 gives
the hyper-parameter settings.

6 Results

Task organizers evaluate the systems using three
evaluation metric: BLEU (Papineni et al., 2002),
RIBES (Isozaki et al., 2010) and Translation Error

2https://github.com/pytorch/fairseq

system BLEU RIBES TER
Marathi→ Hindi 20.72 64.46 71.04
Hindi→Marathi 12.5 58.66 76.86

Table 2: Scores of our system evaluated by task orga-
nizers

Rate (TER) (Snover et al., 2006). We report the
evaluation scores in table 2.

7 Conclusion

In this paper, we perform experiments for trans-
lation between two similar languages: Hindi
and Marathi. We submitted two systems:
Marathi→Hindi and Hindi→Marathi, which were
evaluated using BLEU, RIBES and TER. We found
that SentencePiece works well for similar lan-
guages because it helps the Transformer in cap-
turing the relations between two languages by pro-
viding morphemes, phonemes, cognate pairs, loan-
words, etc. There were a total 23 systems submitted
for Marathi→ Hindi and 21 systems submitted for
Hindi→Marathi in the shared task. Out of these,
our system ranked 6th and 9th for Marathi→ Hindi
and Hindi→Marathi, respectively, considering the
BLEU scores.
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Abstract
Machine translation (MT) is a vital tool for
aiding communication between linguistically
separate groups of people. The neural ma-
chine translation (NMT) based approaches
have gained widespread acceptance because of
its outstanding performance. We have partic-
ipated in WMT20 shared task of similar lan-
guage translation on Hindi-Marathi pair. The
main challenge of this task is by utilization
of monolingual data and similarity features of
similar language pair to overcome the limita-
tion of available parallel data. In this work, we
have implemented NMT based model that si-
multaneously learns bilingual embedding from
both the source and target language pairs. Our
model has achieved Hindi to Marathi bilingual
evaluation understudy (BLEU) score of 11.59,
rank-based intuitive bilingual evaluation score
(RIBES) score of 57.76 and translation edit rate
(TER) score of 79.07 and Marathi to Hindi
BLEU score of 15.44, RIBES score of 61.13
and TER score of 75.96.

1 Introduction

MT is a well-known task of natural language pro-
cessing (NLP)wherein automatic translation is per-
formed between different languages. Broadly, MT
is categorized into rule-based and corpus-based,
where rule-based is based on a pre-defined rules on
the concerned languages and corpus-based finds a
generalized approach after being trained on a large
corpus. MT switches from rule-based approach to
the corpus-based which blots out the need for lin-
guistic expertise. In the corpus-based approach,
example-based machine translation (EBMT), sta-
tistical machine translation (SMT) and NMT tech-
niques are available. The disadvantage of EBMT
is that even though the corpus is large, all exam-
ples are not covered. To mitigate the issues of the
contemporary approach SMT is introduced Brown
et al. (1990); Koehn (2010). The SMT based

system makes an assumption based on probabil-
ity scores of the translated text. And hence, the
ranking is done. SMT also faces many issues like
system complexity, long term dependency prob-
lem, context-analyzing inability, word-alignment
and the rare word problem. The inefficiency of
SMT leads to the development of the NMT De-
vlin et al. (2014). But like SMT, the NMT based
model also suffers the requirement of sufficient
training parallel corpus, which is a challenge in the
case of low resource languages. For this reason,
there is a demand for direct translation among sim-
ilar language pairs by utilizing similarity features
and monolingual data, so that less availability of
the parallel data does not pose a challenge. How-
ever, the NMT technique achieves state-of-the-art
approach in MT because of its transformer model
Vaswani et al. (2017). For low resource language
pair translation, NMTmodels have been improved
with monolingual corpus Sennrich et al. (2016b);
Burlot and Yvon (2018); Wu et al. (2019). In
this work, we have adopted cross-lingual language
model (XLM) Conneau and Lample (2019) to im-
plement an NMT model for Hindi-Marathi similar
language translation task because XLM shows sig-
nificant improvements for low-resource languages
by utilizing the monolingual corpora.

2 Related Work

Hindi-Marathi translation lacks background work.
However, similar work is found on Hindi-Nepali
pair at WMT19 shared task of similar language
translation Laskar et al. (2019). The literature sur-
vey mainly focuses on NMT for low resource lan-
guage pairs since NMT outperforms conventional
SMT on low resource pairs like English to Mizo,
English to Hindi, English to Punjabi, and English
to Tamil Pathak et al. (2018); Pathak and Pakray
(2018); Laskar et al. (2019). It is noticed that train-
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Figure 1: MLM pre-training inspired from Devlin et al. (2018) and TLM fine-tuning objective which extends the
MLM task to parallel sentences as used by Conneau and Lample (2019). Diagram adapted from (Conneau and
Lample, 2019) after suitable changes.

ing performance improves while parallel training
data increases. For low resource languages, it is
difficult to collect parallel data unlike monolingual
data which is easily found through online sources.
Hence, monolingual based NMT systems are in-
troduced to enhance the translation quality of low
resource language pair translation Sennrich et al.
(2016b); Burlot and Yvon (2018); Wu et al. (2019).
To get the advantage of monolingual data, unsuper-
vised pre-train methods are introduced Ramachan-
dran et al. (2017); Variš and Bojar (2019). Con-
neau and Lample (2019) proposed XLM based on
bidirectional encoder representations from trans-
formers (BERT) where the contextual language
model is built with words based on preceding and
succeeding context. No work has been done on
Hindi-Marathi low resource language pair with
such advancedNMTbased approach, from the best
of our knowledge. Our work investigates XLM
model on Hindi-Marathi low resource language
pair translation.

3 Dataset

3.1 Description

The organizers of WMT20 provided parallel and
monolingual corpus for both Hindi and Marathi.
The training dataset available for the WMT20,
Hindi-Marathi task was obtained from three main

sources viz. Indic WordNet, News, and PM India.
Having 11,188, 12,349, and 25,897 parallel sen-
tences (total 49434 sentences) respectively. The
validation and test set contain 1941 and 1411 sen-
tences. The Hindi monolingual dataset contains
about 96 million sentences at about 32GB whereas
the Marathi dataset is much smaller at only 4.72
million sentences totalling to around 2GB of cor-
pus.

3.2 Preprocessing

We have removed unwanted symbols like URLs,
email IDs and English text from the monolin-
gual corpora of both the languages if any were to
be present. In addition to this, since Hindi and
Marathi languages share many common Devnagiri
characters and hence to leverage this idea we have
pre-processed the dataset obtained from Section
3.1 by a common vocabulary prepared via byte
pair encoding (BPE) Sennrich et al. (2016a) on
the same data provided by the organizer. Such an
approach greatly helps in aligning the embedding
space as shown in Lample et al. (2017). BPE learn-
ing is performed as used by Conneau and Lample
(2019). The BPE is thus learnt after joining ran-
dom sentences from the monolingual corpora. Fol-
lowingConneau and Lample (2019) the text is sam-
pled using amultinomial distribution. The distribu-
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tion is as shown in Equation 1. The probabilities
of the distribution are pi=1...N . The BPE codes are
generated and applied using the C++ implementa-
tion1 of Sennrich et al. (2015).

pi =
qαi∑N
j=1 qαj

(1)

and pi is as defined in Equation 2.

qi =
ni∑N

k=1 nk

(2)

α is taken as 0.5.

4 System Description

Our approach consists of the two principal ap-
proaches viz. the pre-training step and the fine-
tuning step which are discussed in the following
sub-sections 4.1 and 4.2. .

4.1 Pretraining our Model
For the pre-training step we have followed the
steps of (Conneau and Lample, 2019) and utlized
the masked language modeling (MLM) objective
of (Devlin et al., 2018). Thus, following the work
of Devlin et al. (2018) we have sampled 15% of
BPE tokens randomly from the textual data and
masked then by a [MASK] token roughly 80%.
Also from the remaining 20%, the 10% component
is randomly replaced and the rest part remains un-
changed. The difference our approach has from
the work of Devlin et al. (2018) is that, we have
used lengths truncated to a fixed number (256 in
our case), whereas the former uses pairs of sen-
tences. To create a balance between the rare and
commonly occuring BPE tokens like punctuation
marks, the frequent outputs were subsampled us-
ing a multinomial distribution, where the weights
are proportional to the inverse square root of the
frequencies (an approach similar to Mikolov et al.
(2013)). The pretraining objective is illustrated in
Figure 1.

4.2 Fine Tuning
The model pre-training step follows an unsuper-
vised approach and requires only the monolingual
data. Since, the principal task for our work was to
build a MT system, we need to leverage parallel
data. Following, (Conneau and Lample, 2019) we
used the translation language modeling (TLM) for
fine-tuning the model obtained from Section 4.1.

1https://github.com/glample/fastBPE

Here, instead of the truncated monolingual cor-
pora we utlize the concatenation of parallel data as
shown in Figure 1. Since the parallel sentences are
concatenated for the concerned TLM task, we can
mask and predict simultaneously from both Hindi
and Marathi sentences. Enabling better placement
of Hindi andMarathi word representations. Specif-
ically as shown by Conneau and Lample (2019),
this enables the model to leverage the context even
if single handedly the source or target sentence is
insufficient to decipher the sentence.

5 Experimental Setup

We have trained the transformer based cross lan-
guage model (XLM) (Conneau and Lample, 2019)
also known as MLM + TLM task. We have used 6
layers with 8 attention heads. An embedding layer
is also used with size 256. Given the compara-
tively smaller Marathi dataset as discussed in Sec-
tion 3.1, and limited availability of computational
resources2 we trained the smaller model instead of
the usual 12 layers and 16 attention heads as pro-
posed by Conneau and Lample (2019). Batch size
of 32was used. Following settings of Conneau and
Lample (2019), attention dropout was set to 0.1,
gelu activation was used. Also, adam was used as
an optimizer with an initial learning rate of 0.0001.
Rest of the parameters are same as used by Con-
neau and Lample (2019) in their experiments and
as given in their GitHub repository3.

6 Result and Analysis

The WMT20 organizer declared result for the
shared task of similar language translation on
Hindi to Marathi4 and Marathi to Hindi5 and the
results of our system’s is reported in Table 3. Our
team’s name is NITS-CNLP. The participated sys-
tems are evaluated by BLEUPapineni et al. (2002),
RIBES Isozaki et al. (2010) and TER Snover et al.
(2006) and the tracks are ranked by BLEU score. A
total of 21 teams participated in Hindi to Marathi
translation track and 23 teams for Marathi to Hindi
translation track including both primary and con-
trastive system types. Our system’s rank is 10 with
BLEU score 11.59 for Hindi to Marathi translation

2The model was trained on a Quadro P200 GPU having
5GB of GPU RAM

3https://github.com/facebookresearch/XLM
4http://mzampieri.com/workshops/wmt/HI-MR.

pdf
5http://mzampieri.com/workshops/wmt/MR-HI.

pdf
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Type Source: Hindi Target: Marathi

Short
Source Test Sentence अवसरȋ कɏ समानता ह।ै
Predicted Test Sentence संधीची समानता आह.े
Google Translation संधȂची समानता आह.े
Bing Translation संधȂची समानता आह.े

Medium
Source Test Sentence यह मेरे Ȣलए एक बɷत ही सुखद अनुभूȠत रही ह।ै
Predicted Test Sentence ही माĎयासाठɎ अȠतशय सुखद अनुभूती आह.े
Google Translation ही माĎयासाठɎ खूप आनंददायी भावना आह.े
Bing Translation माĎयासाठɎ ही खूप सुखद भावना आह.े

Long

Source Test Sentence बिġक यह एक सकाराĕमक शांȠत है जहां हम सब कɳणा और Xान के आधार पर
संवाद, सǭाव और ęयाय को बढ़ावा देने के Ȣलए काम करते हȈ।

Predicted Test Sentence ही एक सकाराĕमक शांतता आहे Ȣजथे आपण कɳणा आȣण Xानाċया आधारे
संवाद सǭावनेला Šोĕसाहन देĔयासाठɎ काम करतो.

Google Translation उलट ही एक सकाराĕमक शांती आहे Ȣजथे आपण सवă कɳणा आȣण Xानावर
आधाȝरत संवाद, सुसंवाद आȣण ęयायाला चालना देĔयासाठɎ कायă करɍत आहोत.

Bing Translation उलट ही एक सकाराĕमक शांती आहे Ȣजथे आपण सवăजण कɳणा आȣण Xानावर
आधाȝरत संवाद, सामंजĥय आȣण ęयाय ◌ाला Šोĕसाहन देĔयाचे काम करतो.

Table 1: Best Performance examples for Hindi to Marathi translation.

Type Source: Hindi Target: Marathi

Long

Source Test Sentence साȡथयो, जीएसटी कɏ ǲवĥथा को और सशǘ, और सरल करने के Šयास लगातार
चल रहे हȈ।

Predicted Test Sentence Ƞमśांनो वĥतू आȣण सेवा कर ǲवĥथा अȠधक सशǘ आȣण सुलभ करĔयाचे
Google Translation Ƞमśांनो, जीएसटी कारभारासआणखी बळकटी आȣण सुलभ करĔयासाठɎ Šयĕन सुɴ

आहते.
Bing Translation Ƞमśांनो, जीएसटी Šणाली अȠधक सWम करĔयासाठɎ, सोपे करĔयासाठɎ Šयĕन सुɴ

आहते.

Table 2: Worst Performance examples for Hindi to Marathi translation.

Translation System Type BLEU RIBES TER
Hindi to Marathi Primary 11.59 57.76 79.07
Marathi to Hindi Primary 15.44 61.13 75.96

Table 3: Our system’s results.
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track and forMarathi to Hindi translation track, the
rank is 15 with BLEU score 15.44 in primary con-
figuration.
Analysis We have attained a lower BLEU score
for Hindi to Marathi translation as compared to
Marathi to Hindi translation as shown in Table 3.
This is because we have used more Hindi mono-
lingual corpus than Marathi monolingual corpus.
As a result of this our NMT system encoded more
frequency of Hindi words as compared to Marathi
words and thus, decoder could be able to gener-
ate better target Hindi words than Marathi target
words. To examine the best performance, we have
considered sample source test sentences and corre-
sponding predicted, Google6, Bing7 translated sen-
tences for Hindi to Marathi translation in three dif-
ferent types of sentences such as short, medium
and long sentences as shown in Table 1. Table 2
shows the worst performance of our NMT system
in case of long type sentences. In Table 2, Google
translation is better than our predicted test sentence
and Bing translation.

7 Conclusion and Future Work

Our NMT system adopts cross lingual model for a
similar language translation task of Hindi-Marathi
pair in both forward and backward directions. The
evaluated result and in-depth analysis of the pre-
dicted sentences shows that our NMT system per-
forms well for the short and medium types of sen-
tences and shows poor performance in long sen-
tences. However, our NMT system needs more
Marathi monolingual corpus and in the future
works, multilingual NMT system will be devel-
oped to overcome the limitation of corpus for such
low resource language pair translation.
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Abstract

In this paper, we describe IIT Delhi’s submis-
sions to the WMT 2020 task on Similar Lan-
guage Translation for four language directions:
Hindi ↔ Marathi and Spanish ↔ Portuguese.
We try out three different model settings for
the translation task and select our primary and
contrastive submissions on the basis of perfor-
mance of these three models. For our best
submissions, we fine-tune the mBART model
(Liu et al., 2020) on the parallel data provided
for the task. The pre-training is done using
self-supervised objectives on a large amount of
monolingual data for many languages. Over-
all, our models are ranked in the top four of all
systems for the submitted language pairs, with
first rank in Spanish→ Portuguese.

1 Introduction

Machine Translation (MT) is currently tackled us-
ing rule-based methods (RBMT) (Charoenporn-
sawat et al., 2002), phrase-based statistical meth-
ods (SMT) (Koehn et al., 2003) and neural methods
(NMT) (Cho et al., 2014; Sutskever et al., 2014;
Bahdanau et al., 2015; Vaswani et al., 2017).

NMT has achieved high translation quality for
several language pairs (Bojar et al., 2018; Barrault
et al., 2019), but this level of performance usu-
ally requires large amounts of aligned data in the
order of millions of sentence pairs. For low and
medium resource languages, SMT performs better
than NMT (Koehn and Knowles, 2017; Sennrich
and Zhang, 2019). SMT also shows better perfor-
mance when there is a domain mismatch between
the train and test datasets, which is typical of low
and medium resource language pairs.

In these settings, NMT performance can be
boosted by leveraging additional monolingual data
to enforce various types of constraints or increas-
ing the training data using back-translation. These
methods can be particularly helpful if the source

and target languages in MT are closely related and
share language structure and alphabet. Recently,
pre-training methods for sequence-to-sequence
(seq2seq) models have been introduced like MASS
(Song et al., 2019a), XLM (Conneau and Lample,
2019), BART (Lewis et al., 2019), and mBART
(Liu et al., 2020). These methods show significant
gains in downstream tasks like NMT, summariza-
tion, natural language inference (NLI), etc. In this
paper, we focus on the transfer learning capabilities
in NMT for the task of translation between related
languages where parallel data is scarce.

IIT Delhi participated in the WMT 2020 Shared
task on Similar Language Translation for four lan-
guage directions: Hindi (hi) ↔ Marathi
(mr) and Spanish (es) ↔ Portuguese
(pt). The first language pair is low resource and
second is medium resource in terms of the parallel
data available for the task. Refer to Table 2 for the
classification.

We fine-tuned the pre-trained mBART model
(Liu et al., 2020) on the parallel data provided
for the task. mBART gives better performance
than SMT models even when the parallel data is
very limited. mBART is pre-trained on 25 lan-
guages, which contain Hindi and Spanish, but not
Marathi and Portuguese. mBART is able to lever-
age transfer learning capabilities even for those
languages that are originally not present during
the pre-training phase. The fine-tuned mBART
architecture forms our best submissions for both
language pairs: hi ↔ mr and es ↔ pt. The
rankings obtained by us in each of the language
directions are listed in Table 1. Our findings are in
line with earlier observations in the literature where
transfer learning techniques have been shown to
significantly boost NMT performance.

The rest of the paper is organized as follows:
Section 2 provides the background and related work
for low/medium resource NMT. Section 3 gives an
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Direction BLEU Rank

hi→ mr 15.14 4
mr→ hi 24.53 2
es→ pt 32.69 1
pt→ es 32.84 2

Table 1: BLEU scores on the test set provided for the
task and system rankings according to the automatic
evaluation metrics.

overview of the systems tried. In Section 4, we
present the experiments and training pipeline setup.
The results and analysis are detailed in Section 5.
We finally conclude in Section 6.

2 Background

SMT is tackled by building a phrase table from the
aligned parallel data. The target side translation is
then generated by matching the most appropriate
phrases in the source sentence conditioned on the
target side language model along with a reordering
model (Koehn et al., 2003).

NMT is modeled using Encoder-Decoder mod-
els (Cho et al., 2014; Sutskever et al., 2014; Bah-
danau et al., 2015), with the Transformer model
(Vaswani et al., 2017) achieving state-of-the-art
on many MT problems. But these models’ re-
liance on large aligned parallel data for the source
and target languages makes them unsuitable for
low/medium resource language pairs (Koehn and
Knowles, 2017). Some of the previous works in
these settings to improve NMT performance are
described below:

2.1 Multilingual NMT
Instead of using only two languages (source and
target) for training an NMT model, using multiple
languages has been shown to help in low resource
scenarios. For example, it might be the case that
a certain pair of languages have very little parallel
data between them, but there exists a third lan-
guage with abundant parallel data with the original
two languages. This third language acts as a pivot
and helps in improving NMT between the two lan-
guages (Aharoni et al., 2019; Gu et al., 2018; Liu
et al., 2020; Zhang et al., 2020).

2.2 Back-Translation
Back-Translation (Sennrich et al., 2016; Edunov
et al., 2018; Hoang et al., 2018) increases the

amount of training data by using monolingual cor-
pus along with partially-trained NMT models on
the limited parallel data. Pseudo-parallel corpus
for each direction is first obtained by generating
the translations of the monolingual data for each
language using the partially-trained MT models
on the limited parallel data. Using these pseudo-
parallel corpora, the partially-trained NMT models
are then trained further for some number of steps.
In this way, millions of pseudo-parallel sentence
pairs can be generated to improve NMT models
because of the abundance of monolingual data. An-
other version of using back-translation is the copy-
ing mechanism. Currey et al. (2017) proposes to
copy the target side monolingual data on the source
side to create additional data without modifying the
training regimen for NMT. This helps the model to
generate fluent translations.

2.3 Pre-trained Language Models
For NMT, the first step is the random initialization
of model weights in both the encoder and decoder.
Instead of random initialization, NMT models can
be initialized by pre-training parts of the model
(Conneau and Lample, 2019; Edunov et al., 2019),
or pre-training the complete seq2seq model (Ra-
machandran et al., 2017; Song et al., 2019b; Liu
et al., 2020). These pre-training methods leverage
different kinds of masking techniques and the pre-
training objective is to predict these masked tokens,
similar to BERT (Devlin et al., 2019). Denoising
auto-encoding can also be used where a sentence
is corrupted by various noising techniques and the
pre-training objective is to generate the original un-
corrupted sentence as in BART (Lewis et al., 2019)
and mBART (Liu et al., 2020).

2.4 Incorporating Linguistic Information in
NMT

There also have been works to improve
low/medium resource NMT by adding lin-
guistic information either using data augmentation
(Currey and Heafield, 2019), subword embedding
augmentation (Sennrich and Haddow, 2016) , or
architectural changes (Eriguchi et al., 2017). This
helps the model to not only learn the alignment
between source and target language spaces, but
also syntax structure like dependency parse, part
of speech, etc. This helps in making the target side
translations more fluent and conforming to the
structure of the language. We do not explore this
direction in this paper.
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3 System Overview

We experimented with three different settings for
hi↔ mr as listed below.

SMT This phrase-based system leverages both
monolingual and parallel data provided for the task.
We use Moses (Koehn et al., 2007) for training the
SMT systems.

NMT (Transformer) For this, we used the stan-
dard Transformer large architecture from Vaswani
et al. (2017) for training on the parallel data pro-
vided for the task.

NMT (mBART) mBART (Liu et al., 2020) is a
large Transformer pre-trained on monolingual data
for 25 languages. The pre-training objective for
mBART is seq2seq de-noising for natural text as
in BART (Lewis et al., 2019). mBART provides
a general-purpose pre-trained Transformer for any
downstream task. It has been shown to give signifi-
cant improvements over the random initialization
for NMT and is the current state-of-the-art for many
low resource language pairs.

Implementation Details mBART uses a shared
subword vocabulary of 250K tokens for all the
25 languages present in the pre-training. We use
the same vocabulary for Marathi and Portuguese
also, even though they were not used during the
pre-training phase. Marathi shares its subword
vocabulary with languages like Hindi and Nepali
in mBART, and Portuguese shares with Span-
ish, Italian and other European languages present
in mBART. The percentage of unknown tokens
[UNK] in Marathi and Portuguese parallel datasets
is less than 0.003% when using the shared mBART
vocabulary.

Additionally, the mBART architecture requires
language specific token at the end of each input se-
quence to provide the language specific context for
the decoder. Since Marathi and Portuguese were
not present during the pre-training phase, we use
the token corresponding to the second most related
language present in mBART pre-training for spec-
ifying the context at the time of decoding in each
case. For Marathi, we used the Nepali language
token and for Portuguese, we used the Italian lan-
guage token. We could not use Spanish language
token for Portuguese because we are doing transla-
tions to and from Spanish.

train valid test

hi↔ mr 43,274 1,411 1,941
es↔ pt 3,472,860 1,283 1,495

Table 2: Dataset statistics. First is low resource pair (#
train < 1 Million) and second is medium resource (1
Million <# train < 10 Million).

Model hi - mr

← →
SMT 18.74 14.91

mBART 24.53 15.14

Table 3: BLEU scores on Hindi↔ Marathi on the test
set for our primary and contrastive submissions.

4 Experiments

We use hi↔ mr and es↔ pt language pairs for
our experiments.

4.1 Datasets & Preprocessing
Because of the constrained nature of the shared
task, we only use the parallel data provided for
this task. We removed the empty instances for
both language pairs (< 2000 instances). For es
↔ pt, we do not use ‘WikiTitles v2’ part
of the parallel data for training because of very
short sentences in the dataset. The cleaned parallel
dataset statistics are provided in Table 2.

Preprocessing We use sentence piece tokeniza-
tion (Kudo and Richardson, 2018) for generating
the source and target sequences for the NMT ar-
chitectures. For the standard Transformer, we train
a sentence piece model using 40K subword to-
kens for hi↔ mr. For mBART, we use Liu et al.
(2020)’s pre-trained1 sentence piece model com-
prising of 250K subword tokens as the vocabulary.

For the SMT model on hi↔ mr, we also use the
monolingual data provided for this task. We extract
5 Million monolingual sentences each for Hindi
and Marathi after deduplication and use this set
for training the language models. We use Moses
(Koehn et al., 2007) for all tokenization / detok-
enization scripts.

1https://github.com/pytorch/fairseq/
blob/master/examples/mbart/README.md
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Submission hi - mr es - pt

← → ← →
IIT Delhi (ours) 24.53 15.14 32.84 32.69

Rank 1 24.53 18.26 33.82 32.69

Table 4: Hindi - Marathi and Spanish - Portuguese BLEU scores on the test dataset of the Similar Language
Translation Task. Our submission scores are bolded when they match the first ranked submission.

4.2 Model Architectures & Training
SMT We generate a phrase table for the SMT
model using the code provided by Lample et al.
(2018). We used Moses (Koehn et al., 2007) and
Giza++ with standard settings to train the SMT
model in both directions.

NMT (Transformer) We use the large Trans-
former from Vaswani et al. (2017) with 8 encoder
and decoder layers and replicate all the parameters
from Ott et al. (2018). The number of parameters
in the model are approximately 248 Million and it
takes ∼26 hours on 4 Nvidia V100 (32 GB) GPUs.

NMT (mBART) For this, we use 12 Transformer
encoder and decoder layers, with total number of
model parameters ∼611 Million. We use the pre-
trained mBART for initializing the model weights.
We follow the recommendations of Liu et al. (2020)
for the hyperparameter settings. We stop the train-
ing after 25K gradient updates for the model. These
updates take ∼35 hours on 4 Nvidia V100 (32 GB)
GPUs.

4.3 Evaluation
We use case-insensitive BLEU scores (Papineni
et al., 2002) calculated using sacreBLEU2 (Post,
2018). These scores are calculated on the vali-
dation set to decide our primary and contrastive
submissions. For evaluating performance on the
test set, the organizers use BLEU, TER (Snover
et al., 2006), and RIBES (Isozaki et al., 2010).

5 Results and Analysis

Results Table 3 shows our results on the test set
for our primary and contrastive submissions. We
observed the performance of our three model set-
tings on the validation set, and we selected the
mBART model as our primary submission and
SMT model as the contrastive submission for hi
↔ mr. Similarly, the mBART model forms our

2Signature: BLEU + case.mixed + numrefs.1 +
smooth.exp + tok.13a + version.1.3.1

primary submission for es↔ pt. Table 4 lists our
final results on this shared task. We also list the
BLEU scores for the submission that got first rank
in each of the language directions. Since the test
sets were hidden at the time of submission, we do
not report our numbers on the standard Transformer
architecture.

Analysis Even though Marathi and Portuguese
are not present during the pre-training phase of
mBART, fine-tuning on these languages provides
significant boosts over SMT and standard Trans-
former. This shows that some level of language
independent multilingual embeddings are present
in the pre-trained model weights which can be ex-
ploited for the transfer task.

6 Discussion and Conclusion

We have participated in the Similar Language
Translation task on four language directions. We
have shown that pre-trained models can help in low
and medium resource NMT. Our best system uses
the pre-trained mBART model (Liu et al., 2020)
and fine-tunes on the parallel data provided for
the specific translation task. Our results demon-
strate that pre-training can help even when the lan-
guage used for fine-tuning is not present during
pre-training.

One direction of future work is to add linguistic
information during the pre-training phase to get
more fluent translations. When this information is
not available directly (especially for low resource
languages), pre-training on a related high resource
language with syntax information can help low
resource languages also.
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Abstract

This paper describes the participation of the
NLP research team of the IPN Computer Re-
search center in the WMT 2020 Similar Lan-
guage Translation Task. We have submitted
systems for the Spanish-Portuguese language
pair (in both directions). The three submitted
systems are based on the Transformer architec-
ture and used fine tuning for domain Adapta-
tion.

1 Introduction

In this paper we describe the Neural Machine Trans-
lation(NMT) systems developed by the NLP team
of the Computer Research System of the Instituto
Politécnico Nacional, México for the similar lan-
guages translation shared task of the EMNLP 2020
fifth conference on machine translation (WMT 20).

For this task, we submit systems for both di-
rections of the Spanish-Portuguese language pair,
all the submitted systems were based in a trans-
former architecture with a fine tuning for domain
adaptation, the difference of the submitted systems
was mainly the kind of tokens used (words and
sub-word units) and the initialization of the word
embeddings in the systems using either a random
initialization or pre-trained word embeddings.

In the past year task, the submissions of the
MLLP-UPV team (Baquero-Arnal et al., 2019)
showed that the use of fine tuning was proven to be
useful in this specific task, although the test corpus
of this year had a higher complexity, the use of fine
tuning for context adaptation was also beneficial
for translation quality.

The paper was organized in the following way.
Section 2 describes the architecture used for the
systems trained, the section 3 describes the corpora
used and the pre-processing of the texts, the section
4 gives a description of the training of the system,
section 5 gives a description of the method used for

obtaining the translations from the trained system,
section 6 shows the results for both the internal
evaluation and the evaluation of the task, section 7
is a discussion about the impact of pre-trained word
embeddings in the submitted systems and section
8 presents the conclusions.

1.1 Transformer models in NMT

Before transformers most state-of-the-art MT sys-
tems relied on recurrent neural networks, with at-
tention mechanisms, but the RNN based architec-
tures although that in theory the information of
each token can propagate arbitrary far down in
the sequence, due to vanishing gradient in prac-
tice when dealing with long sentences or sequences
information about the initial tokens can be lost.

As a solution of that problem transformers
(Vaswani et al., 2017) are an architecture based
in an encoder -decoder approach, but rely mainly
in self attention mechanisms.

1.1.1 Encoder
Each encoder layer consists of two components: a
self-attention mechanism and a feed-forward neu-
ral network. The self-attention mechanism receives
a set of encoded representation from the previous
layer and weights it in order to generate a set of
output encodings. The feed forward network pro-
cesses each output encoding and passes it to the
next encoder and to the decoders.

The first encoder layer uses as arguments posi-
tional information and the word embeddings, in-
stead of encodings.

1.1.2 Decoder
Each decoder layer has three main components: A
self-attention mechanism, an over the encodings
attention mechanism and a feed-forward network.
The decoder layer works in a similar way than a
encoder one, but the additional attention mecha-
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nism uses the relevant information produced by the
encoder layers.

In a similar structure from the first encoder layer,
the first decoder layer also receives as inputs posi-
tional information and the embeddings of the out-
put sequence. Due to the transformer should not
know current or future information in order to pre-
dict the next word, the output sequence should be
partially hidden during the training of the system.

The last decoder layer is followed by a linear
transformation and a softmax layer to produce the
probability of the words in the vocabulary.

1.2 Word embeddings initialization

Word embeddings are a solution in Natural Lan-
guage Processing for the problem of having spare
word spaces of high dimensionality that happens
with the one-hot vectors representation.

Word embeddings uses a machine learning al-
gorithm in order to learn the relations between
words and contexts from big corpora, proposed
from (Mikolov et al., 2013)

Inside of neural networks architecture ap-
proaches, word embeddings are generally used as
a word representation in both source and target lan-
guages which are usually random initialized, but it
is also possible to use pre-trained word embeddings
and updated it in the training time.

Fast text (Bojanowski et al., 2016) is a library
used to learn word embeddings, this model aims
to create supervised and non-supervised systems
to obtain word representation. It is also provided
by the project pre-trained embeddings for 294 lan-
guages.

In the current paper an approach using fast-text
vectors for the initialization of a transformer model
is attempted, using the pre trained vectors in both
Spanish and Portuguese languages.

2 Architecture of the submission

The main model for the submission consisted in
a transformer model that used tokens composed
by words and the word embeddings inside the
transformer architecture were initialized using pre
trained fast text embeddings in both, source and
target languages.

For contrastive purposes two additional models
were added to the submission , neither of them used
a special initialization of the word embeddings and
the main distinction between them was the kind of
tokens used in the training, the first one used words

Corpus Version Sentences
JCR 1 1,650,126
Europarl 10 1,801,845
News commentary 15 48,259
Wikititles 2 649,833

Table 1: Training corpora

and the later used sub word units gated by a BPE
algorithm.

2.1 Model description
The three models for the submission differs in the
following way:

1. Primary: Model that was initialized using
pre trained fast-text word embeddings, and
tokens constituted by words

2. Contrastive1: Model that was initialized
with random word embeddings. Used tokens
formed by words

3. Contrastive2: Model that was initialized
with random word embeddings. Used tokens
formed by BPE sub-word units

Where the primary model was the main model
for the submission and the contrastive models
serves as baselines.

For the comparative between the three models,
BLEU (Papineni et al., 2002) was computed with
the Sacrebleu (Post, 2018).

2.2 Transformer model
For the transformer model the configuration used
consists of a model size of 6 layers, 512 feed-
forward size, 8 heads, trained on one GPU with
a batch size of 4096 tokens using. We stored a
checkpoint every 5000 steps until 200000.

We used Adam optimizer with a β 2 of 0.998
The models were built using Open NMT toolkit
(Klein et al., 2017).

3 Corpus description

The training data was made up with the available
training data for the task, that is JCR, Europarl,
news commentary and wikititles corpora. The pro-
vided development set was randomly split in two
disjoint sets of the same size, dev1 and dev2 sets.

The data was prepossessed using the following
pipeline tokenization, lowercasing and a BPE algo-
rithm learned over the test set.
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Model Before After
Primary 24.20 32.56
Contrastive1 23.94 30.43
Contrastive2 24.49 30.2

Table 2: BLEU for the models before and after fine-
tuning for ES-PT

4 Training

The training for all the systems was carried in a
two steps way.

In the first step the model was trained using the
training set during 200 thousand steps, storing a
checkpoint every 5000 steps. For all the check-
point generated, a translation of the dev-set was
computed and BLEU evaluated against a tokenized
and lowercased version of the dev1 set.

Due to the conformation of the training data, that
is made mostly of parlament sesions (Europarl) and
scientific journals (JCR) and the observation that
this domains doesn’t appear in the test data there
is an assumption of a domain mismatch between
training and test data. Due to this mismatch in
the second step a fine tunning of the model is con-
ducted.

This fine tuning was trained from the best BLEU
scored checkpoint and a retraining was made using
the dev1 set up to 3000 steps, storing a checkpoint
every 10. For all the stored checkpoints, a trans-
lation of the test set was computed and evaluated
with BLEU against a tokenized and lowercased
version of the dev2 set.

For the generation of the translations for the sub-
mission the checkpoint with the best BLEU score
in the fine tuning step was used.

5 Translations generation

In order to get the translation for the evaluation the
translate.py script of Open NMT was used
with a beam of size 5 and a length penalization
with alpha of 5.

After getting the translations the texts was passed
through a recaser trained over the training corpora
using the script recaser.perl from Moses, af-
ter this step a detokenizer was used.

6 Results

The tables 2 and 3 shows the BLEU obtained in
the evaluation of the three different models before
and after the fine tuning for the ES-PT and PT-ES
language pairs respectively.

Model Before After
Primary 27.61 34.41
Contrastive1 27.21 34.11
Contrastive2 27.26 34.18

Table 3: BLEU for the models before and after fine-
tuning for PT-ES

Model BLEU RIBES TER
Primary 27.08 72.98 55.34
Contrastive1 23.91 71.55 57.55
Contrastive2 23.9 73.73 58.07

Table 4: Official results for submitted ES-PT systems

In this internal evaluation of the models the pri-
mary model outperforms the baseline models by 2.7
BLEU points for ES-PT direction and 0.18 points
in PT-ES.

6.1 Task results

The evaluation of the task was carried using BLEU,
RIBES (Isozaki et al., 2010) and TER (Snover et al.,
2006) metrics the main difference between this
measure and the internal one was that the internal
evaluation used a tokenized lowercased version of
the text and the task results used the final version.

The tables 4 and 5 show the results of the sub-
mitted systems in the task evaluation for the ES-PT
and PT-ES language pairs respectively.

In this evaluation again the primary model out-
performs the baseline models by a margin of 3 and
0.4 BLEU points for the ES-PT and PT-ES direc-
tions respectively.

7 Impact of the pre trained word
embeddings

The pre-trained word embeddings used for the
model were filtered in order to include only the
words that was present in either the development
set or the test set and preprocessed using the
script embeddings to torch.py included in
the Open NMT toolset.

The used word embeddings showed an im-

Model BLEU RIBES TER
Primary 28.38 72.24 56.27
Contrastive1 27.98 72.11 56.16
Contrastive2 27.41 75.18 57.28

Table 5: Official results for submitted PT-ES systems
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Figure 1: Training for ES - PT

Figure 2: Training for PT - ES

provement in the translation quality (according to
BLEU).

Figures 1 and 2 show comparatives for the ES-
PT and PT-ES directions respectively for the first
100k training steps for the model 1 and 3, that
means comparing both systems trained in words
with the unique difference is that system 1 has fast
text pre-trained word embeddings.

From the comparative in figures 1 and 2 we can
extract that the use of pre-trained word embbed-
ings was beneficial in the beginning of the training,
with a difference of around 2 BLEU points in the
first 5000 training steps for both ES-PT and PT-ES
directions.

Similar results were seen in the fine tuning of the
systems, in this case due to the short amounts of
epoch for the training of this step a more detailed
table is not provided, but in the tables 2 and 3 a
difference of 2.7 and 0.3 BLEU points can be seen
for the ES-PT and PT-ES directions respectively.

8 Conclusions

The initialization using fast text had a beneficial
result in this low resource scenario, but the em-

beddings used were trained in a general context,
is possible that pre-trained the embeddings in the
specific context could gather better results.

In this specific experiment both contrastive mod-
els had similar results, independently of the kind
of tokens used during the training.

Compared with the 2019 edition of the SLT task,
this year the test corpus had a different domain,
resulting in a lower BLEU score using similar tech-
niques, but also in this year the use of fine tuning
improved the translation margin in around 9 points
for ES-PT and in almost 7 points for the evaluation
using the development set in the primary models.

For the next year submission, the use of word
embeddings can be expanded using word embed-
dings trained in a bilingual context or in a similar
domain from the one in the test corpora.
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Abstract

This paper describes the participation of team
F1toF6 (LTRC, IIIT-Hyderabad) for the WMT
2020 task, similar language translation. We
experimented with attention based recurrent
neural network architecture (seq2seq) for this
task. We explored the use of different lin-
guistic features like POS and Morph along
with back translation for Hindi-Marathi and
Marathi-Hindi machine translation.

1 Introduction

Machine Translation (MT) is the field of Natural
Language Processing which aims to translate
a text from one natural language (i.e Hindi) to
another (i.e Marathi). The meaning of the resulting
translated text must be fully preserved as the
source text in the target language.

For the translation task, different types of ma-
chine translation systems have been developed and
they are mainly Rule based Machine Translation
(RBMT)(Forcada et al., 2011), Statistical Machine
Translation (SMT) (Koehn, 2009) and Neural
Machine Translation (NMT) (Bahdanau et al.,
2014).

Statistical Machine Translation (SMT) aims to
learn a statistical model to determine the correspon-
dence between a word from the source language
and a word from the target language. Neural
Machine Translation is an end to end approach
for automatic machine translation without heavily
hand crafted feature engineering. Due to recent
advances, NMT has been receiving heavy attention
and achieved state of the art performance in the
task of language translation. With this work, we
intend to check how NMT systems could be used
for low resource and similar language machine

Data Sents Token Type
Hindi (Parallel) 38,246 7.6M 39K
Marathi (Parallel) 38,246 5.6M 66K
Hindi (Mono) 80M - -
Marathi (Mono) 3.2M - -

Table 1: Hindi-Marathi WMT2020 Training data

translation.

This paper describes our experiments for the
task of similar language translation of WMT-2020.
We focused only on Hindi-Marathi language pair
for the translation task (both directions). The
origin of these two languages are the same as they
are Indo-aryan languages(wikipedia, 2020). Hindi
is said to have evolved from Sauraseni Prakrit
(wikipedia Hindi, 2020) whereas Marathi is said to
have evolved from Maharashtri Prakrit (wikipedia
Marathi, 2020). They also have evolved as two
major languages in different regions of India.

In this work, we focused only on recurrent neural
network with attention based sequence to sequence
architecture throughout all experiments. Along
with it, we also explored the morph(Virpioja et al.,
2013) induced sub-word segmentation with byte
pair encoding (BPE)(Sennrich et al., 2016b) to en-
able open vocabulary translation. We used POS
tags as linguistic feature and back translation to
leverage synthetic data for machine translation task
in both directions. In the similar language transla-
tion task of WMT-2020, we participated as team
named “f1plusf6”.

2 Data

We utilised parallel and monolingual corpora pro-
vided for the task on Hindi<->Marathi language
pairs. Table-1 describes the training data (parallel
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and monolingual) on which we carried out all exper-
iments. We deliberately excluded Indic WordNet
data from the training after doing manual quality
check. As this is a constrained task, our experi-
ments do not utilise any other available data.

3 Pre-Processing

As a first pre-precessing step we use IndicNLP
Toolkit1 along with an in-house tokenizer to tok-
enize and clean both Hindi and Marathi corpora
(train, test, dev and monolingual).

3.1 Morph + BPE Segmentation

Marathi and Hindi are morphologically rich
languages and from the Table-1, based on the the
comparative token/type ratio, one can find that
Marathi is a more agglutinative language than
Hindi. Translating from morphologically-rich
agglutinative languages is more difficult due to
their complex morphology and large vocabulary.
To address this issue, we have come up with a
segmentation method which is based on morph
and BPE segmentation (Sennrich et al., 2016b) as
a pre-processing step.

In this method, we utilised unsupervised Mor-
fessor (Virpioja et al., 2013) to train a Morfessor
model on monolingual data for both languages. We
then applied this trained Morfessor model on our
corpora (train, test, validation) to get meaningful
stem, morpheme, suffix segmented sub-tokens for
each word in each sentence.

(1) aur jab maansaahaaree
pakshee lothon par jhapate ,
tab abraam ne unhen uda diya .

‘And when the carnivorous birds swooped on
the carcasses, Abram blew them away.’

(2) aur jab maansaa##haaree
pakshee loth##on par jhapat##e ,
tab ab##raam ne unhen uda diya .

‘And when the carnivorous birds swooped on
the carcasses, Abram blew them away.’

1http://anoopkunchukuttan.github.io/indic nlp library/

(3) aur jab maan@@ saa##haaree
pakshee loth##on par jha@@ pat##e ,
tab ab##raam ne unhen uda diya .

‘And when the carnivorous birds swooped on
the carcasses, Abram blew them away.’

We demonstrate this method with a Hindi sen-
tence as given in Example-1. Example -1, shows
Hindi text with romanized text and the correspond-
ing English translation for better understanding.
The Example-2 shows the same sentence with Mor-
fessor based segmentation with token ##. Here
we notice that Morfessor model has segmented the
Hindi words into meaningful stems and suffixes.
i.e maansaahaaree=maansaa + haaree(meat + who
eats ). We would like to use it in our experiments to
tackle the difficulties that arise due to complex mor-
phology at the source language in machine trans-
lation tasks. On top of this morph segmented text
we applied BPE (Sennrich et al., 2016a) as given
in Example-3. Here @@ is sub-word separator for
byte pair based segmentation and ## is the separa-
tor for morph based segmentation.

3.2 Features

For Hindi to Marathi translation, we carried out
experiments using Part of Speech (POS) tags as a
word level as well as a subword level feature as
described in (Sennrich and Haddow, 2016). We
use LTRC shallow parser2 toolkit to get POS tags.

4 Training Configuration

Recurrent Neural Network (RNN) based machine
translation models work on encoder-decoder based
architecture. Here, the encoder takes the input
(source sentence) and encodes it into a single vec-
tor (called as a context vector). Then the decoder
takes this context vector to generate an output se-
quence (target sentence) by generating a word at
a time(Sutskever et al., 2014). Attention mecha-
nism is an extension to this sequence to sequence
architecture to avoid attempting to learn a single
vector. Instead, based on learnt attention weights,
it focuses more on specific words at the source end
and generates a word at a time. More details can be
found here (Bahdanau et al., 2014), (Luong et al.,
2015).

For our experiments, we utilize sequence to se-
quence NMT model with attention for all of our
experiments with following configuration.

2http://ltrc.iiit.ac.in/analyzer/
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Model Feature BPE (Merge ops) BLEU
BiLSTM + LuongAttn Word level - 19.70
BiLSTM + LuongAttn Word + Shared Vocab (SV)+ POS - 20.49
BiLSTM + LuongAttn BPE 10K 20.1
BiLSTM + LuongAttn BPE+SV+MORPH Segmentation 10K 20.44
BiLSTM + LuongAttn BPE+SV+MORPH+POS 10K 20.62
BiLSTM + LuongAttn BPE+SV+MORPH+POS + BT 10K 16.49

Table 2: BLEU scores on Development data for Hindi-Marathi

Model Feature BPE (Merge ops) BLEU
BiLSTM + LuongAttn Word level - 21.42
BiLSTM + LuongAttn Word + Shared Vocab (SV) - 23.84
BiLSTM + LuongAttn BPE 20K 24.56
BiLSTM + LuongAttn BPE+SV+MORPH Segmentation 20K 25.36
BiLSTM + LuongAttn BPE+SV+MORPH+POS 20K 25.55
BiLSTM + LuongAttn BPE+SV+MORPH+POS + BT 20K 23.80

Table 3: BLEU scores on Development data for Marathi-Hindi

• Morph + BPE based subword segmentation,
POS tags as feature

• Embedding size : 500

• RNN for encoder and decoder: bi-LSTM

• Bi-LSTM dimension : 500

• encoder - decoder layers : 2

• Attention : luong (general)

• copy attention(Gu et al., 2016) on dynamically
generated dictionary

• label smoothing : 1.0

• dropout : 0.30

• Optimizer : Adam

• Beam size : 4 (train) and 10 (test)

As these are two similar languages, share writing
scripts and large sets of named entities, we used
shared vocab across training. We used Opennmt-py
(Klein et al., 2020) toolkit with above configuration
for our experiments.

5 Back Translation

Back translation is a widely used data augmentation
method for low resource neural machine transla-
tion(Sennrich et al., 2016a). We utilised monolin-
gual data (i.e of Marathi) and a NMT model trained

on given training data for a direction (i.e, Marathi
to Hindi) to enrich training data of the opposite
directional NMT training (i.e, Hindi - Marathi) by
populating synthetic data. We used around 5M
back translated pairs (after perplexity based prun-
ing with respect to sentence length) for both trans-
lation directions.

Using above described configuration, we per-
formed experiments based on different parameter
(feature) configurations. We trained and tested our
models on word level, BPE level and morph + BPE
level for input and output. We also used POS tagger
and experimented with shared vocabulary across
the translation task. The results are discussed in
following Result section.

6 Result

Table-2 and Table-3 show performance of systems
with different configuration in terms of BLEU
score(Papineni et al., 2002) for Hindi-Marathi and
Marathi-Hindi respectively on the validation data.
We achieved 20.62 and 25.55 development and
5.94 and 18.14 test BLEU scores for Hindi-Marathi
and Marathi-Hindi systems respectively.

The results show that for low resource similar
language settings, MT models based on sequence
to sequence neural network can be improved
with linguistic information like morph based
segmentation and POS features. The results also
show that morph based segmentation along with

416



byte pair encoding improves BLEU score for both
directions. But Marathi-Hindi directed translation
shows considerable improvement. Therefore our
method shows improvement while translating
from morphologically richer language (Marathi)
to comparatively less morphologically richer
language (Hindi).

The results also suggest that the use of back
translated synthetic data for low resource language
pairs reduces the overall performance marginally.
The reason for this could be, due to low quantity of
training data for NMT models, they could be over
learning and back translation could be helping to
do better generalization.

7 Conclusion

We conclude from our experiments that linguistic
feature driven NMT for similar low resource lan-
guages is a promising approach. We also believe
that morph+BPE based segmentation is a potential
segmentation method for morphologically richer
languages.
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Abstract
NUIG-Panlingua-KMI submission to WMT
2020 seeks to push the state-of-the-art in the
Similar language translation task for the Hindi↔ Marathi language pair. As part of these ef-
forts, we conducted a series of experiments
to address the challenges for translation be-
tween similar languages. Among the 4 MT
systems prepared for this task, 1 PBSMT sys-
tems were prepared for Hindi↔Marathi each
and 1 NMT systems were developed for Hindi↔ Marathi using Byte Pair Encoding (BPE)
of subwords. The results show that different
architectures in NMT could be an effective
method for developing MT systems for closely
related languages. Our Hindi-Marathi NMT
system was ranked 8th among the 14 teams that
participated and our Marathi-Hindi NMT sys-
tem was ranked 8th among the 11 teams partic-
ipated for the task.

1 Introduction

Developing automated relations between closely
related languages is a contemporary concern espe-
cially in the domain of Machine Translation(MT).
Hindi and Marathi exhibit a significant overlap in
their vocabularies and strong syntactic plus lexi-
cal similarities. These striking similarities seem
promising in enhancing the possibility of mutual
inter-comprehension within closely related lan-
guages. However, automated translation between
such closely related languages is a rather challeng-
ing task.
The linguistic similarities and regularities in mor-
phological variations and orthography motivate the
use of character-level translation models, which
have been applied to translation (Vilar et al.,
2007; Chakravarthi et al., 2020) and translitera-
tion (Matthews, 2007; Chakravarthi et al., 2019a;
Chakravarthi, 2020). In the past few years, neu-
ral machine translation systems have achieved
outstanding performance with high resource lan-
guages, with the help of open source toolkit such

as OpenNMT (Klein et al., 2017), Marian (Junczys-
Dowmunt et al., 2018) and Neamtus (Sennrich
et al., 2017), which provide various ways of ex-
perimenting with the use of different features and
architectures, yet it fails to achieve the same re-
sults with low resource languages (Chakravarthi
et al., 2018, 2019b). However, Sennrich and Zhang
(2019) revisited the NMT models and tuned hyper-
parameters, changed network architectures to op-
timize NMT for low-resource conditions and con-
cluded that low-resource NMT is very sensitive
to hyper-parameters such as Byte Pair Encoding
(BPE) vocabulary size, word dropout, and others.
This paper is an extension of our work Ojha et al.
(2019) submitted to WMT 2019 similar language
translation task. Therefore our team adapted meth-
ods of the low resource setting for NMT proposed
by Sennrich and Zhang (2019) to explore the fol-
lowing broad objectives:

• to compare the performance of SMT and
NMT in case of closely related, relatively low-
resourced language pairs, and

• to findout how to leverage the accuracy of
NMT in closely related languages using BPE
into subwords.

• to analyze the effects of data quality in perfor-
mance of the systems.

2 System Description

This section provides an overview of the systems
developed for the WMT 2020 Shared Task. In these
experiments, the NUIG-Panlingua-KMI team ex-
plored two different approaches: phrase-based sta-
tistical (Koehn et al., 2003), and neural method for
Hindi-Marathi and Marathi-Hindi language pairs.
In all the submitted systems, we use the Moses
(Koehn et al., 2007) and Nematus (Sennrich et al.,
2017) toolkit for developing statistical and neural
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machine translation systems respectively. The pre-
processing was done to handle noise in data (for
example, different language sentences, non-UTF
characters etc), the details of which are provided in
section 3.1

2.1 Phrase-based SMT Systems

These systems were built on the Moses open source
toolkit using the KenLM (Heafield, 2011) language
model and GIZA++ (Och and Ney, 2003) aligner.
‘Grow-diag-final-and heuristic’ parameters were
used to extract phrases from the corresponding par-
allel corpora. In addition to this, KenLM was used
to build 5-gram language models.

2.2 Neural Machine Translation System

Nematus was used to build 2 NMT systems. As
we mentioned in an earlier section, at first data
was pre-processed at subwords level with BPE for
neural translation, and then the system was trained
using Nematus toolkit. Most of the system features
were adopted from (Sennrich et al., 2017; Koehn
and Knowles, 2017) (see section 3.3.2).

2.3 Assessment

Assessment of these systems was done on the stan-
dard automatic evaluation metrics: BLEU (Pap-
ineni et al., 2002), Rank-based Intuitive Bilingual
Evaluation Score (RIBES) (Isozaki et al., 2010)
and Translation Error Rate (TER) (Snover et al.,
2006).

3 Experiments

This section briefly describes the experiment set-
tings for developing the systems.

3.1 Data Preparations

The parallel data-set for these experiments was pro-
vided by the WMT Similar Translation Shared Task
1 organisers and the Marathi monolingual data-set
was taken from WMT 2020 Shared Task: Parallel
Corpus Filtering for Low-Resource Conditions.2

The parallel data was sub-divided into training, tun-
ing, and monolingual sets, as detailed in Table 1.
However, the shared data was very noisy.

To enhance the data quality, the team had to
undertake an extensive pre-processing session fo-
cused on identifying and cleaning the data-sets.

1http://www.statmt.org/wmt20/similar.
html

2https://wmt20similar.cs.upc.edu/

Out of 43274 training sentences, the Hindi corpus
had Telugu sentences while the Marathi corpus had
Meitei sentences intermingled as shown in first row
(Figure 1). The parallel data had more than 1192
lines that were not comparable with each other as
shown in second and third row (Figure 1), where
some Hindi sentences had only half the sentences
translated in Marathi (second row) and some had
blank spaces against their Marathi counter parts
(third row). The translation quality of the parallel
data was also not up to mark. In fact, the team could
locate a few instances of synthetic data. There were
a few sentences where character encoding was an
issue, hence were completely unintelligible.

Language Pair Training Tuning Monolingual
Hindi↔Marathi 43274 1411 -

Marathi - - 326748
Hindi - - 75348193

Table 1: Statistics of Parallel and Monolingual Sen-
tences of the Hindi and Marathi Languages

3.2 Pre-processing

The following pre-processing steps were performed
as part of the experiments:

a) Both corpora were tokenized and cleaned (sen-
tences of length over 80 words were removed).

b) For neural translation, training, validation and
test data was prepossessed into subwords BPE
format. This format was utilised to prepare
BPE and vocabulary further used.

All these processes were performed using Moses
scripts. However, the tokenization was done by the
RGNLP team tokenizer (Ojha et al., 2018) and In-
dic nlp library.3 These tokenizers were used since
Moses does not provide a tokenizer for Indic lan-
guages. Also the RGNLP tokenizer ensured that
the canonical Unicode representation of the charac-
ters are retained.

3.3 Development of the NUIG-Panlingua-
KMI MT Systems

After removing noisy and pre-processing data, the
following steps were followed to build the NUIG-
Panlingua-KMI MT systems:

3https://github.com/anoopkunchukuttan/
indic_nlp_library
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Figure 1: Examples of discrepancies in Hindi-Marathi parallel data

Figure 2: Analysis of the PBSMT and NMT’s Systems

3.3.1 Building Primary MT Systems:

As previously mentioned, the Hindi-Marathi and
Marathi-Hindi PBSMT systems were built as the
primary submission using Moses. The language
model was built first, using KenLM. For Marathi-
Hindi and Hindi-Marathi language pairs, the lan-

guage models were trained on 5-gram. After that,
the systems were built independently and combined
in a loglinear scheme in which each model was as-
signed a different weight using the Minimum Error
Rate Training (Och, 2003) tuning algorithm. To
train and tune the systems, we used 40454 and 1411
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parallel sentences, respectively, for all language
pairs.

3.3.2 Building Contrastive MT Systems:
As mentioned in the previous section, Nematus
toolkit was used to develop the NMT systems. The
training was done on subword and character-level.
All the NMT experiments were carried out only
with a data-set that contained sentences with length
of up to 80 words. The neural model is trained on
5000 epochs, using Adam with a default learning
rate of 0.002, dropout at 0.01 and mini-batches of
80 and the batch size for the validation was 40.
Vocabulary size of 30000 for both Marathi-Hindi
and Hindi-Marathi language pairs was extracted.
Remaining parameters were limited with the use of
default hyper-parameters configuration.

4 Evaluation

All the systems were evaluated using the reference
set provided by the shared task organizers. The
standard MT evaluation metrics, BLEU (Papineni
et al., 2002) score, RIBES (Isozaki et al., 2010) and
TER (Snover et al., 2006), were used for automatic
evaluation. These results were prepared on the Pri-
mary and Contrastive system submission which are
mentioned in the Table 2 as P and C, where P
stands for Primary and C stands for Contrastive,
respectively. It gives a quantitative picture of partic-
ular differences across different systems, especially
with reference to evaluation scores (Table 2)

System BLEU RIBES TER
Hindi-Marathi P 9.38 51.88 91.24
Hindi-Marathi C 9.76 52.18 91.49
Marathi-Hindi P 17.38 59.31 81.47
Marathi-Hindi C 17.39 58.84 81.15

Table 2: Accuracy of Hindi↔Marathi MT Systems at
BLEU, RIBES and TER Metrics

4.1 Results
Overall we see varying performance among the sys-
tem submitted to the task, with some performing
much better out-of-sample than others. The NUIG-
Panlingua-KMI subword NMT system took 8th po-
sition for both Hindi-Marathi and Marathi-Hindi
language pair, across 14 teams. Our subword NMT
systems for Marathi-Hindi language pair showed
better results in terms of all the three metrics (17.39
in BLEU, 58.84 in RIBES and 81.15 in TER) while
the Hindi-Marathi language pair scored 9.76 in
BLEU, 52.18 in RIBES and 91.24 in TER. Across

both the language pairs, subword based NMT per-
formed better than PBSMT as its accuracy rate was
higher in BLEU and lower in TER metrics, shown
in Table 2.

4.2 Analysis

We used the reference set provided by the shared
task organizers to evaluate both PBSMT and NMT
systems. Even though subword based NMT system
could take advantage of the shared features among
similar languages, challenges in translating a few
linguistics structures acted as a constraint. Exam-
ple 1 shown in Figure 2 is one of the challenging
structures that the system was unable to translate.
In these sentences the systems could not capture
the correct tense and aspect which is past perfect
in source sentence whereas the NMT system trans-
lated it as simple past. The second most common
challenging structures that needed special attention
were the postpositions as shown in Example 2 and
3 in the figure. In most cases, the system over-
generalised the sentences in Marathi and generated
unnecessary postposition phrases in Hindi as in Ex-
ample 2. Similarly, we can see in Example 3 while
translating from Hindi to Marathi both PBSMT and
NMT systems used wrong post-positions.

5 Conclusion

Our experiment results reveal that subword based
NMT could take advantage of the relation between
the similar language to boost the accuracy of neural
machine translations system in low resource data
settings. As BPE units are variable-length units
and the vocabularies used are much smaller than
morpheme and word-level model, the problem of
data sparsity does not occur. On the contrary, it
provides an appropriate context for translation be-
tween similar languages. However, the quality of
data used to train the systems does affect the quality
of translation. Thus, we could conclude that shared
features between two languages could be an advan-
tage to leverage the accuracy of NMT systems for
closely related languages.
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Abstract

In this paper we present the WIPRO-RIT
systems submitted to the Similar Language
Translation shared task at WMT 2020.
The second edition of this shared task
featured parallel data from pairs/groups
of similar languages from three different
language families: Indo-Aryan languages
(Hindi and Marathi), Romance languages
(Catalan, Portuguese, and Spanish), and
South Slavic Languages (Croatian, Ser-
bian, and Slovene). We report the results
obtained by our systems in translating
from Hindi to Marathi and from Marathi
to Hindi. WIPRO-RIT achieved competi-
tive performance ranking 1st in Marathi to
Hindi and 2nd in Hindi to Marathi trans-
lation among 22 systems.

1 Introduction
WMT 2020 is the fifth edition of WMT as a
conference following a series of well-attended
workshops that date back to 2006. WMT be-
came a well-established conference due to its
blend of research papers and popular shared
tasks on different topics such as translation
in various domains (e.g. biomedical, news),
translation quality estimation, and automatic
post-editing. The competitions co-organized
with WMT provide important datasets and
benchmarks widely used in the MT commu-
nity. The vast majority of these tasks so far,
however, involved training systems to trans-
late to and from English (Bojar et al., 2016,
2017) while only a few of them addressed the
problem of translating between pairs of lan-
guages with less resources.

To address this issue, in 2019, the Simi-
lar Language Translation (SLT) shared task
was introduced at WMT. SLT’s purpose was
to evaluate the performance of state-of-the-art

MT systems on translating between pairs of
similar languages without English as a pivot
language (Barrault et al., 2019). The or-
ganizers provided participants with training,
development, and testing parallel data from
three pairs of languages from three different
language families: Spanish - Portuguese (Ro-
mance languages), Czech - Polish (Slavic lan-
guages), and Hindi - Nepali (Indo-Aryan lan-
guages). Systems were evaluated using auto-
matic metrics, namely BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006).

In SLT 2020, the task organizes once again
included an Indo-Aryan language track with
Hindi and Marathi. Indo-Aryan languages
are a sub-family of the Indo-European lan-
guage family which includes Bengali, Bo-
hjpuri, Hindi, Marathi, and Nepali. These lan-
guages are mainly spoken in North and Cen-
tral India, and some neighbouring countries
such as Nepal, Bangladesh, and Pakistan etc.
The script used in most of these languages are
derived from the ancient Brahmi script and en-
riched with high grapheme to phoneme corre-
spondence leading to many orthographic sim-
ilarities across these languages.

In addition to Hindi and Marathi, SLT 2020
features two other tracks with similar lan-
guages from the following language families:
Romance languages (Catalan, Portuguese, and
Spanish) and South Slavic Languages (Croa-
tian, Serbian, and Slovene). In this pa-
per we describe the WIPRO-RIT submission
to the SLT 2020 Indo-Aryan track. Our
WIPRO-RIT system is based on the model
described in Johnson et al. (2017). WIPRO-
RIT achieved competitive performance rank-
ing 1st in Marathi to Hindi and 2nd in Hindi
to Marathi translation among 22 systems.
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2 Related Work
With the substantial performance improve-
ments brought to MT by neural approaches, a
growing interest in translating between pairs
of similar languages, language varieties, and
dialects has been observed. Recent studies
have addressed MT between Arabic dialects
(Harrat et al., 2019; Shapiro and Duh, 2019)
Catalan and Spanish, Croatian and Serbian
(Popović et al., 2020), (Costa-jussà, 2017),
Brazilian and European Portuguese (Costa-
jussà et al., 2018), and several pairs of lan-
guages and language varieties such as Brazil-
ian and European Portuguese, Canadian and
European French, and similar languages such
as Croatian and Serbian, and Indonesian and
Malay (Lakew et al., 2018).

The interest on diatopic language variation
is evidenced by the recent iterations of the Var-
Dial workshop in which papers on MT applied
to similar languages varieties, and dialects
(Shapiro and Duh, 2019; Myint Oo et al.,
2019; Popović et al., 2020) have been pre-
sented along with evaluation campaigns fea-
turing multiple shared tasks on a number of
related topics such as cross-lingual morpho-
logical analysis, cross-lingual parsing, dialect
identification, and morphosyntactic tagging
(Zampieri et al., 2018, 2019; Găman et al.,
2020).

3 Data
For our experiments, we use the Hindi–
Marathi and Marathi–Hindi WMT 2020 SLT
data. The released parallel dataset was col-
lected from news (Siripragada et al., 2020),
PMIndia (Haddow and Kirefu, 2020) and Indic
Wordnet (Bhattacharyya, 2010; Kunchukut-
tan, 2020a) datasets. To augment our dataset,
we use English–Hindi parallel data released in
WMT 2014 (Bojar et al., 2014), consisting of
more than 2 million parallel sentences, which
is available as an additional resource. We use
a subset of 5 million segments of Hindi mono-
lingual news crawled from ca. 32 million data.
We also use a subset 5 million Marathi mono-
lingual data. We performed similar cleaning
and pre-processing methods as we described
in case of parallel data.

The five million Hindi monolingual sen-
tences were first back-translated to English

using a Hindi–English NMT system. The
Hindi–English NMT system was trained on
English–Hindi parallel data released in WMT
2014 (Bojar et al., 2014), IITB parallel cor-
pus (Kunchukuttan et al., 2018), the parallel
dataset was collected from news (Siripragada
et al., 2020) and the PMIndia (Haddow and
Kirefu, 2020) parallel corpus (see Table 1).

Data Sources #sentences
WMT 273,885
News 156,344
IITB 1,561,840
PM India 56,831
Total 2,048,900
Remove duplicates 1,464,419
Cleaning∗ 961,036

Table 1: English–Hindi parallel data statistics.
∗Removing noisy mixed language sentences.

We also back-translated 5 million Marathi
monolingual sehments using our WIPRO-RIT
CONTRASTIVE 1 system described in more
detail Section 6. For Marathi–Hindi we did
not use any back translation data in our CON-
TRASTIVE 2 and PRIMARY submissions. In
the both cases 5 million English–Hindi back-
translation data provide significant (p < 0.01)
improvements over CONTRASTIVE 1 (de-
tailed in Section 6).

The released WMT 2014 EN-HI data and
the WMT SLT 2020 data were noisy for our
purposes, so we apply methods for cleaning
(see data statistics in Table 2).

Parallel #sentences
News 12,349
PM India 25,897
Indic WordNet 11,188
Total 49,434
Filtered∗ 33923

Table 2: Data statistics of released SLT Data;
∗Filtration methods: (i) remove duplicates and (ii)
filtering noisy mixed language sentences.

We performed the following two steps: (i) we
use the cleaning process described in Pal et al.
(2015), and (ii) we execute the Moses (Koehn
et al., 2007) corpus cleaning scripts with min-
imum and maximum number of tokens set to
1 and 100, respectively. After cleaning and re-
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L1 → L2 Parallel Sentences
Source Target

HI→MR Raw
data देश एकल प्रयासʠ से आगे बढ़ चुके हǾ। देश आता सामाईक प्रयत्न करत आहेत.
Processed
data TO_MR देश एकल प्रयासʠ से आगे बढ़ चुके हǾ। देश आता सामाईक प्रयत्न करत आहेत.

MR→HI Raw
data देश आता सामाईक प्रयत्न करत आहेत. देश एकल प्रयासʠ से आगे बढ़ चुके हǾ।
Processed
data TO_HI देश आता सामाईक प्रयत्न करत आहेत. देश एकल प्रयासʠ से आगे बढ़ चुके हǾ।

EN→HI Raw
data The MoU was signed in February, 2016. इस एमओयू पर फरवरी, 2016 मǻ हस् ताक्षर िकए गए थे।
Processed
data TO_HI The MoU was signed in February, 2016. इस एमओयू पर फरवरी, 2016 मǻ हस् ताक्षर िकए गए थे।

Table 3: Multilingual Processed data, indicating TO_XX as target language:

moving duplicates, we have 1M EN-HI par-
allel sentences. Next, we perform punctua-
tion normalization, and then we use the Moses
tokenizer to tokenize the English side of the
parallel corpus with ‘no-escape’ option. Fi-
nally, we apply true-casing. For the case of
Hindi and Marathi, we use Indic NLP Li-
brary1 (Kunchukuttan, 2020b) for tokeniza-
ton.

4 Model Architecture

Our model is based on a transformer archi-
tecture (Vaswani et al., 2017) built solely
upon such attention mechanisms completely
replacing recurrence and convolutions. The
transformer uses positional encoding to encode
the input and output sequences, and com-
putes both self- and cross-attention through
so-called multi-head attentions, which are fa-
cilitated by parallelization. We use multi-head
attention to jointly attend to information at
different positions from different representa-
tion subspaces.

We present a single multilingual NMT sys-
tem based on the transformer architecture
that can translate between multiple languages.
To make use of multilingual data within a sin-
gle NMT model, we perform one simple mod-
ification to the source side of the multilingual
data, we use an additional token at the begin-
ning of the each source sentence to indicate
the target language by the NMT model would
be translated as shown in Table 3.

We train the model with all the pro-
cessed multilingual data consisting of sen-

1https://github.com/anoopkunchukuttan/
indic_nlp_library/

tence aligned multiple language pairs at once,
During inference, we also need to add the
aforementioned additional token to each input
source sentence of the source data to specify
the desired target language.

5 Experiments

In the next sub-sections we describe the ex-
periments we carried out for translating from
Hindi to Marathi and from Marathi to Hindi
for WIPRO-RIT’s WMT 2020 SLT shared
task submission.

5.1 Experiment Setup

To handle out-of-vocabulary words and to re-
duce the vocabulary size, instead of consider-
ing words, we consider subword units (Sen-
nrich et al., 2016) by using byte-pair encod-
ing (BPE). In the preprocessing step, instead
of learning an explicit mapping between BPEs
in the English (EN), Hindi (HI) and Marathi
(MR), we define BPE tokens by jointly pro-
cessing all parallel data. Thus, all derive a
single BPE vocabulary. Since HI and MR be-
long to the similar languages, they naturally
share a good fraction of BPE tokens, which
reduces the vocabulary size.

We report evaluation results (evaluated by
the shared task organizers) of our approach
with the released Test data. BLEU (Papineni
et al., 2002), RIBES (Isozaki et al., 2010) and
TER (Snover et al., 2006) are used to evaluate
the performance of all participating systems in
the shared task.
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Parallel Data #sentences C1 C2 P
Filtered SLT 33,923 ✓ ✓ ✓
Filtered EN–HI 961,036 ✓ ✓ ✓
BT EN–HI 5 million ✓ ✓ ✓
BT HI–MR 5 million ✓ ✓

Table 4: The training criteria data statistics of our submitted systems (C1 = Contrastive 1, C2 =
Contrastive 2, P = Primary, and BT = Back-translated data).

5.2 Hyper-parameter Setup

We follow a similar hyper-parameter setup for
all reported systems. All encoders, and the
decoder, are composed of a stack of NX = 6
identical layers followed by layer normaliza-
tion. Each layer again consists of two sub-
layers and a residual connection (He et al.,
2016) around each of the two sub-layers. We
apply dropout (Srivastava et al., 2014) to the
output of each sub-layer, before it is added to
the sub-layer input and normalized. Further-
more, dropout is applied to the sums of the
word embeddings and the corresponding po-
sitional encodings in both encoders as well as
the decoder stacks.

We set all dropout values in the network to
0.1. During training, we employ label smooth-
ing with value ϵls = 0.1. The output dimen-
sion produced by all sub-layers and embed-
ding layers is dmodel = 512. Each encoder and
decoder layer contains a fully connected feed-
forward network (FFN) having dimensional-
ity of dmodel = 512 for the input and output
and dimensionality of dff = 2048 for the inner
layers. For the scaled dot-product attention,
the input consists of queries and keys of di-
mension dk, and values of dimension dv. As
multi-head attention parameters, we employ
h = 8 for parallel attention layers, or heads.
For each of these we use a dimensionality of
dk = dv = dmodel/h = 64. For optimization,
we use the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98 and ϵ = 10−9.

The learning rate is varied throughout the
training process, and increasing for the first
training steps warmupsteps = 16000 and af-
terwards decreasing as described in (Vaswani
et al., 2017). All remaining hyper-parameters
are set analogously to those of the trans-
former’s base model. At training time, the
batch size is set to 25K tokens, with a maxi-
mum sentence length of 256 subwords, and a

vocabulary size of 32K. After each epoch, the
training data is shuffled. During decoding, we
perform beam search with a beam size of 4.
We use 32K BPE operations to train our BPE
models. We use shared embeddings in all our
experiments.

6 Results

We present the results obtained by our systems
for Hindi–Marathi in Table 5 and for Marathi–
Hindi in Table 6 in terms of BLEU, RIBES,
and TER. We apply our proposed method
to train multilingual models in three different
configurations. Table 4 shows different train-
ing data used to train our CONTRASTIVE
1 (C1), CONTRASTIVE 2 (C2) and Primary
(P) submissions.

System BLEU ↑ RIBES ↑ TER ↓
P 16.62 62.45 72.23
C2 15.42 61.02 73.59
C1 13.25 58.51 76.17

Table 5: Results for Hindi to Marathi translation
ranked by BLEU score.

System BLEU ↑ RIBES ↑ TER ↓
P 24.53 66.23 66.39
C2 22.93 65.89 68.11
C1 22.69 65.01 68.13

Table 6: Results for Marathi to Hindi Translation
ranked by BLEU score.

CONTRASTIVE 1 (C1) Our CON-
TRASTIVE 1 submission is a multilingual sin-
gle system and does not use any monolingual
back translation data. The system is trained
on the released HI-MR and MR-HI parallel
data. In addition to we also use EN-HI parallel
data.
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CONTRASTIVE 2 (C2) This submission
is similar to CONTRASTIVE 1, however in
this case we used 5M back-translated Marathi–
Hindi and 5M back-translated Hindi–Marathi
corpus. Source back-translated sentences be-
gin with an additional token indicating the tar-
get language.

PRIMARY (P) Our primary submission is
trained using the same setting as we described
in CONTRASTIVE 2 system. The difference
is our primary system is an ensemble of three
different CONTRASTIVE 2 systems initiated
with three different random seeds.

7 Conclusion and Future Work

This paper presented the WIPRO–RIT system
submitted to the Similar Language Transla-
tion shared task at WMT 2020. We presented
the results obtained by our system in trans-
lating from Hindi to Marathi and Marathi to
Hindi. Our primary system achieved compet-
itive performance ranking first in Marathi to
Hindi and second in Hindi to Marathi among
22 teams in terms of BLEU score.

In future work, we would like to further
explore the similarity between these two lan-
guages in translating to other Indo-Aryan lan-
guages (e.g. Bengali, Bhojpuri, and Nepali).
We expect the models presented in this pa-
per to perform well for other Indo-Aryan lan-
guage provided that suitable training data is
available. Furthermore, we would like to ap-
ply and evaluate our method on the two other
groups of languages in the WMT SLT 2020
shared task, Romance languages: Catalan,
Portuguese, and Spanish, and South Slavic
languages: Croatian, Serbian, and Slovene.
Finally, we will be incorporating the transla-
tion models presented in this paper to CATa-
Log, an open-source online CAT tool that pro-
vides users with both MT and TM outputs
(Nayek et al., 2015; Pal et al., 2016).
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Abstract

This paper describes the ADAPT-DCU ma-
chine translation systems built for the WMT
2020 shared task on Similar Language Trans-
lation. We explored several set-ups for
NMT for Croatian–Slovenian and Serbian–
Slovenian language pairs in both translation
directions. Our experiments focus on differ-
ent amounts and types of training data: we
first apply basic filtering on the OpenSubti-
tles training corpora, then we perform addi-
tional cleaning of remaining misaligned seg-
ments based on character n-gram matching.
Finally, we make use of additional monolin-
gual data by creating synthetic parallel data
through back-translation. Automatic evalua-
tion shows that multilingual systems with joint
Serbian and Croatian data are better than bilin-
gual, as well as that character-based cleaning
leads to improved scores while using less data.
The results also confirm once more that adding
back-translated data further improves the per-
formance, especially when the synthetic data
is similar to the desired domain of the devel-
opment and test set. This, however, might
come at a price of prolonged training time, es-
pecially for multitarget systems.

1 Introduction

Machine translation (MT) between closely related
languages is, in principle, less challenging than
translation between distantly related languages, but
it is still far from being solved. While MT be-
tween closely related South-Western Slavic lan-
guages, Croatian, Slovenian and Serbian based on
the rule-based (RBMT) and the phrase-based (PB-
SMT) approaches has been investigated in the last
years (Etchegoyhen et al., 2014; Petkovski et al.,
2014; Klubička et al., 2016; Arčan et al., 2016;
Popović et al., 2016a), to the best of our knowledge,
the new state-of-the-art neural machine translation

(NMT) has not been investigated yet for these lan-
guages.

In this work, we first compare bilingual and mul-
tilingual systems in order to determine whether
joining Serbian and Croatian data is useful. After-
wards, we investigate additional cleaning of remain-
ing misaligned segments by using character n-gram
matching scores (Popović, 2015). The beauty of
the method for similar languages is that it can be ap-
plied directly to the given training corpus providing
matching scores for each pair of the source-target
segments. For distant languages, translation of one
side of the training corpus would be required. Fi-
nally, we make use of monolingual data in each of
the three languages by creating additional synthetic
parallel training sets via back-translation (Sennrich
et al., 2016a; Poncelas et al., 2018; Burlot and
Yvon, 2018).

2 Language properties

Common properties All three languages, Croa-
tian, Serbian and Slovenian, belong to the South-
Western Slavic branch. As Slavic languages, they
have a very rich inflectional morphology for all
word classes: six cases and three genders for all
nouns, pronouns, adjectives and determiners. For
verbs, person and many tenses are expressed by the
suffix so that the subject pronoun is often omitted.
There are two verb aspects, so that many verbs have
perfective and imperfective form(s) depending on
the duration of the described action. As for syntax,
all three languages have quite a free word order,
and neither language uses articles, either definite
or indefinite. In addition to this, multiple negation
is always used.

Croatian and Serbian Croatian and Serbian ex-
hibit a large overlap in vocabulary and a strong
morpho-syntactic similarity so that the speakers
can understand each other without difficulties. Nev-
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ertheless, there is a number of small but notable
and also frequently occurring differences between
them. The largest differences between the two
languages are in vocabulary: some words are com-
pletely different, some however differ only by one
or two letters. Apart from lexical differences, there
are also structural differences mainly concerning
verbs: modal verb constructions, future tense, as
well as conditional.

Slovenian Even though Slovenian is very closely
related to Croatian and Serbian, and the languages
share a large degree of mutual intelligibility, a num-
ber of Croatian/Serbian speakers may have difficul-
ties with Slovenian and the other way round. The
nature of the lexical differences is similar to the one
between Croatian and Serbian, namely a number
of words is completely different and a number only
differs by one or two letters. However, the amount
of different words is much larger. In addition to
that, the set of overlapping words includes a num-
ber of false friends (e.g. brati means to pluck in
Croatian and Serbian but to read in Slovenian).

The amount of grammatical differences is also
larger and includes local word order, verb mood
and/or tense formation, question structure, usage
of cases, structural properties for certain conjunc-
tions, as well as some other structural differences.
Another important difference is the Slovenian dual
grammatical number which refers to two entities
(apart from singular for one and plural for more
than two). It requires additional set of pronouns, as
well as additional sets for noun, adjective and verb
inflexion rules not existing either in Croatian or in
Serbian.

3 Data

For training, we used publicly available OPUS1

parallel corpora (Tiedemann, 2012) indicated by
the workshop organisers. OpenSubtitles is indi-
cated for all translation directions. For Croatian–
Slovenian, other corpora are indicated too, but they
are either not sentence-aligned (JW300 ) or are ex-
tremely noisy (DGT, MultiParaCrawl ). Therefore,
we decided to use only OpenSubtitles for all trans-
lation directions.

It is worth noting that the organisers also in-
dicated the SETIMES News parallel Croatian–
Serbian corpus. Developing an additional Croatian–
Serbian MT system for converting Serbian data into

1http://opus.nlpl.eu/

lang. set domain # sentences
sl-hr train Subtitles 11 213 386

dev PR publications 2457
test PR publications 2582

sl-sr train Subtitles 11 780 062
dev PR publications 1259
test PR publications 1260

Table 1: Corpus statistics.

Croatian and vice versa was shown to be helpful
for the PBSMT approach (Popović and Ljubešić,
2014; Popović et al., 2016b). However, our prelim-
inary experiments in this direction indicated that
this technique is not helpful for the NMT approach.

The original parallel data were filtered in order
to eliminate noisy parts: too long segments (more
than 100 words), segment pairs with dispropor-
tional sentence lengths, segments with more than
1/3 of non-alphanumeric characters, as well as du-
plicate segment pairs were removed. The statistics
of the remaining subtitles together with the devel-
opment and test sets is shown in Table 1. The
development and test sets were provided by the
organisers and originate from Public Relations pub-
lications of a business intelligence company.

3.1 Additional cleaning of OpenSubtitles

While a large number of noisy parts and misaligned
segments was removed from OpenSubtitles by the
basic filtering procedure, a number of misaligned
segments still remained. In order to remove these,
we applied additional cleaning based on the char-
acter n-gram F-score chrF usually used for MT
evaluation (Popović, 2015). For the purpose of
cleaning, the chrF score is calculated for each pair
of segments in the training data. Due to simi-
larity between the languages, the scores between
the properly aligned segments are higher than the
scores of misaligned segments. Nevertheless, the
languages are sufficiently different so that some
properly aligned short segments (or single words)
can have low scores, too. Still, if those words
also appear in longer sentences, they will not be
removed. Preliminary experiments with different
thresholds showed that keeping the segments with
the chrF score equal or greater than 20 is the best
option.
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3.2 Using monolingual data
In addition to the parallel OpenSubtitles corpora,
we also used the monolingual data in each of the
three languages which were indicated by the or-
ganisers, namely the mixed-domain data collected
from Web, hrWac, slWac and hrWac (Ljubešić and
Erjavec, 2011; Ljubešić and Klubička, 2014). As
a first step, we removed too long and too short
sentences, keeping those between 5 and 60 words.
Then, we removed sentences with more than 1/3
of non-alphanumeric characters, sentences with
URLs, as well as duplicate sentences.

Then, we wanted to rank these sentences accord-
ing to the relevance for our experiments, namely
according to their similarity to the development
corpus. For this purpose, we used Feature Decay
Algorithm (FDA) (Biçici and Yuret, 2011). This
method iteratively selects sentences from an ini-
tial set S based on the number of n-grams which
overlap with an in-domain text Seed and adds these
sentences to a selected set Sel. In addition, in order
to promote a diversity, after a sentence is selected,
its n-grams suffer a penalisation so that they are
less likely to be selected in the following iterations.
The default FDA system halves the score of an n-
gram each time it is selected. Therefore the score
of a sentence s is computed as in Equation (1):

score(s, Seed, Sel) =

∑
ngr∈{s⋂Seed}

0.5CSel(ngr)

length(s)
(1)

where Sel is the set of sentences that have been se-
lected and CSel(ngr) is the count of occurrences
of the n-gram ngr. At the end, the set S is con-
verted into the set Sel containing the same sen-
tences, but ranked according to their relevance.

For our experiments, the hrWac, slWac and
srWac corpora represented the sets S, and the devel-
opment sets in the corresponding target language
were used as Seed.

Back-translated synthetic parallel corpora
After ranking the monolingual corpora by FDA,
back-translation was applied in order to create ad-
ditional parallel training corpora. For each transla-
tion direction, the first two million best ranked sen-
tences in the target language were translated into
the source language by the corresponding NMT
system.
Translation from Slovenian: The first two million
best ranked Serbian sentences and the first two mil-

lion best ranked Croatian sentences were translated
into Slovenian.
Translation into Slovenian: Slovenian is the target
language for two translation directions, and we
wanted to have equally relevant Slovenian sen-
tences for both directions. Therefore, we did not
take the first two million sentences for one source
language and the second two million for the other,
because the Slovenian sentences for the first source
language would be more relevant than those for the
second source language. Instead, we took the first
four million best ranked Slovenian sentences, and
then translated every odd sentence into Serbian and
every even sentence into Croatian.

4 MT systems

All our systems are built using the Sockeye imple-
mentation (Hieber et al., 2018) of the Transformer
architecture (Vaswani et al., 2017). The systems
operate on sub-word units generated by byte-pair
encoding (BPE) (Sennrich et al., 2016b). We set
the number of BPE merging operations at 32000.
We use shared vocabularies between the languages
because they are similar. Multilingual systems are
built using the same technique as (Johnson et al.,
2017) and (Aharoni et al., 2019), namely adding a
target language label “SR” or “HR” to each source
sentence. We investigated the following set-ups:

1. Systems trained on OpenSubtitles

The four bilingual systems, HR→SL, SR→SL,
SL→HR and SL→SR, are trained separately
for each language pair and each translation
direction on about 11M parallel segments.

The multisource system HR+SR→SL is
trained for translation into Slovenian by join-
ing Serbian and Croatian sources and remov-
ing duplicates, thus resulting in 20.2M parallel
segments.

The multitarget system SL→HR+SR is trained
for translation from Slovenian on the reversed
corpus of 20.2M segments with target lan-
guage identificators “SR” and “HR” added
to the source side.

2. Systems trained on cleaned OpenSubtitles

Two multilingual systems
HR+SR→SL CLEAN and SL→HR+SL CLEAN

are trained on joint OpenSubtitles corpora
additionally cleaned by the chrF score. The
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cleaned corpus consists of 10.8M segments
(instead of 20.2M).

3. Systems trained on cleaned OpenSubtitles and
synthetic back-translated parallel Wac data

Two multilingual systems
HR+SR→SL CLEAN+BT and
SL→HR+SR CLEAN+BT are trained on
joint cleaned OpenSubtitles corpora to-
gether with the corresponding synthetic
back-translated data selected from hrWac,
slWac and srWac. The monolingual data was
back-translated by the corresponding systems
trained on cleaned OpenSubtitles. The
training corpora consist of 14.8M segments.

5 Results

We evaluate our systems using the following
three automatic overall evaluation scores: sacre-
BLEU (Post, 2018), chrF (Popović, 2015) and char-
acTER (Wang et al., 2016). The BLEU score is
used because of the long tradition. The two charac-
ter level scores are shown to correlate much better
with human assessments (Bojar et al., 2017; Ma
et al., 2018), especially for morphologically rich
languages. In addition, the chrF score is recom-
mended as a replacement for BLEU in a recent de-
tailed study encompassing a number of automatic
MT metrics (Mathur et al., 2020). In addition to
the automatic MT evaluation scores, for each of the
systems we report the size of the training corpus
and the training time.

Table 2 shows the results both on the develop-
ment and on the test set for each of the four transla-
tion directions. First of all, it can be seen that the
automatic scores are relatively low given the simi-
larity of the languages. One reason is domain/genre
discrepance between the training and the develop-
ment/test sets. Another possible reason is the na-
ture of the OpenSubtitles corpus. The majority of
non-English texts in OpenSubtitles are namely hu-
man translations from English originals. Therefore,
for translation from English, the source language
is the original one and the target language is its
human translation.2 On the other hand, for transla-
tion not involving English, both sides are human
translations, which can have a strong impact on per-
formance (Kurokawa et al., 2009; Vyas et al., 2018;
Zhang and Toral, 2019). These effects should be
investigated in future work.

2And other way round for translation into English.

Results on the development set For the
systems trained on OpenSubtitles, it can be seen
that for each translation direction, multilingual sys-
tems yield better automatic scores than bilingual
systems at the cost of slightly prolonged training
time (from about 3 days to 3-4 days). Therefore we
choose the two multilingual systems HR+SR→SL

and SL→HR+SR as the baselines and we did not
keep the bilingual systems for further experiments.

The chrF cleaning of OpenSubtitles reduces the
size of the corpus and the training time while
slightly improving automatic scores. The reduction
in time is slightly smaller for the multitarget trans-
lation from Slovenian (down to 2-3 days) than for
the multisource translation into Slovenian (down
to less than 2 days).

Adding the back-translated data from Wac im-
proves the automatic scores for more than 10 points
for multisource translation (into Slovenian) and
for 5 to 10 points for multitarget translation (from
Slovenian). This could be expected, especially
since the monolingual data was chosen to be sim-
ilar to the development data. Nevertheless, this
large improvement comes at a price. Although the
increase of the corpus is not very large, from 10.8M
to 14.8M, the training time increases to (more than)
3 days. It can be noted that for some set-ups, the
multitarget system needs more training time. The
probable reason is the diversity of the target part of
the training corpus – the system has to deal with
two target languages, and when synthetic data is
added, also with two different domains/genres for
each of them.

Results on the test set Based on the re-
sults on the development set, we submit-
ted the outputs of the systems with back-
translated data (HR+SR→SL CLEAN+BT,
SL→HR+SR CLEAN+BT) as primary submissions.
The outputs of the systems trained on cleaned data
(HR+SR→SL CLEAN, SL→HR+SR CLEAN) were
submitted as first contrastive, and the outputs of
the baseline multilingual systems (HR+SR→SL,
SL→HR+SR) as second contrastive submissions.
The test sets were not at all translated by the initial
bilingual systems, therefore the results are not
available.

It can be seen that the tendencies for the test set
are almost the same as for the development set. The
only difference is the larger improvement obtained
by cleaning OpenSubtitles with the chrF scores.
Further detailed analysis involving manual inspec-
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(a) Croatian→Slovenian

training dev, hr→sl test, hr→sl
system size time BLEU chrF chrTER BLEU chrF chrTER
HR→SL 11.2M ∼3 days 38.5 65.7 29.4 / / /
HR+SR→SL 20.2M 3-4 days 38.8 65.9 29.5 34.7 62.2 34.5
HR+SR→SL CLEAN 10.8M <2 days 39.7 66.5 27.0 37.1 65.2 28.2
HR+SR→SL CLEAN+BT 14.8M ∼3 days 53.9 77.7 18.9 51.9 76.4 20.0

(b) Serbian→Slovenian

training dev, sr→sl test, sr→sl
system size time BLEU chrF chrTER BLEU chrF chrTER
SR→SL 11.8M ∼3 days 40.6 67.2 30.3 / / /
HR+SR→SL 20.2M 3-4 days 42.1 68.3 28.5 37.7 64.1 33.5
HR+SR→SL CLEAN 10.8M <2 days 42.2 68.6 26.9 41.2 68.1 26.5
HR+SR→SL CLEAN+BT 14.8M ∼3 days 58.0 80.4 18.5 55.2 78.4 19.1

(c) Slovenian→Croatian

training dev, sl→hr test, sl→hr
system size time BLEU chrF chrTER BLEU chrF chrTER
SL→HR 11.2M ∼3 days 33.4 62.6 33.0 / / /
SL→HR+SR 20.2M 3-4 days 36.0 63.8 32.6 30.3 58.9 40.0
SL→HR+SR CLEAN 10.8M 2-3 days 36.9 65.2 28.6 35.7 64.4 28.8
SL→HR+SR CLEAN+BT 14.8M >3 days 46.1 72.7 22.8 45.1 72.3 23.3

(d) Slovenian→Serbian

training dev, sl→sr test, sl→sr
system size time BLEU chrF chrTER BLEU chrF chrTER
SL→SR 11.8M ∼3 days 33.3 62.3 34.3 / / /
SL→HR+SR 20.2M 3-4 days 34.8 63.4 33.4 32.0 60.0 36.4
SL→HR+SR CLEAN 10.8M 2-3 days 35.5 64.2 31.5 37.0 65.1 28.2
SL→HR+SR CLEAN+BT 14.8M >3 days 45.5 73.3 23.4 47.6 73.6 22.1

Table 2: Results: Croatian→Slovenian (a), Serbian→Slovenian (b), Slovenian→Croatian (c) and
Slovenian→Serbian: corpus size, training time, and the three automatic MT evaluation scores (BLEU, chrF and
characTER).

tion is needed to better understand this difference.

6 Summary and outlook

This work investigates different set-ups for train-
ing NMT systems for translation between three
closely related South-Slavic languages: Slovenian
on one side, and Serbian and Croatian on the other
side. We explore different sizes and types of train-
ing corpora, as well as bilingual and multilingual
systems. Our results show that for all translation
directions, multilingual systems with joint Croat-
ian and Serbian data perform better than bilingual
systems. The results also show that cleaning mis-
aligned segments using character n-gram matching
(chrF score) represents a fast and useful method

for closely related languages, which improved the
evaluation scores while reducing corpus size and
training time. Finally, we confirm that adding back-
translated synthetic data, which is the usual prac-
tice in neural machine translation, can yield large
improvements of evaluation scores also for these
languages. Nevertheless, for multitarget transla-
tion, it might result in a prolonged training time
due to increased variety of the target language side.

Future work should include more genres and do-
mains, as well as detailed analysis of errors and
problems in order to further improve the perfor-
mance of NMT between South Slavic languages.
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Maučec, Anja Turner, and Martin Volk. 2014. Ma-
chine translation for subtitling: A large-scale eval-
uation. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC 2014), pages 46–53, Reykjavik, Iceland.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2018. The sockeye neural machine translation
toolkit at AMTA 2018. In Proceedings of the 13th
Conference of the Association for Machine Transla-
tion in the Americas (Volume 1: Research Papers),
pages 200–207, Boston, MA. Association for Ma-
chine Translation in the Americas.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.
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Abstract

This paper describes Infosys’ submission to
the WMT20 Similar Language Translation
shared task. We participated in Indo-Aryan
language pair in the language direction Hindi
to Marathi. Our baseline system is byte-
pair encoding based transformer model trained
with the fairseq sequence modeling toolkit.
Our final system is an ensemble of two trans-
former models, which ranked first in the
WMT20 evaluation. One model is designed
to learn the nuances of translation of this low
resource language pair by taking advantage of
the fact that the source and target languages are
the same alphabet languages. The other model
is the result of experimentation with the pro-
portion of back-translated data to the parallel
data to improve translation fluency.

1 Introduction

Neural Machine Translation (Bahdanau et al.,
2015; Vaswani et al., 2017) is the most popular
approach for machine translation. Transformer-
based NMT has outperformed many recurrent neu-
ral network based models. There is scope for im-
provement in NMT, particularly for low-resource
language pairs.

Our techniques are experimented on the fairseq
sequence modeling toolkit (Ott et al., 2019)
for NMT. Our system is an ensemble of two
transformer-based models. One designed for low-
resource language pairs by taking advantage that
both are same alphabet languages. The other model
is built after experimenting on renowned back-
translation technique (Sennrich et al., 2016a) by
exploiting target monolingual data.

2 Data

Hindi-Marathi bitext data contains ∼49K sentence
pairs. Target monolingual data comprises of 326K
Newscrawl sentences and 10,839K raw sentences.

2.1 Data Preprocessing

Typical training sentence pairs comprises of a
source and a target sentence. There are ∼1K train-
ing sentence pairs where source or target contains
multiple sentences delimited by ‘/’. Matching pair
for these sentences is derived based on the prox-
imity of token lengths between source and target
sentence.

Non-printable characters are removed, punctua-
tions are normalized, and the data is tokenized, with
the Moses tokenizer. Byte-pair encoding (BPE)
has been adopted (Sennrich et al., 2016a) to build
source and target sub-word vocabularies of size
22.5K and 32.8K respectively, when configured to
construct with 60K symbols.

2.2 Data filtering

2.2.1 Bitext data

Sentences with more than 175 words, sentences
with no words, and sentence pairs exceeding length
ratio of 1.5 are removed from training data. This
eliminated around 18% of the overall real bitext
data.

2.2.2 Synthetic data

CommonCrawl n-grams raw monolingual files are
processed1 to remove sentences with invalid char-
acters, strip leading and trailing whitespaces, and
remove duplicate sentences.

3 System Overview

Our Hindi-Marathi primary system is an ensem-
ble of two transformer models. One is back-
translated model and the other model is trained
on anonymized data.

1https://github.com/kpu/preprocess
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3.1 Base Model Architecture and
Hyperparameters

Our model is built using fairseq2 (Ott et al., 2019)
toolkit. The Transformer, an encoder-decoder ar-
chitecture (Vaswani et al., 2017), with 6 layers for
the encoder and 6 layers for the decoder, and with 8
heads in all multi-head attention layers, is our base
model. Embedding dimension is set to 512 and
feed-forward size (FFN) is set to 2048. Our model
is trained on single GPU with maximum tokens per
GPU set to 4096. The batch size multiplier is set to
8. Dropout probability of 0.3 and label smoothing
probability of 0.1 is applied to avoid overfitting.
Adam optimizer is used with β1 = 0.9, β2 = 0.98.
The model is trained with an initial learning rate
of 5e-4 and 4000 warm-up updates. The ensemble
model prepared by averaging last 3 checkpoints is
used for inferencing. Reported detokenized test
BLEU is 9.13 for the provided dev dataset.

Parameters are tuned, following Baquero-Arnal
et al. (2019). Threshold frequency is set such that
only tokens occurring at least 10 times in the train-
ing data will be part of the vocabulary. Maximum
tokens per GPU is set to 4000 and the batch size
multiplier is fixated to 4 to set an effective batch
size of 16000 tokens with dropout probability of
0.1. This led to improved performance. Reported
detokenized test BLEU is 14.13 and hence these
settings are adapted.

3.2 Backtranslation

Back-translation is a popularly adapted data aug-
mentation technique which aids in building bet-
ter NMT systems, especially for low resource lan-
guage pairs by leveraging monolingual corpora
(Sennrich et al., 2016a). An intermediate system
is first trained on parallel data which is used to
translate target monolingual data into source lan-
guage. Sampling is used as a method for inference
(Edunov et al., 2018). Synthetic parallel data is
constructed from the intermediate system gener-
ated synthetic source while the target is the pro-
vided monolingual data. The Bitext data filters are
also applied to synthetic data but only removed
sentences with more than 250 words. New training
data is constructed by appending this synthetic par-
allel data to real bitext data and a final system that
will translate from the source to the target language
will be trained.

2https://github.com/pytorch/fairseq

3.2.1 Bitext and Synthetic corpora
proportion

Related Work Real to synthetic parallel data
close to 1-to-1 proportion works best for Sennrich
et al. (2016a). Junczys-Dowmunt et al. (2016),
also chose 1-to-1 ratio of real to synthetic parallel
data for English-Russian news translation task. It
is also known from past experiments that increas-
ing the ratio of synthetic training data erratically,
degrades system performance, depending on qual-
ity and domain of synthetic data (Sennrich et al.,
2016a; Currey et al., 2017; Poncelas et al., 2018).

In contrast, experiments conducted by Stahlberg
et al. (2018), shows that performance of system
does not reduce as long as the ratio of real paral-
lel to synthetic parallel data does not exceed 1-to-
8 (1.6M out of 3M Turkish monolingual data is
preferred for training along with 0.2M of parallel
corpus for English-Turkish). Fadaee and Monz
(2018), claims, 1-to-5 real to synthetic parallel data
ratio achieved best performance in news transla-
tion task for German-English with 4.5M parallel
corpus.

This limits from taking advantage of all available
monolingual corpus. Only a small portion of it can
be used as synthetic parallel training data. Over-
sampling (Chu et al., 2017; Junczys-Dowmunt and
Grundkiewicz, 2018) real parallel data can over-
come this problem. By oversampling primary par-
allel data equivalent to the synthetic parallel data
from all monolingual data, effective 1-to-1 ratio of
bitext and synthetic parallel data can be retained.

Experiment 1-to-1 ratio of bitext to synthetic
data is chosen after experimentation with ratios
(see Table 1, Figure 1).

Ratio BLEU
Baseline (1:0) 14.13
1:0.5 18.08
1:1.0 18.76
1:2.5 16.20
1:5.0 14.49
All monolingual data (1:78.0) 11.01

Table 1: BLEU score for different bitext and synthetic
corpora proportion

It is crucial to find the ideal proportion of syn-
thetic data to use. Utilization of all available out-of-
domain and raw monolingual corpora to the maxi-
mum effect can be further explored.
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Figure 1: BLEU score for different bitext and synthetic
corpora proportion

3.2.2 Out-of-domain data
Handling OOV BPE is applied on monolingual
target data using byte pairs learnt during bitext BPE
operation. Out-of-vocabulary (OOV) tokens in
BPE applied monolingual target data are the tokens
not in bitext vocabulary. These out-of-vocabulary
tokens are replaced by a special symbol UNK in
the monolingual target data (see Table 2).

Considered Filtered OOV
25K 19K 16.5%
50K 35K 17.9%

100K 72K 22.0%
300K 172K 21.2%

11.2M 2.5M 23.0%

Table 2: Out-of-domain words in target monolingual
data. ”Considered” represents the amount of target
monolingual data used for study. ”Filtered” represents
the amount of target monolingual data after applying
filters.

Experiment Since the intermediate model spot
UNK symbol in the inputs during inferencing, in-
ferenced data also contains UNK symbol.

Gulcehre et al. (2015), claims to eliminate
monolingual sentences with more than 10% UNK
symbols for better performance. Sennrich et al.
(2016b), claims to handle rare/unseen words by
representing it in a sequence of sub-word units
using existing vocabulary that was learnt on the
parallel data. Our systems are experimented by
excluding sentences with UNK symbol.

Systems are trained with different proportions
of real to synthetic data by eliminating all sen-
tence pairs containing UNK in training data. Ta-
ble 3 shows the study of model performance before
and after removing sentence pairs containing UNK.
1-to-1 proportion of real and synthetic data with
out-of-vocabulary tokens masked by UNK symbol
scored best (18.76) out of all outcomes.

Ratio All Data Data without UNK
1:0.5 18.08 17.73
1:1.0 18.76 18.34
1:5.0 14.49 16.60

Table 3: BLEU scores on models with and without
removing sentences containing UNK

3.3 Anonymization

Analysis of the results of the model achieved 18.76
BLEU score, reveals that the translation accuracy is
negatively impacted when UNK is generated. This
is handled by building another model with bitext
data only, where the similarity between source and
target languages are anonymized by masking. This
approach enables the model to specifically focus
on learning the nuances of translation only (i.e..,
enables the model to focus on the specific section
in the source sentence that gets altered during trans-
lation).

Language pair comprising same alphabetic lan-
guages contains same words between them carry-
ing similar meaning. Numbers, names, geographic
names, etc., also holds same script. i.e. tokens
that are not language specific. The approach here
is to anonymize those words which are equally
present in source and target sentences. One special
character is used to mask all those tokens. The spe-
cial character is chosen in place of a special word
to eliminate the possibility of splitting the special
word during sub-word tokenization.

This approach reduces the vocabulary size and
the learning parameters of the model, preserving
the context. This results in transforming sentences
which appeared to be different in its raw form into
duplicate sentences in its anonymized form, which
are then deduplicated.

Hi-Mr track with ∼49K training sentences with-
out masking technique generated source and target
vocabulary of size 22.5K and 32.8K respectively.
Anonymization reduced source and target vocab-
ulary size to 20.9K and 31.0K respectively. This
approach resulted in improvement of BLEU score
by 1.2 over baseline. The impact of this approach
is proportional to the similarity of source and tar-
get languages. The key observation is that this
model performed better at translation of sentences
that are translated poorly (with UNK tokens) by
back-translation model.
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3.4 Stacking
Benefits of both the masking systems (masking
OOV tokens with UNK symbol and masking sim-
ilar tokens) are attained through stacking. Model
trained on anonymized parallel data and the model
trained on real bitext plus synthetic parallel data
are ensembled to achieve 19.76 BLEU with Dev
data.

3.5 Post-processing
The anonymized words are preserved before infer-
encing and the inference results are decoded by
replacing the special symbols with the preserved
anonymized tokens followed by BPE detokeniza-
tion.

4 Results

Our novel anonymization technique improved
BLEU by 1.2. Optimal proportion of back-
translated data improved BLEU by 3.5. Ensem-
bling best systems improved BLEU by 1.0. (See
Table 4)

System Dev BLEU
Baseline 9.13
+hyperparameter tuning 14.13
+anonymization 15.46
Baseline 9.13
+hyperparameter tuning 14.13
+backtranslation 18.76
Ensemble 19.71

Table 4: BLEU scores on Hindi-Marathi

Our final submission to the competition in Hindi-
Marathi track achieved 18.26 BLEU and ranked
first among all submissions.

5 Conclusion

This paper describes the techniques involved in
our system submitted for the WMT20 Similar Lan-
guage Translation task by Infosys. This winning
Hindi-Marathi translation system is built based on
NMT and evaluated based on the metric, BLEU.

The domain-based data preprocessing and fil-
tering techniques eases model learning. Adopting
novel approach of anonymizing language agnostic
tokens aided our system to focus more on tokens
that matters in the translation. It is highly observed
that the ratio of monolingual data used against bi-
text data plays a vital role in back-translated mod-
els. Improving translation accuracy and language

fluency by utilizing all available out-of-domain
monolingual corpora to the maximum effect can be
further explored.
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Abstract

This paper describes our system submission to
WMT20 shared task on similar language trans-
lation. We examined the use of document-
level neural machine translation (NMT) sys-
tems for low-resource, similar language pair
Marathi−Hindi. Our system is an extension of
state-of-the-art Transformer architecture with
hierarchical attention networks to incorporate
contextual information. Since, NMT requires
large amount of parallel data which is not avail-
able for this task, our approach is focused on
utilizing monolingual data with back transla-
tion to train our models. Our experiments re-
veal that document-level NMT can be a rea-
sonable alternative to sentence-level NMT for
improving translation quality of low resourced
languages even when used with synthetic data.

1 Introduction

With the widespread use of MT systems in com-
mercial and research community, there is an in-
creased attention to train NMT models for direct
translation between language pairs other than En-
glish Barrault et al. (2019). This is because of the
growing need to translate between pairs of simi-
lar languages without considering English as pivot
language. The task is to overcome the challenge
of limited availability of parallel data by exploit-
ing the advantages of similarity between languages
when building machine translation models. Similar
languages have the advantage of having some mag-
nitude of common information such as lexical and
semantic structures. A number of research studies
have been published to exploit commonalities when
translating text between close language pairs Pour-
damghani and Knight (2017); Lakew et al. (2018);
Costa-jussà (2017).

This paper describes our system submission at
WMT shared Similar Language Translation task1

1http://www.statmt.org/wmt20/similar.html

which focuses on improving translation quality of
similar languages in low-resource setting, the detail
of task is provided in Barrault et al. (2019). This
year’s task includes five pairs of languages from
three different language families i.e. Indo-Aryan,
Romance and South-Slavic languages; we partic-
ipated for Hindi-Marathi language pair. Since we
are using NMT which requires large bitext, we need
to alleviate this specific problem of bitext short-
age. Sennrich et al. (2016) introduced an approach
to utilize monolingual data using back translation.
This requires a machine translation system in oppo-
site direction to generate synthetic parallel corpora
from target side monolingual text.

Our work is an attempt to investigate the trans-
lation of a similar language pair (Marathi-Hindi)
using document-level NMT and back translation.
We participated under team name ”FJWU NUST”.
We submitted one constrained system i.e. we only
used the parallel and monolingual data provided by
WMT202 organizers to train and evaluate our mod-
els. We train and evaluate NMT systems in both
directions (i.e. HI⇒MR and MR⇒HI) but our sub-
mission to similar language shared task comprises
of MR⇒HI systems only.

The rest of the paper is structured as follows: In
Section 2 we give a brief background of document-
level NMT, Section 3 presents utilization of mono-
lingual data, Section 4 and 5 present our experi-
mental setup and results. We conclude the paper in
Section 6.

2 Document-Level NMT

Standard NMT works by translating individual sen-
tences and focuses on short context windows while
ignoring cross-sentence links and dependencies
Xiong et al. (2019). Document-level NMT aims to
consider discourse dependencies across sentences

2http://www.statmt.org/wmt20/.
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to capture document wide context. Most recently,
there has been great interest in modelling larger
context in standard NMT (Voita et al., 2018; Wang
et al., 2017; Tu et al., 2018; Maruf and Haffari,
2017; Bawden et al., 2017; Jean et al., 2017; Chen
et al., 2020). Cache based Tu et al. (2018) memory
models can be used to hold rich information, can
also provide the context of document during transla-
tion. Memory networks keep the representation of
a set of words in cache to provide contextual infor-
mation to NMT in the form of words. Kuang et al.
(2017) used two caches, dynamic cache to capture
dynamic context by storing words of translated sen-
tence and topic cache which stores topical words
of target side from entire document. Through a gat-
ing mechanism, the probability of NMT model and
cache based neural model is combined to predict
the next word. Miculicich et al. (2018) has pro-
posed to use hierarchical attention network (HAN)
Yang et al. (2016) to provide dynamic contextual
information to NMT during translation. HANs are
used on both sides, encoder and decoder to inte-
grate source and target side context in NMT. In con-
trast to Recurrent Neural Networks (RNN), HANs
provide dynamic access to contextual information
during training and evaluation.

Similarly, Maruf and Haffari (2018) used pre-
trained RNN encoder to attach global source and
target context to sentence based NMT. Zhang et al.
(2018) has shown that integration of short con-
text (2 sentences) outperforms existing cache based
RNNSearch model. Voita et al. (2018) introduce a
context aware NMT model with additional multi-
head attention component, in which they control
and analyze the flow of information from the ex-
tended context to the translation model.

Stojanovski and Fraser (2020) studied the use of
Transformer based document-level models adopt-
able to novel (zero-resource) domains. They have
shown the implicit domain adaptation of document-
level NMT models trained on multi-domain data, is
capable of capturing large context. The challenge
of translating single sentences efficiently while
keeping models insensitive to enlarge and noisy
context is addressed by Zheng et al. (2020). To
make general purpose context-aware MT, both for
short and long sentences, they opt for having inde-
pendent global and local context integration into
sentence based NMT.

3 Utilizing Monolingual Data

Large amounts of monolingual resources are gen-
erally available for a multitude of languages. Back
translation is considered a well known approach
to mitigate the need of large parallel corpora by
automatically translating target language monolin-
gual data to source language Sennrich et al. (2016).
Back translation requires a MT system in oppo-
site direction, where target side monolingual data
is translated into source text to generate synthetic
parallel training data. Several techniques exists
to utilize monolingual text for improving NMT
(Abdul-Rauf et al., 2016; Zhang and Zong, 2016;
Currey et al., 2017; Domhan and Hieber, 2017).

Document-level models require parallel data
with document boundaries for training and eval-
uation. As compared to sentence-level systems,
data for building robust document-level models is
significantly low resourced Liu and Zhang (2020).
WMT20 provides document-level distinctions for
Europarl v9, New-Commentary v14 and Rapid cor-
pus. Our training data is constrained to have only
parallel and monolingual data provided by WMT20
shared task, the statistics of data are given in sec-
tion 4.1. Since, our system is build in Marathi-
Hindi direction, we backtranslated Hindi (News
Crawl2008-2019) monolingual data into Marathi
to generate bitext. This backtranslated data is than
concatenated with parallel data made available by
organizers, to train machine translation models.

4 Experimental Setup

For our primary submission we use document-level
Miculicich et al. (2018) model, an extension of
transformer with additional context attentions. For
comparison with sentence-based NMT systems, a
strong baseline using OpenNMT-py Klein et al.
(2017) is first defined. For true comparison, the
architecture and configurations of both the models
are kept the same.

4.1 Dataset
Table 1 presents details of training, development
and test corpus. We used all the parallel data (HI,
MR) provided by WMT20 for similar language
translation task. The available parallel data was in-
sufficient to train NMT models, therefore we used
monolingual “News Crawl” data for generating
synthetic parallel corpus through backtranslation.
NMT models are trained on backtranslated bitext
combined with existing parallel corpus. Training
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corpus contains data of multiple domains, a self
test set is created by selecting chunk of data from
each domain according to size of dataset. Original
bitext and backtranslated parallel training data is
tokenized with Indic-NLP 3 library, which supports
tokenization/de-tokenization of Hindi and Marathi.

Our document-level systems Miculicich et al.
(2018) expect document boundaries in text file dur-
ing training and testing. Available data for this
shared task does not contains document bound-
aries, for this we followed the same approach used
by Ul Haq et al. (2020) to generate artificial docu-
ment boundaries. They have taken average docu-
ment size from document-level corpora and used
the same size to generate document boundaries for
parallel data without document distinctions. For
train and dev set, instead of splitting on sentences,
they considered number of documents. We have
used average of two best performing context vari-
ables for document size as reported in Table 3 of
Miculicich et al. (2018).

Corpus Sentences Documents
News 12.3K 4.1K
PmIndia 25.9K 8.6K
IndicWordNet 11.2K 3.7K
NewsCrawl-Monolingual 0.6M 0.2M

Dev 1114 278
Test 1941 485

Table 1: Train, Dev and Test dataset statistics along
with document split.

4.2 Model Configurations
As our sentence-level baseline and document-level
systems are based on Transformer model, we fol-
lowed similar configuration parameters for both as
reported in original paper Vaswani et al. (2017). 6
hidden layers are incorporated on both encoder and
decoder side of Transformer model. All the hidden
states have a dropout of 0.1 and 512 dimensions.
Transformer model is trained with 8000 warm-up
steps with a learning rate of 0.01. We checkpoint
the model every 1000 steps for validation. For all
the models, batch size is set to 2048 and is trained
for 150 epochs.

Two step training process is followed as de-
scribed by Miculicich et al. (2018). Initially NMT
models are optimized without considering con-
textual information, after that encoder and de-
coder models are optimized by using context-aware

3https://github.com/anoopkunchukuttan/
indic_nlp_library

HANs. HAN Transformer models gave best per-
formance for 1-3 previous sentences, we use k=3
previous sentences for both source and target side
context.

5 Results

Table 2 shows our results for Hindi−Marathi trans-
lations. Our document-level systems for both
directions HR⇒MR and MR⇒HI outperformed
sentence-level baselines.

BLEU score for WMT , Dev and Self test set
is reported in Table 2 for all systems. BLEU score
for WMT test data is provided by WMT20 or-
ganizers. We have computed BLEU scores using
Moses multi− blue.perl script. For submission,
we used output of document-level system trained
on all data in MR⇒HI direction which gave high-
est BLEU score (6.79) on WMT test set. Our
document-level models are optimized by adding
context-aware HANs on encoder side only4. With
DL−NMT model trained on corpus containing
90% backtranslated data, a gain of 0.63 BLEU
points is achieved (6.16 ⇒ 6.79) over sentence-
level baseline (row 2).

In last rows (3 and 4) of Table 2, NMT
models are build in opposite direction of back-
translated data, depicted as NMTforward and and
DL−NMTforward. For forward translation models,
source side is backtranslated data while target side
is original monolingual data used for backtransla-
tion. Similarly, DL−NMT models trained in for-
ward direction of data, achieved batter score over
NMT systems. Since, the large portion of train-
ing data contains synthetic data, on self test set all
models performed better due to over fitting.

System Direction BLEUScore
Wmt Dev Self

NMT MR⇒HI 6.16 8.08 12.50

+DL−NMT MR⇒HI 6.79 9.31 14.93

+NMTfwd HI⇒MR 3.29 6.33 16.69

+DL−NMTfwd HI⇒MR 3.54 6.28 17.75

Table 2: Table summarizing Document-level NMT
(DL-NMT) and NMT Transformer results for different
test sets.

4Due to limited availability of time, HAN for decoder side
and HAN joint models were not used for experiments.
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6 Summary

This paper presented the ”FJWU NUST” system
submitted to the Similar Language Translation task
at WMT20. The limited and out-of-domain parallel
training data provided by organizers, emerged as
a challenging task to train NMT models, whose
quality is dependent on large data.

We have utilized monolingual data with back-
translation along with available parallel data for
training NMT system which incorporated context-
aware HANs on encoder side. Our document-level
systems outperformed sentence-level NMT sys-
tems, even in the absence of document-level cor-
pora. This showed that document-level machine
translation can be reasonable alternative of NMT,
since it can deliver good quality translation for low-
resource languages without requiring document-
level parallel data.
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Abstract

In this paper, we describe the TALP-UPC
participation in the WMT Similar Language
Translation task between Catalan, Spanish,
and Portuguese, all of them, Romance lan-
guages. We made use of different tech-
niques to improve the translation between
these languages. The multilingual shared en-
coder/decoder has been used for all of them.
Additionally, we applied back-translation to
take advantage of the monolingual data. Fi-
nally, we have applied fine-tuning to improve
the in-domain data. Each of these techniques
brings improvements over the previous one.

In the official evaluation, our system was
ranked 1st in the Portuguese-to-Spanish direc-
tion, 2nd in the opposite direction, and 3rd in
the Catalan-Spanish pair.

1 Introduction

Research in the field of Machine Translation (MT)
has been growing during these last years. From
statistical approaches (Koehn et al., 2003) to neu-
ral ones (Bahdanau et al., 2015), the progress has
been impressive. Even after having achieved excep-
tional results based only on attention mechanisms
(Vaswani et al., 2017), there are still many chal-
lenges and improvements remaining, for instance,
multilingual translation from languages other than
English, which have lower resources, and domain
adaptation.

In order to tackle these challenges, the Similar
Language Task organized in the context of the Con-
ference on Machine Translation (WMT 2020) has
provided an appropriate setting for them. Within
this task, the focus is the translation between lan-
guages that are different from English, and more
specifically, the focus consists of translating lan-
guages that are from the same family. The families
included are the following: South-Slavic, Indo-
Aryan, and Romance.

In our case, we have devoted the research to
Romance languages, which include Spanish, Por-
tuguese, and Catalan. The evaluation comprised
all translation directions, but only provided parallel
training data for Spanish-Portuguese and Spanish-
Catalan. We approached the Portuguese-Catalan
pair both from a pivot-based and zero-shot perspec-
tive.

In this paper, we make use of the well-known
multilingual shared encoder/decoder and we show
its effectiveness when applied to languages of the
same linguistic family. Additionally, we benefited
from back-translation and fine-tuning.

2 Background

In this section, we show an overview of neural-
based multilingual machine translation and domain
adaptation using fine-tuning.

2.1 Multilingual translation

When having multiple languages, there is the oppor-
tunity to use several NMT architectures, based in
the Transformer (Vaswani et al., 2017). Among the
alternatives, we can share encoders and decoders
(Johnson et al., 2017) or have specific encoders and
decoders for each language (Escolano et al., 2020).
In this paper, we are using the shared approach and
we are leaving as further work to compare with
other ones.

Shared encoder-decoder One direct approach
is using a single encoder/decoder shared for all
languages (Johnson et al., 2017). In this case, pa-
rameters and vocabulary are shared among all lan-
guage pairs and it helps the generalization across
languages improving the translation for the low
resource language pairs (Aharoni et al., 2019). Ad-
ditionally, the shared encoder/decoder allows using
zero-shot easily, only by adding a tag in the source
sentence. The source sentence has to contain the

447



language abbreviation of the target language. So,
when translating from Catalan to Spanish, we have
to include the <2es> tag at the beginning of the
Catalan source sentence, which means that we are
translating into Spanish.

<2es> Bon dia -> Buenos dı́as

Therefore, it is necessary to add the tag to indicate
the target language, followed by the sentence to be
translated. This is necessary both in training and
inference.

2.2 Monolingual corpus selection for
back-translation

There is a large amount of monolingual data avail-
able for this task. Monolingual data can improve
the system by using back-translation (Sennrich
et al., 2016). However, back-translation is a pro-
cess that consumes a lot of resources, so we de-
cided to select the monolingual data within the
target domain. The selection criterion has been the
TF-IDF (Term Frequency – Inverse Document Fre-
quency), which defines the relevance of the words
in a document. Using this criterion, we compared
all the available monolingual data against the devel-
opment set and only kept the files that had a higher
score among all.

2.3 Domain adaptation

One approach to improve the translation of a spe-
cific language domain is to make use of fine-tuning
techniques. Fine-tuning consists of retraining a
model that has already been trained with out-of-
domain data, with in-domain data. The disadvan-
tage of fine-tuning is that it tends to overfit, due
to the small amount of in-domain data used, com-
pared to the out-of-domain data. Sometimes the
final model might fall into the problem of catas-
trophic forgetting (French, 1999).

One approach to avoid over-fitting and catas-
trophic forgetting is to do mixed fine-tuning, which
consists of shuffling the in-domain with the out-
of-domain data, and then train normally on this
combined data (Chu and Dabre, 2019).

3 Experimental Framework

In this section, we describe the datasets used for
the task, the data preprocessing, the training, and
the evaluation of the bilingual and multilingual
systems.

3.1 Data and Preprocessing

Data Selection All the data used in our experi-
ments has been provided by the organizers, so we
did not make use of any additional parallel nor
monolingual data. For the Catalan-Spanish and
Spanish-Portuguese translation, we used all the par-
allel data available, which is about 11.3 million sen-
tences for the Catalan-Spanish translation and 4.1
million sentences for the Spanish-Portuguese. For
the Catalan-Portuguese we did not have any parallel
data. We have also used monolingual data for back-
translation purposes. Two million sentences have
been used from the CaWaC file for Catalan, about
1.1 million sentences from News-commentary-v15
and News-crawl-2019 files for Portuguese, and 1.5
million sentences from News-commentary-v15 and
News-crawl-2015 for Spanish. The multilingual
model has been trained using all the parallel data,
and with pseudo-parallel data that has been ob-
tained by applying back-translation. To achieve
the back-translation we used our best system at the
moment to perform the translation of the mono-
lingual data, obtaining the pseudo-parallel corpus.
As said in Section 2.2, the monolingual data has
been selected using TF-IDF as the measure for text
similarity 1. We used 2/3 of the development set for
fine-tuning purposes and 1/3 of the development
set as a test set.

Preprocessing We followed the standard proce-
dure for preparing the data, which consists of nor-
malizing, tokenizing, truecasing, and cleaning (lim-
iting sentences from 1 to 50 words). To perform
these actions we made use of the Moses2 scripts.
We extracted the joint subwords with byte-pair en-
coding (BPE)3.

3.2 Parameter Details

The bilingual and multilingual models are both
based on the Transformer architecture, imple-
mented with fairseq toolkit 4. We assigned six
attention layers for the encoder and the decoder,
each having four attention heads per layer, with
an embedding dimension of 512. Additionally, all
the models shared the source and target embed-
dings. The multilingual model shared the embed-
dings among all language pairs. Each batch was

1https://github.com/BhargavaRamM/Document-
Similarity

2https://github.com/moses-smt/mosesdecode
3https://github.com/rsennrich/subword-nmt
4https://github.com/pytorch/fairseq
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assigned to have a maximum number of tokens of
2048. The optimizer used was Adam, setting the
betas to β1 = 0.9 and β2 = 0.98, with a learning
rate of 5e-4 varied with the inverse square root of
the step number. The warm-up steps were set equal
to 4000, a dropout of 0.1, and a weight decay and
gradient clipping norm set to 0.

4 Results

The results show the improvements obtained by
applying multilinguality, back-translation, and fine-
tuning techniques. For the pair Catalan-Portuguese
(CA-PT), in which there was no training data
available. We have used the cascade technique,
which consists of concatenating the translation of
Catalan-to-Spanish and Spanish-to-Portuguese sys-
tems, and the other way around for the opposite
direction. Also, we have used the multilingual sys-
tem to obtain zero-shot translation for this pair.

Directions BI MULT +BACK +FT
ES→CA 64.23 73.12 70.59 71.21
CA→ES 60.64 69.56 73.01 74.05
ES→PT 27.20 27.62 28.80 29.55
PT→ES 29.70 30.57 30.89 32.12
CA→PT 20.99 24.94 25.52 26.94
PT→CA 25.21 28.00 27.97 29.18
CA→PT ZS - 12.47 13.56 16.05
PT→CA ZS - 17.67 19.64 19.56

Table 1: BLEU results for all the systems evaluated in
the development of this study. BI = Bilingual, MULT =
Multilingual, BACK = Multilingual with Backtransla-
tion, FT = Multilingual with back-translation and Fine-
tuning, ZS = zero-shot.

Table 1 shows that the multilingual model out-
performs the bilingual model in all cases. Zero-
shot performs worse than the cascade method. Ap-
plying back-translation to the multilingual model
improves for most language pairs and directions.
Finally, when applying fine-tuning to the back-
translation model, we see an improvement in all
pairs and directions, except for the PT→CA direc-
tion with zero-shot.

4.1 Official evaluation results
Here we report the official evaluation. We partici-
pated with our best system which was the multilin-
gual model with back-translation and fine-tuning.
For the CA-PT directions, we translated using the
cascade technique, Table 2 reports the results on
the evaluation test set. Our system was ranked 1st
in the Portuguese-to-Spanish direction, 2nd in the
opposite direction, and 3rd in the Catalan-Spanish

pair. For the Catalan-Portuguese directions, the
results were not released.

Directions BLEU
ES-CA 60.50
CA-ES 68.84
ES-PT 32.33
PT-ES 33.82
CA-PT 32.80
PT-CA 34.40

Table 2: Official BLEU scores for the evaluation of the
final test set.

5 Discussion

We will now discuss the results obtained for each
system we have trained, comparing one against the
others.

Bilingual model compared to the Multilingual
model We have shown that the multilingual
model outperforms the bilingual model in all trans-
lations directions, with an improvement that varies
from +0.4 to +6.9 BLEU. The multilingual model
allows for a better generalization by sharing the vo-
cabulary among all the languages. Additionally, the
multilingual model allows for zero-shot translation.

Back-translation This technique allows us to
make use of monolingual data. The improvement
with this technique varies from +0.5 to +3.4 BLEU,
except when using the monolingual Catalan data
(ES→CA and PT→CA directions). This deterio-
ration is probably due to the lower resemblance
(estimated using the TF-IDF score) of the CaWaC
dataset compared to the target domain.

Fine-tuning We have applied fine-tuning to per-
form the domain adaptation. To do so, we added
2/3 of the development data set to the already
trained model, which is the multilingual model
with back-translation, since it was the best model
we had so far. After doing so, we had to retrain
the model from the last checkpoint, preventing it
from overfitting. By applying fine-tuning, we were
able to achieve improvements between +0.6 and
+2.5 BLEU points (except in zero-shot). This fine-
tuning improvement is achieved by using very few
resources (1500 sentences) and less time compared
to back-translation, which requires more resources
and time.
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6 Conclusion

We have observed how using a multilingual shared
encoder/decoder in languages from the same fam-
ily improves bilingual translation. This is due to a
positive transfer among these languages while shar-
ing vocabulary and embeddings. Additionally, this
multilingual shared system has been improved with
both back-translation and fine-tuning methods.
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Abstract

In this paper, we describe our submissions
for Similar Language Translation Shared Task
2020. We built 12 systems in each direction for
Hindi ⇐⇒ Marathi language pair. This paper
outlines initial baseline experiments with var-
ious tokenization schemes to train statistical
models. Using optimal tokenization scheme
among these we created synthetic source side
text with back translation. And prune syn-
thetic text with language model scores. This
synthetic data was then used along with train-
ing data in various settings to build transla-
tion models. We also report configuration of
the submitted systems and results produced by
them.

1 Introduction

Machine Translation systems are models which
aim to translate text from one language into an-
other. There are multiple ways of building such a
model (Rule Based, Data driven, Hybrid etc.). In
this system description paper, we use data driven
techniques to build MT systems. As the name sug-
gests, data driven MT systems make use of parallel
sentences (i.e. xth sentence in two languages have
same meaning). We make use of statistical (Koehn
et al., 2003) and neural (Bahdanau et al., 2014)
methods to build systems for Hindi Marathi pair.

Hindi Marathi language pair comes under
purview of similar languages. Similar Languages
are languages which exhibit lexical and structural
similarities (Kunchukuttan et al., 2014a). This can
be due to common ancestry or being in close prox-
imity for long time. In current digital age commu-
nication, translation between similar language is
a justifiable requirement. But there is a scarcity
of good quality bitext for many language pairs,
as is the case of Hindi Marathi. Hence, we used
characteristics displayed by similar languages (in
this case Hindi and Marathi) like similar form of

spelling, pronunciation etc. Following Kunchukut-
tan and Bhattacharyya (2017) and Kunchukuttan
et al. (2014b) we made use of byte pair encod-
ing (Sennrich et al., 2016b) and morfessor toolkit
(Virpioja et al., 2013) respectively as part of pre-
processing step before training. Using cues from
Koehn and Knowles (2017) and looking at the size
of training data provided, we use statistical method
to build initial models. To further salvage simi-
larity between this language pair we made use of
backtranslation (Sennrich et al., 2016a) to generate
more synthetic data for further training using both
neural and statistical methods.

For this shared task we developed 12 translation
systems in each direction (Hindi ⇐⇒ Marathi).
To rank systems, we went through some test in-
stances subjectively and also compared our BLEU
scores with another Translation system. And chose
top 2 systems in both direction using both sub-
jective examination and detoknized BLEU scores.
Subsequent sections give more detailed overview
of systems developed.

2 Seed MT systems using different
tokenization schemes

Experiments in Koehn and Knowles (2017) show
that Statistical Machine Translation model fairs bet-
ter when compared to Neural model in case of low
resource setting. So, we make use of SMT model
to make initial baseline systems using various tok-
enization schemes. We use these systems as seed
system, used to create synthetic dataset for further
training by back translation.

2.1 Data
For our initial experiments we just used parallel
and monolingual corpora shared by the organizers.
We include training data to monolingual corpus
for each language (LM corpus) to make language
model. Parallel text consisted of bitext from 3
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Corpus/Language Hindi Marathi
#of Tokens basicTok BPE Morf #of Sentences basicTok BPE Morf #of Sentences
Train 840863 977742 38246 38246 638467 867968 851394 38246
Dev 32106 36482 34600 1411 25552 33997 33828 1411
Monolingual 1455510657 1760885875 1629220967 77722389 4834280 6715047 6526439 369403

Table 1: Total number of Tokens in each file after various tokenization schemes, last sub-column in both languages
column denotes total number of lines in respective corpus

sources namely News, PM India, Indic WordNet.
Indic Wordnet is not used in training because we
found multiple instances of sentence pairs in which
one of the sentence was incomplete.

2.2 Preprocessing

We used the IndicNLP toolkit1 to tokenize all cor-
pora as first preprocessing step. Then we made use
of a BPE (Sennrich et al., 2016b) model trained
with 10000 merge operations on the LM corpus for
both Hindi and Marathi. The resultant model was
used to tokenize words to subwords in sentences
for all texts. Morfessor (Virpioja et al., 2013) was
also used as another alternative preprocessing step.
We trained a morfessor model on the full LM cor-
pus of Marathi and an equally sized Hindi Corpus.
And taking cue from IndicNLP toolkit, we used
’+’ as delimiter when segmenting words into seg-
ments i.e. a word xyz which was to segment as x yz
will segment as x+ yz. Table 1 shows statistics of
preprocessed data. We used all possible combina-
tions of tokenization schemes while training initial
models, these tokenization schemes were,

• Basic tokenization denoted as BasicTok in Ta-
ble 1 which make use of IndicNLP toolkit.

• BPE which tokenize words into subword and
is denoted as BPE.

• Tokenization using Morfessor, which is de-
noted as Morfes.

2.3 Machine Translation Model

We made use of Moses toolkit (Koehn et al.,
2007) to build statistical models trained with tok-
enized bitext. We also use GIZA++ (Och and Ney,
2003) to find alignments between parallel text and
grow-diag-final-and method (Koehn et al., 2003)
to extract aligned phrases. And utilize KenLM
(Heafield, 2011) to train a trigram model with
kneser ney smoothing on monolingual corpus of

1http://anoopkunchukuttan.github.io/indic nlp library/

both languages. MERT (Och, 2003) is used for tun-
ing the trained models. We evaluated these models
on dev set. Results are given in Table 2.

2.4 Using back-translation to augment
training data

Based on the results in Table 2 we make use of
following tokenization schemes depending on di-
rection of translation,

• BPE as tokenization preprocessing scheme on
both languages when translation direction is
from Hindi to Marathi.

• Morf as tokenization scheme for Marathi and
Basic tokenization for Hindi when translating
from Marathi to Hindi.

After translating monolingual corpus, we did the
following post processing based on direction of
translation,

• In case of Marathi to Hindi translation, in post
processing we remove ’+’ delimiter. This is
due to Marathi being morphological richer
than Hindi.

• For Hindi to Marathi,we simply joined the
subwords in text translated.

Due to time constraint we translated some part
of Hindi monolingual corpus (AuthenticHindi) to
Marathi (SyntheticMarathi). We used beam search
with default setting in Moses for this translation.
We used already trained LM from Section 2.3 to
learn average LM score of BPE tokenized Marathi
monolingual corpus. SyntheticMarathi is than
pruned (SyntheticPrunedMarathi) by keeping back-
translated sentences which have LM score higher
then average LM score on aforementioned Cor-
pus. Same process is followed while translat-
ing AuthenticMarathi to SyntheticHindi and further
pruning to get SyntheticPrunedHindi. Statistics re-
lated to back-translated data and resultant pruned
corpus is given in Table 3.
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Experiment. Tokenization Based Exp Hin To Mar Mar To Hin
1 Hindi BasicTok – Mar BasicTok 19.937 24.542
2 Hindi BPE – Mar BasicTok 19.2251 23.13
3 Hindi Morfes. - Mar BasicTok 19.1327 23.44
4 Hindi BasicTok – Mar BPE 19.02 25.836
5 Hindi BPE – Mar BPE 20.06 26.07
6 Hindi Morfes. - Mar BPE 19.43 25.54
7 Hindi BasicTok – Mar Morfes. 19.37 26.282
8 Hindi BPE – Mar Morfes. 19.49 25.30
9 Hindi Morfes. - Mar Morfes. 19.33 26.03

Table 2: BLEU Scores on dev dataset when we use SMT models which are trained in all combinations of 3
tokenization schemes.

Back Translation
direction L1 to L2 Hindi to Marathi Marathi to Hindi

Sentences translated 456106 369403
Average KenLM
Score of Monolingual
data in L2

62.66 42.25

Sentences which are
above this LM score 283043 (62.05%) 215417 (58.31%)

Average Sentence
length of pruned
corpus with standard
deviation

10.25, 4.80 11.57, 4.52

Table 3: Statistics of back translated data

3 MT models using augmented bitext

For augmented data experiments we had following
datasets available for training,

• Original training text

• Synthetic Marathi and Authentic Hindi

• Synthetic Pruned Marathi and Authentic
Pruned Hindi

• Synthetic Hindi and Authentic Marathi

• Synthetic Pruned Hindi and Authentic Pruned
Marathi

We ran experiments on following dataset com-
binations, for Hindi to Marathi Systems with BPE
tokenization on both Hindi and Marathi,

1. Original training text + Synthetic Marathi and
Authentic Hindi + Synthetic Hindi and Au-
thentic Marathi

2. Original training text + Synthetic Pruned
Marathi and Authentic Pruned Hindi + Syn-
thetic Pruned Hindi and Authentic Pruned
Marathi

3. Original training text + Synthetic Hindi and
Authentic Marathi

4. Original training text + Synthetic Pruned
Hindi and Authentic Pruned Marathi

And for Marathi to Hindi System, we ran following
dataset combinations with morfessor model tok-
enization on Marathi and Basic Tokenization on
Hindi,

1. Original training text + Synthetic Hindi and
Authentic Marathi + Synthetic Marathi and
Authentic Hindi

2. Original training text + Synthetic Pruned
Hindi and Authentic Pruned Marathi + Syn-
thetic Pruned Marathi and Authentic Pruned
Hindi

3. Original training text + Synthetic Marathi and
Authentic Hindi

4. Original training text + Synthetic Pruned
Marathi and Authentic Pruned Hindi

All these dataset combinations were used to train
following methods to build MT models with respec-
tive default configurations available in respective
toolkits,

• SMT model using Moses toolkit (Koehn et al.,
2007)

• NMT model with attention using Opennmt
toolkit (Klein et al., 2017)

• NMT model with attention and copy attention
(See et al., 2017) using Opennmt toolkit, to
make use of similarity between Hindi Marathi
language pair
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4 Result

To submit two best systems out of 12 in each di-
rection as directed by shared task, we did two eval-
uations. Firstly, we compared our system outputs
to output of another publicly available translation
model. Second, we went through some random out-
puts of all system outputs. We found that in most
systems synthetic-authentic dataset which was not
pruned with LM scores along with original training
set performed better than pruned augmented bitext
and original corpus. Following this, we selected
following system outputs as our submission,

• Hindi to Marathi System:

– Primary Submission: NMT with At-
tention + Original parallel text + Syn-
theticHindi AuthenticMarathi

– Contrastive Submission: NMT
with Attention and CopyAttention
+ Original parallel text + Synthet-
icMarathi AuthenticHindi + Syn-
theticHindi AuthenticMarathi

• Marathi to Hindi System:

– Primary Submission: NMT with At-
tention + Original parallel text + Syn-
theticMarathi AuthenticHindi + Syn-
theticHindi AuthenticMarathi

– Contrastive Submission: SMT +
Original parallel text + Synthet-
icMarathi AuthenticHindi + Syn-
theticHindi AuthenticMarathi

Table 4 gives the scores we received for these
systems.

Language
Direction Submission Type BLEU RIBES TER

Hindi to Marathi Primary 11.41 57.2 79.96
Hindi to Marathi Contrastive 10.21 55.17 82.01
Marathi to Hindi Primary 18.32 59.31 77.35
Marathi to Hindi Contrastive 21.11 60.76 77.28

Table 4: Scores for our systems

Both of our Hindi to Marathi Systems were
somewhere in the middle compared to the other
submissions. On the other hand Marathi to Hindi
Contrastive submission (which was trained using
SMT) was in top 5 standings.
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Abstract

This paper describes the University of Mary-
land’s submissions to the WMT20 Shared Task
on Chat Translation. We focus on translat-
ing agent-side utterances from English to Ger-
man. We started from an off-the-shelf BPE-
based standard transformer model trained with
WMT17 news and fine-tuned it with the pro-
vided in-domain training data. In addition, we
augment the training set with its best matches
in the WMT19 news dataset. Our primary
submission uses a standard Transformer, while
our contrastive submissions use multi-encoder
Transformers to attend to previous utterances.
Our primary submission achieves 56.7 BLEU
on the agent side (en→de), outperforming a
baseline system provided by the task organiz-
ers by more than 13 BLEU points. Moreover,
according to an evaluation on a set of carefully-
designed examples, the multi-encoder archi-
tecture is able to generate more coherent trans-
lations.

1 Introduction

Recent advances have made MT a widespread tool
for asynchronous consumption of text. The dream
of dissolving language barriers, however, will not
be fulfilled until MT enables two or more people
carry on a synchronous conversation, each speak-
ing their native languages. Building translation
systems that enable seamless conversations be-
tween an English-speaking customer support agent
and a German-speaking customer is the goal of
WMT20’s shared task of chat translation (Farajian
et al., 2020). In participation of this shared task,
we focused on the agent side, translating English
utterances into German. Our methods are inspired
by Voita et al. (2018) and Bawden et al. (2018), ex-
plicitly leveraging broader context to address coref-
erence and cohesion to improve translation quality.

∗Equal contribution.

We compare architectures of a standard transformer
with a single encoder and a multi-encoder one with
an additional transformer encoder to incorporate
information from the previous utterance. In the
case of blind testing or production use, since cus-
tomer target utterances (English) will not be given,
a separate de→en model was trained and used to
back-translate customer utterances.

Additionally, given the limited training pairs, we
experiment with augmenting our dataset. We se-
lected a subset of WMT19 en-de news data that
were similar to the chat training data, which we
then added to the training data. The subset was
constructed using a full-text search engine loaded
with the entire en-de WMT19 news data, which
iterated through each chat training example, query-
ing for the two closest matches with both the source
and target as search strings.

Our primary system, denoted PRIMARY, is a
single-encoder pretrained transformer fine-tuned
on WMT20 Chat data. The first contrastive sys-
tem, denoted CONTRASTIVE1, is a multi-encoder
transformer that pre-warms, using WMT19 news
data, the weights of an additional encoder after
loading the pretrained transformer. The second
contrastive system, denoted CONTRASTIVE2, is
a multi-encoder transformer that fine-tunes the pre-
trained transformer on a combination of WMT19
news data and WMT20 chat data.

2 Related Work

One of the main challenges for translating dis-
course arises from ambiguities of sentences when
they are taken out of context, as MT models often
do (Yamashita et al., 2009). Especially in dialogue,
sentences tend to reference entities in previous sen-
tences, which necessitates using cross-sentential
information to translate a given sentence. Indi-
vidual words can be translated in different ways,
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significantly varying the meaning of the resulting
sentence in a larger context (Gao et al., 2015). In ad-
dition, dialogue in the customer support domain is
a distinctive and spontaneous category of text, with
colloquialisms, errors and minimal revisions. All
of these deviations can accumulate error through-
out the course of a conversation.
Dialogue Translation: Specific interests in trans-
lating dialogues can be found as early as Lee and
Kim (1997)’s work on Korean-English dialogue
translation based on syntactic patterns and n-grams.
Though their model parses sentences into speech
acts instead of generating full-sentence translations,
they have pointed out the importance of context
(previous sentence) in interpreting the current sen-
tence properly. The most relevant recent work is
(Maruf et al., 2018), in which contexts for both
source-side and target-side are utilized as addi-
tional generation conditions for the decoder in their
NMT model. Several variants of the model archi-
tecture and the attention mechanism are explored.
However, their experiments are conducted on Eu-
roparl and OpenSubtitles. The former is formal
language and the latter scripted conversations of
movies and TV. Here, in contrast, chat data is infor-
mal unscripted real-world language.
Context-Aware Machine Translation: Chat
translation can be regarded as a special case of
context-aware translation. Jean et al. (2017) ex-
tends the vanilla attention-based neural MT model
(Bahdanau et al., 2015) by conditioning the de-
coder on the previous sentence via attention over
its words. Wang et al. (2017) propose a cross-
sentence context-aware model. They integrate the
historical representation into NMT with two strate-
gies: a warm-start of encoder and decoder states,
and an auxiliary context source for updating de-
coder. Bawden et al. (2018) use multi-encoder
NMT models to exploit context from the previ-
ous source and target sentence. Voita et al. (2018)
propose a context-aware model based on the Trans-
former. Their model controls the flow of informa-
tion from the extended context and improves on
pronoun translation.
NMT Facilitated with Retrieved Translations:
There is a line of NMT research inspired by
example-based translation systems that aims to gen-
erate better translations by retrieving and referenc-
ing additional translation pairs. Gu et al. (2018)
utilize an off-the-shelf search engine to retrieve
training sentence pairs whose source side is similar

to a given source sentence and incorporate them as
additional input to the decoder. Zhang et al. (2018)
use the retrieved examples at prediction time to up-
weight outputs whose constituents match retrieved
n-gram translation candidates. In a similar vein, but
at training time rather than prediction time, we use
a retrieval system to select similar examples from
a larger dataset to augment the smaller in-domain
training set.

3 Data Preparation

3.1 Preprocessing

We used the Moses toolkit (Koehn et al., 2007) to
preprocess our data. The training corpus was to-
kenized and cleaned. After that, we applied byte
pair encoding (BPE) (Sennrich et al., 2016) on the
data with the BPE model learned on the data of the
pretrained model (Section 4.1.1). Following the
pre-trained model, we use its shared vocabulary for
both target and source sides. The size of the vocab-
ulary, which is the union of English and German
tokens, is 36,628.

3.2 Retrieval-Based Training Data
Augmentation

There were only 13.85k utterances in the provided
parallel WMT20 Chat training data. Given the lim-
ited data, we start off with a model pretrained on
the WMT17 en-de news data, and additionally aug-
ment our training data with a filtered set of 4.75k
lines of WMT19 en-de news data. We adopted
Elasticsearch1 to build a fast full-text search engine
on the entire WMT19 en-de news set, and then it-
erated through each (source, reference) pair in the
Chat training data. With each pair, we used the
search engine to find the top two matches with the
current source and target as search strings. We trun-
cated this set to 4.75k training samples to limit the
possibility of overwhelming our fine-tuning set and
denote it Chat-Similar News. This technique brings
the total training set to 18.6K parallel utterances.

4 Experiments

We conducted varied experiments in the English-
German direction. We included the English refer-
ence of the customer utterances as training data for
the scope of these experiments, even though this
would not be available in a production setting. This
was a strategy to provide more training pairs to our

1https://www.elastic.co/
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models, knowing that the English references for
customers is natural language, according to task
organizers.

4.1 Systems Overview
We base all our systems off the Transformer ar-
chitecture. Our implementation is based on the
JoeyNMT toolkit (?). We kept hyperparameters
common throughout. We experimented with the
following settings:

1. Trained a standard single-encoder Trans-
former model.

2. Introduced a second encoder into our NMT
architecture to process the preceding sen-
tence, using context-target attention along
with source-target attention to compute the
final encoder hidden state, on a combination
of Chat-Similar News and Chat.

3. As in item 2, introduced a second encoder and
pre-warmed that encoder’s weights on Chat-
Similar News, before fine-tuning on Chat.

4.1.1 Off-the-shelf Pretrained Model
We found that an existing model trained on a differ-
ent domain can generalize to this smaller dataset.
We downloaded model weights for WMT17 en-de,
provided by JoeyNMT Transformer2. This model
was able to adapt to the chat domain, so the pre-
trained model was used for all experimental set-
tings.

4.1.2 Common Hyperparameters
We kept hyperparameters consistent across mod-
els we tested, with some exceptions to account for
slight differences in architecture. All models had
embedding and hidden layers with 512 units, and
feed-forward layers with 2048 units. A dropout rate
of 0.1 was used on both the encoder and decoder
layers. Training was performed with the Adam
optimizer and in minibatches of 2048 tokens, with
cross-entropy loss, an initial learning rate of 0.0002,
and a patience of 8 validation cycles. All models
were trained for a maximum of 65 epochs. The
checkpoint with lowest validation perplexity is se-
lected as the final model. For all validation cycles,
greedy decoding is adopted. For testing, we used
beam search decoding with a beam width of 5.

2https://www.cl.uni-heidelberg.
de/statnlpgroup/joeynmt/wmt_ende_
transformer.tar.gz

4.2 Single-encoder Implementation:
PRIMARY

We trained a discourse-agnostic Transformer model
with self-attention. This model had 6 layers for the
both the encoder and decoder, each with 8 attention
heads. A single-encoder implementation fine-tuned
only on the Chat data was used to produce the
primary submission results. We selected this model
due to its slightly higher Chat validation BLEU
(Table 1). It also achieves the highest test BLEU
but with only minor differences with the contrastive
systems. However, the gaps between it and the two
contrastive multi-encoder implementations are not
wide as can be seen.

4.3 Multi-encoder Implementation

Two context-aware models that are partial exten-
sions of that described in Voita et al. (2018) were
produced for the contrastive submissions. Voita
et al. (2018)’s context-aware model encodes a
source sentence and a context sentence indepen-
dently and applies a gating function to produce
a context-aware representation of the source sen-
tence. We explored this combination idea by im-
plementing a trainable gating function, à la (Voita
et al., 2018), that takes the independently encoded
source-side context and independently encoded
source-side sentence as inputs to generate a rep-
resentation for the decoder. Each layer retained 8
attention heads. We used 6 layers in each encoder.
The total number of trainable parameters can be
seen in Table 2.

4.3.1 Incremental Domain Adaptation:
CONTRASTIVE1

This system has two steps: we pre-warm the con-
text encoder of a multi-encoder implementation by
fine-tuning on Chat-Similar News and validating
on a subset of the Chat training data. We then
fine-tune this intermediate model on the Chat train-
ing data, validating against Chat validation data.
We consider this an incremental domain adaptation
technique because we prewarm the trainable param-
eters of a new encoder with similar data, before fi-
nally tuning on the Chat data. Compared to a multi-
encoder baseline implementation trained strictly
on Chat, we achieve a 1.79 validation BLEU point
improvement. Compared to CONTRASTIVE2, a
model that fine-tunes on a mixture of Chat and
Chat-Similar News in one step, we achieve a 0.59
validation BLEU point improvement.
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System Architecture Domain Adaptation Dev. BLEU Test BLEU Human Score
BASELINE Standard Transformer Chat - 43.4 -
PRIMARY Standard Transformer Chat 58.54 56.7 79.29
Vanilla Chat Multi-encoder Chat 57.52 - -
CONTRASTIVE1 Multi-encoder Similar News → Chat 58.31 55.6 -
CONTRASTIVE2 Multi-encoder Chat + Similar News 57.72 56.4 -
WMT20-CHAT-BEST - - - 60.1 88.21

Table 1: Agent-side (en→de) performance of submitted systems on the official development and test sets of the
WMT20 chat translation task. BASELINE was the best performing model in the WMT19 News task, PRIMARY
is our primary submission, and WMT20-CHAT-BEST produced the best Agent-side outputs, according to human
evaluation.

Model # Params # Samples
PRIMARY 63M 13845
CONTRASTIVE1 83M (1303, 13845)
CONTRASTIVE2 83M 18624

Table 2: # Trainable parameters and # Training samples
per model. Values within tuples indicate the number of
training samples available to a corresponding, interme-
diate model.

4.3.2 Same-time Training of Chat-Similar
News: CONTRASTIVE2

This system fine-tunes on the multi-encoder archi-
tecture with the combined Chat-Similar News and
Chat training data in one shot. We see only a 0.2
validation BLEU point improvement here over the
multi-encoder fine-tuned only with Chat (Vanilla
Chat in Table 1).

5 Evaluation

5.1 Official Evaluation
BLEU scores on the development and test sets,
and official human evaluation results are shown in
Table 1. The PRIMARY system achieves the best
validation and test BLEU. While CONTRASTIVE1
has a slightly higher validation BLEU, it turns out
that CONTRASTIVE2 performs better at test time,
showing that the same-time training technique may
be less prone to overfitting.

5.2 Coherence Evaluation with Hand-crafted
Examples

The official evaluation results seem to suggest
the context-aware multi-encoder architecture (con-
trastive systems) is not superior to the standard
Transformer which has no access to contextual in-
formation. We manually examined the training
data, and noted that between two people inter-
acting with each other on the phone or through
their computer screens, there are not many indirect
pronouns, possibly because there is no associated
real-life gesturing necessitating expressions such

as “that one” or “those ones”. Seemingly, in the
provided datasets, the need to be clear over the
phone/internet means key words are often repeated
for clarity, especially on the agent side (“I would
like to order a pizza”; “how can I help you with
ordering a pizza”). Inspired by (Bawden et al.,
2018), we carefully evaluate performance of the
systems on a hand-crafted dataset consisting of
coreference and cohesion test instances. Example
instances can be seen in Tables 4 and 5 respectively.

A contributor fluent in both English and German
produced two versions of a dataset of 103 source-
target pairs3 based loosely off the provided vali-
dation set, following the spirit of (Bawden et al.,
2018), in which a current utterance will require
the previous utterance in order to make a disam-
biguating translation in the current. One version
has the reference translation set to the correct coref-
erence or cohesion resolution, while the other ver-
sion can be a potentially correct translation viewing
the source sentence in isolation but is incorrect with
the additional context. The source side remains un-
changed in both versions. We benchmarked each
of our submitted models by producing hypotheses
using each model given the source sentence, and
then computing BLEU scores on the reference from
both versions of this dataset.

In Table 3, we show the results of each model
against the two versions. We used greedy decod-
ing to generate the hypotheses. We observe that
the contrastive multi-encoder systems, though per-
forming worse in BLEU than the single-encoder
primary system on the provided validation dataset,
actually score higher in the specifically crafted
correct coreference/cohesion dataset. By contrast,
PRIMARY scores higher for the incorrect corefer-
ence/cohesion dataset. Furthermore, the difference
in BLEU points between the correct and incorrect

3https://github.com/SongChujun/
joeynmt/blob/master/chatnmt/coher/
manual_coher.json
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System BLEU with Correct Ref. BLEU with Incorrect Ref. Diff
PRIMARY 50.44 49.54 -0.90
CONTRASTIVE1 50.64 48.84 -1.80
CONTRASTIVE2 51.39 49.23 -2.16

Table 3: Agent-side (en→de) performance of submitted systems on our coherence dataset.

Context utterance Nein. Ich weiss nicht wo sie ist. (No, I do not know where it is.)
Source utterance It’s 200 meters north of City Center.
Correct reference Sie ist zweihundert Meter nordlich vom Stadtzentrum.
Incorrect reference Es ist zweihundert Meter nordlich vom Stadtzentrum.

Table 4: Example of sentence requiring anaphoric pronoun resolution. A better translation should bias to the
correct pronoun based on context as ‘sie’ and not as ‘er’ or ‘es’ (for masculine and neuter nouns respectively).

Context utterance Ist 30% in Ordnung als Trinkgeld? (Is 30% alright as tip?)
Source utterance Yes, that’s more than generous.
Correct reference Ja, das ist mehr als grosszuegig.
Incorrect reference Ja, das ist mehr als wohlwollend.

Table 5: Example of sentence requiring lexical disambiguation. Given the context of giving a “tip”, a system
should bias the translation of “generous” more towards “grosszuegig” (someone is free with money) and away
from “wohlwollend” (more in the altruistic, do-gooder sense), which is inappropriate here.

coherence datasets is more significant in the con-
trastive systems, suggesting that the contrastive
models are recovering more of the correct corefer-
ence and cohesion, as opposed to retrieving vocab-
ulary words in other areas of the reference.

6 Discussion

Our results largely agree with those of (Voita et al.,
2018), chiefly that combining knowledge from
a previous “context” sentence can improve the
model’s ability to improve translation quality when
measured against sentences whose translations re-
quire anaphora considerations. To accommodate
this, we produced one set of sentences which re-
quire coreference and cohesion resolution, and one
set of sentences that have invalid resolution. We
found that each submitted system scored worse
on the invalid set compared to the valid set, but
the difference was more staggering (Table 3) in
the context-aware contrastive systems, lending ev-
idence that these models are able to resolve this
type of anaphora.

Our work and submission to the shared task can
be viewed with several caveats in mind, which may
explain the sub-optimal performance of the con-
trastive systems compared to the primary system.
First, we used hyperparameters consistent with a
context-agnostic pretrained model in order to have
a fair comparison for evaluation and because these
presumably have been well-tuned for the original

model. It may be the case that different hyperpa-
rameters would work better for this particular data
and the slightly larger architectures used for the
contrastive submissions. It would be worth strate-
gizing with better hyperparameter optimization.

Secondly, we use the provided target sides of the
de→en direction to provide context to our en-de
data as if it were back-translated. Since both the
agent and customer sides of this datasets were actu-
ally produced in English (the latter being translated
with human-corrected machine translation), these
additional utterances are likely higher quality than
we would get from back-translating in a real test
setting.

7 Conclusions

In this paper, we discussed our methods for training
and submitting the outputs of three models for the
WMT20 shared task of chat translation. Each sys-
tem was based off a transformer model pretrained
on WMT17 en-de news to provide better fluency.
Our best system achieves a test BLEU of 56.7, im-
proving over the provided baseline by more than 13
BLEU points, and less than 4 points behind the best
shared task submission. Though we were unable to
show that a context-aware model produced better
translation quality than the context-agnostic model
on the given dataset, our coherence evaluations in-
dicated that it can produce better translations when
measured against references needing context for
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coreference and cohesion resolution. This was vali-
dated both in terms of BLEU and by model scoring
of references.
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Abstract

This paper describes Naver Labs Europe’s
participation in the Robustness, Chat, and
Biomedical Translation tasks at WMT 2020.
We propose a bidirectional German↔ English
model that is multi-domain, robust to noise,
and which can translate entire documents (or
bilingual dialogues) at once. We use the same
ensemble of such models as our primary sub-
mission to all three tasks and achieve com-
petitive results. We also experiment with lan-
guage model pre-training techniques and eval-
uate their impact on robustness to noise and
out-of-domain translation. For German, Span-
ish, Italian, and French to English translation
in the Biomedical Task, we also submit our
recently released multilingual Covid19NMT
model.

1 Introduction

We participate in three German↔ English tasks:
Robustness, Chat, and Biomedical. Because these
tasks allow the use of the same German-English
data, we are able to submit a single model to all
of them. We use adapter layers (Bapna and Fi-
rat, 2019) to specialize this common model on the
provided in-domain data, and obtain a single multi-
domain model.

1.1 Task description

Robustness Task This task is split into two
tracks: 1) a zero-shot translation track whose goal
is to make NMT models that are robust to unseen
domains; 2) a few-shot translation track, where
only a few thousand examples of a new domain
will be provided as training data, to try to improve
translation quality on this particular domain, while
maintaining good quality on the other domains.

∗Work done during the author’s internship at Naver Labs
Europe

Chat Translation Task The goal of this task is
to translate bilingual customer dialogues between
two participants (one German-speaking “customer”
and one English-speaking “agent”) to the language
of the other participant. It combines three chal-
lenges: document-level translation (of dialogues),
domain adaptation, and noise robustness. Note
that the data was originally all in English (even the
customer side) and human-translated to German.

Biomedical Task This task is a typical domain
adaptation task, where we have access to large
amounts of generic parallel data, and smaller
amounts of in-domain data. The provided test sets
are at the document level, which may be useful to
our document-level approach. While the data is
clean, it contains many numbers, named entities,
and compound medical terms, which may require
some “robustness tricks” to handle properly.

Note that this task is very à propos, considering
the current pandemic situation, in which a good-
quality biomedical MT model could be very help-
ful for translating guidelines, news articles about
COVID-19, or social media reactions. So, in ad-
dition to submitting our German↔ English multi-
domain model, we also participate in several lan-
guage pairs (German, Spanish, Italian, and French
to English) with our recently released multilingual
Covid19NMT model (Bérard et al., 2020).1

1.2 Data

Table 1 describes the training data we used to train
our models. The domain-specific training data
(BConTrasT, Medline, and Robustness few-shot)
was only used to fine-tune model instances for the
relevant tasks. We filtered all the training data
based on length (min 1 token, max 200, max ratio
of 1.8), and automatic language identification with

1This model can be downloaded here: https://
github.com/naver/covid19-nmt
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langid.py (Lui and Baldwin, 2012). We also
removed duplicate sentence pairs.

We filtered the Medline training data to remove
any sentence pair where either side (English or
German) was in the Medline 2018 test sets so that
we can use Medline-test2018 for early stopping.

The Covid19NMT model (Bérard et al., 2020)
used for our Spanish, Italian and French to English
submissions to the Biomedical Task was trained
on much larger amounts of training data, obtained
from WMT and OPUS (Tiedemann, 2012).2 It was
trained in a multilingual way (many-to-one) with
general-domain as well as biomedical data using
domain tags (Kobus et al., 2017).

Table 2 describes the validation and test data
we used. Some test sets, like newstest2019 and
Medline-test2019 were only used for the final eval-
uation in this paper, while others (BConTrasT-dev
and Medline-test2018) were also used for early
stopping and model selection.

Corpus Sents Docs
Paracrawl 33.9M –
Rapid2019 965k 48.3k
Europarl 1.75M 6.7k
Commoncrawl 1.97M –
Wikimatrix 5.68M –
Wikititles 176k –
News-commentary 352k 9.1k
News-crawl (de) 440M 20.7M
News-crawl (en) 269M 10.9M
BConTrasT (Chat) 13845 550
Medline (Biomedical) 34710 3452
Robustness few-shot 8503 –

Table 1: Training data size (in number of sentence pairs,
and document pairs when available). News-crawl cor-
pora are monolingual.

2 Our model

We explore several techniques to train a model
that should be able to cover all tasks with minimal
adaptation. We want our model to be bidirectional,
robust to noise and new domains, and to be able to
translate full bilingual documents at once.

2.1 Pre-processing
We normalize all whitespaces and apply Moses’
deescape-special-chars.perl on the
training data (Koehn et al., 2007).

2Contrary to the other tasks, the Biomedical Task puts no
constraint on the training data used.

Corpus Sents Docs
newsvalid (de-en) 4499 222
newsvalid (en-de) 4502 185
newstest2019 (de-en) 2000 145
newstest2019 (en-de) 1997 123
IT-valid 1000 –
QED-valid 1117 –
BConTrasT-dev 1902 78
Medline-test2018 (de-en + en-de) 656 96
Medline-test2019 (de-en) 573 50
Medline-test2019 (en-de) 619 50

Table 2: Validation corpora. IT-valid is the valida-
tion data of the WMT16 IT translation task (Batch3a).
Medline-test2018 is the concatenation of WMT18
Biomedical task’s Medline test sets for de-en and en-
de (as they are too small individually). newsvalid is the
concatenation of the 2016, 2017 and 2018 News Task
test sets, split into two halves: German-original (de-en)
and English-original (en-de).

We train a joint BPE model on the general-
domain WMT20 parallel data (English plus Ger-
man) with 24k merge operations and inline casing,
which improves robustness to capitalized inputs
(Bérard et al., 2019). We use an in-house BPE im-
plementation similar to SentencePiece (Kudo
and Richardson, 2018). Like the latter, it does
Unicode NFKC normalization and pre-tokenizes
its inputs based on their script. It also segments
numbers and punctuation character-by-character.
We only keep single characters in the dictionary
whose count in the training data is greater than
1000. Rarer characters are replaced by a <copy>
placeholder if they appear on both sides, and an
<unk> token if they appear only on the source side.
We drop them if they are on the target side only. At
test time, we can decide whether an OOV character
should be copied or ignored, by replacing it with
<copy> or <unk>.3 We choose to copy unicode
symbols (including emojis and math symbols) and
to ignore the other characters.

We start each source sentence with a source lan-
guage tag and each target sentence with a target
language tag. For documents, each sentence is pre-
fixed with a language code, effectively acting as a
sentence delimiter. In the Chat translation task, the
language code is also an easy way for the model to
detect the current speaker.4

3Copy is followed by a post-processing step, where we
replace target-side <copy> tokens by the source-side OOV
symbols in the same order.

4Even though using these tags is not necessary for sentence-
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We modified fairseq to load and pre-process its
training data on the fly (normalization, BPE, tag-
ging, synthetic noise, binarization, and batching).
The advantage of this approach over the statically
pre-processed training sets is that we can easily ap-
ply a different pre-processing at each epoch. This
is useful for BPE dropout (where ideally, we’d like
a different segmentation at each epoch) and for
noise generation. We can also more easily sample
from multiple corpora, and subsample from parallel
documents or randomly create fake documents.

We train a sentence-level bidirectional model
on the concatenated German → English and En-
glish→German parallel data (about 90M examples
total), which we use as a baseline for the next steps.

2.2 Pre-trained encoder

Previous works (Edunov et al., 2019; Conneau and
Lample, 2019; Clinchant et al., 2019; Lewis et al.,
2020; Rothe et al., 2020) show that pre-trained
LMs can improve performance of NMT models,
especially in low-resource settings. Clinchant et al.
(2019) show that, even though the benefit of pre-
trained LM is less clear in high-resource settings, it
can lead to better domain robustness. In this work,
we explore this aspect further and experiment with
several pre-trained models for encoder initializa-
tion. First, we train a Masked Language Model
(MLM) that follows the same architecture as the
NMT model’s encoder. Since our encoder is bilin-
gual (it encodes both English and German) we train
the MLM on a concatenation of large monolingual
English and German datasets (100M lines in total
per language from news-crawl, news-discuss, and
Common Crawl).

We also experiment with a large publicly avail-
able MLM model: RoBERTa Base,5 and initialize
our NMT encoder with this model’s parameters.
Then, we train all parameters further on the NMT
task. Using an existing model saves us the cost
of having to train a new model. But there are a
few downsides: RoBERTa is English-only, so we
cannot use it in a bidirectional setting. We are also
constrained to use RoBERTa’s tokenizer and vo-
cabulary, which prevents us from sharing source
and target embeddings. It also complicates custom
source-side pre-processing techniques (e.g., inline

level models, we wanted our sentence-level and document-
level models to share the same pre-processing so that we could
easily combine them in ensembles if need be.

5https://github.com/pytorch/fairseq/
tree/master/examples/roberta

casing). Our models initialized with RoBERTa
have a separate target-side (German) vocabulary
of size 24k. They do not use any of the tricks (no
copy symbol, inline casing, back-translation, etc.)

Previous work (Voita et al., 2019; Tenney et al.,
2019) suggests that the last layers of a pre-trained
LM might not be useful for the final task. For this
reason, we also try initializing the encoder with the
first 8 (out of 12) layers from RoBERTa.

2.3 Tagged back-translation

We back-translate the German and English news-
crawl monolingual corpora (see Table 1) using our
bidirectional Transformer Big baseline with sam-
pling (Edunov et al., 2018). Back-translation is
done at the sentence level, but we reassemble the
output sentences and their corresponding sources
into pairs of documents for document-level train-
ing. Like Caswell et al. (2019); Bérard et al. (2019),
we prefix the back-translated examples with <BT>.

We downsample from our training corpora so
that an epoch always corresponds to roughly
90M samples6 regardless of the presence of back-
translation or document-level training; and so that
real and back-translated data are approximately bal-
anced. We also upsample the real document pairs
by a factor of 100, as we expect them to be more
valuable to document-level training than fake docu-
ments and back-translated ones.7

2.4 BPE dropout

Kudo (2018) propose “subword regularization”, a
non-deterministic tokenization algorithm, whose
stochasticity level can be controlled thanks to a
probability parameter. They show that using it
to encode the training data acts as regularization
and that it can improve translation quality for low-
resource or out-of-domain translation. Provilkov
et al. (2020) implement the same idea with the BPE
algorithm, which they call “BPE dropout”.

We apply BPE dropout over the source side of
the training data with probability 0.1, as our early
experiments with target-side BPE dropout gave
worse results than regular BPE.

6A “sample” being a sentence pair in sentence-level train-
ing, or a pair of documents (real, sub-sampled or fake) in
document-level training.

7For instance, when training document-level bidirectional
models with back-translation, an “epoch” consists in 41.7M
pairs of fake documents, 42.5M pairs of back-translated docu-
ments, and 6M pairs of real documents.
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2.5 Noise generation
To increase robustness to noise, we inject random
synthetic noise on the source side of our training
data (Belinkov and Bisk, 2018; Karpukhin et al.,
2019; Vaibhav et al., 2019; Bérard et al., 2019).
We modify each sentence with probability 0.1, and
each character within this sentence with probability
0.1. Character modifications are either a deletion,
a swap with the next character, a duplication, a sub-
stitution with a random candidate character, or a
character insertion at the preceding position. Can-
didate characters are extracted from the model’s
German-English dictionary and sampled according
to their rank in this dictionary using a Zipf distri-
bution. Like for back-translation, we start each
noised source sequence with a special <noisy>
tag. Thanks to our on-the-fly pre-processing, we
generate new noise at each epoch.

2.6 Document-level training
Like Junczys-Dowmunt (2019); Saleh et al. (2019)
we train our models on parallel documents of size
up to 1024 BPE tokens. Table 1 sums up the avail-
able parallel corpora with document boundaries.
We use similar techniques as Junczys-Dowmunt
(2019):

• All parallel documents are randomly sub-
sampled into smaller documents (of consecu-
tive sentences).

• The sentence-level parallel data (e.g.,
ParaCrawl) is also used and transformed
into fake documents by randomly merging
consecutive sentences.8 The source side of
these documents is prefixed with <fake>.

We also keep the same techniques as before:
back-translation, BPE dropout, and noise. They
just work on full documents instead. To deal with
potentially noisy and bilingual documents, we also
do the following:

• Each parallel document (including the fake
ones) has a 0.2 probability of having all its
source/target sentences randomly swapped.
The goal is to have an MT model that can
translate bilingual documents.

• We randomly drop each sentence delimiter on
both the source and target side with proba-
bility 0.1. The goal is to force the model to

8Each sentence pair has a probability of 0.8 of being
merged with the previous sentence pairs, with a max doc-
ument size of 1024 tokens or 64 sentences.

rely exclusively on the source-side delimiters
for generating output delimiters, and not on
end-of-sentence punctuation. We hope that
this will help generate documents of the same
length as the input documents.

2.7 Domain adaptation
For domain adaptation, we test two settings: fine-
tuning the entire model on the in-domain data (Fre-
itag and Al-Onaizan, 2016), or adding domain-
specific adapter layers which we train while freez-
ing the other parameters (Bapna and Firat, 2019;
Philip et al., 2020). While fine-tuning is often the
optimal strategy, adapters can achieve close perfor-
mance while significantly reducing the number of
parameters per task: we can have a single model for
all tasks, with a small set of additional parameters
for each task.

We use adapters of size 64 and 1024 respectively
for sentence-level and document-level models.9 We
found that the sentence-level models quickly overfit
the in-domain data when trained with higher capac-
ity adapters. When fine-tuning the whole model,
we continue with the same learning rate schedule
as the pre-trained model. When training adapters,
we use a fixed learning rate of 10−4 and train on a
single GPU without delayed updates.

For domain adaptation, we disable noise genera-
tion, BPE dropout, and fake documents. When
possible, domain adaptation of the document-
level models is done with document-level in-
domain data. Early stopping is done according
to document-level perplexity on the validation sets.

For the Chat Translation Task, we include the
training data in both the forward and backward
directions (i.e., target side as source and source
side as target). We prefix backward sources with
the <BT> tag. For the other tasks, we adapt the
bidirectional models with the in-domain data in
both directions if available (i.e., our adapters are
bilingual).

3 Experiments

3.1 Evaluation settings
For all test and validation sets but Medline-
test2019, we use SacreBLEU with the default set-
tings against untokenized references.10 When the

9Our adapters use near-zero initialization and the original
pre-norm architecture (Bapna and Firat, 2019), even though
our Transformer models are post-norm.

10BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.4.3
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test set is document-level, we split it into sentences
first, as well as the model outputs and compute
regular sentence-level corpus BLEU.

For Medline-test2019 we use SacreBLEU in
case insensitive mode with the intl tokeniza-
tion,11 which mimics closely the evaluation set-
tings of the WMT19 Biomedical task. We use the
alignments provided by the organizers, and keep
all alignments regardless of their annotation (e.g.,
OK or NO ALIGNMENT) but remove those where
one side is marked as “omitted”.

3.2 Hyper-parameters

We use the Transformer Big architecture (Vaswani
et al., 2017) with post-norm (as prior experiments
with pre-norm gave worst results), which we train
with fairseq (Ott et al., 2019). We share the source
and target embeddings and tie them with the vo-
cabulary projection. We use Adam with warmup
and a maximum learning rate of 0.001. Training is
done on 4 GPUs with mixed precision and accumu-
lated gradients over 16 updates (Ott et al., 2018).
In some cases, we had to reduce the learning rate to
0.0005 because of exploding gradient issues. We
use a dropout rate of 0.1 and label smoothing of
0.1. We train for maximum 24 epochs with early
stopping according to BLEU on newsvalid.

The models using back-translation, BPE-
dropout, and/or noise are initialized with the epoch
12 checkpoint of the baseline model and trained for
12 more epochs. The doc-level model is initialized
from the sent-level model with BT + BPE-dropout
+ noise, and fine-tuned for 4 more epochs.

The pre-trained MLM is trained with RoBERTa
Base’s default training settings but uses the same
architecture as the NMT encoder (sinusoidal posi-
tional embedding, post-norm Transformer). We
also remove the non-linear transformation in
RoBERTa’s LM head. Due to time constraints,
we train the MLM for 2 epochs only.

The models initialized with RoBERTa use the
RoBERTa Base architecture for the encoder (em-
bedding size of 768 and feed-forward size of 3072),
and a Transformer Big with 3 layers only for the
decoder. They also use a higher dropout rate of 0.3.
As source-side pre-processing, we use the same
GPT tokenizer as RoBERTa; and as target-side pre-
processing, a monolingual SentencePiece model of
size 24k without inline casing.

11BLEU+case.lc+numrefs.1+smooth.exp+
tok.intl+version.1.4.3

3.3 Ensembles
As primary submissions to all three tasks, we use
an ensemble of three document-level models. To
save computation time, and avoid re-training new
models, we ensemble models that were trained with
different settings, but whose pre-processing is com-
patible (see Table 5). To achieve better ensemble
results, we train three different instances of Bidi-
rectional Big (for 12 epochs), which serve as ini-
tialization for models 8, 9, and 10 (fine-tuned for
12 more epochs). These three models are combined
with model 7 as ensemble 15. We continue train-
ing these three models with document-level data
(for 4 epochs) to create ensemble 19. Ensembles
18 and 22 are obtained by taking the same models
as ensembles 15 and 19, training domain-specific
adapter layers, and combining them again.

3.4 Results

ID Model DE-EN EN-DE

0 FAIR 2019 (single) 41.0 40.9
1 Monodirectional Base 40.7 41.1
2 Bidirectional Base 39.9 40.1
3 Monodirectional Big 42.0 41.6
4 Bidirectional Big 41.9 41.8

Table 3: Comparison of monodirectional versus bidi-
rectional models. BLEU scores on newstest2019. Bidi-
rectional Big serves as a baseline for our next experi-
ments. FAIR 2019 (single) is one of the models from
the ensemble that ranked first in the WMT19 News
Task (Ng et al., 2019).

Baseline models We compare Transformer Base
and Transformer Big architectures, and monodirec-
tional (German→ English and English→German)
versus bidirectional models (German↔ English).
Table 3 shows their results on newstest2019.

Robustness to noise Table 4 evaluates the ro-
bustness of our models to several forms of syn-
thetic noise and to other types of tokenization.12

BPE dropout slightly improves robustness to cer-
tain types of synthetic noise, and drastically im-
proves robustness to other types of tokenization,
especially character-level translation (“spelled out”
column). Source-side synthetic noise dramatically

12While robustness to tokenization is not necessary for these
tasks, it can be a desirable property for an NMT model. For
instance, we could reduce the size of the vocabulary for model
compression, or change the tokenization algorithm and vocab-
ulary for the model to be compatible with other models (e.g.,
for ensembling, pre-training, etc.)
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ID Model Clean Char noise No space No ‘e’ Spelled out Other BPE
0 FAIR 2019 (single) 41.3 15.0 6.2 17.5 – –
3 Monodirectional Big 42.0 8.4 0.3 10.3 1.4 30.0
5 3 + RoBERTa-12 41.9 11.5 2.4 13.9 – –
6 3 + RoBERTa-8 42.4 10.4 2.0 12.2 – –
4 Bidirectional Big 42.2 8.9 0.6 10.7 2.1 30.8
7 4 + MLM 41.9 9.1 0.7 10.6 1.6 31.4
8 4 + BT 42.2 9.6 0.7 11.1 1.7 32.1
9 8 + BPE dropout 42.0 10.8 0.8 14.3 22.8 37.5
10 9 + Noise 42.4 29.3 8.3 31.2 31.8 38.3
11 10 + Docs 42.4? 33.6? 23.3? 33.8? 34.6 39.4

Table 4: Robustness on English-German translation (case-insensitive BLEU) to synthetic noise (random char-
level noise, all whitespaces removed or all ‘e’ letters removed) or to different tokenizations (char-level instead
of BPE, or different BPE model than used for training). All the test sets are variants of newstest2019. Char
noise consists in modifying each character with 0.1 probability, with either a deletion, insertion (of an ASCII
letter or digit), substitution or swap. Spelled out means that we segment the input character-by-character (e.g., I
like pizzas→ i l i k e p i z z a s). With Other BPE, we use a different BPE model (trained
with SentencePiece on lowercased monolingual news data); and whenever a word piece is out-of-vocabulary, we
segment it as characters (i.e., spelling out). Numbers with ? are obtained with document-level translation.

improves robustness to the same type of character-
level noise and to the absence of whitespaces or of
the ‘e’ letter.13 Interestingly, when combined with
BPE dropout, it also further improves robustness
to other types of tokenization.

Note that the document-level model with noise
is even better with noise robustness. This is proba-
bly due to its longer training (which means that it
has seen more noise).14 The same model used in
sentence-level decoding mode (scores not reported
here) achieves similar improvements.

Domain robustness and domain adaptation
Table 5 shows the BLEU scores of our models on
test sets from multiple domains (News, IT, QED,
Medline, Chat). We can assess the domain robust-
ness of our non-adapted models for use in the zero-
shot robustness task. It also shows the translation
quality of the adapted models on the Biomedical
and Chat tasks (on their respective dev sets).

In our case, contrary to what Kudo (2018);
Provilkov et al. (2020) observed, subword regu-
larization with BPE dropout brings no clear im-
provement to BLEU scores on any of the domains.

We see that fine-tuning performs often better
13These are examples of perturbations that humans are able

to deal with, but NMT models struggle with. For example, try:
“Collagus from across th U, and byond, bring valuabl xprinc
and skills that strngthn and improv th work of th halth srvic,
and bnfit th patints and communitis w srv.”

14It was trained for 4 more “epochs”. But we define an
epoch as a fixed number of training examples, which are much
longer when we do document-level training (≈ 5× longer in
terms of BPE tokens).

than the adapter layers. Yet, because the difference
is minor, we settle with adapters for our submis-
sions as they allow us to train one multi-domain
model that can be submitted to all three tasks. They
also let us participate in the few-shot task with a
model that is adapted to a new domain and does
not degrade on other domains (which fine-tuning is
known to do, because of catastrophic forgetting).
The scores from Tables 3, 4, and 5 are obtained
after normalization of our model outputs with
Moses’ normalize-punctuation.perl
(Koehn et al., 2007). However, our submissions do
not use any punctuation normalization, except for
the robustness task (see below).

Task results Table 6 presents the official BLEU
results of our primary and contrastive submissions
to the three tasks. We always used the same en-
semble of document-level models with adapters
(22) as primary submission, and single document-
level model with adapters (21) as first contrastive
submission. As second contrastive submission, we
submitted different models depending on the task
(see Table 6’s caption): ensemble of RoBERTa-
initialized models (12), ensemble of sentence-level
model (18) or Covid19NMT model.

3.5 Robustness Task

For this task, we also train a bidirectional Japanese-
English model with all the allowed parallel data
from the News Task (15.9M lines pairs). We use
the same techniques as with German-English: copy
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ID Model News IT QED Medline Chat
0 FAIR 2019 (single) 40.9 47.9 24.0 27.0 42.4
3 Monodirectional Big 41.6 48.5 24.6 28.0 39.6
5 3 + RoBERTa-12 41.5 49.7 25.6 27.0 42.2
6 3 + RoBERTa-8 42.0 49.8 25.1 27.3 39.4

12 5 + 6 + Ensemble 43.0 50.5 25.6 27.4 42.6
4 Bidirectional Big 41.8 49.8 24.4 27.5 41.1
7 4 + MLM 41.5 49.1 24.7 27.2 41.3

13 7 + Fine-tuning – – – 30.5 61.3
14 7 + Adapters – – – 30.7 60.4
8 4 + BT 41.8 49.6 25.2 27.4 41.9
9 8 + BPE dropout 41.7 49.8 24.7 27.8 43.3

10 9 + Noise 42.0 49.5 25.1 27.0 41.6
15 7 + 8 + 9 + 10 + Ensemble 43.8 50.9 25.7 28.4 43.7
16 10 + Fine-tuning – – – 29.9 61.6
17 10 + Adapters – – – 29.6 61.4
18 7 + 8 + 9 + 10 + Adapt. + Ens. – – – 31.6 62.8
11 10 + Docs 42.1? 49.1 25.2 27.0? 44.2?

19 8 + 9 + 10 + Docs + Ensemble 44.3? 51.0 25.4 27.8? 45.9?

20 11 + Fine-tuning – – – 30.3? 61.3?

21 11 + Adapters – – – 29.9? 60.5?

22 8 + 9 + 10 + Docs + Adapt. + Ens. – – – 31.2? 61.5?

Table 5: Domain robustness and domain adaptation on English-German translation (case-sensitive BLEU except
for Medline). News, IT, QED and Medline are respectively newstest2019, IT-valid, QED-valid, Medline-test2019
from Table 2. Chat is the English-German subset of BConTrasT-dev, which contains only the agent’s utterances.
Numbers with ? are obtained with document-level translation. For Chat, we translate the full bilingual dialogues
(using both the agent and the customer utterances as context), then compute BLEU on the agent’s part only. The
models in bold were submitted to one or several tasks (see Table 6).

symbol, inline casing, source-side BPE dropout,
and source-side noise. However, we do not train
at the document-level, nor do language model pre-
training, back-translation, or ensembles. To reduce
the effect of the JESC data whose English side is in
lowercase, we add source-side corpus tags (Bérard
et al., 2019) for all corpora but ParaCrawl (we do
not use any corpus tag at test time). We also pre-
tokenize the Japanese training data with Kytea, like
specified by the organizers.15

The test sets for this task are sentence-level.
However, we observe that some of the test sets
contain lines with several sentences, which causes
our models to generate too short outputs. To solve
this issue, we sentence-split the test sets (with
Moses’ split-sentences.perl for German
and English and basic split for Japanese, which has
non-ambiguous end-of-sentence punctuation). Sen-
tences originating from the same line are translated
as a document with our document-level models.

15With KyTea 0.4.7: kytea -out tok -model
share/kytea/model.bin

We normalize the punctuation of our model out-
puts, using normalize-punctuation.perl
for English, and replacing ASCII double quotes
with German-style quotes in German outputs.

Final results are reported in Table 6. The robust-
ness task has two test sets for German-English: Set
1 (German↔ English), which appears to be very
noisy text extracted from an online forum; and Set
3 (only German→ English), which contains clean
and short sentences. The few-shot task lets us use a
small corpus (8503 sentence pairs) of the same do-
main as Set 3 to try to improve German→ English
translation quality over Set 3 while not degrading
quality over Set 1. We simply take the same models
that we submitted to the zero-shot task and train
adapters with the German → English in-domain
data. Then, when translating Set 3, we turn on the
adapters and turn them off for Set 1.

3.6 Chat Translation Task

For the primary and first contrastive submission, we
used our document-level models with chat-domain
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Model
Chat Biomedical

Robustness zero-shot Few-shot
Set 1 Set 1 Set 3 Set 1 Set 3

EN-DE DE-EN EN-DE DE-EN EN-DE DE-EN DE-EN DE-EN DE-EN
Best 60.4 62.0 30.4 34.8 48.0 43.9 44.7 ? ?
Primary 60.1 61.0 29.6 34.8 42.2 43.4 44.0 43.4 45.4
Contr. 1 58.8 59.4 28.4 34.3 40.7 42.1 43.4 42.1 44.2
Contr. 2 60.4 61.6 30.4 34.1? 41.9† 43.5 44.7 43.5 44.7

Table 6: Results of the three tasks (BLEU scores): top result in each task and scores of our primary and contrastive
submissions. We only report results on German ↔ English. Please refer to the appendix for the results on the
other languages. Primary: Ensemble of three document-level models with adapters (22). Contrastive 1: Single
document-level model with adapters (21). Contrastive 2: Ensemble of four sentence-level models with adapters
(18). †: Ensemble of two RoBERTa-initialized models (12). ?: Covid19NMT model with <medical> tag (Bérard
et al., 2020). As the Robustness Task organizers did not communicate official results at the time of submission, the
numbers reported here are those appearing on the submission website (OCELoT).

adapters (22 and 21) to translate the full bilingual
dialogues at once. The BLEU scores reported in
Table 6 are computed separately for the agent and
customer’s side of the dialogues. The second con-
trastive model is bidirectional and sentence-level
(18), and used to translate the dialogues utterance
by utterance (without extra context).

3.7 Biomedical Task

We had issues with document-level decoding out-
put length on the Medline validation and test sets.
The number of sentence delimiters in the output
does not always match that of the source document,
which makes regular BLEU evaluation impossible.
We get between 10% and 20% output documents
with the wrong length for German-English, and
more than 50% for English-German. This length
mismatch issue seems to be caused by domain adap-
tation,16 as non-adapted models get a perfect length.
On the Chat translation task, there is virtually no
length mismatch, and up to 10% length mismatch
on newstest2019, caused by source documents that
are close to or above the 1024 tokens limit.

Whenever a length mismatch happens, we revert
to sent-level decoding for this particular document.
As our English-German submission to the Biomed-
ical task, we used fully sent-level decoding outputs
(by our doc-level models), as almost 100% of the
document-level outputs had the wrong length.

Our Covid19NMT model (Bérard et al., 2020)
ranked first in Spanish-English and Italian-English
(50.6 and 42.5 BLEU) and lags behind with less

16One likely explanation is that there are some alignment
errors in the Medline training data that cause adapted models
to ignore the sentence delimiters in some cases. For instance,
we observed that the titles are often misaligned (e.g., “INTRO-
DUCTION”).

than 1 BLEU difference in German-English and
French-English (34.1 and 43.1 BLEU).

4 Conclusion

We find that, if given enough capacity (e.g., Trans-
former Big), a single bidirectional model can give
similar performance to mono-directional models of
the same size.

Like showed by Bapna and Firat (2019), it is pos-
sible to perform lightweight domain adaptation us-
ing adapter layers, and achieve comparable perfor-
mance to fine-tuning of the whole model. Thanks
to adapter layers added to our bidirectional model,
we achieve competitive results on all 3 tasks with
one model.

MLM pre-training results for bidirectional mod-
els are inconclusive. The pre-trained model seems
to be slightly more robust in some aspects, but not
as robust to domain shift as one would hope. This
may be due to fewer training epochs compared to
our previous experiments (Clinchant et al., 2019).
RoBERTa pre-training gives promising results in
terms of noise robustness; it also seems to bring
slight improvements in terms of domain robustness.
Note that the models initialized with RoBERTa
have fewer parameters than the Transformer Big
NMT architecture.

Finally, document-level fine-tuning gives
document-level decoding abilities to a bidirectional
NMT model without degrading its sentence-level
decoding performance. However, document-level
decoding does not improve translation quality as
measured by BLEU. We also find that generating
documents with the right number of sentences (i.e.,
same length as the input) can be challenging on
some test sets.
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ID Model Clean Char noise No space No ‘e’ Spelled out Other BPE
0 FAIR 2019 (single) 42.6 19.6 13.0 16.1 – –
3 Monodirectional Big 43.6 14.6 6.8 11.2 2.5 36.6
4 Bidirectional Big 43.5 14.5 8.0 11.9 3.6 35.1
7 4 + MLM 43.7 13.9 9.4 10.9 3.8 35.2
8 4 + BT 43.6 14.8 5.5 11.5 4.2 36.5
9 8 + BPE dropout 43.6 17.0 10.2 14.8 26.1 41.6
10 9 + Noise 43.3 33.3 21.8 31.5 34.8 41.6
11 10 + Docs 43.0? 35.2? 26.3? 32.9? 36.1 41.8

Table 7: Robustness on German-English translation (case-insensitive BLEU) to synthetic noise (random char-level
noise, all whitespaces removed or all ‘e’ letters removed) or to different tokenizations (char-level instead of BPE,
or different BPE model than used for training). All the test sets are variants of newstest2019. Numbers with ? are
obtained with document-level translation.

ID Model News IT QED Medline Chat
0 FAIR 2019 (single) 41.0 53.8 34.8 30.0 47.9
3 Monodirectional Big 42.0 57.8 35.4 30.6 48.9
4 Bidirectional Big 41.9 57.6 34.4 30.1 47.7
7 4 + MLM 41.9 56.4 34.5 30.0 49.2

13 7 + Fine-tuning – – – 30.9 59.7
14 7 + Adapters – – – 30.9 59.9
8 4 + BT 42.0 56.6 34.8 30.0 48.6
9 8 + BPE dropout 41.9 56.1 35.3 29.7 48.5

10 9 + Noise 41.8 56.0 34.9 29.7 48.2
15 7 + 8 + 9 + 10 + Ensemble 43.3 57.8 35.7 30.5 49.5
16 10 + Fine-tuning – – – 30.8 61.3
17 10 + Adapters – – – 30.2 60.8
18 7 + 8 + 9 + 10 + Adapt. + Ens. – – – 31.4 61.7
11 10 + Docs 41.4? 56.0 35.1 30.0? 50.5?

19 8 + 9 + 10 + Docs + Ensemble 42.8? 56.6 35.7 30.7? 50.7?

20 11 + Fine-tuning – – – 30.8? 60.9?

21 11 + Adapters – – – 31.0? 60.5?

22 8 + 9 + 10 + Docs + Adapt. + Ens. – – – 31.7? 62.1?

Table 8: Domain robustness and domain adaptation on German-English translation (case-sensitive BLEU except
for Medline). News, IT, QED and Medline are respectively newstest2019, IT-valid, QED-valid, Medline-test2019
from Table 2. Chat is the German-English subset of BConTrasT-dev, which contains only the agent’s utterances.
Numbers with ? are obtained with document-level translation. For Chat, we translate the full bilingual dialogues
(using both the agent and the customer utterances as context), then compute BLEU on the customer’s part only.
The models in bold were submitted to one or several tasks (see Table 6).

Task: Biomedical Robustness zero-shot
Pair: FR-EN ES-EN IT-EN JA-EN EN-JA

Set: 1 2 1 2
Best 44.1 50.6 42.5 26.6 15.2 37.6 29.2
Ours (primary) 43.1 50.6 42.5 24.5 13.3 33.3 25.6

Table 9: Results of the Biomedical and Robustness tasks (BLEU scores): top result in each task and scores of our
primary submissions. The primary submission to the Biomedical Task in French, Spanish and Italian to English
is our multilingual Covid19NMT model (Bérard et al., 2020). As the Robustness Task organizers did not commu-
nicate official results at the time of submission, the numbers reported here are those appearing on the submission
website (OCELoT)
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Abstract

This paper describes the joint submission of
the University of Edinburgh and Uppsala Uni-
versity to the WMT’20 chat translation task for
both language directions (English↔German).
We use existing state-of-the-art machine trans-
lation models trained on news data and
fine-tune them on in-domain and pseudo-in-
domain web crawled data. We also experiment
with (i) adaptation using speaker and domain
tags and (ii) using different types and amounts
of preceding context. We observe that con-
trarily to expectations, exploiting context de-
grades the results (and on analysis the data
is not highly contextual). However using do-
main tags does improve scores according to
the automatic evaluation. Our final primary
systems use domain tags and are ensembles of
4 models, with noisy channel reranking of out-
puts. Our en-de system was ranked second in
the shared task while our de-en system outper-
formed all the other systems.1

1 Introduction and challenges

The task’s aim is to create machine translation (MT)
systems to enable task-oriented communication be-
tween a service agent and a customer speaking
different languages (English and German respec-
tively). Like most dialogues, the texts can show
strong context sensitivities, as the customer and the
agent engage in a common activity and continually
react to each other’s utterances (Hardmeier, 2014;
Bawden, 2018). However, the dialogues, which re-
late to ordering or reserving products and services
from a limited set of providers, also follow fairly
strong scripts and are anchored in a small discourse
universe defined by the products on offer. Their
context sensitivity is therefore counterbalanced by
domain-specific conventions and expectations.

1http://www.statmt.org/wmt20/
chat-task_results_DA.html

Our design choices are informed by an initial
manual inspection of the training data and a base-
line translation, which revealed that the main chal-
lenges relate to idiomaticity: incorrect or poor
translation of English idioms, named entities and
politeness markers (e.g. formal vs. informal forms
of address, or poor translation of English sir) and
an incorrect use of domain-specific terminology.
Almost always, the problems were the result of
an excessively literal translation of the source text,
and this literalness also frequently affected the ref-
erence translations themselves too. Surprisingly,
we found few instances of phenomena explicitly
requiring context to be correctly translated (e.g. we
did not find pronominal anaphora to be a major
problem in the dialogues examined).2 The context-
dependent instances we did find were more task-
specific (e.g. English Enjoy! should be translated
differently depending on whether it is about a pizza
(Guten Appetit!) or a film (Viel Spaß!)).

We therefore focus on domain adaptation and
general context modelling strategies. Our submis-
sions are based on existing state-of-the-art MT sys-
tems for news translation, which we fine-tune on
in-domain and pseudo-in-domain data. We also ex-
periment with (i) adapting the models to the differ-
ent speaker roles and to the different tasks during
fine-tuning and (ii) exploiting preceding context
through a simple but effective method of concate-
nating previous sentences to the current one. Our
code and models are publicly available.3

2We tested AllenNLP’s coreference resolution tool (Gard-
ner et al., 2018) on a few examples where pronoun resolution
seemed relevant and found that it performed very poorly in
these cases, confirming similar conclusions by Bawden (2016).
We therefore decided not to model coreference explicitly.

3http://github.com/chardmeier/
WMT2020-Chat
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2 Data

The task data consists of parallel task-oriented dia-
logues between an agent (English) and a customer
(German) across six domains: (i) ordering pizza,
(ii) making auto repair appointments, (iii) ordering
a taxi, (iv) ordering movie tickets, (v) ordering cof-
fee and (vi) making restaurant reservations. The
dialogues were initially in English, retrieved from
a subset of the TaskMaster-1 dataset (Byrne et al.,
2019) and then manually translated into German
at Unbabel.4 Although the speaker tags are pro-
vided for each utterance, the conversations are not
explicitly marked with their task domain. The task
being to translate the agent’s utterances from En-
glish into German and the customer’s utterances
from German to English, we evaluate each trans-
lation direction separately, using only the agent’s
utterances for en–de translation and the customer’s
utterances for de–en. For training however, we use
the full set of 13,845 utterances for both directions.

3 Approaches

We explore four approaches, each of which is de-
tailed below: (i) pretraining using additional data
sources, (ii) speaker adaptation, (iii) domain adap-
tation and (iv) incorporating previous context.

Pretraining To account for the limited in-
domain data, we use pre-existing MT models
trained for the WMT’19 news task (Barrault et al.,
2019) and then continue training on pseudo-in-
domain web crawled data from the Paracrawl
project5 (Bañón et al., 2020), before fine-tuning on
the in-domain chat training data. We compare two
different base systems for each language direction:
UEDIN models6 ((Bawden et al., 2019a) and FAIR
models (Ng et al., 2019). The pseudo-in-domain
data on which training is continued is created by fil-
tering Paracrawl data using dual conditional noisy
cross-entropy filtering (Junczys-Dowmunt, 2018).
This consists in training a neural language model
for each language on the task training data, and
jointly scoring each parallel sentence in Paracrawl
using the two models. We take the top scoring
2.5 million subset of the original 34 million en–de
sentences (those that most resemble the task data).

4https://github.com/Unbabel/BConTrasT
5https://www.paracrawl.eu
6Although the WMT’19 submission included only de–en,

we also use the similarly trained model for en–de.

Speaker adaption Distinguishing between the
two speaker roles is important as they have differ-
ent contributions to the dialogue; the customer’s ut-
terances are short, interrogative and informal, while
the agent’s utterances are often long, informative
and more formal. We adapt our models to each
speaker by using the speaker identity (provided
with the task data) as a pseudo-token (Sennrich
et al., 2016a): we prepend a speaker tag to each
utterance on both the source and the target side.

Domain adaptation Knowing which task the di-
alogue belongs to (e.g. pizza, film) can be impor-
tant for disambiguation, as described in Section 1.
Similarly to speaker adaptation, we adapt to the dif-
ferent tasks (i.e. domains) by prepending a domain
tag to each utterance on both the source and target
side. We also consider a setup where all the utter-
ances are tagged with speaker and domain-tags (see
the example in Table 1). The dataset consists of
chats across six different domains (pizza, auto, taxi,
movie, coffee, and restaurant). As the domains are
not indicated in the task dataset, we obtain domain
tags by automatically classifying each dialogue as
belonging to one of the six tasks using the English
side of the data and a baseline German translation.

The dialogue classifier is trained by unsuper-
vised k-means clustering of the training set dia-
logues with scikit-learn (Pedregosa et al., 2011).
As features, we use the nouns in the texts (as recog-
nised by the SpaCy PoS tagger7), which works
substantially better than using all words. The 6
clusters are initialised to the word sets {pizza},
{auto, car, repair}, {ride}, {movie}, {coffee},
{dinner, restaurant}. Dialogues in the test set are
then assigned to the cluster with the nearest cen-
troid. To evaluate the classifier, we manually an-
notated 49 dialogues from the training set. Train-
ing only on the remainder of the training data, we
achieved perfect accuracy on the annotated set.

To simulate an online translation scenario, we
also experimented with classification using only
the initial utterances of each dialogue. In this set-
ting, it was beneficial to project the feature space
to a very low dimension using Latent Semantic
Analysis (LSA). The best results with a macro-
averaged F-score of 0.862 (precision 0.896; recall
0.867) were obtained by using the first 4 sentences
and an LSA dimensionality of 5. However, since
there was no online constraint in the shared task,
we ultimately decided to use the more accurate

7https://spacy.io
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Adaptation Source text Target text

Speaker <speaker=customer> Perfect. Okay, got it. <speaker=customer> Perfekt. In Ordnung, verstanden.
Domain <taxi> Perfect. Okay, got it. <taxi> Perfekt. In Ordnung, verstanden.
Speaker+domain <taxi> <speaker=customer> Perfect. Okay, got it. <taxi> <speaker=customer> Perfekt. In Ordnung, verstanden.

Table 1: Examples from the dataset annotated with variants of speaker and domain tags.

full-dialogue classifier for our submission.

Context-level MT Finally, we explore using lin-
guistic context (varying numbers of previous ut-
terances) to improve translation, with the aim that
previous context can provide vital information for
disambiguation or adaptation. We use the approach
of concatenating varying numbers of previous sen-
tences to the current sentence, separated by a sen-
tence boundary token <break> (Tiedemann and
Scherrer, 2017; Bawden et al., 2018). This simple
strategy was shown to be one of the most effec-
tive in a recent comparison of document-level MT
approaches (Lopes et al., 2020). To distinguish be-
tween different speakers, we also add the speaker
tag to the beginning of every utterance. The mod-
els are trained to translate both the context and
the utterance into the target language (i.e. n-to-n
strategy). The candidate utterance is then extracted
from the generated output in a preprocessing step.
Since the dialogues are bilingual (the agent and
customer are speaking in different languages), the
original versions of the previous sentences can be
either in English or in German. While we always
translate both the context and the current sentence
into the target language on the target side, we con-
sider two approaches to incorporate context in the
source sentence: (i) ORIG: each previous sentence
is in the original language of its speaker (if the con-
text and current sentences are not produced by the
same speaker, our input will be a mix of English
and German) and (ii) SAME: the source context is
provided in the same language as the current sen-
tence (language consistency in the source input).
At test time, this requires translating utterances sen-
tence by sentence (as opposed to batch decoding);
when the previous utterances are not from the same
speaker, they must first be translated by the MT
model in the opposite language direction for them
to be used as context for the current sentence.

4 Experimental setup

We compare two neural MT base system types,
both WMT’19 news translation task submissions:
UEDIN (University of Edinburgh; Bawden et al.

2019a and FAIR (Facebook; Ng et al. 2019). All
models are transformer-big models (Vaswani et al.,
2017): 6 encoder and 6 decoder layers, model di-
mension of 1024, 16 heads except that UEDIN has
a feedforward dimension of 4096 for both the en-
coder and decoder, and FAIR models increase this
dimension to 8192 in the encoder. UEDIN mod-
els are implemented in Marian (Junczys-Dowmunt
et al., 2018) and FAIR models in Fairseq (Ott et al.,
2019). Both model types are trained on parallel and
backtranslated monolingual data from the WMT’19
news translation shared task (Barrault et al., 2019).
For our final submission (using the base FAIR
model), we also use noisy channel reranking (Yee
et al., 2019), which requires MT models in both
directions and a (target) language model. We de-
scribe the data processing techniques in Appendix
A and list the hyper-parameters in Appendix B.

5 Experimental Results and Analysis

We report automatic evaluation results in Sec-
tion 5.1 and provide a qualitative manual compari-
son in Section 5.2.

5.1 Automatic evaluation results

We report BLEU scores (Papineni et al., 2002), cal-
culated with SACREBLEU8 (Post, 2018) on the dev
set (beam size of 4).

Pretraining The results in Table 2 show that in-
domain fine-tuning of the pretrained models always
gives large gains. The pre-trained FAIR models are
better than the pre-trained UEDIN models (Barrault
et al., 2019). Fine-tuning on filtered paracrawl and
then on the in-domain data gives a slight gain for
the UEDIN models (particularly for de–en) but
slightly degrades the FAIR models. We choose
to take as a base the models fine-tuned on filtered
paracrawl to fine-tune all subsequent models (with
tags and context). Though these models perform
similar to the FT1 models, as these were trained
on more data, they are likely to be more robust
on unseen data. Note that all pretrained models

8Default parameters and case-sensitive evaluation.
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outperform the baseline models trained just on the
chat training data (shown in the first row).

en–de de–en
Model UEDIN FAIR UEDIN FAIR

Chat baseline 33.2 35.8 37.4 30.9

Pretrained 42.5 41.0 44.9 48.5
+ in-domain (FT1) 58.6 61.4 61.0 62.3
+ paracrawl (FT2) 44.8 45.4 46.5 45.2

+ in-domain 58.8 60.8 60.9 62.2

Table 2: BLEU scores on the dev set for both pretrained
models, and of each model fine-tuned on (i) in-domain
data and (ii) filtered paracrawl then in-domain data.

Effect of adding tags As shown in Table 3, we
observe that in general the performance of both
systems improves with the addition of tags. The
use of speaker tags improves the BLEU scores for
UEDIN models while dialogue tags improve the
BLEU scores for FAIR models. We did not observe
an improvement in BLEU scores in models using
both the tags over models that used a single tag.

en–de de–en
Model UEDIN FAIR UEDIN FAIR

FT2 + no tag 58.8 60.8 60.9 62.2
FT2 + speaker 59.4 61.3 60.1 62.1
FT2 + domain 59.6 61.5 60.8 62.7
FT2 + speaker + domain 59.6 61.1 61.4 61.6

Table 3: Dev set BLEU scores for fine-tuning with tags.

Context-level MT As shown in Table 4, the con-
textual models perform similarly to the baseline
for FAIR models while the performance degrades
slightly with the UEDIN models. Increasing the
number of contextual sentences degrades BLEU

scores, most likely due to the necessity to translate
longer sentences. It is also likely that the MT sys-
tems do not benefit from the addition of previous
sentences because the particular chat dataset used
contains utterances that do not need context to be
correctly translated, contrary to expectations but in
line with findings by Mosig et al. (2020). Using
context in the same language (SAME) was more
beneficial than the original context (ORIG). It is ev-
ident that SAME would perform better than ORIG
as the pre-trained models were never exposed to
such mix-language utterances. Despite fine-tuning
a monolingual encoder on mix-language utterances,
ORIG systems perform well.

Final submission Table 5 shows the results of
our primary submission on both the dev and test

en–de de–en
Model UEDIN FAIR UEDIN FAIR

FT2 + in-domain 58.8 60.8 60.9 62.2

In-domain data uses previous context (ORIG language)

FT2 + 1 prev 58.2 60.3 58.9 61.8
FT2 + 2 prev 56.1 60.2 58.7 61.5
FT2 + 3 prev 53.3 59.5 56.7 61.7

In-domain data uses previous context (SAME language)

FT2 + 1 prev 58.1 61.0 59.2 62.2
FT2 + 2 prev 57.5 60.1 59.1 61.5
FT2 + 3 prev 55.4 60.5 57.3 62.1

Table 4: Dev set BLEU scores for contextual MT mod-
els. The numbers before “prev” are the number of pre-
vious utterances used as context.

en–de de–en
Model(FAIR) dev test dev test

FT2 + domain-tags 61.5 60.3 62.7 60.6
+ noisy-channel re-ranking 62.0 60.1 62.9 61.8

+ ensemble [primary] 62.1 60.2 63.1 62.4
FT1 [contrastive] 61.4 60.2 62.3 61.8
FT2 + 1-same [contrastive] 61.0 59.8 62.2 61.5

Table 5: The method-wise ablation of our final sub-
mission: a 4-model ensemble of FAIR based FT2 mod-
els fine-tuned with in-domain training data tagged with
domain tags. The outputs are obtained through noisy-
channel reranking.

sets: a 4-model ensemble, each model trained by
first fine-tuning the pre-existing FAIR model on
filtered paracrawl data, then on in-domain training
data tagged with dialogue tags and then reranked
using noisy channel reranking (n=20) (Yee et al.,
2019). We note that noisy channel reranking is
more effective for en–de than for de–en. Ensem-
bling provides limited gains. We report our con-
trastive submissions for comparison. Our models
were chosen on their respective performances on
the dev set. We observe that the trends for dev set
and test set are similar except for FT2 + domain-
tags model without the noisy channel re ranking.

5.2 Qualitative Evaluation

As the gains in BLEU scores with different con-
figurations are limited, it is difficult to identify if
the models exhibit qualitative improvement. We
created an evaluation set by selecting around 40 pe-
culiar utterances in each translation direction from
the development set and conducted an informal
human evaluation by assigning scores of −1, 0 or
1 to poor, acceptable or particularly good transla-
tions. The average score was used to guide model
selection. As per the qualitative evaluation, there
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were few and similar errors across different models
to draw any significant conclusions. Notably, the
number of errors was higher for the en–de direction
due to the production of literal translations. Our
primary submission achieved a score of 85.357 on
human evaluation using direct assessment.

6 Discussion and Future Work

We observe that fine-tuning the WMT’19 news-
adapted models on in-domain chat data is a strong
baseline. The addition of tags, though helpful, has
limited gains on BLEU, and the addition of context
(intuitively an important component for any dia-
logue related task) actually degrades results. We
speculate that this is due to the nature of the origi-
nal dataset, which has limited linguistic diversity
and utterances that are mostly context-independent
(Mosig et al., 2020). The overall translation of
this dataset was of excellent quality, allowing easy
understanding of the dialogues. However, the trans-
lated chats exhibit translationese and in some cases
lacked naturalness, also the case of the references
themselves. An interesting avenue for data collec-
tion would be a spontaneous generation of chats in
two different languages which can roughly follow
the same discourse as in (Bawden et al., 2019b).
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Abstract

Machine Translation (MT) is a sub-field of
Artificial Intelligence and Natural Language
Processing that investigates and studies the
ways of automatically translating a text from
one language to another. In this paper, we
present the details of our submission to the
WMT20 Chat Translation Task, which consists
of two language directions, English→German
and German→English. The major feature of
our system is applying a pre-trained BERT em-
bedding with a bidirectional recurrent neural
network. Our system ensembles three mod-
els, each with different hyperparameters. De-
spite being trained on a very small corpus, our
model produces surprisingly good results.

1 Introduction

The language of chat texts is considered a common
language where people are rarely paying attention
to correct spelling. Therefore, using the traditional
methods of Machine Translation (MT), like dictio-
naries, is insufficient (Hernández, 2009). As deep
learning (DL) models are becoming more evolved
and complex, this motivates the natural language
processing (NLP) community researchers to em-
ploy them for challenging tasks such as MT of
informal language, such as what is used in chat.
Techniques like contextual word embeddings and
pre-trained DL models are becoming very common
in natural language generation (NLG) tasks such as
MT (Kusner et al., 2015; Zou et al., 2013; Abdullah
and Shaikh, 2018; Al-Bdour et al., 2019).

The Chat Translation Task is a new task in
the Fifth Conference on Machine Translation
(WMT20).1 Translating chat text, specifically the
chats of customer support, is a main and exciting
task in the field of MT. This kind of tasks has not
been widely considered in previous MT studies,

1http://www.statmt.org/wmt20/chat-task.html

mostly because of the absence of openly existing
datasets. The target of this new Chat Translation
Task is to translate the customer support chat text
from English to German and vice versa. The essen-
tial goal of this task is to develop models that can
translate conversational text and study the use of
multilingual models.

We take part in the WMT20 shared chat
translation task in two language directions:
English→German and German→English. In this
paper, we discuss our submission for this task,
which is based on the bidirectional recurrent neu-
ral networks (bi-RNN) (Schuster and Paliwal,
1997) and using the pre-trained BERT embed-
ding, known as bert-base-multilingual-cased (De-
vlin et al., 2018).

This paper is constructed as follows. In Sec-
tion 2, the task and data descriptions are provided.
Section 3 discusses our proposed model. Section 4
shows the experiments we conduct and their results.
Finally, the Conclusion is in Section 5.

2 Task and Data Description

The Chat Translation shared task of WMT20 offers
participants the opportunity to address a challeng-
ing problem faced by many companies today as
they expand their customer support units to multi-
ple different languages.

The shared task provides a dataset consisting
of a set of conversations between agents and cus-
tomers. The organizers supplied a corpus for the
English-German language pair. Specifically, the
task involves translating the chat text of an agent
speaking English and a customer speaking German.
We are asked to translate the agent’s chat text from
English to German, and the customer’s from Ger-
man to English.

The dataset used for this shared task depends
on the corpus of Taskmaster-1 (Byrne et al., 2019),
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which has the English language, and it consists of
dialogues in six fields. A small part of this dataset
was chosen and translated to German. The shared
task has been provided with train, development,
and test sets in JSON format. Each chat in the
data file has a specific structure. Table 1 shows the
number of conversations in each file of the dataset.

Dataset # of Conversation
Train dataset 550
Dev dataset 78
Test dataset 78

Table 1: Number of conversations in each set.

Each conversation contains a speaker (who is ei-
ther an agent or a customer), a source chat text, and
a target chat text. For the test set file, we are asked
to translate the source chat text to target depending
on the speaker. If it is an agent, the translation is
from English to German. Otherwise, the translation
is from German to English. For evaluating the par-
ticipating models, the task organizers employ both
automatic metrics (BLEU (Papineni et al., 2002)
and TER (Snover et al., 2006)) as well as human
evaluation.

3 JUST System

Our System follows the sequence of steps shown in
Figure 1. In the following subsections, we discuss
each step in details.

3.1 Preprocessing Data

For the dataset preprocessing, we first converted
the files from JSON file, as given in the shared
task, to text files, so we can work with them easily.
The training, dev, and test sets are divided into two
groups: one that contains the agent as the speaker
(English→German) and one that contains the cus-
tomer as the speaker (German→English). Table 2
shows the number of examples in each group.

Groups Train Dev Test
Agent 7,629 1,040 1,133

Customer 6,215 862 967

Table 2: Number of examples in each group.

3.2 Extracting Features

After preparing the dataset and preprocessing it, we
use the pre-trained BERT model to get the word em-

beddings of the dataset. Specifically, we use Bert-
base-multilingual-cased2 to extract feature vectors
of the dataset to be used in the training of our mod-
els. For each word in the sentence of the encoder
side, we get a file containing the word’s embedding.
The same is done for the decoder side.

3.3 The System Architecture

Our system is an adaptation of OpenNMT3, an
open-source toolkit for neural machine translation
(NMT) (Klein et al., 2017). It is created on the
PyTorch framework (Paszke et al., 2017). After
ensuring that the dataset is ready to be trained in
our system, we feed our dataset to the bi-RNN with
long short-term memory (LSTM) cells (Hochreiter
and Schmidhuber, 1997) and an attention mecha-
nism (Luong et al., 2015) along with the word em-
beddings we extract from the dataset and trained
everything jointly. For each different set of hyper-
parameters, we train the model separately. We save
the best three models. Table 3 shows the different
hyperparameters used for the three models as well
some of the experiments that have been done using
GloVe embedding (Pennington et al., 2014) + byte
pair encoding (BPE) (Sennrich et al., 2015) with
a vocabulary of 10K sub-word units (Experiment-
1), GloVe + without BPE (Experiment-2), and the
default model. The rest of the hyperparameters are
left at their default value.

Models Batch size Dropout BPE Embedding
Default 64 0.3 Yes GloVe

Experiment-1 64 0.4 Yes GloVe
Experiment-2 64 0.3 No GloVe

Model-A 32 0.6 No BERT
Model-B 100 0.7 No BERT
Model-C 182 0.7 No BERT

Table 3: Different hyper parameters of the three
models.

We also experiment with the celebrated Trans-
former mode (Vaswani et al., 2017). However, this
model results in very low BLEU scores when eval-
uated on the dev set. Moreover, it takes about four
days to finish training in one experiment. So, we
decide to exclude it from further consideration.

3.4 Model Ensembling

Before the test set is released, we train different
models using the training set and evaluate them

2https://github.com/google-research/bert
3https://opennmt.net/OpenNMT-py/options/train.html
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Figure 1: Flowchart of our system.

using the dev set. After training our system, we
choose the best three models and ensemble them to
get the final output.

4 Results

The results based on the dev set are show in Table 4.
The table shows the results of our three models,
which we choose for the ensembling step, as well
as the other experiments mentioned earlier. The
Table shows the difference between them using
the BLEU score. From the above table we can
notice that training without using BPE improves the
results. Moreover, we have chosen the pre-trained
BERT because it improves the results compared to
the GloVe embedding.

Models BLEU
Default 32.99

Experiment-1 34.80
Experiment-2 35.21

Model-A 36.88
Model-B 37.07
Model-C 40.93

Table 4: Results of our experiments for the dev dataset.

For evaluation on the test set, we combine the
train and dev dataset of each group into one file.
Table 5 shows the number of examples in each
group after combining them into one file.

Agent Customer
Combined
train + dev

8,669 7,077

Table 5: Number of examples after combining the
files.

We train each group separately and then we en-
semble the three models into one. This model is
used to get the target of each sentence in the test
set of each group. It is worth mentioning that we

only use the small dataset provided with the shared
task.

Table 6 shows the results for the human evalua-
tion between the human, best score and our model
for the English→German scores.

Team Agent Ave.
Human 91.43

Best 88.21
Our Model 63.93

Table 6: Results of the human evaluation.

Table 7 shows the results we get in the shared
task compared to the baseline and the best results.
We can see that the agent BLEU score of our model
is higher than the baseline, which is translating
from English to German. On the other hand, the
customer BLEU score for the baseline beat our
model, which is translating from German to En-
glish.

5 Conclusion

This work describes JUST’s submission to
the WMT20 chat translation task. For all
two translation directions, English→German and
German→English, we used the pre-trained BERT
embedding with the bi-RNN. We trained one model
with different hyperparameters and then ensembled
to one final system to translate the test set provided
by the shared task. At the end of this work, we find
out that a simple NMT model with BERT embed-
ding can achieve surprisingly good results even if
it is trained on a very small corpus.
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Abstract

This paper describes the Tencent AI Lab’s
submission of the WMT 2020 shared task on
chat translation in English⇔German. Our neu-
ral machine translation (NMT) systems are
built on sentence-level, document-level, non-
autoregressive (NAT) and pretrained models.
We integrate a number of advanced techniques
into our systems, including data selection,
back/forward translation, larger batch learn-
ing, model ensemble, finetuning as well as sys-
tem combination. Specifically, we proposed
a hybrid data selection method to select high-
quality and in-domain sentences from out-of-
domain data. To better capture the source con-
texts, we exploit to augment NAT models with
evolved cross-attention. Furthermore, we ex-
plore to transfer general knowledge from four
different pre-training language models to the
downstream translation task. In general, we
present extensive experimental results for this
new translation task. Among all the partici-
pants, our German⇒English primary system
is ranked the second in terms of BLEU scores.

1 Introduction

Although neural machine translation (NMT, Bah-
danau et al., 2015; Vaswani et al., 2017; Gehring
et al., 2017) has achieved great progress in recent
years, translating conversational text is still a chal-
lenging task due to its inherent characteristics such
as discourse awareness (Maruf et al., 2018; Wang
et al., 2019), informality (Wang et al., 2018; Yang
et al., 2019) and personality (Mirkin et al., 2015;
Wang et al., 2016). This is a task-oriented chat
translation task (Wang et al., 2017a; Farajian et al.,
2020), which aims to translating conversations be-
tween customers and agents. As a customer and an
agent can respectively natively speak in German

∗ This work was conducted when Li Ding and Liang Ding
were interning at Tencent AI Lab. Li Ding is now working at
OPPO Research Institute.

and English, the systems should translate the cus-
tomer’s utterances in German⇒English (De⇒En)
while the agent’s in German⇐English (De⇐En).

In this paper, we present our submission to the
novel task in De⇔En. We explore a breadth of
established techniques for building Chat NMT sys-
tems. Specifically, our systems are based on the
self-attention networks including both sentence-
and document-level Transformer (Vaswani et al.,
2017; Wang et al., 2017b). Besides, we investi-
gated non-autoregressive translation (NAT) mod-
els augmented with our recently proposed evolved
cross-attention (Ding et al., 2020). Technically, we
used the most recent effective strategies including
back/forward translation, data selection, domain
adaptation, batch learning, finetuning, model en-
semble and system combination. Particularly, we
proposed a multi-feature data selection on large
general-domain data. We not only use three lan-
guage models (i.e. n-gram, Transformer and BERT
based LMs) to filter low-quality sentences, but
also employ feature decay algorithms (FDA, Biçici
and Yuret, 2011) to select domain-relevant data.
In addition, we explore large batching (Ott et al.,
2018) for this task and found that it can signifi-
cantly outperform models with regular batching
settings. To alleviate the low-resource problem, we
employ large scale pre-training language models in-
cluding monolingual BERT (Devlin et al., 2019a),
bilingual XLM (Conneau and Lample, 2019) and
multilingual mBART (Liu et al., 2020), of which
knowledge can be transferred to chat translation
models.1 For better finetuning, we investigate ho-
mogenous and heterogeneous strategies (e.g. from
sentence-level to document-level architectures). Si-
multaneously, we conduct fully-adapted data pro-
cessing, model ensemble, back/forward translation
and system combination.

1We experimented mBART after the official submission.
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According to the official evaluation results, our
systems in De⇒En and De⇐En are respectively
ranked 2nd and 4th.2 Furthermore, a number of
advanced technologies reported in this paper are
also adapted to our systems for biomedical transla-
tion (Wang et al., 2020) and news translation (Wu
et al., 2020) tasks, which respectively achieve up to
1st and 2nd ranks in terms of BLEU scores. Though
our empirical experiments, we gain some interest-
ing findings on the chat translation task:

1. The presented data selection method improves
the baseline model by up to +18.5 BLEU
points. It helps a lot for small-scale data.

2. The large batch learning works well, which
makes sentence-level NMT models perform
the best among different NMT models.

3. Our proposed method can improve the NAT
model by +0.6 BLEU point, which is still hard
to beat its autoregressive teachers.

4. Document-level contexts are not useful on the
chat translation task due to the limitation of
contextual data.

5. It is difficult to transfer general knowledge
from pretrained LMs to the downstream trans-
lation task.

The rest of this paper is organized as follows.
Section 2 introduces data statistics and our pro-
cessing methods. In Section 3, we present our
system with four different models: sentence-level
NMT, document-level NMT, non-autoregressive
NMT and NMT with pre-training LMs. Section 4
describes advanced technique integrated into our
systems such as data selection and system com-
bination. In Section 5, we reports ablation study
and experimental results, which is followed by our
conclusion in Section 6.

2 Data and Processing

2.1 Data

The parallel data we use to train NMT systems con-
sist of two parts: in-domain and out-of-domain cor-
pora. The monolingual data used for back/forward
translation are all out-of-domain. Table 1 shows
the statistics of data in En-De.

2The primary systems are ranked according to BLEU.
And the official results are listed in http://www.statmt.
org/wmt20/chat-task_results_DA.html.

Data # Sents # Ave. Len.
Parallel

In-domain 13,845 10.3/10.1
Valid 1,902 10.3/10.2
Test 2,100 10.1/10.0
Out-of-domain 46,074,573 23.4/22.4

+filter 33,293,382 24.3/23.6
+select 1,000,000 21.4/20.9

Monolingual
Out-of-domain De 58,044,806 28.0

+filter 56,508,715 27.1
+select 1,000,000 24.2

Out-of-domain En 34,209,709 17.2
+filter 32,823,301 16.6

+select 1,000,000 14.5

Table 1: Data statistics after pre-processing. Note that
in-domain/valid/test set is speaker-ignored combined
and their average lengths are counted based on En/De.

In-domain Parallel Data The small-scale in-
domain corpus is constructed by the task orga-
nizer.3 The training, validation and test sets contain
utterances in task-based dialogues with contextual
information. We use both w/ and w/o context for-
mats for training corresponding models. Although
there exists duplicated/noisy sentences, we do not
further filter such limited data.

Out-of-domain Parallel Data The participants
are allowed to use all the training data in the News
shared task.4 Thus, we combine six corpora includ-
ing Euporal, ParaCrawl, CommonCrawl, TildeR-
apid, NewsCommentary and WikiMatrix. We first
filter noisy sentence pairs (as detailed in Section
2.2) and simultaneously select parts of them as
pseudo-in-domain data (as detailed in Section 4.1).

Out-of-domain Monolingual Data Due to the
high degree of sentence similarity within the
TaskMaster monolingual corpus,5 participants are
not allowed to use the in-domain monolingual data
to train their systems. Thus, we collect part of
monolingual data in news domain, which consists
of CommonCrawl and NewsCommentary. We con-
duct data selection (in Section 4.1) to select similar
amount of sentences for back/forward translation.

3https://github.com/Unbabel/BConTrasT.
4http://www.statmt.org/wmt20/

translation-task.html.
5https://github.com/

google-research-datasets/Taskmaster.
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We do not use larger monolingual corpora (e.g.
CommonCrawl) and leave this for future work.

2.2 Processing

Pre-processing To pre-process the raw data, we
employ a series of open-source/in-house scripts,
including full-/half-width conversion, Unicode con-
versation, punctuation normalization, tokenization
and true-casing. After filtering steps, we generate
subwords via Joint BPE (Sennrich et al., 2016b)
with 32K merge operations.

Filtering To improve the quality of data, we filter
noisy sentence pairs according to their characteris-
tics in terms of language identification, duplication,
length, invalid string and edit distance. According
to our observations, the filtering method can signif-
icantly reduce noise issues including misalignment,
translation error, illegal characters, over-translation
and under-translation.

Post-processing After decoding, we process de-
tokenizer and de-truecaser on system outputs. We
found that the toolkit can not precisely deal with
all cases. Thus, we automatically fix these bugs
according to bilingual agreement.

3 Models

We adopt four different model architectures
namely: SENT, DOC, NAT and PRETRAIN.

3.1 Sentence-level NMT (SENT)

We use standard TRANSFORMER models (Vaswani
et al., 2017) with two customized settings. Due to
data limitation, we use the small settings (SENT-S)6

with regular batch size (4096 tokens × 8 GPUs).
Based on the base settings (SENT-B),7 we also em-
pirically adopt big batch learning (Ott et al., 2018)
(16348 tokens× 4 GPUs) with larger dropout (0.3).

3.2 Document-level NMT (DOC)

To improve discourse properties for chat trans-
lation, we re-implement our document-level
model (Wang et al., 2017b) on top of TRANS-
FORMER. Its addition encoder reads N = 3 previ-
ous source sentences as history context and the rep-
resentations are integrated into the standard NMT

6https://github.com/pytorch/fairseq/
blob/master/fairseq/models/transformer.
py#L947.

7https://github.com/pytorch/fairseq/
blob/master/fairseq/models/transformer.
py#L902.

S>,?@-1 $>,?@-2 $>,?@-3

N-best N-best N-best

Token or sentence level
System Combination

Source Sentence

Hypothesis

Figure 1: The simplified system combination process,
into which we feed each system/model with the source
sentence, in turn obtain corresponding n-best result. Af-
ter pooling all system results, we can perform the token-
level or sentence-level system combination decoding
and obtain the final hypothesis.

for translating the current sentence. The other con-
figures are same as SENT with small settings.

3.3 Non-autoregressive NMT (NAT)

Different from autoregressive NMT models that
generate each target word conditioned on previ-
ously generated ones, NAT models break the au-
toregressive factorization and produce target words
in parallel (Gu et al., 2018). Although NAT is
proposed to speed up the inference, we exploit it
to alleviate sequential error accumulation and im-
prove the diversity in conversational translation.
To adequately capture the source contexts, we pro-
posed evolved cross-attention for NAT decoder by
modeling the local and global attention simultane-
ously (Ding et al., 2020). Accordingly, we imple-
ment our method based on the advanced MaskPre-
dict model (Ghazvininejad et al., 2019)8, which
uses the conditional mask LM (Devlin et al., 2019a)
to iteratively generate the target sequence from the
masked input.

3.4 Pretraining NMT (PRETRAIN)

To transfer the general knowledge to chat trans-
lation models, we explore to initialize (part of)
model parameters with different pretrained lan-
guage/generation models. Li et al. (2019) showed

8https://github.com/facebookresearch/
Mask-Predict.
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#CP En-De De-En
1 60.32 59.51
5 60.33 59.53

10 60.26 59.42
15 60.19 59.34
20 60.23 59.22

ENS 60.49 60.08
(a) Model average and ensemble.

#BM En-De De-En
4 60.33 59.23
8 60.33 59.53

12 60.33 59.24
14 60.34 59.27
16 60.37 59.28
20 60.28 59.19

(b) Beam size.

#LP En-De De-En
0.8 57.78 57.27
0.9 57.82 57.31
1.0 57.83 57.46
1.1 57.90 57.50
1.2 57.84 57.49
1.3 57.82 57.49

(c) Length penalty.

Table 2: Effects of different hyper-parameters on translation quality of SENT-B model. The BLEU score is calcu-
lated based on combined and tokenized validation set by muti-bleu.perl, which is different from official evaluation.

that large scale generative pretraining could be
used to initialize the the document-level transla-
tion model by concatenating the current sentence
and its context. We follow their work to build the
BERT→DOC model. Furthermore, Conneau and
Lample (2019) proposed to directly train a novel
cross-lingual pretraining language model (XLM)
to facilitate translation task. Accordingly, we adopt
XLM pretrained model9 to sentence-level NMT
(XLM→SENT). More recently, Liu et al. (2020)
proposed a sequence-to-sequence denoising auto-
encoder pre-trained on large-scale monolingual cor-
pora in many languages using the BART objective.
As they showed promising results on document
translation, we additionally conducted the experi-
ment on Chat data after submitting our systems.10

4 Approaches

We integrated advanced techniques into our sys-
tems, including data selection, model ensemble,
back/forward translation, larger batch learning,
finetuning, and system combination.

4.1 Data Selection

Inspired by Ding and Tao (2019), multi-feature
language modelling can select high-quality data
from a large monolingual or bilingual corpus. We
present a four-feature selection criterion, which
scoring each sentence by BERT LM (Devlin et al.,
2019b), Transformer LM (Bei et al., 2018), N-gram
LM (Stolcke, 2002) and FDA (Biçici and Yuret,
2011). Three LMs are complement each other on
measuring qualities of sentences while FDA can
measure its domain relevance given a in-domain
dataset. Sentence pairs in the out-of-domain corpus

9https://github.com/facebookresearch/
XLM.

10https://github.com/pytorch/fairseq/
tree/master/examples/mbart.

are ranked by a sum of the above feature scores, and
we selected top-M instances as pseudo-in-domain
data. According to our observations, the selected
data can maintain both high-quality and in-domain
properties. For BERT LMs, we exploit two models
built by Google11 and our Tencent AI Lab, which
are trained on massive multilingual data. The Trans-
former LM is trained on all in-domain and out-of-
domain data via Marian.12 Besides, we used FDA
toolkit13 to score domain relevance between in-
domain and out-of-domain data.

4.2 Checkpoint Average and Model
Ensemble

For each model, we stored the top-L checkpoints
according to their BLEU scores (instead of PPL or
training time) on validation set and generated a final
checkpoint with averaged weights to avoid stochas-
ticity. To combine different models (maybe differ-
ent architectures), we further ensembled the aver-
aged checkpoints in each model. In our preliminary
experiments, we find that this hybrid combination
method outperforms solely combining checkpoints
or models in terms of robustness and effectiveness.

4.3 Finetuning

We employ various finetuning strategies at differ-
ent phases of training. For Sent-Out→Sent-In fine-
tune (same architecture but different data), we first
train a sentence-level model on large pseudo-in-
domain data and then continuously train it on small
in-domain data. We apply similar strategy for Doc-
Out→Doc-In finetuning, and the only difference
is to use document-level data. However, pseudo-
in-domain data have no document-level contexts

11https://github.com/google-research/
bert.

12https://github.com/marian-nmt/marian.
13https://github.com/bicici/FDA.
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Method # Sent. BLEU
SENT-B 10K 41.87

+Bi-FDA
300K 59.36
500K 59.81

1M 59.96

+Bi-FDA-XL
500K 59.86
800K 59.95

1M 59.68

+Mono-FDA-XL
800K 60.36

1M 59.80

Table 3: BLEU scores of SENT-BASE model on
En⇒De task with different FDA variants (three LMs
scoring are consistent).

and we use “〈/s〉” symbols as their pseudo con-
texts (Kim et al., 2019; Li et al., 2020). Besides,
we conduct Sent-Out→Doc-In finetuning (different
architectures and data). Specifically, we first train
a sentence-level model on pseudo-in-domain data
and then use parts of corresponding parameters to
warm-up a document-level model, which will be
continuously trained on in-domain data.

4.4 Back/Forward Translation

Following Section 2, we obtain processed mono-
lingual data. For back translation (BT), we use the
best backward translation model to translate from
target to source side and produce the synthetic cor-
pus, which is used to enhance the autoregressive
NMT models (Sennrich et al., 2016a). About for-
ward translation (FT), we employ forward trans-
lation model to perform sequence distillation for
NAT models (Kim and Rush, 2016) .

4.5 System Combination

As shown in Figure 1, in order to take full advan-
tages of different systems (Model1,Model2 and
Model3), we explore both token- and sentence-
level combination strategies.

Token-level We perform token-level combi-
nation with confusion network. Concretely,
our method follows Consensus Network Min-
imum Bayes Risk (ConMBR) (Sim et al.,
2007), which can be modeled as EConMBR =
argminE′L(E′, Econ), where Econ was obtained
as backbone through performing consensus net-
work decoding.

Sentence-level We employ the reranking strategy
to combine sentence-level systems. Particularly,

Systems Integration BLEU
Models

SENT-B
IN 42.56

IN+OUT 59.81

SENT-S
IN 41.87

IN+OUT 58.62

DOC

IN 45.65
IN+OUT 51.12
IN→IN 51.93

NAT
IN+OUT 54.01
∗IN+OUT 54.59

Pretrain

SENT→DOC
OUT→IN 49.77

OUT→IN+OUT 51.58
XLM→SENT IN+OUT 59.61
BERT→DOC IN+OUT 56.01

MBART→SENT IN+OUT 57.48

Table 4: BLEU scores of SENT, DOC, NAT and PRE-
TRAIN with different finetuning strategies on En⇒De.

the sentence reranker contains the best left-to-right
(L2R) translation model, R2L (right-to-left) trans-
lation model and T2S (target-to-source) translation
model. They are integrated by K-best batch MIRA
training (Cherry and Foster, 2012) on valid set.

5 Experimental Results

Unless otherwise specified, reported BLEU scores
are calculated based on combined and tokenized
validation set by muti-bleu.perl, which is different
from the official evaluation method.

5.1 Ablation Study

Table 2 investigates effects of different settings on
translation quality. We then apply the best hyper-
parameters to the models in Section 4 if applicable.

Effects of Model Average and Ensemble Fol-
lowing Section 4.2, we averaged top-L checkpoints
in SENT-B model and found that it performs best
when L = 5. We followed the same operation for
SENT-S model and then combined two best aver-
aged models (one from SENT-B and the other one
from SENT-S) via ensemble method. As shown in
Table 2(a), the ENS model (i.e. “average + ensem-
ble”) performs the best.

Effects of Beam Size and Length Penalty Ta-
ble 2(b) and 2(c) report BLEU scores of SENT-B
model using different beam size and length penalty,
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# Methods En⇒De De⇒En
SENT-S 59.12 59.61

+BT 59.05 59.22
SENT-B 60.33 59.53

+BT 59.34 58.94
+FT 59.80 58.94

NAT 54.01 56.58
+FT 56.56 56.69

XLM 59.61 60.96
+BT 59.43 58.84

Table 5: BLEU scores of back-translation and forward-
translation strategies for different models.

respectively. As seen, it obtains the best perfor-
mance when using larger beam size (e.g. 8 or 16).
The length penalty prefers around 1.0 because En
and De belong to similar language family.

5.2 Main Results

This section mainly reports translation qualities
across different models and approaches (in Sec-
tion 3 and 4). Finally we combine all of them via
techniques integration and system combination.

Data Selection Table 3 demonstrates the trans-
lation performances of SENT-BASE on different
FDA variants. “+Bi-FDA” means using bilingual
in-domain data as seed to select N sentences from
out-of-domain data while “+Bi-FDA-XL” indicates
using larger seed (iteratively add selected pseudo-
in-domain data to seed). “Mono” means that we
only use source-side data for data selection. As
seen, selected data from News domain can help to
significantly improve translation quality. However,
monolingual selection (“+Mono-FDA-XL”) per-
forms better than bilingual one (“+Bi-FDA-XL”)
and obtain the best BLEU score when N = 800K.

Models and Pretraining Table 4 illustrates the
translation performances of various NMT mod-
els (i.e. SENT, DOC, NAT) with different train-
ing strategies. As seen, all models are hungry for
larger in-domain data due to the data limitation
problem (IN+OUT vs. IN). About sentence-level
models, the “base + big batch” setting performs
better than the “small” one (SENT-B vs. SENT-S).
However, it is difficult for document-level models
to outperform sentence-level ones (DOC vs. SENT).
The interesting finding is that the document-level
model trained on pseudo contexts (“IN+OUT”) can
improve the baseline that is trained on only real

Models En⇒De De⇒En
-Dom. +Dom. -Dom. +Dom.

Valid Set (combined)
SENT-S 60.47 60.31 62.66 61.19
SENT-B 62.28 62.08 64.99 63.00
XLM 61.12 60.85 64.19 61.30

Valid Set (split)
SENT-S 60.69 60.48 60.05 62.09
SENT-B 61.65 61.93 59.64 63.31
XLM 60.90 60.74 61.12 62.04
AVE. 61.08 61.05 62.27 62.48

Table 6: BLEU scores of domain adaptation strategy
for different models.

context (“IN”) by +5.47 BLEU points. We think
there are two main reasons: 1) it lacks of large-scale
training data with contextual information; 2) it is
still unclear how the context help document transla-
tion, which is similar to the conclusion in previous
work(Kim et al., 2019; Li et al., 2020). About NAT

models, our proposed approach can improve the
vanilla NAT by +0.6 BLEU point, which are lower
than those of autoregressive NMT models.

About pre-training, we first explore
SENT→DOC, which train a sentence-level
model and then use part of their parameters to
warm-up a document-level model. However, it
is still lower than sentence-level models. The
performance of BERT→DOC is much better than
pure document-level models (56.01 vs. 51.93),
which confirms our hypothesis that contextual
data is limited in this task. Furthermore, the
XLM→SENT can obtain 59.61 BLEU points which
are closed to that of SENT-B. The MBART→SENT

with CC25 pretrained model can achieve 57.48
BLEU points. We find that performances of
most pretraining models can not beat that of
the best sentence-level model. There are two
possible reasons: 1) needing a number of tricks
on finetuning; 2) it is not easy to transfer general
knowledge to downstream specific tasks.

Back/Forward Translation Table 5 empirically
shows the translation performances of BT and FT
for different models, including SENT-S, SENT-B,
NAT and PRE-TRAIN. In particular, we performed
BT for all systems except NAT, while deploying
FT on NAT and SENT-B. As seen, augmenting
with monolingual data via BT/FT can not achieve
better performances than pure models. The reason
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Combination type En⇒De De⇒En
Token-level 58.91 59.53
Sentence-level 60.41 62.41

Table 7: Model performance after system combination.

may be that we only use a small part of large-scale
monolingual data in news domain. In future work,
we will exploit to select in-domain data from the
larger monolingual corpus.

Sub-domain Adaptation Modeling of all the
speakers and language directions involved in the
conversation, where each can be regarded as a dif-
ferent sub-domain. We conduct domain adaptation
for different models to avoid performance corrup-
tion caused by domain shifting in Table 6. Specifi-
cally, we finetune the well-trained models w/ and
w/o domain adaptation, denoted as “-Dom.” and
“+Dom.”, and evaluated them on domain combined
and split valid sets. As seen, domain adaptation
helps De⇒En more on valid set (“AVE.” 61.27
vs. 61.48), while has no much benefits on En⇒De
tasks. While evaluating on combined valid sets
has a bias towards models without domain adapta-
tion. We attribute this interesting phenomenon to
personality and will explore it in the future.

System Combination In order to make full use
of the optimal models obtained by the above strate-
gies, we perform token- and sentence-level system
combination simultaneously. For each strategy, we
generate the n-best candidates to perform the com-
bination. As shown in Table 7, although token-
level combination preserves more lexical diversity
and avoids the stochasticity, its translation per-
formance is significantly weaker (averagely -2.19
BLEU points) than sentence-level combination. En-
couragingly, the sentence-level combination outper-
forms token-level one on valid set, which is thus
used in our final system (in Table 8).

5.3 Official Results

The official automatic evaluation results of our sub-
missions for WMT 2020 are presented in Table 8.
For the primary submission, the SYS-1 combines
SENT (ensembled SENT-B and SENT-S), DOC

and NAT models. As contrastive submissions, the
SYS-2 combines SENT and XLM models while the
SYS-3 combines SENT, DOC, NAT and XLM ones.
Among participated teams, our primary systems
achieve the second and the forth BLEU scores on

Systems En⇒De De⇒En
Valid Test Valid Test

SYS-1 60.41 58.6 62.41 62.3
SYS-2 58.91 53.6 59.53 54.0
SYS-3 60.42 58.6 62.40 61.9
BEST – 60.4 – 62.4

Table 8: Official BLEU scores of our submissions for
WMT20 Chat task. The BEST denotes the best BLEU
scores of systems submitted by participants.

De⇒En and En⇒De, respectively.

6 Conclusion

The paper is a system description for the Tencent
AI Lab’s entry into the WMT2020 Chat Transla-
tion Task. We explore a breadth of established tech-
niques for building chat translation systems. The
paper includes numerous models making use of
sentence-level, document-level, non-autoregressive
NMT. It also investigates a number of advanced
techniques including data selection, model ensem-
ble, finetuing, back/forward translation and initial-
ization using a pretrained LMs. We present exten-
sive experimental results and hope that this work
could help both MT researchers and industries to
boost the performance of discourse-aware MT sys-
tems (Hardmeier, 2014; Wang, 2019).
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Abstract

In neural machine translation (NMT), se-
quence distillation (SD) through creation of
distilled corpora leads to efficient (compact
and fast) models. However, its effectiveness in
extremely low-resource (ELR) settings has not
been well-studied. On the other hand, trans-
fer learning (TL) by leveraging larger helping
corpora greatly improves translation quality in
general. This paper investigates a combina-
tion of SD and TL for training efficient NMT
models for ELR settings, where we utilize TL
with helping corpora twice: once for distill-
ing the ELR corpora and then during compact
model training. We experimented with two
ELR settings: Vietnamese–English and Hindi–
English from the Asian Language Treebank
dataset with 18k training sentence pairs. Us-
ing the compact models with 40% smaller pa-
rameters trained on the distilled ELR corpora,
greedy search achieved 3.6 BLEU points im-
provement in average while reducing 40% of
decoding time. We also confirmed that using
both the distilled ELR and helping corpora in
the second round of TL further improves trans-
lation quality. Our work highlights the impor-
tance of stage-wise application of SD and TL
for efficient NMT modeling for ELR settings.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2015; Sutskever et al., 2014) enables end-
to-end training of translation models and is known
to give state-of-the-art results for a large variety
of language pairs. NMT models with large hid-
den sizes or deep stacked layers tend to give better
translations than those with small hidden sizes or
fewer layers. Large models inevitably need more
storage space and computation, and are difficult
to deploy on low-computation and low-memory
devices. Additionally, beam search decoding is
known to improve translation quality but needs

more computation and is unacceptable in a low-
latency real-time application where faster decoding
is as valuable as if not more valuable than trans-
lation quality. Consequently, neural models that
are compact and fast are extremely important and
a growing body of research known as neural model
efficiency focuses on this issue.

One of the most popular techniques to train ef-
ficient models is knowledge distillation (Hinton
et al., 2015) which relies on transferring the knowl-
edge learned by a large model (called teacher) into
a smaller model (called student). Sequence distilla-
tion (SD) (Kim and Rush, 2016) is a special case
of knowledge distillation for sequence-to-sequence
models, such as those used for NMT. Not only does
it help in the training of compact and fast models
with high translation quality, it sometimes helps in
eliminating the need for beam search which further
increases decoding speed. SD relies on the creation
of distilled parallel corpora by translating the train-
ing source sentences into the target language by
using a large model. The distilled corpora are sim-
plified representations of how the large model sees
the original corpora and their quality will have a
direct impact on the translation quality of compact
models trained with them.

While SD is known to perform extremely well
for high-resource settings, its direct application
to extremely low-resource (ELR) settings will not
work due to over-fitting. Table 1 gives the BLEU
scores (Papineni et al., 2002) for Vietnamese–
English (Vi–En) and Hindi–English (Hi–En) trans-
lation tasks in the Asian Languages Treebank
(ALT) (Riza et al., 2016),1 where Transformer Base
models (Vaswani et al., 2017) with 1, 2, 3, and 6
encoder and decoder layers were trained on the
ALT training data of 18k sentence pairs. It is clear
that there is a huge performance gap between the

1http://www2.nict.go.jp/astrec-att/member/mutiyama/
ALT/ALT-Parallel-Corpus-20191206.zip
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#Layer
Vi→En En→Vi Hi→En En→Hi

G B G B G B G B
1 14.6 15.4 19.0 20.5 9.7 10.1 10.8 11.7
2 16.4 17.6 21.1 22.7 10.9 12.1 12.3 13.5
3 16.4 18.1 22.1 23.7 11.6 12.7 12.6 13.8
6 19.4 20.5 24.0 25.2 14.2 15.2 15.0 16.3

Table 1: The impact of number of encoder-decoder lay-
ers on translation quality: BLEU scores of greedy (G)
and beam search (B, beam size of 4).

6-layer models and shallower ones. Thus, distilled
corpora generated using shallower models will cer-
tainly hurt the translation quality of compact mod-
els. However, when we used the 6-layer models
to generate distilled corpora, the translations were
almost identical to the reference translations (with
almost 100 BLEU). The reason is over-fitting de-
spite the use of classic regularization methods such
as dropout. Consequently, we need to rely on help-
ing corpora through transfer learning (TL) methods.
TL can be used by itself to improve the perfor-
mance in ELR settings regardless of model effi-
ciency. However, very little is known about how
SD and TL work together.

In this paper, we investigate how to train efficient
(compact and fast) NMT models for ELR settings
with helping corpora through domain adaptation
or cross-lingual TL. We use TL twice: once for
distilling ELR corpora and then for training effi-
cient models. We expect that training multi-domain
or cross-lingual models by simply concatenating,
without oversampling, the ELR corpora with the
helping corpora leads to NMT models that can help
generate useful distilled corpora.

To evaluate the effect of our proposed method,
we experimented with two ELR language pairs,
Vietnamese–English and Hindi–English (4 trans-
lation directions), in the ALT dataset. When we
trained compact NMT models with 40% fewer pa-
rameters only on the distilled ELR corpus, the re-
sulting models showed improved translation quality
with greedy search by 3.6 BLEU points in average
over the models trained on the original ELR cor-
pus, while reducing 40% of decoding time. Fur-
thermore, when we jointly used the distilled ELR
corpora with the helping corpora via TL, the qual-
ity of the resulting compact models was further
improved by up to 3.7 BLEU points over the best
score achieved by using no distilled data. This
highlights the importance of stage-wise application
of SD and TL for efficient NMT models in ELR
settings with high translation quality. Although the

individual techniques utilized in this work are not
novel, their combination and our empirical obser-
vations pertaining to the development of efficient
models for ELR settings are novel.

The contributions of our paper are as follows:

• An empirical study of the combination of TL
methods and SD for efficient NMT modeling.

• A cost-benefit analysis of efficient models for
ELR settings.

2 Related Work

Our work is at the intersection of knowledge dis-
tillation (Hinton et al., 2015) and transfer learning
for training compact NMT models.

2.1 Sequence Distillation
Knowledge distillation for sequence-to-sequence
models have been successful in training efficient
(compact and fast) NMT models. Sequence distilla-
tion (SD) (Kim and Rush, 2016) for NMT is a sim-
ple approach which involves training a large NMT
model on a parallel corpus, translating the source
side of the corpus, and then using the pseudo-
parallel corpus of the same source side and the
generated pseudo-target, called distilled corpus, to
train a compact NMT model. The pseudo-targets
represent the large model’s interpretation of the
original targets and can be considered as smoothed
label sequences. The sequences are simpler and
hence easier for smaller models to learn. As our
focus is on a simple and efficient solution for ELR
settings, we decided to focus only on SD.

However, its impact on ELR settings is uncertain.
Given that only few thousands of domain-specific
sentences are available, training large NMT models
tends to over-fit on the small corpora while com-
pact NMT models will only lead to pseudo-targets
of poor quality, both preventing the generation of
useful distilled corpora. It is certainly possible to
search for an optimal model size. However, it will
involve a time-consuming hyper-parameter search,
while the result may be specific to given corpora.

2.2 Transfer Learning
Transfer learning (TL) can be in the form of do-
main adaptation (Chu et al., 2017) or cross-lingual
or multilingual transfer (Firat et al., 2016; Zoph
et al., 2016; Dabre et al., 2019; Johnson et al., 2017;
Dabre et al., 2020) using helping bilingual corpora.

Assume that L1–L2 is an ELR language pair and
L3–L4 is a helping pair. The given parallel corpora
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for the two pairs may belong to different domains.
Typically, pre-training a model on the larger L3–L4

corpus and then fine-tuning (“ft”) it on the smaller
L1–L2 corpus is known to give the best translation
quality for the L1–L2 pair (Zoph et al., 2016; Chu
et al., 2017; Dabre et al., 2019), regardless of the
number of model parameters. However, without
careful regularization, this will definitely lead to
the L1–L2 corpus being memorized. To address
this, joint training of an NMT model using the
following two methods on both corpora has been
studied:

Mixed Training (“mxt”): Directly train on the
concatenated corpus.

Mixed Fine-Tuning (“mxft”): First train on the
L3–L4 corpus as in “ft,” but perform fine-
tuning on the concatenated corpus.

Prior to concatenating two corpora, the L1–L2 cor-
pus is typically oversampled so that its size matches
to the L3–L4 corpus. Also, we can prepend the
source sentences with two artificial tokens, one
indicating the domain of the corpus (Chu et al.,
2017), and another indicating the target language
into which we want to translate (Johnson et al.,
2017). Note that when L2 and L4 are the same,
the target language tokens are unnecessary. If L1

and L3 are also the same, then we are essentially
performing domain adaptation.

2.3 Other Related Work

Some recent work tackled efficient NMT model-
ing in low-resource settings (Goyal et al., 2020;
Gordon and Duh, 2020). Whereas they focus on
applications of TL for compact models as this pa-
per, there are some key differences between them
and ours. Gordon and Duh (2020) focus on low-
resource settings, but our low-resource data are
significantly smaller than theirs. Second, whereas
they use distillation twice and TL once, we recom-
mend distillation once and TL twice. Finally, they
do not examine cross-lingual TL for model com-
pression. Goyal et al. (2020) focus on cross-lingual
learning, but their approaches are centered more
on leveraging orthographic or linguistic similarity,
whereas we make no efforts towards orthographic
unification. We thus consider parts of these studies
to be orthogonal to ours.

Apart from domain adaptation and cross-lingual
TL methods, low-resource settings can benefit
from monolingual data, for instance, through back-

translation (Sennrich et al., 2016), where target lan-
guage monolingual data are translated into pseudo-
source sentences. Recently, pre-training on mono-
lingual data (Devlin et al., 2019; Song et al., 2019;
Mao et al., 2020) has been proven to significantly
improve the translation quality of ELR settings. Ap-
proaches involving helping monolingual data are
usually more time-consuming than those that use
helping bilingual corpora. Furthermore, given that
our approach already needs a reasonable amount
of time due to the application of TL and forward-
translation of the source sentences of the parallel
corpora for distilling them, we consider that such
approaches should be used when no more gains can
be obtained from helping bilingual corpora. We
refer interested readers to work on distillation using
unsupervised methods (Sun et al., 2020).

Independent of the application of TL, there ex-
ist methods for speeding up NMT, such as weight
pruning (See et al., 2016) where model weights
close to zero are pruned out, quantization (Lin et al.,
2016) where weights are represented by faster to
process integers instead of floating point numbers,
aggressive model binarization (Courbariaux et al.,
2017), and binary code prediction softmax (Oda
et al., 2017) where the softmax is sped up by mak-
ing it predict a binary code representing words in-
stead of one-hot vectors. We expect these methods
to further speed up the models obtained using our
proposed method.

3 Our Approach:
Transfer-Generate-Transfer

Refer to Figures 1 and 2 for a visual overview of our
approaches. Figure 1 depicts the application of TL
to generate distilled corpora for the ELR settings.
Figure 2 depicts how the distilled ELR corpora can
be used with the distilled or non-distilled helping
corpora to train compact models. Our method for
training compact NMT models for ELR settings
can be summarized as follows:

1. Train a large joint NMT model using “mxt”
or “mxft” on the concatenation of L1–L2 and
L3–L4 corpora without oversampling L1–L2.

2. Use the joint NMT model to decode L1 into
pseudo-L2 (L′

2) and to decode L3 into pseudo-
L4 (L′

4).2

2Instead, a unidirectional L3→L4 model can be used to
distill the L3–L4 corpus, because NMT models trained on
the larger corpus will prevent from over-fitting and thereby
generate reliable distilled data for this pair.
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L1→L2

L3→L4

Train large model
(transfer learning 
with mxt or mxft)

Joint NMT 
model

L1→L’2

L3→L’4

Pre-process + 
concatenate

(without 
oversampling)

Decode L1

Decode L3

Distilled  
parallel corpora

Figure 1: First round of transfer learning: training a joint model to distill the parallel corpus for extremely low-
resource language pair (L1–L2) by leveraging a helping parallel corpus (L3–L4).

L1→L2

L1→L’2

L3→L4

L3→L’4

Choose 
one

Choose 
one

Pre-process + 
concatenate

(with 
oversampling)

Train compact model
(transfer Learning with ft, 

mxt or mxft)
Joint NMT 

model

Train compact model L1→L’2 
model

Figure 2: Second round of transfer learning: training an efficient NMT model for extremely low-resource language
pairs (L1–L2) by leveraging a helping parallel corpus (L3–L4), using data distilled via the method in Figure 1.
There are four possible ways of combining low-resource and helping corpora as each of them can be either distilled
or non-distilled.

3. Train compact NMT models only on the
L1–L′

2 corpus, or together with the distilled
or non-distilled helping corpora using “ft,”
“mxt,” or “mxft.”

Standard TL takes place when both the ELR
and helping corpora are non-distilled. In this case,
TL is not used to distill data, and the ELR cor-
pus should be oversampled to match the size of
the helping corpus to ensure the best translation
quality. However, for the purposes of distillation,
unlike previous work, we do not oversample the
L1–L2 corpus before concatenating it with the L3–
L4 corpus. We did so because our preliminary
explorations revealed that oversampling causes the
model to memorize the L1–L2 corpus, thereby pre-
venting the generation of useful distilled corpora.
Naturally, the lack of oversampling might nega-
tively impact on the quality of distilled L1–L′

2 cor-
pus. One can empirically determine an optimal
oversampling rate, but we decided to not search for
it in order to make our method simple. We address
this point in Section 5.1.3 with empirical evidence
justifying our choice.

Note that one can pre-train compact NMT mod-
els on helping corpora and then fine-tune them on

ELR corpora, avoiding SD altogether. However,
the quality of TL is proportional to the quality of
the pre-trained model, which tends to be high when
using larger models. Furthermore, distilled data is
prone to be simpler than the original data and thus
has higher potential for leading to compact mod-
els. We hypothesize that distilling ELR corpora
might help in better model compression. We test
this hypothesis through experiments.

4 Experimental Settings

To determine the feasibility of the proposed
method, we trained and evaluated NMT models
in the following two groups of settings.

#1. With only distilled ELR corpora: To deter-
mine the impact of different TL settings on
the quality of distilled ELR corpora and hence
the compact models trained.

#2. With ELR and helping corpora: To deter-
mine the settings using both ELR and helping
corpora that give compact models with
highest possible translation quality.
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4.1 Datasets

We experimented with the ELR Vietnamese–
English (Vi–En) and Hindi–English (Hi–E) pairs
from the Asian Languages Treebank (ALT) with
18,088 training, 1,000 development, and 1,018 test
sentence pairs. As for the helping corpora, we used
the training part of the IWSLT 2015 Vietnamese–
English3 and the IITB Hindi–English (Kunchukut-
tan et al., 2018),4 consisting of 133k and 1.5M
lines, respectively. We chose large as well as small
helping corpora in order to determine the impact of
helping corpora sizes on the model training.

4.2 Implementation Details

We used the Transformer model for our experi-
ments (Vaswani et al., 2017) because it gives the
state-of-the-art results for NMT. We made nec-
essary changes to the code in the tensor2tensor
v1.14 implementation of the Transformer in or-
der to construct joint sub-word vocabularies as
well as to handle oversampling. Tensor2tensor
has its own default sub-word vocabulary learn-
ing method which we use as is by feeding it the
surface word vocabulary list obtained from com-
bining the ALT language pair and the helping
language pair vocabularies. We used the default
hyper-parameter setting5 corresponding to “trans-
former base single gpu” and separate source and
target sub-word vocabularies of size 8,000. We
chose small vocabularies as they are known to give
better results for ELR settings by eliminating vo-
cabulary sparsity. Small vocabularies also lead
to models with smaller and faster softmax layers
which is crucial for model compactness and speed.

We trained our models, evaluating them on the
development set BLEU score every 1,000 iterations,
and terminated training after 500,000 iterations or
when the BLEU score did not change by more than
0.1 BLEU points for 10,000 iterations.

After training, we averaged the final 10 check-
points to yield a single model for decoding. For
decoding the test sets for evaluation, we compared
greedy search and beam search with a beam size
of 4, using a length penalty (alpha) of 0.6. On the
other hand, for decoding the source sentences of

3https://github.com/stefan-it/nmt-en-vi
4http://www.cfilt.iitb.ac.in/iitb parallel/
5The important hyper-parameters that remained constant

throughout our experiments are: dropout of 0.1, ADAM op-
timizer with an initial learning rate of 0.1, 16,000 warm-up
steps followed by decay for the learning rate, 8 attention heads,
and a batch-size of 1,024.

the training sets for distillation, we only used beam
search with the same beam size.

4.3 Models Evaluated
Our primary goal is to reduce the decoding time
while achieving better translation quality than base-
lines. Following Kim and Rush (2016), who have
shown that the number of encoder-decoder layers
(L) have a significantly larger impact on decoding
speed than hidden sizes (H), we mostly focus on
compact models that use fewer encoder-decoder
layers. Nevertheless, we also examine smaller hid-
den sizes in some experiments.

We trained simple baseline models from scratch
with 1, 2, 3, and 6 layers only on the ALT training
data (see Table 1).

4.3.1 Models for Distilling Corpora
To train joint models for each translation direction
that is later used for distilling training data, we dis-
jointly used the helping Vi→En, En→Vi, Hi→En,
or En→Hi corpora. As we used separate source
and target vocabularies and hence embedding lay-
ers, settings with a helping corpus for different
translation direction can be a reasonable simulation
of cross-lingual TL settings.

For joint training, we compared “mxft” and
“mxt.” We also considered the impact of using the
domain indicator tokens (Chu et al., 2017). Thus,
for each ELR and helping corpora combination,
there were four types of joint models, and thus four
different versions of distilled data.

4.3.2 Compact NMT Models for ELR
Settings

We trained two types of models, ones that use only
the distilled ELR corpora and ones that use the
ELR as well as helping corpora.

#1. With only distilled ELR corpora: For each
of the four helping corpora per translation di-
rection that are used to distill data, we trained
models with L ∈ {1, 2, 3} and H = 512.6

Additionally, we trained 3-layer models with
H ∈ {128, 256} to further study the tradeoff
between model size and translation quality.

#2. With ELR and helping corpora: For each
combination of translation direction and
helping direction, we first determined the best
distilled ELR corpus among four variants on

6Feed-forward layer filter sizes were always 4 times the
model’s hidden size throughout this paper.
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Model
Vi→En (VE) En→Vi (EV) Hi→En (HE) En→Hi (EH)

VE EV HE EH VE EV HE EH VE EV HE EH VE EV HE EH
L = 1 H = 512 19.7 18.9 17.0 12.9 24.9 25.4 20.9 21.1 12.9 12.1 13.8 8.5 14.5 14.2 12.2 14.6
L = 2 H = 512 21.9 20.8 18.6 13.6 26.7 28.0 22.2 22.7 14.9 14.2 16.3 9.3 16.7 16.2 13.4 16.9
L = 3 H = 512 23.2 22.0 18.9 14.1 28.5 29.2 22.7 23.1 15.7 15.0 16.7 9.6 17.7 16.4 13.9 18.0
L = 3 H = 256 21.1 20.1 17.7 13.5 26.6 27.3 22.1 22.4 14.1 13.5 15.7 8.7 15.4 15.6 13.5 16.2
L = 3 H = 128 19.4 18.2 16.7 12.5 24.5 25.4 21.3 21.1 12.2 11.4 13.7 8.4 12.8 13.6 12.2 14.8

TT mxt mxt mxft mxt mxft mxft mxft mxft mxt mxt mxt mxft mxft mxt mxft mxt
DT yes yes yes no yes yes yes no yes no yes no yes no yes yes

L = 6 H = 512 greedy: 19.4 greedy: 24.0 greedy: 14.2 greedy: 15.0
(see Table 1) beam: 20.5 beam: 25.2 beam: 15.2 beam: 16.3

Table 2: BLEU scores for each ELR translation task achieved by our proposed method with greedy search. The
second row indicates the translation direction of helping data. The highest scores for each translation direction
are highlighted in bold. “TT” and “DT” respectively represent the type of training (“mxt” or “mxft”) and whether
domain tags were used (“yes” or “no”) for the joint training that led to the best distilled corpora. The last row
shows the greedy and beam search BLEU scores of the baseline 6-layer models for comparison (see Table 1).

the basis of BLEU score of the L = 3 and
H = 512 model trained only on it (#1), and
then combined it with the distilled helping
corpus to train models with L ∈ {1, 2, 3}
and H = 512 using “ft,” “mxt,” and “mxft.”
We also trained models with the same
configurations for combinations of ELR
and helping corpora where only one of the
corpora are distilled. As (strong) baselines,
we trained models with L ∈ {1, 2, 3, 6} and
H = 512 trained on non-distilled ELR and
helping corpora.

5 Results

We show results using only distilled ELR corpora
and then using it with helping corpora.

5.1 Using Only Distilled ELR Corpora
In Table 2, we show how domain adaptation and
cross-lingual TL methods affect creation of dis-
tilled ELR corpora and hence the greedy search
translation quality of efficient models. Greedy
search is emphasized due to our focus on fast de-
coding speed as well as high translation quality.

5.1.1 Translation Quality of Efficient Models
For each translation direction, the best distilled cor-
pora used to train models with 3 layers gives greedy
search translation quality ranging from 1.5 to 4.0
BLEU points over the 6-layer non-distilled base-
line model’s beam search translation quality. Com-
paring the 1-, 2-, and 3-layer models trained with
the best distilled corpora with their non-distilled
counterparts in Table 1, we can see that there is an
improvement of 2.9 to 5.5 BLEU points. Consid-
ering that we used the distilled equivalents of the
original training data, this result shows the explicit

effect of TL and SD which helps generate data that
improves translation quality despite reducing the
model size.

Training models on ELR corpora can finish
quickly. Thus, our distilled corpora can be used in
situations where quick deployment of compact and
fast NMT models is important.

5.1.2 Domain Adaptation vs. Cross-Lingual
Transfer

Our experiment revealed that cross-lingual train-
ing is definitely a viable alternative. For instance,
in Vi→En translation, the best BLEU score was
achieved when the helping direction was also
Vi→En. When the helping direction was Hi→En,
these improvements were much smaller. Neverthe-
less, it is clear that cross-lingual training is useful
when domain adaptation is not possible. Work on
script mapping to improve the quality of TL (Song
et al., 2020; Goyal et al., 2020) indicates that our
cross-lingual distillation procedure might give bet-
ter results if we mapped Hi to Vi or vice-versa. We
leave this for future work.

Consider two hypothetical settings for Vi→En
translation, where we used the reversed, En→Vi
and En→Hi, helping directions to generate dis-
tilled corpora for Vi→En translation. When using
En→Vi as the helping direction, the BLEU scores
of greedy search with 1-, 2-, and 3-layer models
improved by 4.3, 4.4, and 5.6 BLEU points, re-
spectively. These improvements are approximately
1.0 BLEU points lower than those obtained in the
domain adaptation setting with Vi→En as the help-
ing direction, but it shows that using helping cor-
pora with different languages can be of some use.
However, when using En→Hi as the helping direc-
tion, the BLEU scores dropped. Note that English
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DT TT Vi→En En→Vi Hi→En En→Hi
yes mxft 21.5 29.2 15.3 15.4
yes mxt 23.2 28.0 16.7 18.0
no mxft 21.9 29.1 14.2 12.9
no mxt 21.1 28.0 16.2 16.1

Table 3: Impact of domain tags (DT) and training type
(TT) on the greedy search translation quality (BLEU)
of models with L = 3 and H = 512. The best scores
are in bold.

and Vietnamese use the Roman alphabet which
might enable cognate sharing even when the ELR
and helping directions are opposite. However, this
is not fully applicable when En→Hi is the help-
ing direction. Furthermore, the Hindi–English cor-
pus was much larger than the one for Vietnamese–
English. Since we do not oversample the ELR
corpora for distilling corpora, we expect that the
model heavily focuses on the Hindi–English pair
which could negatively impact on the quality of the
resulting distilled corpora.

While similar observations are applicable to
other translation directions, consider Hi→En and
En→Hi translation. As before, using Hi→En and
En→Hi helping directions respectively using do-
main adaptation resulted in the best distilled cor-
pora. However, using the reverse En→Hi and
Hi→En helping directions, respectively, led to
a drop in translation quality. In contrast, using
Vi→En and En→Vi helping directions led to dis-
tilled corpora that led to compact models giving
translations within 1.0 BLEU points of those given
by the best distilled corpora. This shows that in a
cross-lingual TL setting for distilling ELR corpora,
it may be better to have helping corpora that are
not much larger than the ELR corpora. We validate
this hypothesis in Section 5.1.3.

As for the use of domain indicator tags, 11 out
16 cases indicate that such tags are useful. In Ta-
ble 3, we show the results of model with L = 3
and H = 512 trained on distilled data generated
with and without domain indicator tags when train-
ing using “mxt” and “mxft” (4 combinations). For
simplicity, we show results for when the ELR and
helping directions are the same. Using domain
tags gives better results when the helping corpora
are substantially larger than the ELR corpora. But
when the helping corpora are relatively smaller
(Vietnamese–English), domain tags do not seem to
have a large impact. Furthermore, “mxt” tends to
be better than “mxft.” Overall, simply concatenat-
ing the ELR and helping corpora without oversam-

Size
Vi→En En→Vi Hi→En En→Hi

HE EH HE EH HE EH HE EH
133k 20.5 19.2 26.4 25.9 15.2 14.6 16.4 17.1
200k 21.3 20.2 27.1 28.0 16.3 15.2 16.4 17.1
500k 21.5 19.9 27.1 28.2 17.2 15.8 17.5 17.5
1500k 18.9 14.1 22.7 23.1 16.7 9.6 13.9 18.0

Table 4: Impact of helping corpus size on the greedy
search translation quality (BLEU) for each translation
task achieved with models with L = 3 and H = 512.
The best scores are in bold.

pling or domain indicators and then training joint
model in one stage should be sufficient to yield
useful distilled corpora. We will experiment with
additional language pairs and domains in the future
to conclusively determine a one-fits-all setting.

5.1.3 Impact of Helping Corpora Size

We observed that a large helping corpus degrades
the translation quality in cross-lingual settings. In-
stead of determining an optimal oversampling ratio
for the ELR corpus, we experimented with down-
sampling the helping corpus size. We did this to
avoid running into the risk of over-fitting due to
oversampling. We experimented with the down-
sampled versions of the Hindi–English corpus: we
prepared sub-corpora with 500k, 200k, and 133k
sentence pairs, assuring that a larger one subsumes
all the smaller ones. For simplicity, we reused the
best configurations reported in Table 2.

Table 4 shows the greedy search results. When
using the entire Hindi–English helping corpus for
Vi→En and En→Vi translation tasks, the BLEU
score is substantially lower than the baseline mod-
els, indicating the poor quality of the distilled data.
Note that we do not oversample the ELR corpora
for distillation and thus coupling them with a larger
helping corpus is detrimental to the final translation
quality, as the NMT model sees more examples in
the latter than the former. However, using signifi-
cantly smaller corpora ensures that the NMT model
sees much fewer examples in the helping corpus
and thus is able to better learn from the ELR corpus
leading to better distilled data. This is evidenced by
the improved BLEU scores when using downsam-
pled helping corpora. Naturally, using the Vi→En
helping corpus gives the best results for Vi→En
translation tasks, but the results using the down-
sampled Hindi–English helping corpora are within
2.0 BLEU points of the best. Note also that the
BLEU score for Hi→En task using a helping cor-
pus with 500k sentence pairs (17.2) surpasses the
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Model Size Time BLEU
L = 1 H = 512 19.0M 11.7s 18.4
L = 2 H = 512 27.0M 17.6s 20.8
L = 3 H = 512 34.0M 22.5s 21.8
L = 3 H = 256 11.0M 22.0s 18.8
L = 3 H = 128 4.0M 21.3s 17.3
L = 6 H = 512

56.6M 37.6s 18.2
(see Table 1)

Table 5: Comparison of size, decoding time (with
greedy search), and BLEU score for various models
evaluated in Table 2. For each column, average value
for four translation directions is reported.

score obtained using all the sentence pairs (16.7)
by 0.5 BLEU points. For the reverse direction, the
score (17.5) is within 0.5 BLEU points of the best
score (18.0). It is clear that choosing an appropri-
ate helping corpus size is important for generating
useful distilled corpora. This result further rein-
forces our claim that cross-lingual training is a
viable option for generating useful distilled data.
Such cross-lingual training also has the potential to
distill data that can help train compact models with
BLEU score higher than larger models trained on
non-distilled data. As for optimal size of helping
corpus, the performance gap between using 200k
and 500k helping sentence pairs is very small in
most settings. This means that distilling data does
not need too much helping corpus and thus in prac-
tice choosing a small sample of the helping corpus
can help significantly save time for model train-
ing and subsequent corpus distillation. This also
helps avoid the issue of oversampling and thereby
maintaining the simplicity of the method.

A fair comparison with the same size (133k) of
helping corpora confirmed that sharing at least one
of source and target languages tends to improve
the final translation quality in cross-lingual TL set-
tings. For instance, Hi→En has a better impact
than En→Hi on Vi→En. Similarly, En→Hi leads
to higher BLEU score than Hi→En for En→Vi.

5.1.4 Size vs. Speed vs. Translation Quality
Table 5 compares size, decoding time, and BLEU
score for various models. As the model size drops
with fewer layers and smaller hidden sizes, BLEU
score also drops. However, the decoding time de-
creases significantly. Note that reducing the num-
ber of layers mainly impacts on the decoding time,
whereas reducing hidden sizes does not have such a
huge impact, as reported in Kim and Rush (2016).

We observed that the model with L = 3 and
H = 512 are approximately 1.7 times (or 40%)

smaller and 1.7 times (40%) faster than the 6-
layer models despite exhibiting improved transla-
tion quality of 3.6 BLEU points in average. If one
wishes to save decoding time, we suggest to train a
model with L = 1 and H = 512, which is approxi-
mately 3.0 times smaller and 3.2 times faster than a
6-layer model, while having comparable translation
quality. If the priority is reducing model size, then
using models with L = 3 and H ∈ {256, 128} are
5.1 times to 14.2 times smaller, even though they
do not benefit much from narrowing down H . The
model with L = 3 and H = 256 is comparable
to the one with L = 1 and H = 512 in terms of
quality, but the latter is 1.7 times smaller than the
former. We recommend experimenting with differ-
ent model sizes before choosing the best one for
the target application.

5.2 Using Both ELR and Helping Corpora

Table 6 gives the BLEU scores achieved by models
trained on both ELR and helping corpora, where
we compare the distilled (“Y”) and non-distilled
(“N”) versions of corpora as well as the three types
of training (“ft,” “mxt,” and “mxft”).

5.2.1 Importance of Transfer Learning for
Efficient Models

Comparing the results of using only ELR corpora
against the results of TL without SD, TL already
gives 1-layer models that are competitive, if not bet-
ter than the 3-layer models trained on non-distilled
ELR corpora and the 6-layer models trained on dis-
tilled ELR corpora. The 1-layer models are 1.9 and
3.2 times faster as well as approximately 1.8 and
3.0 times smaller than the 3- and 6-layer models,
respectively (see Table 5). It is thus reasonable to
avoid SD altogether when time is of the essence.

Among the training methods, “mxft” was in most
cases slightly better than “ft” and both of them are
substantially better than “mxt.” This highlights the
importance of stage-wise TL rather than innocently
training on a combination of all corpora. Note
that “mxt” achieved the highest BLEU score for
some configurations, and it should be a reasonable
option when there is not enough time for stage-wise
training.

5.2.2 Importance of Distillation with
Transfer Learning for NMT Efficiency

Using at least one distilled corpus, either ELR
or helping corpora, is important in improving the
translation quality of compact models. For instance,
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ELR HD TT
Vi→En Hi→En

L = 1 L = 2 L = 3 L = 6 L = 1 L = 2 L = 3 L = 6
G B G B G B G B G B G B G B G B

N - - 14.6 15.4 16.4 17.6 16.4 18.1 19.4 20.5 9.7 10.1 10.9 12.1 11.6 12.7 14.2 15.2
Y - - 19.7 19.9 21.9 22.5 23.2 23.1 - - 13.8 14.4 16.3 16.9 16.7 17.4 - -
N N ft 21.5 22.8 24.6 25.9 25.6 26.8 26.6 27.5 19.5 20.7 25.0 26.1 26.4 27.2 28.1 29.0

mxt 20.3 22.1 23.3 25.0 24.5 26.0 26.1 27.5 15.0 15.9 18.1 19.9 20.9 22.3 23.3 23.7
mxft 21.4 22.9 26.2 27.3 26.7 28.0 27.7 28.6 19.9 20.9 25.4 26.3 27.8 28.7 29.3 29.8

N Y ft 21.9 23.4 25.0 26.3 26.1 27.1 - - 20.9 21.9 25.9 27.5 27.8 28.8 - -
mxt 20.9 22.8 24.0 25.4 24.4 25.9 - - 16.9 18.1 20.6 21.7 22.4 23.1 - -
mxft 22.3 24.3 26.4 27.7 26.4 27.6 - - 21.5 22.2 26.8 27.5 28.1 29.0 - -

Y N ft 24.1 24.3 26.7 26.9 27.3 27.7 - - 20.5 20.2 24.7 24.6 25.9 25.9 - -
mxt 24.3 25.1 26.8 27.1 27.5 28.1 - - 18.2 19.2 22.9 23.7 24.0 24.6 - -
mxft 24.3 25.1 27.5 28.3 27.6 28.0 - - 20.3 20.9 25.0 24.5 25.9 24.5 - -

Y Y ft 25.1 25.7 27.0 27.7 27.9 28.4 - - 21.5 21.7 26.0 26.3 26.5 26.7 - -
mxt 24.8 25.5 27.8 28.1 28.2 28.8 - - 19.8 20.1 24.2 24.7 25.4 25.6 - -
mxft 25.2 25.8 27.6 28.2 28.1 28.9 - - 21.6 21.9 26.4 25.8 26.9 25.8 - -

Table 6: BLEU scores for Vi→En and Hi→En translation tasks with greedy (G) and beam search (B). Models
trained on either distilled (“Y”) or non-distilled (“N”) version of ELR and helping corpora (“ELR” and “HD”
columns, respectively) using different domain adaptation techniques (“TT” column), are compared. The highest
score(s) in each column are marked in bold.

the BLEU score of greedy search with the 1-layer
models trained on some distilled data are up to 3.7
BLEU points higher than the best scores achieved
by 1-layer models that do not use distilled data at
all (21.5 and 19.9 for Vi→En and Hi→En by “N–
N” models in Table 6, respectively). Although the
gap between the performances tends to be narrower
when the number of layers increases, this sacrifices
compactness and decoding speed.

The behavior of models trained on distilled data
differs depending on the combination of ELR and
helping corpora. For Vi→En, distilling the ELR
corpus (“Y–N”) is more useful than distilling the
helping corpus (“N–Y”). In contrast, for Hi→En,
distilling the helping corpus (“N–Y”) matters more.
Recall that the Vi→En helping corpus is around
10 times smaller than the Hi→En helping corpus.
This means that a compact model has to bear the
burden of learning a much larger amount of knowl-
edge from the larger helping corpus. Consequently,
the compact model should be better at learning the
Vi→En helping corpus, especially in its distilled
form. Furthermore, given that the distilled ELR cor-
pus for Vi→En already improves translation quality
compared to its non-distilled counterpart, it should
also help improve translation quality when used it
in combination with the helping corpus. This is
indicated by the best result for Vi→En achieved by
distilling both the ELR and helping corpora. For
this direction, the 2-layer models trained on dis-
tilled data are either competitive with if not better
than the 6-layer models. For Hi→En, given that
the size of helping corpus is significantly larger,

distilling it into compact models is harder due to
lack of parameters. This is the most likely rea-
son behind the relatively small improvement by
distilled data. Although the impact of SD on TL
on Hi→En is not as impressive as for Vi→En, we
advise experimenting with SD rather than not.

6 Conclusion

In this paper, we have explored the combination
of transfer learning (TL) and sequence distillation
for obtaining compact and fast models in extremely
low-resource (ELR) settings. Our experiments on
four translation directions revealed that leverag-
ing helping corpora help in distilling ELR corpora
that help train compact models with 3.6 average
BLEU points improvement in translation quality.
Compact models trained on distilled ELR corpora
are not only fast but also give better translations
than larger models trained on non-distilled ELR
corpora. We showed the effects of choosing ap-
propriate training methods, using domain indicator
tags, and managing corpora sizes on translation
quality. Our cost-benefit analysis of model size, de-
coding speed, and translation quality showed that
we can achieve translation quality comparable to
baselines trained on the original ELR corpora with
models that are approximately 3.0 times smaller
and 3.2 times faster than said baselines. We also
showed that combining distilled ELR corpora with
the distilled or non-distilled helping corpora, using
simple TL methods, can further boost the perfor-
mance of compact and hence fast NMT models.
We strongly recommend to leverage distilled ELR
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corpora through stage-wise TL for compact and
high-quality NMT for ELR settings.

In our future work, we will extend our approach
for a single compact multilingual NMT model, for
instance, focusing on multi-parallel ALT dataset.
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Abstract

Independence assumptions during sequence
generation can speed up inference, but paral-
lel generation of highly inter-dependent tokens
comes at a cost in quality. Instead of assuming
independence between neighbouring tokens
(semi-autoregressive decoding, SA), we take
inspiration from bidirectional sequence gener-
ation and introduce a decoder that generates
target words from the left-to-right and right-to-
left directions simultaneously. We show that
we can easily convert a standard architecture
for unidirectional decoding into a bidirectional
decoder by simply interleaving the two direc-
tions and adapting the word positions and self-
attention masks. Our interleaved bidirectional
decoder (IBDecoder) retains the model sim-
plicity and training efficiency of the standard
Transformer, and on five machine translation
tasks and two document summarization tasks,
achieves a decoding speedup of ∼2× com-
pared to autoregressive decoding with compa-
rable quality. Notably, it outperforms left-to-
right SA because the independence assump-
tions in IBDecoder are more felicitous. To
achieve even higher speedups, we explore hy-
brid models where we either simultaneously
predict multiple neighbouring tokens per direc-
tion, or perform multi-directional decoding by
partitioning the target sequence. These meth-
ods achieve speedups to 4×–11× across dif-
ferent tasks at the cost of <1 BLEU or <0.5
ROUGE (on average).1

1 Introduction

Neural sequence generation aided by encoder-
decoder models (Bahdanau et al., 2015; Vaswani
et al., 2017) has achieved great success in recent
years (Bojar et al., 2018; Song et al., 2019; Raf-
fel et al., 2019; Karita et al., 2019), but still suf-
fers from slow inference. One crucial bottleneck

1Source code is released at https://github.com/
bzhangGo/zero.

lies in its generative paradigm which factorizes the
conditional probability along the target sequence
y = {y1, y2, . . . , yn} of length n as follows:

p(y|x) =
n∏

t=1

p (yt|y<t,x) , (1)

where x = {x1, x2, . . . , xm} is the source se-
quence of length m. This factorization determines
that target words can only be generated one-by-one
in a sequential and unidirectional manner, which
limits the decoding efficiency.

A promising direction to break this barrier is
to generate multiple target words at one decoding
step to improve the parallelization of inference (Gu
et al., 2018; Stern et al., 2018). However, this intro-
duces independence assumptions that hurt transla-
tion quality, since words produced in parallel are in
fact likely to be inter-dependent. We hypothesize
that there are groups of words that are less likely
to be strongly inter-dependent than neighbouring
words, which will allow for better parallelization.
Inspired by bidirectional modeling (Zhang et al.,
2019b, 2020), we resort to an alternative probabilis-
tic factorization:

pBD(y|x) =
dn/2e∏

t=1

p
(−→yt ,←−yt′ |−→y<t,

←−−y>t′ ,x
)
, (2)

Introducing an independence assumption between
t and t′ = n− t+ 1 allows for parallel word pre-
diction from both the

−−−−−−−→
left-to-right and

←−−−−−−−
right-to-left

directions. Based on this factorization, Zhou et al.
(2019) propose synchronous bidirectional trans-
lation using a dedicated interactive decoder, and
report quality improvements compared to left-to-
right semi-autoregressive decoding (Wang et al.,
2018, SA) in translation quality. However, their
success comes along with extra computational over-
head brought by the specialized decoder. Empir-
ically, Zhou et al. (2019) only report a decoding
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Figure 1: Overview of the interleaved bidirectional decoder (IBDecoder, 1a), the semi-autoregressive decoder (SA, 1b), the
interleaved multi-directional decoder (IMDecoder, 1d) and the bidirectional semi-autoregressive decoder (IBDecoder+ SA,
1e) on target sequence y = {y1, y2, . . . , y6}. We reorganize the target sequence (purple), the word positions (green) and the
self-attention mask (circles) to reuse the standard Transformer decoder. During inference, multiple target words are generated
simultaneously at each step (dashed rectangles), improving the decoding speed. The self-attention masks are given in (1c) and
(1f), where sold black circles indicate allowed attention positions. Red arrows indicate generation directions (h is the direction
number), whose length denotes the number of words produced per direction (c). Blue rectangles denote words generated at the
first step. The direction embedding (red rectangles) reflects the direction each target word belongs to. Apart from the left-to-right
generation, IBDecoder jointly models the right-to-left counterpart within a single sequence. IMDecoder extends IBDecoder by
splitting the sequence into several equal segments and performing bidirectional generation on each of them, while IBDecoder+SA
allows each direction to produce multiple words.

speedup of 1.38×, slower than SA, although the
factorization halves the decoding steps.

We combine the strengths of bidirectional mod-
eling and SA, and propose interleaved bidirectional
decoder (IBDecoder) for fast generation. As shown
in Figure 1a, we interleave target words from the
left-to-right and right-to-left directions and sep-
arate their positions to support reusing any stan-
dard unidirectional decoders, such as the Trans-
former decoder (Vaswani et al., 2017). We reor-
ganize the self-attention mask to enable inter- and
intra-direction interaction (Figure 1c) following
SA. Unlike SA, we show through experiments that
distant tokens from different directions are less
inter-dependent, providing a guarantee for better
performance. Compared to previous studies (Zhang
et al., 2018d, 2019b, 2020; Zhou et al., 2019), our
approach has no extra model parameters and brings
in little overhead at training and decoding.

IBDecoder is speedup-bounded at 2×. To push
this ceiling up, we explore strategies for multi-
word simultaneous generation, including multi-
directional decoding (IMDecoder, Figure 1d) and
SA (Figure 1b). The former extends Eq. 2 by in-
serting more generation directions, while the latter
allows each direction to produce multiple target
words (Wang et al., 2018). These strategies offer
us a chance to aggressively improve the decoding
speed albeit at the risk of degenerated performance.
To encourage multi-word generation in parallel, we
propose a modified beam search algorithm.

We extensively experiment on five machine
translation tasks and two document summarization
tasks, with an in-depth analysis studying the im-
pact of batch size, beam size and sequence length
on the decoding speed. We close our analysis by
examining the capacity of our model in handling
long-range dependencies. On these tasks, IBDe-
coder yields ∼2× speedup against Transformer at
inference, and reaches 4×–11× after pairing it with
SA. Still, the overall generation quality is compara-
ble. When we pair our method with sequence-level
knowledge distillation (Kim and Rush, 2016), we
outperform a Transformer baseline on 6 out of 7
tasks.

Our contributions are summarized below:

• We propose IBDecoder, following a bidirec-
tional factorization of the conditional probabil-
ity, for fast sequence generation. IBDecoder
retains the training efficiency and is easy to
implement.

• We extend IBDecoder to enable multi-word
simultaneous generation by investigating in-
tegration with IMDecoder and SA. Results
show that IBDecoder + SA performs better
than IMDecoder.

• We propose a modified beam search algorithm
to support step-wise parallel generation.

• On several sequence generation benchmarks,
IBDecoder yields∼2× speedup against Trans-
former at inference, and reaches 4×–11× af-
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ter pairing it with SA. Still, the overall gener-
ation quality is comparable.

2 Related Work

Efforts on fast sequence generation come along
with the rapid development of encoder-decoder
models (Vaswani et al., 2017). A straightfor-
ward way is to reduce the amount of computa-
tion. Methods in this category range from teacher-
student model (Kim and Rush, 2016; Hayashi et al.,
2019), constrained softmax prediction (Hu et al.,
2015), beam search cube pruning (Zhang et al.,
2018c), float-point quantization (Wu et al., 2016;
Bhandare et al., 2019), model pruning (See et al.,
2016), to simplified decoder architectures, such as
lightweight recurrent models (Zhang et al., 2018b;
Zhang and Sennrich, 2019; Kim et al., 2019), aver-
age attention network (Zhang et al., 2018a), merged
attention network (Zhang et al., 2019a), dynamic
convolution (Wu et al., 2019), and hybrid atten-
tions (Shazeer, 2019; Wang et al., 2019), .etc.

Nonetheless, the above methods still suffer from
the inference bottleneck caused by the sequen-
tial nature of autoregressive models. Instead, Gu
et al. (2018) propose non-autoregressive generation
where target words are predicted independently,
leading to great speedup, albeit at a high cost to
generation quality. Follow-up studies often seek
solutions to recover the performance (Libovický
and Helcl, 2018; Guo et al., 2019; Shao et al.,
2020; Ghazvininejad et al., 2020; Ran et al., 2020),
but also reveal the trade-off between the quality
and speed in terms of autoregressiveness. This
motivates researchers to discover the optimal bal-
ance by resorting to semi-autoregressive model-
ing (Wang et al., 2018; Stern et al., 2018), iterative
refinement (Lee et al., 2018; Stern et al., 2019;
Ghazvininejad et al., 2019) or in-between (Kaiser
et al., 2018; Akoury et al., 2019).

We hypothesize that generation order affects the
felicity of independence assumptions made in semi-
autoregressive modelling. Unlike generation with
flexible orders (Emelianenko et al., 2019; Stern
et al., 2019; Gu et al., 2019a), we employ deter-
ministic generation order for model simplicity and
training efficiency, specifically focusing on bidirec-
tional decoding. The study of bidirectional model-
ing dates back to the era of phase-based statistical
machine translation (Watanabe and Sumita, 2002;
Finch and Sumita, 2009) and recently gained pop-
ularity in neural machine translation (Liu et al.,

2016; Sennrich et al., 2016a; Zhang et al., 2019c,b;
Zheng et al., 2019). Unfortunately, these methods
either design complex neural decoders, which hurts
training efficiency, and/or perform the left-to-right
and right-to-left inference separately followed by
rescoring, which slows down decoding. By con-
trast, our model speeds up inference while main-
taining training speed.

Our work is closely related to SA (Wang
et al., 2018) and synchronous bidirectional gen-
eration (Zhou et al., 2019). IBDecoder extends
SA to incorporate information from different direc-
tions. In contrast to Zhou et al. (2019), we only
make minimal changes to the standard Transformer
decoder, which benefits efficiency during training
and inference, and makes our method easy to imple-
ment. We also find improvements in both decoding
speed and translation quality compared to (Wang
et al., 2018; Zhou et al., 2019).

3 Autoregressive Transformer

Transformer (Vaswani et al., 2017), the state-of-the-
art neural sequence generation model, follows the
autoregressive factorization as in Eq. 1. To handle
the dependency of target word yt on previous target
words y<t, Transformer relies on a masked self-
attention network in the decoder:

ATT(Yl,M) = f

(
QlKlT

√
d

+M

)
Vl (3)

where Ql,Kl,Vl = Wl
qY

l,Wl
kY

l,Wl
vY

l ∈
Rn×d, f(·) denotes softmax operation, d is model
dimension and l is layer depth. Wq,Wk,Wv ∈
Rd×d are trainable parameters.

The mask matrix M ∈ Rn×n limits the access
of attention to only the past target words. Formally,
given the target sequence length n, this matrix can
be constructed by the following masking function:

Mi,j(h, c) =

{
0, if di/(h·c)e ≥ dj/(h·c)e
−∞, otherwise

.

(4)
where 0 < i, j < n, h denotes the number of
generation directions, and c is the number of tar-
get words predicted per direction. By default, the
Transformer decoder is unidirectional and gener-
ates words one-by-one. Thus, M =M(1, 1). The
infinity here forces softmax output a probability of
0, disabling invalid attentions.

The input layer to Transformer’s decoder is the
addition of target word embedding Ey and word
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position encoding PET , i.e Y0 = Ey + PET ∈
Rn×d. T maps y to its word position sequence,
which is a simple indexing function (Figure 1b):

Tt = t− 1, (5)

where t = 1 . . . n. Transformer adopts the sinu-
soidal positional encoding to project these indexes
to real-space embeddings, and uses the last-layer
decoder output YL to predict the respective next
target word. We explain how to accelerate genera-
tion by reordering y, adjusting h, c and T next.

4 Interleaved Bidirectional Decoder

The structure of Transformer is highly paralleliz-
able, but the autoregressive schema (h = 1, c = 1)
blocks this parallelization during inference. We
alleviate this barrier by exploring the alternative
probabilistic factorization in Eq. 2 to allow words
predicted from different directions simultaneously.

We propose IBDecoder as shown in Figure 1a.
We reuse the standard decoder’s architecture in
a bid to largely inherit Transformer’s paralleliza-
tion and avoid extra computation or parameters,
rather than devising dedicated decoder architec-
tures (Zhou et al., 2019; Zhang et al., 2020). To
make the left-to-right and right-to-left generation
collaborative, we reorganize the target sequence
and the word positions below (purple and green
rectangles in Figure 1a):

yBD =
[
y1yn, y2yn−1, ..., ybn/2c+1

]
, (6)

T BD
t = (−1)(t−1)dt/2e. (7)

By following the generation order defined by
Eq. 2, the sequence yBD interleaves y1:bn/2c and
ybn/2c+1:n and converts a bidirectional generation
problem to a unidirectional one. We introduce neg-
ative positions to T BD to retain the locality bias of
sinusoidal positional encodings in yBD.2 Compared
to (y, T ), the reorganized sequences (yBD, T BD)
have the same length, thus with no extra overhead.

We also adapt the self-attention mask to permit
step-wise bidirectional generation:

MBD =M(2, 1), (8)

where IBDecoder has h = 2 generation directions.
This corresponds to the relaxed causal mask by

2Consider Figure 1a. We cannot reorder position encod-
ings along with embeddings (1,6,2,5,...) because we do not
know sentence length at test time. Simply using vanilla po-
sition encodings (1,2,3,4,...) would increase the embedding
distance between positions within a direction.

Wang et al. (2018), which ensures access to all pre-
dictions made in previous time steps3 and allows
for interactions among the tokens to be produced
per time step. Although two words are predicted in-
dependently at each step, the adapted self-attention
mask makes their corresponding decoding context
complete; each word has full access to its cor-
responding decoding history, i.e. the left-to-right
(y1:t) and right-to-left (yn−t+1:n) context. Except
for (yBD,MBD, T BD), other components in Trans-
former are kept intact, including training objective.

4.1 Beyond Two-Word Generation

Eq. 2 only supports two-word generation, which in-
dicates an upper bound of 2× speedup at inference.
To improve this bound, we study strategies for
multi-word generation. We explore two of them.

Multi-Directional Decoding Similar to IBDe-
coder, IMDecoder also permutes the target se-
quence. It inserts multiple generation directions
(i.e. increases h), with each direction producing
one word per step (i.e. c = 1). As shown in Figure
1d, it splits the target sequence into several roughly
equal segments followed by applying IBDecoder to
each segment (thus an even h required). Formally,
IMDecoder reframes the target sequence and word
positions as follows:

yMD =
[
yBD
1,k,y

BD
2,k, . . . ,y

BD
h/2,k

]dn/he
k=1

, (9)

T MD
t = (bt−1/hc, t− 1 mod h) , (10)

where yBD
i,k denotes the k-th word of yBD

i , which is
the i-th segment of y reordered by IBDecoder(h/2
segments in total). T MD decomposes the word po-
sition into two parts. The first one represents the in-
dex of decoding step where each word is predicted;
the second one denotes the generation direction
each target word belongs to. Specifically, we record
the corresponding direction indices and add a group
of trainable direction embeddings (red rectangles
in Figure 1d) into the decoder input. IMDecoder
uses the following self-attention mask:

MMD =M(h, 1) (11)

Semi-Autoregressive Decoding Instead of par-
titioning the target sequence, another option is to
produce multiple target words per direction at each

3Note that with two tokens produced per time step, decoder
inputs are shifted by two.
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Algorithm 1 Beam search with step-wise multi-
word generation.
Input: Decoder dec, beam size B, word number

z = h · c, maximum length T
Output: Top-B finished hypothesis

. initial hypothesis (z start symbols, score 0)
1: H0 ← {([‘[s]’]z, 0)}
2: Hfinish ← ∅
3: t← 0
4: while |Hfinish| < B & t < T do
5: for (ht, st) ∈ Ht do

. words Wp of probability P ∈ Rz×B

6: P,Wp ← topB(dec(ht))
. ⊕: outer addition for vectors

7: s,Ws ← topB(⊕z
i=1 logPi)

. extract words by index, W ∈ RB×z

8: W← tracewords(Ws,Wp)
9: for (w, s) in (W, s) do

. meet end-of-hypothesis condition
10: if finish(w) then
11: add ([ht,w], s+ st) toHfinish

12: else
13: add ([ht,w], s+ st) toHt+z

14: end if
15: end for
16: end for
17: pruneHt+z to keep top-B hypothesis
18: t← t+ z
19: end while

. post(·): process ht to recover word order
20: return sort (post(ht), st) ∈ Hfinish by st

t

step (i.e. increase c, Wang et al., 2018). SA as-
sumes that neighbouring words are conditionally
independent, despite the fact that tokens in natural
language are typically highly inter-dependent.

We combine SA with IBDecoder (Figure 1e)
with the expectation that producing 2 neighbouring
tokens independently per direction is less harmful
than producing 4 neighbouring words in parallel.
We reuse the sequence yBD and T BD(n) for the
decoder input, but enlarge the attention range in the
self-attention mask to assist multi-word generation
(Figure 1f):

MSA =M(2, c). (12)

4.2 Inference
To handle multiple predicted words per decoding
step simultaneously, we adjust the beam search
algorithm as in Algorithm 1. For each partial hy-

pothesis ht, we predict z = h · c words in parallel.
We thus first extract the B top-scoring predictions
Wp of probability P for all z positions (line 6),
followed by pruning the resulting search space of
size O(Bz) through an outer-addition operation
to size B (line 7). The scores s ∈ RB (line 7)
and the backtraced words W ∈ RB×z (line 8) are
then used for normal decoding. Note that each
complete hypothesis requires a simple determin-
istic post-processing to recover its original word
order (line 20). In contrast to Zhou et al. (2019),
we do not separate the left-to-right beam from the
right-to-left beam.

End-of-Hypothesis Condition With multiple
predicted target words, determining whether one
hypothesis is complete or not becomes challenging.
We adopt a simple strategy: one hypothesis is as-
sumed complete once any word in the predictions
hits the end-of-sentence symbol (“[/s]”) (line 10).
We leave the study of alternatives for the future.

5 Experiments

Setup We test our model on machine transla-
tion (MT) and document summarization. We
train MT models on five different language pairs:
WMT14 English-German (En-De, Bojar et al.,
2014), WMT14 English-French (En-Fr, Bojar et al.,
2014), WMT16 Romanian-English (Ro-En, Bo-
jar et al., 2016), WMT18 English-Russian (En-
Ru, Bojar et al., 2018) and WAT17 Small-NMT
English-Japanese (En-Ja, Nakazawa et al., 2017).
Translation quality is measured by BLEU (Papineni
et al., 2002), and we report detokenized BLEU us-
ing the toolkit sacreBLEU (Post, 2018)4 except for
En-Ja. Following Gu et al. (2019b), we segment
Japanese text with KyTea5 and compute tokenized
BLEU. We train document summarization models
on two benchmark datasets: the non-anonymized
version of the CNN/Daily Mail dataset (CDMail,
Hermann et al., 2015) and the Annotated English
Gigaword (Gigaword, Rush et al., 2015). We
evaluate the summarization quality using ROUGE-
L (Lin, 2004).

We provide details of data preprocessing and
model settings in Appendix A. We perform thor-
ough analysis of our model on WMT14 En-De. We
also report results improved by knowledge distilla-
tion (KD, Kim and Rush, 2016).

4Signature BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.3
5http://www.phontron.com/kytea/
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ID Model B h c BLEU↑ +KD↑ Latency↓ Speedup↑ Train↑

1 Transformer 4 1 1 26.9 27.3 387 1.00× 1.00×1 26.0 26.8 294 1.32×

2 IBDecoder 4 2 1 26.2 27.1 204 1.90× 0.98×1 25.0 26.8 166 2.33×

3 2 + SA 4 2 2 23.0 26.3 117 3.31× 0.98×1 21.7 26.0 89 4.35×

4 IMDecoder 4 4 1 21.5 24.6 102 3.79× 0.98×1 19.7 24.1 85 4.55×

Table 1: Performance on WMT14 En-De for different models with respect to beam size (B), generation direction number (h, Eq.
4) and predicted token number per step (c, Eq. 4). BLEU: detokenized BLEU for models trained from scratch, +KD: detokenized
BLEU for models trained with knowledge distillation. Latency (in millisecond) and Speedup are evaluated by decoding the test
set with a batch size of 1, averaged over three runs. We report the latency and speedup for 2©, 3© and 4© trained with KD. Train
compares the training speed averaged over 100 steps. Time is measured on GeForce GTX 1080.

5.1 Results on WMT14 En-De

Table 1 compares the performance of our models
on WMT14 En-De. Relaxing the autoregressive-
ness with IBDecoder yields slightly worse transla-
tion quality compared to Transformer (-0.7 BLEU,
1©→ 2©, w/o KD, B = 4). Unlike Zhang et al.

(2020), we observe no quality improvement, but
our model delivers a speedup of 1.90×∼2.33× at
inference, clearly surpassing the simple greedy de-
coding baseline (1.32×) and BIFT (0.89×) (Zhang
et al., 2020). The dropped quality is easily re-
covered with knowledge distillation (+0.2 BLEU,
1©→ 2©, w/ KD, B = 4).

Going beyond two-word generation, which en-
hances independence, greatly decreases the per-
formance ( 2©→ 3©, 4©, w/o KD) while enlarging
the speedup to 3.3×–4.5×. Compared to SA, the
quality degradation with IMDecoder is larger, both
w/ and w/o KD. We ascribe this to the difficulty
of structure planning, as IMDecoder has to guess
words in the middle of the sequence at the start
of generation. We employ SA for the following
experiments.

In contrast to existing work (Zhang et al., 2018d,
2019b, 2020; Zhou et al., 2019), our models
marginally affect the training efficiency (0.98× vs
0.61× (Zhang et al., 2020)), and require no extra
linguistic information (Akoury et al., 2019). Our
results also suggest that the degree each model ben-
efits from KD varies. Follow-up studies should
report performance w/ and w/o KD.

Ablation Study We carry out an ablation study
as shown in Table 2. Replacing the attention mask
with the vanilla one ( 1©→ 2©) introduces unneces-
sary independence assumptions and reduces perfor-
mance by 0.5 BLEU. Using vanilla positional en-

ID Model h c BLEU↑
1 IBDecoder 2 1 26.2

2 1 + vanilla mask 2 1 25.7
3 1 + vanilla positions 2 1 25.9
4 1 + middle-to-side 2 1 20.7
5 1 + indep. directions 2 1 23.9
6 vanilla SA 1 2 24.1

7 1 + SA 2 2 23.0
8 vanilla SA 1 4 18.7

Table 2: Ablation study on WMT14 En-De. Beam size 4.
All models are trained from scratch. vanilla mask/vanilla
positions: the self-attention mask (M(1, 1), Eq. 4) and word
positions (T , Eq. 5) used in Transformer. middle-to-side:
generate words from the middle of the sequence to its two
ends, a reverse mode of IBDecoder. indep. directions: disable
cross-direction interaction. vanilla SA: predict multiple target
words per step following one direction (Wang et al., 2018).

codings ( 3©) also reduces performance -0.3 BLEU,
indicating that we benefit from preserving the lo-
cality bias of sinusoidal encodings within each di-
rection. Changing the generation direction from
the side-to-middle ( 1©) to the middle-to-side ( 4©)
dramatically increases the learning difficulty (-5.5
BLEU).

In IBDecoder, the two translation directions are
interlinked, i.e. predictions are conditioned on the
history of both directions. We can remove cross-
direction attention, essentially forcing the model
to produce the left and right half of sequences in-
dependently. Such an independent generation per-
forms poorly (-2.3 BLEU, 1©→ 5©), which supports
the importance of using bidirectional context and
resonates with the finding of Zhou et al. (2019).

Vanilla SA vs. IBDecoder Our IBDecoder
shares architectural properties with vanilla
SA (Wang et al., 2018), namely the independent
generation of two tokens per time step, and the
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Left-to-Right Bidirectional

Autoregressive 4.04 4.86
Semi-Autoregressive 6.95 4.72

Estimated PMI 0.235 -0.014

Table 3: Perplexity of autoregressive and semi-autoregressive
models with different factorizations, and estimated average
point-wise mutual information between words that are pre-
dicted independently. Measured on WMT14 En-De test set.
Left-to-Right: h = 1, Bidirectional: h = 2; Autoregressive:
z = 1, Semi-autoregressive: z = 2. The estimated PMI
shows that the inter-dependence of word pairs predicted in
parallel by vanilla SA is stronger than for those predicted
simultaneously by IBDecoder.

Model L/h/c BLEU↑ Speedup↑
Transformer 6/1/1 26.9 1.00×

+ student 2/1/1 26.0 2.19×
+ KD 2/1/1 26.7 2.32×

IBDecoder 6/2/1 26.2 1.90×
+ student 2/2/1 25.0 4.29×
+ KD 2/2/1 26.6 4.41×

IBDecoder + SA 6/2/2 23.0 3.31×
+ student 2/2/2 21.5 7.13×
+ KD 2/2/2 24.5 7.24×

Table 4: Detokenized BLEU and decoding speedup for stu-
dent models on WMT14 En-De with reduced decoder depth
L (encoder depth remains constant). Beam size 4.

adapted self-attention mask, but crucially differ in
their generation order and independence assump-
tions, with vanilla SA operating from left-to-right,
and IBDecoder interleaving left-to-right and
right-to-left decoding.

Our ablation results in Table 2 show that IBDe-
coder substantially outperforms vanilla SA (2.1/4.3
BLEU, 1©→ 6©/ 7©→ 8©). To further investigate the
difference in independence assumptions between
the two approaches, we compare estimated point-
wise mutual information (PMI) of the words being
predicted independently by IBDecoder and vanilla
SA.6 Results in Table 3 show that the PMI in IB-
Decoder (−0.014) is significantly smaller than that
in vanilla SA (0.235), supporting our assumption
that distant words are less inter-dependent on aver-
age. This also explains the smaller quality loss in
IBDecoder compared to vanilla SA.

On Teacher-Student Model One classical ap-
proach to improving decoding efficiency is train-
ing a small student model w/ KD. Results in Ta-
ble 4 support this: Transformer with a student
model produces similar performance w/ KD but
runs 2.32× faster, even better than IBDecoder (1.90

6Details about PMI estimation are given in Appendix B
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Figure 2: Speedup against Transformer vs. batch size and
beam size on WMT14 En-De. Comparison is conducted under
the same batch size and beam size. IBDecoder (+SA) is trained
with KD. Our model consistently accelerates decoding.
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Figure 3: BLEU (solid lines, left) and speedup (dashed lines,
right) as a function of source sentence length on WMT14
En-De. We sort the test set according to the source sentence
length and uniformly divide it into 10 bins (274 sentences
each). IBDecoder (+SA) is trained with KD. Beam size 4.

×). Combining the student schema with IBDecoder
increases the speedup to 4.41× without hurting the
performance (26.6 BLEU, w/ KD). In exchange
of 2.4 BLEU, we could reach 7.24× faster decod-
ing with SA. The compatibility of our model with
the teacher-student framework reflects the gener-
alization of our bidirectional modeling. The re-
sults also demonstrate that efficiency improvements
from faster autoregressive decoding, here obtained
by reducing the number of decoder layers L7, and
from bidirectional decoding, are orthogonal.

Impact of Batch and Beam Size Figure 2 shows
speedups over a standard Transformer with vary-
ing batch and beam sizes. When batch size < 8,
increasing beam size improves the speedup; while
the impact becomes negative with batch size ≥ 8.
Overall, our model is consistently faster than Trans-
former at inference, regardless of the batch and
beam size.

Impact of Source Sentence Length Although
translation quality fluctuates over the source sen-
tence length, Figure 3 shows that our model shares
the same performance pattern with the baseline.

7Also note the concurrent work by (Kasai et al., 2020).
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With respect to the speedup, our model performs
better when translating longer source sentences.

Effect of c Results in Figure 4 show that c con-
trols the trade-off between translation quality and
speedup. With larger c, more target tokens are
predicted per decoding direction, leading to better
speedup, but causing a larger performance drop
w/ and w/o KD. Further analysis reveals that, as
the dependency between predicted target words
weakens, our model suffers from more serious
over-translation issue, yielding larger OTEM (Yang
et al., 2018). Although n-gram deduplication
slightly improves quality8, it does not explain the
whole performance drop, echoing with Wang et al.
(2018). We recommend using c = 2 for a good
balance. In addition, the reduction of OTEM by
KD in Figure 4 partially clarifies its improvement
on quality.

Analysis on Long-range Dependency We
adopt the subject-verb agreement task from
Lingeval97 (Sennrich, 2017) for analysis. We can
see from the results in Figure 5 that IBDecoder

8we only applied deduplication for results in Figure 4.

Model BLEU↑ SU↑
Existing work
SAT (Wang et al., 2018)∗ 26.09† 2.07 ×
SBSG (Zhou et al., 2019)∗ 27.22† 1.61 ×
SynST (Akoury et al., 2019) 20.74 4.86×
Levenshtein (Gu et al., 2019b)∗ 27.27† 4.01×
CMLM (Ghazvininejad et al., 2019)∗ 27.03† -
AXE (Ghazvininejad et al., 2020)∗ 23.53† -

This work SacreBLEU↑
IBDecoder 25.0 25.73† 2.48×

w/ SA 22.3� 22.95† 4.53×
w/ student 25.0 25.33† 4.29×

IBDecoder∗ 26.8 27.50† 2.33×
w/ SA∗ 26.0� 26.84†� 4.35×
w/ student∗ 26.6 27.00† 4.41×

Table 5: Comparison to several recent fast sequence genera-
tion models on WMT14 En-De. ∗: trained w/ KD. †: tokenized
BLEU. �: deduplication applied. SU: short for speedup.

performs similarly to the original Transformer for
agreement over short distances, but agreement
over longer distances drops on average. In contrast,
models that include SA show steep drops in
accuracy for short distances.

Curiously, KD seems to harm agreement scores
even though it led to higher BLEU. Overall, these
results suggest that BLEU does not show the full
quality loss incurred by our independence assump-
tions. This deficiency also provides evidence for
the performance drop in Figure 4.

Comparison to Previous Work Results in Ta-
ble 5 show that our model outperforms SynST (Ak-
oury et al., 2019) in quality, and slightly surpasses
the Levenshtein Transformer (Gu et al., 2019b) in
speed. Particularly, our model (27.50†/2.33×) sur-
passes SAT (Wang et al., 2018) (26.09†/2.07×)
and SBSG (Zhou et al., 2019) (27.22†/1.61×) in
terms of both quality and speed. Our model doesn’t
heavily rely on extra linguistic knowledge (Akoury
et al., 2019), neither requires complex pseudo train-
ing data construction (Gu et al., 2019b). Compared
to these prior studies, our approach is simple but
effective.

5.2 Results on Other Tasks

Table 6 shows MT results for other translation di-
rections, and for document summarization. Re-
gardless of syntactic, morphological, transcript and
sequence-length differences, our model achieves
comparable generation quality and 1.75×–11.15×
speedup over different tasks. With KD, our model
even outperforms the Transformer baseline on 5 out
of 6 tasks. In particular, our model succeeds on the
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B Model KD Machine Translation Document Summarization

En-Fr Ro-En En-Ru En-Ja Gigaword CDMail

4
Quality↑

Transformer no 32.1 32.7 27.7 43.97 35.03 36.88
IBDecoder no 32.1 33.3 27.0 43.51 34.57 36.11

+ SA no 30.3 31.3 25.0 41.75 33.65 35.27
IBDecoder yes 32.7 33.5 27.5 43.76 35.12 36.46

+ SA yes 31.3 32.7 26.4 42.99 34.74 36.27

Latency↓ IBDecoder yes 231/1.75× 205/1.79× 204/1.82× 157/1.86× 83/2.35× 657/3.02×
/Speedup↑ +SA yes 119/3.41× 109/3.37× 112/3.30× 94/3.10× 47/4.20× 303/6.55×

1

Quality↑

Transformer no 31.6 32.3 27.8 42.95 34.88 34.51
IBDecoder no 31.7 32.6 26.8 43.29 34.22 36.74

+ SA no 29.0 30.4 24.3 41.05 33.25 35.04
IBDecoder yes 32.2 33.2 28.2 43.79 35.18 37.03

+ SA yes 30.7 32.4 26.5 42.70 34.63 36.39

Latency↓ Transformer no 357/1.14× 333/1.10× 342/1.09× 260/1.12× 157/1.24× 1447/1.37×
/Speedup↑ IBDecoder yes 186/2.18× 154/2.37× 157/2.37× 121/2.40× 56/3.51× 312/6.36×

+SA yes 96/4.20× 88/4.17× 90/4.14× 67/4.34× 34/5.83× 178/11.15×

Table 6: Generation quality (BLEU for MT, Rouge-L for summarization) and latency(ms)/speedup on different tasks. We
compare IBDecoder (+SA) with Transformer. Best quality is in bold.

CDMail task which previous non-autoregressive
models rarely attempt due to its lengthy target se-
quence, although our model suffers from the long-
range dependency issue as in Figure 5.

6 Conclusion and Future Work

We present interleaved bidirectional sequence gen-
eration to accelerate decoding by enabling gener-
ation from the left-to-right and right-to-left direc-
tions simultaneously. We combine the strengths
of SBSG (Zhou et al., 2019) and SA (Wang et al.,
2018), and propose a simple interleaved bidirec-
tional decoder (IBDecoder) that can be easily im-
plemented on top of a standard unidirectional de-
coder, like Transformer, via interleaving the target
sequence and tweaking the word positions and self-
attention masks. IBDecoder inherits Transformer’s
training parallelization with no additional model
parameters, and is extensible with SA and multi-
directional decoding. We show that the indepen-
dence assumptions we introduce between the two
directions are less harmful to translation quality
than the independence assumptions in left-to-right
SA. On a series of generation tasks, we report com-
parable quality with significant inference speedup
(4×–11×) and little training overhead. We also
show that the approach is orthogonal to speedups
to autoregressive decoding, e.g. by reducing model
size.

In the future, we would like to further improve
multi-directional generation, and will investigate
alternative ways to partition the target sequence
and encode positional information. We are also in-

terested in better measuring and reducing the qual-
ity loss resulting from long-distance dependencies.
Finally, we would like to adapt our interleaving
approach to other sequence-to-sequence architec-
tures.
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E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages
7700–7711. Curran Associates, Inc.

Andrew Finch and Eiichiro Sumita. 2009. Bidirec-
tional phrase-based statistical machine translation.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1124–1132, Singapore. Association for Computa-
tional Linguistics.

Marjan Ghazvininejad, Vladimir Karpukhin, Luke
Zettlemoyer, and Omer Levy. 2020. Aligned cross
entropy for non-autoregressive machine translation.
ArXiv, abs/2004.01655.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In

Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6112–
6121, Hong Kong, China. Association for Computa-
tional Linguistics.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor O.K. Li, and Richard Socher. 2018. Non-
autoregressive neural machine translation. In Inter-
national Conference on Learning Representations.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019a.
Insertion-based decoding with automatically in-
ferred generation order. Transactions of the Asso-
ciation for Computational Linguistics, 7:661–676.

Jiatao Gu, Changhan Wang, and Junbo Zhao.
2019b. Levenshtein transformer. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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A Data Preprocessing and Model
Settings

We use the given well-processed data for WAT17
En-Ja. For other tasks, we apply the byte pair en-
coding model (Sennrich et al., 2016b) with a joint
vocab size of 32K except for WMT18 En-Ru (48K).
We experiment with Transformer Base (Vaswani
et al., 2017): d = 512, L = 6, 8 attention heads
and FFN size of 2048. Dropout of rate 0.1 is used
on residual connections and attention weights. We
employ Adam (β1 = 0.9, β2 = 0.98) (Kingma and
Ba, 2015) for parameter optimization with a sched-
uled learning rate of warm-up step 4K. Gradient is
estimated over roughly 25K target subwords. We
average the last 5 checkpoints for evaluation, and
use beam search (beam size 4, length penalty 0.6)
by default for inference.

B Estimation of the PMI

To evaluate the average point-wise mutual in-
formation (PMI) in Table 3, we compare IBDe-
coder/vanilla SA to its autoregressive counterpart

in terms of testing perplexity (ppl). Take SA
(h = 1, c = 2) as example, we have:

PMI(SA) = log ppl(SA)− log ppl(Base) (13)

where Base denotes the baseline Transformer.
The intuition behind our estimation is that Trans-
former handles neighboring words (y1, y2) au-
toregressively, thus models their joint probability:
p(y1, y2) = p(y1) · p(y2|y1). Instead, vanilla SA
predicts those words independently, i.e. p(y1) ·
p(y2). Comparing the perplexity of SA and Trans-
former gives an estimation of the average PMI. The
method for IBDecoder follows the same spirit.
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Abstract
Priming is a well known and studied psychol-
ogy phenomenon based on the prior presen-
tation of one stimulus (cue) to influence the
processing of a response. In this paper, we
propose a framework to mimic the process
of priming in the context of neural machine
translation (NMT). We evaluate the effect of
using similar translations as priming cues on
the NMT network. We propose a method
to inject priming cues into the NMT network
and compare our framework to other mecha-
nisms that perform micro-adaptation during in-
ference. Overall, experiments conducted in a
multi-domain setting confirm that adding prim-
ing cues in the NMT decoder can go a long
way towards improving the translation accu-
racy. Besides, we show the suitability of our
framework to gather valuable information for
an NMT network from monolingual resources.

1 Introduction

Priming is a well studied human cognitive phe-
nomenon, founded on the establishment of associa-
tions between a stimulus and a response (Tulving
et al., 1982). Multiple studies have shown how ex-
ternal stimuli (cues) may have a profound effect on
perception. In the case of language translation, ex-
ternal stimuli having such effects are said to prime
language understanding and potentially have a im-
pact the actions of a human translator. Imagine for
instance a translator facing the ambiguous sentence
I was in the bank, and the effect on translation ac-
curacy if primed with the cue river. Most likely,
the human translator would consider the “edge of
river” sense rather than “financial institution” for
translation. In the context of human translation,
cross-lingual priming is particularly effective as
cues in the target language may notably influence
the final translation word choice.

Several research works have introduced the prim-
ing analogy in deep neural networks. In computer

vision priming has been broadly studied: for in-
stance, in Rosenfeld et al. (2018), the authors intro-
duce a cue about the presence of a certain class of
object in an image that significantly improves ob-
ject detection performance. Concerning language
generation, Brown et al. (2020) use a combination
of prompt and example to guide the GPT-3 network
when performing a task, where the prompt is a sen-
tence that describes the task (i.e. “Translate from
English to French”); and is followed by an exam-
ple of the task (i.e. “sea otter ; loutre de mer”).
In the context of NMT, experiments reported (Sen-
nrich et al., 2016a; Kobus et al., 2017; Dinu et al.,
2019) aim at influencing translation inference with
respectively politeness, domain and terminology
constraints. More related to our work, (Bulte and
Tezcan, 2019; Xu et al., 2020) introduce a simple
and elegant framework where similar translations
(cues) are used to prime an NMT model, effectively
boosting translation accuracy. In all cases, priming
is performed by injecting cues in the input stream
prior to inference decoding.

In this paper, we extend a framework that mim-
ics the priming process in neural networks, in the
context of machine translation. Following up on
previous work (Bulte and Tezcan, 2019; Xu et al.,
2020), we consider similar translations as exter-
nal cues that can influence the translation process.
We push this concept further: a) by proposing a
novel scheme to integrate similar translation cues
into the NMT network. We examine the atten-
tion mechanism of the network and confirm that
priming stimuli are actually taken into account;
b) by extending an efficient network to train dis-
tributed representations of sentences that are used
to identify accurate translations used as priming
cues1; c) by analyzing how on-the-fly priming com-
pares to micro-adaptation (fine-tuning). Finally, we

1https://github.com/jmcrego/cbon
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show that our priming approach can also be used
with monolingual data, providing a scenario where
NMT can be effectively helped by large amounts
of available data. Our proposal does not require
to change the NMT architectures or algorithms, re-
lying solely on input preprocessing and on prefix
(forced) decoding (Santy et al., 2019; Knowles and
Koehn, 2016), a feature already implemented in
many NMT toolkits.

The remainder of the paper is organized as fol-
lows: Section 2 gives details regarding our prim-
ing approach. The experimental framework is pre-
sented in Section 3. Results and discussion are
respectively in Sections 4 and 5. We review related
work in Section 6 and conclude in Section 7.

2 NMT Priming On-the-fly

This section describes our framework for priming
neural MT with similar translations. We follow the
work by (Bulte and Tezcan, 2019; Xu et al., 2020)
and build a translation model that incorporates sim-
ilar translations from a translation memory (TM)
to boost translation accuracy. In this work, TMs
are parallel corpora containing translations falling
in the same domain as test sentences.

We first describe the methods employed in this
work to compute sentence similarity. We then in-
troduce various augmentation schemes considered
to prime the NMT network with retrieved similar
translations. Overall, we pay special attention to
efficiency, since retrieval is applied on a sentence-
by-sentence basis at inference.

2.1 Similarity Computation
We detail the sentence similarity tools evaluated in
this work. The first employs discrete word represen-
tations, while the rest rely on building distributed
representations of sentences to perform similar sen-
tence retrieval:

FM: fuzzy matching is a lexicalized matching
method aimed to identify non-exact matches of
a given sentence. Following Xu et al. (2020), we
use FuzzyMatch2, where the fuzzy match score
FM(si, sj) between two sentences si and sj is:

FM(si, sj) = 1− ED(si, sj)

max(|si|, |sj |)

with ED(si, sj) being the Edit Distance between
si and sj , and |s| is the length of s.

2https://github.com/systran/FuzzyMatch

S2V: we use sent2vec3 (Pagliardini et al.,
2018) to generate sentence embeddings. The net-
work implements a simple but efficient unsuper-
vised objective to train distributed representations
for sentences. The model is based on efficient
matrix factor (bilinear) models (Mikolov et al.,
2013a,b; Pennington et al., 2014).

Borrowing the notations of Pagliardini et al.
(2018), training the model is formalized as an opti-
mization problem:

min
U ,V

∑

s∈C
fs(UV ιs)

for two parameter matrices U ∈ R|V|×d and V ∈
Rd×|V|, where V denotes the vocabulary and d is
the embedding dimension. Minimization of the
cost function fs is performed on a training corpus
C of sentences s.

In sent2vec, ιs is a binary vector encoding
the bigrams in s (bag of bigrams encoding).

CBON: the Continuous Bag of n-grams (CBON)
model denotes our re-implementation of the pre-
vious sent2vec model. In addition to multiple
implementation details, the main difference is the
use of arbitrary large n-grams to model sentence
representations, where sent2vec only used bi-
grams.

Both sent2vec and CBON learn a source (or
context) embedding vw for each n-gram w in the
vocabulary V . Once the model is trained, the em-
bedding of sentence s (hs) is obtained as the aver-
age of its n-gram embeddings:

hs =
1

|R(s)|
∑

w∈R(s)

vw

where R(s) is the list of n-grams (including uni-
grams) occuring in sentence s and vw is the target
embedding of n-gram w.

The similarity score EM(si, sj) between two
sentences si and sj is then defined via the cosine
similarity of their sentence vector representations
hi and hj :

EM(si, sj) =
hi · hj

||hi|| × ||hj ||
,

where ||h|| denotes the norm of vector h.
Note that models differ in their vocabularies,

which are built selecting the most frequent n-grams.
3https://github.com/epfml/sent2vec
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Both models implement Negative Sampling to
avoid the softmax computation.

2.2 Priming Schemes
We now explore various ways to integrate similar
translations for priming NMT:

tgtk we follow here mostly the work of Bulte
and Tezcan (2019), where the input sentence in the
source language is augmented with the k transla-
tions (in the target language) having the highest
matching score (FM or EM) in the TM.

In training, sentence pairs (s,t) are preprocessed
as follows: the source sentence s is concatenated
with translations tk of the k most similar sentences
(sk) to s found in the TM. Augmented translations
are sorted by matching score, with k = 1 denoting
the most similar. Sentences in the source stream
are separated using the special token ◦.

src: tk ◦ ... ◦ t2 ◦ t1 ◦ s
tgt: t

In inference, only the source-side is input to the
translation network.

In Xu et al. (2020), an issue regarding unrelated
tokens present in similar translations tk is raised.
The model effectively learns to copy most of the
content present in similar translations, but has diffi-
culties to avoid also copying unrelated words. Con-
sider for instance the input sentence s = pertussis
vaccin with similar sentence s1 = measles vaccin
and its corresponding translation t1 = vaccin con-
tre la rougeole. Following the tgtk scheme, the
NMT input consists of:

vaccin contre la rougeole ◦ pertussis vaccin
yielding the output: vaccin contre la rougeole.
The word rougeole is actually the translation of an
unrelated word (measles). The model often copies
such unrelated tokens (Xu et al., 2020), due to the
fact that they are present in the input stream as
similar translations (tk) and are usually semanti-
cally related to the correct translation choice (here
coqueluche, the correct translation for pertussis).

tgtk+STU adopts the proposal of Xu et al.
(2020) to alleviate the unrelated word problem. It
relies on an additional source stream (factor) to la-
bel related/unrelated tokens. Following on our ex-
ample, in this scheme the input of the NMT model
contains two parallel streams:

src1: vaccin contre la rugeole ◦ pertussis vaccin
src2: T T T U T S S
tgt: vaccin contre la coqueluche

Tokens in the second stream are: S for source to-
kens, U for unrelated and T for related target tokens.
rougeole is thus tagged as an unrelated word that
must not be copied in the translation output. Word
embeddings are built after concatenating both fac-
tor embeddings. Xu et al. (2020) claim achieving a
8% reduction of unrelated tokens when using this
scheme.

Note that this solution is computationally ex-
pensive as it requires to identify related/unrelated
tokens in each input sentence and in the correspond-
ing similar translations, based in Xu et al. (2020) on
word alignments and edit distance computations.

s+tk the solution proposed in this paper also
addresses the unrelated word problem, at a much
reduced computational cost. It considers both sides
of similar translations (sk and tk). Training streams
take the form:

src: sk ◦ ... ◦ s2 ◦ s1 ◦ s
tgt: tk ◦ ... ◦ t2 ◦ t1◦ t

In inference, target-side similar translations tk are
used by the model as a target prefix. The ini-
tial steps of the beam search use the given prefix
tk ◦ ... ◦ t2 ◦ t1◦ in forced decoding mode, return-
ing to a regular beam search after the last ◦ token
is generated. A similar strategy of concatenating
previous and current sentences was explored by
Tiedemann and Scherrer (2017) in the context of
handling discourse phenomena. However, since
we use true translation as prefixes, our strategy
does not suffer from exposure bias (Ranzato et al.,
2016) and the subsequent error propagation prob-
lem. Continuing on our running example, during
inference the model receives:

input: measles vaccin ◦ pertussis vaccin
prefix: vaccin contre la rougeole ◦

the encoder embeds the input stream, and force-
decodes the target prefix, before starting the trans-
lation generation. Note that during beam search,
the decoder has thus access both to all input tokens
(sk and s) as well as to similar translations tk (in
the translation prefix).

Following our approach the NMT model learns
to attend to priming cues on both source and target
streams. Besides, our solution removes the need to
mix source and target vocabularies as in previous
schemes.
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3 Experimental Framework

3.1 Corpora

We experiment with the English-French language
pair and data originating from eight domains, corre-
sponding to texts from three European institutions:
the European Parliament (EPPS), the European
Medicines Agency (EMEA) and the European Cen-
tral Bank (ECB); Legislative texts of the European
Union (JRC); IT-domain corpora corresponding to
KDE4 and GNOME; News Commentaries (NEWS);
and parallel sentences extracted from Wikipedia
(WIKI). Table 1 contains statistics regarding the
corpora used in this work4 (Tiedemann, 2012).
Statistics are computed after splitting off punctua-
tion.

Corpus #Sents (K)
Lmean Vocab (K)

English French English French

Parallel Corpora
EPPS 1,992.8 27.7 32.0 129.5 149.2
NEWS 315.3 25.3 31.7 90.5 96.7
WIKI 749.0 25.9 23.5 527.5 506.6
ECB 174.1 28.6 33.8 45.3 53.5
EMEA 336.8 16.8 20.3 62.8 68.9
JRC 475.2 30.1 34.5 81.0 83.5
GNOME 51.9 9.6 11.6 19.0 21.6
KDE4 163.9 9.1 12.4 48.7 64.7

Monolingual Corpora
WIKI 6,426.8 - 24.1 - 1,626.3
NEWS 83,567.8 - 25.5 - 3,444.1

Table 1: Corpora statistics. Note that K stands for thou-
sands and Lmean is the average length in words.

Each corpora is considered as a different domain.
Training data sets are also employed as TM of the
corresponding domain. This is, similar sentences
are mined from the same training set that is used
to build the model. Note that we also consider
monolingual (French) corpora. For the News do-
main we use all available monolingual WMT news
crawl data5. For the Wikipedia domain, we use
the French-side of the WikiMatrix data (Schwenk
et al., 2019a).

We randomly split the parallel corpora by keep-
ing 500 sentences for validation, 1, 000 sentences
for testing and the rest for training. All data is
preprocessed using the OpenNMT tokenizer6 (con-
servative mode).

4Freely available from http://opus.nlpl.eu
5http://data.statmt.org/news-crawl/
6https://github.com/OpenNMT/Tokenizer

3.2 System Configurations

This section gives learning/inference details of the
various systems used in this work.

Similarity
For fuzzy matching FM we follow several works
(Koehn and Senellart, 2010; Bulte and Tezcan,
2019; Xu et al., 2020) and keep the n-best matches
when FM(s1, s2) ≥ 0.5 with no approximation.
Concerning S2V, the model is trained with default
options during 20 epochs using all training data.
We use an embedding dimension of 300 cells. Re-
garding CBON, we learn models using also the en-
tire training data during one epoch (∼50,000 it-
erations). Similarly to S2V we use 10 negative
samples per positive word to approximate the soft-
max, a batch size of 2k examples, and embedding
size of 300 cells. We build CBON models using
3-grams and 4-grams to enable a comparison with
sent2vec which only uses bigrams. All vocab-
ularies are selected keeping the 500,000 most fre-
quent n-grams (n = 2 for S2V and n = 3 and 4
for CBON).

For both CBON and S2V models, we use the
5-best matches when EM(s1, s2) ≥ 0.87. In all
cases, perfect matches are not used for training.
Accuracy results on the priming task indicate that
3-grams yield slightly lower accuracy results than
those obtained with 4-grams. In the remainder, we
always use the 4-gram version of CBON.

Sentence Retrieval
To identify similar translations using distributed
representations, we use the faiss8 search
toolkit (Johnson et al., 2019) through its Python
API with exact FlatIP index.

Translation
Our NMT models rely on the Transformer base
architecture of Vaswani et al. (2017), implemented
in the OpenNMT-tf9 toolkit (Klein et al., 2017).
We use the standard setting of Transformers for all
experiments: size of word embedding: 512; size
of hidden layers: 512; size of inner feed-forward
layer: 2, 048; number of heads: 8; number of lay-
ers in the encoder or in the decoder: 6. In the
tgt1+STU scheme, token (508 cells) and STU (4

7Optimization experiments on a held-out development set
are carried out for both models.

8https://github.com/facebookresearch/
faiss

9https://github.com/OpenNMT/OpenNMT-tf
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cells) streams are concatenated, thus using the same
number of parameters in all schemes.

For training, we use the Adam (Kingma and
Ba, 2015) optimiser with a batch size of 4, 096
tokens. We set the warmup steps to 4, 000 and up-
date the learning rate for every 8 iterations. Models
are optimised during 300K iterations, using a sin-
gle NVIDIA V100 GPU. We limit the length of
training sentences to 300 BPE tokens (Sennrich
et al., 2016c) in both source and target sides to
enable the integration of similar sentences. We
use a joint BPE-vocabulary of size 32K for both
source and target texts. Inference is performed
with a beam size of 5 using CTranslate210, a
custom C++ runtime inference engine for Open-
NMT models that enables fast CPU decoding
and also implements prefix decoding. For eval-
uation, we report BLEU (Papineni et al., 2002)
scores computed by detokenized case-sensitive
multi-bleu.perl11.

We re-implement the work of Farajian et al.
(2017) as a contrastive model that we denote
µadapt. Note that we only experiment with the
basic version of this work, where the closest neigh-
bours of the input sentence are first retrieved from
the memory and then used to fine-tune a generic
model during 15 additional iterations with a fixed
learning rate of 0.0005; the fine-tuned model is
then used to produce the translation of the given
input sentence. In addition, Farajian et al. (2017)
include a variant where learning rate and number
of epochs are dynamically adapted considering sen-
tence similarity. Adaptation is run on a sentence-
by-sentence basis.

4 Results

Retrieval algorithms employed in this work are sig-
nificantly faster than NMT Transformer decoding,
thus implying a limited decoding overhead.

Table 2 reports efficiency scores (tokens/second)
for computing vector representations (Vector), per-
forming sentence retrieval (Retrieval) and transla-
tion (NMT) for the WIKI test set according to the
similarity model and priming schema used. Results
show that the computational cost is dominated by
the NMT step. This step, in turn, is affected by the
length of the input (and prefix) streams.

10https://github.com/OpenNMT/
CTranslate2

11https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

Model Schema Vector Retrieval NMT
Base - - - 806

FM
tgt1

- 25K
750

s+t1 687
S2V tgt5 222K

17K
639

CBON
tgt5

59K
s+t5 523

Table 2: Efficiency (tokens/second) of each step for dif-
ferent inference configurations. All steps run on CPU
(16 cores). K stands for thousands.

Table 3 reports BLEU scores for our various con-
figurations, tested on 8 domain-specific test sets.
The last column (avg) reports average results. This
table also reports the number of input sentences
(out of 1, 000) for which at least one similar sen-
tence was retrieved (in a smaller font).

All NMT models are built using the concate-
nation of the original parallel corpora in Table 1.
Our Base configuration does not integrate similar
sentences in the training data. All other models ex-
tend the original corpora with sentences retrieved
following similarity methods (Sim) introduced in
Section 2.1 and integration schemes presented in
Section 2.2 (Scheme).

The second block of results in Table 3 displays
scores obtained when performing translations ex-
tended with fuzzy matches FM. In line with re-
sults presented by Xu et al. (2020), using a second
stream to mark related/unrelated tokens (+STU)
yields a boost in performance of around 1 BLEU
points. When the s+t1 scheme is used, the average
improvement reaches 1.25 BLEU points.

The third block compares translation results ob-
tained when identifying similar translations by S2V
and CBON. In both cases, the s+t5 scheme is
used. The choice for 5-best similar translations and
EM(si, sj) ≥ 0.8 threshold is made after running
optimization work on a held out development set.
Sentences identified by CBON outperform those se-
lected by S2V. The idiosyncrasy of fuzzy matching
does not enable to find multiple similar sentences
for a given input sentence. Overall best results are
obtained by the CBON s+t5 configuration. Note
that as expected, the number of similar translations
found using distributed representations is larger
than those found by fuzzy matching.

Finally, the last block in Table 3 gives results
for a system that retrieves similar sentences to
dynamically adapt the model on a sentence-per-
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Sim Scheme ECB EMEA EPPS GNOME JRC KDE4 NEWS WIKI avg

Base - 49.23 49.53 42.83 49.99 59.05 49.52 36.66 35.15 46.50

FM tgt1 56.21 59.34 42.08 60.95 65.86 53.49 35.80 34.54 51.03
(Bulte and Tezcan, 2019) 585 765 195 686 612 575 54 184 457

FM tgt1+STU 57.30 61.03 42.95 62.68 67.24 54.68 35.54 35.16 52.07
(Xu et al., 2020) 585 765 195 686 612 575 54 184 457

FM s+t1
56.16 60.88 43.18 62.50 67.58 55.25 36.55 36.94 52.38

585 765 195 686 612 575 54 184 457

S2V s+t5
57.16 60.44 43.19 62.44 65.39 51.32 35.98 35.82 51.47

740 840 161 639 735 623 39 297 509

CBON s+t5
56.50 61.04 42.22 63.76 68.75 55.83 35.41 36.38 52.49

710 896 195 854 733 862 63 378 586

FM µadapt 53.09 55.02 43.04 53.88 62.99 48.70 36.48 35.81 48.63
(Farajian et al., 2017) 585 765 195 686 612 575 54 184 457

CBON µadapt 53.41 53.32 43.20 54.77 63.37 52.06 36.47 36.39 49.12
(Farajian et al., 2017) 710 896 195 854 733 862 63 378 586

Table 3: BLEU scores for various model configurations and 8 test domains. Smaller numbers correspond to the
number of input sentences in each domain for which at least one similar sentence is found.

sentence basis (Farajian et al., 2017; Li et al., 2018).
We show micro-adaptation results when similar
sentences are found by CBON and FM models
(µadapt). In our experiments, micro-adaptation
does not yield the gains observed with priming
methods. As previously stated, the best perform-
ing variants of the adaptation method presented in
Farajian et al. (2017) were not included in our com-
parison. Variants employ a dynamically adapted
learning rate and number of epochs.

Monolingual Corpora

Retrieval results shown in Table 3 (small font num-
bers) indicate a reduced number of similar sen-
tences found for some domains (NEWS, EPPS and
WIKI). In the context of scarce similar sentences,
the boost in translation quality observed for most
domains is subsequently reduced. The case of the
NEWS domain is particularly harmful since worst
results are always obtained when compared to our
Base system.

However, very large monolingual collections of
texts exist, far exceeding the amount of available
parallel corpora. The latter are more expensive to
collect and typically only exist for a limited number
of domains and language pairs. With the objective
to enhance NMT with monolingual corpora, we

now apply the methods presented above to mono-
lingual corpora.

We collect monolingual corpora in the target
language (French in this work) and translate each
sentence back into English to obtain synthetic par-
allel data. Similar to back-translation experiments
in Sennrich et al. (2016b), we only use original
(human-crafted) target-language data. We expect
this to add less noise than incorporating synthetic
target-language data into the NMT input. Once
translated into English, the various priming ap-
proaches identify similar synthetic sentences and
injects both the synthetic source and original tar-
get in the NMT input stream. Note that cross-
lingual sentence embedding models exist (Sabet
et al., 2019; Schwenk and Douze, 2017; Conneau
and Lample, 2019) but our preliminary experiments
using these tools did not show satisfactory results.

Thus, we exploit large collections of French texts
for the News and Wikipedia domains (as detailed
in Table 1) that we translate into English to enable
similarity retrieval. Table 4 reports BLEU scores
obtained by our best performing network CBON
following the s+t5 scheme.

The supplementary number of similar sentences
(468 input sentences have similar translations) col-
lected for the WIKI domain over parallel and mono-
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lingual12 corpora (par+mon) yields an improve-
ment of 2 BLEU points. However, very few (97)
similar sentences are identified13 over near 95 mil-
lion sentences (par+mon), showing a small gain
when compared to using only parallel sentences
(par). The network does not succeed to outperform
the accuracy of the base system. As outlined
by Bulte and Tezcan (2019) and Xu et al. (2020)
the accuracy of networks implementing priming
may slightly drop in performance when no similar
translations are integrated.

Sim Scheme Data NEWS WIKI

Base - - 36.66 35.15

CBON s+t5 par
35.41 36.38

63 378

CBON s+t5 par+mon
36.05 38.20

97 468

Table 4: Translation performance for the NEWS and
WIKI domain test sets using similar sentences retrieved
from parallel data (par) and from both parallel and
monolingual (par+mon) data. The first two rows cor-
respond to experiments already shown in Table 3.

5 Discussion

Unrelated Words

As previously outlined in Section 2, Xu et al. (2020)
raised a problem regarding unrelated words. It con-
cerns those words that, even through they appear in
similar translations, must not be used to translate
input sentences. An example of translation with
unrelated word is given in Section 2.2 where the
input sentence with similar translation:

vaccin contre la rougeole ◦ pertussis vaccin

is translated as: vaccin contre la rougeole, the
right translation being: vaccin contre la co-
queluche. The error is due to the fact that word
rougeole is present in the input stream and is se-
mantically related to coqueluche. The problem
is particularly hurting when it involves keywords
(like the proper noun in our example) which con-
vey essential information regarding the meaning of
sentences.

The work by Xu et al. (2020), that we denoted
tgt1+STU, obtains an average reduction of these

12Test French sentences entirely found in monolingual
WIKI corpora are not considered as similar translations.

13In all cases we consider similar sentences si and sj when
(EM(si, sj) ≥ 0.8)

erroneous words in the translation hypotheses of
8%. We conduct the same experiment to analyse
the performance of the new scheme s+t1 intro-
duced in this work. Table 5 reports the total num-
ber of unrelated words in 1-best similar sentences
obtained by fuzzy matching14. As can be seen,
the scheme s+t1 further mitigates the apparition
of unrelated words in translations, with a drop of
-8.3%.

NMT Attention
We analyse the Encoder and Decoder self-attention
layers, aiming to better understand how our CBON
s+t model configuration makes use of similar
translations.

Figure 1: Average attention values of all heads through
all layers for the encoder (top) and decoder (bottom).
Dashed lines are used to separate similar and input sen-
tences.

Figure 1 displays the attention15 values for sen-
14We follow the procedure detailed in Xu et al. (2020) to

identify related/unrelated words.
15We use the average of all heads through all layers.
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Scheme ECB EMEA EPPS GNOME JRC KDE4 NEWS WIKI avg
tgt1+STU 3,555 2,320 312 1,285 3,515 940 39 344 1,538
s+t1 3,199 1,985 306 1,195 3,413 845 31 310 1,410
unrelated 6,310 4,405 4,405 2,473 6,309 2,358 236 1,591 3,510

Table 5: Number of unrelated words appearing in test sets according to different augmentation schemes. The last
row indicates the total number of unrelated words included in 1-best FM similar sentences.

tence s = [I am thinking of three important fac-
tors .] when translated into t = [Je pense à trois
facteurs essentiels .] using the similar translation
example s1 = [I am thinking of three ideas .] and
t1 = [Je pense à trois idées .]. For visualization
purposes we mask the attention of the sentence
separator token ◦.

Concerning the encoder self-attention (top), we
can clearly observe that the encoder pays attention
to the words in the similar sentence (down-left)
when embedding the input sentence (down-right).
Equivalently, the decoder self-attention (bottom)
also attends to the similar translation (down-left:
prefix words generated in forced mode) when pro-
ducing the translation of sentence s. Note that
when the decoder is about to generate the French
word trois [three], attention weights (rectangle) are
the highest for the preceding words (in particular to
pense [think]), with trois (circle in the similar trans-
lation) also receiving a substantial weight. This
suggests that the model has learned to use similar
translations passed in the form of a target prefix to
help generating translations.

Priming Model

The priming network leverages similar sentences
from a TM so as to yield more accurate translations.
From a mathematical perspective, the search for
the best translation t̄ is conditioned to the input
sentence s as well as to similar pairs of translations
s1 and t1:

t̄ = arg max
t

P (t|s, s1, t1)

to facilitate reading we use one single similar trans-
lation (s1 and t1) rather than k-best translations.

To evaluate the intuition that P (t|s, s1, t1) gives
better translations than P (t|s), we report the aver-
age of logP (t|s, s1, t1) computed by CBON s+t5

and of logP (t|s) computed by Base over test sets
sentences with similar sentences translations.

Table 6 reports the difference between the token
average of logP (t|s, s1, t1) and the token average

of logP (t|s). More precisely, for each test sen-
tence s, we compute the log probability of predict-
ing reference t, we then sum all the calculated log
probabilities and divide the sum by the total num-
ber of tokens in the references. For each test set,
we computed the average log probability of model
CBON s+t5 and Base. We report the difference
in the average of both models. Results indicate
that logPCBON s+t5(t|s1, s, t1) are actually greater
than logPBase(t|s) in most cases, with the excep-
tion of EPPS and NEWS for which the base system
yields higher probabilities. We observe a strong
correlation between values reported and the gap in
BLEU score for the same model configurations.

Domain CBON s+t5 − Base
ECB 0.222
EMEA 0.231
EPPS -0.039
GNOME 0.248
JRC 0.165
KDE4 0.252
NEWS -0.173
WIKI 0.009

Table 6: Differences of token average log probability
between CBON s+t5 and Base model.

Similarity over Synthetic Sentences

Results in Table 4 show a clear boost in perfor-
mance (∼2 BLEU points) when making use of syn-
thetic translations of the WIKI monolingual data
set. We now want to measure the noise introduced
by synthetic translations when compared to human
translations. Thus, we consider the input sentences
of the WIKI test set for which we found similar sen-
tences in both the parallel (human translation) and
monolingual (synthetic translation) corpus (279
sentences).

Results in Table 7 show a clear drop in BLEU
scores when using synthetic matches. As expected,
machine translation quality degrades the results
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of similarity search which in turns provides less
valuable similar translations.

Priming sentences WIKI
par (human) 52.50
mon (synthetic) 49.94

Table 7: Results for a reduced test set (279 sentences)
using CBON when priming with human and synthetic
(back-translated) translations.

6 Related Work

Our work relates to the ideas introduced in Bulte
and Tezcan (2019) and Xu et al. (2020). Both of
them leverage similar translations from parallel
corpora and inject similar sentences in the NMT
network. While Bulte and Tezcan (2019) integrates
fuzzy matches into the NMT model by concate-
nating similar translations to source sentences, Xu
et al. (2020) extended the framework by adding ad-
ditional source side features to distinguish between
related and unrelated words, employed distributed
sentence representations. A similar idea is also ex-
plored in Schwenk et al. (2019b), where the authors
use multilingual sentence embeddings to retrieve
pairs of similar sentences and train models uniquely
with such sentences.

Previously, Niehues et al. (2016) augmented in-
put sentences with pre-translations generated by a
phrase-based MT system. Our work, in contrast,
integrates similar sentences in both source and tar-
get sides and employs similar translations found in
parallel as well as monolingual data sets.

A similar strategy of concatenating previous and
current sentences was explored by Tiedemann and
Scherrer (2017) further evaluated by Bawden et al.
(2018) in the context of tackling discourse phenom-
ena. Our work employs force decoding to allow
including true translations in the decoder target-
side. Thus, avoiding the error propagation prob-
lem (Ranzato et al., 2016) of longer sequences in
auto-regressive models.

Bapna and Firat (2019) propose a neural MT
model that incorporates retrieved neighbours rely-
ing on local phrase level similarities. Using deep
pre-trained models (Peters et al., 2018; Radford
et al., 2019; Devlin et al., 2019; Le et al., 2020;
Conneau and Lample, 2019) to compute contextu-
alized sentence representations has become com-
mon fashion in recent works (Feng et al., 2020;
Chang et al., 2020). However, deep models suffer

from computation complexity when applied on-
the-fly for inference. We propose an extension of
sent2vec (Pagliardini et al., 2018) to compute
sentence representations that also inherits from the
computationally efficient bilinear models (Mikolov
et al., 2013a,b; Pennington et al., 2014).

Similar to our work, Farajian et al. (2017) and
Li et al. (2018) retrieve similar sentence to dynami-
cally adapt each individual input sentence. Farajian
et al. (2017) obtains best performance when tuning
the adaptation learning rate and number of epochs
according to level of similarity between the input
and retrieved sentences. In Xu et al. (2019) the
model is dynamically adapted to a entire test set to
reduce adaptation time.

In computer vision, priming network has been
recently studied. For the object detection task ,
Rosenfeld et al. (2018) primed the network via an
external information that affects all the processing
layers. Upon processing each image in the network,
Rosenfeld et al. (2018) also presented the network
with the category of the object in the image; this
information is injected at all layers.

7 Conclusions

Inspired by the human psychological phenomenon
of priming, we have presented a simple framework
for priming NMT networks. Following other re-
search works, we used similar translations as prim-
ing cues to influence the NMT network. We pre-
sented a novel method that injects similar transla-
tions in the NMT network as prefixes of the decoder.
The proposed method obtains higher translation ac-
curacy results and reduces the undesirable effect
observed in previous methods of copying unrelated
words when performing translations.

We also proposed an extension to sent2vec
that considers larger n-gram orders. It allows us to
identify similar sentences (cues) that yield higher
accuracy rates as measured on translation test sets.

We evaluate results on a multi-domain setting
using a single model trained on a heterogeneous
data set, built from multiple corpora and domains,
achieving better results when compared to previ-
ous micro-adaptation approaches. In addition, we
showed the suitability of our approach to gather
valuable information from large monolingual cor-
pora.

In our future work, we would like to explore
alternative algorithms to compute distributed sen-
tence representations from word embeddings, such
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as TF-IDF. Furthermore, we would like to consider
source sentence coverage when selecting n-best
similar translations. As regards distributed repre-
sentations we plan to experiment with cross-lingual
networks to retrieve similar translations directly
from human-crafted monolingual data in order to
eliminate the noise introduced by synthetic transla-
tions.
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Abstract

Zero-shot neural machine translation is an at-
tractive goal because of the high cost of ob-
taining data and building translation systems
for new translation directions. However, pre-
vious papers have reported mixed success in
zero-shot translation. It is hard to predict in
which settings it will be effective, and what
limits performance compared to a fully su-
pervised system. In this paper, we investi-
gate zero-shot performance of a multilingual
EN↔{FR,CS,DE,FI} system trained on WMT
data. We find that zero-shot performance is
highly unstable and can vary by more than 6
BLEU between training runs, making it diffi-
cult to reliably track improvements. We ob-
serve a bias towards copying the source in
zero-shot translation, and investigate how the
choice of subword segmentation affects this
bias. We find that language-specific subword
segmentation results in less subword copying
at training time, and leads to better zero-shot
performance compared to jointly trained seg-
mentation. A recent trend in multilingual mod-
els is to not train on parallel data between all
language pairs, but have a single bridge lan-
guage, e.g. English. We find that this nega-
tively affects zero-shot translation and leads
to a failure mode where the model ignores
the language tag and instead produces English
output in zero-shot directions. We show that
this bias towards English can be effectively re-
duced with even a small amount of parallel
data in some of the non-English pairs.

1 Introduction

Zero-shot translation has first been introduced by
Firat et al. (2016) and refers to the ability of a mul-
tilingual NMT model to translate between all its
source and target languages, even those pairs for
which no parallel data was seen in training. In
the simplest setting, all parameters in the network
are shared between the different languages and the

translation is guided only by special tags to indi-
cate the desired output language (Johnson et al.,
2017; Ha et al., 2016). While this capability is
attractive because it is an alternative to building
N2 dedicated translation systems to serve N lan-
guages, performance on zero-shot pairs tends to
lag behind pivot translation. Recent papers, such
as Arivazhagan et al. (2019), Gu et al. (2019) and
Zhang et al. (2020), have suggested training tech-
niques to improve the generalization to unseen lan-
guage pairs, but performance varies considerably
across settings.

In this paper, we examine in detail the behavior
of the multilingual model proposed by Johnson
et al. (2017) on zero-shot translation directions.
Our experiments show the following:

• Translation quality for zero-shot language
pairs is highly unstable between different
training runs, and between training check-
points, which calls for more rigour to avoid
false positive results.

• The incorrect copying of source text into the
output is affected by the extent of subword
copying at training time, and can be reduced
by performing language-specific subword seg-
mentation.

• English-centric models have a tendency to
produce English text for non-English input.
Multi-bridge models that include data from
non-English pairs mitigate this problem.

Overall, we observe improvements of 8.1 BLEU
(15.9→24.0) on 6 zero-shot directions with simple
changes to the multilingual training setup.

2 Related Work

Our experiments are based on the multilingual
model proposed by (Johnson et al., 2017; Ha et al.,
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2016): A single model is trained on multiple lan-
guage pairs with a standard encoder-decoder archi-
tecture, all parameters in the network are shared
for all languages, including the vocabulary. An
artificial target language token determines the out-
put language. We prefix this special token to the
source sentence as in Johnson et al. (2017). The
major advantage of this model lies in its simplicity,
since it does not require changing the architecture
or training objective.

Several recent studies have explored approaches
to improve generalization to zero-shot language
pairs, for example through semi-supervised train-
ing (Gu et al., 2019; Currey and Heafield, 2019;
Zhang et al., 2020) or alignment of encoder repre-
sentations (Arivazhagan et al., 2019).

Our study is concerned with data conditions that
enable zero-shot generalization for multilingual
NMT, specifically preprocessing and data settings.
While initial work used separate encoders and de-
coders for different languages (Firat et al., 2016),
sharing of encoder and decoder parameters was es-
tablished by Johnson et al. (2017); Ha et al. (2016)
and has since been widely adopted. Johnson et al.
(2017) use a shared subword segmentation model
across languages, and this strategy is followed by
later work (e.g. Aharoni et al., 2019; Zhang et al.,
2020). Ha et al. (2016) do not share embeddings
across languages, but use language-specific codes.
We will show that both strategies cause errors.

In terms of data settings, the number of lan-
guages involved in multilingual models has in-
creased from 3–4 (Firat et al., 2016; Johnson et al.,
2017) to over 100 (Aharoni et al., 2019). The most
popular setup are English-centric datasets, where
the model is trained on translations between En-
glish and a number of other languages. A multi-
way parallel corpus between 5 languages has been
provided for the IWSLT17 multilingual task (Cet-
tolo et al., 2012). Results on this dataset show
strong zero-shot generalization, close or even ex-
ceeding the supervised condition (Lakew et al.,
2017), but multi-way parallel corpora are only
available in small amounts and specific domains,
so we investigate alternatives to English-centric
models that do not rely on multi-way parallelism.

3 Data and Models

Following Aharoni et al. (2019), our baseline
setup is English-centric. For training, we use 5
million parallel sentences per language pair for

0 5 10 15 20 25 30
0

10

20

30

40

Updates (*10k)

B
L

E
U

cs-de
de-cs
de-fi
fi-de
fi-fr
fr-fi
fr-cs
cs-fr
fr-de
de-fr
de-en
en-de
cs-en
en-cs
fi-en
en-fi
fr-en
en-fr

Figure 1: Baseline BLEU scores on test set as a func-
tion of training time. Dashed lines: trained pairs; solid
lines: zero-shot pairs.

English↔{French,Czech,German,Finnish} from
WMT (Barrault et al., 2019). For all zero-shot
language pairs, we sample test sets from OPUS
(Tiedemann, 2012), see Table 1 for details.

To indicate the target language, we prefix a lan-
guage tag on the source side (e.g. <2en>). Follow-
ing Johnson et al. (2017), we segment all data with
a byte-pair encoding model trained jointly on the
training data in all five languages (Sennrich et al.,
2016), with a threshold of 32k BPE operations.
All our systems are base Transformers (Vaswani
et al., 2017) implemented in Sockeye (Hieber et al.,
2018), trained with early stopping based on BLEU
on a development set that consists in equal parts
of parallel sentences from all trained translation
directions. See Appendix A and B for training
details.

4 Baseline Experiments

BLEU1 on zero-shot pairs is relatively unstable,
see Fig. 1: while BLEU on the trained pairs in-
creases steadily during training (dashed lines), per-
formance on unseen language pairs fluctuates con-
siderably, as also observed by Aharoni et al. (2019).
Furthermore, multiple training runs result in rela-
tively large differences in BLEU on the zero-shot
directions. Across three training runs, average
BLEU varies up to 0.24 points on trained language
pairs (standard deviation: 0.12), but up to 6.28
BLEU on zero-shot pairs (standard deviation: 3.14)
– see Table 2 for full results. We suspect that this
fluctuation is due to the fact that the model is not op-

1SacreBLEU (Post, 2018): BLEU+c.mixed+#.1
+s.exp+t.13a+v.1.2.21.
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corpora training dev test

Language Pairs with English:

de↔en Commoncrawl, Europarl-v9, Wikititles-v1 5M 250 2000
cs↔en Europarl-v9, CzEng1.7 5M 250 2000
fr↔en Commoncrawl, Europarl-v7 5M 250 2000
fi↔en Europarl-v9, Wikititles-v1, Paracrawl-v3 4.35M* 250 2000

Multi-Bridge Pairs:

fr↔fi Rapid2016 350k 200 2000
cs↔de Rapid2016, NewsCommentary, GlobalVoices 343k** 200 2000

Zero-shot test sets:

de↔fi Rapid2016 2000
de↔fr Rapid2016, NewsCommentary, GlobalVoices 2000
cs↔fr Rapid2016, NewsCommentary, GlobalVoices 2000
* oversampled to 5M
** oversampled to 350k

Table 1: Parallel corpora for training and testing. Sampled development sets are combined for training to a total
of 2000 sentences (baselines) or 2800 sentences (training with cs↔de and fi↔fr). Europarl-v7, NewsCommentary
and GlobalVoices retrieved from OPUS (Tiedemann, 2012), all other corpora are part of the WMT19 translation
shared task (Barrault et al., 2019)

timized on zero-shot directions: models converge
to different local minima that may be similarly
good for trained pairs, but with no mechanism that
stabilizes generalization to zero-shot pairs. If not
stated otherwise, we will report the mean and stan-
dard deviation of three training runs with different
seeds throughout the paper.

As an alternative to zero-shot translation, we re-
port results obtained via pivot translation through
English (e.g. German-English-Czech). On our data
set, this approach works better than zero-shot trans-
lation. Pivot translation is stable across training
runs, with a standard deviation of 0.19.

5 Copy Bias and Language-Specific
Subword Segmentation

One failure mode we observe in zero-shot trans-
lation is over-copying of the input.2 We suspect
that for the translation of zero-shot directions, the
model relies heavily on (sub-) words in the vocab-
ulary that are shared between languages. To test
this hypothesis, we train two models with language-
specific subword segmentation:

a) a model with language-specific subword seg-
2See also (Ha et al., 2017; Arivazhagan et al., 2019; Zhang

et al., 2020), who make similar observations in different set-
tings.

Trained Directions
sampled test official wmt test sets

de-en 29.6 ±0.12 2019 31.9 ±0.35
cs-en 35.0 ±0.30 2018 25.7 ±0.20
fi-en 38.2 ±0.06 2019 25.2 ±0.20
fr-en 32.1 ±0.21 2015 33.9 ±0.56
en-de 25.2 ±0.21 2019 30.7 ±0.25
en-cs 28.4 ±0.45 2019 18.0 ±0.17
en-fi 32.1 ±0.20 2018 12.7 ±0.26
en-fr 31.7 ±0.21 2015 32.5 ±0.40

average 31.6 ±0.12

Zero-Shot Directions
direct pivot

cs-de 14.7 ±1.39 20.3 ±0.32
de-cs 8.9 ±5.14 20.1 ±0.44
cs-fr 22.0 ±2.71 28.3 ±0.31
fr-cs 11.5 ±5.89 22.1 ±0.31
de-fr 23.3 ±2.48 29.0 ±0.15
fr-de 12.0 ±3.01 21.6 ±0.06
fi-fr 23.5 ±4.12 30.4 ±0.06
fr-fi 12.2 ±4.61 20.7 ±0.26
fi-de 15.1 ±1.69 21.3 ±0.15
de-fi 11.2 ±4.53 20.0 ±0.38

average 15.4 ±3.14 23.4 ±0.19

Table 2: Baseline (BLEU). Average and standard de-
viation of 3 training runs reported. For zero-shot direc-
tions, we compare direct zero-shot translation and pivot
translation via English.
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mentation and no vocabulary overlap. We
limit BPE operations to 10k per language.

b) similar to model a), with the exact same sub-
word segmentation, but with vocabulary over-
lap.

For model a), we remove any potential vocabu-
lary overlap by adding a language identifier to each
subword. For instance, consider the preposition in
in German and English: instead of one token in,
the network vocabulary has an entry for in#de# and
an additional entry for in#en#. This corresponds
to the language-specific coding introduced by Ha
et al. (2016).

For model b), we split words with the same
language-specific BPE models as for a), but we
allow vocabulary overlap, i.e. homographic forms
in different languages are represented by a single
entry in the network’s vocabulary. This results in
a vocabulary size of ∼50k for model a), whereas
for model b), the vocabulary amounts to a total of
∼36k subwords.

Table 3 shows that removing vocabulary overlap
does not affect the trained language pairs greatly,
however, the effect on the zero-shot directions is
quite harsh: For the first evaluation of model a),
we remove only the correct target language tag
(i.e. homographic forms with wrong language tag
count as wrong), while for the second evaluation,
we remove all language tags from the translations
(i.e. homographic forms in other languages count
as correct). In the first case, the model averages at
only 4.7 BLEU on zero-shot directions, however,
the more lenient second evaluation results in better
scores (12.7 BLEU). This difference is due to the
fact that the no-overlap model tends to produce a lot
of English subwords (marked by #en#), especially
for proper names and numbers.3

The second evaluation improves BLEU because
the no-overlap model will often output the correct
form, e.g. for proper names, if the word in the target
language has the same spelling as in English.

Model b), with language-specific BPE and over-
lapping vocabularies, represents a compromise
between a fully shared representation and fully
language-specific coding. We hypothesize that al-
lowing some vocabulary overlap helps aligning the
representation between sentences with the same

3This essentially means that the strict evaluation gives us a
more realistic estimate of the translation quality we can expect
if the source and target language do not happen to share word
forms, e.g. languages in different scripts.

trained zero-shot

jointly trained BPE 31.6 ±0.12 15.4 ±3.14

language-specific BPE:
a) no overlap, strict* 30.9 ±0.58 4.7 ±1.90
a) no overlap, lenient** 31.3 ±0.59 12.7 ±2.52

b) vocabulary overlap 31.2 ±0.60 20.5 ±0.43
* homographic words in other languages=wrong
** homographic words in other languages=correct

Table 3: Average BLEU for models with language spe-
cific BPE, with and without vocabulary overlap.

BPE subwords words

training set jointly trained 9.70% *5.70%
lang.-specific 7.96% *5.70%

translations jointly trained 24.82% 20.58%
lang.-specific 6.97% 4.70%

* identical

Table 4: Average word and subword overlap between
source and target in training set, and in zero-shot trans-
lation output with jointly trained and language-specific
BPE.

meaning in different languages, which is also sup-
ported by the effectiveness of cross-lingual pre-
training with shared vocabularies for unsupervised
MT and cross-lingual transfer (Conneau and Lam-
ple, 2019). We observe that models with jointly
trained BPE develop a strong bias towards copying
the input in zero-shot conditions. However, using
language-specific BPE reduces the subword over-
lap between source and target sentences at training
time, and consequently reduces this copying be-
havior at test time (see Table 4). Model b) indeed
performs better (+5.1 BLEU) on the zero-shot di-
rections than the original baseline with shared BPE
(see Table 3).

6 Multi-Bridge Models

A common issue in zero-shot translation is out-
put in the wrong language. Previous work has
addressed this with semi-supervised training (Gu
et al., 2019; Arivazhagan et al., 2019; Zhang et al.,
2020). We explore whether the recent trend to train
English-centric models is to blame for this behav-
ior. In most cases, the model will wrongly produce
English output in zero-shot directions, since for all
non-English languages, English was the only target
language seen in training.

We suspect that adding even a small amount of
parallel data in pairs without English will improve
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Single-Bridge Multi-Bridge

trained

de-en 29.3 ±0.31 29.3 ±0.56
cs-en 35.1 ±0.81 34.9 ±0.65
fi-en 37.5 ±0.90 37.7 ±0.75
fr-en 31.5 ±0.42 31.6 ±0.30
en-de 24.9 ±0.38 24.9 ±0.40
en-cs 28.1 ±0.81 28.0 ±0.70
en-fi 31.6 ±0.60 31.6 ±0.70
en-fr 31.3 ±0.67 31.5 ±0.42

average 31.2 ±0.60 31.2 ±0.56

zero-shot trained

cs-de 17.6 ±0.30 21.7 ±0.60
de-cs 18.3 ±0.42 21.7 ±0.78
fi-fr 26.3 ±0.61 33.7 ±1.01
fr-fi 17.8 ±0.49 23.1 ±0.51

average 20.0 ±0.44 25.1 ±0.72

zero-shot

cs-fr 24.6 ±0.36 28.2 ±0.71
fr-cs 20.0 ±0.53 22.2 ±0.66
de-fr 26.6 ±0.30 29.5 ±0.31
fr-de 19.0 ±0.46 21.5 ±0.66
fi-de 18.3 ±0.35 21.6 ±0.60
de-fi 16.9 ±0.61 20.8 ±0.83

average 20.9 ±0.43 24.0 ±0.62

Table 5: BLEU for single-bridge baseline with
language-specific BPE (see Table 3), and model trained
with 350k pairs in de↔cs and fi↔fr (multi-bridge).
Both models use language-specific BPE segmentation.

generalization, make models more sensitive to the
language tag, and reduce the amount of English
translations in the zero-shot directions. To test this
hypothesis, we collect a small amount of parallel
data in German-Czech and Finnish-French4 and
train our model with the additional language pairs.
This new model has seen all non-English languages
paired with exactly one other non-English lan-
guage, but it still has zero-shot directions in de↔fr,
fr↔cs and de↔fi. We use language-specific BPE
segmentation and thus use the model with the best
zero-shot performance from Table 3 as baseline.

The results in Table 5 show that even a small
amount of parallel data in non-English language
pairs increases generalization to unseen translation
directions. The increase in BLEU scores for the
newly added pairs de↔cs and fi↔fr are expected,
but the new model also performs better on cs↔fr,
de↔fr and fi↔de (+3.1 BLEU on average).

Following Zhang et al. (2020), we use the Python

4See Table 1 for details.

single-bridge multi-bridge

tgt en src tgt en src
cs-fr 95.92 1.33 0.03 97.28 0.55 0
fr-cs 95.33 0.38 0.50 95.57 0.32 0.22
de-fr 94.00 1.72 1.40 95.43 0.97 0.82
fr-de 92.47 2.75 1.23 95.43 1.17 0.43
fi-de 91.65 2.40 0.60 94.38 0.88 0.33
de-fi 91.93 1.57 1.52 93.58 0.77 0.85

average 93.55 1.69 0.89 95.30 0.78 0.44

Table 6: Percentage of output produced in the correct
target language (tgt), English, and the source language
(src) in zero-shot translation according to automatic lan-
guage identification. Models from Table 5.

version of langdetect5 to estimate the number of
translations in the correct language. Even though
the amount of parallel data in de↔cs and fi↔fr
was small compared to the directions with English
(350k vs. 5 million sentence pairs), the new model
is less likely to produce output in the wrong target
language, as shown in Table 6.

7 Comparison to Back-Translation and
Encoder Alignment

Previous work on the zero-shot generalization of
multilingual NMT systems has proposed back-
translation or changes to the training objective
to improve translation in unsupervised directions.
While we consider our proposed solutions on
the data side to be complementary, and easier to
adopt widely, we still want to discuss the question
how our solutions compare to previous work, and
whether they can be combined.

7.1 Back-Translation

Previous work has used fine-tuning with synthetic,
back-translated data for translation directions that
were unseen at training time (Gu et al., 2019;
Currey and Heafield, 2019; Zhang et al., 2020).
While this can mitigate the problem of produc-
ing output in the wrong language, this approach
is sensitive to the zero-shot translation quality of
back-translation.6 We perform experiments fol-
lowing Gu et al. (2019) where we create synthetic
corpora for all zero-resource directions via back-
translations (250k sentences per translation direc-
tion), and fine-tune our models on the concatena-

5https://github.com/Mimino666/
langdetect

6Unless back-translation is done via a pivot language, but
note that Gu et al. (2019) report slightly better results for direct
zero-shot back-translation.
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single-bridge +align +bt multi-bridge +align +bt

en↔* (avg) 31.2 ±0.60 31.4 ±0.20 30.5 ±0.33 31.2 ±0.56 31.4 ±0.28 30.3 ±0.23

cs-fr 24.6 ±0.36 25.8 ±0.46 25.8 ±0.40 28.2 ±0.71 28.8 ±0.49 29.0 ±0.06
fr-cs 20.0 ±0.53 20.5 ±0.12 20.4 ±0.32 22.2 ±0.66 22.6 ±0.21 23.8 ±0.06
de-fr 26.6 ±0.30 27.4 ±0.26 26.1 ±0.38 29.5 ±0.31 29.7 ±0.47 30.8 ±0.17
fr-de 19.0 ±0.46 19.6 ±0.15 19.8 ±0.21 21.5 ±0.66 21.6 ±0.31 22.0 ±0.00
de-fi 16.9 ±0.61 17.9 ±0.26 17.4 ±0.29 20.8 ±0.83 21.2 ±0.50 21.9 ±0.29
fi-de1 18.3 ±0.35 18.8 ±0.12 20.1 ±0.40 21.6 ±0.60 22.0 ±0.23 23.9 ±0.00

average 20.9 ±0.43 21.7 ±0.19 21.6 ±0.30 24.0 ±0.62 24.3 ±0.36 25.2 ±0.03

1 used as development set for early stopping for +bt

Table 7: Zero-resource translation performance (BLEU) with single-bridge and multi-bridge multilingual models,
fine-tuned with a cosine loss to reward encoder representation alignment (+align), and back-translation for zero-
resource translation directions (+bt).

tion of this data, plus 250k sentence pairs per super-
vised translation direction. As base system for both
back-translation and fine-tuning, we consider both
our single-bridge and our multi-bridge system.

As stopping criterion during fine-tuning, we use
BLEU on the Finnish↔German test set, one of
the zero-resource language pairs. This leaves us
with 5 translation directions that are still purely
zero-resource.

7.2 Encoder Alignment

Arivazhagan et al. (2019) propose to use cosine
distance as an additional loss term for multilingual
models. The cosine distance loss encourages the
model to produce encoder representations for sen-
tences in the source language that are similar to the
encoder representation of the same sentence in the
target language. This, directly and indirectly, re-
wards similarity of encoder representations across
all languages. We implement cosine loss in Sock-
eye, but instead of normalising sequence lengths
by max pooling like Arivazhagan et al. (2019), we
average encoder states, as proposed by Gouws et al.
(2015). We introduce a new hyperparameter λ that
scales cosine distance (CD) loss w.r.t. the standard
cross-entropy (CE):

L = (1− λ) ∗ CE + λ ∗ CD (1)

We train models with λ = 0.5. As in our experi-
ments with back-translation, we do not train from
scratch, but fine-tune each of the single-bridge and
multi-bridge models with a patience of 10.7

7In a new training run with random initialization, the en-
coder produces highly similar representations for all languages

7.3 Results

Results are shown in Table 7. The gains from
using more than one bridge language and back-
translation are cumulative: Both the single- and the
multi-bridge baseline improve with encoder align-
ment and back-translation, but the multi-bridge per-
forms better overall in zero-resource directions.

Aligning encoder representations leads to an in-
crease of 0.8 BLEU for the zero-shot directions for
the single bridge data. In the multi-bridge scenario
however, the effect of the additional loss is smaller
(+0.3 BLEU on average). Table 7 contains only
results for models with language-specific subword
segmentation; but preliminary experiments show
that aligning encoder representations of one of the
baselines from Table 2 with jointly trained BPE
gives a similar result: Encoder alignment alone
does not fix the underlying issue caused by vo-
cabulary overlap and English-centric models, even
though we observe an increase of ∼ 1.5 BLEU
points in zero-shot directions over the baseline.

Back-translation leads to an average
improvement of 0.7 BLEU with single-
bridge data, and 1.2 BLEU with multi-
bridge data. On the fully supervised pairs
English↔{Czech,German,Finnish,French}, we
observe a performance drop by 0.7–0.9 BLEU with
back-translation. Again, back-translation alone
does not seem to solve the issues of single-bridge
setups, and the model benefits from additional
supervised translation directions.

On the 6 remaining zero-shot translation direc-

from the start. Arivazhagan et al. (2019) report that fine-tuning
yields better results.
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tions, our pivoting baseline (Table 2) achieves an
average BLEU of 23.7. Our best system with
multi-bridge data and back-translation achieves
25.2, and thus outperforms our pivoting baseline
by 1.5 BLEU.

8 Conclusions

We analyze the importance of shared subwords in
multilingual models and find that language-specific
BPE segmentation helps to reduce the amount of
untranslated segments in zero-shot directions. Fur-
thermore, we explore whether the tendency to pro-
duce the wrong output language can be attributed
to using English as the only bridge language, and
show that even with a small amount of additional
training data in non-English language pairs, gener-
alization to unseen translation directions improves
as the model is less likely to produce output in the
wrong language.

Compared to previous work, the methods we
propose are easier to implement, since they only
concern data collection and pre-processing, and
result in higher gains for zero-shot directions. They
are also compatible in principle with approaches
that introduce new training objectives or model
modifications, and we report best results when fine-
tuning a multi-bridge model with back-translation
for zero-resource translation directions.

For future work, we are interested in testing
the effects of subword regularization (Kudo, 2018;
Provilkov et al., 2020) on zero-shot translation per-
formance, and scaling multi-bridge setups to mas-
sively multilingual settings.
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A Model Size and Training

All models are trained with the Sockeye toolkit (Hieber et al., 2018)8 on 5 Tesla-V100 (16GB) GPUs for
4-5 days.

model type number of parameters

1 joint bpe baseline 60,516,602
2 language specific bpe, no vocabulary overlap 69,728,543
3 language specific bpe, vocabulary overlap 62,470,619
4 language specific bpe, vocabulary overlap, multi-bridge 62,490,626

Table 8: Number of Parameters per Model Type. Numbers vary between models due to different vocabulary
sizes. Vocabulary is built automatically based on training data, therefore, 4 has a slightly larger vocabulary than 3.
Cosine-loss models have the same number of parameters as 3 and 4.

model type best checkpoint and BLEU

seed=1 seed=2 seed=3
1 joint bpe baseline 106 30.7 95 30.9 94 31.3
2 language specific bpe, no vocabulary overlap 66 29.3 115 31.0 60 30.0
3 language specific bpe, vocabulary overlap 90 30.3 120 31.0 55 29.4
4 language specific bpe, vocabulary overlap, multi-bridge 117 29.3 80 28.6 59 28.2

Table 9: Best checkpoint according to BLEU on development set (patience=10). Sentence pairs in the development
sets are identical for each model, however the dev set for model 4 contains additional samples in cs↔de and fi↔fr.

8https://github.com/awslabs/sockeye
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B Hyperparameters

Training Hyperparameters for all Models

training settings:
batch type word
batch size 16384
max-seq-len 100:100
word-min-count 1:1
seed 1/2/3

model settings:
encoder transformer
decoder transformer
num-layers 6:6
transformer-model-size 512
transformer-attention-heads 8
transformer-feed-forward-num-hidden 2048
transformer-preprocess n
transformer-postprocess dr
transformer-positional-embedding-type fixed
num-embed 512:512
weight-tying-type src trg softmax

optimization settings:
optimizer adam
optimized-metric bleu
checkpoint interval 4000
max-num-checkpoint-not-improved 10
min-num-epochs 0
max-updates 1001000
label-smoothing 0.1
gradient-clipping-threshold -1
initial-learning-rate 0.0001
learning-rate-reduce-num-not-improved 8
learning-rate-reduce-factor 0.7
learning-rate-scheduler-type plateau-reduce
learning-rate-warmup 0

initialization settings:
weight-init xavier
weight-init-scale 3.0
weight-init-xavier-factor-type avg

dropout settings:
embed-dropout 0:0
transformer-dropout-attention 0.1
transformer-dropout-act 0.1
transformer-dropout-prepost 0.1

Table 10: Sockeye hyperparameters for all models (values with ’:’ = encoder:decoder)
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Abstract

Despite advances in neural machine transla-
tion (NMT) quality, rare words continue to be
problematic. For humans, the solution to the
rare-word problem has long been dictionaries,
but dictionaries cannot be straightforwardly in-
corporated into NMT. In this paper, we de-
scribe a new method for “attaching” dictionary
definitions to rare words so that the network
can learn the best way to use them. We demon-
strate improvements of up to 3.1 BLEU using
bilingual dictionaries and up to 0.7 BLEU us-
ing monolingual source-language dictionaries.

1 Introduction

Despite its successes, neural machine translation
(NMT) still has unresolved problems. Among them
is the problem of rare words, which are paradoxi-
cally very common because of Zipf’s Law. In part,
this is a problem intrinsic to data-driven machine
translation because the system will inevitably en-
counter words not seen in the training data. In part,
however, NMT systems seem particularly chal-
lenged by rare words, compared with older sta-
tistical models.

One reason is that NMT systems have a fixed-
size vocabulary, typically 10k–100k words; words
outside this vocabulary are represented using a spe-
cial symbol like UNK. Byte pair encoding (BPE)
breaks rare words into smaller, more frequent sub-
words, at least allowing NMT to see them instead
of UNK (Sennrich et al., 2016). But this by no
means solves the problem; even with subwords,
NMT seems to have difficulty learning translations
of very rare words, possibly an instance of catas-
trophic forgetting (McCloskey and Cohen, 1989).

Humans deal with rare words by looking them
up in a dictionary, and the idea of using dictionaries
to assist machine translation is extremely old. From
a statistical perspective, dictionaries are a useful
complement to running text because the uniform
distribution of dictionary headwords can smooth

out the long-tailed distribution of running text. In
pre-neural statistical machine translation systems,
the typical way to incorporate bilingual dictionaries
is simply to include them as parallel sentences in
the training data. But (as we show), this does not
work well for NMT systems.

We are aware of only a few previous attempts
to find better ways to incorporate bilingual dic-
tionaries in NMT. Some methods use dictionaries
to synthesize new training examples (Zhang and
Zong, 2016; Qi et al., 2018; Hämäläinen and Alna-
jjar, 2019). Arthur et al. (2016) extend the model
to encourage it to generate translations from the
(automatically extracted) dictionary. Post and Vilar
(2018) constrain the decoder to generate transla-
tions from the dictionary. What these approaches
have in common is that they all treat dictionary def-
initions as target-language text, when, in fact, they
often have properties very different from ordinary
text. For example, CEDICT defines 此致 (cı̌zhı̀)
as “(used at the end of a letter to introduce a polite
salutation)” which cannot be used as a translation.
In the case of a monolingual source-language dic-
tionary, the definitions are, of course, not written
in the target language at all.

In this paper, we present an extension of the
Transformer (Vaswani et al., 2017) that “attaches”
the dictionary definitions of rare words to their oc-
currences in source sentences. We introduce new
position encodings to represent the nonlinear struc-
ture of a source sentence with its attachments. Then
the unmodified translation model can learn how to
make use of this attached information. We show
that this additional information yields improve-
ments in translation accuracy of up to 3.1 BLEU.
Because our method does not force dictionary def-
initions to be treated as target-language text, it is
generalizable to other kinds of information, such as
monolingual source-language dictionaries, which
yield smaller improvements, but still as much as
0.7 BLEU.

538



encoder

PE[1]
+

WE
[
大家
dàjiā
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Figure 1: Our method attaches dictionary definitions to rare words. Here, the source sentence is大家都知道死
海 正在 死亡 (dàjiā dōu zhı̄dào Sı̌hǎi zhèngzài sı̌wáng, Everyone knows that the Dead Sea is dying). WE[f ] is
the embedding of word f , PE[p] is the encoding of position p, and DPE[q] is the encoding of position q within a
dictionary definition. The rare word死海 (Sı̌hǎi) is replaced with UNK and defined as the Dead Sea. The words of
the definition are encoded with both the position of the defined word (4) and their positions within the definition.

2 Methods

Our method is built on top of the Trans-
former (Vaswani et al., 2017). For each unknown
source word with an entry in the dictionary, we at-
tach the first 50 tokens of the definition (discarding
the rest of the definition) to the source sentence.
As described below, we encode the definition so as
to differentiate it from the source sentence proper
and to record which source word the definition is
attached to. We leave the task of deciding whether
and how to use the definition up to the translation
model, which we use without any modifications.

2.1 Position encodings
To differentiate the attached definitions from the
source sentence itself, we use special position en-
codings.

An ordinary word f at position p is encoded,
as usual, as E[f ] = WE[f ] + PE[p], where WE is
the word embedding and PE is the usual sinusoidal
position encoding (Vaswani et al., 2017).

Suppose that word f at position p has an at-
tached definition. Then word d at position q of the
definition is encoded as

E[d] = WE[f ] + PE[p] + WE[d] + DPE[q],

where DPE is a position encoding scheme different
from PE. We experimented with several schemes
for DPE; in the experiments below, we learned a
different encoding for each position (Gehring et al.,
2017).

See Figure 1 for an illustration of the encoding
of an example source sentence. Note that once all
words have received their position encodings, their
order does not matter, as the Transformer encoder
is order-independent.

2.2 Subword segmentation

To apply our method on data that has been seg-
mented using BPE, we face two new problems.
First, since very few words are replaced with UNK,
it is not sufficient only to attach definitions to UNK.
How do we decide which words to attach defini-
tions to? Second, if a word has been split into multi-
ple subwords, the definition does not have a single
attachment position. How do we represent the at-
tachment position when encoding the definition?

To choose which words to define, we use a
simple frequency threshold. We scan the data (af-
ter tokenization/segmentation but before BPE) for
matches with the dictionary, including multi-word
matches. If any substring of the source sentence
matches a headword in the dictionary and occurs
in the training data k or fewer times, we attach
its definition. The threshold k can be tuned on the
development data.

To attach a definition to a substring with more
than one token, we simply fuse all the tokens in
the substring into a single token, which often (but
not always) then falls out of the vocabulary and is
therefore changed to UNK. We attach the dictionary
definition to this single token, which represents the
whole word or expression.

For example, in the sentence in Figure 1, BPE
splits死海 (sı̌hǎi) into死@@海 (sı̌@@ hǎi) (where
@@ is the marker that typical implementations of
BPE use to indicate subword splits). Assuming that
死海 occurs k or fewer times, we fuse it back into
a single token, which gets changed into UNK. Then
the dictionary definition is attached as described
above.
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lines words
Language Task train dev test total tokens types vocab

Chi-Eng Spoken 176,000 22,000 22,000 220k 5.9M 179k 25k
Science 216,000 27,000 27,000 270k 10.1M 383k 27k
Laws 176,000 22,000 22,000 220k 17.4M 98k 22k
News 360,000 45,000 45,000 450k 25.3M 477k 24k
Education 360,000 45,000 45,000 450k 18.6M 461k 28k
Subtitles 240,000 30,000 30,000 300k 6.6M 147k 27k
Thesis 240,000 30,000 30,000 300k 17.2M 613k 27k
UM-all 1,993,500 221,500 5,000 2.2M 101.3M 1.3M 33k

Deu-Eng Europarl-small 160,000 20,000 20,000 200k 10.9M 151k 16k
Europarl-all 1,440,000 180,000 197,758 1.8M 98.6M 475k 16k

Table 1: Statistics of the various tasks we experimented on. Train/dev/test: number of lines selected for use as
training, development, and test data (respectively). Toks: number of word tokens (source+target). Types: number
of word types (source+target). Vocab: joint vocabulary size used in word-based experiments.

3 Experiments

In this section, we describe our experiments on
Chinese-English and German-English translation,
comparing our method (which we call Attach)
against two baselines. One baseline is the standard
Transformer without any dictionary information
(which we call Baseline). The other baseline is the
standard Transformer with the bilingual dictionar-
ies included as parallel sentences in the training
data (which we call Append).

3.1 Data: Chinese-English

For Chinese-English, we used the UM-Corpus1

(Tian et al., 2014), which has about 2M sentence
pairs in eight different domains. Since rare words
may be more frequent in certain domains, testing
our model on different types of data may highlight
the conditions where dictionaries can be helpful.
We excluded the Microblog domain because of its
length (only 5000 lines). For each of the other do-
mains, we split the data into three parts: the first
roughly 80% for training (train), the next 10% for
development (dev), and the last 10% for testing
(test). The task UM-all combines all eight domains.
The UM-Corpus provides a test set, which we used
(test), and we split the provided training data into
two parts, the first 90% for training (train) and last
10% for development (dev). The exact line counts
and other statistics are shown in Table 1.

We used the Stanford segmenter2 (Chang et al.,

1http://nlp2ct.cis.umac.mo/um-corpus/
2https://nlp.stanford.edu/software/

segmenter.shtml

2008) for the Chinese data and the Moses tok-
enizer3 for the English data.

As a dictionary, we used CC-CEDICT,4 which
has 116,493 entries. Each entry has a traditional
Chinese headword (which we delete), a simpli-
fied Chinese headword, a pronunciation (which we
delete), and one or more definitions. We process
the definitions as follows:

• Remove substrings of the form abbr. for c,
where c is a Chinese word.

• If a definition contains see c or see also c,
where c is a Chinese word, replace it with the
definition of c.

• Remove everything in parentheses.

• Remove duplicate definitions.

• If the entry has no definitions left, delete the
whole entry.

• Concatenate all the definitions into a single
string.

The resulting dictionary has 102,567 entries, each
consisting of a Chinese headword and a single En-
glish definition. We segmented/tokenized these in
the same way as the parallel data. The average defi-
nition length is five, and the maximum definition
length is 107.

3http://www.statmt.org/moses/
4https://www.mdbg.net/chinese/

dictionary?page=cedict, downloaded 10/2018.
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For example, consider the following CEDICT
entries, where we have already removed traditional
Chinese characters and pronunciations for clarity.

三自 /abbr. for三自爱国教会, Three-Self
Patriotic Movement/

U盘 /USB flash drive/see also闪存盘
闪存盘 /USB flash drive/jump drive/thumb

drive/memory stick/

After cleaning, these would become

三自 Three-Self Patriotic Movement
U盘 USB flash drive jump drive thumb

drive memory stick
闪存盘 USB flash drive jump drive thumb

drive memory stick

3.2 Data: German-English

For German-English, we used the Europarl V7
dataset.5 We tokenized both sides of the data with
the Moses tokenizer. Due to the size of the original
Europarl dataset and the increased runtime from
our method, we ran some experiments on only the
first 200k lines of the dataset, denoted in result
tables as Europarl-small, while the full Europarl
data is called Europarl-all. We split both into three
parts: the first roughly 80% for training, the next
10% for development, and the last 10% for testing.
Some statistics of the data are shown in Table 1.

We used the German-English dictionary from
Stardict,6 which is derived from Freedict7 and has
81,628 entries. In this dictionary, the headwords
have notes in parentheses indicating things like
selectional restrictions; we deleted all of these. Un-
like with CEDICT, we did not delete any material
in definitions, nor did we resolve cross-references,
which were very rare. As before, we removed blank
entries and merged multiple definitions into a single
line. We tokenized both headwords and definitions
with the Moses tokenizer. The final dictionary size
is 80,737 entries, with an average definition length
of 2.9 and a maximum definition length of 88.

For example, the entry:

(Aktien) zusammenlegen to merge (with)

would become

zusammenlegen to merge (with)

5http://statmt.org/europarl/
6http://download.huzheng.org/freedict.

de/
7https://freedict.org/

Task Baseline Append Attach

Spoken 13.6 12.4 15.4
Science 8.0 6.6 9.2
Laws 29.0 27.4 30.2
News 9.9 10.2 11.2
Education 9.1 8.7 9.9
Subtitles 18.3 16.4 20.2
Thesis 9.5 9.5 10.6
UM-all 16.8 16.7 17.7

Europarl-small 29.2 28.4 29.6
Europarl-all 30.0 29.8 30.1

Table 2: Results on word-based translation. Our method
(Attach) significantly improves over the baseline in all
tasks. Appending the dictionary to the parallel data (Ap-
pend) performs worse in all tasks except in News; dif-
ferences are significant for all tasks except UM-all and
Thesis.

3.3 Implementation and details

We used Witwicky,8 an open-source implementa-
tion of the Transformer, with all of its default hyper-
parameters. We use the same random seed in each
experiment. We modified it to attach dictionary
definitions as described above. The code and our
cleaned dictionaries are available under an open-
source license.9

For BPE-based translation, we used joint BPE
with 16k operations. For word-based translation,
we set each system’s vocabulary size close to the
vocabulary size of the corresponding BPE-based
system. For example, the Spoken dataset with 16k
BPE applied to the training data has 25,168 word
types, so we limited the word-based model to
25,000 word types. The vocabulary size we chose
for each data set is shown in Table 1.

For all tasks except UM-all and Europarl-all, we
trained for 20 epochs, and used the model with the
highest dev BLEU to translate the test set. Due to
the massive increase in training data on the UM-all
and Europarl-all datasets, we only trained for 10
epochs. Otherwise, the settings are the same across
all experiments.

We report case-insensitive BLEU scores of deto-
kenized outputs against raw references. We perform
significance testing with bootstrap resampling us-
ing 1000 samples, with a significance level of 0.05.

8https://github.com/tnq177/witwicky
9https://github.com/xjz92/

Attach-Dictionary
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UM-Spoken
Method Dev BLEU

Baseline 13.6
Attach to unknown words 13.9
+ fused multi-word expressions 13.8
+ all words 13.8

Table 3: Comparison of variations of our method on
word-based translation.

UM-Spoken
Method Dev BLEU

Baseline 14.2
Attach to fused unknown words 14.8
+ fused multi-word expressions 14.8

Table 4: Comparison of variations of our method on
BPE-based translation.

3.4 Results: Word-Based

Table 2 shows results on word-based translation.
The Append column shows that simply append-
ing the bilingual dictionary to the parallel training
data is not helpful, for all tasks except News; these
differences are significant for all tasks except UM-
all and Thesis. By contrast, our method improves
accuracy significantly over the baseline across all
tasks.

We also compared against some variations of our
method. First, CEDICT has definitions for single
words as well as multi-word expressions. In our
original setup, we only look up unknown single
words, so the definitions for multi-word expres-
sions are never used. To fully utilize the dictionary,
we tried changing the source data by taking every
substring that matches a dictionary entry and fusing
it into a single token, which would often, but not
always, fall out of the vocabulary and be changed
to UNK. When more than one match was possible,
we chose the longest possible match, breaking ties
arbitrarily. However, we found that fusing phrases
did not perform as well as just fusing words (Table
3). We also tried attaching dictionary definitions to
all tokens, not just UNK tokens. Unfortunately, this
also did not perform as well (Table 3).

3.5 Results: BPE-Based

As described in Section 2.2, we fuse subwords in or-
der to attach definitions. Again we must first decide
whether we wanted to fuse multi-word expressions.

Task Baseline Append Fuse Attach

Spoken 16.6 14.7 16.3 17.0
Science 11.6 9.6 13.8 14.7
Laws 29.0 26.8 29.0 30.0
News 11.8 10.9 11.3 13.3
Education 12.9 12.3 12.2 14.2
Subtitles 20.0 17.3 19.7 21.3
Thesis 15.3 14.2 14.9 15.5
UM-all 19.8 19.7 19.3 21.4

Europarl-small 32.6 30.8 33.4 33.5
Europarl-all 35.3 36.0 36.1 36.5

Table 5: Results on BPE-based translation. Our method
(Attach) improves significantly over the baseline in
Europarl-small and all Chinese-English tasks, whereas
appending the dictionary to the parallel data (Append)
performs worse, significantly so for Europarl-small and
all Chinese-English tasks except UM-all. For Europarl-
all, Append is significantly better. The Fuse column
shows the effect of fusing words that would receive def-
initions, without actually attaching the definitions.

On the dev set, both methods have comparable per-
formance (Table 4). Since we were interested in
using as much of the dictionary as possible, we
chose the model that fuses phrases.

As described in Section 2.2, we fuse subwords
and attach definitions only for words whose fre-
quency falls below a threshold. To tune this thresh-
old, we trained models using thresholds of k = 5,
10, 15, 20, 50, 100, and∞, and measured BLEU on
the development set (Figure 2). We found that for
Chinese-English, k =∞ was best, but for German-
English, k = 5 was best.

The results are shown in Table 5. As before, we
compared against the two baselines (Baseline and
Append). To tease apart the effect of fusing words
and adding dictionary definitions, we also tested a
model where all words that would receive defini-
tions are fused, but the definitions are not actually
attached (Fuse). Finally, we tested our model (At-
tach). On Chinese-English, our model improved
significantly over the baselines across all tasks,
whereas appending the dictionary to the parallel
data did worse, significantly so on all tasks ex-
cept UM-all. On German-English, the results on
Europarl-small were similar, with Append doing
significantly worse and our model doing signifi-
cantly better. Interestingly, on Europarl-all, Append
does significantly better than the baseline.
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Figure 2: Effect on dev BLEU scores of the frequency threshold below which we fuse a word and attach its
definition. These scores are used to choose the threshold that is used in Table 5.

3.6 Monolingual dictionaries

Because our dictionary-attachment method does
not make any assumptions about the form of the
definitions, we can apply it to monolingual source-
language dictionaries as well. Monolingual source-
language dictionaries are a natural resource for
human translators, but we’re not aware of previ-
ous research that uses them in data-driven machine
translation. For many languages and language pairs,
we expect them to be much more comprehensive
than bilingual dictionaries. Our monolingual dictio-
nary is the汉语辞海 (Hànyǔ Cı̌hǎi),10 which has
a total of 380,579 entries. We removed pronuncia-
tions and concatenated multiple definitions into a
single line. We did not resolve any cross-references
in this dictionary, and we removed all entries with
empty definitions. This gives us a final dictionary
size of 358,234 entries.

We experimented with using this dictionary on
the Spoken and Science UM datasets. The results
are shown in Table 6. Although, as expected, it
does not help as much as a bilingual dictionary, it
does help on three out of four tasks we tried. All
differences in this table are statistically significant.

4 Analysis

To further examine how our methods improve trans-
lation, we looked at some examples in our UM-
Spoken dev set, shown in Table 7 (word-based) and
Table 8 (BPE). The (UNK) tag next to dictionary

10http://download.huzheng.org/zh_CN/

Test BLEU
Segmentation Dictionary Spoken Science

word none 13.6 8.0
zh–zh 14.3 8.4
zh–en 15.4 9.2

BPE none 16.6 11.2
zh–zh 15.2 11.6
zh–en 17.0 14.7

Table 6: Attaching a monolingual Chinese-Chinese dic-
tionary improves over the baseline in three out of four
tasks, although not as much as a bilingual Chinese-
English dictionary does. All differences are statistically
significant.

definitions indicates that the word is outside of the
system’s vocabulary.

In the first example,对称性 (duı̀chènxı̀ng, sym-
metry) is unknown to the word-based systems.
Adding the definition to the parallel training data
(Append) does not help word-based translation be-
cause the word remains unknown, whereas our
model correctly generates the translation symmetry.
With BPE, the word is broken into three pieces, so
that the Append system can correctly generate the
word symmetry. But the third character (性, xı̀ng)
can also mean “sex,” and together with the fol-
lowing character (性感, xı̀nggaň) can mean “sexy.”
This explains why the Append system incorrectly
adds the words of sex.

In the second example,火药 (huǒyào, gunpow-
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Source 1.不只是科学家们对对称性(UNK)感兴趣。
2.我哥哥听说我们做了火药(UNK)。
3.有些登山者经过他身旁，打量(UNK)了他一番

Definitions 1.对称性: symmetry
2.火药: gunpowder(UNK)
3.打量: to size sb(UNK) up to look sb(UNK) up and down to take the measure of to suppose to reckon

Reference 1. But it’s not just scientists who are interested in symmetry.
2. Well, my brother heard that we had made gunpowder.
3. Some climbers had come by and looked at him,

Baseline 1. not only scientists are interested in the UNK of UNK.
2. My brother has heard that we’ve done a lot of work.
3. And some of the climber went to him, and he said,

Append 1. It’s not just about scientists who are interested in UNK.
2. My brother has heard that we’ve done a lot of work.
3. And some of the UNK came over and over and over again,

Attach 1. not just scientists are interested in symmetry.
2. My brother heard that we had done UNK.
3. Some of the climber passed him, looked at him,

Table 7: Examples from word-based systems on the UM-Spoken data. In the first and second examples, the un-
known words对称性 (duı̀chènxı̀ng) and火药 (huǒyào) cannot be translated by the baseline, even with the dictio-
nary in the parallel data (Append). Our model successfully incorporates the dictionary definition symmetry, but not
gunpowder, because it is unknown. In the third example, the definition is not suitable as a direct translation of the
unknown word打量 (dǎliàng), but our model generates the word looked, apparently by picking out the word look
from the definition and inflecting it correctly for the context.

BPE Source 1.不只是科学家们对对@@称@@性感兴趣。
2.我哥哥听说我们做了火@@药。
3.有些登@@山@@者经过他身@@旁，打@@量了他一番

Fused source 1.不只是科学家们对对称性(UNK)感兴趣。
2.我哥哥听说我们做了火药(UNK)。
3.有些登山@@者经过他身@@旁，打量(UNK)了他一番，

Definitions 1.对称性: sym@@ metry
2.火药: gun@@ powder
3.打量: to size s@@ b up to look s@@ b up and down to take the measure of to suppose to reck@@ on

Reference 1. But it’s not just scientists who are interested in symmetry.
2. Well, my brother heard that we had made gunpowder.
3. Some climbers had come by and looked at him,

Baseline 1. not just scientists are interested in the sense of sympathy.
2. My brother had heard that we did a fire pills.
3. Some of the climbers passed him on the side, and he had a lot of money,

Append 1. Not only scientists are interested in the symmetry of sex.
2. My brother told us that we had done a fire.
3. Some of the climber passed his feet, and he took a second,

Fuse 1. not only scientists are interested in their interests in the world.
2. My brother has heard that we’ve done a good job.
3. Some of the climbers passed by him, and he gave him a sense,

Attach 1. not only scientists are interested in symmetry.
2. My brother heard that we did the gunpowder.
3. Some climbers passed by his side and looked at him,

Table 8: Examples from BPE-based systems on the UM-Spoken data. In the first two examples, the baseline system,
even with the dictionary in the parallel data (Append), tries to translate the pieces of unknown words separately and
incorrectly (e.g., fire, pills, sex). Our model is able to translate the first and third examples correctly as in Table 7,
as well as the second example.
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der) is unknown, and the definition word gunpow-
der is also unknown. So none of the systems are
able to translate this word correctly (though ar-
guably our system’s generation of UNK is prefer-
able). When we switch to BPE, our model gen-
erates the correct translation. The other systems
fail because this word splits into two very com-
mon words,火 (hǔo, fire), and药 (yào, medicine),
which the system tries to translate separately.

The third example shows what happens when we
have a long definition that contains useful informa-
tion, but is not suitable as a direct translation of the
unknown word打量 (dǎliàng). Here we see that
our attachment model generates the word looked,
apparently by picking out the word look from the
definition and inflecting it correctly for the context.
No other models were able to generate a word with
a similar meaning.

Please see Appendix A for visualizations of the
encoder-decoder attention for these three examples.

We also looked at a few examples from the
Europarl-small dev set, shown in Table 9 and 10.
In the first example, the definition omission was
out of vocabulary, so our model was not able to
perform any better than the baselines. However, in
the BPE systems, our model was able to properly
translate Auslassung to omission while none of the
other baseline systems was able to. In the second
example, we see something similar in the word-
based system. The Baseline and Append models
were unable to generate the correct translation of
Alternativlösung, but our method was. With BPE,
all systems (even Baseline) were able to translate
the word correctly.

5 Discussion

In Section 1, we mentioned several other methods
for using dictionaries in NMT, all of which treat
dictionary definitions as target-language text. An
alternative approach to handling rare words, which
avoids dictionaries altogether, is to use word em-
beddings trained on large amounts of monolingual
data, like fastText embeddings (Bojanowski et al.,
2017). Qi et al. (2018) find that fastText embed-
dings can improve NMT, but there is a sweet spot
(likely between 5k and 200k lines) where they have
the most impact. They also find that pre-trained em-
beddings are more effective when the source and
target languages are similar.

We, too, experimented with using fastText word
embeddings in our NMT system, but have not seen

any improvements over the baseline – perhaps be-
cause our datasets are somewhat larger than those
used by Qi et al. (2018). We also experimented with
using dictionaries to improve word embeddings and
found that the present approach, which gives the
model direct access to dictionary definitions, is far
more effective.

The most significant limitation of our method
is runtime: because it increases the length of the
source sentences, training and decoding take 2–3
times longer. Another limitation is that the effec-
tiveness of this method depends on the quality and
coverage of the dictionaries.

In the future, we plan to experiment with ad-
ditional resources, like thesauruses, gazetteers, or
bilingual dictionaries with a different target lan-
guage. Second, from our examples, we see that our
model is able to select a snippet of the definition
and adapt it to the target context (for example, by
inflecting words), but further analysis is required
to understand how much the model is able to do
this. Finally, our method currently requires an ex-
act match between a dictionary headword and a
source word; we plan to extend the model to enable
matching of headwords with inflected forms.

6 Conclusion

In this paper, we presented a simple yet effective
way to incorporate dictionaries into a Transformer
NMT system, by attaching definitions to source
sentences to form a nonlinear structure that the
Transformer can learn how to use. We showed that
our method can beat baselines significantly, by up
to 3.1 BLEU. We also analyzed our system’s out-
puts and found that our model is learning to select
and adapt parts of the definition, which it does not
learn to do when the dictionary is simply appended
to the training data. We also found that our method
has some potential to work with monolingual dic-
tionaries.
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Source 1. Ich hoffe , dass diese Auslassung(UNK) korrigiert werden kann .
2. Wäre das nicht eine Alternativlösung(UNK) ?

Definitions 1. Auslassung: omission(UNK)
2. Alternativlösung: alternative solution

Reference 1. I hope that this omission can be corrected.
2. Would this not be an alternative solution?

Baseline 1. I hope that this UNK can be corrected.
2. Would this not be a UNK?

Append 1. I hope that this UNK can be corrected.
2. Would this not be a UNK?

Attach 1. I hope that this UNK can be corrected.
2. Would this not be an alternative solution?

Table 9: Examples from word-based systems run on the Europarl-small data. In the first example, the dictionary
defines unknown word Auslassung with another unknown word, omission, so neither adding the dictionary to the
parallel data (Append) nor our model (Attach) benefits. In the second example, adding the dictionary definition of
Alternativlösung to the parallel data does not help, but our model is able to incorporate it.

BPE source 1. Ich hoffe , dass diese Aus@@ l@@ assung korrigi@@ ert werden kann .
2. W@@ äre das nicht eine Altern@@ ativ@@ lösung ?

Fused source 1. Ich hoffe , dass diese Auslassung(UNK) korrigi@@ ert werden kann .
2. W@@ äre das nicht eine Alternativlösung(UNK) ?

Definitions 1. Auslassung: om@@ is@@ sion
2. Alternativlösung: alternative solution

Reference 1. I hope that this omission can be corrected.
2. Would this not be an alternative solution?

Baseline 1. I hope that this approval can be corrected.
2. Would this not be a alternative solution?

Append 1. I hope that this interpretation can be corrected.
2. Would this not be a alternative solution?

Fuse 1. I hope that these pieces can be corrected.
2. Would this not be a pronounce?

Attach 1. I hope that this omission can be corrected.
2. Would this not be an alternative solution?

Table 10: Examples from BPE-based systems run on the Europarl-small data. In the first exapmle, unlike in Table 9,
the unknown word Auslassung is not replaced with UNK but is split into subwords, which the baseline system as
well as the system with the dictionary in its parallel data (Append) translate incorrectly. Our model successfully
uses the dictionary definition, omission. In the second example, BPE enables all models to translate the compound
Alternatvlösung correctly.
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A Attention Visualizations

Figures 3 and 4 show visualizations of the atten-
tion of our Attach model. They show the first layer
of encoder-decoder attention when translating the
three Chinese sentences of Tables 7 and 8. Note
the translations are not exactly the same as shown
above, because we used a beam size of one instead
of the default of four.
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Figure 3: Attention visualizations for the first two Chinese-English examples of Tables 7 and 8.
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Figure 4: Attention visualizations for the third Chinese-English example of Tables 7 and 8.
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Abstract
Multilingual Neural Machine Translation
(MNMT) models are commonly trained on a
joint set of bilingual corpora which is acutely
English-centric (i.e. English either as the
source or target language). While direct data
between two languages that are non-English
is explicitly available at times, its use is not
common. In this paper, we first take a step
back and look at the commonly used bilingual
corpora (WMT), and resurface the existence
and importance of implicit structure that
existed in it: multi-way alignment across
examples (the same sentence in more than
two languages). We set out to study the use
of multi-way aligned examples to enrich
the original English-centric parallel corpora.
We reintroduce this direct parallel data from
multi-way aligned corpora between all source
and target languages. By doing so, the
English-centric graph expands into a complete
graph, every language pair being connected.
We call MNMT with such connectivity pat-
tern complete Multilingual Neural Machine
Translation (cMNMT) and demonstrate its
utility and efficacy with a series of experi-
ments and analysis. In combination with a
novel training data sampling strategy that
is conditioned on the target language only,
cMNMT yields competitive translation quality
for all language pairs. We further study the
size effect of multi-way aligned data, its
transfer learning capabilities and how it eases
adding a new language in MNMT. Finally, we
stress test cMNMT at scale and demonstrate
that we can train a cMNMT model with
up to 111∗112=12,432 language pairs that
provides competitive translation quality for all
language pairs.

1 Introduction

Multilingual machine translation (Dong et al.,
2015; Firat et al., 2016a; Johnson et al., 2017;
Aharoni et al., 2019), which can serve multiple

(a) English-centric (b) Complete

Figure 1: Source-target translation graphs in MNMT.
Solid lines indicate that there exist direct parallel data.
When there is no line connecting any two languages,
zero-resource or zero-shot approaches are employed.

language pairs with a single model, has attracted
much attention. In contrast to bilingual MT sys-
tems which can only serve one single language
pair, multilingual models can serve O(N2) lan-
guage pairs (N being the number of languages in a
multilingual model) (Zhang et al., 2020).

The amount of available training data can differ a
lot across language pairs and the majority of avail-
able MT training data is English-centric (Tiede-
mann, 2018; Arivazhagan et al., 2019b) which in
practice means that most non-English language
pairs do not see a single training example when
training multilingual models (see Figure 1a). As a
consequence, the actual performance of language
pairs that do not include English on the source or
target side lags behind the ones with large amounts
of training data. Further, when increasing the num-
ber of languages, it gets (a) impractical to gather
training data for each language pair and (b) chal-
lenging to find the right mix during training. Which
is why models tasked with direct translation be-
tween non-English pairs either resort to bridging
(pivoting) through a pivot language (Habash and
Hu, 2009), or make use of synthetic parallel data
(via back-translation) (Firat et al., 2016b; Chen
et al., 2017) or study the problem under zero-shot
settings (Johnson et al., 2017; Ha et al., 2016).

In this study, we make use of the potential pre-
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existing multi-way property in the training corpora
and generate as many direct training examples from
pre-existing English-centric training data. If we can
find training examples for each language pair in a
multilingual mix, we call this model complete Mul-
tilingual Neural Machine Translation (cMNMT).
cMNMT is then trained on all bilingual pairs be-
tween source and target languages by utilizing
multi-way aligned training examples that consist
of translations of the same sentence into multiple
languages. We resurface multi-way aligned train-
ing examples by aligning training examples from
different language pairs when either their source or
target sides are identical (ie. pivoting through En-
glish, for German→English and English→French
to extract German–French–English examples).

To make use of this data, the model samples a
source and target language from the set of multi-
way aligned corpus during training, which allows
the model to see language pairs where originally no
training data existed (missing connections in Fig-
ure 1a). As our experiments support, this method
enables us to get access to training data for all
tested language pairs (generating a complete graph
(Figure 1b)). We will show that it is possible to
generate a complete graph for at least a 6-language
WMT setup. Some of the WMT training data is
multi-way parallel by construction. Nevertheless,
we show that we also find many training examples
where the source and target origin from different
sources. We further show on our 112 languages
internal dataset, that we can find sufficient training
data for over 12,000 language pairs by only pro-
viding 111 English-centric training corpora. This
result indicates that it is possible to generate di-
rect training data for many language pairs with-
out the need for crawling new training examples.
Our experiments suggest that before falling back to
methods like zero-shot translation, you should in-
vestigate the structure of your pre-existing training
data.

To address the problem of finding the right mix
of examples from different language pairs during
training, we further introduce a hierarchical sam-
pling strategy that is language-specific (as opposed
to being language pair specific). In addition to fix-
ing some chronic issues of MNMT (i.e. low quality
for out of English translation (Firat et al., 2016a;
Johnson et al., 2017; Arivazhagan et al., 2019b)),
the proposed sampling strategy efficiently ensures
all source-target pairs are covered.

Experiments demonstrate that we can train a cM-
NMT model on a 30-language-pair WMT setup that
outperforms bilingual and multilingual baselines
as well as bridging on all non-English language
pairs. We further show that the performance of the
English language pairs stay stable and do not suffer
from the changes in both the training data and the
new training data sampling strategy. Furthermore,
we share experiments at scale by demonstrating
that we can train a cMNMT model that can serve
12,432 language pairs.

Our contribution is three-fold:

• We show that we can find a lot of training ex-
amples for all language pairs in a multilingual
mix by only pivoting pre-existing English-
centric training data. We further show that
many of the extracted examples originate from
different data sources and this method could
scale to many more datasets. We also sup-
port these findings with experiments on our
internal dataset, where we were able to find
training data for all 12,432 language pairs.

• We demonstrate that cMNMT outperforms
bilingual baselines, multilingual baselines as
well as bridging on all non-English language
pairs while keeping translation performance
on English-centric language pairs.

• We introduce a new sampling strategy that is
purely based on the target language instead
of language pairs and does scale to MNMT
models which hundreds of languages.

2 A Peek at Multi-way Aligned Examples
in Bilingual Corpora

We choose six languages Czech (cs), English (en),
French (fr), German (de), Spanish (es) and Russian
(ru) from the public WMT datasets. The selec-
tion of the languages was driven by the fact that
the WMT 2013 evaluation campaign (Bojar et al.,
2013) released a multi-way test set for these six
languages. As training data, we used WMT 2013
for Spanish, WMT 2014 for German, WMT 2015
for French, and WMT 2018 for Czech and Russian.

We can construct non-English bilingual train-
ing examples by pairing the non-English sides of
two training examples with identical English trans-
lations. Table 1 shows the number of bilingual
training examples that we could potentially ex-
tract from the English-centric training data. The
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number of training examples for each non-English
language pair varies from at least 0.3 million
(Russian-German) to up to 4.8 million sentence
pairs (Russian-French).

cs de en es fr ru
cs 0.7 47 0.8 1 0.9
de 0.7 4.5 2.3 2.5 0.3
en 47 4.5 13.1 38.1 33.5
es 0.8 2.3 13.1 10 4.4
fr 1 2.5 38.1 10 4.8
ru 0.9 0.3 33.5 4.4 4.8

Table 1: WMT: Available training data (in million) af-
ter constructing non-English examples from English-
centric examples with identical English side.

Some of the extracted non-English training ex-
amples are multi-way parallel by construction. The
UN corpus is a 6-way parallel corpus, and three of
the languages (English, French and Spanish) are
in our 6-language mix. A portion of the Europarl
corpus is again multi-way aligned. Nevertheless, a
good amount of the extracted data is coming from
different sources. Table 2 shows the number of
non-English bilingual training examples separated
by the two sources they originated from.

Table 3 shows how many translations are avail-
able for each sentence in the WMT training
data. The majority (123 million) of the multi-way
aligned examples do only have translations into two
languages. As our original bilingual training data
is English-centric, all of the 123 million training
examples consist of an English sentence and a trans-
lation into one of our five other languages. A total
of 13 million multi-way aligned examples are avail-
able in at least three languages. Further, Figure 2
shows the average number of translations condi-
tioned by the language. Both Spanish and German
have, on average more than three translations. In
comparison, the majority of the multi-way aligned
examples with Czech or English on the target side
are bilingual (having only two translations). Our
study resurfaced the inherent multi-way aligned
information in the commonly used set of parallel
corpora instead of discarding this information.

3 Complete Multilingual NMT

We call MNMT models that are trained for all pos-
sible source–target pairs as complete MNMT as
all languages are connected via training data (also
see Figure 1). Before going into details of how

Figure 2: Average translations per multi-way aligned
example conditioned on the target language.

the missing pairs’ data gathered, we recap MNMT
first.

Multilingual NMT Framework MNMT (Firat
et al., 2016b; Johnson et al., 2017) is an extension
of bilingual NMT which uses a single model to
translate between multiple languages. The model
parameters are trained on a joint set of bilingual
corpora from different language pairs. Given the
data imbalance across the different corpora, it is
common to oversample the language pairs with less
training data (Lee et al., 2016; Johnson et al., 2017).
For a given language pair p, let D(p) be the size of
the available parallel corpus, the sample probability
with a temperature T is defined as

pp = (
D(p)∑
qD(q)

)

1
T

(1)

As a result, T = 1 corresponds to the actual data
distribution, and T = 100 corresponds to (almost)
an equal number of samples for each language pair).
In addition to being able to translate language pairs
that the model was trained with, the model can
also translate between language pairs never seen
explicitly during training which is often referred
as zero-shot translation (Johnson et al., 2017; Ha
et al., 2016).

Using multi-way aligned data in MNMT In-
stead of only relying on bilingual corpora, bilingual
examples from different language pairs with identi-
cal target sentences can be combined into a single
multi-way aligned training example. An example
is given in Table 4. By comparing the English sides
of the Spanish–English and the German–English
corpora, we extract a multi-way aligned example
that contains translations into all three languages.
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cc CzEng epps nc 109 Paracrawl UN Wiki Titles Yandex
Common Crawl (cc) 2.5M 13K 213 21k 10k 47k 1.8k 1 6.1k
CzEng 1.7 0 20k 417k 242k 55k 63k 98k 7.7k
Europarl (epps) 6.9M 1.2k 3.7k 4.8k 4.7k 255 280
News-Commentary (nc) 640k 186k 244 305 60 1.7k
109 0 12k 97k 1.5k 2.9k
Paracrawl 352k 18k 5.5k 1k
UN 16M 3.7k 3.3k
Wiki Titles 118k 4

Table 2: Number of training examples with identical English sides split by data sources. E.g. cell cc-CzEng shows
the number of training examples with identical English side by only considering training data coming from either
commoncrawl or CzEng for all language pairs (if available).

# languages 2 3 4 5 6
training data 123M 6.9M 5.4M 0.7M 10k

Table 3: Data statistics for the extracted multi-way
aligned training examples for WMT: 123 million sen-
tences are only available in 2 languages, while 10,000
sentences have translations in all 6 languages.

X-Y Bleib sicher ↔ Stay safe
Z-Y Mantente segura ↔ Stay safe

X-Y-Z Bleib sicher ↔ Mantente segura ↔ Stay safe

Table 4: The two German–English and Spanish–
English bilingual training examples can be combined
into one multi-way aligned training example that con-
sists of translations into all three languages.

While we can extract direct training data for
any source-target pair among the languages consid-
ered, the total number of language pairs increases
quadratically. The vanilla language pair based sam-
pling strategy in Eq. (1) with adjustable tempera-
ture is capable of balancing low-high resource lan-
guage pairs during training. However, we noticed
a critical failure mode, which is further amplified
in complete MNMT. The language-pair based sam-
pling strategy (regardless of the temperature being
used) over-represents English in English-centric
models. Notice half of the languages have English
on the source side, with the other half on the target
side. This over-representation yields a schedule of
examples for the encoder (resp. for the decoder) to
see English examples half of the time throughout
the entire training process. As a result, trained mod-
els end up favouring English either on the source
and/or target. Although the implications on the
encoder could be minimal, over-exposing English
examples to the decoder curtail the learning sig-
nal when the target language is non-English. We
hypothesise that this imbalance in the learning sig-
nal with respect to the target language is one of

the roots of poor translation quality of multilingual
models when translating out of English (Firat et al.,
2016a; Johnson et al., 2017; Arivazhagan et al.,
2019b).

To alleviate the over-representation of English
with the language-pair based sampling strategy, we
propose a hierarchical sampling strategy with two
levels: i) we choose a target language (based on
a temperature-based schedule), ii) uniformly sam-
ple a source language. Formally, for a given target
language l, let D(l) be the size of the available
training examples with target language l, the sam-
ple probability with a temperature T is defined as

pl = (
D(l)∑
qD(q)

)

1
T

(2)

During training, the scheduler samples a batch of
training examples based on the target language
only, as opposed to source-target language pair
specific sampling. After choosing a target lan-
guage, for each multi-way aligned example, we
randomly (uniformly) pick one of the translations
as the source sentence.

4 Experiments

We use a public transformer implementation with
the transformer-big model size (Vaswani et al.,
2017) for all multilingual setups. All bilingual mod-
els use a vocabulary of 32,000 subwords, while all
multilingual models use a vocabulary of 64,000
subword units. All multilingual models are trained
for 500,000 updates using an average batch size
of around 33,000 sentences (∼1 million tokens).
All bilingual models are trained for 400,000 steps
as they converged earlier using a batch size of
around 8,000 sentences (∼260,000 tokens). Due
to the data imbalance across languages, we use a
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temperature-based data sampling strategy to over-
sample low-resource language pairs in standard
MNMT models (Equation 1) and low-resource tar-
get languages in cMNMT models (Equation 2). We
use a temperature of T = 5 in both cases. All mul-
tilingual models add a token at the beginning of
the input sentence to specify the required target
language. All BLEU (Papineni et al., 2002) scores
are calculated with sacreBLEU (Post, 2018).1

4.1 Baselines on WMT

We train several baselines: (i) bilingual models, (ii)
multilingual models based on English-centric data,
and (iii) bridging non-English language pairs.

Bilingual Baselines We train two bilingual base-
lines (using either transformer-base or transformer-
big) for each language pair. In addition to train-
ing baselines on the original English-centric WMT
data, we also train models for non-English lan-
guage pairs on the extracted direct data (see Ta-
ble 1). We experimented with several dropout rates
for both setups and found that dropout=0.1 works
best for transformer-base while dropout=0.3 works
best for transformer-big. As can be seen from Ta-
ble 5 and Table 6, the experiments suggest that
the translation quality of the non-English language
pairs is far behind the ones for English-centric lan-
guage pairs. As an example, the translation quality
between German and Russian reaches 6-7 BLEU
only.

target

so
ur

ce

cs de en es fr ru
cs 16.6 30.4 20.7 22.6 13.9
de 15.2 29.5 27.0 28.7 6.9
en 25.2 25.7 33.6 34.8 23.6
es 15.6 22.7 33.9 34.2 18.7
fr 15.4 22.1 33.0 31.8 17.9
ru 12.5 6.1 28.4 22.6 24.3

Table 5: BLEU scores on newstest2013 of bilingual
models trained with the transformer-base architecture.

Multilingual Baselines We train a multilingual
NMT model on the original WMT English-centric
training data. BLEU scores are summarized in Ta-
ble 7. All language pairs with English as the source
or target language perform comparably well from
at least 24.5 BLEU (English→Russian) up to 34.9
BLEU (English→French). The BLEU scores of

1sacreBLEU signatures: BLEU+case.mixed+lang.SRC-
TGT+numrefs.1+smooth.exp+SET+tok.intl+version.1.2.20

target

so
ur

ce

cs de en es fr ru
cs 14.6 31.9 19.0 20.0 14.1
de 14.1 31.3 26.4 28.8 4.7
en 26.5 27.0 34.2 35.9 25.0
es 14.4 22.8 34.5 34.8 19.9
fr 13.0 20.7 34.2 32.5 18.6
ru 12.8 4.0 30.8 23.1 24.8

Table 6: BLEU scores on newstest2013 of bilingual
models trained with the transformer-big architecture.

non-English language pairs are consistently lower
(which can be explained as a lack of supervision
during training) and can be as low as 4.1 BLEU
for Spanish→Czech or as high as 24.4 BLEU for
French→Spanish.

target

so
ur

ce
cs de en es fr ru

cs 19.8 31.2 21.6 20.2 8.5
de 6.8 31.8 17.8 21.2 4.5
en 25.5 26.7 34.0 34.9 24.5
es 4.1 8.8 34.7 19.6 9.5
fr 4.2 11.2 33.8 24.4 6.5
ru 4.8 10.4 29.5 19.9 9.6

Table 7: BLEU scores on newstest2013 of a MNMT
model trained on English-centric training data. All non-
English language pairs are unseen during training and
BLEU scores measure zero-shot performance.

Bridging (Pivoting) Baselines The quality of
MNMT is still behind the one from bilingual base-
lines for most of the language pairs (comparing
Table 6 and Table 7). Nevertheless, having a
single NMT model for each language pair is im-
practical, especially when increasing the number
of language pairs. An alternative approach is
called bridging (Cohn and Lapata, 2007; Wu and
Wang, 2007; Utiyama and Isahara, 2007). For the
bridging approach, we compromise and train only
English-centric models. To enable the translation
between non-English language pairs, the source
sentence cascades through the source→English
and English→target systems to generate the tar-
get sentence. This simple process has several lim-
itations: (i) translation errors accumulate in the
pipeline, (ii) decoding time gets doubled since in-
ference has to be run twice, (iii) bridging through
a morphologically low language (i.e. English), im-
portant information could be lost (i.e. gender). The
BLEU scores (Table 8) for all non-English pairs
are higher compared to all previous baselines. We
can reach acceptable translation quality even for
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German→Russian, where our direct training data
is scarce. We use the bridging baseline to compare
our cMNMT models in the rest of the paper.

target

so
ur

ce

cs de en es fr ru
cs 22.4 31.9 27.0 28.8 21.9
de 21.5 31.3 26.9 29.0 20.3
en 26.5 27.0 34.2 35.9 24.9
es 22.6 22.8 34.5 32.6 22.5
fr 21.4 22.2 34.2 29.1 21.6
ru 21.3 20.6 30.8 27.2 28.5

Table 8: BLEU scores on newstest2013 for our WMT
setup. Translations for non-English language pairs are
generated via bridging over English.

4.2 Complete MNMT Models on WMT

Without adding new training data and taking into
account the multi-way property of the data, we train
a complete multilingual NMT system (cMNMT,
see Section 3). We compare the performance of
cMNMT with the best baseline model that is based
on bridging (Table 8) and report BLEU and delta
BLEU numbers in Table 9. The BLEU scores for
the non-English language pairs go up from at least
1.4 BLEU for Russian→Spanish up to 5.0 BLEU
for Czech→Russian. We changed the sampling
strategy for our cMNMT models to be conditioned
on the target language only (Section 3). As a re-
sult, English has been seen less often as the target
language when compared to a standard MNMT
setup. Interestingly, this seems to affect only the
performance of Russian→English, which shows
a decrease of 1 BLEU point. The other language
pairs with English as the target language are keep-
ing their translation quality.

When comparing our cMNMT model to the
English-centric baseline (Table 7), we see an av-
erage BLEU increase of 14.6 BLEU for all non-
English language pairs. It is worth noticing that
every language pair has now at least 22 absolute
BLEU points. Interestingly, the absolute BLEU
scores in each row (translations into the same lan-
guage) are much closer, suggesting a more univer-
sal input representation.

5 Analysis and Discussion

To further understand the impact of multi-way
aligned examples on NMT, we run a couple of
additional experiments.

target

so
ur

ce

cs de en es fr ru
cs 25.8 32.0 30.1 31.4 26.9

+3.4 +0.1 +3.1 +2.6 +5.0

de 23.9 31.2 29.9 31.8 23.4
+2.4 -0.1 +3.0 +2.8 +3.1

en 26.9 27.1 35.0 35.5 26.4
+0.4 +0.1 +0.8 -0.4 +1.5

es 24.9 25.7 34.9 36.0 24.9
+2.3 +2.9 +0.4 +3.4 +2.4

fr 23.7 25.2 34.2 33.3 23.5
+2.3 +3.0 +0.0 +4.2 +1.9

ru 24.3 22.7 29.8 28.6 30.1
+3.0 +2.1 -1.0 +1.4 +1.6

Table 9: BLEU on newstest2013 for our novel cMNMT
model. The small numbers are the difference (∆BLEU)
with respect to the bridging approach (Table 8).

Training Data Sampling Strategy In Section 3,
we did introduce our new training data sampling
strategy that is based on the target language only.
This change was mainly driven by the fact that
having a language-pair conditioned schedule is
not scalable when building a system of 12,432
language pairs. Instead of finding a good sam-
pling weight for each of the 12,432 language pairs,
we only need to find a suitable mix for the 112
target languages. Further, we have more con-
trol over how often each target language will be
seen during training. To see the impact of this
change, we train an MNMT system on the joint
set of the 30 different bilingual corpora with a
standard language-pair based temperature schedul-
ing scheme and compare it to a cMNMT model.
We used temperature 5 in both setups. ∆BLEU
numbers for each language-pair can be seen in
Figure 3. The language-conditioned temperature
scheduling increases BLEU scores for 29 out of
30 language-pairs with larger gains for the low-
resource language-pairs. This experiment suggests
that a target language based temperature schedul-
ing is not only simpler but also performs better on
average.

Separate Multi-way Aligned Examples We
test the transfer learning capability of cMNMT
by training a cMNMT model only on the 13 mil-
lion multi-way aligned examples that have trans-
lations in at least three languages (see Table 3).
In other words, we remove all training examples
that are only available in English and one addi-
tional language. If no transfer learning is happen-
ing, the English-centric scores will decrease while
the BLEU numbers of the non-English language
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Figure 3: ∆BLEU scores for a target language based
versus a language-pair based temperature schedule.

pairs are not affected. Experimental results can be
seen in Table 10. Interestingly, we find that the per-
formance of all language pairs is similarly affected.
This indicates that transfer learning is happening
between the language pairs and that non-English
language pairs benefit from having more English-
centric data.

target

so
ur

ce

cs de en es fr ru
cs 24.1 30.3 28.4 29.4 23.6

-1.7 -1.7 -1.7 -2.0 -3.3

de 19.1 30.6 29.1 30.5 21.7
-4.8 -0.6 -0.8 -1.3 -1.7

en 21.8 26.2 33.4 34.6 23.3
-5.1 -0.9 -1.6 -0.9 -3.1

es 19.7 24.9 34.3 35.1 22.7
-5.2 -0.8 -0.6 -0.9 -2.2

fr 18.6 24.0 33.0 32.3 21.3
-5.1 -1.2 -1.2 -1.0 -2.2

ru 19.7 21.4 27.7 27.1 27.9
-4.6 -1.3 -1.9 -1.5 -2.2

Table 10: BLEU on newstest2013 for a model trained
on 13 million multi-way aligned (n>2) data. Small
numbers are the difference (∆BLEU) between cM-
NMT trained on all multi-way examples (136M, Ta-
ble 9).

To further study this effect, we reverse that ex-
periment and remove all examples that have trans-
lations into more than two languages. This experi-
ment investigates if the non-English language pairs
in a standard MNMT model can benefit from hav-
ing training examples with identical English sides.
Experimental results can be found in Table 11. The
BLEU scores for English-centric language pairs
drop by 0.9 points on average while the perfor-
mance of non-English language pairs decreases by
1.6 BLEU on average.

target

so
ur

ce

cs de en es fr ru
cs 17.8 31.5 14.5 20.3 5.2

-2.0 +0.3 -7.1 +0.1 -3.3

de 7.8 29.6 17.2 22.9 1.8
+1.0 -2.2 -0.6 +1.7 -2.7

en 25.6 23.9 33.1 33.5 24.6
+0.1 -2.8 -0.9 -1.4 +0.1

es 7.2 3.9 32.7 24.3 7.6
+3.0 -5.8 -1.1 +4.7 -1.9

fr 6.7 13.0 33.1 19.3 7.2
-2.5 -1.8 -0.7 -5.1 +0.7

ru 5.5 10.4 29.3 8.5 13.7
+0.7 +0.0 -0.2 -14.4 +4.1

Table 11: BLEU on newstest2013 for a model trained
on 2-way data only. Small numbers are the difference
(∆BLEU) between the vanilla MNMT model (Table 7).

Leave N-Out We further investigate the transfer
learning capability of our approach by training sev-
eral cMNMT models on different amounts of train-
ing data. We start with a cMNMT model trained on
English-centric bilingual training data only. This
setup ensures that all languages have been seen
on both the source and target side during training.
We further group the remaining multi-way aligned
training examples by target language and add one
after another to the training data. Important to men-
tion: We retrained all configurations from scratch.
Experimental results are summarized in Figure 4.
We report average BLEU scores grouped by the tar-
get language. We can see that adding training data
x→ y for a target language y, gives a significant
boost in translation quality for that target language.
These results demonstrate that even though we can
translate between language pairs without seeing
a single example during training, adding supervi-
sion during training significantly increases BLEU
scores.

Adding a New Language We further investigate
how a cMNMT model behaves when fine-tuned
(Freitag and Al-Onaizan, 2016) to a new language.
We chose Italian as the new language as the test
set newstest2009 is multi-way in Czech, English,
French, German, Italian and Spanish and thus we
can report BLEU scores between all language pairs.
We run two experiments with two different sets
of fine-tuning data. First, we fine-tuned the cM-
NMT model (Table 9) on English↔Italian news-
commentary (45,000 examples). Second, we con-
verted the same data into multi-way aligned exam-
ples by augmenting the bilingual examples with
translations into other languages when found in our
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Figure 4: BLEU scores of models using only parts of
the multi-way training data.

original training data. Experimental results for fine-
tuning our model for one epoch on either of the
two datasets can be found in Table 12. Both fine-
tuning experiments show the same BLEU improve-
ments for Italian↔English. Nevertheless, when
only fine-tuning on English↔Italian data, we sac-
rifice translation quality for most of the language
pairs which can be seen in the x → y column.
Further, fine-tuning on multi-way aligned exam-
ples does improve the average BLEU scores by 4.3
BLEU for translations into Italian (x →it). Over-
all, these experiments suggest that fine-tuning with
multi-way aligned data is superior.

model it→en it→ x en→it x→it x→ y

cMNMT 13.5 9.7 2.3 2.6 22.0
+ft en↔it 21.5 14.2 13.6 11.8 17.8
+ft mway 21.2 18.5 13.5 11.9 23.0

Table 12: BLEU scores for newstest2009 for
fine-tuning (ft) our cMNMT model on either
English↔Italian (it↔en) news-commentary or on the
same sentences but augmented with translations into
other languages (mway), if available. Column x → y
shows average BLEU scores for all language pairs.

Scaling cMNMT: 12,432 Language Pairs We
run additional experiments on a 112 language in-
house dataset (Arivazhagan et al., 2019b) to see if
our approach scales to 12,432 language pairs. Our
in-house dataset does not only contain more lan-
guages than the WMT setup, but also has a much
wider range of available training resources. While
for the high resource languages, we have access to
billions of training examples, most of the low re-
source languages have less than 1 million training
examples. We refer the reader to the description in

Arivazhagan et al. (2019b) for more details regard-
ing the dataset. Figure 5 shows the training data
sizes and the average translations per multi-way
example.

Figure 5: Average translations per multi-way example
conditioned on the target language.

Although a deeper and wider architecture does
improve the quality of multilingual models for this
dataset, we use the same experimental setup as
used in our WMT experiments (see Section 4) to
run an MNMT and cMNMT model on our in-house
data. Experimental results can be seen in Table 13.
cMNMT outperforms MNMT for non-English lan-
guages by 10.1 BLEU points on average while
keeping the translation quality for language pairs
that include English as source or target. These re-
sults demonstrate that our proposed approach does
scale far behind the six language WMT setup.

en→ x x→en x→ y

all +0.34 -0.05 +10.1
low resource +0.23 -0.15 +8.82
mid resource +0.35 -0.05 +11.02
high resource +0.45 +0.04 +9.73

Table 13: Average BLEU difference (∆BLEU) be-
tween a cMNMT and a vanilla MNMT model for our
in-house 112 language setup. Positive numbers present
improvement of cMNMT over MNMT.

6 Related Work

Direct models To translate between languages
with little training data, three general approaches
emerged, i. bridging through a third language
(pivot-based MT) (Cheng et al., 2016; Currey and
Heafield, 2019), ii. generating pseudo-parallel data
between direct language pairs and training the di-
rect pairs with that (zero-resource MT) (Firat et al.,
2016b; Chen et al., 2017) and, iii. zero-shot meth-
ods where the model is asked to translate a direct
pair only at test time (Johnson et al., 2017; Ha et al.,
2016; Arivazhagan et al., 2019a).
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Although pivot-based approaches perform suf-
ficiently good when cascaded with strong bilin-
gual models (Gu et al., 2019), their practicality is
limited due to compounding errors from pipelin-
ing and doubled inference cost. The zero-resource
approaches, combined with iterative-back transla-
tion (Hoang et al., 2018) are quite powerful but
their inefficiency is worth noting. For N languages,
one needs to devise a training routine that could
sample N2 − N pairs, generate pseudo-parallel
data. The added time to generate pseudo-parallel
data for every pair grows quadratically, making it
challenging for systems considering a large num-
ber of languages. Recently, by devising a practi-
cal sub-sampling approach, (Zhang et al., 2020)
demonstrated zero-resource techniques could be
scaled to massively multilingual setup. We find
the study by (Zhang et al., 2020) closest to our
work, having the goal of any-to-any multilingual
translation. But compared to sampling language
pairs with no parallel data and generating pseudo-
parallel data on-the-fly, our approach makes use
of existing multi-way alignment information be-
fore training. Lastly, zero-shot approaches attempt
to measure the generalization performance of the
MNMT models, but to date, the zero-shot quality
still trails behind the pivot and zero-resource meth-
ods (Al-Shedivat and Parikh, 2019). Our proposed
cMNMT, naturally fills the gap between these three
approaches, the multi-way data can be extracted
offline, and efficiently be mixed with the original
data using a hierarchical data sampler. It does not
require extra steps to generate pseudo-parallel data,
and (as expected) it handily outperforms zero-shot
approaches.

N-way data In this paper, we only made use of
multi-way aligned data to sample bilingual pairs
out of it. But there exist several approaches that
make use of the multi-view structure in the data,
such as Dabre et al. (2019), who explored the
use of small multi-parallel corpora a for one-to-
many NMT. Another approach is multi-source
NMT (Zoph and Knight, 2016). Although multi-
source NMT is a promising direction, it has prac-
tical problems such as lacking multiple sources at
inference time (Nishimura et al., 2018). We believe
research in this direction will be the key to improve
mid/high-resource NMT and address several ro-
bustness issues to the input noise. Aulamo et al.
(2020) recently released MultiParaCrawl where the
authors extracted direct data for non-English lan-

guage pairs from the English-centric Paracrawl cor-
pus.

Sampling scheduling Several approaches pro-
posed to address data sampling for multi-task mod-
els, some relying on temperature-based heuristics
(Lee et al., 2016; Devlin et al., 2018; Arivazhagan
et al., 2019b), others relying on adaptive schedules
that incorporate the model gains, baselines or qual-
ity expectations into the data schedulers (Kiper-
wasser and Ballesteros, 2018; Jean et al., 2019;
Wang et al., 2020). We believe data sampling is
a critical research area for not only MNMT but
also multi-task learning in general. We reveal a
critical failure mode of the commonly used temper-
ature sampling strategy, and how it causes the poor
translation quality while translating out of English.

7 Conclusion

In this work, we introduced complete Multilin-
gual Neural Machine Translation (cMNMT) that
exploits the multi-way alignment information in
the underlying training data to improve translation
quality for language pairs where training data is
scared or not available. Standard MNMT mod-
els are trained on a joint set of different train-
ing corpora for a variety of language pairs. cM-
NMT combines the different corpora and constructs
multi-way aligned training examples that consist of
translations of the same sentence into multiple lan-
guages. In combination with a novel temperature-
based sampling approach that is conditioned on
the target language only, we show that cMNMT is
superior to the standard MNMT model and the
even better-performing bridging approach. Ex-
perimental results on a public WMT 30 language
pairs dataset and an in-house 12,432 language pairs
dataset demonstrated an average BLEU increase
of more than 10 BLEU points for non-English lan-
guage pairs. This approach leads to a single NMT
model that can serve 12,432k language pairs with
reasonable quality which also surpasses the trans-
lation quality of the bridging approach, which is
nowadays used in most modern MT services.
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Abstract

Recent work has shown that a multilingual
neural machine translation (NMT) model can
be used to judge how well a sentence para-
phrases another sentence in the same language
(Thompson and Post, 2020); however, attempt-
ing to generate paraphrases from such a model
using standard beam search produces trivial
copies or near copies. We introduce a sim-
ple paraphrase generation algorithm which dis-
courages the production of n-grams that are
present in the input. Our approach enables
paraphrase generation in many languages from
a single multilingual NMT model. Further-
more, the amount of lexical diversity between
the input and output can be controlled at gen-
eration time. We conduct a human evalua-
tion to compare our method to a paraphraser
trained on the large English synthetic para-
phrase database ParaBank 2 (Hu et al., 2019c)
and find that our method produces paraphrases
that better preserve meaning and are more gra-
matical, for the same level of lexical diver-
sity. Additional smaller human assessments
demonstrate our approach also works in two
non-English languages.

1 Introduction

Paraphrase generation is the task of producing a
fluent output sentence which is semantically simi-
lar to the input sentence while being syntactically
and/or lexically different from it (Bhagat and Hovy,
2013). Paraphrasing has been of longstanding in-
terest in the NLP community (McKeown, 1983)
and has been used for data augmentation in ques-
tion answering (Dong et al., 2017; Gan and Ng,
2019), machine translation (MT) (Hu et al., 2019a;
Khayrallah et al., 2020), task oriented dialog (Niu
and Bansal, 2018, 2019), and MT metrics (Baner-
jee and Lavie, 2005; Zhou et al., 2006; Denkowski
and Lavie, 2010; Thompson and Post, 2020).

Thompson and Post (2020) recently released the
Prism MT metric, which uses a multilingual neural
MT (NMT) model as a paraphraser to score para-
phrastic pairs; they treat paraphrasing as a zero-shot
translation task (e.g., “translation” from English
to English) and force-decode and score MT sys-
tem outputs conditioned on their respective human
translations. They denote their paraphraser as lex-
ically/syntactically unbiased as it does not prefer
output that differs lexically or syntactically from
the input; this is advantageous for an MT metric as
it assigns the highest score to an MT output which
matches or nearly matches a human reference, but
generating from the Prism model using standard
beam search produces trivial copies or near copies.

We introduce a simple method to enable para-
phrase generation from a multilingual NMT
model.1 Our method discourages the model from
producing n-grams that match n-grams in the input
sentence. This serves to lexically bias the output
away from the input sentence, resulting in non-
trivial paraphrases.

When considered together with Prism model of
Thompson and Post (2020), our paraphrase gen-
eration approach offers several potential advan-
tages over the common technique of training a para-
phrase model on synthetic paraphrases generated
by translating one side of bitext into the language
of the other side (Wieting et al., 2017; Wieting and
Gimpel, 2018; Hu et al., 2019c):
• The fluency/semantic similarity vs lexical di-

versity trade-off can be controlled at genera-
tion time.

• The approach works in many languages, with
a single model.

• The approach addresses an inherent shortcom-
ing in creating synthetic paraphrases from bi-

1We release our code at https://github.com/
thompsonb/prism
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text in which ambiguities in one language can
create errorful synthetic paraphrases in the
other (see §6).

• Separating the fluency and semantic similarity
model from the lexical and/or syntactic diver-
sity model allows them to be developed and
evaluated with less interdependencies.

We conduct human evaluations to compare our
proposed method to a strong English baseline para-
phraser trained on the ParaBank 2 dataset (Hu et al.,
2019c), which consists of 50 million synthetic ex-
amples generated by translating the Czech side of
Czech–English bitext into English and pairing it
with the original English. We find that our method
outperforms this baseline—both in terms of seman-
tic similarity and grammaticality—when our sys-
tem is adjusted to match the lexical diversity of
the baseline. We also present small scale evalua-
tions that suggest our method is effective in other
languages.

2 Related Work

Paraphrase Generation Machine translation
techniques can be used to train paraphrase models
(Quirk et al., 2004). Another method to generate a
paraphrase is to translate a text to a different lan-
guage and then back again (Mallinson et al., 2017).
Multiple pivot languages can be used to lessen the
effect of inherent ambiguities (Aziz and Specia,
2013), at the expense of complication. Several
works have focused on training on paraphrase data,
including synthetic data created by starting with
bitext and translating one side into the language
of the other side to create synthetic paraphrases
(Wieting et al., 2017; Wieting and Gimpel, 2018;
Hu et al., 2019c). Ideas such as adversarial train-
ing (Iyyer et al., 2018), reinforcement learning (Li
et al., 2018), and variational autoencoders (Gupta
et al., 2018; Chen et al., 2019b) have also been
explored in the context of paraphrase generation.

Diversity in Generation Creating paraphrases
which differ from their input in non-trivial ways is
a challenging problem. Hu et al. (2019c) used con-
strained decoding (Hokamp and Liu, 2017) in con-
junction with a set of constraints (e.g., avoiding cer-
tain words which are present in the input) when cre-
ating synthetic paraphrases from bitext. Kajiwara
(2019) also used hard constraints, but at decod-
ing time. Our work is similar but uses “soft” con-
straints (i.e., down-weighting tokens which com-

plete n-grams in the input, but not disallowing them
all together). Another approach is to control gen-
eration with syntactic examples (Iyyer et al., 2018;
Chen et al., 2019a) or codes (Shu et al., 2019).

Multilingual NMT Multilingual NMT (Dong
et al., 2015) has been shown to enable zero-shot
translation—that is, translation between languages
pairs not included in training (e.g., translating from
Spanish→Arabic at test time when the model was
trained on Spanish→English and English→Arabic,
but not Spanish→Arabic) (Johnson et al., 2017;
Gu et al., 2018; Pham et al., 2019). Zhou et al.
(2019) also explored incorporating paraphrase data
into training to improve multilingual NMT perfor-
mance.

Tiedemann and Scherrer (2019) explored using
paraphrase recognition to test the semantic abstrac-
tion of a fairly small multilingual NMT system
trained on Bibles and also demonstrate the model’s
ability to paraphrase in English. However, they
did not perform a human evaluation of paraphrase
quality, and Thompson and Post (2020) found that
simply generating via beam search from a multilin-
gual NMT model trained on a large general domain
corpus results in trivial copies most of the time.
We build upon Tiedemann and Scherrer (2019) by
using a larger, general domain model, introduc-
ing a novel generation algorithm to produce output
with lexical diversity, and performing human eval-
uations.

Paraphrastic similarity Similarity between in-
termediate representations produced by multilin-
gual NMT encoders has been used to measure
semantic similarity and/or paraphrastic similarity
(Schwenk and Douze, 2017; Wieting et al., 2019;
Raganato et al., 2019). Similarly, Prism (Thomp-
son and Post, 2020) use a multilingual NMT model
as a lexically/syntactically unbiased paraphraser for
scoring MT system outputs conditioned on their
associated human reference translations. We build
on this by introducing a lexical bias away from the
input at generation time, enabling the use of a mul-
tilingual NMT model as a generative paraphraser.

3 Method

Let x and y be sentences, letM(x) represent the
meaning of x, and let S(x, y) measure the lexical
and/or syntactic similarity between the two sen-
tences. Formally, we can state the problem of para-
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Algorithm 1 Before paraphrasing a sentence, buildPenalties() is called to construct a mapping
of word prefixes to subwords that require penalties. Then, penalize() is called to modify the model
prediction targetLogProbs at every decoder timestep.

def buildPenalties(source):
penalties = defaultdict(list)
for n in [1, 2, 3, 4]:
for ngram of size n in subwords2words(source):
prefix, word = ngram[0:-1], ngram[-1]
for subword in targetVocab:
if word.lower().startsWith(subword.lower()):
penalties[prefix].append(subword)

return penalties

def penalize(history, penalties, targetLogProbs):
for n in [1, 2, 3, 4]:
prefix = subwords2words(history)[-(n-1):]
for subword in penalties[prefix]:

targetLogProbs[id(subword)] -= alpha * (n ** beta)

phrase generation as finding ŷ:

ŷ = argmax
y

[p(y | M(x))− αS(x, y)] (1)

where α controls the semantic similarity and flu-
ency vs lexical and/or syntactic diversity trade-off.

3.1 Lexically/Syntactically Unbiased
Paraphraser

The intralingual probability p(y | M(x)) can be
viewed as a lexically/syntactically unbiased para-
phraser. This model is responsible for producing
output which is both semantically similar to the
input and fluent, but has no notion of lexical and/or
syntactic diversity. We use the multilingual NMT
system released with Prism to model p(y | M(x)).

3.2 Lexical Bias

We choose n-gram overlap as our measure of lexi-
cal and/or syntactic similarity S(x, y), and propose
a simple n-gram overlap measure that penalizes
the production of n-grams matching n-grams in the
input sequence to enable the paraphrase generation.
Our proposed algorithm begins by constructing a
set of all (word) n-grams, 1 ≤ n ≤ 4, from the
input.2 At each decoding step, the algorithm checks

2In this work, we assume words are separated by whites-
pace. For languages which do not denote word boundaries,
our method could likely be applied after tokenizing the input,
or by simply treating each SentencePiece token as a word.

whether any of the target vocabulary subwords be-
gin the last word of an input n-gram.3 All such sub-
words are penalized by subtracting αnβ from the
output log probabilities of the NMT model before
selecting candidates to extend the beam, where n is
the n-gram length, α is the user-specified trade-off
between semantic similarity and lexical diversity,
and β is another user-defined hyperparameter.

We experimented with penalizing 1-, 2-, 3-, and
4-grams equally but found it produced disfluent
output, as the algorithm tended to avoid all words
in the input. The exponential weight allows us to
penalize the decoder for producing larger overlap-
ping n-grams more harshly than small ones. All
experiments in this work use β = 4, as this pro-
duced output in English which appeared fluent to
the authors. Finally, the NMT model’s vocabu-
lary contains case variants (e.g., “his” and “His”)
and we do not want to add variation by trivially
changing the case of words, so we penalize all case
variants of the next tokens. Pseudocode for our
approach is provided in Algorithm 1. Note that this
method is much simpler than the method used to
generate training data for ParaBank 2, which in-
cluding hand-written constraints, scoring, filtering,
and clustering.

3We apply the penalty at the start of the generation of
the last word of an input n-gram so that the decoder is not
encouraged to produce an unnatural completion to an already-
begun word.
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3.3 Diversity Control
The α parameter in Equation 1 provides the user
with a knob to control how strongly the output
is “pushed” away from the input, in lexical space,
during generation. In contrast to positive and nega-
tive hard lexical lexical constraints (Hokamp and
Liu, 2017; Post and Vilar, 2018; Hu et al., 2019c),
our method requires no user-defined constraints,
making it simpler and perhaps more language ag-
nostic.4

3.4 Development and Evaluation
Paraphrase evaluation is complicated by the fact
that many different aspects of paraphrases can be
evaluated including semantic similarity between
input and output, fluency, grammatical correctness,
lexical diversity between input and output, and syn-
tactic diversity between input and output. The rel-
ative importance of these aspects is not intuitively
obvious and is likely determined by downstream
tasks.

Modeling semantic similarity and lexi-
cal/syntactic diversity separately has the potential
to somewhat lessen the burden of evaluation in
several ways:

1. There are several potential ways to automat-
ically evaluate the model p(y | M(x)). One
option is to evaluate perplexity on a test set
consisting of human paraphrases. (Thomp-
son and Post (2020) found that their multilin-
gual NMT model assigned higher probability
to both copies of the input and human para-
phrases of the input, compared to a model
trained on ParaBank 2.) Another option is
to test models of p(y | M(x)) on pairs of
paraphrases where one paraphrase has been
deemed to better preserve the semantic mean-
ing of the input. Such datasets already exist,
in about a dozen languages, due to the anno-
tation efforts undertaken at the annual WMT
evaluations.5 In other words, we can simply
treat a model of p(y | M(x)) as an MT metric
in order to judge its quality. In other words,
we can simply treat a model of p(y | M(x))
as an MT metric in order to judge its quality.

4 One concern with hard constraints is that there are some-
times words or phrases (e.g., proper nouns) that should not
be paraphrased, as doing so would change the meaning of the
sentence. Thus heuristics are often used to determine which
words/phrases should be constrained.

5In particular, the relative ranking judgements collected
through 2016 (Bojar et al., 2016) are probably the most rele-
vant.

2. By applying the lexical/syntactic bias in gen-
eration, development of the generation algo-
rithm can be conducted without the time/cost
of re-training a model, and multiple genera-
tion schemes can be directly compared using
the same p(y | M(x)) model, such as the
freely available Prism model (Thompson and
Post, 2020).

3. Being able to control the amount of lexical
and/or syntactic diversity at inference time
allows for easier comparison with prior para-
phrasing work, as the diversity can be adjusted
to match that of a prior method. (We employ
this approach in §4.3.1.)

4 Experimental Setup

4.1 Primary Model

We use the multilingual NMT model released with
Prism (Thompson and Post, 2020), which uses a
Transformer (Vaswani et al., 2017) architecture
with approximately 750 million parameters. The
model was trained in fairseq (Ott et al., 2019). The
authors take several steps to encourage the encoder
and decoder to be language agnostic, including
specifying the target language as the first token in
the target, so that the encoder does not know the
target language, and training on several datasets
that include a large number of different language
pairs. The model was trained on several open
source datasets including WikiMatrix (Schwenk
et al., 2019), Global Voices,6 EuroParl (Koehn,
2005) SETimes,7 and United Nations. After fil-
tering, this resulted in approximately 100 million
translation pairs and covering 39 languages. The
model uses a shared, multilingual vocabulary of
64k SentencePiece tokens (Kudo and Richardson,
2018).

4.2 Baseline Model

As a baseline, we train an English-only paraphraser
in fairseq on the ParaBank 2 dataset (Hu et al.,
2019c) with approximately 253M parameters and a
SentencePiece vocabulary of 16k tokens. We train
a Transformer with an 8-layer encoder, 8-layer de-
coder, 1024 dimensional embeddings, embedding
sizes of 1024, feed-forward size of 4096, and 16
attention heads. Dropout is set to 0.3, label smooth-

6http://casmacat.eu/corpus/
global-voices.html

7http://nlp.ffzg.hr/resources/corpora/
setimes/
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Reference Among other things, the developments in terms of turnover, employment, warehousing and prices are recorded.

α=0.0005 Among other things, developments in terms of turnover, employment, storage and prices are recorded.
α=0.003 Among other things, it records developments in turnover, employment, storage and prices.
α=0.006 Amongst other things, developments regarding turnover, employment, storage and prices were recorded.

Figure 1: Example English paraphrase for the three α values used in this work.

ing to 0.1, and learning rate to 0.0005, and batch
size was 31200 tokens. Other parameters match
the fairseq defaults. The model trained for approx-
imately 6 weeks (33 epochs) on 4 Nvidia 2080
GPUs.

4.3 Evaluation

We conduct a manual evaluation in English us-
ing Mechanical Turk workers and conduct smaller
scale manual evaluations in German and Spanish,
with the help of colleagues who are native speakers.
We perform human evaluations following (Hu et al.,
2019b), described in more detail below.

4.3.1 English Evaluation
In this work, we focus on evaluation of semantic
similarity, grammatical correctness, and lexical di-
versity. For the model trained on ParaBank 2, the
trade-off between these dimensions is fixed and
built into the model. To make a fair comparison,
we adjust our overlap penalty (α) such that the out-
put of our method matches the lexical diversity of
the model trained on ParaBank 2. Following Hu
et al. (2019c), we use uncased BLEU (Papineni
et al., 2002), computed between input and output,
to estimate the lexical diversity of the paraphraser.

We evaluate in English using Mechanical Turk
workers who were selected from a curated list of
previously vetted workers. Annotators were pre-
sented with a reference sentence and four para-
phrases: three paraphrases from our proposed
method (at three different operating points) and
one from the model trained on ParaBank 2, pre-
sented in random order. For each paraphrase, the
annotators were asked to (1) rate the paraphrase as
(i) grammatical, (ii) having one or two small gram-
matical errors, or (iii) ungrammatical, and (2) rate
the semantic similarity between the input and the
paraphrase using an analog slider bar from 1–100.
We randomly select 200 sentences from the En-
glish side of the WMT19 German–English test set
(Barrault et al., 2019) and obtain ratings from three
annotators, for each sentence at each paraphrase
system/setting combination. Annotators were paid
0.50 USD per HIT.

For our proposed method, we choose three oper-
ating points: α = 0.0005, α=0.003, and α=0.006
(Figure 1). The middle point of α=0.003 was cho-
sen so as to produce output with the same lexical
diversity as the paraphraser trained on ParaBank 2,
as described above. We decode with a beam size
of 5, using the fairseq defaults.

4.3.2 German & Spanish Evaluation
We also collect human judgments in German and
Spanish. We follow the evaluation procedure de-
scribed above for the English paraphraser except
that annotations were done by colleagues who were
native speakers in these languages. For Spanish,
we used the target side of the WMT 2013 English–
Spanish test set (Bojar et al., 2013). For German,
we used the target side of the WMT 2019 English–
German test set (Barrault et al., 2019). We obtained
50 judgments per set of 3 paraphrases by one Ger-
man annotator, and 150 judgments per set of 3
paraphrases by three Spanish annotators, both on a
random sample of sentences. Multiple paraphrases
from our proposed method at different operating
points (i.e., different values of α) were shown to
the annotator, in random order.

5 Results

5.1 English Results

Human evaluation results in English are shown
in Figure 2. We find that α is negatively corre-
lated with grammaticality and semantic similarity
between the input and output and positively cor-
related with lexical diversity of the output with
respect to the input, as expected.

We find that at the operating point α = 0.003,
which was chosen such that our method has the
same lexical diversity as the model trained on Para-
Bank 2, the paraphrases from our method were
judged to be both more semantically similar to the
input and grammatical (slightly) more often.

5.2 German & Spanish Results

The human evaluation results in German and Span-
ish, along with English for reference, are shown
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Figure 2: Human judgments of English paraphrases for semantic similarity (rated 1–100) and the percentage of
sentences produced which were rated as grammatical, both as a function of lexical/syntactic diversity (measured
via uncased BLEU between input and output). We evaluated our generation method at three operating points
(α=0.0005, α=0.003, and α=0.006). α=0.003 was chosen to match such that the proposed method had the same
diversity as the model trained on Paracrawl2. At that operating point, humans rated output of our method to be
more semantically similar to the reference (87.5 vs. 81.0), and grammatical slightly more often (95.0% vs. 94.5%).
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Figure 3: Human judgments of German (De) and Spanish (Es) paraphrases, with English (En) shown for reference,
plotted against uncased BLEU computed between the paraphraser input and output. The judgement criteria and α
values match English settings. α decreases from left to right in all plots.

in Figure 3. Note that we have no way to normal-
ize between annotators in different languages, thus
the results should not be used to draw conclusions
about the relative performance of the paraphraser
of these languages. However, we find the trends
are similar across all three languages, and that se-
mantic similarity and grammaticality judgements
for Spanish and German are both reasonably high.

6 Discussion

We hypothesize that our method outperforms the
baseline because it does not suffer from a fun-
damental shortcoming in creating synthetic para-
phrase data from bitext: namely that inherent ambi-
guities present in one language (but not the other)
can cause erroneous synthetic paraphrases in the
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other language (Aziz and Specia, 2013).
For the sake of discussion we consider gender8

as an ambiguity. Suppose we create synthetic En-
glish paraphrases from Turkish–English data, and
our bitext contains the following (valid) sentence
pair: (“O mağazaya gitti.”, “She went to the store.”)
Turkish is a gender-neutral language, so when we
translate the Turkish side to English it is perfectly
valid to translate the sentence to “He went to the
store.” Pairing the original English translation with
the translation results in the synthetic paraphrase
example (“She went to the store.”, “He went to the
store.”). Since English is gendered, this results in
an invalid synthetic paraphrase.

In contrast, consider what happens if “She went
to the store.” is paraphrased by our method. First,
the sentence is converted to an intermediate repre-
sentation by the encoder. If the encoder were from
an English→Turkish system, it is plausible that the
encoder would discard gender information, as it is
not needed in the target language. However, our en-
coder comes from a multilingual system which can
produce output in many different languages. Thus,
as long as the model has seen a sufficient number of
training examples between English and at least one
other gendered language, we can reasonably expect
that the intermediate representation will preserve
gender. Thus, when this representation is passed to
the decoder and English is requested as the target
language, the model should put low probability on
any output for which the subject is male.

An alternative way to address pivot language
ambiguities is to use multiple pivot languages, as
proposed by Aziz and Specia (2013). However,
it is not clear how best to extend this idea to neu-
ral sequence-to-sequence models, or to a multilin-
gual paraphraser. Combining synthetic paraphrases
for training using several different pivot languages
would mitigate the errors due to ambiguities from
any one pivot language, at the expense of errors
due to ambiguities in other pivot languages. To
really address such errors would require combining
models of different language pairs; see Mallinson
et al. (2017) for one such solution.

7 Conclusions

We treat paraphrasing as a zero-shot translation
task and present a method to control the lexical

8Czech is, of course, gendered, so we would not expect the
ParaBank 2 dataset (which was created from Czech–English
bitext) to have gender errors. But the logic presented here
should generalize to other ambiguities.

diversity of paraphrases generated from a multilin-
gual NMT model, enabling paraphrase generation
in many languages. Our approach gives a user fine-
grained control over the amount of lexical diversity
at generation time, and also allows models and gen-
eration algorithms to be developed and evaluated
with less interdependencies. There are likely many
other ways that the output could be controlled to
vary other aspects, such as syntactic diversity (Shu
et al., 2019); we would like to explore such meth-
ods in future work.

Our work outperforms an English baseline
trained on a large synthetic paraphrase dataset (Hu
et al., 2019b). This improvement in performance
may be because our method does not suffer from
the issue that ambiguities in the pivot language
used to create synthetic paraphrase data can cause
errors in synthetic data. Small experiments indicate
our method also performs well in other languages.

Multilingual NMT is an active research area and
we are optimistic that this approach will pave the
way for even stronger paraphrase generation in the
future, as multilingual NMT methods continue to
improve and models are publicly released.
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Abstract
Despite the reported success of unsupervised
machine translation, the field has yet to ex-
amine the conditions under which the meth-
ods succeed and fail. We conduct an exten-
sive empirical evaluation using dissimilar lan-
guage pairs, dissimilar domains, and diverse
datasets. We find that performance rapidly
deteriorates when source and target corpora
are from different domains, and that stochas-
ticity during embedding training can dramati-
cally affect downstream results. We advocate
for extensive empirical evaluation of unsuper-
vised MT systems to highlight failure points
and encourage continued research on the most
promising paradigms. Towards this goal, we
release our preprocessed dataset to stress-test
systems under multiple data conditions.

1 Introduction

Machine translation (MT) has progressed rapidly
since the advent of neural machine translation
(NMT) (Kalchbrenner and Blunsom, 2013; Bah-
danau et al., 2015; Sutskever et al., 2014) and is
better than ever for languages for which ample
high-quality bitext exists. Conversely, MT for low-
resource languages remains a great challenge due
to a dearth of parallel training corpora and poor
quality bitext from esoteric domains. To address
this, several authors have proposed unsupervised
MT techniques, which rely only on monolingual
text for training (e.g., Ravi and Knight, 2011; Yang
et al., 2018; Artetxe et al., 2018c; Hoshen and Wolf,
2018; Lample et al., 2018a,b; Artetxe et al., 2018b,
2019).

Recent unsupervised MT results appear promis-
ing, but they primarily report results for the high-
resource languages for which traditional MT al-
ready works well. The limits of these methods are
so far under-explored. For unsupervised MT to
be a viable path for low-resource machine transla-
tion, the field must determine (1) if it works out-
side highly-controlled environments, and (2) how

to effectively evaluate newly-proposed training
paradigms to pursue those which are promising for
real-world low-resource scenarios. Unsupervised
MT methods must work (1) on different scripts
and between dissimilar languages, (2) with im-
perfect domain alignment between source and
target corpora, (3) with a domain mismatch be-
tween training data and the test set, and (4) on the
low-quality data of real low-resource languages.
These factors reflect the real-life challenges of low-
resource translation.

Our main contribution is an extensive analysis
of unsupervised MT with regards to factors (1)-(3)
above.1 We find that (a) translation performance
rapidly deteriorates when source and target corpora
are from different domains, (b) stochasticity during
word embedding training can dramatically affect
downstream bilingual lexicon induction (BLI) and
translation performance, and (c) like in the bilin-
gual lexicon induction literature, unsupervised MT
performance declines when source and target lan-
guages are dissimilar. While (4) is not the focus of
this paper, we do observe very low performance on
an authentic low-resource language pair, corrobo-
rating previous studies (Guzmán et al., 2019).

Finally, as there are no standard evaluation pro-
tocols to ensure that unsupervised MT systems are
robust to the types of data anomalies ubiquitous
in low-resource translation settings, we advocate
for extensive empirical evaluation of unsupervised
MT systems to highlight failure points and en-
courage continued research on the most promising
paradigms.

We first discuss related work in Section 2, fol-
lowed by a detailed overview of the unsupervised
MT architecture in Section 3. In Section 4, we
discuss our research questions, followed by our
evaluation methodology and datasets in Sections 5

1We release our full dataset at http://statmt.org/
when-does-unsup-work to facilitate the stress-testing
of systems.
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and 6. Section 7 presents our findings, and Section
8 discusses the results. We conclude in Section 9.

2 Related Work

Bilingual Lexicon Induction Unsupervised MT
methods can be thought of as an end-to-end ex-
tension of work inducing bilingual lexicons from
monolingual corpora. Bilingual lexicon induction
(BLI) using non-parallel data has a rich history,
beginning with corpus statistic and decipherment
methods (e.g., Rapp, 1995; Fung, 1995; Koehn and
Knight, 2000, 2002; Haghighi et al., 2008), contin-
uing to modern neural methods to create crosslin-
gual word embeddings (e.g. Mikolov et al., 2013a;
Conneau et al., 2018, see Ruder et al. (2019) for a
survey) which form a critical component of state-
of-the-art unsupervised MT systems.

Evaluation of Embedding Spaces Søgaard et al.
(2018) determine that monolingual embedding
spaces of similar languages are not typically iso-
morphic as was previously believed, and that bilin-
gual dictionary induction “depends heavily on...
the language pair, the comparability of the mono-
lingual corpora, and the parameters of the word em-
bedding algorithms.” Vulić et al. (2019) argue that
unsupervised approaches are unsuccessful with dis-
similar languages and domains, and that unsuper-
vised performance has been overly lauded because
the conditions under which they were compared
with supervised baselines were inequitable.

While a modest body of literature has exam-
ined the quality of cross-lingual word embeddings
(CLEs) by measuring performance on BLI, Glavaš
et al. (2019) evaluate on downstream natural lan-
guage tasks, underlining the importance of full-
system evaluation. The authors conclude that “the
quality of CLE models is largely task-dependent
and that overfitting the models to the BLI task can
result in deteriorated performance in downstream
tasks.” Similarly, Doval et al. (2019) investigate
cross-lingual natural language inference.

Evaluation of Unsupervised MT Liu et al.
(2020) helpfully re-define unsupervised machine
translation into three distinct categories: (1) no
bitext whatsoever, (2) the target language pair is
linked through bitext via a pivot language, and
(3) no linkage through a pivot language, but bi-
texts exists for *some* language and the target
language. The authors analyze their multilingual
pretraining method with respect to other similar

training paradigms (Conneau and Lample, 2019;
Song et al., 2019) and evaluate unsupervised MT
performance when using backtranslation (Defini-
tion 1) or language transfer after finetuning on re-
lated bitext (Definition 3).

In unsupervised MT with no bitext, Lample et al.
(2018b) ablate their PBSMT system, finding that
initial phrase table quality is critical and that perfor-
mance suffers when the language model is trained
with less data. They tweak their NMT embed-
ding initialization method, such as using separately-
trained BPE instead of joint, and word embeddings
instead of BPE token embeddings. They report
the results of dropping part of their loss function
and making minor changes to the NMT architec-
ture on downstream BLEU score. Concurrently to
our work, Kim et al. (2020) arrived at similar con-
clusions to us using a different autoencoder/dual-
learning unsupervised MT approach based on cross-
lingual language model pretraining (Conneau and
Lample, 2019); this complements our experiments
and corroborates our results.

3 Background: Unsupervised MT

Our experiments employ the models of Artetxe
et al. (2018b, 2019) as representative of state-of-
the-art for the class of unsupervised MT methods
that bootstrap from cross-lingual word embeddings.
Recent work such as Lample et al. (2018b) is based
on similar concepts. For our purposes, unsuper-
vised MT follows Liu et al. (2020)’s Definition (1)
from Section 2, where no bitext exists.

Another approach to unsupervised MT involves
pretraining a bilingual or multilingual model on
monolingual text on a general task before finetun-
ing on translation. Such methods include cross-
lingual language model pretraining (Conneau and
Lample, 2019), masked sequence-to-sequence pre-
training (Song et al., 2019), and multilingual de-
noising pretraining (Liu et al., 2020), and have
shown promise. For instance, Liu et al. (2020)
record the first good results on the low-resource
Sinhala-English and Nepali-English pairs. While
pretraining and multilingual methods are not the
subject of this work, they warrant future evaluation.

Figure 1 depicts the basic training process. It is
the publicly-available SMT setup of Artetxe et al.
(2018b)2, plus the “NMT hybridization” steps from
Artetxe et al. (2019).3

2https://github.com/artetxem/monoses
3Shared with us by Mikel Artetxe.

572



Figure 1: The unsupervised MT architecture used in
this work. This model is a replication of Artetxe et al.
(2018b) [steps before NMT] and Artetxe et al. (2019)
[NMT component].

Training begins with two monolingual corpora
which are not necessarily related in any way (i.e.
they are not assumed to be parallel nor comparable
text). First, word embeddings are trained indepen-
dently for each corpus, resulting in a source and a
target embedding space. Specifically, after prepro-
cessing, Artetxe et al. (2018b) train two statistical
language models using KenLM (Heafield, 2011),
one for the source language and one for the tar-
get. They use phrase2vec4 (Artetxe et al., 2018b),
an extension of Mikolov et al. (2013b)’s skip-gram
model,5 to generate phrase embeddings for 200,000
unigrams, 400,000 bigrams, and 400,000 trigrams.

Next, source and target word embeddings are
aligned into a common cross-lingual embedding
space. They run VecMap6 (Artetxe et al., 2018a)
which calculates a linear mapping of one space
to another based on the intuition that phrases
with similar meaning should have similar neigh-
bors regardless of language. Given a matrix of
source word embeddingsX and target word embed-
dings Z which have been length-normalized, mean-
centered, then length-normalized again, VecMap
calculates Mx = XXT and Mz = ZZT . Each
cellMxij andMzij is the cosine similarity between
words Xi and Xj , and Zi and Zj , respectively. Mx

and Mz are symmetric, and if the monolingual vec-
tor spaces were fully isometric, Mx and Mz would
be identical besides rows and columns being per-
muted. Each row of Mx and Mz is a similarity
distribution. To exploit this, each row of

√
Mx and

4https://github.com/artetxem/
phrase2vec

5https://github.com/tmikolov/word2vec
6https://github.com/artetxem/vecmap

√
Mz is sorted (they find that using the square root

works better empirically), and length-normalized,
mean-centered, and length-normalized again. For
each row i in sorted(

√
Mx), they find the row j of

sorted(
√
Mz) that is its nearest neighbor, and as-

signXi = Zj in the initial translation dictionaryD.
A cellDij = 1 if wordsXi, and Zj are translations
of one another, and 0 otherwise.

Next, there is an iterative process of calculating
the optimal linear mappings and extracting an up-
dated dictionary. For calculating the mapping, the
goal is to find the linear transformations Wx and
Wz which maximize the cosine similarity of the
words that are translations of one another as defined
by the dictionary D, over the entire dictionary:

arg max
Wx,Wz

∑

i

∑

j

(Dij)((XiWx) · (ZjWz))

From there, they calculate M = XWxW
T
z Z

T ,
whereby each cell in M is the cosine similarity
of word Xi and Zj after their transformations with
Wx and Wz . To avoid poor local optima, they
stochastically zero-out some cells of M with prob-
ability p = 0.9, decreasing over time.

The final score for each potential translation can-
didate is calculated using Cross-domain Similarity
Local Scaling (CSLS) (Conneau et al., 2018) to
mitigate the hubness problem. CSLS utilizes co-
sine similarity, which is taken from M . For each
pair of words Xi and Zj , the new dictionary cell
Dij = 1 if the CSLS score between Xi and Zj is
the highest over all other words in Z, and Dij = 0
otherwise. The dictionary is created in both direc-
tions, and concatenated. Readers are directed to
Artetxe et al. (2018a) for further details.

The next step extracts an initial phrase-table for
use in a SMT system. They use the softmax over
the cosine similarity of the 100 nearest-neighbors
of each source phrase embedding as the phrase
translation probabilities. This is done in both direc-
tions:

(f |e) =
e(cos(e,f)/τ)∑
f ′ e

(cos(e,f ′)/τ)

For the target embedding with the highest cosine
similarity, the phrases are aligned, and unigram
translation probabilities are multiplied to become
the lexical weighting.

Combining the preliminary phrase table with a
distortion penalty and language model produces
the initial unsupervised phrase-based SMT system
(Koehn et al., 2007). The SMT model weights
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are tuned using a variant of MERT (Och, 2003)
designed for unsupervised scenarios, which uses
10,000 parallel sentences generated via backtransla-
tion (Sennrich et al., 2016a). The SMT model then
undergoes three rounds of iterative backtranslation.

Artetxe et al. (2019) extend their 2018 work by
adding a critical “NMT hybridization” final step,
which achieves significant gains over SMT alone.7

An NMT system is trained using backtranslated out-
put from SMT for one epoch. On the next epoch, a
small number of sentences are backtranslated with
the newly-trained NMT system and concatenated
with a slightly smaller fraction of SMT-generated
bitext. The procedure continues for 30 epochs,
gradually increasing the percentage of synthetic
training data created by the NMT system until all
of the training data is NMT-generated. The NMT
system is trained for an additional 30 epochs of iter-
ative backtranslation using data generated fully by
the NMT system of the previous epoch. The test set
is translated with beam search using an ensemble of
models saved at every tenth epoch (six total), result-
ing in BLEU scores of 33.2 and 26.4 (SacreBLEU
(Post, 2018)) on newstest2014 for French-English
and German-English, respectively.

We run Artetxe et al. (2018b, 2019)’s imple-
mentation for our experiments. Specifically, neu-
ral models are Transformer-big (Vaswani et al.,
2017) trained with fairseq (Ott et al., 2019) on
one NVIDIA GeForce GTX 1080Ti GPU. Models
use shared embeddings, the Adam optimizer with
β1 = 0.9, β2 = 0.98 (Kingma and Ba, 2015), label
smoothing, initial learning rate of 1e-07 warming
up for 4000 steps to 5e-04 before decaying, and
dropout (Srivastava et al., 2014) probability of 0.3.
We set optimizer delay to 4 to simulate 4 GPUs.

To elucidate the performance gap due to the un-
supervised architecture, we build a standard super-
vised NMT system using the same neural architec-
ture described above. We train until performance
on the development set ceases to improve for 10
epochs. To parallel the unsupervised setup, we
translate the test set using an ensemble of 6 models;
We perform ensemble selection by performance
on a validation set, selecting the best-performing
checkpoint along with 5 previous checkpoints.

7Readers are directed to Artetxe et al. (2019) for additional
changes that resulted in sizable BLEU (Papineni et al., 2002)
gains before the NMT phase.

4 Research Questions

Existing unsupervised translation methods work
well on languages which are similar to each other,
use the same Roman script, and have an ample
amount of monolingual news data available (which
matches the test set domain). Questions remain as
to whether unsupervised methods will be useful on
authentic low-resource settings where few or none
of the aforementioned properties hold. Namely,
does unsupervised MT work with:

• dissimilar languages?

• dissimilar source and target domains?

• diverse datasets?

• authentic low-resource language pairs?

Such questions reflect the reality of authentic
low-resource translation, and are those which must
be adequately resolved for unsupervised MT to be a
viable alternative to traditional translation methods
for the most difficult language pairs.

5 Evaluation of Unsupervised MT

We perform an extensive empirical evaluation of
unsupervised MT. Our evaluation protocol stress-
tests an unsupervised MT system under varying
conditions to reveal its points of strength and fail-
ure. Systems should be judged on how well they
perform: (1) on dissimilar languages, (2) on in-
creasingly divergent domains between source and
target corpora, (3) on diverse datasets, and (4) on
authentic low-resource language pairs where data
quality is typically low. Namely, we:

1. Choose 2 language pairs, at least one of which
where the source and target languages utilize
different scripts.

2. Choose 3 datasets of different domains, at
least one of which is parallel bitext.

3. Perform at least one experiment for each lan-
guage pair under each of the following data
conditions:

• Originally parallel
• Not originally parallel
• Different domain for source and target.

4. Choose 2 true low-resource language pairs.
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5. Judge the system based on performance in all
tested scenarios.

The data conditions above are designed measure
how well a system performs in regards to the re-
search questions of Section 4. Namely, success on
a variety of languages with different scripts and lin-
guistic structure indicates robustness to dissimilar
languages; success on multiple datasets of different
domains indicates that the system is not specifi-
cally designed for one domain at the expense of
others, and performs well even when training and
test data do not match perfectly; Step #3 evaluates
performance on increasingly divergent domains be-
tween source and target data; and Step #4 is the
true test—whether the system succeeds on authen-
tic low-resource language pairs.

6 Datasets

Training datasets used in our reinvestigation of the
unsupervised MT system presented in Artetxe et al.
(2019) are shown in Table 1. We focus on Russian-
English (Ru-En) and French-English (Fr-En) tasks
and include as reference Sinhala-English (Si-En)
and Nepali-English (Ne-En) as well. Following
Section 5, we evaluate the same system under vari-
ous ablated data setups:

• The “Supervised” condition is the standard
MT training setup which uses parallel bitext.

• In the “Parallel” condition, an unsupervised
MT system is trained on a corpus that was
originally parallel (i.e. UN corpus), now being
treated as two separate monolingual corpora.

• In contrast, the “Disjoint” setting splits data
from a parallel corpus into two disjoint halves,
using the first half of the source-side corpus
and the second half of the target-side corpus.

• In the “Different Domain” (Diff. Dom.) set-
ting, source and target monolingual corpora
come from different domains. This is a real-
istic setting in low-resource scenarios, and is
expected to be much more difficult than the
“Disjoint” setting.

• “News crawl” (News) and “Common Crawl”
(CC) settings determine whether the system
can flexibly handle diverse datasets.

Specifics of the datasets used are described in sub-
sequent subsections. Token counts presented in

Condition Corpus Src Trg
Repro Fr-En News 694 1940

En-Fr News 1940 694
Supervised Fr-En UN: A 346 301

Ru-En UN: A 284 284
Parallel Fr-En UN: A 302 270

Ru-En UN: A 232 241
Disjoint Fr-En UN: A / B 302 255

Ru-En UN: A / B 232 236
Diff. Dom. Fr-En UN: A / CC 302 226

Ru-En UN: A / CC 232 226
News Fr-En News 116 105

Ru-En News 120 105
CC Fr-En CC 110 79

Ru-En CC 115 79

Table 1: Training data after preprocessing. UN =
United Nations, CC = Common Crawl, News = News
crawl. “Diff. Dom.” uses UN on the source-side and
CC on the target-side. “News” is a subset of 2007-08
for En, 2007-09 for Fr, and 2008-11 for Ru. “Repro”
is the condition most similar to (Artetxe et al., 2018b,
2019). Src (M) and Trg (M) columns are the token
counts, in millions. “Supervised” count is in BPE to-
kens. All others are token counts for SMT (pre-BPE).

the subsections below are before preprocessing,
whereas Table 1 reflects the data remaining after the
preprocessing procedure of Artetxe et al. (2018b).
We will release the preprocessed data splits for
others to compare their results with ours.

6.1 United Nations

The United Nations Parallel Corpus (UN) (Ziemski
et al., 2016) contains official United Nations docu-
ments from 1990-2014, human-translated into six
languages. The first 10,000 lines of each dataset
are held-out. The remaining lines are partitioned
into training sets A & B. Training set A on the
source side and A on the target side are paired to
form the Parallel training set; Training set A on the
source side and B on the target side are paired to
form the Disjoint training set.

6.2 News Crawl

News crawl (News) consists of monolingual data
crawled from news websites. Data for each year
has been shuffled. Following Artetxe et al. (2018b),
we concatenate News crawl 2007-13 for English
and for French. For Russian, we concatenate News
crawl 2008-18. We use the deduplicated Russian
corpus. We use the full datasets to reproduce
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Artetxe et al. (2018b, 2019)’s work. For subse-
quent experiments, we use a subset: the first 100
million tokens from each concatenated News crawl
corpus before preprocessing. For English, this is
all of News crawl 2007 and ∼23.3 million tokens
from News crawl 2008. For French, it is News
crawl 2007, 2008, and some of 2009. For Russian,
it is News crawl 2008-2010, and some of 2011.

6.3 Common Crawl
The Common Crawl (CC) corpora consists of web-
scraped monolingual data ordered as documents.
We extract two training datasets from the English
corpus - one with the first ∼291 million tokens
and another with the first ∼100 million for Diff.
Dom and CC experiments, respectively. We do not
shuffle this data, as having less documents better
simulates real low-resource settings. Sinhala and
Nepali contain approximately 103 million and 110
million tokens, as used in Guzmán et al. (2019).
We additionally extract the first 100 million French
and Russian tokens for CC experiments.

6.4 Preprocessing
Training data is preprocessed separately for each
unsupervised experiment as part of Artetxe et al.
(2018b)’s training pipeline. Data is deduplicated,
and tokenized and truecased using scripts from
Moses (Koehn et al., 2007). Sentences with less
than 3 tokens or more than 80 tokens are dis-
carded, and sentences are shuffled. Ten thousand
sentences are removed to form a development set.
To begin the NMT phase, a joint BPE (Sennrich
et al., 2016b) vocabulary of 32000 tokens is learned.
Source- and target-side corpora are backtranslated
using the final model from the SMT phase, and all
data then has BPE applied.8

For supervised experiments, training data is to-
kenized and truecased, and then a joint BPE (Sen-
nrich et al., 2016b) vocabulary of 32000 tokens is
learned. After applying BPE, the data is cleaned us-
ing Moses’ clean-corpus-n.perl, discard-
ing sentences under 3 and greater than 80 tokens.

6.5 Vocabulary Overlap of Training Sets
A vocabulary of unigrams was collected for each
target-side (English) corpus, which includes tokens
that appear at least 10 times, for a maximum of
200,000 unigrams. Of approximately 144,000 such
unique tokens between UN-A and UN-B from the

8Some experiments had Moses’ clean-corpus-n.
perl applied after this.

Fr-En UN corpus, the corpora share 54.1%. These
corpora are used in the Disjoint condition. The
respective vocabulary overlap for UN-A and CC
from the Diff. Dom condition for Fr-En is 25.7%.
For UN-B vs. CC for Fr-En, they share 25.3%.
Statistics are analogous for Ru-En.

6.6 Test and Validation Sets

Ru-En models are tested on newstest2019. Fr-
En models are tested on newstest2014. Super-
vised models use newstest2018 (Ru-En) or new-
stest2013 (Fr-En) for validation. For Si-En and
Ne-En, we use the Wikipedia dev and devtest sets
from Guzmán et al. (2019).9 For supervised mod-
els, we select the ensemble with best performance
on newstest2017 (Ru-En) or newstest2012 (Fr-En).

7 Reinvestigation of Artetxe et. al.

First, we replicate Artetxe et al. (2018b, 2019),
achieving relatively comparable results (Table 2).
Differences in BLEU scores are likely attributable
to using Artetxe et al. (2018b)’s code for all steps
before the NMT phase; Artetxe et al. (2019) im-
proved upon these, but we chose to use the publicly
available code from the previous year.

Artetxe et al. (2019) This Work
Fr-En 33.2 31.1
En-Fr 33.6 32.8

Table 2: Artetxe et al. (2019)’s unsupervised MT per-
formance vs. the system in this work, which is a com-
bination of Artetxe et al. (2018b) [steps before NMT]
and Artetxe et al. (2019) [NMT component], using the
full News crawl datasets from Subsection 6.2. Scored
using SacreBLEU (Post, 2018) on newstest2014.

Next, we set up a series of experiments to as-
sess the questions posed in Section 4. Results are
presented in Tables 3 and 4.

7.1 Unsupervised Quality Loss

The Supervised (“Sup.”) column of Table 3 shows
performance of a standard Transformer-big archi-
tecture on parallel bitext for Ru-En and Fr-En. As-
suming that supervised translation will always out-
perform unsupervised, these scores represent a ceil-
ing to quantify how much potential quality is lost
using an unsupervised architecture.

9https://github.com/facebookresearch/
flores/raw/master/data/wikipedia_en_ne_
si_test_sets.tgz
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Sup. Parallel Disjoint Diff. Dom.
Corpus A / A A / A A / B A / CC*
Ru-En 26.9 23.7 (-3.2) 21.2 (-5.7) 0.7 (-26.2)

Fr-En 29.9 27.6 (-2.3) 27.0 (-2.9) 3.9 (-26.0)

Table 3: Unsupervised MT performance on a single run
using the United Nations (UN) dataset. “Diff. Dom.”
uses UN data as source and Common Crawl (*) as tar-
get. “Sup.” is supervised with UN parallel data. A /
A refers to UN training dataset A used on the source
and target sides, for example. Scored using Sacre-
BLEU (Post, 2018) on newstest2019 (Ru-En) and new-
stest2014 (Fr-En).

.

The supervised models and those in the Parallel
column use the same datasets10 and can therefore
be directly compared. We observe a BLEU score
drop of ∼3.2 for Ru-En versus a drop of ∼2.3 for
Fr-En when using the unsupervised architecture.
This minor quality loss represents a strong result for
unsupervised MT; however, the question is whether
the results will remain strong as we gradually make
the monolingual corpora less similar.

7.2 Investigating Our Research Questions
Does unsupervised machine translation work for:

(1) Dissimilar language pairs?
We conduct experiments in French and Russian

into English. Whereas French and English share
the same Roman script and common linguistic ori-
gin, Russian is a Slavic language that uses the Cyril-
lic script. The results presented in Tables 3 and 4 in-
dicate that unsupervised MT is more difficult when
writing script and language family differs. Across
the board, we observe that the ∆BLEU between
supervised and unsupervised performance is wider
for Ru-En than for Fr-En, particularly for News and
Common Crawl datasets. For instance, whereas
Fr-En loses 2.9 BLEU in the Supervised versus
Disjoint setups (which use comparable data), Ru-
En loses 5.7 BLEU. While we acknowledge that
in general one should not compare BLEU scores
across language pairs or datasets, this gap suggests
that unsupervised MT may behave differently for
different language pairs.

(2) Dissimilar domains?
We investigate the effects of domain similarity

between source and target training corpora. For
each language, we observe the difference in perfor-

10Differences in token count are due to the different prepro-
cessing detailed in Section 6.4.

mance on Table 3 of the Parallel, Disjoint, and Diff.
Dom. columns.

Because training data in the Parallel condition
was originally parallel, these experiments have the
highest possible domain match between source and
target data. Since Disjoint data was extracted from
the same corpus but was not parallel, source and
target can be thought of as having very slightly dif-
ferent domains. We observe a minor performance
drop between Parallel and Disjoint experiments,
which is more pronounced for Ru-En.

Examining the Diff. Dom. column, however, the
performance contrast is stark. While both language
pairs obtain respectable BLEU scores in the 20s
when domains match in Parallel and Disjoint con-
ditions, performance drops sharply when training
set domains are mismatched—scoring 3.9 BLEU
for Fr-En and 0.7 for Ru-En. (A subsequent run of
Fr-En scored 17.4, addressed in Section 7.4). The
fault is not with either side of the training corpus
alone—Parallel/Disjoint experiments from Table 3
which use UN data alone and CC experiments in
Table 4 which use Common Crawl data alone per-
form acceptably—it is when the two datasets are
paired as source-target in Diff. Dom. conditions
that performance rapidly deteriorates.

(3) Diverse datasets?

UN News CC
Ru-En 21.2 16.1 13.8
Fr-En 27.0 28.2 22.4
Si-En n/a n/a 0.2
Ne-En n/a n/a 0.4

Table 4: Unsupervised MT performance on a single run
using diverse datasets [UN = United Nations (Disjoint),
News = News Crawl, CC = Common Crawl]. Scored
using SacreBLEU (Post, 2018) on newstest2019 (Ru-
En), newstest2014 (Fr-En), and the FLoRes Wikipedia
evaluation sets (Si-En, Ne-En) (Guzmán et al., 2019).

Table 4 shows the results of experiments us-
ing three different training datasets. News crawl
matches the domain of the test set exactly. UN
data has a moderate domain match with the test
set, and CC matches the least. Not unexpectedly,
most experiments where training and test domain
match perform better than when there is a domain
mismatch. The exception is the News experiment
for Ru-En, where the model performs consider-
ably worse than the UN condition despite having a
stronger domain match. Notably, News has approx-
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imately 2-3x less data than UN for each language
pair. We suspect that for Fr-En, the relative ease
of unsupervised translation for this language pair
allowed the strong domain match with the test set
to outweigh the lower amount of data. On the other
hand, the relative difficulty of unsupervised MT
in Ru-En made the system suffer too greatly in
the lower-resource condition, to where it could not
compensate with domain match.

(4) A true low-resource pair?
Facebook recently released test sets for Sinhala-

English and Nepali-English, true low-resource lan-
guage pairs which not only lack bitext, but mono-
lingual data is of poor quality. These languages do
not share a script or language family with English,
and the data is out-of-domain with the English data.
This reflects a real-world low-resource scenario
where we would hope to benefit from unsupervised
MT. We observe extremely poor results in Table 4,
with Si-En achieving a BLEU score of 0.2, and 0.4
for Ne-En. Guzmán et al. (2019) achieve similarly
poor results for these language pairs without using
supplemental data from a related language.

7.3 BLEU During Training
Figure 2 shows translation performance for the ex-
periments in Tables 3 and 4 at various steps dur-
ing the unsupervised machine translation pipeline.
Most SMT models improve performance slightly
as a result of unsupervised MERT tuning, and more
substantially after three rounds of iterative back-
translation. Substantial improvement occurs as a
result of NMT training for all models except the
degenerate Diff. Dom conditions.

Figure 2: BLEU score during training.

7.4 Training Stability
One challenge with unsupervised methods is train-
ing stability: stochasticity during training can give

Condition Min Max µ σ

En-Fr Repro 33.08 42.47 40.86 2.5
Fr-En Repro 45.21 46.92 46.06 0.47

Parallel 48.0 50.2 49.09 0.69
Disjoint 37.88 39.09 38.47 0.37
Diff. Dom. 0.0 17.27 7.97 7.95
News 25.86 28.1 26.97 0.56
CC 25.87 27.6 26.9 0.51

Ru-En Parallel 32.24 34.04 32.95 0.47
Disjoint 25.08 26.96 25.79 0.58
Diff. Dom. 0.0 0.1 0.01 0.03
News 22.19 23.77 23.1 0.44
CC 0.0 24.69 12.61 11.45

Table 5: Accuracies (%) of induced dictionaries on 10-
11 runs. Bold experiments were severely unstable.

substantially different results due to the iterative
bootstrap nature of the training process.

In their analysis of unsupervised methods for
generating CLEs, Glavaš et al. (2019) note consid-
erable instability in performance on BLI. Defining
failure as having a mean average precision (MAP)
of <0.05 on all training runs, Iterative Closest
Point (Hoshen and Wolf, 2018) fails for ∼21%
of language pairs, Gromov-Wasserstein Alignment
(Alvarez-Melis and Jaakkola, 2018) for∼46%, and
MUSE (Conneau et al., 2018) for ∼54%. VecMap
(Artetxe et al., 2018a) succeeds for all language
pairs, leading Glavaš et al. to deem it the most
robust. Artetxe et al. (2018a) demonstrate their
robustness over other methods in their work. When
counting successful runs as achieving >5.0% ac-
curacy, VecMap is successful 10/10 times for three
language pairs. Hartmann et al. (2019) also investi-
gate instability in vector space alignment methods.

After training phrase embeddings for each exper-
iment, we run VecMap on the generated embedding
spaces ten additional times and indeed find little
fluctuation in BLI between runs. When rerunning
the full pipeline for each experiment, however, we
observe considerable instability in two experiments
which dramatically affects downstream results.

We build a gold-standard bilingual dictionary of
2000 word pairs from Wikipedia data (Wołk and
Marasek, 2014) available publicly on OPUS (Tiede-
mann, 2012), and run the first four steps of the un-
supervised training procedure additional times for
each experiment. Table 5 contains the summary
results of 10-11 runs of each experiment.

Tables 3 and 4 present the results of the single
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first run of each experiment. Whereas the majority
have consistent accuracy on bilingual lexicon be-
tween runs as seen in Table 5, Diff. Dom. for Fr-En
and CC for Ru-En are highly unstable. The BLI
accuracy of additional runs of Fr-En Diff. Dom.
ranged between 0.0% and 17.27%. Of the initial
run and 9 subsequent, five had accuracies <0.1%,
while the other five had accuracies >15.26%. For
Ru-En CC, the run reported in Table 4 had a BLI
accuracy of 21.35%. Of eleven runs, five had an ac-
curacy <0.26%, and six had an accuracy >21.35%.

As evidence of the critical effect of BLI accu-
racy on downstream BLEU, whereas the Fr-En Diff.
Dom. run reported in Table 3 had a BLI accuracy
of 0.0%, a subsequent run of the entire training
pipeline had an accuracy of 17.08% and a final
BLEU score of 17.4. (This experiment is not in-
cluded in the summary statistics of Table 5).

The unsupervised pipeline begins with prepro-
cessing (deterministic, except shuffling and ran-
dom selection of development set), language model
training with KenLM (Heafield, 2011) (determin-
istic), followed by phrase embedding training
using phrase2vec (non-deterministic), and then
embedding space mapping with VecMap (non-
deterministic). Because performance on reruns of
VecMap alone was stable while holding the rest
of the system constant, we must conclude that the
dramatic instability is caused by either a poor em-
bedding initialization from phrase2vec/word2vec,
or VecMap’s inability to handle certain monolin-
gual vector space configurations. Apparently, the
initial formation of monolingual vector spaces dra-
matically affects VecMap’s ability to converge to
a good solution, which in turn results in highly
variable downstream translation performance.

To observe the relationship between BLI accu-
racy and downstream BLEU score, we direct the
reader to Figure 3, where BLI accuracy after the
VecMap phase of experiments from Tables 3 and 4
are displayed in relation to the final BLEU score.

8 Discussion

Except in the Diff. Dom. condition, unsupervised
MT performance for Fr-En is impressive and sug-
gests that sentence alignment may not be required
for successful MT under ideal conditions. Ru-En
results are also impressive, but show that unsuper-
vised MT still struggles when language pairs are
dissimilar, especially when data amount is reduced.

The gap between Disjoint and Diff. Dom. con-

Figure 3: Relationship between bilingual lexicon induc-
tion accuracy after VecMap mapping, and final BLEU.

ditions is perhaps the most striking result in our
experiments. It suggests that one cannot naively
collect monolingual corpora without considering
their relative domain similarity; this may be a chal-
lenge in low-resource conditions, where there is
less flexibility with data sources. Vulić et al. (2019)
make a similar claim about unsupervised CLEs,
stating “UNSUPERVISED methods are able to
yield a good solution only when there is no domain
mismatch and for the pair with two most similar lan-
guages (English-Spanish), again questioning their
robustness and portability to truly low-resource
and more challenging setups”. Furthermore, the ex-
tremely poor results of Ne-En and Si-En reflect the
reality of low-resource translation; the compound
negative effects of language dissimilarity, domain
mismatch between monolingual corpora, domain
mismatch with the test set, and low amounts of
low-quality data. It is the “worst of all worlds”—
but reflects how current models might perform on
the use cases for which they are needed. These
challenges highlight the importance of evaluating
unsupervised MT under varying realistic data con-
ditions. Our evaluation is a step towards this goal,
and identifies multiple areas for improvement.

A critical step in state-of-the-art unsupervised
MT is methods for creating CLEs. Several au-
thors have pointed out that “mapping” methods like
VecMap assume that monolingual vector spaces
are structurally similar, but that this “approximate
isomorphism assumption” is increasingly tenuous
as languages and domains diverge (Søgaard et al.,
2018; Ormazabal et al., 2019; Glavaš et al., 2019;
Vulić et al., 2019; Patra et al., 2019). Patra et al.
(2019) find this for Fr-En and Ru-En specifically,
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the languages examined in this work. Nakashole
and Flauger (2018) argue that while linearity may
hold within local “neighborhoods” of the vector
space, the global mapping is non-linear. Søgaard
et al. (2018) use their eigenvector similarity met-
ric to show a strong correlation between vector
space similarity and BLI performance. Analysis
of the CLEs from our experiments demonstrate a
relationship between BLI performance and down-
stream BLEU on the translation task. Coupled with
our empirical evidence, the works cited in this sec-
tion suggest that nonisometric vector spaces lead
to poor quality translation.

Factors observed in our experiments that lead
to lower quality translation can be attributable to
a “weak isomorphism” between the monolingual
vector spaces. Dissimilar languages means in-
creasingly different distributional characteristics
of words. Data from different domains naturally
have different word frequencies and distributional
characteristics, which become more pronounced
as domains diverge. Because mapping methods
rely on structural similarity of vector spaces, exper-
iments using either UN or CC data alone had ac-
ceptable downstream performance, where as com-
bining the datasets as source and target resulted in
extremely poor translation. We observe the criti-
cal effect of word embedding initialization on BLI
performance and downstream BLEU, suggesting
that stochasticity during word embedding creation
can cause resulting vector spaces to be more or less
isomorphic. Finally, more data can give a more
accurate distribution of words in comparison with
the true distribution in the language, leading to
a more realistic monolingual vector space. With
less data, word embeddings are dependent on the
smaller training sample, which may not match the
test set or reflect true distributional properties of the
language. Combining all of these negative factors
likely leads to highly nonisomorphic monolingual
embedding spaces, as demonstrated by the very
poor Si-En and Ne-En results.

9 Conclusion & Future Work

Progress in unsupervised MT has been impressive,
achieving performance near its supervised coun-
terparts under some scenarios. That said, evalu-
ating current approaches under broader settings
and datasets reveals that unsupervised MT strug-
gles in realistic low-resource scenarios. As stated
by Lample et al. (2018b), “It’s an open question

whether there are more effective instantiations of
these principles [underlying recent successes in
fully unsupervised MT] or other principles alto-
gether”. In this work, we find that there is room
for improvement to become robust to (1) dissim-
ilar languages pairs, (2) dissimilar domains, (3)
diverse datasets, and (4) the low-quality data of
true low-resource languages—factors ubiquitous
in low-resource language pairs for which unsuper-
vised MT is intended. We find that (a) performance
rapidly declines when source and target corpora
are from different domains, and (b) stochasticity
during word embedding training can dramatically
affect downstream translation results. The latter is
a yet unexplored research area. Future work should
also evaluate pretraining methods in bilingual and
multilingual training contexts.

Finally, we argue for extensive evaluation of un-
supervised MT systems under varying data condi-
tions to assess failure cases and encourage pursuit
of promising paradigms. Doing so is a step towards
solving the real-world problems of low-resource
machine translation.
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Ivan Vulić. 2019. How to (properly) evaluate cross-
lingual word embeddings: On strong baselines, com-
parative analyses, and some misconceptions. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 710–721,
Florence, Italy. Association for Computational Lin-
guistics.

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan
Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’Aurelio Ranzato. 2019. The

FLORES evaluation datasets for low-resource ma-
chine translation: Nepali–English and Sinhala–
English. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6098–6111, Hong Kong, China. Association for
Computational Linguistics.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. In Proceedings of ACL-
08: HLT, pages 771–779, Columbus, Ohio. Associa-
tion for Computational Linguistics.

Mareike Hartmann, Yova Kementchedjhieva, and An-
ders Søgaard. 2019. Comparing unsupervised word
translation methods step by step. In Advances in
Neural Information Processing Systems 32, pages
6033–6043.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation,
pages 187–197, Edinburgh, Scotland. Association
for Computational Linguistics.

Yedid Hoshen and Lior Wolf. 2018. Non-adversarial
unsupervised word translation. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 469–478, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1700–1709, Seattle,
Washington, USA. Association for Computational
Linguistics.

Y. Kim, M. Graça, and H. Ney. 2020. When and why
is unsupervised neural machine translation useless?
arXiv:2004.10581.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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2019. A survey of cross-lingual word embedding
models. Journal of Artificial Intelligence Research,
65:569–631.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Anders Søgaard, Sebastian Ruder, and Ivan Vulić.
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Abstract

Pre-training models on vast quantities of un-
labeled data has emerged as an effective ap-
proach to improving accuracy on many NLP
tasks. On the other hand, traditional machine
translation has a long history of leveraging
unlabeled data through noisy channel model-
ing. The same idea has recently been shown
to achieve strong improvements for neural ma-
chine translation. Unfortunately, naı̈ve noisy
channel modeling with modern sequence to
sequence models is up to an order of magni-
tude slower than alternatives. We address this
issue by introducing efficient approximations
to make inference with the noisy channel ap-
proach as fast as strong ensembles while in-
creasing accuracy. We also show that the noisy
channel approach can outperform strong pre-
training results by achieving a new state of the
art on WMT Romanian-English translation.

1 Introduction

Unlabeled data has been leveraged in many ways
in natural language processing including back-
translation (Bojar and Tamchyna, 2011; Sennrich
et al., 2016b; Edunov et al., 2018), self-training (He
et al., 2020), or language model pre-training which
led to improvements in many natural language
tasks (Devlin et al., 2019). While pre-training has
achieved impressive results on tasks where labeled
data is limited, improvements in settings with abun-
dant labeled data are modest (Raffel et al., 2020)
with controlled studies showing a clear trend of
diminishing returns as the amount of training data
increases (Edunov et al., 2019).

In this paper, we focus on noisy channel mod-
eling for text generation tasks, a classical tech-
nique from the statistical machine translation lit-
erature which had been the workhorse of text gen-

† Work done while at Facebook during a Facebook AI
Residency.

eration tasks for decades before the arrival of neu-
ral sequence to sequence models (Brown et al.,
1993; Koehn et al., 2003). Unlike pre-training ap-
proaches, this approach is very effective irrespec-
tive of the amount of labeled data: since a recent
revival (Yu et al., 2017; Yee et al., 2019), it has been
an important part in the winning entries of several
high resource language pairs at WMT 2019 (Ng
et al., 2019), improving over strong ensembles that
used 500M back-translated sentences. At the low
resource WAT 2019 machine translation competi-
tion, noisy channel modeling was also a key factor
for the winning entry (Chen et al., 2019).

Noisy channel modeling turns text generation on
the head: instead of modeling an output sequence
given an input, Bayes’ rule is applied to model the
input given the output, via a backward sequence
to sequence model which is combined with the
prior probability of the output, typically a language
model. This enables the effective use of strong
language models trained on large amounts of unla-
beled data. The role of the backward model, or the
channel model, is to validate outputs preferred by
the language model with respect to the input.

A straightforward way to use language models
is to pair them with standard sequence to sequence
models (Gülçehre et al., 2015; Stahlberg et al.,
2018). However, this does not address explaining
away effects under which modern neural sequence
models still suffer (Klein and Manning, 2001; Li
et al., 2019). As a consequence, models are suscep-
tible to producing fluent outputs that are unrelated
to the input (Li et al., 2019). The noisy channel
approach explicitly addresses this via the channel
model.

However, a major obstacle to efficient noisy
channel modeling is that generating outputs is
much slower than decoding from a standard se-
quence to sequence model. We address this is-
sue by introducing several simple yet highly ef-
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fective approximations which increase the speed
of noisy channel modeling by an order of magni-
tude to make it practical. This includes smaller
channel models as well as scoring only a subset
of the channel model vocabulary. Experiments
on WMT English-Romanian translation show that
noisy channel modeling can outperform recent pre-
training results. Moreover, we show that noisy
channel modeling benefits much more from larger
beam sizes than strong pre-training methods.

2 The Noisy Channel Approach

We assume a sequence to sequence task that takes
the input x to predict the output y. A stan-
dard sequence to sequence model directly esti-
mates the probability p(y|x), referred to as a di-
rect model. On the other hand, the noisy channel
approach applies Bayes’ rule to model p(y|x) =
p(x|y)p(y)/p(x) where p(x|y) predicts the source
x given the target y and is referred to as the chan-
nel model, p(y) is a language model over the target
y, and p(x) is generally not modeled since it is
constant for all y.

Yee et al. (2019) use Transformer models to pa-
rameterize the direct model, the channel model and
the language model. Similar to Yu et al. (2017),
they use the following linear combination of the
channel model, the language model as well as the
direct model for decoding:

1

t
log p(y|x) + λ1

s
log p(x|y) + λ2

s
log p(y) (1)

where t is the length of the output prefix y, s is
the length of the input sequence, and λ1, λ2 are
hyperparameters.

Exact noisy channel model scoring with neural
networks during decoding is prohibitively expen-
sive since it requires a separate forward computa-
tion with the channel model for every token in the
target vocabulary. To side step this issue, Yu et al.
(2017) propose the following approximations to
beam search with beam width k1: determine the
k2 highest scoring extensions of each beam accord-
ing to the direct model, then score the resulting
k1 × k2 partial candidates by the direct model, the
channel model and the language model using the
linear combination in Equation 1. Finally, this set
is pruned to beam size k1.

Despite this approximation, noisy channel de-
coding is still significantly slower than decoding
with the direct model alone as shown in Figure 1.
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Figure 1: Speed of decoding with a direct model (dir),
direct model with language model (dir + lm) and
a naı̈ve noisy channel approach without fast approxi-
mations or optimizations. The latter is very slow com-
pared to the direct model. Results are based on gener-
ation with the fastest batch size for each setting with
beam 5 on newstest2016 De-En (cf. §4.1).

The reason for this is that the channel model re-
peatedly scores the entire input sequence at each
time-step and this is done k2 times for each beam.
Specifically, both the direct model and the language
model compute k1 × V scores at each time-step in
order to make a decoding decision for each target
token during beam search, where V denotes the
vocabulary size which we assume to be similar be-
tween the input and output. In contrast, the channel
model computes k1 × k2 × S × V scores for each
target token, where S is the maximum source se-
quence length. This adds substantial compute and
memory overhead, to the extent that the batch size
at decoding often needs to be substantially reduced.
This leads to slower inference on GPUs since less
computation can be parallelized.

3 Fast Noisy Channel Modeling

Naı̈ve online noisy channel modeling is signifi-
cantly slower than standard direct models. In this
section, we present approximations to make noisy
channel modeling substantially faster.

3.1 Reducing Channel Model Size

Prior work on neural noisy channel used channel
models which were of the same size as the direct
model (Yu et al., 2017; Yee et al., 2019). The
most recent work uses standard Transformer mod-
els (Yee et al., 2019; Ng et al., 2019; Yu et al., 2020).
In this study, we hypothesize that the primary role
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of the channel model is to avoid explaining away ef-
fects by the language model. This primarily entails
assigning low scores to unrelated outputs, which
may not require a very powerful model. In this
case, we may be able to substantially decrease the
size of the channel model at only a small loss in
accuracy.

Recent work demonstrates that direct models
with shallow decoders can give comparable accu-
racy, while being faster at inference time, compared
to models with deep decoders (Wu et al., 2019; El-
bayad et al., 2020; Kasai et al., 2020; Fan et al.,
2020). This is particularly attractive for direct
models for which the decoder network accounts
for most of the wall time during inference but the
dynamics for channel models are different: the
channel model repeatedly scores the entire input
sequence given progressively larger target prefixes.
Unlike for direct models, there is no straightfor-
ward way to reuse the encoder output between
time-steps, and we opt to recompute the entire en-
coder and decoder of the channel model at every
target time-step. Since the input sequence is given,
channel model computation can be batched over all
tokens in the target prefix and the input sequence.
This implies that we are free to adjust both the
encoder and decoder depth.

We pursue two strategies to reduce model size:
first, we progressively reduce the model dimen-
sion of the base Transformer architecture, by first
halving the model dimension from 512 to 256, as
well as the feed forward dimension from 2048 to
1024 for the half model. The smallest config-
uration uses a model dimension of just 32 and a
feed forward dimension of 128 (denoted as 16th
model). Second, we consider models with only a
single encoder block and a single decoder block.
These models have a postfix 1 1, e.g., 16th 1 1.
Table 1 shows the various model sizes as well as
accuracy on the development set, newstest2016.

3.2 Reducing the Output Vocabulary

During online noisy channel decoding, we need
to allocate memory for a large number of channel
model output probabilites (k1 × k2 × S × V , as
explained in § 2). This substantially reduces the
maximum possible batch size in order to prevent
running out of memory while decoding on GPUs.
A small batch size prevents the full utilization of
parallel computation on GPUs, particularly, when
the channel model is relatively small: some of our

Parameters (M) BLEU

big 282.7 38.0
big 1 1 93.8 34.1
base 72.1 36.7
base 1 1 23.6 31.2
half 25.1 33.6
half 1 1 15.8 27.4
quarter 9.8 28.4
quarter 1 1 7.5 22.0
16th 2.8 15.9
16th 1 1 2.7 10.0

Table 1: Smaller channel models in terms of number of
total parameters as well as BLEU (avg. over 3 seeds)
on the development set. All models have six blocks
each in the encoder and the decoder, except for models
ending in ” 1 1” which have only a single block in the
encoder and the decoder.

channel models have an embedding dimension of
just 32.

To address this issue, we make use of the fact
that we know exactly which input tokens need to be
scored (since the input sequence is given) instead
of computing probabilities for the entire vocabulary.
This is similar to vocabulary reduction techniques
used for early neural sequence to sequence models,
and it is particularly convenient since we know
exactly which tokens are in the input sequence (Mi
et al., 2016; L’Hostis et al., 2016).

Similar to prior work on vocabulary reduction,
we found it useful to not just score the input words
but also a subset of the most frequent words in
the vocabulary. Specifically, for each batch, we
enumerate all input word types, add the 500 most
frequent types and then compute output probabil-
ities for this subset with the channel model. The
number of output probabilities calculated is typi-
cally at least one order of magnitude smaller than
the full vocabulary, as shown in § 5.4.1.

This approach substantially reduces the memory
footprint of small channel models and enables the
use of much larger batch sizes which leads to faster
inference as we will see in § 5.

3.3 Reducing the Number of Candidates

We also study the effect of reducing the number of
next token candidates k2 scored for each beam at
each step of beam search. This reduces the com-
putation as well as memory overhead of channel
model scoring.

586



4 Experimental Setup

4.1 Datasets
We consider two datasets for our experiments: For
German-English (De-En), we train on WMT’19
training data. Following (Ng et al., 2019), we apply
language identification filtering (Lui and Baldwin,
2012) and remove sentences longer than 250 tokens
as well as sentence pairs with a source/target length
ratio exceeding 1.5. This results in 26.8M sentence
pairs. We validate on newstest2016 and test on
newstest2014, newstest2015, newstest2017, and
newstest2018. For all models, the source vocabu-
lary is a 24K byte pair encoding (BPE; Sennrich
et al., 2016) learned on the source portion of the
bitext. For the target side, we use the vocabulary
of the language model (§4.2) so that both models
score the exact same units during beam search.

For Romanian-English (Ro-En), we train on
WMT’16 training data, comprising 612K sentence
pairs, validate on newsdev2016 and test on new-
stest2016. We learn a joint BPE vocabulary of 18K
types on the bitext training data which is used for
both the source and target. Different to German-
English, we learn a joint BPE vocabulary to enable
sharing the source and target embeddings which
we found to perform better for Romanian-English
in early experiments.

4.2 Language Models
For German-English, we train a sentence-level En-
glish Transformer language model with 16 layers
and Transformer-Big architecture (Vaswani et al.,
2017; Radford et al., 2018). The model is trained
on de-duplicated English Newscrawl data from
2007-2018 comprising 186 million sentences or
4.5B words after normalization and tokenization.
We use a BPE vocabulary of 24K types learned on
this data. For Romanian-English translation, we
train a similar English Transformer language model
that uses the joint BPE vocabulary learned on the
Romanian-English bitext. The latter enables the
LM to score the exact same units as the sequence
to sequence model during beam search.

We train a sentence-level Romanian Transformer
language model with 16 layers and Transformer-
Big architecture. The model is trained on de-
duplicated Romanian CommonCrawl data consist-
ing of 623M sentences or 21.7B words after nor-
malization and tokenization (Conneau et al., 2019;
Wenzek et al., 2020).

The German-English bitext training data as well

as the language model training data are prepro-
cessed with the Moses tokenizer (Koehn et al.,
2007). We normalize punctuation and remove non-
printing characters. Romanian-English data is pre-
processed following Sennrich et al. (2016a) by ap-
plying Moses tokenization and special normaliza-
tion for Romanian text.1

4.3 Translation Models

For De-En, we use the Transformer-Big architec-
ture for the direct model. We do not share encoder
and decoder embeddings since the source and tar-
get vocabularies are different. For channel models,
operating from English to German, we consider
different variants (§3.1, Table 1) to better under-
stand the speed-accuracy trade-off of decreasing
the capacity of channel models.

For Ro-En and En-Ro with bitext only, the di-
rect and channel models use a Transformer-Base
architecture. For Ro-En with backtranslation, the
direct and channel models use a Transformer-Big
architecture. We share the encoder and decoder em-
beddings since the source and target vocabularies
are the same and because this improved accuracy.

4.4 Online Noisy Channel Decoding Setup

In order to set weights for the linear combination
of model scores (Equation 1), we randomly sample
a set of hyperparameters and evaluate each configu-
ration on the development set (Yee et al., 2019; Ng
et al., 2019). Hyperparameters are sampled within
the interval [0, 2], For direct models (dir), we
sample ten random weights for the length penalty.
For direct models combined with language models
(dir + lm), we evaluate 100 randomly sampled
configurations for the length penalty and the lan-
guage model weight (λ2). For direct models com-
bined with language models and channel models
(dir + lm + ch), we evaluate 1000 configu-
rations of the length penalty, the language model
weight (λ2) and the channel model weight (λ1). We
use 16-bit floating point precision (Ott et al., 2018,
2019) for decoding with the online noisy channel
setup.

Accuracy is measured via sacreBLEU (Post,
2018) for WMT German-English. We report
the average BLEU of the newstest2014-2015 and
newstest2017-2018 test sets, averaged over 3 ran-
dom seeds for model weight initialization. Speed

1https://github.com/rsennrich/
wmt16-scripts/tree/master/preprocess
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Total
Params

(M)
BLEU Time (s)

Ensembles
dir 283 38.8 20
2 dir 565 39.3 40
3 dir 848 39.5 59

Ensembles + LMs
dir + lm 539 39.7 44
2 dir + lm 822 40.2 65
3 dir + lm 1104 40.3 84

Noisy Channel Modeling (Yee et al., 2019)
dir + lm + big 822 40.5 550

Fast Noisy Channel Modeling (This work)
dir + lm + 16th 1 1 542 40.2 56
dir + lm + base 1 1 574 40.5 92
2 dir + lm + 16th 1 1 824 40.5 76
2 dir + lm + base 1 1 857 40.8 111
3 dir + lm + 16th 1 1 1107 40.6 93
3 dir + lm + base 1 1 1140 41.0 131

Table 2: Fast noisy channel modeling is more accurate
than ensembles at comparable speed and the two meth-
ods are additive. All results use beam size 5, batch
sizes for each configuration are optimized and BLEU
is averaged over news2014, news2015, news2017 and
news2018 of WMT German to English.

is measured by the generation time (averaged over
3 trials) in seconds on the German-English new-
stest2016 test set on a 32GB Volta V100 GPU
using 16-bit floating point precision (Ott et al.,
2018, 2019). Unless otherwise specified, the
beam size is 5, and the number of candidates for
noisy channel model scoring per beam is k2 =
10, unless otherwise specified. Generation times
are based on a tuned batch size for each model
configuration. We select the batch size within
(1, 10, 25, 50, 75, 100, 125, 150, 200, 300) that fits
in memory and results in the fastest generation
time.

5 Results

5.1 Fast Noisy Channel Modeling

In the first experiment, we evaluate the speed and
accuracy of fast noisy channel decoding (§ 3) and
compare to the naı̈ve version without approxima-
tions (Yee et al., 2019). As additional baselines,
we consider a single direct model (dir), ensem-
bling two direct models (2 dir) and three direct
models (3 dir), as well as adding a language

Channel
Model
Params

(M)

BLEU Time (s)

dir + lm + big 283 40.3 472
dir + lm + base 72 40.4 202
dir + lm + half 25 40.5 132
dir + lm + quarter 10 40.4 102
dir + lm + 8th 6 40.3 89
dir + lm + 16th 3 40.2 70

dir + lm + big 1 1 94 40.5 160
dir + lm + base 1 1 24 40.5 92
dir + lm + half 1 1 16 40.4 72
dir + lm + quarter 1 1 8 40.2 63
dir + lm + 8th 1 1 5 40.3 60
dir + lm + 16th 1 1 3 40.2 56

Table 3: Smaller channel models perform similarly for
the standard beam size of 5. We exploit this fact to
speed up noisy channel decoding.

model to each (lm). As channel models, we con-
sider a big Transformer, a base Transformer, as
well as a variant with model dimension of only
32 which is 1/16th of the model dimension of a
base Transformer with a single layer in the en-
coder and decoder each (16th 1 1), totaling just
2.7M parameters. For fast noisy channel decoding,
we reduce the channel model output vocabulary
(§3.2) and set k2 = 3; we ablate these choices in
§ 5.4.

Table 2 shows that the approximations we in-
troduce to make noisy channel decoding fast also
achieve similar accuracy (40.5 BLEU) to the much
slower noisy channel approach of (Yee et al., 2019),
while being about six times faster at inference time.

Table 2 also shows that dir + lm +
16th 1 1 is 0.7 BLEU score better than 3 dir
at a similar decoding speed. Thus, using a small
channel model and a language model with online
noisy channel decoding is a better strategy than
ensembling 3 direct models. Noisy channel
decoding is also complementary to ensembling
direct models: 3 dir + lm + base 1 1
improves by 0.7 BLEU compared to 3 dir +
lm.

Table 3 compares fast noisy channel decoding
with different channel model sizes. Generally,
smaller channel models are only slightly less ac-
curate than larger models while being significantly
faster than their larger counterparts. For example,
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Figure 2: BLEU of fast online noisy channel decod-
ing with different channel models when beam size is
increased (compared to ensemble baselines). BLEU
is averaged over news2014, news2015, news2017 and
news2018 of WMT De-En.

16th 1 1 is over eight times faster than big and
achieves nearly the same accuracy.

This observation is in line with the hypothesis
that the primary role of the channel model is to tie
back the language model generations to the input.
We exploit the fact that small channel models work
well to make noisy channel decoding very fast.

5.2 Noisy Channel Decoding with Larger
Beam Sizes

So far we used a standard beam size of five to en-
able fast decoding. However, previous work found
that noisy channel modeling benefits more from
larger beam sizes than other methods (Yee et al.,
2019). Next, we evaluate whether our efficiency
improvements still enable good performance with
larger beam sizes.

Figure 2 shows that for beam size 5, most chan-
nel models perform comparably. Larger models
are slightly better but overall they are in a similar
ball park. As the beam size increases, larger chan-
nel models do achieve better accuracy. However,
there is no difference between a single layer big
model (big 1 1) and a six layer version (big).
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naı̈ve 16th 1 1 fast 16th 1 1

Figure 3: BLEU of fast and naı̈ve online noisy chan-
nel decoding with different channel models sizes when
beam size is increased. BLEU is averaged over
news2014, news2015, news2017 and news2018 of
WMT De-En.

As observed in previous work (Yee et al., 2019),
the direct model and the direct ensembles (dir,
2 dir, 3 dir) do not benefit from larger beam
sizes.

Next, we compare fast noisy channel decoding
and naı̈ve noisy channel decoding at larger beam
sizes. As shown in Figure 4, the naı̈ve approach is
much slower. Fast approximations to noisy channel
decoding scale much better in terms of speed as
the beam size increases. Figure 3 compares the
accuracy of fast noisy channel decoding at larger
beam sizes with that of naı̈ve noisy channel decod-
ing. Using the big and big 1 1 channel models
gives the best performance across all beam sizes
for naı̈ve noisy channel decoding. With fast noisy
channel decoding, we see an average drop of 0.3
BLEU and 0.2 BLEU for big and big 1 1 re-
spectively. On the other hand, for smaller channel
models, the difference between naı̈ve and fast noisy
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Figure 4: With larger beam sizes, the speed of fast ap-
proximations for noisy channel decoding scales much
better than that of naı̈ve noisy channel decoding. Re-
sults are based on generation using the big 1 1 chan-
nel model with the fastest batch size for each setting
with beam 5 on newstest2016 De-En.

channel decoding is generally smaller.

5.3 Results on WMT Romanian-English

Next, we evaluate noisy channel modeling on
WMT Romanian-English translation (Ro-En and
En-Ro) which is a low resource setup compared
to WMT German-English. We also compare to a
recently introduced pre-training approach, mBART.
The mBART model is pre-trained to denoise input
sentences in multiple languages, followed by fine-
tuning on the bitext (Liu et al., 2020). Following
their setup for En-Ro evaluation, we apply Moses
tokenization and normalize diacritics for Romanian
(Sennrich et al., 2016a), and use tokenized BLEU.
For Ro-En, we use SacreBLEU (Post, 2018).

Table 4 shows that noisy channel decoding with
a wide beam can outperform multilingual pre-
training (mBART) across the board. Large beams
are not helpful for generation with mBART. Com-
pared to the direct model, noisy channel decoding
improves by 2.7/3.1 BLEU on En-Ro and Ro-En
respectively, and increasing the beam size gives
gains of 4.5/4.5 BLEU.

We also study the performance of noisy chan-
nel decoding on Romanian-English with back-
translated data generated using unrestricted sam-
pling (Edunov et al., 2018).2 As compared to

2The monolingual English data used for backtrans-
lation comes from http://data.statmt.org/
rsennrich/wmt16_backtranslations/ (Sennrich
et al., 2016c).

mBART02 (Liu et al., 2020), the previous state-
of-the-art result on Romanian-English with back-
translation, we achieve a 0.5 BLEU improvement.
We use a similar number of total model parame-
ters, but much less monolingual English data. Our
English language model is trained on 4.5B tokens,
while mBART02 uses 66B tokens of English and
Romanian monolingual data.

Finally, Table 5 shows that fast approximations
and smaller channel models achieve similar per-
formance but much higher speed compared to
naı̈ve noisy channel decoding on WMT Romanian-
English with back-translation. Fast noisy channel
decoding with base 1 1 achieves comparable ac-
curacy as mBART02 at slightly faster generation
time with beam size 5.

5.4 Ablations

In this section we focus on some of the design
choices we made to speed up noisy channel decod-
ing. We measure the impact on speed and accuracy
when reducing the output vocabulary size of the
channel model, and reducing the number of beam
candidates scored by the channel model.

5.4.1 Reducing the Output Vocabulary

In the next experiment, we compare the speed of
using the full output vocabulary for the channel
model to a reduced version. Specifically, we re-
duce the vocabulary by selecting all source to-
kens in the batch as well as the most frequent
500 tokens in the training data (see § 3.2). We
tune each setup by selecting the fastest batch
size based on a sweep over different batch sizes
(1, 10, 25, 50, 75, 100, 125, 150, 200, 300).

Table 6 shows that generating channel model
scores for a small subset of the source vocabulary
results in a small accuracy of up to 0.3 BLEU, but
often less, while substantially increasing speed by
40-65% for single layer channel models and by 20-
55% for other channel models. base 1 1 with a
small vocabulary is nearly ten times faster than the
approach proposed in Yee et al. (2019) (channel
model size big), with a slight decline in accuracy.

The average vocabulary size used for scoring
the channel model is around 1050, as compared to
full source vocabulary size of 28,048. This leads
to a large reduction in memory consumption and
enables fitting larger batches into memory.
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mono
tokens
Ro-En
(B)

mono
tokens
En-Ro
(B)

En-Ro Ro-En
Ro-En
+BT

mBART02 66 66 38.5 38.5 39.9
mBART02 (beam=50) 66 66 - - 39.9

dir - - 34.6 34.6 38.4
dir + lm 4.5 22 35.4 35.9 38.7
dir + lm + big 4.5 22 37.3 37.7 39.6
dir + lm + big (beam=50) 4.5 22 39.1 39.1 40.4

Table 4: BLEU of noisy channel decoding on the Romanian-English newstest2016 test set with bitext-only as well
as with backtranslation (BT) compared to mBART (Liu et al., 2020). We also show the total amount of monolingual
data used by each method in billions of tokens.

BLEU Time (s)

mBART02 39.9 93
mBART02 (beam=50) 39.9 754

dir 38.4 19

Noisy Channel Modeling (Yee et al., 2019)
dir + lm + big 39.6 1178
dir + lm + big (beam=50) 40.4 12554

Fast Noisy Channel Modeling
dir + lm + base 1 1 39.8 82
dir + lm + base 1 1 (beam=50) 40.3 631

Table 5: Speed and accuracy on Romanian-English
(Ro-En) with backtranslation. Fast noisy channel de-
coding using base 1 1 achieves similar accuracy to
mBART02 while being faster (beam=5). BLEU is mea-
sured on newstest2016 and generation time is measured
on newsdev2016.

5.4.2 Reducing the Number of Candidates
For each beam in each step of beam search, we
need to make a choice about how many candidates
k2 we re-score with noisy channel modeling. Yee
et al. (2019) re-scored k2 = 10 candidates for each
beam at each step. We sweep over different values
of k2 to understand the speed-accuracy trade-off
associated with the choice of k2. Table 7 shows
that smaller values for k2 are as accurate and much
faster for beam size 5.

6 Conclusion

We introduced a number of approximations which
greatly speed up noisy channel modeling for neural
sequence to sequence models. This includes using
channel models which are a fraction of the size

dir+ch+lm
(beam=5)

Full Source
Vocab

Small Source
Vocab

BLEU Time (s) BLEU Time (s)

big 40.6 1656 40.3 1355
base 40.7 854 40.4 516
half 40.6 450 40.5 299
quarter 40.5 359 40.4 212
8th 40.3 324 40.3 178
16th 40.1 264 40.2 118

big 1 1 40.7 543 40.5 339
base 1 1 40.5 336 40.5 169
half 1 1 40.3 264 40.4 117
quarter 1 1 40.4 238 40.2 95
8th 1 1 40.1 223 40.3 87
16th 1 1 40.2 209 40.2 74

Table 6: Comparison of accuracy (BLEU) and speed
of online noisy channel decoding with and without the
small output vocabulary approximation for different
channel model sizes. Note we use k2 = 10 for this ab-
lation. BLEU is averaged over news2014, news2015,
news2017 and news2018 of WMT De-En and genera-
tion time is on news2016.

of commonly used sequence to sequence models,
pruning most of the channel model output vocabu-
lary, and reducing the number of beam candidates
scored by the channel model.

Our approximations are simple, yet, highly ef-
fective and enable comparable inference speed to
ensembles of direct models while delivering higher
accuracy. Our experiments show that noisy channel
modeling can outperform pre-training approaches
by being able to better exploit wider beams. More-
over, this is achieved while using a smaller amount
of monolingual data.
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k2 BLEU Time (s)

2 40.4 76
3 40.5 88
5 40.4 124

10 40.5 168

Table 7: Smaller number of rescoring candidates k2 per
beam are as accurate and much faster than larger values
of k2 for fast noisy channel decoding using base 1 1
with beam 5. BLEU is averaged over news2014,
news2015, news2017 and news2018 of WMT De-En
and generation time is on news2016.
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Abstract

Simultaneous translation involves translating
a sentence before the speaker’s utterance is
completed in order to realize real-time under-
standing in multiple languages. This task is
significantly more challenging than the gen-
eral full sentence translation because of the
shortage of input information during decoding.
To alleviate this shortage, we propose mul-
timodal simultaneous neural machine transla-
tion (MSNMT), which leverages visual infor-
mation as an additional modality. Our experi-
ments with the Multi30k dataset showed that
MSNMT significantly outperforms its text-
only counterpart in more timely translation sit-
uations with low latency. Furthermore, we
verified the importance of visual information
during decoding by performing an adversarial
evaluation of MSNMT, where we studied how
models behaved with incongruent input modal-
ity and analyzed the effect of different word
order between source and target languages.

1 Introduction

Simultaneous translation is a natural language pro-
cessing (NLP) task in which translation begins be-
fore receiving the whole source sentence. It is
widely used in international summits and confer-
ences where real-time comprehension is one of
the essential aspects. Simultaneous translation is
already a difficult task for human interpreters be-
cause the message must be understood and trans-
lated while the input sentence is still incomplete,
especially for language pairs with different word
orders (e.g. SVO-SOV) (Seeber, 2015). Conse-
quently, simultaneous translation is more challeng-
ing for machines. Previous works attempt to solve
this task by predicting the sentence-final verb (Gris-
som II et al., 2014), or predicting unseen syntactic
constituents (Oda et al., 2015). Given the difficulty

∗These authors contributed equally to this paper

of predicting future inputs based on existing lim-
ited inputs, Ma et al. (2019) proposed a simple
simultaneous neural machine translation (SNMT)
approach wait-k which generates the target sen-
tence concurrently with the source sentence, but
always k tokens behind, satisfying low latency re-
quirements.

However, previous approaches solve the given
task by solely using the text modality, which may
be insufficient to produce a reliable translation. Si-
multaneous interpreters often consider various ad-
ditional information sources such as visual clues
or acoustic data while translating (Seeber, 2015).
Therefore, we hypothesize that using supplemen-
tary information, such as visual clues, can also be
beneficial for simultaneous machine translation.

To this end, we propose Multimodal Simul-
taneous Neural Machine Translation (MSNMT)
that supplements the incomplete textual modal-
ity with visual information, in the form of an im-
age. It will predict still missing information to
improve translation quality during the decoding
process. Our approach can be applied in various
situations where visual information is related to
the content of speech such as presentations with
slides (e.g. TED Talks1) and news video broad-
casts2. Our experiments show that the proposed
MSNMT method achieves higher translation ac-
curacy than the SNMT model that does not use
images by leveraging image information. To the
best of our knowledge, we are the first to propose
the incorporation of visual information to solve the
problem of incomplete text information in SNMT.

The main contributions of our research are as
follows. We propose to combine multimodal and
simultaneous NMT, therefore, discovering cases
where such multimodal signals are beneficial for

1https://interactio.io/
2https://www.a.nhk-g.co.jp/bilingual-

english/broadcast/nhk/index.html
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the end-task. Our MSNMT approach brings sig-
nificant improvement in simultaneous translation
quality by enriching incomplete text input informa-
tion using visual clues. As a result of a thorough
analysis, we conclude that the proposed method is
able to predict tokens that have not appeared yet
for source-target language pairs with different word
order (e.g. English→Japanese). By providing an
adversarial evaluation, we showed that the models
indeed utilize visual information.

2 Related Work

For simultaneous translation, it is crucial to predict
the words that have not appeared yet. For example,
it is important to distinguish nouns in SVO-SOV
translation and verbs in SOV-SVO translation (Ma
et al., 2019). SNMT can be realized with two
types of policy: fixed and adaptive policies (Zheng
et al., 2019b). Adaptive policy decides whether
to wait for another source word or emit a target
word in one model. Previous models with adaptive
policies include explicit prediction of the sentence-
final verb (Grissom II et al., 2014; Matsubara et al.,
2000) and unseen syntactic constituents (Oda et al.,
2015). Most dynamic models with adaptive poli-
cies (Gu et al., 2017; Dalvi et al., 2018; Arivazha-
gan et al., 2019; Zheng et al., 2019a,c, 2020) have
the advantage of exploiting input text information
as effectively as possible due to the lack of such
information in the first place. Meanwhile, Ma et al.
(2019) proposed a simple wait-k method with
fixed policy, which generates the target sentence
only from the source sentence that is delayed by
k tokens. However, their model for simultaneous
translation relies only on the source sentence. In
this research, we concentrate on the wait-k ap-
proach with fixed policy, so that the amount of
input textual context can be controlled to analyze
better whether multimodality is effective in SNMT.

Multimodal NMT (MNMT) for full-sentence
machine translation has been developed to en-
rich text modality by using visual informa-
tion (Hitschler et al., 2016; Specia et al., 2016;
Elliott and Kádár, 2017). While the improvement
brought by visual features is moderate, their use-
fulness is proven by Caglayan et al. (2019). They
showed that MNMT models are able to capture
visual clues under limited textual context, where
source sentences are synthetically degraded by
color deprivation, entity masking, and progres-
sive masking. However, they use an artificial set-

ting where they deliberately deprive the models of
source-side textual context by masking. However,
our research has discovered an actual end-task and
has shown the effectiveness of using multimodal
data for it. Compared with the entity masking ex-
periments (Caglayan et al., 2019), where they use
a model exposed to only k words, our model starts
by waiting for the first k source words and then
generates each target word after receiving every
new source token, eventually seeing all input text.

In MNMT, visual features are incorporated
into standard machine translation in many ways.
Doubly-attentive models are used to capture the tex-
tual and visual context vectors independently and
then combine these context vectors in a concatena-
tion manner (Calixto et al., 2017) or hierarchical
manner (Libovický and Helcl, 2017). Some stud-
ies use visual features in a multitask learning sce-
nario (Elliott and Kádár, 2017; Zhou et al., 2018).
Also, recent work on MNMT has partly addressed
lexical ambiguity by using visual information (El-
liott et al., 2017; Lala and Specia, 2018; Gella et al.,
2019) showing that using textual context with vi-
sual features outperform unimodal models.

In our study, visual features are extracted using
image processing techniques and then integrated
into an SNMT model as additional information,
which is supposed to be useful to predict missing
words in a simultaneous translation scenario. To
the best of our knowledge, this is the first work that
incorporates external knowledge into an SNMT
model.

3 Multimodal Simultaneous Neural
Machine Translation Architecture

Our main goal is to investigate if image informa-
tion would bring improvement on SNMT. As a
result, two tasks could benefit from each other by
combining them.

In this section, we describe our MSNMT model,
which is composed by combining an SNMT frame-
work wait-k (Ma et al., 2019) and a multimodal
model (Libovický and Helcl, 2017). We base our
model on the RNN architecture, which is widely
used in MNMT research (Libovický and Helcl,
2017; Caglayan et al., 2017a; Elliott and Kádár,
2017; Zhou et al., 2018; Hirasawa et al., 2019).
The model takes a sentence and its correspond-
ing image as inputs. The decoder of the MSNMT
model outputs the target language sentence in a
simultaneous and multimodal manner by attaching

595



attention not only to the source sentence but also
to the image related to the source sentence.3

3.1 Simultaneous Translation
We first briefly review standard NMT to set up
the notations. The encoder of standard NMT
model always takes the whole input sequence
X = (x1, ..., xn) of length n where each xi is a
word embedding and produces source hidden states
H = (h1, ..., hn). The decoder predicts the next
output token yt using H and previously generated
tokens, denoted Y<t = (y1, ..., yt−1). The final
output is calculated using the following equation:

p(Y|X) =

|Y|∏

t=1

p(yt|X, y<t) (1)

Different from standard neural translation, in
which each yi is predicted using the entire source
sentence X, the simultaneous translation requires
the model to translate concurrently with the grow-
ing source sentence. We incorporate the wait-k
approach (Ma et al., 2019) for our simultaneous
translation model. Instead of waiting for the whole
sentence before translating, this model waits for
only the first k tokens and starts to generate each
target tokens after taking every new source token
one by one. It stops taking new input tokens once
the whole input sentence is on board. For example,
if k = 3, the first target token is predicted using
the first 3 source tokens, and the second target to-
ken using the first 4 source tokens. The wait-k
decoding probability pwait-k is:

pwait-k(Y|X) =

|Y|∏

t=1

p(yt|X≤g(t), y<t) (2)

where g(t) is the wait-k policy function which
decides how much input text to read and translate,
X≤g(t) = (x1, ..., xg(t)) and g(t) is 0 ≤ t ≤ n.
g(t) is defined as follows:

g(t) = min{k + t− 1, n} (3)

When k + t − 1 is over source length n, g(t) is
fixed to n, which means the remaining target tokens
(including current step) are generated using the full
source sentence. For full sentence translation, g(t)
is constant g(t) = n.

3Our code is publicly available at: https://github.
com/toshohirasawa/mst. We fixed our code based on
the comments of Ozan Caglayan.

3.2 Multimodal Translation

We use a hierarchical attention combination tech-
nique (Libovický and Helcl, 2017) to incorporate
visual and textual features into an MNMT model.
This model calculates the independent context vec-
tors from the textual features htxt = (htxt1 , ..., htxtn )

and the visual features himg = (himg
1 , ..., himg

m ),
which are extracted by the textual encoder and
the image processing model, respectively. It then
combines the resulting two vectors using a second
attention mechanism, which helps to perform si-
multaneous translation taking into account visual
information.

Specifically, we compute the context vectors cfi
for each image (f = img) and text (f = txt) modal-
ity independently using the following equations:

efi,j = Ωf(si, h
f
j) (4)

αf
i,j =

exp(efi,j)
∑|hf |

l=1 exp(efi,l)
(5)

cfi =

|hf |∑

j=1

αf
i,jh

f
j (6)

where Ωf is a feedforward network for each modal-
ity f; si is i-th decoder hidden state.

We project these image and text context vectors
into a common space and compute another distri-
bution over the projected context vectors and their
corresponding weighted average using the second
attention:

ẽfi = Ψ(si, c
f
i) (7)

βfi =
exp(ẽfi)∑

r∈{img,txt} exp(ẽri)
(8)

c̃i =
∑

r∈{img,txt}
βriW

rcri (9)

where Ψ is a feedforward network. Equation 8 cal-
culates the second attention to combine the image
and text vectors. W r is a weight matrix used to
compute the context vector c̃i calculated from im-
age and text features. The final hypothesis Y has
the probability:

pmnmt(Y|X,Z) =

|Y|∏

t=1

p(yt|X,Z, y<t) (10)

where Z represents input image features.
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3.3 Multimodal Simultaneous Neural
Machine Translation

In this subsection, we describe the structure of the
MSNMT model, which is a combination of the
models described in Sections 3.1 and 3.2. The
method for calculating the image context vector is
the same as for MNMT; however, the text context
vector (Equation 6) for the t-th step is calculated
as follows:

ĉtxti =

g(t)∑

j=1

αtxt
i,j h

txt
j (11)

Thus ĉtxti is calculated from the input text prefix
determined by wait-k policy function g(t). Then
we apply the second attention to ĉtxti and cimg

i in
order to calculate c̃i (Equation 9).

The decoding probability becomes as follows:

pmsnmt(Y|X,Z) =

|Y|∏

t=1

p(yt|X≤g(t),Z, y<t)

(12)

4 Experimental Setup

4.1 Dataset

We experiment with our model in four transla-
tion directions consisting of 5 languages: English
(En), German (De), French (Fr), Czech (Cs), and
Japanese (Ja). All language pairs include En on the
source side.

We used the train, development, and test sets
from the Multi30k (Elliott et al., 2016) dataset
published in the WMT16 Shared Task, which is
a benchmark dataset generally used in MNMT re-
search (Libovický and Helcl, 2017; Caglayan et al.,
2019; Elliott and Kádár, 2017; Zhou et al., 2018;
Hirasawa et al., 2019) for En→De, En→Fr and
En→Cs.

Nakayama et al. (2020) released F30kEnt-JP
dataset4 which contains Japanese translations of
first two original English captions for each image
of the Flickr30k Entities dataset (Plummer et al.,
2017). They follow the same annotation rules as the
Flickr30k Entities dataset using exactly the same
tags with entity types and IDs. We preprocessed
this data as follows: 1) The parallel En→Ja data
was created by taking alignment using correspond-
ing IDs assigned to each Japanese translation entity

4https://github.com/nlab-mpg/
Flickr30kEnt-JP

with the IDs of Flickr30k entities.5 2) The created
parallel data was aligned with its corresponding
images using text files named (image id).txt cor-
responding to each image in Flickr30k. 3) Finally,
the created multimodal data was split to train, dev,
and test following data splits of Multi30k using
the same Multi30k image IDs. Note that the En-
glish side of En→Ja parallel data extracted from
F30kEnt-JP and English side of Multi30k data are
thought to be somewhat comparable but not strictly
the same while their corresponding images are the
same.

Data split for all language pairs were as follows:
training set, 29,000 sentence pairs, development
set, 1,014 sentence pairs, and 1,000 sentence pairs
for the test set. This dataset’s average sentence
length is 12-13 tokens for En, De, Fr, Cs and 20
tokens for Ja.

We limit the vocabulary size of the source and
the target languages after concatenating them to
10,000 sub-words (Sennrich et al., 2016). All sen-
tences are preprocessed with lower-casing, tokeniz-
ing, and normalizing the punctuation using the
Moses script6. To tokenize Japanese sentences,
we used MeCab7 with the IPA dictionary.

Visual features are extracted using pre-trained
ResNet (He et al., 2016). Technically, we encode
all images in Multi30k with ResNet-50 and pick
out the hidden state in the pool5 layer as a 2,048-
dimension visual feature.

4.2 Systems

We compare the following models: 1. SNMT: We
use only text modality for training data as a base-
line for each wait-k model. 2. MSNMT: We
use image modality along with text modality for a
training data for each wait-k model.

To train the above models, we utilize attention
NMT (Bahdanau et al., 2015) with a 2-layer unidi-
rectional GRU encoder and a 2-layer conditional
GRU decoder. We use the open-source implementa-
tion of the nmtpytorch toolkit v3.0.0 (Caglayan
et al., 2017b). We first pre-train the MSNMT model
for each k until convergence using only text data
and use zeros for visual features. Then we con-
tinue training MSNMT on multimodal data for

5We used the second translations due to some empty trans-
lations of the first captions.

6We applied preprocessing using task1-tokenize.sh from
https://github.com/multi30k/dataset.

7http://taku910.github.io/mecab, version
0.996.
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wait-k
En→De En→Fr En→Cs En→Ja

S M S M S M S M

1 19.18 †19.90 31.23 †32.49 7.78 †9.07 21.95 †23.45
3 28.22 †28.75 43.85 43.99 18.91 †19.39 27.35 †27.74
5 30.38 †31.48 48.01 †48.40 23.35 23.50 31.71 31.72
7 31.72 32.14 50.14 50.16 25.65 25.83 33.70 33.93

Full 34.64 34.84 53.55 53.78 27.22 26.85 35.93 35.62

Table 1: BLEU scores of SNMT (S) and MSNMT (M) models for four translation directions on test set. Results
are the average of four runs. Bold indicates the best BLEU score for each wait-k for each translation direction.
“†” indicates statistical significance of the improvement over SNMT.

(a) En→De (b) En→Fr

(c) En→Cs (d) En→Ja

Figure 1: Average Lagging scores. Results are the average of four runs.

each k. We employ early-stopping: the training
was stopped when the BLEU score did not increase
on the development set for 10 epochs for MSNMT
pre-training, 5 epochs for MSNMT fine-tuning, and
15 epochs for SNMT training.

In order to keep our experiments as pure as pos-
sible, we will not use additional data or other types
of models. It will allow us to control the amount
of input textual context, so we can easily analyze
the relationship between the amount of textual and
visual information.

4.3 Hyperparameters

We use the same hyperparameters for SNMT and
MSNMT for a fair comparison as follows. All
models have word embeddings of 200 and recur-
rent layers of dimensionality 400 units with 2way

sharing of embeddings in the network. We used
Adam (Kingma and Ba, 2015) with a learning rate
of 0.0004. Decoders were initialized with zeros.
We used a minibatch size of 64 for training and 32
for fine-tuning. Rates of dropout applied on source
embeddings, source encoder states and pre-softmax
activations were 0.4, 0.5, and 0.5, respectively. We
set the max length of the input to 100. wait-k
experiments were conducted for 1, 3, 5, 7, and Full
settings. For MSNMT only hyperparameters, the
sampler type was set to approximate, and chan-
nels were set to 2048. The fusion type was set to
hierarchical mode.

4.4 Evaluation

We report BLEU scores calculated using Moses’
multi-bleu.perl, which is a widely used evalu-
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wait-k
En→De En→Fr En→Cs En→Ja

C I C I C I C I

1 †19.90 8.19 †32.49 18.00 †9.07 6.83 †23.45 17.57
3 †28.75 26.78 †43.99 42.31 †19.39 18.78 †27.74 24.51
5 31.48 31.08 48.40 48.19 †23.50 22.81 †31.72 28.57
7 †32.14 32.04 50.16 50.15 †25.83 25.09 †33.93 31.03

Full 34.84 34.40 †53.78 53.10 26.85 26.84 35.62 35.59

Table 2: Image Awareness results on the test set. BLEU scores of MSNMT Congruent (C) and Incongruent (I)
settings for four translation directions. Results are the average of four runs. Bold indicates the best BLEU score
for each wait-k for each translation direction. “†” indicates the statistical significance of the improvement over
Incongruent settings.

ation metric in MT, on our test sets for each
wait-k model.8 Statistical significance (p <
0.05) on the difference of BLEU scores was
tested by Moses’ bootstrap-hypothesis-difference-
significance.pl. “Full” means that the whole input
sentence is used as an input for the model to start
translating. All reported results are the average of
four runs using four different random seeds.

Additionaly, we use open-sourced Average Lag-
ging (AL) latency metric proposed by Ma et al.
(2019) to evaluate the latency for SNMT and
MSNMT systems.9 It calculates the degree of out
of sync time with the input, in terms of the number
of source tokens as follows:

ALg(X,Y) =
1

τg(|X|)

τg(|X|)∑

t=1

g(t)− t− 1

r
(13)

where r = |Y|/|X| is the target-to-source length
ratio and τg is the decoding step when source sen-
tence finishes:

τg(|X|) = min{t|g(t) = |X|} (14)

5 Results

Table 1 illustrates the BLEU scores of MSNMT
and SNMT models on the test set. MSNMT sys-
tems show significant improvements over SNMT
systems for all language pairs when input textual
information is limited. Note that the difference
of BLEU scores between MSNMT and SNMT be-
comes larger as the k gets smaller, especially when
the target language is distant from English in terms
of word order (e.g. Cs and Ja). On the other hand,
the availability of more tokens during the decod-
ing process (k ≥ 5) leads to the text information
becoming sufficient in some cases.

8Due to space constraints, we show results only for test
sets.

9https://github.com/SimulTrans-demo/
STACL

Figure 1 shows translation quality against AL for
four language directions. In all these figures, we
observe that, as k increases, the gap between BLEU
scores for MSNMT and SNMT decreases. We also
observe that AL scores are better for MSNMT as
k decreases. From these results, it can be seen
that in terms of latency, the smaller k is, the more
beneficial the visual clues become.

6 Analysis

In this section, we provide a thorough analysis
to further investigate the effect of visual data to
produce a simultaneous translation by (a) providing
adversarial evaluation; and (b) analyzing the impact
of different word order for En→Ja language pair.

6.1 Adversarial Evaluation

In order to determine whether MSNMT systems
are aware of the visual context (Elliott, 2018), we
perform the adversarial evaluation on the test set.
We present our system with correct visual data with
its source sentence (Congruent) as opposed to ran-
dom visual data as an input (Incongruent) (Elliott,
2018).Therefore, we reversed the order of 1,000
images of the test set, so there will be no overlap-
ping congruent visual data. Then we reconstruct
image features for those images to use as an input.

Results of image awareness experiments are
shown in Table 2. We can see the large differ-
ence in BLEU scores between MSNMT congruent
(C columns) and incongruent (I columns) settings
when k are small. This implies that our proposed
model utilizes images for translation by learning
to extract needed information from visual clues.
The interesting part is for a full translation, where
scores for the incongruent setting are very close to
those of the congruent setting. The reason is that
when textual information is enough, visual infor-
mation becomes not that relevant in some cases.
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6.2 How Source-Target Word Order Affects
Translation

In wait-k translations, for the En→Ja language
pair with different word orders (SVO vs. SOV),
some source tokens should be translated before
they are presented to the decoder for grammatical-
ity and fluency purposes. Hence, the model also
needs to handle such cases well apart from the
“usual” order. We hypothesized that MSNMT mod-
els, given additional visual information, are able
to translate such cases better than SNMT models.
Therefore, we investigated how many tokens were
correctly translated that are not given as input yet.

First, we quantitatively analyze how well we
can translate entities that are not presented from
the source yet but should exist in target sentences.
To align the source and target entities, we use the
entities’ annotation attached to both the source
and target sentences. Given that annotated enti-
ties have the same IDs and tags for both English
and Japanese, we can align, calculate, and extract
those entities from source and target sentences. If
the index of the first token of the aligned target en-
tity is not given as input at timestep k yet, we count
them for each k scenario as # total entities (Ta-
ble 4). For example, in Table 3 a wait-3 model
should start translating after a token “rappelling”
is presented to the model. And if an ID of the
entity of “海 (a body of water)” is in the target
sentences but not in the inputted part yet, we count
it as an entity that should be translated before be-
ing inputted to the model. Similarly, an entity of
“断崖 (cliff)” is already presented to the model at
timestep 5, so we do not count those entities. If
the same entity ID appears more than once in one
sentence, we exclude those entities due to the im-
possibility of alignments. Finally, for each model
during decoding, if those entities are included in
the model’s translation results with a perfect match
from pre-calculated # total entities, we consider
them as correctly translated.10

Table 4 demonstrates the results. k column is
to determine how many tokens a model waits be-
fore starting translating. Note that k=Full is not
included because all entities are given at the time
of translation. The reason that the total number of
entities that were not inputted yet decreases when
k increases (# total entities column) is that more
entities are already available for the model for trans-

10We can not create # total entities from decoded tokens
directly due to unavailability of entity annotations.

lation. wait-k columns show how many entities
were correctly translated by wait-k SNMT and
MSNMT models from # total entities for each k
scenario. Columns Full show upper-bounds of
how many entities can be correctly translated if
the models were trained with full sentences for en-
tities from each k. Comparing Full results to
wait-k for both SNMT and MSNMT shows that
it is hard to correctly translate entities when k is
small. Furthermore, comparing wait-k results of
SNMT to MSNMT, it can be seen that the smaller
value of k, the better MSNMT can handle different
source-target word order than SNMT.

(a) A person rappelling a
cliff.

(b) Eight men on motorcy-
cles.

Figure 2: Images presented in translation examples (Ta-
ble 5).

As an example, we sampled sentences and their
images from the En→Ja test set (Figure 2) to com-
pare the outputs of our systems. Table 5 lists their
translations generated by SNMT (S) and MSNMT
(M) models. In the first example, an SNMT model
with wait-3 could not predict “海 (sea, a body
of water)” which appears at the end of the source
sentence and generated an erroneous “岩 (rock)”
which is not present neither in source text nor in
a corresponding image. Contrarily, the MSNMT
model with wait-3 was able to correctly predict
“海 (body of water)” even before it was inputted by
capturing visual information. When a full sentence
is given as an input, MSNMT translated it correctly
using more information, unlike SNMT, which trans-
lated only from the given text and generated incor-
rect “登って (climbing)” instead of “降りて (rap-
pelling)”. Interestingly, in the second example, the
MSNMT model with wait-3 predicted “自転車
(bicycles)” instead of “オートバイ (motorcycles)”
at the beginning of the sentence, while the SNMT
model with wait-3 was not able to generate any
vehicle entities. Also, both MSNMT models with
wait-3 and Full correctly captured that there
were eight men, whilst both SNMT models incor-
rectly predicted about one and two men. From
these results, we can conclude that visual clues pos-
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t 1 2 3 4 5 6 7 8 9 10 11
Source a person rappelling a cliff above a body of water .

Target, k=3 海 の 上 に ある 断崖 を 降り て いる 一 人 の 男性 。
Entity count 3 7 7

Table 3: Example of En→Ja translation to count entities that should be translated before introducing it to a model in
case of wait-3 (see Figure 2a). A wait-k model starts translating after k tokens are inputted. Colors represent
the same entities. 3 indicates entities that are not presented to the model at timestep t yet and 7 indicates entities
that are already seen by the model at timestep t. We count only those entities marked with 3 for # total entities
(Table 4).

k # total entities
# correct entities by S # correct entities by M

wait-k Full wait-k Full

1 1,343 251 716 270 707
3 852 229 433 242 432
5 502 147 247 151 243
7 320 106 160 106 159

Table 4: Number of entities that were correctly translated before being presented to the model by SNMT (S) and
MSNMT (M) models with their for each k. Results are the average of four runs.

Source a person rappelling a cliff above a body of water .
Target 海の上にある断崖を降りている一人の男性。

S wait-3 誰かが、岩の上で崖を登る。 (someone climbs a cliff on a rock.)
M wait-3 人が海の上で崖を降りている。 (a person is rappelling a cliff above the sea.)
S Full 人が水域の上の崖を登っている。 (a person is climbing a cliff above a body of water.)
M Full 人が水域の上で崖を降りている。 (a person is rappelling a cliff above a body of water.)

Source eight men on motorcycles dressed in red and black are all lined up on the side of the street .
Target 赤と黒の服を着たオートバイに乗っている８人の男性が通りの脇にずらりと並んでいる。

S wait-3 白い服を着て、黒と黒の服を着た１人の男性が、通りの脇に並んでいる。
(a man in white and black and black is standing beside the street.)

M wait-3 自転車に乗っている赤と黒の服を着た８人の男性が、通りの側面にある。
(eight men in red and black clothes riding a bicycle are on the side of the street.)

S Full 赤と黒の服を着た、オートバイに乗った２人の男性が、通りの脇で並んでいる。
(two men on motorcycles, dressed in red and black, line up by the side of the street.)

M Full 赤と黒の服を着た、オートバイに乗った８人の男性が、通りの側面に並んでいる。
(eight men on motorcycles, dressed in red and black, line the side of the street.)

Table 5: Examples of En→Ja translations from test set using SNMT (S) and MSNMT (M) models (also refer to
Figure 2). In () are shown their English meanings. The same colors indicate the same entity types.

itively impact generated translations where there is
still a lack of textual information, especially when
we deal with language pairs with different word
order.

7 Conclusion

In this paper, we proposed a multimodal simulta-
neous neural machine translation approach, which
takes advantage of visual information as an addi-
tional modality to compensate for the shortage of
input text information in the simultaneous neural
machine translation. We showed that in a wait-k
setting, our model significantly outperformed its
text-only counterpart in situations where only a
few input tokens are available to begin translation.

We showed the importance of the visual informa-
tion for simultaneous translation, especially in the
low latency setup and for a language pair with
word-order differences. We hope that our proposed
method can be explored even further for various
tasks and datasets.

In this paper, we created a separate model for
each value of wait-k. However, in future work,
we plan to experiment on having a single model
for all k values (Zheng et al., 2019b). Furthermore,
we acknowledge the importance of investigating
MSNMT effects on more realistic data (e.g. TED),
where the utterance does not necessarily match
a shown image while speaking and/or where its
context can not be guessed from the shown image.
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Abstract

Context-aware neural machine translation
(NMT) is a promising direction to improve the
translation quality by making use of the addi-
tional context, e.g., document-level translation,
or having meta-information. Although there
exist various architectures and analyses, the
effectiveness of different context-aware NMT
models is not well explored yet. This paper
analyzes the performance of document-level
NMT models on four diverse domains with a
varied amount of parallel document-level bilin-
gual data. We conduct a comprehensive set
of experiments to investigate the impact of
document-level NMT. We find that there is no
single best approach to document-level NMT,
but rather that different architectures come out
on top on different tasks. Looking at task-
specific problems, such as pronoun resolution
or headline translation, we find improvements
in the context-aware systems, even in cases
where the corpus-level metrics like BLEU
show no significant improvement. We also
show that document-level back-translation sig-
nificantly helps to compensate for the lack of
document-level bi-texts.

1 Introduction

Even though machine translation (MT) has greatly
improved with the emergence of neural machine
translation (NMT) (Sutskever et al., 2014; Bah-
danau et al., 2015) and more recently the Trans-
former architecture (Vaswani et al., 2017), there
remain challenges which can not be solved by us-
ing sentence-level NMT systems. Among other
issues, this includes the problem of inter-sentential
anaphora resolution (Guillou et al., 2018) or the
consistent translation across a document (Läubli
et al., 2018), for which the system inevitably needs
document-level context information.

In recent years, many works have focused on
changing existing NMT architectures to incorpo-

rate context information in the translation process
(Tiedemann and Scherrer, 2017; Bawden et al.,
2018; Voita et al., 2018). However, often times re-
sults are reported only on very specific tasks (most
commonly subtitle translation), making it difficult
to assess the potential of the different methods in a
more general setting. This, together with the fact
that big improvements are typically reported on low
resource tasks, gives the impression that document-
level NMT mostly improves due to regularization
rather than from leveraging the additional context
information. In this work we want to give a more
complete overview of the current state of document-
level NMT by comparing various approaches on a
variety of different tasks including an application-
oriented E-commerce setting. We discuss both,
widely used performance metrics, as well as highly
task-specific observations.

Another important aspect when talking about
document-level NMT is the applicability in “real
life” settings. There, when faced with a low re-
source data scenario, back-translation is an es-
tablished way of greatly improving system per-
formance (Sennrich et al., 2016a). However, to
the best of our knowledge, the effect of back-
translation data obtained and used by context-aware
models has never been explored before. The main
contributions of this paper are summarized below:

• We explore several existing context-aware ar-
chitectures on four diverse machine transla-
tion tasks, consisting of different domains and
data quantities.
• We examine the usage of context aware em-

beddings created by pre-trained monolingual
models and study to what extent these embed-
dings can be simplified.
• We conduct corpus studies and extensive anal-

ysis on corpus specific phenomena like pro-
noun resolution or headline translation to give
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an interpretation of the potential improve-
ments from leveraging context information.
• We study the effects of utilizing document-

level monolingual data via back-translation
and report significant improvements particu-
larly for document-level NMT systems.

2 Related Works

The discourse- or document-level translation is a
long-standing and unsolved topic in the machine
translation community (Mitkov, 1999; Carpuat,
2009; Hardmeier, 2014). Although neural machine
translation (Sutskever et al., 2014; Bahdanau et al.,
2015; Vaswani et al., 2017) has recently become
the dominant translation paradigm that provides
superior performance, the independence between
sentences is still the fundamental assumption taken
for granted by most NMT systems. This means,
that discourse-level phenomena between sentences
such as pronominal reference, consistent lexical
choice, and verbal tenses, etc. can not be addressed
by these sentence-level NMT systems (Läubli et al.,
2018; Guillou et al., 2018). The current NMT ap-
proaches tackling inter-sentential discourse phe-
nomena can be roughly categorized into three as-
pects, augmenting NMT by

• adding source-side context
• including both source- and target-side context
• utilizing source- and/or target-side document-

level monolingual data

To include the source-side context, Tiedemann
and Scherrer (2017) concatenate consecutive sen-
tences as input to the NMT system, while Jean
et al. (2017); Bawden et al. (2018); Zhang et al.
(2018) use an additional encoder to extract contex-
tual information from a few previous source-side
sentences. These works only consider a local con-
text, including a few previous sentences. Some
researches seek to capture the global document
context; Wang et al. (2017) summarize the global
context from all previous sentences in a document
with a pre-trained hierarchical RNN and then use
it for updating decoder states. Very recently, Chen
et al. (2020) proposed a discourse structure-based
encoder that takes account of the discourse struc-
ture information of the input document.

For adding additional target-side context, Tiede-
mann and Scherrer (2017); Agrawal et al. (2018)
conduct multi-sentences decoding and observe only
a minor improvement. Maruf and Haffari (2018)

apply cache-based models to store vector repre-
sentations for both source- and target-side context.
Similarly, Tu et al. (2018) augment their NMT sys-
tem with an external cache to memorize the trans-
lation history. Werlen et al. (2018) integrate two
hierarchical attention networks (HAN) (Yang et al.,
2016) in the NMT model to take account for source
and target context. Maruf et al. (2019) apply a hier-
archical attention module on sentences and words
in the context to select contextual information that
is more relevant to the current sentence.

For incorporating document-level monolingual
data from the source language, Zhu et al. (2020)
use BERT (Devlin et al., 2019) to model the source-
side context and integrate it with the encoder and
decoder of the NMT model. Junczys-Dowmunt
(2019) share the parameters of a BERT-style en-
coder trained on monolingual documents with the
MT model.

To utilize the document-level monolingual data
from the target language, Junczys-Dowmunt (2019)
also submit a system that trained on the combina-
tion of real and synthetic document-parallel data
obtained by back-translation. However, they do not
consider document-level back-translation. Voita
et al. (2019a) proposed a document-level post-
editing system which is trained only using the
monolingual document-level corpus.

Recently, there has been a tendency in the com-
munity to conclude that the context used in a
context-aware MT model works as regularisation or
noise generator. Kim et al. (2019) compare several
multi-encoders methods and claim that including
this additional information can improve translation
performance, but it is mostly due to the regular-
ization effect rather than the contextual informa-
tion. Li et al. (2020) also compare some context-
aware architectures by replacing the real context
with some random signal and show that random
signals can achieve the same level improvement
as the real context. However, it should be taken
with a grain of salt since solving this task, along
with the analysis, is quite challenging. There are
many impact factors from the architecture, the data
at hand, to the metric being used for evaluation.

One issue that can not be ignored in all discourse-
related researches is the problem of evaluation.
Since some discourse-level phenomena between
sentences appear less frequently, although relevant,
there is doubt if the metrics like BLEU score (Pa-
pineni et al., 2002) can capture these complex re-
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lationships (Le Nagard and Koehn, 2010; Hard-
meier and Federico, 2010). To get more insights
into the capacities dealing with discourse-level phe-
nomena of their MT models, some researchers use
more targeted evaluation scores (Wong et al., 2020),
like the Accuracy of Pronoun Translation (APT)
Werlen and Popescu-Belis (2017), or they evalu-
ate their systems on some specific test suites that
contain more and more complex discourse phenom-
ena (Hardmeier et al., 2015; Guillou et al., 2018;
Müller et al., 2018; Voita et al., 2019b).

3 Document-level NMT

In this section, we first describe several commonly
used context-aware NMT architectures and high-
light the differences among them, largely follow-
ing the work by Kim et al. (2019). Afterwards,
we describe one radical attempt to represent the
document-level context in one single embedding
vector using BERT (Devlin et al., 2019). Finally,
we explain our proposed paradigm to use document-
level back-translation in detail. Note that in this
work, we consistently use Transformer (Vaswani
et al., 2017) as our basic architecture and modify it
accordingly.

3.1 Context-Aware Architectures

Given a source sentence in a document to be trans-
lated, in order to exploit the source-side context
from its previous sentences in the same document,
a simple and straightforward technique is to con-
catenate these contextual sentences with the current
source sentence (Tiedemann and Scherrer, 2017;
Agrawal et al., 2018). Similarly, if the previous
and current target sentences are to be generated
together, i.e. e

¯
I
1 = e

Ipre
1 BREAK eIcur

1 , then the
target-side context can also be considered by the
model (Tiedemann and Scherrer, 2017). Two ad-
ditional special tokens are introduced to indicate
the boundary between sentences and the beginning
of a document, respectively. In this case, there is
no modification of the model architecture itself, as
seen in Figure 1.

An alternative way to model the source-side con-
text is via an additional encoder, as shown in Fig-
ure 2. The previous sentence fpre is fed into an
additional encoder to obtain the hidden represen-
tation of the source context sentence hL−1

jpre
. At the

last layer of the encoder, the source representation
hL−1
j attends to hL−1

jpre
and outputs the combined

hidden representation cLj (Voita et al., 2018). Then,
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Figure 1: Single Encoder (2to2) approach only consid-
ering the one previous source sentence as context.

a gating mechanism (Bawden et al., 2018) between
hLj and cLj is followed:

gj = σ(Wg[h
L
j , c

L
j ] + bg) (1)

oj = gi �Wsh
L
j + (1− gi)�Wcc

L
j (2)

We refer to this approach as “Multi-Encoders
(Out.)”.
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Figure 2: Multi-Encoders Out-side of decoder ap-
proach (Out.).

Another way to do the integration is to keep
the representation of the current source sentence
and the representation of the contexts separate and
allow the decoder to have access to the context
representations. Figure 3 shows a sequential inte-
gration inside of the decoder, where the decoder
firstly attends to the current source representation,
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Figure 3: Multi-Encoders followed by attention compo-
nents Inside of decoder Sequentially (In. Seq.).

then its output attends to the context representation
(Zhang et al., 2018). The same gating mechanism
as in the Multi-Encoders (Out.) approach is used
between the two attention outputs. We refer to this
approach that uses multi-encoders followed by at-
tention components inside of decoder sequentially
as “Multi-Encoders (In. Seq.)”.

Figure 4 shows a parallel integration of the con-
text inside of the decoder, where the decoder at-
tends to the source and context representation in
parallel and the outputs of them are combined again
using a gating mechanism (Bawden et al., 2018).
In this paper, we call this approach using multiple
encoders followed by attention components inside
the decoder in parallel “Multi-Encoders (In. Par.)”.
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Figure 4: Multi-Encoders followed by attention compo-
nents Inside of decoder in Parallel (In. Par.).

In addition, we use “WordEmb (In. Par.)” to re-
fer to the approach that only uses word embeddings
without any hidden layers to model the context and

integrate it following the Multi-Encoders (In. Par.).
Considering that a pre-trained model like ELMo

(Peters et al., 2018) or BERT (Devlin et al., 2019)
can capture rich representations of the input, it is
apparent that one can also use it to model contex-
tual information. Figure 5 shows the BERT-fused
model proposed in Zhu et al. (2020), which uses a
BERT encoder to obtain the BERT hidden repre-
sentations HB on the concatenation of the context
sentence fpre and the current source sentence fcur.
HB is further fused into each layer of the encoder

BERT
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Figure 5: BERT sequence embeddings approach (Zhu
et al., 2020).

and decoder of the NMT model using the attention
mechanism to obtain the context representation. In-
stead of using the summation operation like in the
original paper, we combine the context represen-
tation hljpre&cur

and source representation hlj with a
gating mechanism on the encoder side. Similar
operation for the integration on the decoder side is
used. This approach corresponds to the “BERT se-
quence embeddings (emb.)” approach in our main
results in Table 3.

3.2 Single Embedding Vector as Context
Representation

The introduction of additional encoders or atten-
tion components in the approaches mentioned in
Section 3.1 brings a large number of parameters,
which is not always ideal. Further, we propose one
radical attempt to summarize the document-level
context into one single embedding vector. We aver-
age the embeddings in the context representation
HB obtained by BERT to obtain one single mean-
pooled embedding and then concatenate it with the
word embeddings of the current source sentence
along time axis (T-axis) or feature axis (F-axis).
Besides, for the e-commerce dataset, we also apply
a variant of BERT, which we call eBERT, that was
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trained with additional e-commerce item titles as
supplement in-domain data.

3.3 Document-level Back-translation

While there exist many works showing the improve-
ments of context-aware systems, some major as-
pects are typically not covered - one of them being
back-translation (Sennrich et al., 2016a). Back-
translation is an integral part when building the
strongest possible systems and is currently the best
way to include monolingual data in the training of
a NMT system. It uses an inverse, target-to-source,
MT model to generate synthetic source sentences
given target-side monolingual sentences. There ex-
ists a series of works on this topic (Hoang et al.,
2018; Burlot and Yvon, 2018; Graça et al., 2019).
However, the underlying inverse MT model used
so far is mostly on the sentence level.

In this work, we argue that back-translation
could be even more crucial when training
document-level NMT systems, since even for com-
mon language pairs like German-English we have
very limited amounts of parallel document-level
data while having an abundance of monolingual
document-level data. In addition, except for using
a sentence-level inverse NMT model, we also intro-
duce a document-level inverse MT model to gen-
erate pseudo source documents given monolingual
target-side documents. The intuition behind this ap-
proach is that we expect the document-level back-
translation system to keep more inter-sentential
discourse-phenomena in the synthetic source doc-
uments. If the back-translation system is merely
on the sentence level, some discourse-phenomena,
like consistent lexical choices, might not remain in
the generated source documents. Losing this poten-
tially large amount of discourse-phenomena is not
beneficial for training a context-aware model.

Since there is a large amount of document-level,
monolingual in-domain data in the form of the
NewsCrawl corpora, we conduct back-translation
experiments on the WMT task. Here, we first train
a baseline model and a context-aware model on the
WMT news-commentary v14 in the reverse direc-
tion (De-En). We decide to use Multi-Encoders (In.
Par.) as our inverse context-aware model, as it has
the best performance on the WMT task. Then we
sample 4.8M sentences pairs from news-docs2018
monolingual corpus,1 which contains 168K docu-

1http://data.statmt.org/news-crawl/
doc/de

ments. Next, we use the inverse NMT models to
translate them applying beam search with beam
size 5 and concatenate the resulting bilingual syn-
thetic data with the real documents in the news-
commentary v14 dataset (En-De). Finally, we com-
pare the performance of a sentence-level baseline
(En-De) and a context-aware model, Single En-
coder (2to2), on both concatenated corpora. To
our knowledge, this is the first attempt to explore
the document-level back-translation data systemat-
ically (see Section 4.3.5).

4 Experiments

4.1 Datasets

We experiment with various parallel document-
level datasets including IWSLT TED talk English-
Italian,2 WMT news-commentary v14 English-
German,3 OpenSubtitles (Lison and Tiedemann,
2016) v2018 English-German4 and an additional in-
house e-commerce English-Chinese dataset. The
test sets for the former two are the IWSLT 2017 test
set and WMT newstest2018, respectively; for the
latter two, we have created the dev and test sets our-
selves by doing appropriate splits to the complete
dataset.5 The data statistics of bilingual corpora
used for fine-tuning context-aware models are sum-
marized in Table 1. In the IWSLT, WMT and Open-
Subtitles datasets, there exists a boundary between
documents. We first take them as sentence-level
corpora to train the baseline and further fine-tune
the context-aware system on them.

The context-aware part of the e-commerce
dataset is quite small and distinct from the other
tasks: it does not contain documents or talks, but
rather sentence-level item descriptions from an e-
commerce website. As translation context, we
provide the title of the item, instead of preceding
sentences. Item descriptions and titles are user-
provided, so they may contain ungrammatical sen-
tences, spelling errors, and other noise. We give
the title as context on the source-side, and we have
reference translations only for the descriptions. In

2https://sites.google.com/site/
iwsltevaluation2017

3https://www.statmt.org/wmt18/
translation-task.html

4http://opus.nlpl.eu/
OpenSubtitles-v2018.php

5We randomly sample complete documents from different
years for dev and test set. The precise document IDs
are: dev: {1997/517700, 2002/696617, 2007/933906,
2012/2192989, 2017/6007584}, test: {1997/708495,
2002/257044, 2007/1036109, 2012/2322334, 2017/6190628}

608



IWSLT WMT OpenSubtitles E-commerce data
# Sentences 233K/ 1.6K/ 1.2K 338K/ 2.2K/ 3.0K 22.5M/ 3.5K/ 3.8K 36K/ 478/ 1K
# Running words 4.7M/ 31K/ 22K 8.3M/ 47K/ 68K 188M/ 30K/ 30K 596K/ 12K/ 26K
Avg. sentence length 20/ 20/ 19 25/ 22/ 23 8/ 9/ 8 17/ 25/ 26

Table 1: Training/development/test corpora statistics.

order to get a strong baseline, we additionally use a
large sentence-level e-commerce dataset consisting
of 6M sentence pairs (2.7M in-domain and 3.3M
out-of-domain e-commerce) to train the baseline
system, and then use it as initialization for fine-
tuning on the context-aware e-commerce dataset.
This dataset allows us to investigate context-aware
NMT in a realistic scenario, in which the majority
of training data does not have additional context.

To get a better insight into the model’s perfor-
mance for tackling the pronoun translation, we eval-
uate our models on two targeted test sets: one
is ControPro for OpenSubtitles, the other is a
coreference-focused test set for WMT. ControPro
is introduced in Müller et al. (2018), which is a con-
trastive test set extracted from OpenSubtitles with
previous sentences as context. The source sentence
has the English pronoun it and three corresponding
German translations containing German counter-
parts es, sie, er, i.e., one of them is correct, and the
other two are incorrect. The evaluation is done by
counting the decisions that models rank the correct
translation higher than the incorrect translations. In
addition to using it in this way, we keep the source
and the corresponding correct translation to form a
standard test set containing 12K sentence pairs and
measure the general translation quality on it.

ControPro Coreference
# Sentences 12K 1.1K
# Running words 129K 28K
Avg. sentence length 11 26

Table 2: Two targeted-test sets: ControPro (Müller
et al., 2018) and coreference-focused test set extracted
from WMT newstest 2008-2019 using NeuralCoref.

To create a targeted test set for WMT, we
use an external tool called NeuralCoref6. We
first apply this external tool to detect the coref-
erence resolution in two consecutive sentences
from newstest2008-2019, and then only keep the
sentences where the coreference is resolved inter-

6https://github.com/huggingface/
neuralcoref

sententially. This results in a targeted test set con-
taining more inter-sentential discourse phenomena.
The detailed statistics of these two targeted test sets
are given in Table 2.

All language pairs are preprocessed with the
Moses tokenizer7 except for the Chinese corpus
which is preprocessed with the chinese text segmen-
tation tool “jieba”8. We apply byte pair encoding
(Sennrich et al., 2016b) with 32k merge operations
jointly for source and target languages.

4.2 Experimental setting

All models are implemented in open-source toolkit
OpenNMT (Klein et al., 2017). For the sentence-
level baseline system, we follow a 6-layer base
Transformer model (Vaswani et al., 2017) and set
the hidden size and embedding size as 512 and
the dimension of the feed-forward layer as 2048.
We use 8 heads for multi-head attention. For our
context-aware models, we extend baseline system
to include additional encoder with the same setting.
In training, we use Adam optimizer (Kingma and
Ba, 2014) or its variant Lazy Adam Optimizer for
optimization and follow the learning rate schedule
described in (Vaswani et al., 2017). The learning
rate scale factor and warm-up steps are different
for different datasets. In all our experiments, we
share word embeddings over the source and the
context. The context encoders are also initialized
by the encoder of the sentence-level baseline.

For automatic evaluation, we report case-
sensitive sacreBLEU score (Post, 2018) for all cor-
pora except for e-commerce, on which the evalua-
tion is done in Chinese character-level with case-
insensitive sacreBLEU.

4.3 Analysis

4.3.1 Performance in Terms of BLEU
Table 3 shows the corpus-level BLEU-scores of all
architectures on different tasks. For the baseline
as well as the “source-side-only” systems we get
similar results to Kim et al. (2019) on the IWSLT

7http://www.statmt.org/moses
8https://github.com/fxsjy/jieba
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IWSLT WMT OpenSubtitles E-commerce data
System Type BLEU[%] BLEU[%] BLEU[%] BLEU[%]
Baseline N/A 31.6 28.4 37.3 33.7
Single Encoder (2to1) s 31.7 28.3 37.5 32.8
Single Encoder (3to1) s 31.1 28.5 36.7 N/A
Multi-Encoders (Out.) s 31.3 28.6 37.6 34.0
Multi-Encoders (In. Seq.) s 31.8 29.2 37.5 34.6
Multi-Encoders (In. Par.) s 32.2 30.1 37.5 34.2
WordEmb (In. Par.) s 31.9 29.8 37.3 34.3
Single Encoder (2to2) s,t 32.3 28.9 38.2 N/A
BERT sequence emb. (e,d) s,m 32.8 29.0 37.4 34.0
BERT sequence emb. (e) s,m 32.3 29.3 36.5 34.2
BERT sequence emb. (d) s,m 32.1 29.7 36.6 34.3
BERT single emb. (T-axis) s,m 31.7 28.7 37.6 34.5
eBERT single emb. (T-axis) s,m N/A N/A N/A 34.5
BERT single emb. (F-axis) s,m 31.6 28.7 36.7 32.3

Table 3: Comparison of document-level architectures on different tasks. “Type” indicates whether the context used
is from source(s)- or target(t)-side or if additional monolingual(m) data is included. “e” or “d” following the name
of BERT sequence emb. approach indicates whether the context representation is fused on the encoder or decoder.

and WMT tasks, with Multi-Encoders (In. Par.) be-
ing the strongest architecture. For the e-commerce
data, Multi-Encoders (In. Seq.) performs slightly
better. Interestingly, with these architectures we do
not see improvements on the much larger OpenSub-
titles corpus. This seems to confirm the suggestion
of Kim et al. (2019) that these architectures work
more as a regularization which is much more im-
portant for low resource tasks.

The Single Encoder (2to2) results in an improve-
ment on all tasks excluding the e-commerce task,
for which the method is not applicable due to the
lack of target translation of the context (titles). The
improvements on the OpenSubtitles test set are
comparable to what has been reported in the liter-
ature (Tiedemann and Scherrer, 2017) while the
improvements on the other tasks are a bit smaller.
We notice that with this architecture, the improve-
ments increase with decreasing average sentence
length, which makes sense since it is known that the
Transformer struggles with long input sequences
(Rosendahl et al., 2019). This seems also to be
indicated by the deteriorating performance of the
Single Encoder (3to1) system, which confirms the
findings of Agrawal et al. (2018).

Including context information through BERT se-
quence embeddings improves the performance on
IWSLT, WMT and the e-commerce tasks but not
on OpenSubtitles. The pre-trained BERT brings
more (monolingual) data, which should again help

primarily on the low resource tasks. Contrary to the
before mentioned approaches, the BERT single em-
bedding approach does not significantly increase
the number of free parameters, but it only works
on the e-commerce task in our experiments. This
finding as well as the discrepancy between concate-
nating along the time or feature axis is discussed in
detail in Section 4.3.2.

While these findings are consistent with previous
works, we find it to be insufficient to just rely on
corpus-level BLEU scores to come to a conclusion
about the usefulness of these approaches. In the
subsequent sections we discuss specific aspects of
the translations which might be easily overlooked.
Furthermore we investigate the utilization of back-
translation (Sennrich et al., 2016a) for document-
level systems, in an effort to compare these archi-
tectures in a more “real-life” setting where back-
translation is almost always used.

4.3.2 Including BERT
When looking at the results in Table 3, we see that
using the embeddings produced by BERT yields
some decent improvements on all tasks except for
OpenSubtitles. This might indicate that the im-
provements - at least in parts - come from the usage
of additional data when training the BERT model
rather than from an improved context representa-
tion. A drawback when using the BERT system
combination is the introduction of many additional
parameters and calculations. This can be drasti-
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IWSLT WMT E-commerce data
System # tokens BLEU[%] # tokens BLEU[%] # tokens BLEU[%]
Reference 19931 - 64276 - 40149 -
Baseline -226 31.6 +1117 28.4 -2672 33.7
BERT single emb. (T-axis) -66 31.7 +879 28.7 -2174 34.5
Random emb. (T-axis) +19 31.5 +1557 28.7 -2177 34.7

Table 4: Using different vectors for context representation. For the reference, the number of tokens stands for the
total number of target tokens in the reference. In all consecutive lines, the number stands for the difference in the
number of tokens compared to the reference.

cally reduced when using a single vector extracted
from BERT as described in Section 3.2. However,
the results of this approach are not significantly out-
performing the baseline system on any tasks except
for the e-commerce data.

Surprisingly, the eBERT does yield no further
improvement over the BERT variant and the con-
catenation along the F-axis leads to a significant
degradation in performance. These two factors lead
us to believe that the context information is not the
decisive factor but something else. To investigate
this, we replaced the BERT-generated context vec-
tor with a random vector and compared the result-
ing BLEU scores which are shown in Table 4.

Depicted in this table are the BLEU score as
well as the number of tokens in the respective hy-
pothesis for the IWSLT, WMT and e-commerce
tasks. For replacing the real context vector we
create the random vector by sampling from the uni-
form distribution. Looking at the results, we see
that our assumption is correct: the variant using a
random vector yields the same improvements as the
real context vector on the e-commerce task - even
though it inhabits no relevant context information.

The reason behind this becomes clear when com-
paring the number of tokens produced in the hy-
potheses: On the e-commerce task we have a no-
ticeable problem with under translation. We argue
that by increasing the length of the input sequence
we inevitably increase the length of the output, lead-
ing to a longer hypothesis and consequently to a
smaller brevity penalty when calculating BLEU.
This effect is not present for the other tasks at hand,
since there we do not have a significant effect of
under translation. We note that similar results were
obtained very recently by Li et al. (2020), who also
see improvements when replacing the context sig-
nal with random noise. However, we conclude that
the underlying effect is a different one, since we
see no improvements when concatenating along the

feature axis or when evaluating on a different task.
In conclusion, we argue that the improvements seen
by using the BERT-embeddings for context infor-
mation rather comes from additional data and other
effects discussed in this section, rather than from
the usage of actual context information.

4.3.3 Better Headline Translation using
Context

In this section we discuss another unexpected ef-
fect of using context information in the translation,
namely giving the system additional information
about the nature of the input. In the WMT task,
both the train and test data consist of articles com-
posed of a headline followed by a body of text,
consisting of several sentences. This means the
only time the system has no context information
at hand, is when translating the headline of an arti-
cle. We argue that the system can in fact use this
information to distinguish whether the input se-
quence at hand is a headline or a real sentence and
act accordingly. Since a headline has a very distin-
guishable style compared with a complete sentence,
this should lead to improvements in the translation
quality. To examine this hypothesis, we separate
the WMT test set into two parts: One consisting
only of headlines and the other one consisting only
of body of texts. We then evaluate the baseline
system and our strongest document-level system
(Multi-Encoders (In. Par.) for WMT) separately on
both sets, The results can be seen in Table 5.

We see that the translations of both sets are im-
proved when using the document-level setup. How-
ever, the improvement on the headlines is much
larger (+4.5% BLEU) than on the body of text
(+1.7% BLEU). When manually checking the hy-
potheses, we find that the baseline system often
times tries to translate a headline as a “complete”
sentence (e.g. including a verb) while the document
level system translates these in a much more consis-
tent style. This observation coincides with the fact
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System BLEU[%]
Baseline 28.4
Doc-level 30.1
Baseline headlines 19.9
Doc-level headlines 24.4
Baseline newsbody 28.5
Doc-level newsbody 30.2

Table 5: System performance in terms of BLEU on
headlines vs body of text for the WMT test set. The
document-level system is Multi-Encoders (In. Par.).

that the baseline system shows severe signs of over-
translation (on average 14.9% more tokens than the
reference) and the document-level system does not
(-1.2%). We note that this effect is not responsi-
ble for the overall improvement in the corpus-level
BLEU, since the ratio of headlines to text is very
small (3.9%). This becomes clear when comparing
the improvements on the body of text vs the com-
plete test set - which is equal. We conclude that
this is another instance where the context improves
the translation quality even if it is not immediately
obvious.

4.3.4 Pronoun Resolution
Testing the correct translation of pronouns is an es-
tablished method to compare the context-awareness
of document-level machine translation systems
(Guillou et al., 2016; Jean et al., 2017; Bawden
et al., 2018; Voita et al., 2018; Werlen et al., 2018;
Wong et al., 2020). It can be argued that the ability
of correctly translating inter-sentential pronouns
not only depends on the architecture at hand but
also on the data which the system is trained on.
We decide to test the pronoun resolution capabili-
ties of our systems in two different ways: First we
are using an automatic metric for the accuracy of
pronoun translation (APT) (Werlen and Popescu-
Belis, 2017) and second we use two targeted test
sets described in Section 4.1. The results on Open-
Subtitles and WMT can be found in Table 6.

We calculate BLEU and APT scores on both the
OpenSubtitles test set and ControPro test set (with-
out contrastive translations) (Müller et al., 2018).
Furthermore we calculate the resolution accuracy
on ControPro (with contrastive translations). We
compare the sentence-level baseline system with
the best performing document-level system on this
task - Single Encoder (2to2) as well as the Single
Encoder (2to1) system. Even though the latter does
not significantly improve over the baseline on the

OpenSubtitles test set, we find a significant increase
in pronoun translation accuracy in terms of both
evaluation methods. The Single Encoder (2to2) sys-
tem is even stronger in terms of pronoun translation,
outperforming the baseline system by an impres-
sive 33.9% absolute accuracy on the targeted test
set. When calculating BLEU on ControPro, the
gap between the baseline and the document-level
systems becomes significantly larger. The BLEU
scores for the Single Encoder (2to2) and the Single
Encoder (2to1) systems are equal.

When looking at the APT scores on WMT test
set, the context-aware system does not provide
much improvement. We assume the reason is that
the portion of the potential improvement regarding
inter-sentential pronoun resolution is quite small,
having looked through this test set. The increased
gap of APT score between the baseline system
and the context-aware system on the coreference-
focused test set confirms this assumption, as there
are more inter-sentential coreference phenomena
in this targeted test set. Note that the BLEU score
gaps between the baseline and context-aware sys-
tems on both test sets are almost the same.

All in all we can conclude that in this case the
context information is helpful for a better transla-
tion, even though the effect might not be visible
when just looking at corpus level BLEU.

4.3.5 Document-level Back-translation
When dealing with document-level monolingual
data, the question arises, whether a sentence-level
back-translation system is sufficient to generate the
synthetic data. In this section, we investigate the ef-
fect of the sentence-level back-translation data and
document-level back-translation data on the base-
line system as well as a context-aware system. The
sentence-level baseline and context-aware model
used to generate synthetic documents have 28.3%
BLEU and 29.7% BLEU on the test set, respec-
tively. The performance of the resulting En-De
systems are summarized in Table 7.

When using the synthetic data generated by the
sentence-level system we see a huge increase in
performance for both systems (+5.5% BLEU for
the sentence-level system and +7.2% BLEU for
the document-level system). A large increase in
performance is to be expected since we increase
the amount of data by roughly a factor of 8. The
systems trained on the synthetic data generated by
the document-level system show even further im-
provements (+1.6% BLEU for the sentence-level
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OpenSubtitles ControPro WMT Coreference test
System BLEU APT BLEU APT corr. res. BLEU APT BLEU APT
Baseline 37.3 52.8 30.5 35.4 48.7 28.4 40.6 18.9 24.0
Single Encoder (2to1) 37.5 53.4 33.1 47.4 64.3 28.3 40.8 19.0 25.6
Single Encoder (2to2) 38.2 54.2 33.1 49.5 82.6 28.9 41.1 19.7 26.1

Table 6: Targeted evaluation for OpenSubtitles and WMT. All numbers are in percentage.

BT-Data used System BLEU[%]
- Sent-level 28.4

Doc-level 28.9
Sent-level Sent-level 33.9

Doc-level 36.1
Doc-level Sent-level 35.5

Doc-level 36.5

Table 7: Including back-translation data to the WMT
task. The architecture of the document-level system is
the Single Encoder (2to2) approach.

system and +0.4% BLEU for the document-level
system). This might be in part due to the fact
that the document-level back-translation system
is stronger than the sentence-level one.

A very interesting observation is that the
document-level system profits significantly more
from the synthetic data in both scenarios. This con-
tradicts the proposition that document-level archi-
tectures function mainly as a form of regularization
for low resource data-settings. To the contrary we
see an especially large gap in the case where we use
only the sentence-level back-translation system for
synthetic data generation. We argue that the reason
for this is, that the document-level system is more
capable in recovering from errors made during the
back-translation due to the context information.
For example a wrongly translated pronoun on the
source side will definitely lead the sentence-level
system astray, but the document-level one might
still recover when the context is correct. This as-
sumptions is also supported by the fact that the gap
between sentence-level and document-level system
gets smaller when using synthetic data generated
by the document-level system, since we assume
less such errors get made by this system.

5 Conclusion

In this work, we give a comprehensive comparison
of current approaches to document-level NMT. To
draw meaningful conclusions, we report results
for standard NMT metrics on four diverse tasks -

differing in the domain and the data size. We find
that there is no single best approach to document-
level NMT, but rather that different architectures
work the best on various tasks. Looking at task-
specific problems, such as pronoun resolution or
headline translation, we find improvements in the
context-aware systems, which is not visible in the
corpus-level metric scores.

We also investigate methods to include
document-level monolingual data on both source
(using pre-trained embeddings) and target (using
back-translation) sides. We argue that the perfor-
mance improvements from the pre-trained encoder
predominantly come from increased training data
and other task-specific phenomena unrelated to
actual context information utilization. Regarding
back-translation, we find that document-level sys-
tems seem to benefit more from synthetically gener-
ated data than their sentence-level counterparts. We
discuss that this is because document-level systems
are more robust to sentence-level noise.

We plan to expand our experiments to incor-
porate document-level monolingual data on both
source and target sides. This makes sense just
by looking at the data conditions of almost every
task: document-level parallel data is scarce, but
document-level monolingual data is abundant.
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Abstract

Domain adaptation is an old and vexing prob-
lem for machine translation systems. The
most common and successful approach to su-
pervised adaptation is to fine-tune a baseline
system with in-domain parallel data. Stan-
dard fine-tuning however modifies all the net-
work parameters, which makes this approach
computationally costly and prone to overfit-
ting. A recent, lightweight approach, instead
augments a baseline model with supplemen-
tary (small) adapter layers, keeping the rest
of the model unchanged. This has the addi-
tional merit to leave the baseline model in-
tact and adaptable to multiple domains. In
this paper, we conduct a thorough analysis of
the adapter model in the context of a multido-
main machine translation task. We contrast
multiple implementations of this idea using
two language pairs. Our main conclusions are
that residual adapters provide a fast and cheap
method for supervised multi-domain adapta-
tion; our two variants prove as effective as the
original adapter model and open perspective to
also make adapted models more robust to label
domain errors.

1 Introduction

Owing to multiple improvements, Neural Machine
Translation (NMT) (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017) nowadays delivers useful out-
puts for many language pairs. However, as many
deep learning models, NMT systems need to be
trained with sufficiently large amounts of data to
reach their best performance. Therefore, the quality
of the translation of NMT models is still limited in
low-resource language or domain conditions (Duh
et al., 2013; Zoph et al., 2016; Koehn and Knowles,
2017). While many approaches have been pro-
posed to improve the quality of NMT models in
low-resource domains (see the recent survey of

Chu and Wang (2018)), full fine-tuning (Luong and
Manning, 2015; Neubig and Hu, 2018) of a generic
baseline model remains the dominant supervised
approach when adapting NMT models to specific
domains.

Under this view, building adapted systems is a
two-step process: (a) one first trains NMT with the
largest possible parallel corpora, aggregating texts
from multiple, heterogeneous sources; (b) assum-
ing that in-domain parallel documents are avail-
able for the domain of interest, one then adapts the
pre-trained model by resuming training with the
sole in-domain corpus. It is a conjecture that the
pretrained model constitutes a better initialization
than a random one, especially when adaptation data
is scarce. Indeed, studies of transfer learning for
NMT such as Artetxe et al. (2020); Aji et al. (2020)
have confirmed this claim in extensive experiments.
Full fine-tuning, that adapts all the parameters of a
baseline model usually significantly improves the
quality of the NMT for the chosen domain. How-
ever, it also yields large losses in translation qual-
ity for other domains, a phenomenon referred to
as “catastrophic forgetting” in the neural network
literature (McCloskey and Cohen, 1989). There-
fore, a fully fine-tuned model is only useful to one
target domain. As the number of domains to han-
dle grows, training, and maintaining a separate
model for each task can quickly become tedious
and resource-expensive.

Several recent studies (e.g. (Vilar, 2018; Wue-
bker et al., 2018; Michel and Neubig, 2018; Bapna
and Firat, 2019)) have proposed more lightweight
schemes to perform domain adaptation, while also
preserving the value of pre-trained models. Our
main inspiration is the latter work, whose pro-
posal relies on small adapter components that are
plugged in each hidden layer. These adapters are
trained only with the in-domain data, keeping the
pre-trained model frozen. Because these additional
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adapters are very small compared to the size of the
baseline model, their use significantly reduces the
cost of training and maintaining fine-tuned models,
while delivering a performance that remains close
to that of full fine-tuning.

In this paper, we would like to extend this archi-
tecture to improve NMT in several settings that still
challenge automatic translation, such as translating
texts from multiple topics, genre, or domains, in
the face of unbalanced data distributions. Further-
more, as the notion of “domains” is not always well
established, another practical setting is the trans-
lation of texts mixing several topics/domains. An
additional requirement is to translate texts from
domains unseen in training, based only on the un-
adapted system, which should then be made as
strong as possible.

In this context, our main contribution is a thor-
ough experimental study of the use of residual
adapters for multi-domain translation. We notably
explore ways to adjust and/or regularize adapter
modules to handle situations where the adaptation
data is very small. We also propose and contrast
two new variants of the residual architecture: in
the first one (highway residual adapters), adapta-
tion still affects each layer of the architecture, but
its effect is delayed till the last layer, thus making
the architecture more modular and adaptive; our
second variant (gated residual adapters) exploits
this modularity and enables us to explore ways to
improve performance in the face of train-test data
mismatch. We experiment with two language pairs
and report results that illustrate the flexibility and
effectiveness of these architectures.

2 Residual adapters

In this section, we describe the basic version of
the residual adapter architectures (Houlsby et al.,
2019; Bapna and Firat, 2019), as well as two novel
variants of this model.

2.1 Basic architecture

2.1.1 The computation of adapter layers
Our reference architecture is the Transformer
model of Vaswani et al. (2017), which we assume
contains a stack of layers both on the encoder and
the decoder sides. Each layer contains two sub-
parts, an attention layer, and a dense layer. Details
vary from one implementation to another, we sim-
ply contend here that each layer i ∈ {1 . . . L} (in
the encoder or the decoder) computes a transform

of a fixed-length sequence of d-dimensional input
vectors hi into a sequence of output vectors hi+1 as
follows (LN denotes the (sub)layer normalization,
ReLU is the “rectified linear unit” operator):

hi0 = LN(hi)

hi1 = Wi
dbh

i
0 + ai1

hi2 = ReLU(hi1)

hi3 = Wi
bdh

i
2 + ai2

h̄i = hi3 + hi.

Overall, the ith adapter is thus parameterized by
matrices Wi

db ∈ Rd×b,Wi
bd ∈ Rb×d, bias vectors

bi1 ∈ Rb, bi2 ∈ Rd, with b the dimension of the
adapter . For the sake of brevity, we will sim-
ply denote hi3 = ADAP(i)(hi), and θADAP(i) the
corresponding set of parameters.

The ”adapted” hidden vectors h̄i1≤i≤L−1, where
L is the number of layers, will then be the input
of the (i+ 1)th layer; h̄L is passed to the decoder
if it belongs to the encoder side, or is the input of
output layer if it belongs to the decoder side. Note
that zeroing out all adapters enables us to recover
the basic Transformer, with h̄i = hi for all i.

In the experiments of Section 3, we use 2×L =
12 residual adapters, one for each of the L = 6
attention layers of the encoder and similarly for the
decoder.1

2.1.2 Design space and variants
This general architecture leaves open many design
choices pertaining to the details of the network
organization, the training procedure, and the corre-
sponding objective function.

The first question is the number of adapter layers.
While in principle, all Transformer layers can be
subject to adaptation, it is nonetheless worthwhile
to consider simpler adaptation schemes, which
would only alter a limited number of layers. Such
strategy might be especially relevant when the train-
ing data contains very small domains, as in the ex-
periments of Section 3, and for which a complete
adaptation may not be necessary or/and or prone
to overfitting. Likewise, it might be meaningful to
explore ways to share subsets of adapters across
domains. This, in turn, raises the issue of which
layer(s) to adapt, a question that can be approached
in the light of recent analyses of Transformers mod-
els, which conjecture that the higher layers encode

1In the decoder, the stack of self-attention and cross
encoder-decoder attention only counts as one attention layer
and only corresponds to one residual adapter.
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global patterns with a more “semantic” interpreta-
tion, while the lower layers encode local patterns
akin to morpho-syntactic information (Raganato
and Tiedemann, 2018).

A related question concerns the regularization of
adapter layers to mitigate overfitting. Reducing the
number of adapters, or their dimensions, is simple,
but such choices are difficult to optimize numeri-
cally – an issue that becomes important as the num-
ber of domain grows. Less naive alternatives can
also be entertained, such as applying weight decay
or layer regularization to the adapter. Implement-
ing these requires to modify the objective function
in a way that still allows for a smooth optimiza-
tion problem. For instance, weight decay applies a
penalization on the weights of the adapters, com-
plementing the cross-entropy term with a function
of the norm of the parameters:

L̄ =
1

#(x, y)

∑

x,y

(− log(P (y|x)))

+ λ
∑

i∈{1,..,6}⊗{enc,dec}
‖θADAP(i)‖2

An alternative scheme is layer regularization,
which penalizes the output of the adapters, cor-
responding to the following objective:

L̄ =
1

#(x, y)

∑

x,y

(− log(P (y|x))

+ λ
∑

i∈{1,..,6}⊗{enc,dec}
‖ADAP(i)(hi(x, y))‖2)

Finally, another independent design choice re-
lates to the training strategy for adapters. A first
option is to generalize supervised domain adapta-
tion to multi-domain adaptation and to proceed in
two steps: (a) train a generic model with all the
available data; (b) train each adapter layer with
domain-specific data, keeping the generic model
parameters unchanged. Another strategy is to adopt
the view of Dredze and Crammer (2008), where
the multi-domain setting is viewed as an instance
of multi-task learning (Caruana, 1997) with each
domain corresponding to a specific task. This sug-
gests training all the parameters from scratch, as
we would do in a multi-task mode. The generic pa-
rameters will still depend on all the available data,
while each adapter will only be trained with the
corresponding in-domain data.

2.2 Highway Residual Adapters
In the basic architecture described in Section 2.1,
the computation performed by lower level layers
will impact all the subsequent layers. In this sec-
tion, we introduce an alternative implementation
of the same idea, which however delays the adapta-
tion of each layer to the last layer (of the encoder
or the decoder) as depicted on Figure 1. While the
basic architecture performs adaptation in sequence,
we propose here to perform it in parallel. In this
version, only the last hidden vector of the encoder
(decoder) is thus modified according to:

h̄L = hL +
∑

1≤i≤L
ADAP i(hi) (1)

One obvious benefit of this variant is that it al-
lows us to reuse the hidden vectors hi of all hidden
layers when computing an adapted output for sev-
eral domains during the inference. In this situation,
the forward step needs only to compute the hidden
vectors hi once for the inner encoder layers, be-
fore an adapted sequence of vectors is computed at
the topmost layer. Therefore, we can fine-tune the
model to multiple domains at once without recom-
puting hi. This variant also opens the way to more
parameter sharing across adapters, a perspective
that we will not explore further in this work. In-
stead, we use it to develop a second variation of the
adapter model, that is presented in the next section.

Figure 1: Highway residual adapter network

2.3 Gated Residual Adapters
The basic architecture presented above rests on
a rather simplistic view of “domains” as made of
well-separated and unrelated pieces of texts that are
processed independently during adaptation. Like-
wise, when translating test documents, one needs to
choose between either using one specific domain-
adapted model or resorting to the generic model. In
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this context, using wrong domain labels can have a
strong (negative) effect on translation performance.

Therefore, we would like to design a version of
residual adapters that is more robust to such do-
main errors. This variant, called the gated residual
adapter model, relies on the training of a supple-
mentary component that will help decide whether
to activate, on a word per word basis, a given resid-
ual layer and to regulate the strength of this activa-
tion. To this end, we extend the highway version
of residual adapters as follows.

Formally, we replace the adapter computation of
equation (1) and take the adapted hidden (topmost)
layer to be computed as (this is for domain k):

h̄L = hL +
∑

1≤i≤L
ADAPi

k(hi)� zk(hL), (2)

where the scalar zk(hL[t]) ∈ [0, 1] measures the re-
latedness of the tth word wt to domain k. The more
likelywt is in domain k, the larger zk(hL[t]) should
be; conversely, for words2 that are not typical of
any domain k (eg. function words), adaptation is
minimum and the corresponding adapted encoder
output (h̄L[t]) will remain close to the output of
the generic model (hL[t]). In our implementation,
we incorporate two domain classifiers on top of the
encoder and the decoder, that take the last hidden
layer of the encoder (resp. decoder) as input and
use the posterior probability P (k|hL[t]) of domain
k as the value for zk(hL[t]).

Training gated residual adapters thus comprises
three steps, instead of two for the baseline version:

1. learn a generic model with mixed corpora
from multiple domains.

2. train a domain classifier on top of the encoder
and decoder; during this step, the parame-
ters of the generic model are frozen. This
model computes the posterior domain proba-
bility P (k|hL[t]) for each word wt, based on
the representation computed by the last layer.

3. train the parameters of adapters with in-
domain data separately for each domain, while
freezing all the other parameters.

2The term “word” is employed here by mere convenience,
as systems only manipulate sub-lexical BPE units; further-
more, the values of the hidden representations hi at position t
depend upon all the other positions in the sentence.

3 Experimental settings

3.1 Data and metrics
We perform our experiments with two translation
pairs involving multiple domains: English-French
(En→Fr) and English-German (En→De). For the
former pair, we use texts3 initially from 6 do-
mains, corresponding to the following data sources:
the UFAL Medical corpus V1.0 (MED)4, the Eu-
ropean Central Bank corpus (BANK) (Tiedemann,
2012); The JRC-Acquis Communautaire corpus
(LAW) (Steinberger et al., 2006), documentations
for KDE, Ubuntu, GNOME and PHP from Opus
collection (Tiedemann, 2009), collectively merged
in a IT-domain, Ted Talks (TALK) (Cettolo et al.,
2012), and the Koran (REL). Complementary ex-
periments also use v12 of the News Commentary
corpus (NEWS). Corpus statistics are in Table 1.

En→De is a much larger task, for which we use
corpora distributed for the News task of WMT205

including: European Central Bank corpus (BANK),
European Economic and Social Committee cor-
pus (ECO), European Medicines Agency corpus
(MED)6, Press Release Database of European Com-
mission corpus, News Commentary v15 corpus,
Common Crawl corpus (NEWS), Europarl v10
(GOV), Tilde MODEL - czechtourism (TOUR)7,
Paracrawl and Wikipedia Matrix (WEB). Statistics
are in Table 2.

We randomly select in each corpus a develop-
ment and a test set of 1,000 lines each and keep the
rest for training.8 Development sets help choose
the best model according to the average BLEU
score (Papineni et al., 2002).9

3.2 Baseline architectures
Using Transformers (Vaswani et al., 2017) imple-
mented in OpenNMT-tf10 (Klein et al., 2017), we
train the following baselines:

• a generic model trained on a concatenation of
all corpora, denoted Mixed;

3Most corpora are available from the Opus web site:
http://opus.nlpl.eu

4https://ufal.mff.cuni.cz/ufal_
medical_corpus

5http://www.statmt.org/wmt20/news.html
6https://tilde-model.s3-eu-west-1.

amazonaws.com/Tilde_MODEL_Corpus.html
7https://tilde-model.s3-eu-west-1.

amazonaws.com/Tilde_MODEL_Corpus.html
8Scripts to replicate these experiments are available at

urlhttps://github.com/qmpham/experiments.git.
9We use truecasing and the multibleu script.

10https://github.com/OpenNMT/OpenNMT-tf
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MED LAW BANK IT TALK REL NEWS

2609 (0.68) 190 (0.05) 501 (0.13) 270 (0.07) 160 (0.04) 130 (0.03) 260 (0)

Table 1: Corpora statistics for En→Fr : number of parallel lines (×103) and proportion in the basic domain mixture
(which does not include the NEWS domain). MED is the largest domain, containing almost 70% of the sentences,
while REL is the smallest, with only 3% of the data.

BANK ECO MED GOV NEWS TOUR WEB

4 (0.00022) 2857 (0.15) 347 (0.018) 1828 (0.095) 3696 (0.19) 7 (0.00039) 10473 (0.54)

Table 2: Corpora statistics for En→De: number of parallel lines (×103) and proportion in the basic domain mixture.
WEB is the largest domain, containing about 54% of the sentences, while BANK and TOUR are very small.

• a fine-tuned model (Luong and Manning,
2015; Freitag and Al-Onaizan, 2016), based
on the Mixed system, further trained on each
domain with early stopping when the develop-
ment BLEU score stops increasing during 3
consecutive epochs.

For all En→Fr models, we set the embeddings
size and the hidden layers size to 512. Transform-
ers use multi-head attention with 8 heads in each of
the 6 layers; the inner feedforward layer contains
2,048 cells. Residual adapters additionally use an
adaptation block in each layer, composed of a 2-
layer perceptron, with an inner ReLU activation
function operating on normalized entries of dimen-
sion b = 1024. Bapna and Firat (2019) showed
that the performance of adapted models increases
with respect to the size of the inner dimension and
obtained performance close to the full fine-tuned
model with b = 1024, which is twice as large as
the dimension of a Transformer layer. We used the
same setting in our experiments.

Training uses a batch size of 12,288 tokens; op-
timization uses Adam with parameters β1 = 0.9,
β2 = 0.98 and Noam decay (warmup steps =
4, 000), and a dropout rate of 0.1 for all layers. For
the Mixed model, we use an initial learning rate of
1.0 and take the concatenation of the validation sets
of 6 domains for development. In the fine-tuning
experiments, we continue training using Mixed as
starting point, using the same learning rate sched-
ule, and continuing the incrementation of the num-
ber of steps. In the multi-task training, we use the
same learning rate schedule as for Mixed: for each
iteration, we sample a domain a probability propor-
tional to its size; we then sample a batch of 12,288
tokens that is used to update the shared parameters
and the parameters of the corresponding adapter.

Models for En→De are larger and rely on em-
beddings as well as hidden layers of size 1024; each

Transformers layer contains 16 attention heads;
the inner feedforward layer contains 4,096 cells.
Adapter modules have the same architecture as for
the other language pair, except for their size, which
is doubled (b = 2, 048).

3.3 Multi-domain systems

In this section, we evaluate several proposals from
the literature on multi-domain adaptation and com-
pare them to full fine-tuning on the one hand, and
to two variants of the residual adapter architecture
on the other hand. The reference methods included
in our experiments are the following:

• a system using “domain control” (Kobus et al.,
2017). In this approach, domain information
is introduced either as an additional token
for each source sentence (DC-Tag) or in the
form of a supplementary feature for each word
(DC-Feat);

• a system using lexicalized domain representa-
tions (Pham et al., 2019): word embeddings
are composed of a generic and a domain-
specific part (LDR);

• the three proposals of Britz et al. (2017). TTM
is a feature-based approach where the domain
tag is introduced as an extra word on the tar-
get side. The training uses reference tags and
inference is performed with predicted tags,
just like for regular target words. DM is a
multi-task learner where a domain classifier
is trained on top of the MT encoder, so as to
make it aware of domain differences; ADM is
the adversarial version of DM, pushing the en-
coder towards learning domain-independent
source representations. These methods only
use domain labels in training.
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Model / Domain MED LAW BANK TALK IT REL AVG

Mixed 37.3 54.6 50.1 33.5 43.2 77.5 49.4
FT-Full 37.7 59.2 54.5 34.0 46.8 90.8 53.8
DC-Tag 38.1 55.3 49.9 33.2 43.5 80.5 50.1
DC-Feat 37.7 54.9 49.5 32.9 43.6 79.9 49.9
LDR 37.0 54.7 49.9 33.9 43.6 79.9 49.8
TTM 37.3 54.9 49.5 32.9 43.6 79.9 49.7
DM 35.6 49.5 45.6 29.9 37.1 62.4 43.4
ADM 36.4 53.5 48.3 32.0 41.5 73.4 47.5
Res-Adap 37.3 57.9 53.9 33.8 46.7 90.2 53.3
Res-Adap-MT 37.9 56.0 51.2 33.5 44.4 88.3 51.9
Res-Adap-MT+ 37.5 57.1 52.4 33.7 46.2 89.5 52.7

Res-Adap-MT (gen) 37.7 51.0 34.0 30.4 34.2 15.2 36.4

Table 3: Translation performance of various multi-domain MT systems (En→Fr) compared to variants of the
residual adapter models.

The two variants of the residual adapter model
included in this first round of experiment have been
presented in Section 2.1: Res-Adap is the multi-
domain version of the approach of Bapna and Fi-
rat (2019) based on a two-step training procedure;
while Res-Adap-MT is the “multi-task” version,
where the parameters of the generic model and of
the adapters are jointly learned from scratch. We
also report results for the same system, using the
the parameters of the Mixed model as initializa-
tion (Res-Adap-MT+).11

Because of the limit of our computational re-
sources, we restrict the experiments in this section
to the En→Fr task. Results are in Table 3.

These results first show that full fine-tuning out-
performs all other methods for the in-domain test
sets. However, Res-Adap is able to reduce the
gap with this approach for several domains, show-
ing the effectiveness of residual adapters. The
“multi-task” variant is slightly less effective in our
experiments than the basic version, where optimiza-
tion is performed in two steps. As it turns out, using
residual adapters proves here better on average than
the other reference multi-domain systems; it is also
much better than the generic system for translat-
ing data from known domains, outperforming the
Mixed system by more than 4 BLEU points in av-
erage. Gains are especially large for small domains
such as LAW and REL.

Comparing training schemes (Res-Adap vs
Res-Adap-MT vs Res-Adap-MT+) suggests
that the simultaneous learning of all parameters

11This system also includes a layer dropout policy that
cancels adapter layers with probability 0.5

is detrimental to performance in our settings: we
see that the 2-step procedure implemented in
Res-Adap always yields the best scores, even
when Res-Adap-MT is initialized with good pa-
rameter values . This may be because in this setting,
the adapters have access to a stable version of the
generic system. The last line (Res-Adap-MT (gen))
gives the results for a Res-Adap-MT trained sys-
tem in which we cancel the adapter in inference -
comparing this to Mixed shows how differently
the generic parts of these two systems behave.

3.4 Varying the positions and number of
residual adapters

Tables 4-5 report BLEU scores for 6 domains in
each language pair: MED,LAW,BANK,TALK,IT and
REL for En→Fr; GOV, ECO, TOUR, BANK, MED

and NEWS for En→De. We first see that for the
latter direction, the basic version Res-Adap also
outperforms the mixed baseline on average, with
large gains for the small domains TOUR, BANK and
comparable results for the other domains.

By varying the number and position of residual
adapters (see Section 2.1), we then contrast several
implementations. Because the set of possible con-
figurations is large, we only perform experiments
for layers i = 2, 4, 6 (both for the encoder and de-
coder). Two settings are considered: keeping just
one adapter or keeping the three. The trend is the
same for the two language directions: suppressing
adapters always hurts the overall performance, al-
beit by a small margin: having six adapters is better
than three, which is better than keeping only one.
With only one adapter active, we observe small,
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insignificant changes in performance when varying
the adapter’s depth.

3.5 Regularizing fine-tuning

The translation from English into German includes
two domains (TOUR and BANK) that are extremely
small and account only for a very small fraction
of the training data (respectively for 0.039% and
0.022% of the total number of sentences). Fine-
tuning on these domains can lead to serious over-
fitting. We assess two well-known regularization
techniques for adapter modules, that could help
mitigate this problem: weight decay and layer reg-
ularization.

For each method, the optimal hyper-parameter
λ (weight decay or layer regularization coefficient,
see Section 2.1.2) are chosen by grid search in a
small set of values ({10−3, 10−4, 10−5}).

Results in Tables 4 and 5 show that regularizing
the adapter model can positively impact the test
performance for the smallest domains (this is es-
pecially clear for weight-decay (Res-Adap-WD)
in En→De), at the cost however of a small drop
in performance for the other domains. Using layer
regularization proves here to be comparatively less
effective. Finding better ways to set the regulariza-
tion parameters, for instance by varying λ for each
domain based on the available supervision data, is
left for future work.

3.6 Highway and Gated Residual Adaptaters

We now turn to the evaluation of our new ar-
chitectural variants: Highway residual adapters
Res-Adap-HW on the one hand, and Gated resid-
ual adapters Res-Adap-Gated on the other
hand. We use the same domains and settings as
before, focusing here exclusively on the language
direction En→Fr.

To also evaluate the robustness with respect
to out-of-domain examples, we perform two ad-
ditional experiments. We first generate transla-
tions with erroneous (more precisely: randomly
assigned) domain information: the corresponding
results appear in Table 6 under column RND. We
also compute translation for a domain unseen in
training (NEWS) as follows. For each sentence of
this test set, we automatically evaluate the closest
domain,12 then use the predicted domain label to
compute the translation. This is an error-prone pro-

12As measured by the perplexity of a language model
trained with only in-domain data..

cess, which also challenges the robustness of our
multi-domain systems. Results are in Table 6.

A first observation is that for domains seen
in training, our variants Res-Adap-HW and
Res-Adap-Gated achieve BLEU scores that
are on a par to those of the original version
(Res-Adap), with insignificant variations across
test sets.

The two other settings are instructive in several
ways: they first clearly illustrate the brittleness of
domain-adapted systems, for which large drops in
performance (more than 15 BLEU points on av-
erage) are observed when the domain label is ran-
domly chosen. Our gated variant however proves
much more robust than the other adaptation strategy
and performs almost on par to the generic system
for that test condition. The same trend holds for the
unseen NEWS domain, with Res-Adap-Gated
being the best domain adapted system in our set,
outperforming the other variants by about 2 BLEU
points.

4 Related Work

Training with data from multiple, heterogeneous
sources is a common scenario in natural language
processing (Dredze and Crammer, 2008; Finkel
and Manning, 2009). It is thus no wonder that the
design of multi-domain systems has been proposed
for many tasks. In this short survey, we exclu-
sively focus on machine translation; it is likely that
similar methods (parameter sharing, instance selec-
tion/weighting, adversarial training, etc) have also
been proposed for other tasks.

Early approaches to multi-domain MT were pro-
posed for statistical MT, either considering multi-
ple data sources (eg. Banerjee et al. (2010); Clark
et al. (2012); Sennrich et al. (2013); Huck et al.
(2015)) or domains containing several topics (Ei-
delman et al., 2012; Hasler et al., 2014). Two main
strategies emerge: feature-based methods, where
domain labels are integrated through supplemen-
tary features; and instance-based methods, involv-
ing a measure of similarity between train and test
domains.

The former approach has also been adapted to
NMT: Kobus et al. (2017); Tars and Fishel (2018)
use an additional domain feature in an RNN model,
in the form of an extra domain-token or of addi-
tional domain-features associated with each word.
Chen et al. (2016) apply domain control on the
target side, using a topic vector to describe the
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Model / Domain MED LAW BANK TALK IT REL AVG PARAMS

Mixed 37.3 54.6 50.1 33.5 43.2 77.5 49.4 65M/0
Res-Adap 37.3 57.9 53.9 33.8 46.7 90.2 53.3 65M/12M
Res-Adap(2,4,6) 37.7 57 53 33.3 45 90 52.7 65M/6M
Res-Adap(6) 37.7 55.8 51.5 33.9 43.6 89.2 51.9 65M/2M
Res-Adap(4) 37.9 55.6 51.7 33.7 44.4 88.7 52 65M/2M
Res-Adap(2) 37.8 55.5 51.4 34 43.8 86.7 51.5 65M/2M
Res-Adap-WD 37.2 56.0 52.9 33.4 46.0 90.6 52.7 65M/12M
Res-Adap-LR 37.4 56.1 51.8 33.3 45.0 89.7 52.2 65M/12M

Table 4: Translation performance of various fine-tuned systems (En→Fr). We report BLEU scores for each domain,
as well as averages across domains. Column PARAMS reports the number of domain-agnostic/domain-specific
parameters.

Model / Domain GOV ECO TOUR BANK MED NEWS AVG PARAMS

Mixed 29.3 30.5 17.6 38.1 47.9 20.9 30.6 213M/0M
Res-Adap 29.6 30.4 19.2 49.0 47.2 20.6 33.1 213M/48M
Res-Adap(2,4,6) 29.7 30.5 18.8 49.6 47.1 20.6 32.7 213M/24M
Res-Adap(6) 29.5 30.4 18.1 49.1 46.9 20.4 32.4 213M/8M
Res-Adap(4) 29.7 30.4 18.1 49.6 47.0 20.6 32.6 213M/8M
Res-Adap(2) 29.6 30.4 18.3 49.4 46.7 20.6 32.5 213M/8M
Res-Adap-WD 29.7 30.8 20.4 50.2 47.7 20.6 33.2 213M/48M
Res-Adap-LR 29.6 30.4 19.2 49.0 47.2 20.6 33.1 213M/48M

Table 5: Translation performance of various fine-tuned systems (En→De). We report BLEU scores for each
domain, as well as averages across domains. Column PARAMS reports the number of domain-agnostic/domain-
specific parameters.

Model / Domain MED LAW BANK TALK IT REL AVG RND NEWS

Mixed 37.3 54.6 50.1 33.5 43.2 77.5 49.4 49.4 23.5
FT-Full 37.7 59.2 54.5 34.0 46.8 90.8 53.8 32.5 20.2
Res-Adap 37.3 57.9 53.9 33.8 46.7 90.2 53.3 38.4 20.5
Res-Adap-HW 37.5 57.2 53.4 33.1 46.3 91.0 53.1 36.6 20.2
Res-Adap-HW-MT 37.4 56.4 52.1 33.7 44.8 89.8 52.4 27.1 20.4
Res-Adap-HW-MT+ 37.7 57.0 52.5 33.5 46.1 89.0 52.6 46.5 21.4
Res-Adap-Gate 38.0 57.5 53.0 33.5 46.0 90.1 53.0 49.0 22.5

Table 6: Translation performance of highway and gated variants for En→Fr. NEWS is excluded from the training
data and considered as an out-of-domain test.
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whole document context. Similar ideas are de-
veloped in Chu and Dabre (2018); Pham et al.
(2019), where domain differences and similarities
are enforced through parameter sharing schemes.
Parameter-sharing also lies at the core of the work
by Jiang et al. (2019), who consider a Trans-
former model containing both domain-specific and
domain-agnostic heads.

Britz et al. (2017) study three general tech-
niques to take domain information into account
in training: they rely on either domain classifi-
cation or domain normalization on the source or
target side. A contribution of this study is an ad-
versarial training scheme to normalize representa-
tions across domains and make the combination
of multiple data sources more effective. Similar
techniques (parameter sharing, automatic domain
classification/normalization) are at play in Zeng
et al. (2018): in this work, the lower layers of the
MT use auxiliary classification tasks to disentangle
domain-specific from domain-agnostic represen-
tations. These representations are first processed
separately, then merged to compute the final trans-
lation.

Farajian et al. (2017); Li et al. (2018) are two re-
cent representatives of the instance-based approach:
for each test sentence, a small adaptation corpus
is collected based on similarity measures and used
to fine-tune a mix-domain model. As shown in
the former work, also adapting the training regime
on a per sentence basis is crucial to make these
techniques really effective.

Finally, note that a distinct evolution of the resid-
ual adapter model of Bapna and Firat (2019) is pre-
sented in Sharaf et al. (2020), where meta-learning
techniques are used to make fine-tuning more ef-
fective in a standard domain-adaptation setting.

5 Conclusion and outlook

In this paper, we have performed an experimental
study of the residual adapter architecture in the con-
text of multi-domain adaptation, where the goal is
to build one single system that (a) performs well
for domain seen in training, ideally as well as full
fine-tuning; (b) is also able to robustly handle trans-
lations for new, unseen domains. We have shown
that this architecture allowed us to quickly adapt
a model to a specific domain, delivering BLEU
performance than are much better than the generic,
mixed domain baseline, and close the gap with
the full-finetuning approach, at a modest computa-

tional cost. Several new variants have been intro-
duced and evaluated for two language directions:
if none that able to clearly surpass the baseline,
residual adapter models, they provide directions
for improving this model in practical settings: un-
balanced data condition, noise in label domains, etc.
In our future work, we would like to continue the
development of the gated variant, which, it seems
to us, provides a flexible and robust tool to address
the various challenges of multi-domain machine
translation.
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Abstract

When translating “The secretary asked for de-
tails.” to a language with grammatical gen-
der, it might be necessary to determine the
gender of the subject “secretary”. If the sen-
tence does not contain the necessary infor-
mation, it is not always possible to disam-
biguate. In such cases, machine translation
systems select the most common translation
option, which often corresponds to the stereo-
typical translations, thus potentially exacerbat-
ing prejudice and marginalisation of certain
groups and people. We argue that the infor-
mation necessary for an adequate translation
can not always be deduced from the sentence
being translated or even might depend on ex-
ternal knowledge. Therefore, in this work, we
propose to decouple the task of acquiring the
necessary information from the task of learn-
ing to translate correctly when such informa-
tion is available. To that end, we present a
method for training machine translation sys-
tems to use word-level annotations containing
information about subject’s gender. To prepare
training data, we annotate regular source lan-
guage words with grammatical gender infor-
mation of the corresponding target language
words. Using such data to train machine trans-
lation systems reduces their reliance on gender
stereotypes when information about the sub-
ject’s gender is available. Our experiments on
five language pairs show that this allows im-
proving accuracy on the WinoMT test set by
up to 25.8 percentage points.

1 Introduction

Most modern natural language processing (NLP)
systems learn from natural language data. Findings
of social sciences and corpus linguistics, however,
indicate various forms of bias in the way humans

*First authors with equal contribution.

use language (Coates, 1987; Butler, 1990; Fuertes-
Olivera, 2007; Rickford, 2016). Thus the result-
ing NLP resources and systems also suffer from
the same socially constructed biases, as well as
inaccuracies and incompleteness (Jørgensen et al.,
2015; Hovy and Søgaard, 2015; Prates et al., 2019;
Vanmassenhove et al., 2019; Bordia and Bowman,
2019; Davidson et al., 2019; Tan and Celis, 2019).
Due to the prevalent use of NLP systems, their sus-
ceptibility to social biases becomes an increasingly
significant concern as NLP systems not only reflect
the biases learned but also amplify and perpetuate
them further (Hovy and Spruit, 2016; Crawford,
2017; HLEG, 2019).

This work concerns mitigating the manifes-
tations of gender bias in the outputs of neural
machine translation (NMT) systems in scenarios
where the source language does not encode the
information about gender that is required in the
target language. An example is the translation of
the English sentence “The secretary asked for de-
tails.” into Latvian. In English, the gender of “sec-
retary” is ambiguous. In Latvian, however, there
is a choice between the masculine noun “sekretārs”
and the feminine noun “sekretāre”. In cases when
sentences do not contain the necessary information,
NMT systems opt for translations which they have
seen in training data most frequently. Acquiring
the necessary information, however, might require
analysis of the text beyond the level of individ-
ual sentences or require incorporation of external
knowledge.

Falling back to biases, however, happens not
only in the absence of the required information
as NMT systems produce stereotyped translations
even when clues about the subject’s correct gender
are present in the sentence (Stanovsky et al., 2019).
This is in line with findings by Vanmassenhove
et al. (2019) who suggest that NMT systems pro-
duce biased outputs not only because of the biases
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present in data but also due to their tendency to
exacerbate them.

To provide means for incorporation of exter-
nal and explicit gender information, we propose
a method for training NMT systems to use word-
level gender annotations. To prepare training data,
we project grammatical gender information of reg-
ular target language words onto the corresponding
source language words. Albeit in some cases re-
dundant, we expect that the grammatical gender
information contains a useful learning signal that
helps narrowing down the lexical choice of the cor-
rect target translation. As a result, the NMT system
learns to rely on these annotations when and where
they are available. In particular, in experiments on
five language pairs, we show that the methods pro-
posed here can be used in tandem with off-the-shelf
co-reference resolution tools to improve accuracy
on the WinoMT challenge set (Stanovsky et al.,
2019) by up to 25.8 percentage points.

1.1 Related work

Recent recommendations for ethics guidelines for
trustworthy AI recommend removing socially con-
structed biases at the source, the training data, prior
to model training (HLEG, 2019). An example of
work on debiasing training data is Zhao et al. (2018)
where authors identified sentences containing ani-
mate nouns and changed their grammatical gender
to the opposite. Zmigrod et al. (2019) take it fur-
ther by ensuring that not only the animate nouns
but also the rest of the sentence is reinflected from
masculine to feminine (or vice-versa), thus preserv-
ing the morpho-syntactic agreement of the whole
sentence. The applicability of this line of work is
still to be established as reinflecting sentences with
co-references or pairs of parallel sentences in NMT
pose an additional challenge.

A different take on addressing gender biases in
NMT outputs is the work on alternative generation:
given a gender-ambiguous source sentence and its
translation, provide an alternative translation using
the opposite gender. Habash et al. (2019) approach
this as a gender classification and reinflection task
for target language sentences to address the first
person singular cases when translating from En-
glish into Arabic. Bau et al. (2018) analyze trained
NMT models to identify neurons that control var-
ious features, including gender information, that
are used to generate the target sentence. In prac-
tice, however, such solutions are limited to simple
source sentences where only one alternative in the

target language is possible.
A complementary approach is addressing gender

bias in NMT as a problem of domain mismatch.
When translating TED talks, Michel and Neubig
(2018) propose to adapt the NMT model for each
speaker’s attributes, thus also implicitly address-
ing previously poorly translated first-person sin-
gular cases. Saunders and Byrne (2020) describe
methods for NMT model adaptation using a hand-
crafted gender-balanced dataset and a translation
re-scoring scheme based on the adapted models.

The closest line of work to ours is the work on
the incorporation of external gender information
in the NMT input. Elaraby et al. (2018) and Van-
massenhove et al. (2018) prepend training data sen-
tences with speaker gender information to improve
spoken language translation when translating into
languages with grammatical gender. Moryossef
et al. (2019) undertakes a similar approach at the
inference time using phrases (e.g. “she said:”)
that imply the speaker’s gender. The methods pro-
posed in this work differ from the previous work in
terms of annotation granularity: we propose to use
token level annotations, while the previous work
used one annotation per sentence. As our training
data annotations are solely based on grammatical
gender, preparing them does not require any exter-
nal gender information. Thus our approach is also
simpler in terms of training data preparation com-
pared to the previous work (Elaraby et al., 2018;
Vanmassenhove et al., 2018).

Social Impact We propose methods to mitigate
the manifestations of gender bias in the outputs of
NMT. Specifically, these methods provide explicit
means to incorporate information about subjects
referential or social gender in NMT, thus reducing
gender-based stereotyping when translating into
languages which encode for grammatical gender
in animate nouns. An example of a use case and a
beneficiary group is the translation of occupational
nouns into languages which mark gender and peo-
ple for whom stereotypes of their profession do
not align with their gender. While these methods
can relieve gender-based representational harms
by reducing stereotyped translations, they, unfortu-
nately, provide no means for better representation
of non-binary gender identities.

2 Methods

When translating from languages without grammat-
ical gender to languages with grammatical gender,
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sākot ar Polijas santehniķi un beidzot ar Indijas datorprogrammētāju vai grāmatvedi !

out with the Polish plumber , in with the Indian computer programmer or accountant !

U       U  F         M              U  U          U  F          M                              U   F                U

Target to source
alignment

Target sentence
Gender annotations

1-0    1-1   1-2    2-3    3-4    6-6    6-7    6-8    7-9    8-10    8-11    9-12    10-13    11-14

U   U     U    F        M          U U U    U    F        M              M                 U  F                U
Source sentence

Gender annotations

Figure 1: Illustration of target to source projections of grammatical gender annotations. Sample sentences taken
from the English-Latvian development set of the WMT2017 News Translation Task.

certain words in the source sentence may not con-
tain all the necessary information to produce an
adequate and accurate translation. Examples are
pronouns (e.g. I, me, they, them, themselves), an-
imate nouns such as job titles and proper nouns
such as names and surnames, which depending on
the sentence context can be ambiguous and conse-
quently can be translated poorly. Previous work
has also shown that NMT systems are better at
translating sentences that align with socially con-
structed gender stereotypes because they are more
frequently seen in training data (Stanovsky et al.,
2019; Prates et al., 2019).

To circumvent the degradation of NMT outputs
due to 1) socially constructed biases and 2) absence
of necessary information, we propose a method for
training NMT systems to be aware of and use word-
level target gender annotations (TGA). For training,
we use data where regular source language words
are annotated with the grammatical gender of their
target language translations. We obtain such data
by, first, morphologically tagging target language
sentences to obtain information about their gram-
matical gender—F for feminine, M for masculine,
N for neuter, and U for cases where grammatical
gender is unavailable. Then, we use word-level
statistical alignments to project this information
from the target language to the source language
words (see Figure 1 for an illustration). We use
source-side factors (Sennrich and Haddow, 2016)
to integrate the projected annotations as an addi-
tional input stream of the NMT system. To ensure
that the NMT systems are capable of producing
adequate translations when gender annotations are
not available—a frequently expected case at the test
time—we apply TGA dropout. We do so by ran-
domly replacing annotations for a random number
of words with U.

While useful for animate nouns, such annota-
tions might seem otherwise redundant because the
majority of nouns in training data can be expected
to be inanimate. However, for some inanimate
nouns, the target language grammatical gender
annotations can help narrowing down the lexical
choice during training. An example is the trans-
lation of “injury” into Latvian, where “injury|F”
would result in “trauma” while “injury|M” would
correspond to “ievainojums”. Besides disambiguat-
ing animate nouns, annotations also disambiguate
the grammatical gender of pronouns, proper nouns.
Furthermore, grammatical gender annotations also
concern adjectives and verbs, which in some lan-
guages have to agree in gender with the nouns they
describe. Consequently, we expect that during train-
ing the NMT model will learn to use these annota-
tions, as they contain valuable information about
words in the target sentence.

At inference time, we lean heavily on the ob-
servation that there the grammatical gender of ani-
mate nouns, pronouns, and proper nouns, and the
intended referential gender coincide considerably.
This is, however, a heuristic and not a rule (see
Hellinger and Motschenbacher (2015) for coun-
terexamples). Nevertheless, we assume that it is
possible to use TGA in a referential sense of gen-
der, thus injecting the NMT model with additional
information about the subject’s gender. Sources of
such information can vary; in this paper, we show-
case how to use TGA together with off-the-shelf
co-reference resolution tools.

2.1 Evaluation: WinoMT Test Suite

To measure the extent to which gender annotations
reduce NMT systems’ reliance on gender stereo-
types, we use the WinoMT test suite (Stanovsky
et al., 2019). WinoMT builds on the previous work
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Figure 2: WinoMT test suite translation process with TGA distilled from the output of automatic coreference
resolution tool.

on addressing gender bias in co-reference resolu-
tion by combining Winogender (Rudinger et al.,
2018) and WinoBias (Zhao et al., 2018) datasets in
a test suite for automatic evaluation of gender bias
in MT. All sentences in the WinoMT test set follow
the Winograd Schema where anaphora resolution
is required to find an antecedent for an ambigu-
ous pronoun (Hirst, 1981). In the case of datasets
designed for evaluation of gender bias, the ambigu-
ous pronoun refers to one of two entities which are
referred to using titles of their professions. Profes-
sions and pronouns are chosen so that they either
align with or diverge from the gender stereotypes
of each profession as reported by the U.S. Bureau
of Labor Statistics (Zhao et al., 2018).

WinoMT tests if the grammatical gender of the
translation of an antecedent matches the gender
of the pronoun in the original sentence. Testing
is done by morphologically analysing the target
translation and aligning it with the source sentence.
The WinoMT test suite scores MT outputs using
multiple metrics: Accuracy – the percentage of
correctly translated antecedents, ∆G – difference
in F1 score between sentences with masculine and
feminine antecedents, ∆S – difference in accuracy
between the set of sentences that either align with
or diverge from the gender stereotypes of each pro-
fession. Saunders and Byrne (2020) also propose to
report M:F – ratio of translations using masculine
and feminine antecedents.

3 Experimental Setting

Languages and Data In all our experiments, we
choose one source language without grammatical
gender and five Indo-European languages in which
nouns have grammatical gender (see Table 1). For
all language pairs, we use training data from WMT
news translation tasks. We do the necessary clean-
ing and filtering with Moses (Koehn et al., 2007)
pre-processing tools. To see how TGA is affected
by data size, we also use much larger EN-LV propri-

Source # Sent. News Test

EN-DE WMT19 64.1M 2018
EN-FR WMT15 39.1M 2015
EN-LV Tilde 22.7M 2017
EN-LV WMT17 4.5M 2017
EN-LT WMT19 3.6M 2019
EN-RU WMT17 25.0M 2015

Table 1: Training data set source and size in millions of
sentences prior to adding TGA.

etary data that we obtain from Tilde Data Libarary
by combining all EN-LV parallel corpora. The
proprietary data are pre-processed using the Tilde
MT platform (Pinnis et al., 2018). Table 1 summa-
rizes training data source and size statistics prior to
adding TGA. For all systems and language pairs,
we use byte pair encoding (BPE) (Gage, 1994; Sen-
nrich et al., 2016) to prepare joint source and target
language BPE sub-word vocabularies. We use 30K
BPE merge operations and use a vocabulary thresh-
old of 50.

NMT Systems We use the default configuration
of the Transformer (Vaswani et al., 2017) NMT
model implementation of the Sockeye NMT toolkit
(Hieber et al., 2020). The exception is the use of
source-side factors (Sennrich and Haddow, 2016)
with the dimensionality of 8 for systems using
TGA, which changes the model’s combined source
embedding dimensionality from 512 to 520. We
train all models using early stopping with patience
of 10 based on their development set perplexity
(Prechelt, 1998).

Morphological Taggers The preparation of
training data with TGA and WinoMT evaluation
relies on the outputs of a morphological tagger.
If the tagger produces biased outputs, the TGA
annotations might become too noisy to be use-
ful. Furthermore, a biased morphological tagger

632



Tagger F1 masc. F1 fem.

Paikens et al. (2013) 98.6 98.7
Stanza 94.7 95.1
UDPipe 92.5 92.4

Table 2: Performance of morphological taggers on gen-
der feature classification evaluated on the Universal De-
pendencies test set.

could also render WinoMT evaluation unreliable.
Thus we first benchmark several morphological
taggers on grammatical gender feature classifica-
tion. We use Latvian as a development language be-
cause of the availability of lexicon-based and data-
driven morphological analysis tools. Specifically,
we use the Universal Dependencies 1 test set to
compare two data-driven tools – the Stanza toolkit
(Qi et al., 2020) and UDPipe (Straka and Straková,
2017). Additionally, we evaluate a dictionary-
based morphological analyser and statistical tag-
ger2 by Paikens et al. (2013). Table 2 gives F-1
scores on masculine and feminine feature tagging.
Results indicate that none of the taggers exhibits
salient bias in their tagging performance. As the
only non-neural system yields better F-1 scores
than the other two systems, we further compare
Stanza and the tagger by Paikens et al. (2013) in
their impact on BLEU and WinoMT metrics. Re-
sults indicated that the choice of the tagger does
not have a notable effect on BLEU scores. In terms
of WinoMT accuracy scores, the NMT system that
was trained using TGA prepared with Stanza yields
an accuracy that is about 3% better than the system
using the tagger by Paikens et al. (2013). Thus,
in all remaining experiments, we use the Stanza
tagger as it provides pre-trained models for a wide
range of languages.

TGA in Training Data Preparing training data
with TGA requires statistical word alignments be-
tween words of source and target language sen-
tences and a target language morphological tagger.
To obtain word alignments, we use fast align (Dyer
et al., 2013). To obtain grammatical gender infor-
mation of target language words, we use the Stanza
morphological tagger. When training NMT sys-
tems with TGA, we combine two copies of the
original training data: one where all source-side

1https://github.com/
UniversalDependencies/UD_Latvian-LVTB

2https://github.com/PeterisP/LVTagger

factors are set to U and the other containing TGA.

TGA During Inference In training data, TGA
annotate regular source language words with the
grammatical gender information of corresponding
target language words. We do not have access to the
target language sentence during inference. Thus,
we use co-reference resolution tools and extract the
referential gender information from the source sen-
tence instead. To do so, we first use co-reference
resolution tools to obtain the co-reference graph.
We then identify sub-graphs which contain gen-
dered pronouns. Finally, we propagate the gender
information within the graph and annotate the an-
tecedents (see Figure 2). We set the annotations for
the remaining unannotated words to U.

We use neural co-reference resolution tools by
AllenNLP 3 (Lee et al., 2017) and Hugging Face4

(based on work by Clark and Manning (2016)).
We refer to these systems as TGA AllenNLP
and TGA HuggingFace respectively. We also re-
port the performance of NMT with TGA, when
TGA use oracle information directly taken from
WinoMT datasets and refer to these as TGA Ora-
cle.

Evaluation We evaluate general translation qual-
ity using the BLEU (Papineni et al., 2002) met-
ric evaluated over WMT test sets. To calculate
BLEU, we use SacreBLEU5 (Post, 2018) on cased,
detokenized data. Reference test sets are only pre-
processed using Moses punctuation normalization
script6. We use the WinoMT test suite (Stanovsky
et al., 2019) to measure gender bias of our NMT
systems.

4 Results and Discussion

Results from experiments evaluating gender bias
using the WinoMT test suite are provided in Ta-
ble 3. First, we observe that all baseline systems
show a strong bias towards generating translations
using masculine forms. The EN-RU baseline sys-
tem is the most biased as it produces only one
translation hypothesis with a feminine antecedent
for every 8.4 hypotheses containing masculine an-
tecedents. Meanwhile the EN-DE baseline system

3https://github.com/allenai/allennlp
4https://github.com/huggingface/

neuralcoref
5SacreBLEU hash: BLEU+case.mixed+numrefs.

1+smooth.exp+tok.13a+version.1.3.6
6https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
tokenizer/normalize-punctuation.perl
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WMT Data Systems
Acc. ∆ G ∆ S M:F

E
N

-D
E Baseline 66.7 10.2 14.4 2.6

TGA Oracle 89.0 -4.7 1.7 1
TGA HuggingFace 77.6 -0.1 11.9 1.6
TGA AllenNLP 81.5 -2.0 11.1 1.4

E
N

-F
R

Baseline 48.6 29.8 11.8 5.5
TGA Oracle 81.5 1.4 2.8 1.2
TGA HuggingFace 67.8 4.9 12.4 2
TGA AllenNLP 74.4 1.6 10.1 1.6

E
N

-L
V

Baseline 27.9 26.0 9.6 3.9
TGA Oracle 42.7 15.9 10.3 2.9
TGA HuggingFace 38.6 19.7 18.1 3.0
TGA AllenNLP 39.3 18.1 18.6 2.8

E
N

-L
T

Baseline 38.0 32.6 6.5 5.9
TGA Oracle 52.8 15.2 4.0 2.7
TGA HuggingFace 43.4 22.5 7.6 3.9
TGA AllenNLP 47.2 17.7 5.1 3.1

E
N

-R
U

Baseline 32.3 37.7 14.1 8.4
TGA Oracle 55.9 10.6 14.0 2.5
TGA HuggingFace 45.4 24.8 13.7 4.4
TGA AllenNLP 51.4 17.0 15.2 3.2

Proprietary Large Data System
Acc. ∆ G ∆ S M:F

E
N

-L
V

Baseline 42.0 27.9 16.6 4.9
TGA Oracle 55.1 4.8 18.2 1.7
TGA HuggingFace 46.2 13.5 24.1 2.6
TGA AllenNLP 49.9 10.8 23.1 2.3

Table 3: Results on WinoMT test suite.

is the least biased with the M:F ratio being much
lower – 2.6 (see the last column of Table 3). Our
baseline systems for EN-DE, EN-FR and EN-RU
language pairs, however, show comparable ∆G
and WinoMT accuracy results to those reported by
Stanovsky et al. (2019) for several publicly avail-
able commercial systems. These results confirm
that our baselines, although being strongly biased,
are not unordinary.

Results from experiments using TGA with ora-
cle gender information show an improvement in
WinoMT accuracy and ∆G for all language pairs
(see Table 3 TGA Oracle). These results demon-
strate that when training MT systems to use TGA
reduces their reliance on gender stereotypes when
information about the subject’s gender is available,
proving the usefulness of methods proposed here.
Despite the availability of oracle gender informa-
tion, none of the systems is entirely bias-free or
obtains 100% accuracy. Thus methods proposed
here could be combined with others, such as those
proposed by Saunders and Byrne (2020), to achieve
further improvements.

Effect on BLEU As expected, using TGA with
reference sentence grammatical gender annotations
has a positive effect on BLEU, thus confirming our
hypothesis why and how the NMT system learns to
rely on TGA as an additional source of information
during training (see Table 4). It is equally impor-
tant, however, that, when training NMT systems
to use TGA, it does not degrade their performance
when gender information is not necessary or is un-
available. Thus we test our systems for such cases
by setting all TGA values to U and compare them
to the baseline systems (see Table 4). To test for
statistically significant differences between the re-
sults of NMT systems we use pairwise bootstrap re-
sampling (Koehn, 2004) and significance threshold
of 0.05. Results indicate no statistically significant
differences between systems using uninformative
TGA values and their baseline counterparts with
an exception of results for EN-RU systems (∆0.4
BLEU), which we find to be statistically signifi-
cant.

Effect of Data Size To analyze gender bias and
TGA performance depending on the quality and
size of the training data, we use much larger EN-LV
proprietary data (see Table 1) to train production-
grade NMT systems and contrast them with EN-LV
WMT data systems (see the two EN-LV sections in
Table 3 and Table 5). First of all, we notice that al-
though the large data baseline has higher WinoMT
accuracy than the WMT data system, it has a sim-
ilar ∆G. Decomposing ∆G as male and female
grammatical gender F-1 scores (Table 5), however,
clarifies that, although similarly skewed, the large
data baseline has higher F-1 scores than the WMT
data baseline. Next, we note, that larger training
data size has a positive effect on the system’s abil-
ity to use TGA more effectively as the large data
system using TGA has a greater improvement on
the two metrics measuring bias – ∆G and M:F7

than its WMT data counterpart relative to its base-
line. These findings suggest that TGA is a method
that is applicable not only in small data settings
but also in large data settings, such as commercial
systems, for which it is even more effective.

Plugging-in Co-reference Resolution Tools Fi-
nally, we experiment with TGA using gender infor-
mation provided by two off-the-shelf co-reference
resolution tools, AllenNLP and Hugging Face. Re-

7∆S results are not reliable or comparable when M:F
ratios are large or differ by a large value. See result section of
Saunders and Byrne (2020) for more discussion.

634



Basline TGA All TGA= U

EN-DE 45.4 49.5 45.3
EN-FR 36.6 40.9 36.4
EN-LV 16.6 18.9 17.0
EN-LT 14.8 16.6 14.7
EN-RU 27.1 31.6 26.7

Table 4: Comparison of test set performance measured
in BLEU for Baseline systems and systems trained us-
ing TGA. TGA: performance when using reference sen-
tence grammatical gender annotations. All TGA=U:
performance when all annotations set to be unknown.

Male Female
F-1 P R F-1 P R

WMT Data System

Baseline 47.2 48.3 46.2 21.2 53.9 13.2
TGA Oracle 58.5 56.0 61.3 42.5 74.7 29.7

Proprietary Large Data System

Baseline 58.8 50.8 69.7 30.9 70.3 19.8
TGA Oracle 66.9 65.8 68.0 62.1 83.3 49.5

Table 5: Results of antecedent translation. Reporting
grammatical gender F-1 score, precision (P) and recall
(R) for EN-LV systems trained on WMT and propri-
etary large data.

sults show that using TGA with either of the tools
outperforms baseline systems for all languages
pairs. Furthermore, TGA with gender informa-
tion provided by AllenNLP shows only a 4.5 to
7.1% drop in WinoMT accuracy compared to re-
sults when using TGA with oracle information. To
put this in perspective, Saunders and Byrne (2020)
required a handcrafted gender-balanced profession
set and additional rescoring models, for their EN-
DE system to obtain comparable WinoMT accuracy
and ∆G without loss of translation quality. In con-
trast, the methods proposed here require tools that
are readily available, making them easily applica-
ble in practice.

5 Conclusions

We proposed a method for training MT systems
to use word-level annotations containing informa-
tion about the subject’s gender. To prepare training
data, the method requires a morphological tagger to
annotate regular source language words with gram-
matical gender information of the corresponding
target language words. During inference, anno-
tations can be used to provide information about

subjects’ referential or social gender obtained by
analyzing text beyond sentence boundaries or exter-
nally. In experiments with five language pairs, we
showed that using such gender annotations reduces
NMT systems’ reliance on gender stereotypes in
principle. We then further showed one way for
how these findings can be used in practice by using
off-the-shelf co-reference resolution tools.

The method proposed here decouples the task of
acquiring the necessary gender information from
the task of learning to translate correctly when
such information is available. Thus system’s ability
to use such information can be achieved indepen-
dently from its availability at training time. This
allows for application-specific sources of gender
information. Examples are the translation of chat
or social media content, where users may choose to
indicate their gender or translation of whole docu-
ments, where gender information may be obtained
using annotations and anaphora resolution. Thus,
we believe that the methods proposed here, will
provide means to limit the propagation of gender
stereotypes by NMT systems when translating into
languages with grammatical gender.

The source code to reproduce our results for
the publicly available data sets is published on
GitHub8.
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Abstract

Sentence-level (SL) machine translation (MT)
has reached acceptable quality for many high-
resourced languages, but not document-level
(DL) MT, which is difficult to 1) train with lit-
tle amount of DL data; and 2) evaluate, as the
main methods and data sets focus on SL eval-
uation. To address the first issue, we present a
document-aligned Japanese-English conversa-
tion corpus, including balanced, high-quality
business conversation data for tuning and test-
ing. As for the second issue, we manually
identify the main areas where SL MT fails to
produce adequate translations in lack of con-
text. We then create an evaluation set where
these phenomena are annotated to alleviate au-
tomatic evaluation of DL systems. We train
MT models using our corpus to demonstrate
how using context leads to improvements.

1 Introduction

The quality of machine translation (MT) for written
text and monologue has vastly improved due to the
increased amount of available parallel corpora and
recent neural network technologies. However, there
is much room for improvement in the context of dia-
logue or conversation translation. One typical case
is the translation from a pro-drop language to a non-
pro-drop language where correct pronouns must be
supplemented according to the context. The omis-
sion of the pronouns occurs more frequently in
spoken language than written language. Recently,
context-aware MT models attract attention from
many researchers (Tiedemann and Scherrer, 2017;
Voita et al., 2019) to solve this kind of problem,
however, there are almost no parallel conversation
corpora with context information except the rather
noisy Open Subtitles corpus (Tiedemann, 2016).

A document and sentence-aligned conversation
parallel corpus should be advantageous to push
MT research in this field to the next stage. In this

paper, we introduce a newly constructed document-
aligned (DA) Japanese-English conversation cor-
pus, which contains three sub-corpora: Busi-
ness Scene Dialogue (BSD (Rikters et al., 2019)),
Japanese translation of AMI Meeting Corpus (AMI
(McCowan et al., 2005)) and Japanese translation
of OntoNotes 5.0 (ON (Weischedel et al., 2011)).
The corpus contains multi-person conversations in
various situations: business scenes, meetings un-
der specific themes, broadcast conversations and
telephone conversations.

We supplement the original BSD part with addi-
tional data, increasing its size by almost three times.
We also enrich the corpus with speaker information
and other useful meta-data, and separate balanced
versions of development and evaluation data sets.

2 Related Work

There are many ready-to-use parallel corpora for
training MT systems, but most of them are in writ-
ten languages such as web crawl, patents (Goto
et al., 2011), scientific papers (Nakazawa et al.,
2016). Even though some parallel corpora are in
spoken language, they are mostly monologues (Cet-
tolo et al., 2012; Di Gangi et al., 2019) or contain
a lot of noise (Tiedemann, 2016; Pryzant et al.,
2018). Most of the MT evaluation campaigns
such as WMT1, WAT2 adopt the written language,
monologue or noisy dialogue parallel corpora for
their translation tasks. Among them, there is only
one clean, dialogue parallel corpus (Salesky et al.,
2018) adopted by IWSLT3 in the conversational
speech translation task.

JParaCrawl (Morishita et al., 2019) is a recently
announced large English-Japanese parallel corpus
built by crawling the web and aligning parallel

1http://www.statmt.org/wmt20/
2http://lotus.kuee.kyoto-u.ac.jp/WAT/
3http://workshop2019.iwslt.org
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sentences. Its size is impressive, but it is composed
of noisy web-crawled data and has many duplicate
sentences. Compared to our corpus, JParaCrawl
does not have meta-information and is not DA.

Voita et al. (2019) evaluate what modern MT
systems struggle with when translating from En-
glish into Russian and construct new development
and evaluation sets based on human evaluation.
The sets target linguistic phenomena - dexis, el-
lipsis and lexical cohesion. The authors also pro-
vide code for a context-aware NMT toolkit that
improves upon translating these phenomena. In
contrast, our development/evaluation sets contain
complete documents of consecutive sentences, not
broken up into only the sentences requiring context.

3 Corpus Description

Our corpus consists of 3 sub-corpora, each of
which originates from different sources - BSD,
AMI, and ON. BSD was newly constructed, while
AMI and ON are translations of the existing En-
glish versions of these corpora. Detailed statistics
of the sub-corpora are provided in Tables 1 and
2. BSD consists of the scenes mentioned in Table
1, ON has only two different scenes - broadcast
conversation and telephone conversation, and all
documents from AMI belong to the meeting scene.
There is no particular taxonomy associated with
these scenes. Word counts for the English side of
the sub-corpora are shown in Table 3. We do not
include word counts for the Japanese side since
it uses very little spaces and the final word count
depends on tokenisation.

3.1 Construction Process

Business Scene Dialogue
This sub-corpus was entirely newly created with-

out using any pre-existing resources. We asked
professional scenario writers to write monolingual
scenarios (documents), and then asked professional
translators to translate the documents. This process
was done for both En↔ Ja directions to ensure a
wide range of lexicons and expressions from both
languages.

In conversations, the utterances are often very
short and vague, therefore it is possible that they
should be translated differently depending on the
situations where the conversations are taking place.
For example, the Japanese expression 「すみ
ません」 can be translated into several English
expressions, such as “Excuse me”, “Thank you.”

or “I’m sorry.”, depending on context. By using
scene information, it is possible to discriminate
the translations, which is hard to do with only
the contextual sentences. Furthermore, it may
be possible to connect scene information to
multi-modal MT, i.e., estimating the scene from
visual information. Language used in meetings and
presentations is often more formal than general
chatting or phone calls. This is especially prevalent
in Japanese, which has three distinct levels of
politeness in the spoken language. Knowing the
scene may be useful for adjusting politeness and
formality.

AMI Meeting Parallel Corpus
The original AMI Meeting Corpus is a multi-

modal dataset containing 100 hours of meeting
recordings in English. The parallel version was
constructed by asking professional translators to
translate utterances from the original corpus into
Japanese. Since the original corpus consists of
speech transcripts, the English sentences contain a
lot of short utterances (e.g., “Yeah”, “Okay”) or
fillers (e.g., “Um”), and these are translated into
Japanese as well. Therefore, the AMI sub-corpus
contains many duplicates (see Table 6).

OntoNotes 5.0
The original OntoNotes is comprised of various

genres of text (news, telephone speech, weblogs,
newsgroups, broadcast, talk shows) in three
languages (English, Chinese, and Arabic) with
additional annotated information - syntax and
predicate argument structure, word sense linked
to an ontology and coreference. We extracted
the English subsets of broadcast conversation
(BC) and telephone conversation (Tele), and
had professional translators translate them into
Japanese.

Development and Evaluation Sets
We provide balanced development and evalua-

tion splits from only the BSD sub-corpus as it is the
least noisy part. The documents in these sets are
balanced in terms of scenes and original languages.
The complete statistics are shown in Table 4.

3.2 Analysis

We extend the analysis conducted for BSD (Rik-
ters et al., 2019) to AMI and ON by investigating
contextual information requirements for EN→JA
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JA→EN EN→JA
Scene Doc. Sent. Doc. Sent.
face-to-face 535 16,481 458 14,858
phone call 279 8,720 256 7,770
general chatting 233 7,674 239 7,372
meeting 224 7,647 265 8,952
training 37 1,379 47 1,549
presentation 17 499 53 1,899
sum 1,325 42,400 1,318 42,400

Table 1: Document (Doc.) and sentence (Sent.) statis-
tics for the full BSD corpus. JA→EN represents doc-
uments written in Japanese and translated into English.
EN→JA represents the opposite documents.

Set (Scene) Documents Sentences PA WK
AMI 171 110,483 4 0
ON (BC) 27 14,354 5 3
ON (Tele) 46 14,075 6 0

Table 2: Statistics for translated version of AMI and
ON corpora and errors detected in EN→JA MT.

MT. We randomly sample 200 and 100 sentence
pairs from ON and AMI respectively. In the case
of ON, 50% of the pairs are from BC and 50% are
from Tele. We translate the sentences with Google
Translate4 and check the translations for errors, ig-
noring fluency or minor grammatical mistakes.
Unlike the JA→EN results for BSD, where more
than 50% of errors were due to zero anaphora, there
are mainly two types of causes for errors we de-
tected in this analysis - phrase ambiguity (PA) and
absence of world knowledge (WK). Most of the
errors (Table 2) are caused by PA, for which taking
context sentences into account can be considered
as a possible solution. On the other hand, the docu-
ments in ON-BC contain a variety of named entities
(e.g., Shia - one of the two main branches of Islam)
and abbreviations (e.g., CPC - Communist Party
of China). To solve this, either domain-specific
training data or additional mechanisms that take
WK into account would be required.

3.3 Release and Licensing

The current version of BSD is published on
GitHub5 under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International (CC
BY-NC-SA 4.0) license. The English OntoNotes is
under the LDC User Agreement for Non-Members
and AMI is under Creative Commons Attribution
4.0 license (CC BY 4.0). We plan to release the
extended BSD and translations of AMI under the

4https://translate.google.com/ (November 2019)
5https://github.com/tsuruoka-lab/BSD

Word Count
Development 19,229
Evaluation 19,619
BSD 750,167
AMI 977,467
ON 279,709

Table 3: English side word counts for each of the sub-
corpora and development/evaluation sets.

same licenses and are currently negotiating a li-
censing agreement for the Japanese translations of
OntoNotes.

4 Machine Translation Experiments

The conversation corpus alone is not big enough to
train real-world NMT systems (as demonstrated by
Rikters et al. (2019)). However, by increasing the
size of the high-quality BSD corpus, we managed
to train reasonable NMT systems. The full statistics
of our data are shown in Table 6.

4.1 Experiment Setup

For the SL systems, we used Sockeye (Hieber et al.,
2017) to train transformer architecture (Vaswani
et al., 2017) models with the transformer-base pa-
rameters until convergence on development data
(no improvement on validation perplexity for 10
checkpoints). Each model was trained 3 times on
a single Nvidia TITAN V (12GB) GPU. The re-
ported BLEU score results are an average of 3 runs.
Training time was about 2 days for models with
only our data and about 5 days when using WMT
data.

To train our context-aware systems, we experi-
mented with two approaches - sentence concatena-
tion (Tiedemann and Scherrer, 2017) with source
side factors (Sennrich and Haddow, 2016) and
context-aware decoder (CADec (Voita et al., 2019)).
We use the same toolkit and similar parameters as
in our SL systems for the former and the CADec
toolkit with the default parameters for the latter.
For the concatenation context-aware MT, we ex-
perimented with two approaches: 1) prepending
the previous sentence from the same document,
followed by a beginning of sentence tag <bos>,
to the source sentence; 2) in addition, providing
source side factors to specify if a token represents
context or the source sentence.

The source side factors that we used for train-
ing were either C or S, representing context and
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Development Evaluation
JA→EN EN→JA JA→EN EN→JA

Scene Doc. Sent. Doc. Sent. Doc. Sent. Doc. Sent.
face-to-face 11 319 12 314 12 381 11 345
phone call 6 176 7 185 6 163 7 212
general chatting 7 223 8 248 7 211 8 212
meeting 7 240 7 219 7 228 7 229
training 1 40 1 23 1 38 1 30
presentation 1 31 1 33 1 31 1 40
sum 33 1029 36 1029 34 1052 35 1052

Table 4: Document (Doc.) and sentence (Sent.) statistics for development and evaluation sets.

the actual source sentence respectively. Examples
of source sentences with context and factors are
shown in Table 5. The first sentence in the table
has no previous context, as it is the first one in the
respective document. The second sentence has the
first one as context, followed by a beginning of
sentence tag <bos>, and so on.

Source sentences
<bos>はい、 G社お客様相談室の
ケイトです。

はい、 G社お客様相談室のケイト
です。<bos>ご用件は ?
ご用件は ? <bos>もしもし、森と
いいます。

Source side factors
C S S S S S S S S S S S S S S
C C C C C C C C C C C C C C C S S S S S
C C C C C C C S S S S S S S S

Table 5: Examples of training data source sentences
and the respective source side factors for the concate-
nated context-aware experiments.

4.2 Results

The results in Table 7 show that decent quality
MT models can be trained by using only our cor-
pus. For JA→EN the scores slightly improve by
training contextual models (Concatenated and Con-
catenated + factors), which indicates that there are
context-dependent sentences in our evaluation set
that benefit from the additional information. We
investigate this further by performing human evalu-
ation in Section 5. We did not find a clear reason
why models trained with CADec underperformed
even our baseline, but one possible explanation
could be that it uses three context sentences at once
for each sentence and does not overlap them with

the previous and next four-sentence lines, which
effectively shrinks the training data down to 1

4 th of
the original size.

For comparison, we also trained NMT models on
WMT20 data (∼13M parallel sentences, excluding
News Commentary v15; WMT column in Table 7).
For these models, we used newsdev2020 as devel-
opment data and News Commentary v156 as evalu-
ation data since newstest2020 was not yet available
at the time and for Japanese News Commentary
v15 was only 1811 sentences long. These models
reached 21.14 BLEU for EN→JA and 20.43 BLEU
for JA→EN on News Commentary v15, but on our
evaluation data they under-performed our baselines.
This shows that even with 60x the training data
these models struggle to translate conversations.
By combining all training data the gain over the
baselines is only 0.81 - 1.46 BLEU.

Figure 1 shows one example of a Japanese sen-
tence and its translations by the MT systems. There
are no pronouns in the source sentence, but there is
the noun「方」, which should be translated into
the English pronoun “he”, specifying the person to
be the successor to the store. Both systems manage
to translate this part correctly, but the baseline gen-
erates an additional pronoun in the end instead of
“the store”. We observed many similar situations,
where the contextual translation still didn’t match
the reference and was not perfect, but the selection
of pronouns had improved.

5 Human Evaluation

We translated the evaluation set in both directions
using our baseline NMT and performed a two step
human evaluation similar to Voita et al. (2019).
After that, we analysed the remaining sentences to
determine which truly require context.

6http://www.statmt.org/wmt20/translation-task.html
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Total Unique
Development 2,051 2,012
Evaluation 2,120 2,070
Training 80,629 74,377
AMI 110,483 75,660
ON 28,429 24,335

Table 6: Total vs. unique sentence pairs of training,
development and evaluation BSD data; and AMI and
OntoNotes sub-corpora.

JA→EN EN→JA
WMT 16.29 12.99
WMT+ 18.44 15.33
Baseline 16.98 14.52
CADec 15.31 12.55
Concatenated 17.07 14.15
Concatenated + factors 17.24 14.19

Table 7: MT experiment results in BLEU scores. WMT
uses only WMT 2020 data and WMT+ uses WMT
2020 along with our corpus for training. The rest use
only our corpus for training.

We used Yahoo! Japan Crowdsourcing7 for the
human evaluation. Evaluation quality was guaran-
teed using screening questions which were indis-
tinguishable from the real questions. Only those
who correctly answered all the screening questions
were considered valid evaluators. Each sentence
was evaluated by 5 different evaluators.

In the first step, evaluators were asked to mark
each sentence individually as OK or Not Good
(NG), where OK meant that the general meaning of
the original sentence was transferred to the trans-
lation, whereas NG meant that the translation is
completely unusable. In the second step, we used
only the consecutive pairs of sentences, which were
both marked as OK in the first step by at least three
evaluators, and asked evaluators to mark them as
OK if the corresponding translations made sense
in context of each other. We calculated the Free-
Marginal Kappa (Randolph, 2005) values for the
evaluations to measure agreement between evalu-
ators. The results (overall agreement - 67%, Free-
marginal kappa - 0.34) show moderate agreement,
which is common for crowdsourcing.

5.1 Analysis
As a result of the crowdsourcing campaign (Table
8) we had 228 EN→JA sentence pairs and 208

7https://crowdsourcing.yahoo.co.jp/

Source: おっ、きっとお店の後継者になる方ですね。
Reference: Oh, he must be the successor to the store.
Baseline: Oh, I’m sure he will succeed you.
Con.+fact.:Oh, I’m sure he will be the successor to the store.

Figure 1: JA→EN translations of a sentence where the
baseline generated an incorrect pronoun, but the concat.
+ factors system produced a more fitting translation.

Previous Source: What kind of food should we choose?
Previous Reference: どういうジャンルにしますか？
Previous MT: どんな食べ物を選ぶべきか。
Source: How about Chinese?
Reference: 中華料理はどう？
MT: 中国語はどうですか？

Figure 2: EN→JA MT output where Chinese is trans-
lated into “中国語” (Chinese language) instead of “中
華料理” (Chinese food).

JA→EN sentence pairs marked as NG in context
of each other. We employed two linguistic experts
to check the translations along with their respective
sources and references to determine their ambiguity
and need for additional context. For this step they
were also asked to categorise the ambiguity type.

After the final step 9 EN→JA and 43 JA→EN
sentence pairs were marked as context-dependent.
38 JA→EN pairs lack pronouns in the source sen-
tence and do not have enough content to produce
an unequivocal translation. The other 5 JA→EN
pairs contain ambiguous words or phrases, which
can be translated differently, depending on the con-
text. For example, 「1組」 can be translated as
either “one couple” or “one group”. Similarly in
EN→JA, Chinese can refer to language (中国語)
or food (中華料理) as shown in Figure 2. Our
best contextual models still struggle to translate
such ambiguities, while slightly outperforming SL
baselines in handling pronouns.

Figure 3 shows example mistranslations of pro-
nouns, where they are omitted (as is often done
in the spoken language) on the Japanese side, but
expected in the English translation. The contextual
MT model does get some of the pronouns right
in the first sentence, but perhaps requires longer
context for the second one.

6 Conclusion

We presented a document-aligned parallel corpus
of English-Japanese conversations intended for
training and evaluation of MT systems. We de-
scribe the corpus in detail and indicate which lin-
guistic phenomena are challenging for MT. In our
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EN→RU EN→JA JA→EN
2000 2051 2051

NG OK NG OK NG OK
140 1649 228 931 208 1174
4% 41% 11% 45% 10% 57%

Table 8: Results of the second step of the crowdsourc-
ing human evaluation compared to EN→RU (Voita
et al., 2019). The first row shows sentence pair totals
and the last two rows show sentence pairs, where both
sentences were marked as “good” individually, evalu-
ated in context of each other as either good or bad pairs.

Prev. Source: いつ返事くれると言ってた？
Prev. Reference: Did they say when they will get back to you?
Prev. Base.: when did you say you’ d answer me?
Prev. Conc.+f.: When did they say they will reply?
Source: 来週早々には、と言ってました。
Reference: They said early next week.
Base.: He told me early next week.
Conc.+f.: I said it early next week .

Figure 3: JA→EN MT output by baseline (Base.) and
concatenated context + factored (Conc.+f.) models of
sentences with no pronouns in the source and expected
pronouns in the translation.

evaluation set we marked examples, which can
have multiple contrasting translations when tack-
led on the sentence-level. The release will include
the full BSD corpus and Japanese translations of
AMI and ON along with instructions on how to
align them. The original source language, speaker,
scene, document, ambiguity type will also be in-
cluded.

In the future we plan to model speakers and ori-
gin languages in MT, as it can help capture broader
context (Maruf et al., 2018) and more precise pro-
noun translations (Vanmassenhove et al., 2018).
We are also interested in experimenting with mod-
elling the scene information within the training data
to produce more appropriate translations for each
of the politeness settings.
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Abstract

We present the results of the 6th round of the
WMT task on MT Automatic Post-Editing.
The task consists in automatically correcting
the output of a “black-box” machine trans-
lation system by learning from existing hu-
man corrections of different sentences. This
year, the challenge consisted of fixing the er-
rors present in English Wikipedia pages trans-
lated into German and Chinese by state-of-
the-art, not domain-adapted neural MT (NMT)
systems unknown to participants. Six teams
participated in the English-German task, sub-
mitting a total of 11 runs. Two teams par-
ticipated in the English-Chinese task submit-
ting 2 runs each. Due to i) the different
source/domain of data compared to the past
(Wikipedia vs Information Technology), ii) the
different quality of the initial translations to
be corrected and iii) the introduction of a new
language pair (English-Chinese), this year’s
results are not directly comparable with last
year’s round. However, on both language di-
rections, participants’ submissions show con-
siderable improvements over the baseline re-
sults. On English-German, the top-ranked sys-
tem improves over the baseline by -11.35 TER
and +16.68 BLEU points, while on English-
Chinese the improvements are respectively
up to -12.13 TER and +14.57 BLEU points.
Overall, coherent gains are also highlighted by
the outcomes of human evaluation, which con-
firms the effectiveness of APE to improve MT
quality, especially in the new generic domain
selected for this year’s round.

1 Introduction

MT Automatic Post-Editing (APE) is the task
of automatically correcting errors in a machine-
translated text. As pointed out by (Chatterjee
et al., 2015), from the application point of view,
the task is motivated by its possible uses to:

• Improve MT output by exploiting informa-
tion unavailable to the decoder, or by per-
forming deeper text analysis that is too ex-
pensive at the decoding stage;

• Cope with systematic errors of an MT system
whose decoding process is not accessible;

• Provide professional translators with im-
proved MT output quality to reduce (human)
post-editing effort;

• Adapt the output of a general-purpose MT
system to the lexicon/style requested in a spe-
cific application domain.

In its 6th round, the APE shared task organized
within the WMT Conference on Machine Trans-
lation kept the same overall evaluation setting of
the previous five rounds. Specifically, the partic-
ipating systems had to automatically correct the
output of an unknown “black box” (neural) MT
system by learning from training data containing
human revisions of translations produced by the
same system.

This year, the task focused on two language
pairs: English-German and English-Chinese. The
former has been part of the APE evaluation cam-
paigns since 2016 (Bojar et al., 2016), while the
latter represents a new entry. A second differ-
ence with respect to previous rounds is that, for
both language pairs, the source/domain of the
data changed from Information Technology (IT) to
Wikipedia articles. The third major novelty factor
consists in the type of MT systems used to gener-
ate the translations to be corrected. Although for
the third year in a row the task focused on transla-
tions produced by neural MT (NMT) systems, this
year these models were not adapted to the target
domain.

These radical changes have advantages and dis-
advantages. On one side, moving away from the
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“narrow” IT domain allowed to test APE technol-
ogy on the challenging scenario represented by the
generic domain of Wikipedia articles. Indeed, as
shown in the previous rounds of the task (Chat-
terjee et al., 2018a, 2019), the high level of repet-
itiveness of IT data makes this domain easier to
model compared to a generic and less repetitive
domain, both for MT and APE technology. More-
over, fixing the output of generic NMT models that
are not domain-adapted allowed to test APE on
lower-quality initial data and verify its potential
as a downstream domain adaptation component.
On the other side, the disadvantage of changing
domain is the reduced possibility to compare re-
sults and measure progress across years. Specif-
ically, the lower quality of the original sentences
to be corrected (and, in turn, the larger room for
improvement left to APE) make the participants’
results and the overall technology advancements
difficult to analyze in the light of previous rounds.

Six teams participated in the English-German
task, submitting eleven runs in total. Two teams
participated in the English-Chinese task, submit-
ting two runs each. Similar to last year, all teams
developed their systems based on neural tech-

nology, which confirms to be the state-of-the-art
approach to APE. In most of the cases (see Sec-
tion 3), participants experimented with the Trans-
former architecture (Vaswani et al., 2017), either
directly or by adapting it to the task. As in previ-
ous rounds, their systems exploit information both
from the MT output to be corrected and from the
corresponding source sentence. This was done ei-
ther by concatenating the two, as in last year’s
winning system (Lopes et al., 2019), or by means
of multi-source solutions (Zoph and Knight, 2016)
successfully explored in the past (Libovický et al.,
2016; Chatterjee et al., 2017). Following the re-
cent trends in other NLP areas, the integration
of pre-trained BERT-like language models was
also considered. Model ensembling and the inte-
gration of word/sentence-level quality estimation
techniques geared to APE (similar to (Chatterjee
et al., 2018b)) were also explored. Finally, also
this year participants took advantage of data aug-
mentation techniques, either by creating their own
eSCAPE-like corpora (Negri et al., 2018), or by
generating synthetic data by adding artificial noise
to simulate post-editing errors, or by exploiting ex-
ternal MT candidates as a source of auxiliary in-
formation to be concatenated to the input.

The overall evaluation results show significant
improvements over the baseline on both the lan-
guage directions. On English-German, where the
“do-nothing” baseline (see Section 2.3) was 31.56
TER (Snover et al., 2006) and 50.21 BLEU (Pa-
pineni et al., 2002), the top-ranked system (20.21
TER, 66.89 BLEU) shows an impressive -11.35
TER reduction, which corresponds to a +16.68
gain in terms of BLEU score. Considering all
the submissions, the average gain is -4.89 TER
and +6.5 BLEU points, with only one system per-
forming slightly worse than the baseline. Dif-
ferent from last year, where the differences be-
tween the top four submissions were not statisti-
cally significant, this year we have a clear win-
ner, whose best submission is 6.78 TER points
(and 11.12 BLEU points) above the second ranked
team. Nevertheless, though possibly favoured by
the relatively low baseline results (+14.72 TER
and -24.52 BLEU compared to last year), the glob-
ally good performance of the participants is a good
indicator of overall progress.

The newly proposed English-Chinese task is no
exception. Here, both participating teams were
able to outperform the baseline (59.49 TER and
23.12 BLEU) by a significant margin. The largest
gains are up to -12.13 TER and +14.57 BLEU
points and, on average for the four submitted runs,
they are -8.15 TER and +10.1 BLEU points.

The good results observed with automatic met-
rics on both the language pairs are confirmed by
the human evaluation outcomes. On English-
German, for the first time, the top-ranked primary
submission is not significantly worse compared to
the human post-edited output (suggesting that au-
tomatic corrections are indistinguishable from the
human ones1). All the other systems except one,
moreover, are significantly better than the base-
line. This also happens for the two primary sub-
missions to the English-Chinese subtask which,
however, are both significantly worse than human
post-edits.

All in all, the improvements observed on both
the language pairs can be most likely ascribed
to the lower quality of the initial translations to
be corrected. On English-German, the baseline
(31.56 TER, 50.21 BLEU) was indeed much lower

1A number of factors (related to this year’s data and the
overall evaluation setting) may have determined this quite
surprising finding. Far from claiming to have reached the
“human parity” on the APE task, we leave this aspect to fu-
ture deeper analyses.
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than in the past, when the MT systems used were
always domain-adapted and hence more competi-
tive. Last year, for instance, the baseline was 16.84
TER (74.73 BLEU), while in none of the previous
rounds focusing on this language pair participants
had to confront with TER above 25.0 and BLEU
below 62.0. On English-Chinese, the baseline was
even lower (59.49 TER, 23.12 BLEU), with the
lowest scores across all the past six editions of the
APE task. On one side, the large gains observed
are in line with (and indirectly confirm) previous
observations (Bojar et al., 2017; Chatterjee et al.,
2018a, 2019) about the difficulty to improve high-
quality MT output. Conversely, as we can ob-
serve this year, translations of lower quality (like
those coming from generic, not domain-adapted
models) leave to APE technology a large margin
for improvement. On the other side, the observed
global gains in both settings motivate further re-
search on APE as a tool for downstream MT adap-
tation in black-box conditions.

2 Task description

In continuity with all the previous rounds of the
APE task, participants were provided with train-
ing and development data consisting of (source,
target, human post-edit) triplets, and were asked
to return automatic post-edits for a test set of un-
seen (source, target) pairs.

2.1 Data

For both English-German and English-Chinese,
the initial data were selected from English
Wikipedia articles and then automatically trans-
lated in the two target languages. Although the
original English Wikipedia pages were the same,
the source sentences eventually used to build the
datasets for the two language pairs are different as
they were randomly selected.

The released training and development sets con-
sist of (source, target, human post-edit) triplets in
which:

• The source (SRC) is a tokenized English sen-
tence;

• The target (TGT) is a tokenized Ger-
man/Chinese translation of the source, which
was produced by a generic, black-box system
unknown to participants. For both the lan-
guages, translations were obtained from neu-

ral MT systems.2

• The human post-edit (PE) is a tokenized
manually-revised version of the target, which
was produced by professional translators.

Test data consists of (source, target) pairs hav-
ing similar characteristics of those in the training
set. Human post-edits of the test target instances
are left apart to measure system performance.

For the English-German subtask, the train-
ing, development and test sets respectively con-
tain 7,000, 1,000 and 1,000 triplets. Participants
were also provided with two additional training
resources, which were widely used in the pre-
vious rounds. One is the corpus of 4.5 mil-
lion artificially-generated post-editing triplets de-
scribed in (Junczys-Dowmunt and Grundkiewicz,
2016). The other resource is the English-German
section of the eSCAPE corpus (Negri et al., 2018).
It comprises 14.5 million instances, which were
artificially generated both via phrase-based and
neural translation (7.25 millions each) of the same
source sentences.

Also for the English-Chinese subtask, the
training, development and test sets respectively
contain 7,000, 1,000 and 1,000 triplets. For this
language pair, however, no additional training re-
sources were provided.

2.1.1 Complexity indicators: repetition rate
Table 1 provides a view of the data from a task
difficulty standpoint. For each dataset released in
the six rounds of the APE task, it shows the rep-
etition rate of SRC, TGT and PE elements, the
TER (Snover et al., 2006) and the BLEU score
(Papineni et al., 2002) of the TGT elements (i.e.
the original target translations), as well as the TER
difference (δ TER) between the top-ranked sub-
mission and the task baseline.

The repetition rate measures the repetitiveness
inside a text by looking at the rate of non-singleton
n-gram types (n=1...4) and combining them us-
ing the geometric mean. Larger values indicate
a higher text repetitiveness and, as discussed in
(Bojar et al., 2016, 2017; Chatterjee et al., 2018a),

2Both the NMT systems are based on the standard Trans-
former architecture (Vaswani et al., 2017) and follow the im-
plementation details described in (Ott et al., 2018). They
were trained on publicly available MT datasets including
Paracrawl (Esplà et al., 2019) and Europarl (Koehn, 2005),
summing up to 23.7M parallel sentences for English-German
and 22.6M for English-Chinese.
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2015 2016 2017 2017 2018 2018 2019 2019 2020 2020
Language En-Es En-De En-De De-En En-De En-De En-De En-Ru En-De En-Zh
Domain News IT IT Medical IT IT IT IT Wiki Wiki
MT type PBSMT PBSMT PBSMT PBSMT PBSMT NMT NMT NMT NMT NMT
Rep. Rate SRC 2.905 6.616 7.216 5.225 7.139 7.111 7.111 18.25 0.653 0.81
Rep. Rate TGT 3.312 8.845 9.531 6.841 9.471 9.441 9.441 14.78 0.823 1.27
Rep. Rate PE 3.085 8.245 8.946 6.293 8.934 8.941 8.941 13.24 0.656 1.2
Baseline TER 23.84 24.76 24.48 15.55 24.24 16.84 16.84 16.16 31.56 59.49
Baseline BLEU n/a 62.11 62.49 79.54 62.99 74.73 74.73 76.20 50.21 23.12
δ TER +0.31 -3.24 -4,88 -0,26 -6.24 -0.38 -0.78 +0.43 -11.35 -12.13

Table 1: Basic information about the APE shared task data released since 2015: languages, domain, type of MT technology,
repetition rate and initial translation quality (TER/BLEU of TGT). The last row (δ TER) indicates, for each evaluation round,
the difference in TER between the baseline (i.e. the “do-nothing” system) and the top-ranked submission.

suggest a higher chance of learning from the train-
ing set correction patterns that are applicable also
to the test set.

Over the years, the relation between systems’
performance and the repetition rate observed in
the data has been analysed in the light of the dif-
ferent values reported in Table 1. Some rounds
of the task suggested the hypothesis that large dif-
ferences in repetitiveness across the datasets give
a possible explanation for the variable gains over
the baseline achieved by participants. Indeed, in
some cases (e.g. in the APE15 task and in the
APE17 German-English subtask), low repetition
rates seemed to motivate generally low systems’
results, while in others (e.g. APE17 English-
German subtask) also the opposite was true, with
large gains over the baseline associated to high
repetition rates. However, the outcomes of other
rounds of the task do not support this intuition. In
the 2018 round, despite the relatively high repe-
tition rate values observed in the data, evaluation
results shown that the influence of data repetitive-
ness on final APE performance is marginal. The
same happened in 2019 (Chatterjee et al., 2019),
when the highest repetition rates ever measured in
the APE data (English-Russian subtask) were not
enough to develop systems able to improve over
the baseline.

As discussed in Section 4, this year we are in the
opposite situation. On both English-German and
English-Chinese, the lowest repetition rates ever
measured in the APE data did not prevent partic-
ipants from achieving considerable gains over the
baseline. This confirms that, as hypothesized last
year, systems’ improvements over the baseline are
either scarcely correlated to text repetitiveness or
more influenced by other task difficulty indicators.

2.1.2 Complexity indicators: MT quality

Indeed, another important aspect that determines
the difficulty of APE is the initial quality of the
MT output to be corrected. This can be measured
by computing the TER (↓) and BLEU (↑) scores
(Baseline TER/BLEU rows in Table 1) using the
human post-edits as reference.

As discussed in (Bojar et al., 2017; Chatterjee
et al., 2018a, 2019), numeric evidence of a higher
quality of the original translations can indicate a
smaller room for improvement for APE systems
(having, at the same time, less to learn during
training and less to correct at test stage). On one
side, indeed, training on good (or near-perfect)
automatic translations can drastically reduce the
number of learned correction patterns. On the
other side, testing on similarly good translations
can drastically reduce the number of corrections
required and the applicability of the learned pat-
terns, thus making the task more difficult.

As observed in the previous APE evaluation
rounds, there is a noticeable correlation between
translation quality and systems’ performance. In
2016 and 2017, on English-German data featur-
ing a similar level of quality (24.76/24.48 TER,
62.11/62.49 BLEU), the top systems achieved sig-
nificant improvements over the baseline (-3.24
TER and +5.54 BLEU in 2016, -4.88 TER and
+7.58 BLEU in 2017). In 2017, on higher quality
German-English data (15.55 TER, 79.54 BLEU),
the observed gains were much smaller (-0.26 TER,
+0.28 BLEU). In 2018, the correction of English-
German translations produced by a phrase-based
system (24.24 TER, 62.99 BLEU) yielded much
larger gains (up to -6.24 TER and +9.53 BLEU)
compared to the correction of higher-quality neu-
ral translations (16.84 TER, 74.73 BLEU), which
resulted in TER/BLEU variations of less than 1.00
point. Similarly, in 2019 the very high translation
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Figure 1: TER distribution in the English-German test set Figure 2: TER distribution in the English-Chinese test set

quality featured by strong, domain-adapted neural
models made the task rather difficult. On English-
German, where the baseline system was again
very competitive (16.84 TER, 74.73 BLEU), the
largest TER reduction was indeed of 0.78 points
(corresponding to a BLEU increase of 1.23). On
English-Russian, where the initial MT quality was
even higher,3 (16.16 TER, 76.2 BLEU), the base-
line remained unbeaten.

As discussed in Section 4, also this year’s re-
sults confirm the strict correlation between the
quality of the initial translations and the actual po-
tential of APE. Indeed, with baseline TER and
BLEU scores significantly lower than in all the
other rounds of the task (31.56 TER and 50.21
BLEU for English-German, 59.49 TER and 23.12
BLEU for English-Chinese), almost all partici-
pants managed to obtain very large improvements
despite the low repetition rates featured by the
data.

2.1.3 Complexity indicators: TER
distribution

A third complexity indicator considered in pre-
vious rounds of the task is the TER distribu-
tion (computed against human references) for the
translations present in the test sets. What we ob-
served in the past is that harder tasks were typ-
ically characterized by TER distributions partic-
ularly skewed towards low values. For instance,
in 2019 around 50% of the English-German and

3Note that the higher quality of the initial transla-
tions added up to the higher difficulty of dealing with a
morphologically-rich target language like Russian. The two
aspects are clearly tightly connected and disentangling them
would require further analysis. Nonetheless, regarding the
correlation between MT quality and final results, also this
subtask was not an exception compared to the other settings
summarized in Table 1.

63.5% of the English-Russian test items had a
TER between 0 and 10, the latter subtask being
considerably more difficult than the former (recall
that, on English-Russian, none of the participants
was able to beat the baseline). Indeed, the higher
the proportion of (near-)perfect test instances (i.e.
items with 0<TER<10, which hence require few
edits or no corrections at all), the higher the proba-
bility that APE systems will perform unnecessary
corrections that will be penalized by automatic
evaluation metrics.

On the contrary, less skewed distributions can
be expected to be easier to handle as they give to
automatic systems a larger room for improvement.
In the lack of more focused analyses on this as-
pect, we can hypothesize that, in ideal conditions
from the APE standpoint, the peak of the distribu-
tion would be observed for “post-editable” trans-
lations containing enough errors that leave some
margin for focused corrections, but not too many
errors to be so unintelligible to require a whole re-
translation from scratch.4

As shown in Figures 1 and 2, the TER distri-
butions in the two test sets released this year is
quite different from previous rounds and actually
reflects a more balanced situation. For English-
German, about 55% of the samples falls in the 15-
45 TER interval, with no more ∼ 7% of the items
being perfect (i.e. TER=0). For English-Chinese,
for which the overall MT quality is significantly
lower (as shown by the worse baseline results re-
ported in Table 1), the vast majority of the samples
falls in the 40-85 interval, with less than 1% of the

4For instance, based on the empirical findings reported in
(Turchi et al., 2013, 2014), TER=0.4 is the threshold that, for
human post-editors, separates the “post-editable” translations
from those that require complete rewriting from scratch.
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ID Participating team
MinD Alibaba Group, Hangzhou, China (Wang et al., 2020)
BeringLab Bering Lab, Republic of Korea (Lee, 2020)
HW-TSC Huawei Translation Services Center & East China Normal University, China (Yang et al., 2020)
KAIST Korea Advanced Institute of Science & Technology, Republic of Korea
POSTECH Pohang University of Science and Technology, Republic of Korea (Lee et al., 2020b)
POSTECH-ETRI Pohang University & Electronics and Telecomm. Res. Inst., Republic of Korea (Lee et al., 2020a)

Table 2: Participants in the WMT20 Automatic Post-Editing task.

items being perfect.
In the light of previous years’ observations, both

the subtasks hence seem to be easier to handle. As
discussed in Section 4, also this year’s evaluation
results confirm the strict correlation between the
quality of the initial translations, the distribution
of TER scores across the test items, and the actual
potential of APE.

2.2 Evaluation metrics

System performance was evaluated both by means
of automatic metrics and manually. Automatic
metrics were used to compute the distance be-
tween automatic and human post-edits of the
machine-translated sentences present in the test
sets. To this aim, TER and BLEU (case-sensitive)
were respectively used as primary and secondary
evaluation metrics. Systems were ranked based
on the average TER calculated on the test set
by using the TERcom5 software: lower average
TER scores correspond to higher ranks. BLEU
was computed using the multi-bleu.perl package6

available in MOSES. The evaluation results com-
puted in terms of automatic metrics are presented
and discussed in Section 4).

Manual evaluation was conducted via source-
based direct human assessment (Graham et al.,
2013; Cettolo et al., 2017; Bojar et al., 2018). De-
tails are discussed in Section 6.

2.3 Baseline

In continuity with the previous rounds, the official
baseline results were the TER and BLEU scores
calculated by comparing the raw MT output with
human post-edits. In practice, the baseline APE
system is a “do-nothing” system that leaves all the
test targets unmodified. Baseline results, the same
shown in Table 1, are also reported in Tables 3 and

5http://www.cs.umd.edu/˜snover/tercom/
6https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

4 for comparison with participants’ submissions.7

For each submitted run, the statistical signif-
icance of performance differences with respect
to the baseline was calculated with the bootstrap
test (Koehn, 2004).

3 Participants

Six teams submitted a total of 11 runs for the
English-German subtask. Two of them partici-
pated also in the English-Chinese subtask by sub-
mitting 2 runs each. Participants are listed in Ta-
ble 2, and a short description of their systems is
provided in the following.

Alibaba Group (MinD). Alibaba participated
only in the English-German subtask. Their sub-
mission introduces a cross-lingual Bert-like con-
ditional model with a “memory-encoder”, which
can capture the semantic information of machine
translations conditional on the source sentences
(Fan et al., 2019). The system consists of three
parts, namely: i) a general Transformer encoder to
encode the source sentences, ii) a Transformer de-
coder without future mask adapted to a memory-
encoder to encode machine translations with cross
attention to the source encoder, and iii) a multi-
source Transformer decoder to generate the auto-
matic post-editing results with cross attentions to
both the encoders. In addition, data augmentation,
corpus filtering and imitation learning strategies
are exploited to overcome the scarcity of real APE
data and to further improve model’s performance,
together with model ensembling and conservative-
ness penalty strategies inspired by (Lopes et al.,
2019).

7In addition to the do-nothing baseline, in the first three
rounds of the task we also compared systems’ performance
with a re-implementation of the phrase-based approach firstly
proposed by Simard et al. (2007), which represented the com-
mon backbone of APE systems before the spread of neural
solutions. As shown in (Bojar et al., 2016, 2017), the steady
progress of neural APE technology has made the phrase-
based solution not competitive with current methods reducing
the importance of having it as an additional term of compar-
ison. Since 2018, we hence opted for considering only one
baseline.
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Bering Lab (BerlingLab). Bering Lab partici-
pated only in the English-German subtask. Their
system relies on a Transformer architecture, in
which the encoder takes in input a concatenation
of the source and MT sentences to generate a
cross-lingual representation to be passed to the de-
coder. Additionally, they explored methods to im-
prove APE performance through word-level and
sentence-level quality estimation (QE). Based on
word-level QE, they mask incorrect or missing
words in the PE output. Then, the most proba-
ble word for each masked token is predicted us-
ing XLM-RoBERTa (Conneau et al., 2020), which
is fine-tuned based on the translation language
modeling (TLM) objective (Conneau and Lample,
2019). Finally, they propose an output selection
mechanism based on sentence-level QE to prevent
over-correction. To this aim, they select the sen-
tence with the lowest predicted HTER among the
PE outputs and the original MT sentence as the fi-
nal output. For data augmentation, they use a par-
allel corpus to train an NMT model and generate
artificial triplets, following the ideas from (Negri
et al., 2018).

Huawei (HW-TSC). Huawei participated both
in the English-German and English-Chinese sub-
tasks. Their system basically follows the architec-
ture of last year’s winning system (Lopes et al.,
2019), where src and mt sentences are concate-
nated as input to the encoder, and the decoder
is used for decoding the pe sentence. How-
ever, there are several differences with respect to
(Lopes et al., 2019). First, instead of using a pre-
trained BERT model, the system relies on a Trans-
former NMT model (implemented with fairseq
(Ott et al., 2019)), pre-trained on the WMT19
news translation corpora. Second, the model in-
tegrates bottleneck adapter layers to prevent from
over-fitting. Third, external MT candidates (from
Google Translate) are exploited as a source of aux-
iliary information. This results in a longer in-
put sequence composed of (src, mt, auxiliary mt)
triplets. Due to the domain change introduced
this year, system’s training does not exploit the
supplied additional corpora for data augmentation.
Finally, the system does not include methods to
prevent over-correction, such as the penalty men-
tioned in (Lopes et al., 2019).

POSTECH (POSTECH TERNoise). This
team participated only in the English-German

subtask. They mainly focused on increasing the
size of the APE data to overcome the scarcity of
training samples available. They first introduced
a noising module simulating the four types of
post-editing errors: insertion, deletion, substitu-
tion and shifting. This noising module implants
the simulated errors into the target text of the
parallel corpora, so to exploit a synthetic MT
output during the training phase. The quantity of
noise is determined by using the TER distribution
of the official training set. They then applied the
same generation method proposed in (Negri et al.,
2018), so to create a synthetic APE corpus to be
used as additional training data. For this data con-
struction process, they used the parallel corpora
and the NMT model released for the WMT20
Quality Estimation shared task. As APE model,
they chose the sequential model proposed in (Lee
et al., 2019), applying some minor modifications
to increase the training efficiency. They submitted
two ensemble models. Their primary submission
(TERNoise-Ops-Ens8) is an ensemble of eight
runs. It was obtained by first selecting the top-5
runs having the lowest TER on the development
set, for three individual weight initializations.
Out of them, they then selected the top-2 runs
showing most frequent corrections for each of the
four edit operations to form the ensemble. The
contrastive submission (TERNoise-nFold-Ens8)
is an ensemble of eight runs obtained from
models trained/validated in a 4-fold setting on the
integration of training data and development data,
aiming at the generalization to unseen data. Then,
the top-2 runs for each fold were selected to form
the ensemble.

POSTECH-ETRI (POSTECH-ETRI). This
team participated both in the English-German and
English-Chinese subtasks. Their models focus
on adapting to the APE task XLM (Conneau and
Lample, 2019), which can learn joint represen-
tations from two languages. Rather than using
the open model published on the XLM github
page8 trained on 15 languages, they built new
MLM+TLM models that are trained on datasets
consisting of only the source and target languages
for both language pairs (English-German and
English-Chinese). Their model architecture is an
extension of Transformer, in which the encoder
is initialized with the weights of the pre-trained

8https://github.com/facebookresearch/
XLM

652



TER BLEU

en-de HW-TSC DIRECT CONTRASTIVE.pe 20.21 66.89
HW-TSC CONCAT PRIMARY.pe 20.52 66.16
MinD-mem enc dec post-CONTRASTIVE 26.99 55.77
POSTECH-ETRI XLM-Top4Ens CONTRASTIVE 27.02 56.37
MinD-mem enc dec-PRIMARY 27.03 55.58
POSTECH-ETRI XLM-Top3Ens PRIMARY 27.37 55.83
BeringLab model1 PRIMARY 27.61 54.71
BeringLab model2 CONTRASTIVE 27.96 54.60
POSTECH TERNoise-nFold-Ens8 CONTRASTIVE 28.22 54.51
POSTECH TERNoise-Ops-Ens8 PRIMARY 28.41 54.22
Baseline 31.56 50.21
KAISTxPAPAGO EMT PRIMARY 32.00 49.21

Table 3: Results for the WMT20 APE English-German – average TER (↓), BLEU score (↑).

TER BLEU

en-zh HW-TSC CONCAT PRIMARY.pe 47.36 37.69
HW-TSC DIRECT CONTRASTIVE.pe 48.01 37.32
POSTECH-ETRI XLM-Top3Ens PRIMARY 54.92 28.90
POSTECH-ETRI XLM-Top4Ens CONTRASTIVE 55.08 28.97
Baseline 59.49 23.12

Table 4: Results for the WMT20 APE English-Chinese – average TER (↓), BLEU score (↑).

XLM, receiving the concatenation of the two
input sentences. The decoder is also initialized in
a similar manner as the encoder, while multi-head
attention layers are random-initialized. At the
APE training stage, in addition to the WMT20
official dataset, they generated new synthetic
triplets, following the same method used to build
eSCAPE (Negri et al., 2018). They used the NMT
model provided by the WMT20 quality estimation
shared task to generate new synthetic APE triplets
by translating the parallel corpus provided by
the same task. Finally, to generate their final
submissions, they built an ensemble of multiple
models.

4 Results

Participants’ results are shown in Tables 3
(English-German) and 4 (English-Chinese). The
submitted runs are ranked based on the average
TER (case-sensitive) computed using human post-
edits of the MT segments as reference, which is
the APE task primary evaluation metric. The two
tables also report the BLEU score computed using
human post-edits, which represents our secondary
evaluation metric.

Similar to last year, also in this round the pri-
mary and secondary evaluation metric produce
rankings that are only slightly different from each
other.9 In spite of these minor difference, for

9For English-German, the third and fourth-ranked sub-
missions in terms of TER are switched in terms of BLEU,

both both languages we have a clear separation
between the two top-ranked submissions (by the
same team) and the other submitted runs.

On English-German, the best results (20.21
TER, 66.89 BLEU) respectively outperform the
baseline by -11.35 TER and +16.68 BLEU points,
the second-best scores being lower by less than 1
point for both the metrics. All the other runs but
the last are quite close to each other, being concen-
trated respectively in a 1.42 TER and 1.55 BLEU
points interval.

On English-Chinese, the best results (47.36
TER, 37.69 BLEU) respectively outperform the
baseline by -12.13 TER and +14.57 BLEU points.
Also in this case, the second-best run is below the
top-ranked one by less than 1 point for both the
metrics, while the third and fourth submissions are
close to each other (the difference is less than 0.2
points for both metrics).

All in all, these results indicate that:

• Operating with lower-quality output pro-
duced by generic (i.e. not domain-adapted)
NMT systems run on a broad “domain” like
Wikipedia texts (as opposed to the narrow do-
mains of information technology or medical)
leaves considerable room for improvement to
state-of-the-art APE models. Looking at the
baseline scores and the δTER values shown

as well as the fifth and the sixth. For English-Chinese, this
happens for the third and fourth-ranked submissions. The
correlation between the ranks obtained by the two metrics is
however very high, and in both cases above 0.99.
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Systems Modified Improved Deteriorated Prec.
HW-TSC DIRECT CONTRASTIVE.pe 905 (90.5%) 625 (69.06%) 177 (19.56%) 0.69
HW-TSC CONCAT PRIMARY.pe 908 (90.8%) 618 (68.06%) 183 (20.15%) 0.68
MinD-mem enc dec post-CONTRASTIVE 662 (66.2%) 397 (59.97%) 148 (22.36%) 0.60
POSTECH-ETRI XLM-Top4Ens CONTRASTIVE 771 (77.1%) 438 (56.81%) 199 (25.81%) 0.57
MinD-mem enc dec-PRIMARY 665 (66.5%) 401 (60.30%) 144 (21.65%) 0.60
POSTECH-ETRI XLM-Top3Ens PRIMARY 778 (77.8%) 423 (54.37%) 207 (26.61%) 0.54
BeringLab model1 PRIMARY 708 (70.8%) 380 (53.67%) 157 (22.18%) 0.54
BeringLab model2 CONTRASTIVE 421 (42.1%) 279 (66.27%) 72 (17.10%) 0.66
POSTECH TERNoise-nFold-Ens8 CONTRASTIVE 535 (53.5%) 306 (57.20%) 108 (20.19%) 0.57
POSTECH TERNoise-Ops-Ens8 PRIMARY 536 (53.6%) 309 (57.65%) 112 (20.90%) 0.58
KAISTxPAPAGO EMT PRIMARY 724 (72.4%) 267 (36.88%) 314 (43.37%) 0.37
Average 69.2 58.2 23.6 0.58

Table 5: Number (raw and proportion) of test sentences modified, improved and deteriorated by each run submitted to the APE
2020 English-German subtask. The “Prec.” column shows systems’ precision as the ratio between the number of improved
sentences and the total number of modified instances.

Systems Modified Improved Deteriorated Prec.
HW-TSC CONCAT PRIMARY.pe 997 (99.7%) 673 (67.50%) 227 (22.77%) 0.68
HW-TSC DIRECT CONTRASTIVE.pe 995 (99.5%) 671 (67.44%) 223 (22.41%) 0.67
POSTECH-ETRI XLM-Top3Ens PRIMARY 968 (96.8%) 566 (58.47%) 265 (27.38%) 0.58
POSTECH-ETRI XLM-Top4Ens CONTRASTIVE 959 (95.9%) 551 (57.46%) 255 (26.59%) 0.57
Average 97.975 62.72 24.79 0.63

Table 6: Number (raw and proportion) of test sentences modified, improved and deteriorated by each run submitted to the APE
2020 English-Chinese subtask. The “Prec.” column shows systems’ precision as the ratio between the number of improved
sentences and the total number of modified instances.

in Table 1, we can observe that the largest im-
provements over the baseline were obtained
this year on the lowest-quality translations.

• Operating with data featuring low repetition
rates does not necessarily prevent from ob-
taining significant MT quality improvements.
Looking at the δTER and the repetition rate
values shown in Table 1, we can observe that
the lowest data repetitiveness observed this
year did not prevent from observing, at the
same time, the largest gains over the baseline.

• Operating with data featuring variable qual-
ity, with a distribution of the instances that
is not too peaked towards high-quality trans-
lations, sets ideal conditions for APE. Look-
ing at the δTER and the TER distributions
shown in Figures 1 and 2, we can observe that
the largest improvements over the baseline
achieved this year are also related to a qual-
ity distribution that is more uniformly spread
around central values of the 0-100 TER inter-
val.

5 System/performance analysis

As a complement to global TER/BLEU scores,
also this year we performed a more fine-grained
analysis of the changes made by each system to
the test instances.

5.1 Macro indicators: modified, improved
and deteriorated sentences

Tables 5 and 6 show, for each run submitted to the
two subtasks, the number of modified, improved
and deteriorated sentences, as well as the over-
all system’s precision (i.e. the proportion of im-
proved sentences out of the total number of mod-
ified instances). It’s worth noting that, as in the
previous rounds and in both the settings, the num-
ber of sentences modified by each system is higher
than the sum of the improved and the deteriorated
ones. This difference is represented by modified
sentences for which the corrections do not yield
TER variations. This grey area, for which qual-
ity improvement/degradation can not be automati-
cally assessed, contributes to motivate the human
evaluation discussed in Section 6.

As shown in Table 5, on English-German the
amount of sentences modified by the participants
varies from the very high values of the top two
submissions (above 90.0%) to the lower scores of
the runs placed below them in the ranking (be-
tween 42.1% and 77.8%). However, in all the
cases the overall number of modified sentences
(69.2% on average) is considerably larger than
what we observed in the 2019 round (23.53% on
average, ranging from 4.01% to 39.1%). This dif-
ference can be ascribed to the different nature of
the data that, as previously discussed, this year
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(a) (b)
Figure 3: System behaviour (primary submissions) for English-German (a) and English-Chinese (b) – TER(MT, APE)

featured lower MT quality, combined with a dis-
tribution that is less skewed towards low TER val-
ues. In particular, while last year about 30.0% of
the test instances were to be considered as “per-
fect”, this year the proportion of test instances with
0≤TER≤5 is about 7.0%. In light of this, com-
pared to last year, the participants modified a num-
ber of test instances that is much closer to the tar-
get percentage of sentences to be modified (about
93.0%, i.e. those having TER>0). As one can
expect, besides systems’ aggressiveness, final per-
formance highly depends also on their precision
in applying corrections. The last column of Ta-
ble 5 shows systems’ precision (Prec.) as the ra-
tio between the number of improved sentences and
the total number of modified sentences. As can be
seen from the table, the two top-ranked submis-
sions are not only the most aggressive (more than
90% modified sentences) but also the most pre-
cise ones (precision above 0.68). Overall, all runs
but one have a precision above 0.5, with an aver-
age value of 0.58 that is larger than the values ob-
served on the same language (but different evalua-
tion conditions) in 2019 (0.46) and in 2018 (0.34).
As a consequence, the percentage of deteriorated
sentences out of the total amount of modified test
items shows a significant drop with respect to the
last two rounds of the task. On average, a quality
decrease is observed for 23.6% of the test items (it
was 47.85% in 2018 and 35.11% in 2019).

As shown in Table 6, on English-Chinese we
observe similar trends. The four submitted runs
are all characterized by a high percentage of mod-
ified sentences (97.97% on average) and a very
high precision (0.63 on average). This can be ex-
plained by the large room for improvement avail-
able to APE on this language pair, due to the low
MT baseline (59.49 TER, 23.12 BLEU) and to the

small number of “perfect” translations (as shown
in Figure 2, less than 0.5% of the test items have a
0≤TER≤5).

5.2 Micro indicators: edit operations

In the previous rounds of the APE task, possi-
ble differences in the way systems corrected the
test set instances were analyzed by looking at the
distribution of the edit operations done by each
system (insertions, deletions, substitutions and
shifts). Such distribution was obtained by com-
puting the TER between the original MT output
and the output of each system taken as reference
(only for the primary submissions). This analy-
sis has been performed also this year but it turned
out to be scarcely informative, as shown in Figure
3. For both the subtasks, the differences in sys-
tem’s behaviour are indeed barely visible. All the
submitted runs are characterized by a large num-
ber of deletions (on average, 61.11% for English-
German and 58.54% for English-Chinese), fol-
lowed by the insertions (respectively, 20.17% and
19.01%), the shifts (10.98% and 12.98%) and fi-
nally the substitutions (7.74 and 9.48). These dis-
tributions differ from what we observed in the
past. Especially in the last two rounds of the APE
task, the largest proportion of edit operations were
indeed substitutions (for English-German neural
translations, they were 53.6% in 2019 and 53.5%
in 2018). Also this difference can be explained
by the lower quality of this year’s initial transla-
tions. In the previous rounds, the generally high
fluency of domain-adapted neural MT systems in-
duced the trained APE models to perform light
changes, mainly with isolated word substitutions
oriented to improve lexical choice. This year, the
change of domain and the use of generic mod-
els that were not domain-adapted resulted in more
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aggressive structural modifications, where lexical
changes represent the minority of edit operations.

6 Human evaluation

In order to complement the automatic evaluation
of APE submissions, manual evaluation of the
primary systems submitted (seven for English-
German, three for English-Chinese) was con-
ducted. In this section, we present the evaluation
procedure, as well as the results obtained.

6.1 Evaluation procedure

We evaluated the overall quality of the MT and PE
output using source-based direct assessment (Gra-
ham et al., 2013; Cettolo et al., 2017; Bojar et al.,
2018). We used the same instructions that are
used in the News Translation track of WMT2020.
We hired 25 professional linguists for English-
German and 25 professional linguists for English-
Chinese. All involved linguists were either native
speaker in German or Chinese.

We acquired only a single rating per sentence
as we found that professional linguists were more
reliable than crowd workers (Toral, 2020). For ad-
equacy, we asked annotators to assess the semantic
similarity between the source and a candidate text,
labelled as “source text” and “candidate transla-
tion”, respectively. The annotation interface im-
plements a slider widget to encode perceived sim-
ilarity as a value between 0 and 100. Note that
the exact value is hidden from the human, and can
only be guessed based on the positioning of the
slider. Candidates are displayed in random order,
so to prevent biased assessments.

For our human evaluation campaign, we also
include the human post-edits (test.pe) and the
unedited, MT output (test.mt). We expect human
post-editing to be of higher quality than the out-
put from APE submissions, which in turn should
outperform the unedited MT output. We run hu-
man evaluation for all primary submissions, the
MT output and the human post-edited output.

6.1.1 English→German
Human evaluation results for English-German are
summarized in Table 7. The human post-edited
output test.pe scores best, while the APE output
HW-TSC CONCAT.pe is not significantly worse
compared to the human post-edited output. Con-
sequently, and rather surprisingly, human and au-
tomatic corrections for this language pair seem to

be indistinguishable to our evaluators. This in-
teresting finding can be motivated by a number
of reasons (the type/quality/quantity of data, the
size of the sample, the number of collected judge-
ments) that suggest to avoid exaggerated claims
about a reached human parity. Nonetheless, we
take it as indicator of a steady progress of APE
research. Interestingly, 5 out of 6 APE submis-
sions perform significantly better than the original
MT output test.mt, demonstrating that APE can be
used to improve machine translation output even
for high-resource language settings like English-
German, as already shown by Freitag et al. (2019).
These findings are different from last year’s APE
task (Chatterjee et al., 2019) where none of the
English-German APE submissions was signifi-
cantly better than the raw MT output.

Avg Avg z

test.pe 83.5 0.298
HW-TSC CONCAT.pe 82.2 0.260
POSTECH-ETRI XLM-Top3Ens 77.3 0.031
MinD-mem enc dec 76.2 -0.008
POSTECH TERNoise-Ops-Ens8 75.8 -0.037
BeringLab model1 74.3 -0.098
test.mt 71.5 -0.194
KAISTxPAPAGO EMT 71.0 -0.252

Table 7: Results for the WMT20 APE English-German –
human evaluation. Systems ordered by DA score z-score;
systems within a cluster are considered tied; lines indicate
clusters according to Wilcoxon rank-sum test p < 0.05.

Avg Avg z

test.pe 86.3 0.363
HW-TSC CONCAT.pe 77.2 -0.063
POSTECH-ETRI XLM-Top3Ens 77.0 -0.079
test.mt 74.0 -0.221

Table 8: Results for the WMT20 APE English-Chinese –
human evaluation. Systems ordered by DA score z-score;
systems within a cluster are considered tied; lines indicate
clusters according to Wilcoxon rank-sum test p < 0.05.

6.1.2 English→Chinese
Human evaluation results for English-Chinese are
summarized in Table 8. In this case, the human
post-edited output does perform significantly bet-
ter than the two primary submissions. Similar to
the English-German task, both APE submissions
perform significantly better than the original MT
output test.mt. Nevertheless, both submissions
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perform very similarly, and both submissions can
be seen as similar quality.

7 Conclusion

We presented the results from the 6th shared task
on Automatic Post-Editing at WMT. This year,
we proposed two subtasks in which the MT out-
put to be corrected was respectively generated by
English-German and English-Chinese neural sys-
tems unknown to the participants. The latter lan-
guage pair represents a new entry for the task,
which previously focused on Spanish (in 2015),
German (since 2016) and Russian (in 2019) as tar-
get languages. The other major novelty factors are
that: i) both the subtasks dealt with data drawn
from the “generic” domain of Wikipedia articles,
and ii) the NMT systems used to generate the
translations were not domain-adapted. As a con-
sequence, participants had to confront with lower
quality translations that left to APE large room for
improvement.

Six teams participated in the English-German
task, with a total of 11 submitted runs, while
two teams participated in the English-Chinese task
submitting two runs each. Their results com-
puted with automatic metrics (TER and BLEU)
revealed significant gains over the “do-nothing”
baseline. On English-German, the top-ranked sys-
tem improved over the baseline by -11.35 TER
and +16.68 BLEU points, and the average im-
provements were the largest ones observed over
the years (-4.89 TER, +6.5 BLEU). On English-
Chinese the improvements of the top-ranked sys-
tem are respectively -12.13 TER and +14.57
BLEU points, with average gains of (-8.15 TER
and +10.1 BLEU). Our human evaluation con-
firmed that on both the language pairs, almost all
the primary submissions are significantly better
than the baseline. On English-German, the im-
provement is up to the point that the quality of the
automatic corrections produced by the top-ranked
primary submissions is substantially on par with
human corrections.

All in all, these results confirm the effectiveness
of APE to improve MT output in black-box con-
ditions, especially when the adaptation of generic
systems to a new “domain” is required.
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Unbabel’s submission to the WMT2019 APE shared
task: BERT-based encoder-decoder for automatic
post-editing. In Proceedings of the Fourth Confer-
ence on Machine Translation (Volume 3: Shared
Task Papers, Day 2), pages 118–123, Florence, Italy.
Association for Computational Linguistics.

658



Matteo Negri, Marco Turchi, Rajen Chatterjee, and
Nicola Bertoldi. 2018. eSCAPE: a Large-scale
Synthetic Corpus for Automatic Post-Editing. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation (WMT).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318.

Michel Simard, Cyril Goutte, and Pierre Isabelle.
2007. Statistical Phrase-Based Post-Editing. In
Proceedings of the Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics (NAACL HLT), pages 508–515,
Rochester, New York.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study of
Translation Edit Rate with Targeted Human Anno-
tation. In Proceedings of Association for Machine
Translation in the Americas, pages 223–231, Cam-
bridge, Massachusetts, USA.

Antonio Toral. 2020. Reassessing Claims of Hu-
man Parity and Super-Human Performance in Ma-
chine Translation at WMT 2019. arXiv preprint
arXiv:2005.05738.

Marco Turchi, Matteo Negri, and Marcello Federico.
2013. Coping with the subjectivity of human judge-
ments in MT quality estimation. In Proceedings of
the Eighth Workshop on Statistical Machine Trans-
lation, pages 240–251, Sofia, Bulgaria. Association
for Computational Linguistics.

Marco Turchi, Matteo Negri, and Marcello Federico.
2014. Data-driven annotation of binary MT quality
estimation corpora based on human post-editions.
Machine Translation, 28(3):281–308.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Jiayi Wang, Ke Wang, Kai Fan, Yuqi Zhang, Jun Lu,
Xin Ge, Yangbin Shi, and Yu Zhao. 2020. Alibaba’s
Submission for the WMT 2020 APE Shared Task:
Improving Automatic Post-Editing with Pre-trained
Conditional Cross-Lingual BERT. In Proceedings
of the Fifth Conference on Machine Translation, On-
line.

Hao Yang, Minghan Wang, Daimeng Wei, Hengchao
Shang, Jiaxin Guo, Zongyao Li, Lizhi Lei, Ying Qin,
Shimin Tao, Shiliang Sun, and Yimeng Chen. 2020.
HW-TSC’s Participation at WMT 2020 Automatic
Post Editing Shared Task. In Proceedings of the
Fifth Conference on Machine Translation, Online.

Barret Zoph and Kevin Knight. 2016. Multi-
source neural translation. arXiv preprint
arXiv:1601.00710.

659



Proceedings of the 5th Conference on Machine Translation (WMT), pages 660–687
Online, November 19–20, 2020. c©2020 Association for Computational Linguistics

Findings of the WMT 2020 Biomedical Translation Shared Task:
Basque, Italian and Russian as New Additional Languages

Rachel Bawden1∗ Giorgio Maria Di Nunzio2 Cristian Grozea3

Iñigo Jauregi Unanue4 Antonio Jimeno Yepes5 Nancy Mah6

David Martinez5 Aurélie Névéol7 Mariana Neves8,9
Maite Oronoz10 Olatz Perez de Viñaspre10 Massimo Piccardi4

Roland Roller11 Amy Siu12 Philippe Thomas11 Federica Vezzani13
Maika Vicente Navarro14 Dina Wiemann15 Lana Yeganova16

1School of Informatics, University of Edinburgh, Scotland
2Dept. of Information Engineering, University of Padua, Italy

3Fraunhofer Institute FOKUS, Berlin, Germany
4University of Technology Sydney, Sydney, Australia

5IBM Research Australia, Melbourne, Australia
6Fraunhofer Institute for Biomedical Engineering (IBMT), Berlin, Germany

7LIMSI, CNRS, Université Paris-Saclay, Orsay, France
8German Centre for the Protection of Laboratory Animals (Bf3R),

9German Federal Institute for Risk Assessment (BfR), Berlin, Germany
10IXA NLP Group, University of the Basque Country, Donostia, Spain

11German Research Center for Artificial Intelligence (DFKI), Berlin, Germany
12Beuth University of Applied Sciences, Berlin, Germany

13Dept. of Linguistic and Literary Studies University of Padua, Italy
14Maika Spanish Translator, Melbourne, Australia

15Novartis AG, Basel, Switzerland
16NCBI/NLM/NIH, Bethesda, USA

Abstract

Machine translation of scientific abstracts
and terminologies has the potential to sup-
port health professionals and biomedical
researchers in some of their activities. In
the fifth edition of the WMT Biomedical
Task, we addressed a total of eight language
pairs. Five language pairs were previously
addressed in past editions of the shared task,
namely, English/German, English/French,
English/Spanish, English/Portuguese, and
English/Chinese. Three additional lan-
guages pairs were also introduced this
year: English/Russian, English/Italian, and
English/Basque. The task addressed the evalu-
ation of both scientific abstracts (all language
pairs) and terminologies (English/Basque
only). We received submissions from a total
of 20 teams. For recurring language pairs, we
observed an improvement in the translations
in terms of automatic scores and qualitative
evaluations, compared to previous years.
∗ The author list is alphabetical and does not reflect the

respective author contributions.

1 Introduction

Automatic translation aims to alleviate the lan-
guage barrier by providing access to information
for readers not familiar with the original language
used to write documents. Access to accurate
biomedical information is specifically critical and
machine translation (MT) can contribute to making
health information available to health profession-
als and the general public in their own language.
It can also contribute to biomedical research by
assisting with the writing of research reports in
English. In addition, machine translation can pro-
vide the opportunity to enhance the use of natu-
ral language processing (NLP) tools and methods
for low-resource languages by the development of
resources through translation or by making tools
available through text translation into resource rich
languages.

Herein, we describe the fifth edition of the WMT
Biomedical task,1 which aims to evaluate the auto-

1http://www.statmt.org/wmt20/
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matic translation of a variety of biomedical texts.
The first edition of the task (Bojar et al., 2016)

focused on biomedical scientific abstracts in three
language pairs. The second edition of the task of-
fered ten language pairs and addressed scientific
abstracts as well as patient-oriented health informa-
tion (Jimeno Yepes et al., 2017). The third edition
of the task offered six language pairs and addressed
scientific abstracts (Neves et al., 2018). The fourth
edition of the task offered ten language pairs. It ad-
dressed scientific abstracts and introduced the task
of terminology translation (Bawden et al., 2019).
This year’s edition of the task continues to address
the translation of scientific abstracts and terminolo-
gies. It builds on previous tasks by offering a large
range of training and test sets to support partici-
pants’ systems. The following language pairs are
addressed this year:

• English to Basque (en2eu)

• English to Chinese (en2zh) and Chinese to
English (zh2en)

• English to French (en2fr) and French to En-
glish (fr2en)

• English to German (en2de) and German to
English (en2de)

• English to Italian (en2it) and Italian to English
(it2en)

• English to Portuguese (en2pt) and Portuguese
to English (pt2en)

• English to Russian (en2ru) and Russian to
English (ru2en)

• English to Spanish (en2es) and Spanish to
English (es2en)

Similar to previous years, our test sets consist of
scientific abstracts retrieved from the MEDLINE R©

database. In continuation with last year’s task
(Bawden et al., 2019), we also provide a test set
for the automatic translation of biomedical termi-
nologies. Below, we highlight some new aspects
introduced in the 2020 edition of the shared task:

• We address three new language pairs, namely,
en/eu, en/it, en/ru2.

biomedical-translation-task.html
2Throughout the paper, we will refer to en/ru (or ru/en),

for instance, when referring to the language pair in general,
without specifying the translation direction. When making
reference to the direction, we will use either en2ru or ru2en,
for instance.

• We include a novel test set for the automatic
translation of biomedical terminologies from
English to Basque (cf. Section 2.2.1)

• During the construction of the test sets, and
after the manual validation of the automatic
alignment, we ran a pilot project for a cou-
ple of languages in which we manually fine-
tuned the alignment of the test sets (cf. Sec-
tion 2.2.3).

• We ran a second pilot study in which we split
the sentences according to the reported origi-
nal language of the abstract (cf. 2.2.3).

• Three of our tests sets, namely, de/en, ru/en
and zh/en, were included as test suites in the
WMT News Task (cf. Section 5.2).

• Participants were asked to provide details
about their systems through an online survey
(cf. Tables 6, 7, and 9).

• Our manual validation included whole ab-
stracts, in addition to (correctly aligned) sen-
tence pairs (cf. Section 6.1).

• We ran a third pilot study in which two experts
validated submissions for certain language
pairs, in which one was a native speaker of
the source language, while the other a native
speaker of the target language (cf. Tables 17
and Table 20).

• Our methodology for ranking the systems
based on the manual validation considered
a significance test and a points-based schema
(cf. Section 6.1).

This article is structured as follows: Section 2
presents the details of the generation of our training
and test sets, for both the scientific abstracts and
the terminology, as well as manual validation of
the quality of the test sets. Section 3 describes our
baseline systems, which are used as comparison
in the automatic evaluation. We list all teams that
participated in our task in Section 4, as well as de-
tails of the methods behind their systems and the
in-domain and out-of-domain data that was used.
The results of the automatic evaluation based on
the BLEU and chrF scores are presented in Sec-
tion 5, while the ones for the manual evaluation are
presented in Section 6. Finally, we discuss various
topics related to the shared task in Section 7.
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2 Training and test data

We provided training data of MEDLINE abstracts
for it/en and ru/en, since training data for some of
the other languages was already available from pre-
vious years. As for the tests sets, we released test
sets for scientific abstracts and for terminologies,
as summarized below:

• Scientific abstracts:

– English to Basque
– Chinese/English (both directions)
– French/English (both directions)
– German/English (both directions)
– Italian/English (both directions)
– Portuguese/English (both directions)
– Spanish/English (both directions)

• Terms from biomedical terminologies:

– English to Basque

Additional details are presented in Table 1. In
this section we describe the details about the con-
struction of resources that we released for the
shared task.

2.1 Training data
We released training data from MEDLINE for two
of the new language pairs that we address this year,
namely, English/Italian and English/Russian.

We relied on the latest version of the MEDLINE
baseline3 available at the time of data preparation.
We retrieved all the abstracts that were available
in Italian and English, or in Russian and English.
We summarize below the steps that we followed to
process the data:

1. Abstracts were parsed using the
pubmed_parser library.4

2. The language of these abstracts, as identified
by MEDLINE meta-data, was confirmed with
the langdetect library.5

3. Sentences in the abstracts were split using the
syntok library.6

3https://www.nlm.nih.gov/databases/
download/pubmed_MEDLINE.html released at the end
of 2019.

4https://github.com/titipata/pubmed_
parser

5https://pypi.org/project/langdetect/
6https://github.com/fnl/syntok

4. These sentences were automatically aligned
using the GMA tool7 using specific stopword
lists for each language.

We obtained a total of 1,675 parallel documents
for it/en and 6,029 for ru/en. The training data is
available in our GitHub repository.8

In regard to English-Basque scientific abstract
translation, we could not release any in-domain par-
allel data, as very little is still written in Basque in
the medical domain. However, we provided other
corpora that can help with training machine transla-
tion models. These include out-of-domain parallel
corpora such as the TED talks,9 the datasets avail-
able on the OPUS repository10 and the WMT16
IT translation shared-task.11 Additionally, we re-
leased in-domain monolingual corpora12 that in-
clude translations of examples of hospital notes, au-
tomatic translations of SNOMED CT terms (Perez-
de Viñaspre and Oronoz, 2015), and medical do-
main articles from Wikipedia. Finally, we released
a recent dump of the whole Wikipedia (01/2020)
as a large, out-of-domain monolingual corpus.13

For the terminology translation task, on behalf
of Osakidetza (Basque Public Health System), we
released 27,900 terms of the Basque ICD-10-CM.
These descriptions were manually validated by the
institution’s translation team. 25,900 descriptions
where released as a training set, keeping the remain-
ing 2,000 for the development set. Both sets are
plain text, and they have not been tokenized. On
average, in the training set, each term comprises
6.72 words (split on whitespace and punctuation),
1 being the minimum and 27 the maximum. For the
development set, the average word count is 6.75, 1
being the minimum and 25 the maximum.

2.2 Test sets
All test sets were released on June 29th, 2020 and
the participants could submit results until July 9th,
2020. The test sets for de/en, ru/en and zh/en were

7https://nlp.cs.nyu.edu/GMA/
8https://github.com/

biomedical-translation-corpora/corpora
9https://wit3.fbk.eu/mt.php?release=

2018-01
10http://opus.nlpl.eu/
11http://www.statmt.org/wmt16/

it-translation-task.html
12https://drive.google.

com/drive/u/2/folders/
1cQmiywDRcAeHeRuZfaF-zuoG7DQHO4CQ

13https://drive.google.
com/drive/u/2/folders/
1BjScNNvMbVOzrD3KWA0D0UGR33j6Lg83
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Language pairs MEDLINE training Abstracts test Terminology test
Documents Sentences Documents Sentences Terms

en2eu - - 40 375 2,000

de2en - - 50 612/652 -
en2de 50 783/742 -

es2en - - 50 533/629 -
en2es 50 618/562 -

fr2en - - 50 563/584 -
en2fr 50 757/731 -

it2en 1,675 15,950/ (it) 50 549//716 -
en2it 20,615 (en) 50 624/468 -

pt2en - - 50 498/637 -
en2pt 50 544/466 -

ru2en 6,029 52,544/ (ru) 50 463/523 -
en2ru 61,494 (en) 50 553/484 -

zh2en - - 50 412/622 -
en2zh 50 514/343 -

Table 1: Number of documents, sentences and terms in the training and test sets released for this shared task.

also included as test suites of the WMT news task
and released on June 22nd, 2020. In the following
we describe details of the test set construction.

2.2.1 Terminology
In addition to the training set of ICD-10-CM
Basque terms, there were 2,000 more terms for
the test set. Again, this set was not tokenized. On
average, each term comprises 7.74 words, 1 being
the minimum word count and 25 the maximum.
Unfortunately, at the time of releasing the test set,
due to a confusion on behalf of the organizers, the
development set was provided as test for all partic-
ipants, and was used for evaluation. The planned
test set has been publicly released for download.14

2.2.2 Basque abstracts
The Basque language appears in MEDLINE as a
subject of study but not systematically as a writ-
ing language, so there is not a sufficient corpus for
training in Basque in MEDLINE. The abstracts
used in the test are taken from the journal Os-
agaiz,15 the first journal on medicine written en-
tirely in Basque (with abstracts also in English).

Osagaiz16 was published for the first time in
2017 and every year it publishes a volume with at
least two numbers. Its main objective is to be a

14https://drive.google.com/drive/
folders/1KXUjEBUzudi81y5rxm33UxkmRY9RSKMj

15http://www.osagaiz.eus/
16The contents from Osagaiz are licensed under Creative

Common Attribution-ShareAlike 3.0 unported (CC BY-SA
3.0) https://creativecommons.org/licenses/by-sa/3.0/deed.en

way of communicating the scientific findings of the
Basque health community in Basque. Three vol-
umes have been used in the test (years 2017, 2018
and 2019); that is, 6 numbers with 40 abstracts in
both English and Basque. The Basque abstracts
dataset consists of 375 sentences (8,651 tokens in
English with 23.07 tokens per sentence, and 7459
tokens in Basque with 19.89 tokens per sentence).

2.2.3 MEDLINE abstracts
We followed a similar approach to the one we used
in previous years. However, we carried out two
novel pilot studies this year: (a) a manual improve-
ment of the alignment after the manual validation,
and (b) a selective split of the abstracts for the trans-
lation directions based on the original language of
the abstract.

For the test sets, we retrieved the citations that
were published in 2020 and were not included in
any of the previously released training and test sets.
We parsed the articles and checked the language
using the same tools as described for the training
data above. We split the sentences for all languages
using the syntok library, except for zh/en where
it was sufficient to split sentences according to the
Chinese punctuation (。) that marks the end of a
sentence. Sentence alignment was carried out for
all languages (except for zh/en) with the GMA tool
using specific stopword lists for each language. For
zh/en, we used the Champollion tool17 with the
same configurations and stopword lists since 2018.

17http://champollion.sourceforge.net/
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We randomly retrieved a set of 100 abstracts for
each language pair, and the automatic aligned sen-
tences were manually validated by native speakers
of the foreign languages using the Appraise tool
(Federmann, 2010). Results of the validation are
shown in Table 2. For the ru/en set, an additional
set of 100 abstracts were randomly retrieved for a
second round of manual validation. This was due to
the low quality of the alignments that we obtained
in the first round of validation. The official test set
for ru/en was composed of the abstracts with better
quality from the totality of 200 abstracts that were
validated.

As a pilot study this year, we performed a man-
ual correction of the alignment which were iden-
tified as not being correct during the validation in
the Appraise tool. This step was only carried our
for the es/en, fr/en, ru/en, and zh/en test sets. For
all these languages, this extra step increased align-
ment quality (cf. Table 2): from 80.54% correctly
aligned sentences to 91.49% for fr/en, from 55.27%
to 61.96% for ru/en, from 83.57% to 88.07% for
es/en, and a slight improvement from 63.84% to
64.43% for zh/en.

Most of the remaining sentences are in fact
titles in English, for which a translation in the
foreign language is not available from MED-
LINE. For zh/en, the manual corrections addressed
mismatching sentence splitting policies for ab-
stract subsections such as OBJECTIVE: To inves-
tigate... and METHODS: We used xyz... The
GMA tool split such a text into two sentences,
but the Champollion tool kept it as one sentence.
With this extra step, affected sentences that were
marked as “NO_ALIGNMENT” became “TAR-
GET_GREATER_SOURCE” (cf. Table 2 for the
alignment categories).

Finally, the set of 100 abstracts was randomly
split into two sets of 50 abstracts, for each trans-
lation direction, e.g., es2en and en2es. Exception
was made for the fr/en test set. Following the rec-
ommendations of Graham et al. (2019), we tried to
split the data sets depending on which language we
hypothesized was the abstract’s source language.
For articles with a documented “TT" field (vernac-
ular, i.e. French, title) in the MEDLINE citation,
we considered that the source language was French
and otherwise, English. As a result, the en/fr test
only contains abstract originally written in English.
However, since only 20 abstract in our set were
originally written in French, the fr/en set still con-

tains a mix of source languages. This suggests that
vernacular titles should be considered in the initial
set selection.

3 Baselines

We provided our baseline systems for all language
pairs in the scientific abstracts translation subtask.

There were two categories of baseline: for en/zh,
en/fr, en/de, en/pt and en/es the models used for
each direction were transformers (Vaswani et al.,
2017) trained by us using MarianNMT (Junczys-
Dowmunt et al., 2018) with the following settings:
joint BPE of 40,000, beam size 16. These parame-
ters were chosen by tuning on a single direction of
a single language pair: English to German. Each
of the 10 models were trained for up to two days.
The training was stopped when there were no im-
provements on the validation dataset for more than
10 epochs, as measured through cross-validation
score. The corpora we used to train the models
were the same as last year – when we had baselines
generated using RNN-based sequence2sequence
models: the UFAL medical corpus (UFA) without
the “Subtitles” subset, and as validation we again
used Khreshmoi (Dušek et al., 2017).

For en/it and en/ru and en/eu we used the
Helsinki-NLP/opus-mt-SRC-TRG models (Tiede-
mann and Thottingal, 2020) included in the hug-
gingface transformers library 18, trained with Mari-
anNMT on the entirety of the OPUS corpora (Tiede-
mann, 2012). These models are not uniformly
good; they performed very well for Italian, but
fairly poor for Russian and Basque.

Discussion. It is interesting that the models for
English to/from Italian performed so well in the
biomedical task, as they were trained on generic
text, not targeting the biomedical domain. It is
interesting in general to what extent models that
excel on generic text (e.g. news) perform well on
the biomedical texts as well.

4 Teams and systems

This year, 22 teams submitted a total of 151 runs.
Two teams withdrew after submitting their runs.
The remaining teams were from China (7 teams),
Spain (3 teams), France (2 teams), the United King-
dom (2 teams), Armenia (1 team), Australia (1
team), Brazil (1 team), India (1 team), Ireland (1
team) and Pakistan (1 team). Table 3 presents the

18https://huggingface.co/transformers/
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Language OK Source>Target Target>Source Overlap No Align. Total

de/en 909 (70.85%) 63 (4.91%) 104 (8.11%) 52 (4.05%) 155 (12.08%) 1,283
es/en 931 (83.57%) 29 (2.60%) 54 (4.85%) 7 (0.63%) 93 (8.35%) 1,114

es/en § 1,026 (88.07%) 9 (0.78%) 4 (0.34%) 0 (0%) 126 (10.82%) 1,165
fr/en 985 (80.54%) 34 (2.78%) 74 (6.05%) 6 (0.49%) 124 (10.14%) 1,223

fr/en § 1225 (91.49%) 7 (0.52%) 8 (0.60%) 2 (0.15%) 97 (7.24%) 1,339
it/en 636 (60.40%) 51 (4.84%) 150 (14.25%) 60 (5.70%) 156 (14.81%) 1,053
pt/en 799 (78.41%) 37 (3.63%) 66 (6.48%) 20 (1.96%) 97 (9.52%) 1,019

ru/en * 947 (53.14%) 67 (3.76%) 186 (10.44%) 65 (3.65%) 517 (29.01%) 1,782
ru/en ** 472 (55.27%) 33 (3.86%) 94 (11.01%) 32 (3.75%) 223 (26.11%) 854
ru/en § 562 (61.96%) 30 (3.3%) 60 (6.61%) 28 (3.09%) 228 (25.14%) 908
zh/en 535 (63.84%) 36 (4.30%) 135 (16.11%) 9 (1.07%) 123 (14.68%) 838

zh/en § 540 (64.43%) 137 (16.35%) 142 (16.95%) 9 (1.07%) 10 (1.19%) 838

Table 2: Statistics (number of sentences and percentages) of the quality of the automatic alignment for the MED-
LINE test sets. For each language pair, the total number of sentences corresponds to the 100 documents that
constitute the two test sets (one for each language direction). * Results for the totality (200 abstracts) for ru/en. **
Results for the selected test set (100 abstracts) for ru/en. § Results after manual correction of sentence segmentation
and/or alignment.

list of teams that submitted at least one run to the
biomedical task.

At least one run was submitted for each language
pair offered, with the most runs submitted for En-
glish to Basque (terminology test set, 24 runs) and
English to Chinese (MEDLINE test set, 18 runs).
Table 4 presents an overview of the runs submitted
by each team for language directions translating
from English. Table 5 presents an overview of the
runs submitted by each team for language direc-
tions translating into English.

During the automatic evaluation, we observed
that some teams obtained extremely high BLEU
scores, which were close to 0.9. Those teams had
trained their systems on the MEDLINE database,
and the training data potentially included our test
sets. Unfortunately, as opposed to previous years,
we forgot to inform participants on our website
that this practice was not allowed. Therefore, we
offered the opportunity for these teams to re-submit
their runs, but without training on MEDLINE. The
Wei-Bot team was the only one to submit new runs.

In an effort to increase the level of detail in
the system description and the comparability be-
tween systems, we asked participants to fill in a sur-
vey with key information regarding the translation
method used, as well as the in-domain and general
datasets used for training. The survey comprised
14 questions covering the translation methods and
corpora used. Teams indicated their primary sub-
mission, which was considered for manual evalua-
tion. On average, submission time for one language
pair was 6 minutes and 28 seconds (Median: 3 min-
utes and 35 seconds). All teams used transformer-

based neural machine translation (except for team
TRAMECAT, who used sequence2sequence) and
mostly relied on existing implementations: 19
teams submitted runs using available libraries, one
team submitted runs using a mix of libraries and in-
house implementations, one team submitted runs
exclusively relying on their own implementation of
NMT. Teams often used the same setup for a range
of language pairs. Table 6 shows details about the
teams methods.

For in-domain data, teams used the training data
distributed by us and many of the sources described
in (Névéol et al., 2018). Tables 7 and 8 provide
details of the in-domain data used by the teams.

For relevant language pairs, parallel data from
other WMT tracks (e.g., News Task) was used. In-
terestingly, some teams used similarity measures
based on biomedical corpora to extract additional
biomedical sentences from out-of-domain corpora.
Out-of-domain data was also used in the form of
pre-trained base models. Table 9 shows details of
the out-of-domain data used by the teams.

5 Automatic evaluation

Following (Mathur et al., 2020), we used chrF
(Popović, 2015) as well as BLEU (Papineni et al.,
2002) as automatic metrics. chrF scores are ob-
tained using the nltk implementation.19

5.1 MEDLINE

Similarly to previous years, we compared the sub-
mitted translations to the reference translations

19https://www.nltk.org/_modules/nltk/
translate/chrf_score.html
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Team ID Institution

ADAPT (Nayak et al., 2020) Dublin City University, Ireland
ai_not_intellegent ai_not_intellegent, China

Alibuba Alibab DAMO Academy, China
baidu_translation Baidu translation, China

Elhuyar_NLP (Corral and Saralegi, 2020) Elhuyar Foundation, Spain
Huawei United (Peng et al., 2020) Huawei Technologies, China

Ixamed (Soto et al., 2020) University of the Basque Country, Spain
LIMSI (Abdul Rauf et al., 2020) LIMSI-CNRS, France

NLE Naver Labs Europe, France
nrpu-fjwu (Naz et al., 2020) Fatima Jinnah Women University, Pakistan

one_connect_000 OneConnect AI Lab, China
OOM_20 Atman Tech, India

Sheffield (Soares and Vaz, 2020) University of Sheffield, UK
TMT (Wang et al., 2020) Tencent AI Lab, China

TRAMECAT Universitat Oberta de Catalunya, Spain
UNICAM (Saunders and Byrne, 2020) University of Cambridge, UK

UNICAMP_DL (Lopes et al., 2020) University of Campinas, Brazil
UTS_NLP (Jauregi Unanue and Piccardi, 2020) University of Technology Sydney, Australia

Wei-Bot East China Normal University, China
YerevaNN (Hambardzumyan et al., 2020) YerevaNN, Armenia

Table 3: List of the participating teams.

Teams en2eu en2de en2es en2fr en2it en2pt en2ru en2zh Total

ADAPT A3T3 - - - - - - - 6
ai_not_intellegent - - - - - - - A3 3

Alibuba - - - - - - - A1 1
baidu_translation - - - - - - - A1 1

Elhuyar_NLP A3T3 - A3 - - - - - 9
Huawei United - A3 - A2 A2 - A2 A3 12

Ixamed A3T3 - A3 - - - - - 9
LIMSI - - - A2 - - - - 2
NLE - A3 - - - - - - 3

nrpu-fjwu - - - A1 - - - - 1
one_connect_000 - - - - - - - A1 1

OOM - - - - - - - A2 2
Sheffield - - A1 A1 A1 A1 A1 - 5

TMT - A3 - - - - - A3 6
TRAMECAT - - A1 A1 - - A1 A1 4

UNICAM - A3 A3 - - - - - 6
UNICAMP - - - - - A2 - - 2
UTS_NLP A3T3 - - - - - - - 6
Wei-Bot - - - - - - - A2 2

YerevaNN - A2 - - - - A3 - 5

Total 24 14 11 7 3 3 7 17 86

Table 4: Overview of the submissions from all teams and test sets translating from English. We identify submis-
sions to the abstracts testsets with an “A” and to the terminology test set with a “T”. The value next to the letter
indicates the number of runs for the corresponding test set, language pair, and team.

using BLEU with the MULTI-EVAL v14 tool20

provided by the Moses package (Koehn et al.,
2007). This means as well that we reused the tok-
enization approach used for Chinese. Results for
MEDLINE BLEU are shown in Tables 10 and 11.

20https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/mteval-v14.pl

5.2 News

The test set of our challenge was included in the
News challenge data set. We identified the transla-
tions in the News files and used the same evaluation
procedure as applied to MEDLINE abstracts. Re-
sults of the systems are shown in Tables 12 and 13.
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Teams de2en es2en fr2en it2en pt2en ru2en zh2en Total

ai_not_intellegent - - - - - - A3 3
Alibuba - - - - - - A1 1

baidu_translation - - - - - - A1 1
Huawei United A3 - A2 A2 - A2 A2 11

Ixamed - A3 - - - - - 3
NLE A3 A1 A1 A1 - - - 6

nrpu-fjwu - - A3 - - - - 3
one_connect_000 - - - - - - A1 1

OOM - - - - - - A2 2
Sheffield - A1 A1 A1 A1 A1 - 5

TMT A3 - - - - - A1 4
TRAMECAT - A1 A1 - - A1 A1 4

UNICAM A3 A3 - - - - - 6
UNICAMP - - - - A2 - - 2

Wei-Bot - - - - - - A2 2
YerevaNN A3 - - - - A2 - 5

Total 15 9 8 4 3 6 14 59

Table 5: Overview of the submissions from all teams and test sets translating into English. We identify submissions
to the abstracts test sets with an “A” and to the terminology test set with a “T”. The value next to the letter indicates
the number of runs for the corresponding test set, language pair, and team.

Team ID Language pair NMT implementation Trained Fine-Tuned BT LM

ADAPT all Marian NMT Yes No Yes No
ai_not_intellegent zh2en Fairseq Yes Yes No No
ai_not_intellegent en2zh Own No Yes No MASS

Alibuba zh2en OpenNMT Yes No Yes transformer-base
Alibuba en2zh OpenNMT No Yes Yes transformer-base

baidu_translation all paddle Yes No Yes paddle
Elhuyar_NLP all OpenNMT Yes No en2eu No

Huawei United en/de Own Yes No No FB-PLM
Huawei United all but en/de Own Yes No zh2en No

Ixamed all Open NMT Yes No No No
LIMSI all Fairseq Yes Yes Yes Yes
NLE de2en Fairseq Yes No Yes No
NLE fr2en Fairseq Yes Yes Yes No
NLE it2en Fairseq Yes Yes Yes No

nrpu-fjwu all Fairseq Yes No Yes fr2en
OOM_20 all tensor2tensor, modified Yes Yes - -
Sheffield all but ru/en Tensorflow Yes No {es,fr,it,pt}2en No
Sheffield ru2en, en2ru Tensorflow Yes Yes ru2en No

TMT all Fairseq Yes No Yes No
TRAMECAT all MarianNMT Yes No No No

UNICAM all Tensor2Tensor No Yes No No
UNICAMP_DL all T5, Huggingface No Yes No T5 HuggingFace

UTS_NLP all Fairseq, BERT-NMT Yes No Yes Yes
Wei-Bot all Fairseq Yes No Yes MASS

YerevaNN all Fairseq? No Yes ru2en XLM-R

Table 6: Overview of methods used by participating teams. Information is self-reported through our survey for
each selected “best run". BT indicates if backtranslation is used and LM if language models were used.

5.3 Basque abstracts
For the Basque abstract we used the same evalua-
tion tool as for MEDLINE (MULTI-EVAL), and
the results are presented in Table 14.

5.4 Terminology
For the evaluation of terminology we provide two
metrics for the en2eu task: (i) accuracy, by relying

on strict matches (case-insensitive) between ground
truth and predictions; and (ii) sentence-level BLEU
score, as measured by the nltk module sentence-
BLEU.21 Results are presented in Table 15.

21https://www.nltk.org/_modules/nltk/
translate/bleu_score.html
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Language
pair

team Parallel corpus size (sentence
pairs)

Monolingual
corpus

size (sen-
tences)

en/de Huawei MEDLINE abstracts corpus supplied by organizers. 29 k No -
NLE MEDLINE abstracts corpus supplied by organizers. 34,710 No -
UNICAM TRAINING: UFAL medical and MEDLINE abstracts cor-

pus supplied by organizers. FINE-TUNING: MEDLINE
abstracts

TRAINING: 2.2M
FINE-TUNING: 28K

No -

TMT UFAL medical and MEDLINE abstracts corpus supplied
by organizers.

2.5M UFAL (en) 5.4M

Yereva_NN MEDLINE abstracts corpus supplied by organizers;
alignment was fixed using XLM-R

32,466 No -

en/es Elhuyar_NLP Scielo and corpora supplied by organizers. 560k No -
Ixamed MEDLINE corpus supplied by organizers and TAUS

Corona Crisis Corpus
1,290,201 No -

UNICAM TRAINING: UFAL medical, Scielo (Neves et al., 2016),
and MEDLINE abstracts corpus supplied by organizers.
FINE-TUNING: MEDLINE abstracts

TRAINING: 1.3M
FINE-TUNING: 67K

No -

Sheffield BVS, EMEA, Scielo (Soares et al., 2018) and MEDLINE
corpus supplied by organizers as well as new crawled
PubMed data. The data was checked against the official
test set to avoid including test data during training.

2.5M No -

TRAMECAT Biomedical translation repository, EMEA, IBECS,
ICD10, Kreshmoi, MEDLINE corpus supplied by or-
ganizers, in-house MEDLINE (dated 2018), Medem
glossaries, MSDManuals, Portal Clinic corpus, Scielo,
SNOMED

7,232,784 No -

en/eu ADAPT Data provided by the organisers - Common Crawl
selected by
TermFinder

200k (en)
41,151 (eu)

Elhuyar_NLP WMT20 shared task bilingual training data, internal med-
ical corpus, and synthetically generated data from the
WMT19 EN-ES shared task

Around 350k seg-
ments

SNOMED de-
scriptions, hos-
pital notes and
wikipedia medi-
cal articles (en)

Around
110k seg-
ments

Ixamed - - - -
UTS_NLP ICD-10 codes translations 25900 SNOMED

terms, hos-
pital notes
and wikipedia
medical articles
(en)

total of
60,000
sentences)

en/fr Huawei MEDLINE abstracts corpus supplied by organizers, in-
domain lexicon

4M bitext, 59k lexi-
con

Yes (en) 22M

LIMSI Cochrane, Taus and corpora supplied by organizers 3,951,013 LISSA (Griffon
et al., 2017) (fr)

395,699

NLE In-domain parallel data obtained from WMT and OPUS - No -
nrpu-fjwu Corpora supplied by organizers (MEDLINE, Scielo,

EDP, UFAL).
3,408,327 No -

Sheffield EMEA and MEDLINE corpus supplied by organizers
as well as new crawled PubMed data. Prior to training,
the data was checked against the official test set to avoid
including test data during training.

3.42M MEDLINE (en) 2M

TRAMECAT EMEA, MEDLINE corpus supplied by organizers,
PatTR medical, Scielo(Neves et al., 2016)

4,2 M No -

en/it Huawei MEDLINE abstracts corpus supplied by organizers. 219k No -
NLE MEDLINE corpus supplied by organizers, TAUS Corona

Corpus, OPUS
- No -

Sheffield EMEA and MEDLINE corpus supplied by organizers
as well as new crawled PubMed data. The data was
checked against the official test set to avoid including
test data during training.

1.0M MEDLINE (en) 1M

en/pt Sheffield BVS, EMEA, Scielo (Soares et al., 2018) and MEDLINE
corpus supplied by organizers as well as new crawled
PubMed data. The data was checked against the official
test set to avoid including test data during training.

5.5M MEDLINE (en) 2M

UNICAMP_DLEMEA corpus, MEDLINE corpus supplied by organiz-
ers, Scielo (Soares et al., 2018), a corpus of theses and
dissertations abstracts (BDTD) from CAPES, JRCAc-
quis.

6,606,858 MEDLINE (en) 2M

Table 7: Overview of in-domain corpora used by participating teams. Information is self reported through our
survey for each selected "best run".
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Language
pair

team Parallel corpus size (sentence
pairs)

Monolingual
corpus

size (sen-
tences)

en/ru Huawei MEDLINE abstracts corpus supplied by organizers. 32 k No -
Sheffield MEDLINE corpus supplied by organizers as well as new

crawled PubMed data. The data was checked against
the official test set to avoid including test data during
training.

15k MEDLINE (en) 100k

TRAMECAT MEDLINE corpus supplied by organizers, Corona TAUS
corpus, ICD10 (subset)

240,998 No -

Yereva_NN MEDLINE abstracts corpus supplied by organizers;
alignment was fixed using XLM-R

37,201 No -

en/zh ai_not_intel... Web crawl augmented by back translation "3.G in text" Yes
Alibuba PubMed articles in Chinese "1.2G text" No -
Baidu "inhouse dataset" "12.5G text" No -
Huawei in-domain lexicon 59k Yes (en) 62M
OOM_20 Abstracts from Chinese medical papers 3 M medical papers (zh) 10M,

(en) 20M
TMT No - Yes (en) 5.4M
TRAMECAT Corona TAUS corpus 450,507 No -
Wei-Bot Pubmed Crawl 3M Wikipedia (en,

zh)
-

Table 8: (Continued...) Overview of in-domain corpora used by participating teams. Information is self reported
through our survey for each selected "best run".

6 Manual evaluation

We manually validated a sample for each primary
run in order to compare the performance between
teams as well as to the reference translations. In
this section we present details of the evaluation and
results that we obtained.

6.1 MEDLINE abstracts
Similarly to previous years, we aimed to validate
a total of 100 sampled sentences per primary run.
This year, we manually validated not only single
sentences, but also whole abstracts. The selection
of abstracts to be validated for each language pair
followed the procedure described below:

1. Randomly select an abstract.

2. Check whether the percentage of perfectly
aligned sentences is at least of 80%.

3. Retrieve all perfectly (i.e., OK) aligned sen-
tences from the abstract.

4. Repeat steps 1 to 3 above if the total number of
selected sentences (over all selected abstracts)
is below 100.

In the case of zh2en and en2zh, due to the
large number of submissions that we received, the
manual validation was restricted to the abstracts.
However, these were selected using the same ap-
proach described above. In addition, one team
re-submitted their results after the official test pe-
riod, and we note that these re-submissions are not

fully comparable to the ones submitted before the
period (see Tables 10, 11 and 22).

Due to time constraints, we could not validate
all planned abstracts and sentences that were se-
lected for de2en, but only about half of them. Fur-
ther, and due to the same reason, the validation
for es2en and pt2en was limited to a few abstracts
(and its sentences) and was validated as a collab-
oration between two experts: (1) one who was
a native speaker of the source language and who
checked whether any information that was included
in the source text was missing in the translation;
and (2) one who was a native speaker of English,
and who was in charge of checking the quality of
the English translations.

If the information about the primary run was not
available for a particular team and test set, we con-
sidered the run with the highest BLEU score. We
only considered for manual validation those teams
that provided detailed information about their sys-
tem by filling out a survey mentioned in Section 4.
The runs that we considered are listed below:

• en2de (5 teams): Huawei United (run3), NLE
(run3), TMT (run1), UNICAM (run3), Yere-
vaNN (run3)

• en2es (5 teams): Elhuyar (run1), Ixamed
(run1), Sheffield (run1), TRAMECAT (run1),
UNICAM (run3)

• en2fr (5 teams): Huawei United (run2),
LIMSI (run1), Sheffield (run1), TRAMECAT
(run1), nrpu-fjwu (run1)
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Language
pair

team Parallel corpus size (sentence
pairs)

Monolingual
corpus

size
(sen-
tences)

en/de Huawei TRAINING: in-house bitext FINE-TUNING: tfidf filtering
of training corpus

TRAINING: 2.3M
FINE-TUNING: 27K

Yes (de) 2.3M

NLE All de-en parallel data supplied by WMT20 News Task 44.8M NewsCrawl 269M
(en)
440M
(de)

UNICAM For pre-training, corpus supplied by the WMT 2018
news task organizers

17M No -

TMT Corpus supplied by the WMT 2020 News task organizers 37.8M No -
Yereva_NN No OOD data was used directly, but the base models

we had fine-tuned were trained on news data (Ng et al.,
2019)

- No -

en/es Elhuyar_NLP Paracrawl v5 corpus 33M No -
Ixamed No - No -
UNICAM No - No -
Sheffield No - No -
TRAMECAT UNPC parallel corpus: segments selected by similarity

(using a language model on the English part)
5M No -

en/eu ADAPT Data provided by the organisers - CommonCrawl (eu) 400K
Elhuyar_NLP Synthetic data was obtained by backtranslating an inter-

nal ES-EU corpus from Spanish to English
Around 7M seg-
ments

No -

Ixamed - - - -
UTS_NLP Out of domain parallel corpora provided by WMT2020

biomedical translation organizers.
approx. 0.6M Wikipedia (eu) 1.5M

en/fr Huawei news and other data (in-house) 123M Yes (en) 62M
LIMSI No - No -
NLE OOD WMT and OPUS - Back Translation

en2ko
8M

nrpu-fjwu Medical domain sentences retrieved from books, news
commentary and wikiPedia parallel corpus.

243,182 medical sentences
retrieved from
wikiPedia (fr)

-

Sheffield No - No -
TRAMECAT UNPC parallel corpus: segments selected by similarity

(using a language model on the English part)
5M No -

en/it Huawei in-house general domain data like news 150M No -
NLE Paracrawl, OPUS, UN Political corpus - English sentences

back-translated
9.2M

Sheffield No - No -

en/pt Sheffield No - No -
UNICAMP_DLParaCrawl dataset (subset) 5M No -

en/ru Huawei No - No -
Sheffield ParaPat corpus of Patents (Soares et al., 2020) 4.3M MEDLINE (en) 100k
TRAMECAT UNPC parallel corpus: segments selected by similarity

(using a language model on the English part)
5M No -

Yereva_NN No OOD data was used directly, but the base models
we had fine-tuned were trained on news data (Ng et al.,
2019)

- No -

en/zh ai_not_intel... Corpus supplied by the WMT 2020 News task organizers "3.G in text" No -
Alibuba No - No -
Baidu No - No -
Huawei "inhouse dataset" 186M No -
OOM_20 Corpus supplied by the WMT 2020 News task organizers 10 M No -
TMT No - Yes (en) 5.4M
TRAMECAT UNPC parallel corpus: segments selected by similarity

(using a language model on the English part)
5M No -

Wei-Bot No - No -

Table 9: Overview of out-of-domain (OOD) corpora used by participating teams. Information is self reported
through our survey for each selected "best run".

• en2it (2 teams): Huawei United (run2),
Sheffield (run1)

• en2pt (2 teams): Sheffield (run1), UNI-
CAMP_DL (run1)

• en2ru (4 teams): Huawei United (run2),
Sheffield (run1), TRAMECAT (run1), Yere-
vaNN (run3)

• en2zh (8 teams): ai_not_intellegent (run1),
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Teams Runs en2de en2es en2fr en2it en2pt en2ru en2zh
Alibuba Run1 - - - - - - 0.3346*

Elhuyar_NLP Run1 - 0.4498* - - - - -
Run2 - 0.4493 - - - - -
Run3 - 0.4394 - - - - -

Huawei_United Run1 0.3317 - 0.4351* 0.4257 - 0.3464 0.4378
Run2 0.362 - 0.4351* 0.4257* - 0.3464* 0.4546
Run3 0.3689* - - - - - 0.4378*

Ixamed Run1 - 0.4171* - - - - -
Run2 - 0.3836 - - - - -
Run3 - 0.3858 - - - - -

LIMSI Run1 - - 0.3837* - - - -
Run2 - - 0.3673 - - - -
Run3 - - 0.2564 - - - -

NLE Run1 0.3641 - - - - - -
Run3 0.3394 - - - - - -
Run3 0.3562* - - - - - -

OOM_20 Run1 - - - - - - 0.4686*
Run2 - - - - - - 0.4633*

Sheffield Run1 - 0.4493* 0.3049* 0.2073* 0.4744* 0.2573* -
TMT Run1 0.3524* - - - - - 0.3943*

Run2 0.3495 - - - - - -
Run3 0.3457 - - - - - -

TRAMECAT Run1 - 0.4361* 0.3489* - - 0.2661* 0.2725*
UNICAMP_DL Run1 - - - - 0.4095* - -

Run2 - - - - 0.3660 - -
UNICAM Run1 0.3288 0.4572 - - - - -

Run2 0.3282 0.4672 - - - - -
Run3 0.3318* 0.4662* - - - - -

Wei-Bot Run1 - - - - - - 0.5557*§
Run2 - - - - - - 0.5169§

YerevaNN Run1 0.3517 - - - - 0.3263 -
Run2 - - - - - 0.3936 -
Run3 0.3520* - - - - 0.3787* -

ai_not_intellegent Run1 - - - - - - 0.4462
Run2 - - - - - - 0.4148
Run3 - - - - - - 0.4225

baidu_translation Run1 - - - - - - 0.3400
nrpu-fjwu Run1 - - 0.3572* - - - -

one_connect_000 Run1 - - - - - - 0.3125*
Baseline - 0.2845 0.3813 0.3345 0.3954 0.4149 0.2259 0.2319

Table 10: BLEU scores for “OK" aligned test sentences, from English. * Indicates the primary run as indicated by
the participants. § Runs submitted after the official test period.

Alibuba (run1), baidu_translation (run1),
Huawei United (run3), OOM_20 (run1), TMT
(run1), TRAMECAT (run1), Wei-Bot (run1)

• de2en (5 teams): Huawei United (run3), NLE
(run3), TMT (run1), UNICAM (run3), Yere-
vaNN (run3)

• es2en (4 teams): Ixamed (run1), Sheffield
(run1), TRAMECAT (run1), UNICAM (run3)

• fr2en (5 teams): Huawei United (run2), NLE
(run1), Sheffield 8run1), TRAMECAT (run1),
nrpu-fjwu (run1)

• it2en (3 teams): Huawei United (run2),
Sheffield (run1), NLE (run1)

• pt2en (2 teams): Sheffield (run1), UNI-
CAMP_DL (run1)

• ru2en (4 teams): Huawei United (run2),
Sheffield (run1), TRAMECAT (run1), Yere-
vaNN (run3)

• zh2en (8 teams): ai_not_intellegent (run1),
Alibuba (run1), baidu_translation (run1),
Huawei United (run3), OOM_20 (run1), TMT
(run1), TRAMECAT (run1), Wei-Bot (run1)

In addition to the above teams, we also consid-
ered the reference translation in the manual vali-
dation. We refer to these translations as validation
items from here on. The selected sentences and
abstracts were uploaded into the Appraise tool (Fe-
dermann, 2010) for manual validation. The valida-
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Teams Runs de2en es2en fr2en it2en pt2en ru2en zh2en
Alibuba Run1 - - - - - - 0.2425*

Huawei_United Run1 0.3897 - 0.4445 0.4974 - 0.4303 0.3378
Run2 0.4146 - 0.4445* 0.4974* - 0.4303* 0.3397
Run3 0.4133 - - - - - 0.3528

Ixamed Run1 - 0.4072* - - - - -
Run2 - 0.4073 - - - - -
Run3 - 0.3999 - - - - -

NLE Run1 0.4043 0.5075* 0.4349* 0.5011* - - -
Run2 0.4059 - - - - - -
Run3 0.4094* - - - - - -

OOM_20 Run1 - - - - - - 0.3483*
Run2 - - - - - - 0.3473*

Sheffield Run1 - 0.4624* 0.3514* 0.2276* 0.5334* 0.2936* -
TMT Run1 0.4165* - - - - - 0.3048*

Run2 0.4037 - - - - - 0.2893
Run3 0.4080 - - - - - 0.2765

TRAMECAT Run1 - 0.4468* 0.3477* - - 0.3707* 0.1688*
TXT Run1 - - - - - - 0.3048*

Run2 - - - - - - 0.2893
Run3 - - - - - - 0.2765

UNICAMP_DL Run1 - - - - 0.4988* - -
Run2 - - - - 0.4361 - -

UNICAM Run1 0.3962 0.4662 - - - - -
Run2 0.3979 0.4640 - - - - -
Run3 0.3963* 0.4657* - - - - -

Wei-Bot Run1 - - - - - - 0.4009*§
Run2 - - - - - - 0.3946§

YerevaNN Run1 0.4129 - - - - - -
Run2 0.4144 - - - - 0.4331 -
Run3 0.4128* - - - - 0.4321* -

ai_not_intellegent Run1 - - - - - - 0.3357
Run2 - - - - - - 0.3226
Run3 - - - - - - 0.3323

baidu_translation Run1 - - - - - - 0.2494
nrpu-fjwu Run1 - - 0.2624* - - - -

Run2 - - 0.2273 - - - -
Run3 - - 0.2041 - - - -

one_connect_000 Run1 - - - - - - 0.2238*
Baseline - 0.3470 0.3534 0.3458 0.4588 0.4549 0.2984 0.1561

Table 11: BLEU scores for "OK" aligned test sentences, into English. * Indicates the primary run as indicated by
the participants. § Runs submitted after the official test period.

de2en en2de ru2en en2ru zh2en en2zh
AFRL - 0.2652 0.2895 - - -

ariel197197 - - 0.2999 0.2270 - -
DeepMind - - - - 0.2907 -
DiDi_NLP - - - - - -

eTranslation - 0.257 0.3077 - - -
Huoshan_Translate 0.3287 0.2781 - - - -

Online-A 0.3164 0.2649 0.2926 0.2115 0.2413 0.3431
Online-B 0.3342 0.2851 0.3514 0.2594 0.3041 0.3817
Online-G 0.3402 0.2536 0.335 0.2934 0.2854 0.3587
Online-Z 0.2786 0.2172 0.2379 0.1903 0.2162 0.2867

OPPO 0.3287 0.2792 0.3241 0.2566 0.3012 0.3908
PROMT_NMT 0.3100 0.2648 0.3230 0.2502 - -

SJTU-NICT - - - - 0.3034 0.4159
Tencent_Translation - - - - - -
Tohoku-AIP-NTT 0.3411 0.2797 - - - -

UEDIN 0.3160 0.2411 - - - -
WMTBiomedBaseline 0.2865 0.2443 - - 0.1529 -

yolo 0.0022 - - - - -
zlabs-nlp 0.2516 0.2225 0.2403 0.2016 0.2159 0.2868

Total 12 13 10 8 9 7

Table 12: BLEU scores for news test sentences
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Figure 1: Fitted plot of BLEU vs. chrF scores for “OK" aligned test sentences, into English (left) and from English
(right). The top section of the figure shows box plots of the BLEU score distribution for each language pair.

de2en en2de ru2en en2ru zh2en en2zh
AFRL - 0.3193 0.3847 - - -

ariel197197 - - 0.3911 0.3075 - -
DeepMind - - - - 0.3015 -
DiDi_NLP - - - - - -

eTranslation - 0.3097 0.4008 - - -
Huoshan_Translate 0.3915 0.3401 - - -

Online-A 0.3739 0.3229 0.3799 0.2926 0.2515 0.3723
Online-B 0.4009 0.3471 0.4711 0.3611 0.3210 0.4138
Online-G 0.3994 0.3086 0.4410 0.4089 0.2906 0.3897
Online-Z 0.3347 0.2546 0.3154 0.2587 0.2203 0.3096

OPPO 0.3915 0.3378 0.4239 0.3529 0.3166 0.4227
PROMT_NMT 0.3693 0.3167 0.4199 0.3434 - -

SJTU-NICT - - - - 0.3217 0.4508
Tencent_Translation - - - - - -
Tohoku-AIP-NTT 0.4016 0.3388 - - - -

UEDIN 0.3727 0.2922 - - - -
WMTBiomedBaseline 0.3727 0.2864 - - 0.1565 -

yolo 0.0026 - - - - -
zlabs-nlp 0.2961 0.2711 0.3188 0.2815 0.2277 0.3035

Total 12 13 10 8 9 7

Table 13: BLEU scores for news test “OK” sentences

tors were native speakers of the target language and
had good knowledge of the source language. Each
validator was presented with the source sentence
(or abstract), and two candidate translations, either
from two teams or from one team and the reference
translation. The goal of the validator was to decide
whether one translation was better than the other
or whether they were of similar quality. Sentences

could be skipped if the translations seemed to re-
fer to different source sentences. Results for the
manual validation are presented in various tables
as summarized below:

• en2de and de2en: Table 16

• en2es and es2en: Table 17
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Teams Runs BLEU

DCU-MT Run1 0.0867
Run2 0.0825
Run3 0.0808*

Elhuyar_NLP Run1 0.1271*
Run2 0.1279
Run3 0.1268

Ixamed Run1 0.0815*
Run2 0.0782
Run3 0.0884

UTS_NLP Run1 0.0530*
Run2 0.0549
Run3 0.0528

Baseline - 0.0596

Table 14: Results for the abstract test set (en2eu). * in-
dicates the primary run as indicated by the participants.

Teams Runs Accuracy BLEU

Elhuyar_NLP run1* 0.78 0.7373
run2 0.77 0.7356
run3 0.75 0.7229

ADAPT run1 0.73 0.7083
run2 0.76 0.7239
run3 0.75 0.7179

UTS_NLP run1* 0.73 0.7115
run2 0.73 0.7122
run3 0.73 0.7085

Ixamed run1 0.12 0.1314
run2* 0.08 0.0721
run3 0.13 0.1481

Table 15: Results for the terminology test set (en2eu).
* indicates the primary run as indicated by the partici-
pants.

• en2fr and fr2en: Table 18

• en2it and it2en: Table 19

• en2pt and pt2en: Table 20

• en2ru and ru2en: Table 21

• en2zh and zh2en: Table 22

We identified the item of each pairwise com-
parison (if any) that performed better (cf. respec-
tive tables) and ran a Wilcoxon Signed-Rank Test
using the Python scipy library (Virtanen et al.,
2020). We consider all comparisons for two par-
ticular items over all validated segments (abstracts
and sentences), except for skipped segments. The
test was calculated for the abstracts and the sen-
tences and we mark in bold in the respective ta-
bles if any of them was found to be significant,
(p-value< 0.05), otherwise, the two items were con-

sidered to be similar. For the language pairs val-
idated by two experts (i.e., es2en and pt2en), we
only consider one item of the pairwise comparison
to be superior to the other when at least two of the
four comparisons (2x for the abstracts, 2x for the
sentences) were statistically significant.

To rank the systems, we assign points to each
item: 3 points if superior to the opponent, 1 point
when they are similar and no points if inferior to the
opponent. Based on this methodology, we ranked
the systems and the reference translations as sum-
marized below (the obtained points are shown in
parentheses):

• en2de: UNICAM (1) < reference (5) < Yere-
vaNN (6) < Huawei-United (7) = NLE (7)
< TMT (9)

• en2es: reference (2) < TRAMECAT (4)
< Sheffield (5) < Ixamed (6) = UNICAM (6)
< Elhuyar_NLP (11)

• en2fr: Sheffield (2) < TRAMECAT (3) =
LIMSI (3) < nrpu-fjwu (5) < Huawei United
(12) < reference (15)

• en2it: Sheffield (0) < reference (4) = Huawei
United (4)

• en2pt: UNICAMP_DL (0) < reference (3) =
Sheffield (3)

• en2ru: Sheffield (1) < TRAMECAT (2)
< Huawei United (4) < YerevaNN (9) < refer-
ence (12)

• en2zh: TRAMECAT (1) < TMT (6) < baidu
(10), ai_not_intellegent (10) < Wei-Bot (12) =
OOM (12) = Huawei United (12) = Alibuba
(12) = reference (12)

• de2en: UNICAM (2) < TMT (5) = reference
(5) < Huawei United (7) = YerevaNN (7) =
NLE (7)

• es2en: reference (5) = Ixamed (5) = NLE (5) =
Sheffield (5) = TRAMECAT (5) = UNICAM
(5)

• fr2en: npru-fjwu (0) < TRAMECAT (4) =
Sheffield (4) < reference (11) = NLE (11) =
Huawei United (11)

• it2en: Sheffield (0) < reference (4) < NLE (5)
< Huawei United (7)
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• pt2en: reference (2) = UNICAMP_DL (2) =
Sheffield (2)

• ru2en: Sheffield (0) < TRAMECAT (3) < ref-
erence (8) = YerevaNN (8) = Huawei United
(8)

• zh2en: TRAMECAT (0) < TMT (6) < Alibuba
(8) < ai_not_intellegent (10) = OOM (10) =
reference (10) < baidu (14) = Wei-Bot (14) =
Huawei United (14)

The performance of the reference translations
varied from being inferior to all runs that were
validated, to being superior to all of them. However,
for many language pairs, it was as good as the
best runs. We summarize the performance of the
reference translation below:

• Inferior to all submissions: en2es

• Superior to one or more submissions: en2de,
it2en, zh2en, de2en

• Similar to the best submissions: en2it, en2pt,
en2zh, pt2en, fr2en, es2en, ru2en

• Superior to all submissions: en2fr, en2ru

In general, the runs that obtained the best scores
in the automatic evaluation were also the ones bet-
ter ranked in the manual evaluation. We highlight
the interesting differences to the automatic evalua-
tion below:

en2es: Even though the UNICAM run obtained
a slightly higher BLEU score than the ElhuyarNLP
one, the latter was ranked much higher. Further,
the Ixamed run was ranked reasonably high, even
though it obtained the lowest BLEU score.

en2fr: The nrpu-fjwu run was ranked higher
the LIMSI run, even though its BLEU score was
slightly lower than the one from LIMSI.

en2zh: The run from Alibuba was ranked to-
gether with the highest runs, even though its BLEU
score was the second lowest one. The Wei-Bot runs
was considered as good as some other ones, even
though its BLEU score was considerably higher.

de2en: While we did not observe a large differ-
ence in the BLEU scores for the runs, three teams
(Huawei United, YerevaNN, NLE) were ranked
higher than the other two (UNICAM and TMT).

pt2en: While the Sheffield run obtained a higher
BLEU score, runs from the Sheffield and UNI-
CAMP_DL were ranked as similar. However, as
stated above, we could not perform a manual vali-
dation over a larger set of abstracts.

zh2en: The same differences that we observed
for en2zh also occurred for zh2en.

es2en: Even though our evaluation relied on very
few abstracts, the results confirmed the ones ob-
tained in the automatic evaluation: all systems
seem indeed to have a similar quality.

6.2 Basque abstracts
For the human evaluation of the systems that partic-
ipated in the English-Basque scientific translation,
we only carried out the evaluation at sentence-level.
We randomly sampled a total of 100 sentences. The
runs that we considered from each team are:

• en2eu (4 teams): DCU-MT (run1), El-
huyar_NLP_team (run2), Ixamed (run3),
UTS_NLP (run2)

The results of the human evaluation carried out
with Appraise are in Table 23, and like in the MED-
LINE evaluation, bold numbers indicate a signifi-
cance difference between the systems after running
a Wilcoxon Signed-Rank test. The final ranking of
the systems is as follows:

• en2eu: UTS_NLP (0) < DCU-MT (4) = Ix-
amed (4) < Elhuyar_NLP_team (10) = refer-
ence (10)

Similar to what was observed in the MED-
LINE evaluation, ranking of the human evaluation
matched the ranking of the automatic evaluation.

7 Discussion

In this section we present insights from the auto-
matic and manual validations. We also reflect on
the new processes introduced this year in the work-
flow of the task.

7.1 Analysis of results and methods
Systems submitted to the biomedical task. Fig-
ure 1 shows the correlation between BLEU and
chrF scores. The use of the survey was helpful to
collect specific features of the systems in order to
compare the methods used. However, the variety
of resources leveraged by the different teams as
well as the variety of information reported about
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Language Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2de

TMT-Huawei

10

3 1 1

104

22 48 26
TMT-YerevaNN 4 1 0 22 53 26

TMT-NLE 3 1 1 24 62 15
TMT-UNICAM 4 1 0 30 54 17
TMT-reference 3 0 2 26 45 29

Huawei-YerevaNN 0 4 1 13 78 11
Huawei-NLE 2 1 2 21 57 24

Huawei-UNICAM 1 3 1 35 55 12
Huawei-reference 1 2 2 20 56 26
YerevaNN-NLE 1 2 2 22 62 19

YerevaNN-UNICAM 2 1 2 29 59 15
YerevaNN-reference 3 0 2 21 59 23

NLE-UNICAM 4 1 0 24 66 13
NLE-reference 2 1 2 18 60 25

UNICAM-reference 2 0 3 18 56 29

de2en

Huawei-YerevaNN

7

1 2 4

50

9 25 16
Huawei-reference 3 1 3 13 24 13

Huawei-UNICAM 4 3 0 17 26 7
Huawei-TMT 2 1 4 14 27 9
Huawei-NLE 3 3 1 10 33 7

YerevaNN-reference 5 1 1 18 21 11
YerevaNN-UNICAM 5 1 1 20 23 7

YerevaNN-TMT 2 3 2 11 33 6
YerevaNN-NLE 2 2 3 11 31 8

reference-UNICAM 4 2 1 19 20 11
reference-TMT 4 0 3 15 20 15
reference-NLE 3 0 4 13 26 11

UNICAM-TMT 1 1 5 8 28 14
UNICAM-NLE 1 2 4 1 36 13

TMT-NLE 2 1 4 5 36 9

Table 16: Manual validation for the en2de and de2en of the MEDLINE abstracts test set. The sum of the values
for the sentences does not sum up to the expected value for some rows because some sentences might have been
skipped. The better performing system (or reference translation) in each pairwise comparison is shown in bold, as
well as the respective value that has been identified as superior.

the resources (see Table 7, 8 and 9) make it difficult
to directly compare resource use in terms of type
or even size. For example, some teams reported the
size of their parallel datasets in terms of GB of text,
some the number of aligned sentences and some-
times they provided an overall size of resources
used for several language pairs.

Biomedical datasets as test suites in the news
task. Overall, the best performance on the
biomedical datasets was obtained by systems sub-
mitted to the biomedical task. These results suggest
that domain-specific systems can offer a substantial
increase in BLEU score when translating biomedi-
cal text. The performance offered by some of the
news systems (e.g., Online-B, Online G) was quite
high, but it has to be noted that we do not know
what training data those system used, and there
is no guarantee that our test sentences were not
included.

We can also note that whereas no team partici-
pated both in the news and biomedical task, we sub-
mitted some of our baselines to the news task under

the name WMTbiomedBaseline. Interestingly, our
de2en baseline performed much better there (+2.5
BLEU) on the same text. This is due to supplemen-
tary processing: each paragraph to be translated
was split into sentences, the sentences were trans-
lated one by one, then the results where joined back
into a single paragraph. This was not done for the
baseline submission to our biomedical translation
task, under the assumption that the texts to trans-
late are single-sentence (now invalidated). For the
multi-sentence paragraphs, our baselines (as sent
to the biomedical task) sometimes contained only
the translation of the first sentence, thus leading to
a decrease in BLEU score.

7.2 New additions to the workflow of the task

This year, we introduced a number of new pro-
cesses into the task workflow. First, we performed
manual validation of the sentence alignment for
three language pairs. This resulted in higher quality
alignment, and should be continued. Second, we
attempted to split the test sets for the en/fr language
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Language Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2es

TRAMECAT-UNICAM

9

0 7 2

104

8 82 13
TRAMECAT-Ixamed 1 7 1 8 85 10

TRAMECAT-reference 4 2 2 13 81 10
TRAMECAT-ElhuyarNLP 1 7 1 1 93 10

TRAMECAT-Sheffield 3 6 0 5 90 8
UNICAM-Ixamed 4 4 1 8 90 6

UNICAM-reference 2 5 2 13 87 4
UNICAM-ElhuyarNLP 2 7 0 4 94 6

UNICAM-Sheffield 1 6 2 4 93 7
Ixamed-reference 5 4 0 8 83 13

Ixamed-ElhuyarNLP 0 5 4 4 93 7
Ixamed-Sheffield 0 7 2 4 94 6

reference-ElhuyarNLP 0 4 5 6 89 9
reference-Sheffield 1 4 4 6 88 10

ElhuyarNLP-Sheffield 2 6 1 4 98 2

es2en

Sheffield-Ixamed

2

2/0 0/2 0/0

14

9/6 5/6 0/2
Sheffield-TRAMECAT 1/1 0/1 1/0 6/4 4/8 4/2

Sheffield-NLE 0/9 0/2 2/0 2/1 7/11 5/2
Sheffield-UNICAM 1/9 0/2 1/0 4/3 7/10 3/1
Sheffield-reference 0/1 0/1 2/0 0/0 4/12 10/2

Ixamed-TRAMECAT 1/1 0/0 1/1 1/2 4/8 9/4
Ixamed-NLE 0/1 0/0 2/1 0/1 3/7 11/6

Ixamed-UNICAM 0/0 0/0 2/2 1/0 7/7 6/7
Ixamed-reference 0/1 0/0 2/1 1/2 1/7 12/5

TRAMECAT-NLE 1/0 0/2 1/0 1/0 8/12 5/2
TRAMECAT-UNICAM 0/0 0/1 2/1 3/1 5/12 6/1
TRAMECAT-reference 0/1 0/1 2/0 0/0 5/12 9/2

NLE-UNICAM 2/0 0/2 0/0 5/0 8/14 1/0
NLE-reference 1/1 0/1 1/0 2/0 6/13 6/1

UNICAM-reference 0/1 0/1 2/0 1/0 6/12 7/0

Table 17: Manual validation for the en2es and es2en of the MEDLINE abstracts test set. The sum of the values
for the sentences (or abstracts) does not sum up to the expected value for some rows because some sentences
(or abstracts) might have been skipped. The better performing system (or reference translation) in each pairwise
comparison is depicted in bold, as well as the respective value that has been identified as superior. For es2en, two
values are shown: on the left is the validation performed by the English native speaker, and on the right the one
from the Spanish native speaker.

pair according to the source language as inferred
from MEDLINE metadata. Our experience so far is
inconclusive and shows that the initial selection of
separate test sets based on source language should
be done upstream in the process, as most of the
test documents selected had English as the original
language. The collection of system information
through a survey was effective to collect general
comparable information about the systems, espe-
cially as the task is growing in number of partici-
pants and language pairs offered. However, direct
comparison of methods or resources is not neces-
sarily facilitated as authors report information in
different ways. A better method for yielding action-
able comparisons could be to host a “constrained
track" where participants would be requested to use
a choice of resources provided in the track.

7.2.1 MEDLINE test sets
We previously presented (cf. Table 2) the results of
the manual validation of the automatic alignment

that was carried out for the test sets. Here we
discuss some of the problems that we found in the
automatic alignment for each of the languages.

For all the language pairs, many of the mistakes
that we found referred to the titles of the articles,
which are usually only available in one of the lan-
guages in MEDLINE. Therefore, many of them
were correctly aligned to nothing, later identified
by the evaluators as being a “NO_ALIGNMENT".
However, in some cases, they was incorrectly
aligned to the first sentence of the other language,
which resulted in them being classified as an
“OVERLAP".

The sub-sections which are present in many
abstracts, such as “Background" or “Methods"
were a cause for trouble. Given their simplic-
ity, they were often correctly aligned. However,
in some cases they were aligned to nothing at
all (“NO_ALIGNMENT"). In other cases, they
were joined to the following or previous sen-
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Language Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2fr

nrpu-fjwu-Huawei

6

0 0 6

100

17 19 64
nrpu-fjwu-LIMSI 5 0 1 36 28 36

nrpu-fjwu-reference 0 0 6 15 14 71
nrpu-fjwu-TRAMECAT 2 2 2 38 29 33

nrpu-fjwu-Sheffield 4 2 0 41 19 39
Huawei-LIMSI 6 0 0 61 23 16

Huawei-reference 1 0 5 16 8 56
Huawei-TRAMECAT 6 0 0 59 33 8

Huawei-Sheffield 6 0 0 57 32 10
LIMSI-reference 0 0 6 9 14 77

LIMSI-TRAMECAT 1 3 2 31 32 37
LIMSI-Sheffield 1 3 2 29 27 43

reference-TRAMECAT 6 0 0 69 25 6
reference-Sheffield 6 0 0 69 21 8

TRAMECAT-Sheffield 2 1 3 28 32 38

fr2en

reference-NLE

11

5 2 3

109

36 28 44
reference-Huawei 3 1 7 37 27 43

reference-TRAMECAT 8 1 2 66 26 15
reference-Sheffield 8 0 3 64 20 23
reference-nrpu-fjwu 10 1 0 79 20 8

NLE-Huawei 5 1 5 28 57 24
NLE-TRAMECAT 9 2 0 73 21 15

NLE-Sheffield 9 1 1 69 29 11
NLE-nrpu-fjwu 11 0 0 89 14 6

Huawei-TRAMECAT 11 0 0 78 24 7
Huawei-Sheffield 11 0 0 70 30 9
Huawei-nrpu-fjwu 11 0 0 87 19 3

TRAMECAT-Sheffield 4 2 5 37 29 43
TRAMECAT-nrpu-fjwu 8 2 1 64 28 17

Sheffield-nrpu-fjwu 8 0 3 65 21 23

Table 18: Manual validation for the en2fr and fr2en of the MEDLINE abstracts test set. The sum of the values
for the sentences does not sum up to 109 for some rows because some sentences might have been skipped. The
better performing system (or reference translation) in each pairwise comparison is depicted in bold, as well as the
respective value that has been identified as superior.

Language Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2it huawei-reference
11

5 3 3
100

32 45 23
huawei-sheffield 10 0 0 80 14 0

reference-sheffield 9 0 0 80 12 4
it2en sheffield-reference

9

0 0 9

100

5 1 94
huawei-reference 6 1 2 46 37 17

nle-reference 6 2 1 40 35 25
huawei-sheffield 9 0 0 98 2 0

sheffield-nle 0 0 9 1 3 96
huawei-nle 3 4 2 27 53 20

Table 19: Manual validation for the en2it and it2en of the MEDLINE abstracts test set. The sum of the values
for the sentences (or abstracts) does not sum up to the expected value for some rows because some sentences (or
abstracts) have been skipped. The better performing system (or reference translation) in each pairwise comparison
is shown in bold, as well as the respective value that has been identified as superior.

tence and aligned to a sentence in the other lan-
guage, which did not contain the corresponding
sub-section. Such cases were classified as ei-
ther “SOURCE_GREATER_TARGET", or “TAR-
GET_GREATER_SOURCE".

Comparing one sentence in one language that
was automatic aligned to two or more sentences
also sometimes caused mistakes. While most of
the information is present in both languages, there

were always differences between them, and more
information in the language for which the align-
ment tool joined more than one sentence. Depend-
ing on the case, the alignment was classified as ei-
ther “SOURCE_GREATER_TARGET", or “TAR-
GET_GREATER_SOURCE".

Finally some alignments were classified as
being “SOURCE_GREATER_TARGET", “TAR-
GET_GREATER_SOURCE", or “OVERLAP"
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Language Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2pt
reference-UNICAMP_DL

13
9 3 1

107
37 56 14

reference-Sheffield 6 3 4 18 69 20
UNICAMP_DL-Sheffield 0 2 11 8 63 36

pt2en
reference-UNICAMP_DL

4
4/2 0/2 0/0

47
18/7 18/35 11/5

reference-Sheffield 1/1 1/2 2/1 10/2 28/37 9/8
UNICAMP_DL-Sheffield 0/0 1/1 3/3 6/38 29/9 12/0

Table 20: Manual validation for the en2pt and pt2en of the MEDLINE abstracts test set. The better performing
system (or reference translation) in each pairwise comparison is shown in bold, as well as the respective value that
has been identified as superior. For pt2en, two values are shown: on the left is the validation performed by the
English native speaker, and on the right the one from the Portuguese native speaker.

Language Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2ru

Huawei-YerevaNN

6

1 1 5

66

5 41 18
Huawei-Sheffield 5 2 0 29 24 12
Huawei-reference 0 2 5 1 40 24

Huawei-TRAMECAT 3 3 1 22 31 11
YerevaNN-Sheffield 7 0 0 36 28 1
YerevaNN-reference 0 4 3 6 45 15

YerevaNN-TRAMECAT 4 1 2 26 35 5
Sheffield-reference 0 0 7 2 29 35

Sheffield-TRAMECAT 0 5 2 10 38 18
reference-TRAMECAT 7 0 0 35 30 1

ru2en

Huawei-Sheffield

6

7 0 0

58

38 15 4
Huawei-reference 1 6 0 7 46 5

Huawei-TRAMECAT 6 1 0 24 29 5
Huawei-YerevaNN 2 5 0 12 40 6
Sheffield-reference 0 0 7 1 17 40

Sheffield-TRAMECAT 0 5 2 7 31 20
Sheffield-YerevaNN 0 1 6 5 17 34

reference-TRAMECAT 4 3 0 19 34 5
reference-YerevaNN 2 4 1 9 39 10

TRAMECAT-YerevaNN 0 2 5 8 31 18

Table 21: Manual validation for the en2ru and ru2en of the MEDLINE abstracts test set. The sum of the values
for the sentences does not sum up to the expected value for some rows because some sentences might have been
skipped. The better performing system (or reference translation) in each pairwise comparison is shown in bold, as
well as the respective value that has been identified as superior.

when small details were present in just one of the
languages. For instance, one example lacked the
information about the p-value, i.e., “(p < 0.05)", for
one of the languages. For another abstract, the sen-
tence in one language referred to the expression “in
the city", while the one in the other language explic-
itly included the name of the city, i.e., “in Paris". It
was common that a variety of small details or addi-
tional information which were not equally included
for both languages.

7.2.2 Basque Abstracts test set
The alignment between the sentences for the ab-
stracts in Basque and English was also carried out
manually. Twelve sentences in Basque lack their
translation in English and so these sentences in
Basque were removed, resulting in the final test
set of 375 pairs. The translations produced by the
authors of the abstracts are not literal, and in some

cases the information given in both languages is dif-
ferent. For example, in two consecutive sentences
in an abstract about the listeriosis disease, we have
these sentence pairs: First sentence (sentence 1):

• en: In recent years, we have detected a sig-
nificant increase in the number of cases in
Gipuzkoa.

• eu: Azken urteotan, Gipuzkoan, listeriosiaren
intzidentziaren igoera esanguratsua atzeman
da.
‘In recent years, in Gipuzkoa, there has been
a significant increase in the incidence of liste-
riosis’

Following sentence (sentence 2):

• en: Listeriosis is uncommon in the general
population, but it is far more frequent in preg-
nant women and newborns.

679



Pair en2zh - Abstracts Pair zh2en - Abstracts
A>B A=B A<B A>B A=B A<B

reference-TRAMECAT 16 1 0 reference-TRAMECAT 19 1 0
reference-baidu 9 2 4 reference-baidu 6 2 6
reference-TMT 16 0 1 reference-TMT 13 2 5

reference-Wei-Bot* 9 1 7 reference-Wei-Bot* 5 4 11
reference-ai_not_intellegent 9 1 7 reference-ai_not_intellegent 10 0 10

reference-OOM 8 2 7 reference-OOM 5 3 12
reference-Huawei 10 1 6 reference-Huawei 4 6 10
reference-Alibuba 7 1 6 reference-Alibuba 7 1 6

TRAMECAT-baidu 0 0 14 TRAMECAT-baidu 0 1 13
TRAMECAT-TMT 4 2 11 TRAMECAT-TMT 1 1 18

TRAMECAT-Wei-Bot* 0 1 16 TRAMECAT-Wei-Bot* 1 0 19
TRAMECAT-ai_not_intellegent 0 0 17 TRAMECAT-ai_not_intellegent 0 2 18

TRAMECAT-OOM 0 0 17 TRAMECAT-OOM 0 0 20
TRAMECAT-Huawei 0 0 17 TRAMECAT-Huawei 0 0 20
TRAMECAT-Alibuba 0 0 14 TRAMECAT-Alibuba 0 0 14

baidu-TMT 9 2 4 baidu-TMT 8 1 5
baidu-Wei-Bot* 0 14 1 baidu-Wei-Bot* 0 14 0

baidu-ai_not_intellegent 5 5 5 baidu-ai_not_intellegent 9 3 2
baidu-OOM 0 13 2 baidu-OOM 0 13 2

baidu-Huawei 3 7 5 baidu-Huawei 4 8 2
baidu-Alibuba 6 6 2 baidu-Alibuba 9 3 2

TMT-Wei-Bot* 3 2 12 TMT-Wei-Bot* 3 2 15
TMT-ai_not_intellegent 1 3 13 TMT-ai_not_intellegent 1 6 13

TMT-OOM 2 1 14 TMT-OOM 3 3 14
TMT-Huawei 2 1 14 TMT-Huawei 3 2 15
TMT-Alibuba 2 2 11 TMT-Alibuba 3 1 10

Wei-Bot*-ai_not_intellegent 6 7 4 Wei-Bot*-ai_not_intellegent 12 6 2
Wei-Bot*-OOM 0 16 1 Wei-Bot*-OOM 0 18 2

Wei-Bot*-Huawei 6 7 4 Wei-Bot*-Huawei 7 7 6
Wei-Bot*-Alibuba 5 7 3 Wei-Bot*-Alibuba 3 3 8

ai_not_intellegent-OOM 2 7 8 ai_not_intellegent-OOM 2 5 13
ai_not_intellegent-Huawei 3 8 6 ai_not_intellegent-Huawei 4 6 10
ai_not_intellegent-Alibuba 1 13 1 ai_not_intellegent-Alibuba 0 14 0

OOM-Huawei 8 7 2 OOM-Huawei 6 11 3
OOM-Alibuba 6 6 3 OOM-Alibuba 10 1 3

Huawei-Alibuba 6 6 3 Huawei-Alibuba 9 4 1

Table 22: Manual validation for the en2zh and zh2en of the MEDLINE abstracts test set. The evaluation was
carried out only for abstracts: 17 for en2zh, and 20 for zh2en. The sum of the values for the abstracts does not sum
up to the expected value for some rows because some abstracts might have been skipped. The better performing
system (or reference translation) in each pairwise comparison is shown in bold, as well as the number of times this
system was superior. The system identified with an * cannot be fully compared to the other systems.

Pair Sentences
Total A>B A=B A<B

reference-UTS_NLP 100 91 7 2
reference-Ixamed 100 68 13 19

reference-Elhuyar_NLP 100 37 33 30
reference-DCU-MT 100 75 10 15
Ixamed-UTS_NLP 100 60 11 29

Ixamed-Elhuyar_NLP 100 17 25 58
Ixamed-DCU-MT 100 51 7 42

Elhuyar_NLP-UTS_NLP 100 94 6 0
Elhuyar_NLP-DCU-MT 100 67 24 9

DCU-MT-UTS_NLP 100 74 17 9

Table 23: Manual validation of the en2eu abstracts test set. The better performing system (or reference translation)
in each pairwise comparison is shown in bold, as well as the respective value that has been identified as superior.

• eu: Arrisku- taldeen artean, haurdun dauden
emakumeak aurkitzen dira.
‘Risk groups include pregnant women’

In the first sentence pair, the name of the disease

is given in Basque, while in the second pair, the
mention is given in English. In the second pair, the
sentence in English gives more information than
the one in Basque. This fact could well affect the
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automatic evaluation.

7.3 Quality of the system translations

We discuss below some of the mistakes that we
found during the manual validation of the selected
runs and the reference translations.

7.3.1 MEDLINE test sets
en (from de) The quality of the translations has
substantially improved since last year, with many
instances requiring lengthy manual scrutiny to de-
tect slight nuances in the meaning of the trans-
lated texts. In some cases, the subject matter of
the abstracts presented a real challenge for the
manual validator, as some of the translations re-
quired deeper background knowledge of medical
procedures and terms to evaluate whether or not
the translations from the source language were in-
deed correct. Examples include: (1) the German
term Hyperandrogenämie was correctly translated
to“hyperandrogenemia" (referring to elevated lev-
els of androgen in the blood) or incorrectly to “hy-
perandrogenism" (refers to the state characterized
by elevated levels of androgens); (2) in the context
of liver cirrohsis, the “Child-Pugh-Score" was used
as a pro-form term for liver cirrohsis disease sever-
ity. In this particular case, the correct translation
was not even evident until the abstract was evalu-
ated as a whole, since the manual validation of sin-
gle sentences did not even contain the term Child-
Pugh-Stadium in the source German sentence; (3)
in an ophthalmology abstract, the German phrase
Aufgrund des ausgeprägten Hornhautödems was
correctly and literally translated in one instance as
“Due to the pronounced corneal edema" but slightly
differently in the other instance as “Due to the pro-
nounced corneal endothelial epithelial decompensa-
tion", which may be partially correct in that corneal
edema is a clinical feature of corneal endothelial
epithelial decompensation. Such an interpretation
would be best evaluated by an opthalmologist.

Abbreviations continue to present difficul-
ties for correct translation. For example, in
German, Cephalosporine der 3. Generation
was never correctly translated to “third gener-
ation cephalosporins". Also the disease ab-
breviation HEED (Hornhaut-Endothel-Epithel-
Dekompensation) could not be translated into En-
glish, though the disease was correctly translated
in English to “corneal endothelial epithelial de-
compensation". The abbreviation for polyzystische
Ovarsyndrom (PCOS) was incorrectly interpreted

as a plural (“PCOs") in one translation.
Some specific medical terms were literally trans-

lated from the German source words, but resulted in
an unusual or rare choice of words in English. For
example, Darm-Hirn-Achse literally translated to
“bowel-brain axis" instead of “brain-gut axis", Adi-
positas directly to “adiposity" vs. “obesity", Mikro-
biomtransfers to “microbiome transfer" vs. “micro-
biota transplantation", Kupfer-Instrauterinpessar
to “IUP" instead of “intrauterine device (IUD)". In
these examples, the translations are in principle
still understandable, yet awkward in English.

In some cases, choosing an English synonym
of a translated German word altered the original
German meaning entirely. For example, the Ger-
man phrase abgeschlossenen und laufenden kon-
trollierten Studien was translated into “terminated
and ongoing controlled trials" as well as “com-
pleted and ongoing controlled studies", whereby
the use of the adjective “terminated" in this spe-
cific context implies that the clinical trial was pre-
maturely stopped, possibly due to ethical, finan-
cial, safety or efficacy concerns. In this context,
“completed" is the better adjective, as it implies
that a study protocol was carried out to its sched-
uled endpoints. Similarly, in the context of rais-
ing children, the German Erziehungserfahrungen
was sometimes translated to “educational experi-
ence", rather than the correct term “parenting expe-
riences".

es (from en) This year, five different MT systems
competed against the human reference translation
for the English to Spanish language pair. The over-
all quality of all five systems was very good this
year, when comparing sentences, being equal to the
human translation in many instances.

The handling of acronyms still requires improve-
ment for some of the MT systems, as the treatment
vary from inconsistent translation, in the case of
abstracts, to wrong use of lower case instead of
capital letters as in the following example, correct
acronym for Sistema Único de Salud (SUS) ver-
sus Sistema Único de Salud (sus). There were also
some instances of literal translation of terms such
as the mistranslation of severe temperature as tem-
peratura severa when a more correct translation
would have been temperatura grave.

In long sentences, there were also cases of miss-
ing information in the MT systems that affected
the overall quality of the translations. In the rare
cases where there were no clear issues with the
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MT output, the human translation was sometimes
more readable and more fluent and therefore the
preferred choice in terms of quality. As in the fol-
lowing example:

• Original English text: The objective was to as-
sess parental knowledge, behaviors, and fears
in the management of fever in their children.

• Tramecat Translation: El objetivo fue evaluar
el conocimiento, comportamientos y miedos
de los padres en el manejo de la fiebre en sus
hijos.

• Reference translation: El objetivo fue evaluar
los conocimientos, actitudes y temores de los
padres ante la fiebre de sus hijos.

The noun group elements have greater concor-
dance in the reference translation rendering it more
readable and fluent than the tramecat MT system.
When comparing the reference abstracts to the MT
abstracts, the human translation had higher quality
due to its consistency and overall textual coherence.
Some systems had issues with term translation con-
sistency, non-fluent text (rare) or missing informa-
tion (also rare). As mentioned, the MT systems
performed very well when compared with one an-
other and with the reference translation, to obtain a
good level of quality, but in some cases many of the
systems would still require human intervention in
terms of post-edition to improve them to publishing
quality level.

en (from fr) The overall quality of translations
was high, with many perfect translations. Most
translation issues arose from unknown vocabu-
lary or an inappropriate use of vocabulary in con-
text. This includes (i) the presence of untranslated
French words (We montrons as a translation of nous
montrons ‘we show’), (ii) the erroneous transla-
tion of subword units, resulting in a merging of
units (tharural instead of than rural), (iii) erro-
neous translation of context-dependent ambiguous
terms (Study of litter as a translation of étude de
portée ‘scoping study’ as a consequence of a poor
translation of the ambiguous word portée ‘scope,
litter (of puppies)’) and (iv) a strange translation of
unseen source words that may nevertheless share
initial subword units with the predicted word (con-
sumptions of cruels as a translation of consomma-
tion de crudités ‘consumption of raw vegetables’).
A further issue noted was the poor translation of the

French pronoun il ‘it/he’ into he when this refers
to the article itself. The correct translation of these
pronouns necessitates taking into account preced-
ing context.

en (from it) The quality of the translations was
neatly divided between almost-perfect and very
poor, and this is reflected in the relative rankings
between validations reported in Table 19. Outright
errors in the good translations were rare; occasion-
ally, the subject of a subordinate clause was mis-
taken. Interestingly, some translations proved capa-
ble of appropriately using synonyms and correctly
rendering the meaning of the source with a slightly
less literal and more idiomatic translation.

en (from zh) The quality of the translations is
generally good. Some systems produced transla-
tions that provided not only correctness but also
more typical English word usage beyond a literal
translation. As an example,不同性别、年龄别和
身高别儿童青少年血压评价 was translated more
literally by one system as blood pressure evalua-
tion in children and adolescents of different sexes,
ages and heights, but another system was able to
produce a more natural translation: blood pressure
evaluation in children and adolescents by gender,
age and height.

The biggest source of errors is by far the transla-
tion of biomedical concepts. Presumably because a
concept is not available in a reference dictionary in
the target language, the translation systems often re-
sorted to a literal interpretation of the source charac-
ters, leading to a translation that ranged from com-
prehensible to completely incorrect. For instance,
a correct translation for美观协调 is aesthetic co-
ordination (in the context of teeth and jaw opera-
tions), but an actual and rather literal translation
was good and beautiful are in harmony, which was
still comprehensible. In another example, however,
a correct translation of早期移植物功能不全 was
early graft dysfunction, but an incorrect translation
yanked two characters植物 (meaning “plants”) out
of the 3-character term 移植物 (meaning “trans-
plant matter”) and produced early removal of plant
functions, which was completely incorrect.

A second problem area is the skipping of source
words or even phrases. For biomedical texts, even
skipping one critical word can significantly alter
the context of the entire text. Take 老年骨质疏
松人群 as an example, whose full translation is
elderly osteoporosis population. Some translations
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omitted the word elderly, and that changed the
context of the corresponding scientific study.

fr (from en) Overall, the quality of the transla-
tions ranged from fair to good and was improved
over previous editions of the task. Some aspects
previously noted as difficult (e.g., co-reference,
acronym definitions) were correctly translated by
some of the systems at the sentence level. However,
the abstract-level evaluation evidenced overall con-
sistency issues. For example, a procedure correctly
described as cholécystectomie laparoscopique con-
ventionnelle (CLC) in an introductory sentence
could be referred to with a different acronym ,
e.g., CCC in sentences appearing later in the same
abstract. Other issues noted in previous editions
remained, such as repeated portions of text (up to
96 repetitions of a word pair in one evaluated sen-
tence) and untranslated sections, especially in pas-
sages containing complex numerical data. Some
issues with technical vocabulary also led to incor-
rect translations. In the comparison of translation
issues exhibited by different systems in the same
sentence, a preference was given to medical correct-
ness over grammatical correctness. For example,
when comparing:

• Translation A: L’étude en microscopie mul-
tiphotonique montre que, comme on le
attendait, l’émiline-1 se colocalise avec
l’élastine.

and

• Translation B: L’étude de microscopie
multiphotonique montre que, comme at-
tendu, l’Emiline-1 permet de colorer avec de
l’Éastine.

where comme attendu (B) is grammatically
preferable to comme on le attendait (A) as a trans-
lation of as expected and se colocalise (A) is se-
mantically preferable to permet de colorer (B) as a
translation of colocalizes, translation A is assessed
as superior to translation B even though neither
translation is perfect.

it (from en) The quality of the translations was
strongly influenced by the systems (unknown at
the time of the evaluation). Some of the transla-
tions were almost perfect and the best system was
also able to use the correct technical terminology
for specialized domains, such as philosophy and
medicine. Other translation were partially correct,

in the sense that they were understandable but with
syntactic or lexical inconsistencies. For example,
the term “otherness"– meaning “being different” –
was incorrectly translated by the term estraneità
(meaning “unfamiliarity”) rather than the Italian
equivalent alterità, which conveys the same mean-
ing. Another example specific for the medical do-
main is the translation of the multi-word unit “vis-
ceral adhesions" by adesivo viscerale (“visceral
sticker" as a literal translation) rather than the cor-
rect Italian equivalent aderenze viscerali. Finally,
some other translations presented non-existent Ital-
ian words.

en (from pt) The translations have high fidelity
to the source texts, but in terms of natural lan-
guage style and typical word usage, the translations
are clearly lacking, especially in longer sentences.
There was a small number of critical errors in trans-
lating biomedical concepts, rendering the transla-
tion incomprehensible. For example, acidentes
ofídicos was correctly translated as snakebite or as
a more pedantic version, snakebite envenomations,
but one incorrect translation obscene accidents was
too obscure to hint at the original term. Lexical
similarity might have been a contributing factor
to errors as well. Ofidismo (meaning “snakebite”)
was translated as ophidism (meaning “poisoning
caused by snake venom”), which was not an exact
translation but still highly relevant. However, an
incorrect translation oblivinism was, to the best of
our knowledge, not an English word.

pt (from en) The translations have improved but
none of the texts were perfect, since we also found
mistakes in the reference translations. One of the
most significant improvements, in comparison to
previous years, is the lack of untranslated words;
only very few of them were observed. However,
one of the frequent problems still remains: poor
translations of the acronyms, which are often the
ones from the English (source) text. Most of the
errors were actually in the small details, such as the
best choice of words for a particular concept (e.g.,
o processo de morte e morte as a translation of
process of death and dying), gender or number co-
ordination (e.g., na encaminhamento dos pacientes,
programa de formação específico), or misplace-
ment of commas. Finally, more errors occurred in
longer sentences due to their increased complexity
than shorter ones, which tended to be correct.
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de (from en) The overall quality of translation
was high. In various cases the better translations
were chosen based on small nuances, such as no
capitalization errors, better ordering of words or
sentence structure that sounds slightly more natu-
ral to a native speaker. Considering the original
German abstracts, sentences often appeared to be
freely translated, targeting an identical meaning
rather than an exact translation. Therefore, in vari-
ous cases, the automatic translations outperformed
the reference translations, which sometimes lacked
some information.

Generally the translation of acronyms appears
more difficult. In multiple cases, translations used
the English acronym instead of the German ver-
sion, although the underlying term itself has been
translated correctly. Finally we observed that some
translations favored very technical terms, while oth-
ers favored rather simple ones, but both correct. In
those cases it is difficult to choose the better trans-
lation, if the rest of the sentences have the same
quality. Generally we believe that using more com-
plicated words does not mean that the translation
of a scientific paper is necessarily better.

zh (from en) While the quality of zh2eh transla-
tions (discussed above) was already generally good,
the quality of en2zh translations was generally even
better in comparison.

Where applicable, a very specific term in English
can be left untranslated in English in the Chinese
text with good effect. Protein names such as CD34
and long, complicated chemical names with abbre-
viations are prominent examples. The participating
systems employed different strategies here: some
repeated only the original English term, some re-
peated the English term as well as translated it in
Chinese, and some translated it in Chinese but ap-
pended the English abbreviation.

In terms of language style, some systems pro-
duced more natural Chinese word usage than a
literal translation. Take evidence is strongest as
an example. A correct but linguistically clumsy
translation was 证据最强, which means exactly
“evidence is strongest.” But other systems were
able to produce more typical wordings such as证
据最有力 (meaning “evidence has most force”) or,
even better,证据最为充分 (meaning “evidence is
most sufficient”).

The translation of biomedical concepts was
again the biggest source of error, and again the
problematic translations ranged from comprehensi-

ble to completely incorrect. For instance, positive
control in the context of conducting experiments
should be correctly translated as 阳性对照, but
some system instead produced积极的控制, which
means “positively or enthusiastically take charge.”
Some translations were outright incorrect, such as
when a simple term fever was translated as百日
咳, which means “whooping cough.”

en (from ru) The English-Russian task was of-
fered for the first time, with four MT systems partic-
ipating and competing against the reference trans-
lation. The quality of translations were generally
good, with two systems producing significantly
better results. Translations frequently contained
synonyms successfully carrying on the meaning
of the source sentence. For example, "травма-
тические поражения” is correctly translated as
“traumatic lesions” and “traumatic injury”. Ob-
served was a range of translations, where some
presented a stylistically more elegant solution then
the others. For example, the phrase “reduction of
pain syndrome” is better expressed as “reduce the
level of pain”. There was a small number of errors
related to incorrect translation of biomedical key
terms, resulting in translation being impractical. A
mild example of incorrectly translated terminol-
ogy is ”spinal surgeon” instead of “spinal surgery”.
Skipping over segments of sentence was observed
mainly in sentences with challenging tokenization.

ru (from en) The Russian-English task was of-
fered for the first time, with four MT systems partic-
ipating and competing against the reference trans-
lation. The quality of translations were generally
good, with two systems producing significantly bet-
ter results. Abbreviated disease names tended to
cause an issue in translation. Sentences contain-
ing definition and the first mention of abbreviation
contained the correct abbreviation. In subsequent
sentences, the abbreviation was getting transliter-
ated. For example, “chronic endometritis (CE)”
is translated as “хроническим эндометритом
(ХЭ)”. However subsequent sentences refer to
“CE” as “КЭ” and not as “ХЭ”. Rarely observed
were instances with the meaning lost in translation.
For example, the source sentence “The biological
age of sleep apnea patients exceeded the passport
age by 41.3% and comorbid patients by 49.6%.”
was translated as: “Биологический возраст па-
циентов с апнозом сна превышал пассажиров
на 41.3%, а сопутствующих на 49.6%.“

684



7.3.2 Basque abstracts
The BLEU scores for this subtask are given in Ta-
ble 14. We have to consider that BLEU scores
tend to be low when translating into Basque (Jau-
regi Unanue et al., 2018), and this can be seen in
the results. The best performing system in the auto-
matic evaluation was Elhuyar_NLP, with a BLEU
score of 0.1279. Ixamed and DCU-MT have similar
performance, with UTS_NLP achieving the low-
est BLEU score. In spite of the low BLEU scores,
the manual evaluation in Table 23 showed that El-
huyar_NLP was competitive against the reference
translation, and was preferred to other systems.

During the manual evaluation, the annotators
also observed that sometimes the system produced
output in Spanish instead of Basque. This was
obviously a mistake when using Spanish as a pivot
language, but it may have helped the BLEU scores
in some cases, due to shared terminology. In the
manual annotation, text in Spanish was penalized.

7.3.3 Basque terminology
As explained in Section 2.2.1, the development set
and test set were the same, and this caused the
results to be higher than in a real setting.22 The
results in Table 15 show that most systems per-
formed with high accuracy and BLEU scores. El-
huyar_NLP was again the highest performer, with
Ixamed producing very low scores, perhaps due to
an error in their submission. We did not perform
manual evaluation for this subtask.

8 Conclusions

We presented the findings of the fifth edition of
the WMT biomedical task. This edition addressed
three new languages and test sets that included sci-
entific abstracts and terminologies. We explored
news ways of improving our tests and carried out
(as in previous editions of the task) both an auto-
matic and a manual validation. Results confirmed
the improvements of the runs and for some lan-
guage pairs, suggested that some runs were on a
par with or superior to the reference translations.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic.

Alexandre Lopes, Rodrigo Nogueira, Roberto Lotufo,
and Helio Pedrini. 2020. Lite Training Strategies for
Portuguese-English and English-Portuguese Transla-
tion. In Proceedings of the Fifth Conference on Ma-
chine Translation: Shared Task Papers.

Nitika Mathur, Timothy Baldwin, and Trevor Cohn.
2020. Tangled up in BLEU: Reevaluating the eval-
uation of automatic machine translation evaluation
metrics. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4984–4997, Online. Association for Computa-
tional Linguistics.

Prashant Nayak, Rejwanul Haque, and Andy Way.
2020. The ADAPT’s Submissions to the WMT20
Biomedical Translation Task. In Proceedings of the
Fifth Conference on Machine Translation: Shared
Task Papers.

Sumbal Naz, Sadaf Abdul Rauf, Noor e Hira, and Sami
Ul Haq. 2020. FJWU participation for the WMT20
Biomedical Translation Task. In Proceedings of the
Fifth Conference on Machine Translation: Shared
Task Papers.

Mariana Neves, Antonio Jimeno Yepes, Aurélie
Névéol, Cristian Grozea, Amy Siu, Madeleine Kit-
tner, and Karin Verspoor. 2018. Findings of the
WMT 2018 Biomedical Translation Shared Task:
Evaluation on MEDLINE test sets. In Proceedings
of the Third Conference on Machine Translation:
Shared Task Papers, pages 324–339. Association for
Computational Linguistics.

Mariana Neves, Antonio Jimeno Yepes, and Aurélie
Névéol. 2016. The scielo corpus: a parallel cor-
pus of scientific publications for biomedicine. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 2942–2948, Portorož, Slovenia. European
Language Resources Association (ELRA).

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
FAIR’s WMT19 news translation task submission.
In Proceedings of the Fourth Conference on Ma-
chine Translation (Volume 2: Shared Task Papers,
Day 1), pages 314–319, Florence, Italy. Association
for Computational Linguistics.

Aurélie Névéol, Antonio Jimeno Yepes, Mariana
Neves, and Karin Verspoor. 2018. Parallel Cor-
pora for the Biomedical Domain. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA.

Wei Peng, Jianfeng Liu, Minghan Wang, Liangyou Li,
Xupeng Meng, Yangm Hao, and Qun Liu. 2020.
Huawei’s Submissions to the WMT20 Biomedical
Translation Task. In Proceedings of the Fifth Confer-
ence on Machine Translation: Shared Task Papers.
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Abstract

This paper presents the results of the WMT20
Metrics Shared Task. Participants were asked
to score the outputs of the translation systems
competing in the WMT20 News Translation
Task with automatic metrics. Ten research
groups submitted 27 metrics, four of which
are reference-less “metrics”. In addition,
we computed five baseline metrics, includ-
ing SENTBLEU, BLEU, TER and CHRF us-
ing the SacreBLEU scorer. All metrics were
evaluated on how well they correlate at the
system-, document- and segment-level with
the WMT20 official human scores.

We present an extensive analysis on influence
of reference translations on metric reliability,
how well automatic metrics score human trans-
lations, and we also flag major discrepancies
between metric and human scores when eval-
uating MT systems. Finally, we investigate
whether we can use automatic metrics to flag
incorrect human ratings.

1 Introduction

The metrics shared task1 has been a key component
of WMT since 2008, serving as a way to validate
the use of automatic MT evaluation metrics and
drive the development of new metrics.

We evaluate automatic metrics that score MT out-
put by comparing them with a reference translation
generated by human translators, who are instructed
to translate “from scratch”, without post-editing
from MT. In addition, following last year’s collab-
oration with the WMT Quality Estimation (QE)
task, we also invited submissions of reference-free
metrics that compare MT outputs directly with the
source segment.

Similar to the last year’s editions, the source, ref-
erence texts, and MT system outputs for the metric

1http://www.statmt.org/wmt20/
metrics-task.html

task come from the News Translation Task (Bar-
rault et al., 2020, which we denote as Findings
2020). This year, the language pairs were English
↔ Chinese, Czech, German, Inuktitut, Japanese,
Polish, Russian and Tamil. We further included sys-
tems participating in the WMT parallel corpus fil-
tering task (Koehn et al., 2020): Khmer and Pashto
to English.2

All metrics are evaluated based on their agree-
ment with human evaluation. We evaluate met-
rics at three levels: comparing MT systems on
the entire testset, segments (either sentences or
short paragraphs), and new this year, documents.
We introduce document-level evaluation to incen-
tivize the development of metrics that are take into
account broader context of evaluated sentences
or paragraphs, following the recent emergence of
document-level MT techniques.

Multiple References This year, we have two in-
dependently generated references for English ↔
German, English↔ Russian, and Chinese→ En-
glish. This lets us investigate the influence of ref-
erences and the utility of multiple references. We
instructed participants to score MT systems against
the references individually as well as with all avail-
able references. In addition, we also supplied a set
of references for English to German, that were gen-
erated by asking linguists to paraphrase the WMT
reference as much as possible (Freitag et al., 2020).
These references are designed to minimise transla-
tionese in the reference which could lead to metrics
to be biased against systems that generate more
natural text.

2Note that the metrics task inputs also included MT sys-
tems translating between German ↔ French in the News
Translation Task, and English → Khmer and Pashto from
the WMT parallel corpus filtering task. We are unable to eval-
uate metrics on these language pairs as human evaluation is
not available
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Evaluating Human Translations Given that we
have multiple human translations, we asked partici-
pants to evaluate each human translation using the
other as a reference. For these language-pairs, at
least one of these human translations was included
in the human evaluation, so we can directly evalu-
ate metrics on how they rank the human translation
compared to the MT systems.

Additional Human Evaluation Finally, we
pose the question if some of the discrepancies be-
tween metrics and human scores can be explained
by bad human ratings. We rerun some of the human
evaluations by using the same template, but switch-
ing the rater pool from non-experts to professional
linguists. In particular, we rerun human evalua-
tion for a subset of translations where all metrics
disagree with the WMT human evaluation. This ex-
periment could reveal a new use case of automatic
metrics and indicate that automatic metrics can be
used to identify bad ratings in human evaluations.

We first give an overview of the task (Sec-
tion 2) and summarize the baseline (Section 3.1)
and submitted (Section 3.2) metrics. The results
for system-, segment-, and document-level evalua-
tion are provided in Sections 4, followed by a joint
discussion Section 5. Section 6 describes our re-
running of human evaluation with linguists before
we summarise our findings in Section 7.

We will release data, code and additional
visualisations in the metrics package to be
made available at http://www.statmt.org/

wmt20/results.html

2 Task Setup

This year, we provided task participants with one
test set for each examined language pair, i.e. a
set of source texts (which are commonly ignored
by MT metrics), corresponding MT outputs (these
are the key inputs to be scored) and one or more
reference translations.

In the system-level, metrics aim to correlate with
a system’s score which is an average over many
human judgments of segment translation quality
produced by the given system. In the segment-
level, metrics aim to produce scores that correlate
best with a human ranking judgment of two out-
put translations for a given source segment. And
finally, we also trial document-level evaluation this
year. (more on the manual quality assessment in
Section 2.3).

Segments are sentences for all language pairs
except English↔ German and Czech, and for En-
glish → Chinese, which do not contain sentence
boundaries and are translated and evaluated at the
paragraph-level.

Participants were free to choose which language
pairs and tracks (system/segment/document and
reference-based/reference-free) they wanted to take
part in.

2.1 Source and Reference Texts

The source and reference texts we use are mainly
sourced from this year’s WMT News Translation
Task (see Findings 2020).

The test set typically contains somewhere be-
tween 1000 and 2000 segments for each translation
direction, with fewer segments for some paragraph-
segmented test sets, and the English↔ Inuktitut
directions contain 2971 sentences.

All test sets are from the news domain, ex-
cept the English↔ Inuktitut datasets which have
a mix of in-domain text from Canadian Parlia-
ment Hansards (1566 sentences) and out-of-domain
news documents (1405 sentences).

We also have systems from the parallel corpus
filtering task which are from the Wikipedia domain
(also labelled newstest2020 in the metrics test set).
The Khmer→ English and Pashto→ English con-
tain 2320 and 2719 sentences respectively.

The reference translations provided in new-
stest2020 were created in the same direction as
the MT systems were translating. The exceptions
are English ↔ Inuktitut, Khmer → English and
Pashto→ English, where the testset is a mixture of
“source-original” and “target-original” texts.

2.2 System Outputs

The results of the Metrics Task are affected by the
actual set of MT systems participating in a given
translation direction. On one hand, if all systems
are very close in their translation quality, then even
humans will struggle to rank them. This in turn
will make the task for MT metrics very hard. On
the other hand, if the task includes a wide range of
systems of varying quality, correlating with humans
should be generally easier. One can also expect
that if the evaluated systems are of different types,
they will exhibit different error patterns and various
MT metrics can be differently sensitive to these
patterns.
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• Parallel Corpus Filtering Task. This task
required participants to submit scores for each
sentence in the provided noisy parallel texts.
These scores were used to subsample sentence
pairs, which was then used to train a neural
machine translation system (fairseq). This
was tested on a held-out subset of Wikipedia
translations.

• Regular News Tasks Systems. These are
all the other MT systems in the evaluation;
differing in whether they are trained only on
WMT provided data (“Constrained”, or “Un-
constrained”) as in the previous years.

With all language pairs, in addition to the sub-
missions to the task, the test sets also include trans-
lations from freely available web services (online
MT systems), which are deemed unconstrained.

Overall, the results are based on 208 systems
across 18 language pairs.

2.3 Manual Quality Assessment

Human scores were obtained using Direct Assess-
ment, where annotators are asked to rate the ad-
equacy of a translation compared to either the
source segment or a reference translation of the
same source. This year, human data was collected
from reference-based evaluations (or “monolin-
gual”) and reference-free evaluations (or “bilin-
gual”). The reference-based (monolingual) evalua-
tions were crowdsourced, while the reference-less
(bilingual) evaluations were mainly from MT re-
searchers who committed their time to contribute
to the manual evaluation for each submitted system
to the translation task.

Finally, following reports that MT system trans-
lations might seem adequate when scored in isola-
tion but not in context of the whole document, when
possible, the ratings are collected for each segment
with document context. Table 1 summarises the
details of how human annotations were collected
for various language-pairs at WMT 2020.

The English→ Inuktitut dataset, which contains
a mix of in-domain (Hansard) and out-of-domain
(news) data, was only evaluated on out-of-domain
segments, so for system level evaluation, we eval-
uate metric scores computed on the news domain
only as well as the full test set.

See Findings 2020 for details on human evalua-
tion.

2.3.1 System-level Golden Truth: DA
For the system-level evaluation, the collected con-
tinuous DA scores, standardized for each annotator,
are averaged across all assessed segments for each
MT system to produce a scalar rating for the sys-
tem’s performance.

The underlying set of assessed segments is dif-
ferent for each system. Thanks to the fact that the
system-level DA score is an average over many
judgments, mean scores are consistent and have
been found to be reproducible (Graham et al.,
2013). For more details see Findings 2020.

The score of an MT system is calculated as the
average rating of the segments translated by the
system.

2.3.2 Segment-level Golden Truth: DARR
Starting from Bojar et al. (2017), when WMT
fully switched to DA, we had to come up with
a solid golden standard for segment-level judge-
ments. Standard DA scores are reliable only when
averaged over sufficient number of judgments.3

Fortunately, when we have at least two DA
scores for translations of the same source input,
it is possible to convert those DA scores into a rel-
ative ranking judgement, if the difference in DA
scores allows conclusion that one translation is bet-
ter than the other. In the following, we denote these
re-interpreted DA judgements as “DARR”, to dis-
tinguish it clearly from the relative ranking (“RR”)
golden truth used in the past years.4

From the complete set of human assessments col-
lected for the News Translation Task, all possible
pairs of DA judgements attributed to distinct trans-
lations of the same source segment were converted
into DARR better/worse judgements. Distinct trans-
lations of the same source input whose DA scores
fell within 25 percentage points (which could have

3For segment-level evaluation, one would need to collect
many manual evaluations of the exact same segment as pro-
duced by each MT system. Such a sampling would be however
wasteful for the evaluation needed by WMT, so only some MT
systems happen to be evaluated for a given input segment. In
principle, we would like to return to DA’s standard segment-
level evaluation in future, where a minimum of 15 human
judgements of translation quality are collected per translation
and combined to get highly accurate scores for translations,
but this would increase annotation costs.

4Since the analogue rating scale employed by DA is
marked at the 0-25-50-75-100 points, we use 25 points as the
minimum required difference between two system scores to
produce DARR judgements. Note that we rely on judgements
collected from known-reliable volunteers and crowd-sourced
workers who passed DA’s quality control mechanism. Any in-
consistency that could arise from reliance on DA judgements
collected from low quality crowd-sourcing is thus prevented.
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Language pairs source/reference crowd/researcher document context

iu-en reference crowd No
*-en except iu-en reference crowd Yes
en-*, de-fr, fr-de source mix of crowd and researcher* Yes

Table 1: Direct Assessment at WMT20. Note that researcher annotations can contain some amount of professional
annotations

been deemed equal quality) were omitted from the
evaluation of segment-level metrics. Conversion of
scores in this way produced a large set of DARR
judgements for all language pairs, shown in Ta-
ble 2 due to combinatorial advantage of extracting
DARR judgements from all possible pairs of trans-
lations of the same source input. We see that only
km-en and ps-en can suffer from insufficient num-
ber of these simulated pairwise comparisons.

The DARR judgements serve as the golden stan-
dard for segment-level evaluation in WMT19.

2.3.3 Document-level Golden Truth: DARR
As segments were scored in document context, we
can compute document scores as the average hu-
man rating of the segments in the document. We
acknowledge that this may be an oversimplification.
First of all, we are hoping that human assessors
have indicated errors in document-level coherence
at at least one of the affected segments, but we
have no evidence that they actually do so. Second,
document-level phenomena are rather scarce and
averaging segment-level scores is likely to aver-
age out these sparse observations even if they were
marked at individual sentences. And lastly, in some
situations, lack of cross-sentence coherence can be
so critical that any strategy of composing sentence-
level scores is bound to downplay the severity of
the error, see e.g. Vojtěchová et al. (2019). At
the current point, we have nothing better to start
with but we believe that better techniques will be
proposed in the future.

Graham et al. (2017) recommend around av-
eraging 100 annotations per document to obtain
reliable document scores. Since the average num-
ber of assessments we have is much less than that,
we compute the ground truth in the same way as
the segment level evaluation.

We first compute document scores as the average
of all segment scores in the document, which we
denote as DOC-DA. We then generate DOC-DARR
pairs of better and worse translations of the same
source document when there is at least a 25 point

difference in the raw DOC-DA scores. See Table 3
for details.

In case of DARR (which we denote as DOC-
DARR), all language pairs suffer from insufficient
number of these simulated pairwise comparisons.

Similar to segment-level evaluation, we use the
Kendall Tau-like formula (Section 2) to evaluate
metric agreement with humans on the generated
pairwise DARR judgements.

Note that we do not include any human-
translated segments in this evaluation. In addition,
iu-en is excluded from document-level evaluation
because its DA judgements were collected for iso-
lated sentences.

3 Metrics

3.1 Baselines
We agree with the call to use SacreBLEU (Post,
2018) as the standard MT evaluation scorer. We no
longer report scores of the metrics from the Moses
scorer, which requires tokenized text. We use the
following metrics from the SacreBLEU scorer as
baselines, with the default parameters:

3.1.1 SacreBLEU baselines
• BLEU (Papineni et al., 2002a) is the preci-

sion of n-grams of the MT output compared
to the reference, weighted by a brevity
penalty to punish overly short translations.
BLEU+case.mixed+lang.LANGPAIR-
+numrefs.1+smooth.exp+tok.13a-
+version.1.4.14

We run SacreBLEU with the
--sentence-score option to obtain
sentence scores for SENTBLEU; this uses the
same parameters as BLEU. Although not it’s
intended use, we also compute system- and
document-level scores for SENTBLEU as the
mean segment score.

• TER (Snover et al., 2006) measures
the number of edits (insertions, dele-
tions, shifts and substitutions) required
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DA>1 Ave DA pairs DARR

cs-en 664 11.3 39187 14018
de-en 785 11.0 43669 16584
iu-en 2620 4.5 26120 8162
ja-en 993 9.0 36169 15193
pl-en 1001 11.8 64670 21121
ru-en 991 10.0 44664 14024
ta-en 997 7.6 26662 12789
zh-en 2000 13.8 177492 62586
km-en 1963 3.2 8295 3706
ps-en 2204 3.1 7994 3507

en-cs 1418 10.3 68587 21121
en-de 1418 6.9 30567 9339
en-iu 1268 7.9 35384 13159
en-ja 1000 9.6 41576 12830
en-pl 1000 10.6 52003 17689
en-ru 1971 5.7 28274 8330
en-ta 1000 7.9 28974 9087
en-zh 1418 10.6 72581 12652

Table 2: Segment-level: Number of judgements for DA
converted to DARR data; “DA>1” is the number of
source input segments in the manual evaluation where
at least two translations of that same source input seg-
ment received a DA judgement; “Ave” is the average
number of translations with at least one DA judgement
available for the same source input segment; “DA pairs”
is the number of all possible pairs of translations of
the same source input resulting from “DA>1”; and
“DARR” is the number of DA pairs with an absolute
difference in DA scores greater than the 25 percentage
point margin.

to transform the MT output to the
reference. TER+lang.LANGPAIR-
+tok.tercom-nonorm-punct-
noasian-uncased+version.1.4.14

• CHRF (Popović, 2015) uses character
n-grams instead of word n-grams to com-
pare the MT output with the reference 5.
Version string: chrF2+lang.LANGPAIR-
+numchars.6+space.false-
+version.1.4.14.

3.1.2 CHRF++
CHRF++ (Popović, 2017) includes word unigrams
and bigrams in addition to character ngrams. We
ran the original Python implementation of the met-

5Note that the SacreBLEU scorer does not yet implement
CHRF with multiple references

DOC-DA>1 Ave DOC-DA pairs DOC-DARR

cs-en 102 11.4 6041 1424
de-en 118 11.0 6579 1866
ja-en 80 8.9 2850 790
pl-en 62 11.8 4012 635
ru-en 91 9.9 4077 753
ta-en 82 7.5 2126 684
zh-en 155 13.8 13897 3085

en-cs 130 10.2 6162 1442
en-de 130 6.9 2844 669
en-iu 35 7.8 969 203
en-ja 63 9.7 2686 469
en-pl 63 10.7 3359 677
en-ru 122 5.7 1768 387
en-ta 63 7.9 1834 389
en-zh 130 10.6 6667 651

Table 3: Document-level: Number of judgements for
DOC-DA converted to DOC-DARR data; “DOC-DA>1”
is the number of source input documents in the manual
evaluation where we have DOC-DA scores for at least
two translations of that same source input documents;
“Ave” is the average number of translations with at least
one DOC-DA judgement available for the same source
input document; “DOC-DA pairs” is the number of all
possible pairs of translations of the same source input
resulting from “DOC-DA>1”; and “DOC-DARR” is the
number of DOC-DA pairs with an absolute difference
in DOC-DA scores greater than the 25 percentage point
margin.
Note that iu-en is not included as document-context
was not available for this evaluation.

ric 6 with the default parameters --ncorder 6
--nwworder 2 --beta 2

3.2 Submissions

The rest of this section summarizes participating
metrics.

3.2.1 BERT-BASE-L2, BERT-LARGE-L2,
MBERT-L2

The three baselines were obtained by fine-tuning
BERT (Devlin et al., 2019) on the ratings of WMT
Metrics years 2015 to 2018, using a regression
loss. What distinguishes the metrics is the ini-
tial BERT checkpoint: BERT-BASE-L2 uses a
12-layer Transformer architecture pre-trained on
English data, MBERT-L2 is similar but trained

6chrF++.py available at https://github.com/
m-popovic/chrF
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on Wikipedia data in 102 languages, and BERT-
LARGE-L2 is English-only with 24 layers.

3.2.2 BLEURT, BLEURT-EXTENDED,
YISI-COMBI, BLEURT-YISI-COMBI

BLEURT (Sellam et al., 2020a) is a BERT-based
regression model trained twice: first on million syn-
thetic pairs obtained by random perturbations, then
on ratings from years 2015 to 2019 of the WMT
Workshop. BLEURT-EXTENDED (Sellam et al.,
2020b) is a BERT-based regression model trained
on human ratings of years 2015 to 2019 of the
WMT Workshop, combined with BERT-Chinese
for to-Chinese sentence pairs. The main checkpoint
is a 24-layer Transformer, trained on a mixture of
Wikipedia articles and training data from WMT
Newstest in 20 languages.

YISI-COMBI: We are using YISI-1 on an
mBERT model that is fine tuned on WMT data
for single reference submissions. We are using
aggregating internal scores in YISI over different
references for the final output for multi reference
submission.

BLEURT-COMBI: We are using the same output
as YISI-COMBI for single reference submissions.
We are mixing YISI-1, YISI-2 and BLEURT
scores for different references for the multi ref-
erence submission.

3.2.3 CHARACTER
CHARACTER (Wang et al., 2016), identical to the
2016 setup, is a character-level metric inspired by
the commonly applied translation edit rate (TER).
It is defined as the minimum number of character
edits required to adjust a hypothesis, until it com-
pletely matches the reference, normalized by the
length of the hypothesis sentence. CHARACTER
calculates the character-level edit distance while
performing the shift edit on word level. Unlike
the strict matching criterion in TER, a hypothe-
sis word is considered to match a reference word
and could be shifted, if the edit distance between
them is below a threshold value. The Levenshtein
distance between the reference and the shifted hy-
pothesis sequence is computed on the character
level. In addition, the lengths of hypothesis se-
quences instead of reference sequences are used
for normalizing the edit distance, which effectively
counters the issue that shorter translations normally
achieve lower TER. Similarly to other character-
level metrics, CHARACTER is generally applied
to nontokenized outputs and references, which also

holds for this year’s submission with one exception.
This year tokenization was carried out for en-ru
hypotheses and references before calculating the
scores, since this results in large improvements in
terms of correlations. For other language pairs, no
tokenizer was used for pre-processing.

3.2.4 COMET
COMET* metrics (Rei et al., 2020b) were build us-
ing the Estimator model or the Translation Ranking
model proposed in Rei et al. (2020a). Those neural
models use XLM-RoBERTa to encode source, MT
hypothesis and reference in the same cross-lingual
space and then are optimised towards different ob-
jectives. COMET (main metric) is an Estimator
model that regresses on Direct Assessments (DA)
from 2017 to 2019 and COMET-2R is a variant of
COMET (main metric) that was trained to handle
multiple references at inference time. COMET-
HTER and COMET-MQM follow the same archi-
tecture but regress on Human-mediated Translation
Edit Rate (HTER) and a proprietary metric com-
pliant with the Multidimensional Quality Metrics
framework (MQM), respectively. COMET-Rank
uses the Translation Ranking architecture to di-
rectly optimize the distance between “better“ hy-
pothesis and the respective source and reference,
while pushing the “worse“ hypothesis away. This
Translation Ranking model was directly optimised
on DA relative-ranks from 2017 to 2019. Finally,
COMET-QE removes the reference at input and
proportionately reduces the dimensions of the esti-
mator network to accommodate the reduced input.

3.2.5 EED
EED (Stanchev et al., 2019) is a character-based
metric, which builds upon CDER. It is defined as
the minimum number of operations of an exten-
sion to the conventional edit distance containing a
“jump” operation. The edit distance operations (in-
sertions, deletions and substitutions) are performed
at the character level and jumps are performed
when a blank space is reached. Furthermore, the
coverage of multiple characters in the hypothesis is
penalised by the introduction of a coverage penalty.
The sum of the length of the reference and the cov-
erage penalty is used as the normalisation term.

3.2.6 MEE
MEE (Ananya Mukherjee and Sharma, 2020) is
an automatic evaluation metric that leverages the
similarity between embeddings of words in candi-
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date and reference sentences to assess translation
quality. Unigrams are matched based on their sur-
face forms, root forms and meanings which aids to
capture lexical, morphological and semantic equiv-
alence. Semantic evaluation is achieved by using
pretrained fasttext embeddings provided by Face-
book to calculate the word similarity score between
the candidate and the reference words. MEE com-
putes evaluation score using three modules namely
exact match, root match and synonym match. In
each module, fmean-score is calculated using har-
monic mean of precision and recall by assigning
more weight to recall. The final translation score is
obtained by taking average of fmean-scores from
individual modules.

3.2.7 ESIM
Enhanced Sequential Inference Model (Chen et al.,
2017) is a neural model proposed for Natural Lan-
guage Inference that has been adapted for MT
evaluation by Mathur et al. (2019). It uses cross-
sentence attention and sentence matching heuris-
tics to generate a representation of the translation
and the reference, which is fed to a feedforward
regressor. This year’s scores were submitted by
Bawden et al. (2020) as part of the submission on
PARESIM.

3.3 OPENKIWI-BERT, OPENKIWI-XLMR

OPENKIWI-BERT and OPENKIWI-XLMR (Ke-
pler et al., 2019) are state of the art Quality Estima-
tion models developed for the WMT20 QE shared
task and are trained with WMT Metrics data from
2017 to 2019.

3.3.1 PARBLEU, PARCHRF++, PARESIM
PARBLEU, PARCHRF++, and PARESIM (Baw-
den et al., 2020) are variants of their respective
core metrics computed against the provided hu-
man reference and a set of automatically gener-
ated paraphrases. PARBLEU used five paraphrases,
while the other two used only one. Both BLEU and
CHRF++ have in-built support for multiple refer-
ences. For ESIM, we calculate the score for each
reference separately and then average them to get
the final score.

3.3.2 PRISM

PRISM (Thompson and Post, 2020) is a many-
many multilingual neural machine translation sys-
tem trained on data for 39 language pairs, with
data derived largely from WMT and Wikimatrix. It

casts machine translation evaluation as a zero-shot
paraphrasing task, producing segment-level scores
by force-decoding between a system output and
a reference, in both directions, and averaging the
model scores. System-level scores are produced
by averaging segment-level ones. For evaluation
in Inuktikut, Khmer, Pashto, and Tamil, we used
a “Prism44” model that was retrained after adding
WMT-provided data for these languages to its orig-
inal training data set. All other languages were
evaluated with the original “Prism39” model.

3.3.3 SWSS+METEOR
SWSS (Semantically Weighted Sentence Similar-
ity, Xu et al. 2020) is an approach to extracting
semantic core words, which are words that carry
important semantic meanings in sentences, and us-
ing them in MT evaluation. It uses UCCA (Uni-
versal Conceptual Cognitive Annotation), a seman-
tic representation framework, to identify semantic
core words, and then calculates sentence similar-
ity scores on the overlap of semantic core words
of sentence pairs. Taking sentence-level seman-
tic structure information into consideration, SWSS
can improve the performance of lexical metrics
when combined with them. The submitted metric
(SWSS+METEOR) is a weighted combination of
SWSS and Meteor.

3.3.4 YISI-0, YISI-1, YISI-2
YISI (Lo, 2019, 2020) is a unified semantic MT
quality evaluation and estimation metric for lan-
guages with different levels of available re-sources.
YISI-1 is a reference-based MT evaluation met-
ric that measures the semantic similarity between
a ma-chine translation and human references by
aggregating the idf-weighted lexical semantic sim-
ilarities based on the contextual embeddings ex-
tracted from pretrained language models (BERT,
CamemBERT, RoBERTa, XLM, XLM-RoBERTa,
etc.) and optionally incorporating shallow seman-
tic structures (denoted as YISI-1 SRL; not partic-
ipating this year). YISI-0 is the degenerate ver-
sion of YISI-1 that is ready-to-deploy to any lan-
guage. It uses longest common character substring
to measure the lexical similarity. YISI-2 (Lo and
Larkin, 2020) is the bilingual, reference-less ver-
sion for MT quality estimation, which uses bilin-
gual mappings of the contextual embeddings ex-
tracted from pretrained language models (XLM
or XLM-RoBERTa) to evaluate the crosslingual
lexical semantic similarity between the input and
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MT output. Like YISI-1, YISI-2 can exploit shal-
low semantic structures as well (denoted as YISI-
2 SRL; does not participate this year).

3.4 Pre-processing
Since some metrics, such as BLEU, aim to achieve
a strong positive correlation with human assess-
ment, while error metrics, such as TER, aim for a
strong negative correlation, in previous years we
compare metrics via the absolute value |r| of a
given metric’s correlation with human assessment.
However, this can mask instances of true negative
correlation for metrics that aim for a positive corre-
lation (and vice-versa).

For system, document and segment level scores,
we reverse the sign of the score of error met-
rics prior to the comparison with human scores,
whether on the system, document or segment level:
higher scores have to indicate better translation
quality.

4 Results

4.1 System-Level Evaluation
As in previous years, we employ the Pearson cor-
relation (r) as the main evaluation measure for
system-level metrics. The Pearson correlation is as
follows:

r =

∑n
i=1(Hi −H)(Mi −M)√∑n

i=1(Hi −H)2
√∑n

i=1(Mi −M)2
(1)

where Hi are human assessment scores of all sys-
tems in a given translation direction, Mi are the
corresponding scores as predicted by a given met-
ric. H and M are their means, respectively.

As recommended by Graham and Baldwin
(2014), we employ Williams significance test
(Williams, 1959) to identify differences in correla-
tion that are statistically significant. Williams test
is a test of significance of a difference in dependent
correlations and therefore suitable for evaluation
of metrics. Correlations not significantly outper-
formed by any other metric for the given language
pair are highlighted in bold in all the results tables
that show Pearson correlation of metric and human
scores.

Pearson correlation is ideal for reporting whether
metric scores have the same trend as human scores.
In practice, we use metrics to make decisions com-
paring MT systems, and Kendall’s Tau appears to
be more close to this use case, as it directly checks

whether the metric ordering of a pair of MT sys-
tems agrees with the human ordering. However,
unlike Pearson correlation, it is not sensitive to
whether the metric score differences correspond to
the human score differences. We stay with Pearson
correlation for the official results, but also report
Kendall’s Tau correlation in the appendix.

The calculation of Pearson correlation coeffi-
cient is dependent on the mean, which is very sen-
sitive to outliers. So if we have systems whose
scores are far away from the rest of the systems,
the presence of these “outlier” systems can give a
misleadingly high impression of the correlations,
and potentially change ranking of metrics. To avoid
this, we also report correlations over non-outlier
systems only.

To remove outliers, we are guided by the robust
outlier detection method proposed for MT metric
evaluation by Mathur et al. (2020). This method,
recommended by the statistics literature (Iglewicz
and Hoaglin, 1993; Rousseeuw and Hubert, 2011;
Leys et al., 2013) depends on the median and the
median absolute deviation (MAD) which is the me-
dian of the absolute difference between each point
and the median. The method removes systems
whose human scores are greater than 2.5 MAD
away from the median.

The cutoff of 2.5 is subjective, and Leys et al.
(2013) suggest the guidelines of using 3 (very
conservative), 2.5 (moderately conservative) or 2
(poorly conservative), and recommends 2.5. For
some language pairs, we override the 2.5 cutoff for
systems that are close to the cutoff. We give exam-
ples in Section 5, and list all identified outliers in
Table 15 in the Appendix.

4.1.1 System-Level Results
Tables 5 and 6 provide the system-level correlations
of metrics. These tables include results for all MT
systems, and in cases where we detect outliers, we
also report correlation without outliers.

This year, we also carry out an extended analysis
of the impact of (multiple) human references, see
the following paragraphs.

Scoring Human Translation In this section, we
investigate how well the metric submissions score
human translations. We have five language pairs
where two reference translations were provided by
WMT. The manual DA scoring of News Translation
Task included all the out-of-English human refer-
ences in the evaluation along with the MT systems.

696



cs
-e

n
de

-e
n

ja
-e

n
pl

-e
n

ru
-e

n
ta

-e
n

zh
-e

n
iu

-e
n

km
-e

n
ps

-e
n

10
9

7
13

10
12

15
9

7
6

S
E

N
T

B
L

E
U

0.
84

4
0.

80
0

0.
97

8
0.

78
6

0.
97

4
0.

85
1

0.
50

2
0.

28
4

0.
91

6
0.

83
3

0.
92

5
0.

82
9

0.
94

8
0.

95
0

0.
64

9
0.

46
9

0.
96

9
0.

88
8

B
L

E
U

0.
85

1
0.

80
0

0.
98

5
0.

77
8

0.
96

9
0.

82
6

0.
54

9
0.

35
5

0.
88

4
0.

76
1

0.
91

6
0.

80
7

0.
95

6
0.

95
7

0.
56

9
0.

34
8

0.
96

9
0.

88
8

T
E

R
0.

84
5

0.
78

3
0.

99
3

0.
76

6
0.

97
4

0.
75

2
0.

58
6

0.
34

6
0.

90
4

0.
82

9
0.

80
5

0.
79

5
0.

95
6

0.
91

1
0.

73
3

0.
61

6
0.

97
3

0.
93

5
C

H
R

F
+

+
0.

86
7

0.
80

4
0.

99
7

0.
69

9
0.

97
4

0.
87

1
0.

53
8

0.
32

8
0.

89
4

0.
83

3
0.

95
3

0.
83

0
0.

97
5

0.
95

5
0.

72
6

0.
39

2
0.

98
3

0.
90

0
C

H
R

F
0.

87
2

0.
80

6
0.

99
7

0.
68

7
0.

96
8

0.
86

1
0.

52
8

0.
31

2
0.

89
0

0.
83

1
0.

95
1

0.
82

8
0.

97
6

0.
95

4
0.

72
9

0.
33

7
0.

97
8

0.
89

8
PA

R
B

L
E

U
0.

83
4

0.
77

4
0.

98
6

0.
83

8
0.

97
0

0.
83

3
0.

56
2

0.
34

2
0.

87
7

0.
74

4
0.

90
8

0.
80

1
0.

95
8

0.
95

3
0.

62
4

0.
39

8
0.

97
1

0.
93

9
PA

R
C

H
R

F
+

+
0.

86
5

0.
81

0
0.

99
8

0.
70

8
0.

97
4

0.
87

7
0.

55
1

0.
34

7
0.

88
5

0.
82

3
0.

94
2

0.
82

5
0.

97
6

0.
95

6
0.

72
0

0.
29

6
0.

98
5

0.
89

9
C

H
A

R
A

C
T

E
R

0.
84

4
0.

81
2

0.
99

8
0.

68
7

0.
97

0
0.

89
5

0.
52

2
0.

32
5

0.
92

7
0.

86
9

0.
96

5
0.

88
0

0.
96

4
0.

95
0

0.
76

3
0.

41
0

0.
97

7
0.

84
1

E
E

D
0.

88
4

0.
83

8
0.

99
7

0.
75

2
0.

97
4

0.
90

4
0.

53
8

0.
29

9
0.

92
6

0.
87

2
0.

95
8

0.
86

2
0.

95
6

0.
93

2
0.

82
1

0.
58

7
0.

99
0

0.
93

0
Y

IS
I-

0
0.

87
6

0.
82

5
0.

99
8

0.
78

6
0.

97
2

0.
86

7
0.

45
3

0.
20

7
0.

93
8

0.
87

4
0.

96
8

0.
86

1
0.

95
6

0.
91

8
0.

83
1

0.
56

3
0.

98
6

0.
93

2
S

W
S

S
+

M
E

T
E

O
R

−
−

0.
97

8
0.

91
9

0.
47

2
0.

21
2

0.
92

5
0.

87
6

0.
96

7
0.

86
2

0.
95

9
0.

92
6

0.
76

6
0.

54
5

0.
99

0
0.

94
6

M
E

E
0.

86
1

0.
82

2
0.

99
5

0.
71

2
0.

98
2

0.
90

0
0.

46
4

0.
29

5
0.

92
7

0.
87

8
0.

95
0

0.
83

5
0.

95
2

0.
94

8
0.

77
1

0.
56

2
0.

97
0

0.
87

8
P

R
IS

M
0.

81
8

0.
72

0
0.

99
8

0.
77

5
0.

97
4

0.
86

9
0.

50
2

0.
26

9
0.

90
8

0.
83

9
0.

89
8

0.
78

8
0.

95
7

0.
94

5
0.

83
3

0.
61

6
0.

95
0

0.
96

6
Y

IS
I-

1
0.

83
2

0.
74

6
0.

99
8

0.
78

3
0.

98
2

0.
86

8
0.

54
3

0.
31

6
0.

91
5

0.
83

3
0.

92
5

0.
79

7
0.

96
1

0.
94

2
0.

83
4

0.
59

0
0.

97
7

0.
95

3
B

E
R

T-
B

A
S

E
-L

2
0.

77
5

0.
69

3
0.

99
7

0.
79

1
0.

97
1

0.
78

9
0.

55
2

0.
32

8
0.

91
9

0.
83

6
0.

90
9

0.
74

6
0.

96
7

0.
92

9
0.

70
4

0.
14

5
0.

96
7

0.
94

5
B

E
R

T-
L

A
R

G
E

-L
2

0.
78

4
0.

69
5

0.
99

0
0.

80
0

0.
97

4
0.

78
4

0.
52

0
0.

28
2

0.
92

5
0.

84
3

0.
90

1
0.

76
0

0.
96

2
0.

92
8

0.
74

4
0.

21
1

0.
95

9
0.

95
0

M
B

E
R

T-
L

2
0.

79
8

0.
71

5
0.

99
5

0.
82

4
0.

96
9

0.
81

1
0.

55
5

0.
30

2
0.

90
8

0.
80

5
0.

88
7

0.
74

0
0.

95
9

0.
93

5
0.

83
7

0.
53

0
0.

98
0

0.
93

8
B

L
E

U
R

T
0.

79
2

0.
72

5
0.

99
6

0.
77

0
0.

97
8

0.
82

0
0.

59
1

0.
37

1
0.

92
4

0.
84

4
0.

90
6

0.
76

8
0.

96
6

0.
93

1
0.

77
1

0.
32

0
0.

98
4

0.
95

5
B

L
E

U
R

T-
E

X
T

E
N

D
E

D
0.

77
1

0.
66

8
0.

98
5

0.
81

8
0.

96
1

0.
77

2
0.

55
1

0.
29

8
0.

90
0

0.
79

7
0.

89
7

0.
74

3
0.

94
5

0.
93

1
0.

78
9

0.
35

9
0.

98
5

0.
94

2
E

S
IM

0.
79

0
0.

71
6

0.
99

8
0.

80
8

0.
98

3
0.

82
2

0.
59

1
0.

35
8

0.
92

8
0.

83
4

0.
88

5
0.

80
1

0.
96

3
0.

91
0

0.
80

7
0.

51
4

0.
92

9
0.

92
9

PA
R

E
S

IM
-1

0.
78

8
0.

71
2

0.
99

8
0.

83
5

0.
98

3
0.

81
9

0.
59

1
0.

36
3

0.
92

6
0.

82
8

0.
88

5
0.

79
7

0.
96

3
0.

91
0

0.
80

0
0.

49
5

0.
92

9
0.

92
9

C
O

M
E

T
0.

78
3

0.
69

4
0.

99
8

0.
77

3
0.

96
4

0.
82

8
0.

59
1

0.
34

5
0.

92
3

0.
83

6
0.

88
0

0.
76

4
0.

95
2

0.
93

1
0.

85
2

0.
60

5
0.

97
1

0.
94

1
C

O
M

E
T-

2R
0.

77
7

0.
69

7
0.

99
8

0.
77

2
0.

96
4

0.
81

8
0.

58
4

0.
33

2
0.

92
4

0.
84

3
0.

88
1

0.
77

0
0.

94
9

0.
92

8
0.

87
2

0.
64

4
0.

97
0

0.
94

9
C

O
M

E
T-

H
T

E
R

0.
73

8
0.

66
1

0.
99

5
0.

76
7

0.
91

2
0.

70
2

0.
44

6
0.

23
1

0.
86

7
0.

74
1

0.
72

6
0.

59
5

0.
80

9
0.

87
3

0.
77

0
0.

46
4

0.
90

1
0.

86
2

C
O

M
E

T-
M

Q
M

0.
72

8
0.

61
2

0.
99

1
0.

68
4

0.
90

6
0.

70
7

0.
42

4
0.

22
2

0.
85

8
0.

74
6

0.
76

7
0.

61
7

0.
78

4
0.

86
2

0.
84

1
0.

63
1

0.
91

4
0.

88
0

C
O

M
E

T-
R

A
N

K
0.

70
5

0.
53

4
0.

96
4

0.
75

7
0.

92
3

0.
79

3
0.

48
3

0.
28

4
0.

86
8

0.
73

2
0.

78
7

0.
66

4
0.

87
7

0.
90

9
0.

15
8

0.
21

4
0.

91
1

0.
85

5
B

A
Q

D
Y

N
−

−
−

−
−

−
0.

95
6

0.
92

8
−

−
−

B
A

Q
S

TA
T

IC
−

−
−

−
−

−
0.

96
0

0.
93

3
−

−
−

C
O

M
E

T-
Q

E
0.

75
5

0.
62

2
0.

93
9

0.
80

5
0.

89
2

0.
58

5
0.

44
7

0.
21

8
0.

88
3

0.
77

3
0.

79
5

0.
67

2
0.

84
7

0.
88

7
0.

68
5

0.
66

1
0.

89
6

0.
83

2
O

P
E

N
K

IW
I-

B
E

R
T

0.
72

6
0.

69
8

0.
98

9
0.

74
1

0.
73

5
0.

54
6

0.
35

5
0.

18
7

0.
86

2
0.

69
5

0.
64

5
0.

46
9

0.
62

5
0.

77
4

-0
.1

26
-0

.6
71

0.
75

1
0.

75
3

O
P

E
N

K
IW

I-
X

L
M

R
0.

76
0

0.
68

0
0.

99
5

0.
70

1
0.

93
1

0.
71

4
0.

44
2

0.
17

1
0.

85
9

0.
69

7
0.

79
2

0.
65

9
0.

90
5

0.
89

9
0.

27
1

-0
.5

77
0.

88
0

0.
86

5
Y

IS
I-

2
0.

76
4

0.
64

0
0.

98
8

0.
40

4
0.

97
1

0.
77

6
0.

43
7

0.
23

0
0.

82
5

0.
81

4
0.

84
9

0.
76

1
0.

96
4

0.
93

3
0.

67
6

0.
37

1
0.

79
0

0.
94

2

Ta
bl

e
5:

Pe
ar

so
n

co
rr

el
at

io
n

of
to

-E
ng

lis
h

sy
st

em
-l

ev
el

m
et

ri
cs

w
ith

D
A

hu
m

an
as

se
ss

m
en

to
ve

rM
T

sy
st

em
s

us
in

g
th

e
ne

w
st

es
t2

02
0

re
fe

re
nc

es
.F

or
la

ng
ua

ge
pa

ir
s

th
at

co
nt

ai
n

ou
tli

er
sy

st
em

s,
w

e
al

so
sh

ow
co

rr
el

at
io

n
af

te
rr

em
ov

in
g

ou
tli

er
sy

st
em

s
(“

-o
ut

”)
.C

or
re

la
tio

ns
of

m
et

ri
cs

no
ts

ig
ni

fic
an

tly
ou

tp
er

fo
rm

ed
by

an
y

ot
he

rf
or

th
at

la
ng

ua
ge

pa
ir

ar
e

hi
gh

lig
ht

ed
in

bo
ld

.

697



en
-c

s
en

-d
e

en
-j

a
en

-p
l

en
-r

u
en

-t
a

en
-z

h
en

-i
u F

U
L

L
en

-i
u N

E
W

S#

A
ll

-o
ut

A
ll

-o
ut

A
ll

-o
ut

A
ll

-o
ut

A
ll

A
ll

-o
ut

A
ll

A
ll

-o
ut

A
ll

-o
ut

12
10

14
11

11
9

14
11

9
15

12
12

11
8

11
8

S
E

N
T

B
L

E
U

0.
84

0
0.

43
6

0.
93

4
0.

82
3

0.
94

6
0.

97
6

0.
95

0
0.

77
2

0.
98

1
0.

88
1

0.
85

2
0.

92
7

0.
12

9
0.

04
7

0.
07

5
0.

17
2

B
L

E
U

0.
82

5
0.

39
0

0.
92

8
0.

82
5

0.
94

5
0.

98
0

0.
94

3
0.

74
3

0.
98

0
0.

88
0

0.
82

9
0.

92
8

0.
16

3
0.

13
1

0.
07

4
0.

11
1

T
E

R
0.

81
4

0.
33

9
0.

94
1

0.
84

8
0.

29
7

0.
80

1
0.

89
3

0.
55

3
0.

06
4

0.
87

0
0.

88
3

-0
.2

13
0.

38
4

0.
13

3
0.

35
7

0.
08

3
C

H
R

F
+

+
0.

83
3

0.
34

9
0.

95
8

0.
85

0
0.

95
2

0.
94

5
0.

95
6

0.
78

3
0.

98
3

0.
92

9
0.

88
0

0.
87

8
0.

32
8

0.
12

8
0.

31
5

0.
09

8
C

H
R

F
0.

82
6

0.
31

3
0.

96
2

0.
86

2
0.

95
1

0.
96

4
0.

95
7

0.
79

3
0.

98
2

0.
93

7
0.

89
0

0.
92

3
0.

35
0

0.
12

2
0.

33
6

0.
09

1
PA

R
B

L
E

U
0.

87
0

0.
54

3
0.

91
0

0.
77

4
0.

86
9

0.
81

3
0.

94
8

0.
76

0
0.

95
9

0.
87

1
0.

84
9

0.
96

2
0.

19
4

0.
46

4
0.

12
6

0.
30

6
PA

R
C

H
R

F
+

+
0.

86
0

0.
43

8
0.

95
7

0.
84

5
0.

95
5

0.
95

1
0.

95
3

0.
81

8
0.

97
5

−
0.

94
8

−
−

C
H

A
R

A
C

T
E

R
0.

80
7

0.
26

9
0.

96
1

0.
86

8
0.

95
1

0.
93

6
0.

93
5

0.
72

6
0.

96
1

0.
95

7
0.

85
1

0.
90

5
0.

50
3

0.
00

8
0.

51
5

0.
12

1
E

E
D

0.
81

7
0.

27
1

0.
96

5
0.

86
9

0.
95

5
0.

96
5

0.
96

2
0.

78
9

0.
98

0
0.

95
9

0.
91

3
0.

92
8

0.
51

9
0.

04
3

0.
48

3
0.

12
2

M
E

E
0.

87
5

0.
49

5
0.

95
4

0.
82

0
−

0.
95

2
0.

73
3

0.
72

4
0.

90
6

0.
86

1
−

0.
28

7
0.

09
4

0.
24

2
0.

11
3

Y
IS

I-
0

0.
79

7
0.

27
0

0.
95

3
0.

88
9

0.
96

7
0.

97
2

0.
95

3
0.

78
3

0.
97

1
0.

92
9

0.
89

7
0.

36
2

0.
52

5
0.

01
5

0.
50

5
0.

09
5

P
R

IS
M

0.
94

9
0.

80
5

0.
95

8
0.

85
1

0.
93

2
0.

92
1

0.
95

8
0.

74
2

0.
72

4
0.

86
3

0.
45

2
0.

22
1

0.
95

7
-0

.0
43

0.
94

5
0.

08
8

Y
IS

I-
1

0.
92

2
0.

66
4

0.
97

1
0.

88
7

0.
96

9
0.

96
7

0.
96

4
0.

71
4

0.
92

6
0.

97
3

0.
90

9
0.

95
9

0.
55

4
-0

.2
17

0.
52

3
-0

.0
14

Y
IS

I-
C

O
M

B
I

−
0.

97
1

0.
86

8
−

−
−

−
−

−
−

B
L

E
U

R
T-

Y
IS

I-
C

O
M

B
I

−
0.

97
1

0.
86

8
−

−
−

−
−

−
−

M
B

E
R

T-
L

2
0.

94
6

0.
78

2
0.

97
0

0.
86

1
0.

97
7

0.
96

9
0.

97
6

0.
77

5
0.

94
6

0.
94

4
0.

83
4

0.
93

4
−

−
B

L
E

U
R

T-
E

X
T

E
N

D
E

D
0.

98
9

0.
96

0
0.

96
9

0.
87

0
0.

94
4

0.
95

3
0.

98
2

0.
82

8
0.

98
0

0.
94

0
0.

81
4

0.
92

8
0.

82
3

0.
12

2
0.

76
2

0.
15

5
E

S
IM

0.
90

8
0.

57
5

0.
97

9
0.

89
4

0.
99

3
0.

98
1

0.
96

9
0.

69
8

0.
96

7
0.

93
7

0.
83

3
0.

97
2

0.
81

4
0.

36
5

0.
76

0
0.

41
8

PA
R

E
S

IM
-1

0.
91

9
0.

63
5

0.
97

4
0.

88
6

0.
98

9
0.

97
1

0.
96

8
0.

70
5

0.
96

4
0.

93
7

0.
83

3
0.

98
3

0.
81

4
0.

36
5

0.
76

0
0.

41
8

C
O

M
E

T
0.

97
8

0.
92

6
0.

97
2

0.
86

3
0.

97
4

0.
96

9
0.

98
1

0.
80

0
0.

92
5

0.
94

4
0.

79
8

0.
00

7
0.

86
0

0.
02

8
0.

85
8

0.
15

2
C

O
M

E
T-

2R
0.

98
3

0.
94

2
0.

97
2

0.
86

9
0.

98
6

0.
97

8
0.

98
2

0.
80

3
0.

87
2

0.
95

9
0.

85
2

-0
.0

66
0.

84
8

-0
.0

08
0.

86
7

0.
17

7
C

O
M

E
T-

H
T

E
R

0.
97

6
0.

91
7

0.
95

1
0.

85
2

0.
98

9
0.

97
4

0.
97

4
0.

76
3

0.
80

3
0.

92
5

0.
68

1
-0

.0
73

0.
90

0
0.

14
2

0.
88

8
0.

09
2

C
O

M
E

T-
M

Q
M

0.
97

4
0.

91
0

0.
88

1
0.

84
0

0.
97

4
0.

96
5

0.
96

7
0.

76
6

0.
78

8
0.

91
0

0.
64

1
0.

08
4

0.
87

0
0.

12
9

0.
86

7
0.

17
2

C
O

M
E

T-
R

A
N

K
0.

95
9

0.
86

8
0.

87
7

0.
86

0
0.

93
1

0.
92

8
0.

95
7

0.
76

0
0.

67
6

0.
87

6
0.

51
1

0.
54

0
0.

28
3

0.
09

9
0.

39
2

0.
25

2
B

A
Q

D
Y

N
−

−
−

−
−

−
0.

90
4

−
−

B
A

Q
S

TA
T

IC
−

−
−

−
−

−
0.

95
8

−
−

E
Q

D
Y

N
−

−
−

−
−

−
0.

94
8

−
−

E
Q

S
TA

T
IC

−
−

−
−

−
−

0.
97

6
−

−
C

O
M

E
T-

Q
E

0.
98

9
0.

97
4

0.
90

3
0.

83
1

0.
95

3
0.

95
5

0.
96

9
0.

80
4

0.
80

7
0.

88
7

0.
62

2
0.

37
5

0.
90

5
0.

57
8

0.
92

8
0.

65
1

O
P

E
N

K
IW

I-
B

E
R

T
0.

92
0

0.
83

0
0.

85
2

0.
82

9
0.

36
3

0.
78

3
0.

90
3

0.
45

0
0.

83
4

0.
84

6
0.

37
0

0.
55

1
0.

57
3

-0
.6

02
0.

80
8

0.
19

4
O

P
E

N
K

IW
I-

X
L

M
R

0.
97

2
0.

91
1

0.
96

8
0.

81
4

0.
99

2
0.

97
6

0.
95

7
0.

63
8

0.
87

5
0.

91
0

0.
67

6
-0

.0
10

0.
51

3
-0

.6
68

0.
68

0
-0

.3
58

Y
IS

I-
2

0.
71

4
0.

35
3

0.
89

9
0.

55
2

0.
85

4
0.

64
6

0.
47

0
-0

.1
07

0.
58

4
0.

92
2

0.
92

3
-0

.2
15

0.
80

2
-0

.2
57

0.
83

0
0.

06
5

Ta
bl

e
6:

Pe
ar

so
n

co
rr

el
at

io
n

of
ou

t-
of

-E
ng

lis
h

sy
st

em
-l

ev
el

m
et

ri
cs

w
ith

D
A

hu
m

an
as

se
ss

m
en

to
ve

r
M

T
sy

st
em

s
us

in
g

th
e

ne
w

st
es

t2
02

0
re

fe
re

nc
es

;
Fo

r
la

ng
ua

ge
pa

ir
s

th
at

co
nt

ai
n

ou
tli

er
sy

st
em

s,
w

e
al

so
sh

ow
co

rr
el

at
io

n
af

te
rr

em
ov

in
g

ou
tli

er
sy

st
em

s.
C

or
re

la
tio

ns
of

m
et

ri
cs

no
ts

ig
ni

fic
an

tly
ou

tp
er

fo
rm

ed
by

an
y

ot
he

rf
or

th
at

la
ng

ua
ge

pa
ir

ar
e

hi
gh

lig
ht

ed
in

bo
ld

.
#

T
he

E
ng

lis
h
→

In
uk

tit
ut

hu
m

an
ev

al
ua

tio
n

on
ly

co
nt

ai
ne

d
th

e
ne

w
s

su
bs

et
,s

o
w

e
re

co
m

pu
te

en
-i

u
sy

st
em

sc
or

es
of

m
et

ri
cs

on
th

e
ne

w
s

su
bs

et
of

th
e

te
st

se
t(

14
05

se
nt

en
ce

s)
.

N
ot

e
th

at
th

e
sc

or
es

of
PA

R
B

L
E

U
an

d
PA

R
C

H
R

F
w

er
e

co
m

pu
te

d
as

av
er

ag
e

of
se

gm
en

ts
co

re
s

698



en
-d

e
en

-d
e P

en
-d

e B
en

-d
e P

en
-z

h
en

-z
h B

de
-e

n
ru

-e
n

zh
-e

n
H

ID
H

um
an

-B
H

um
an

-B
H

um
an

-A
H

um
an

-A
H

um
an

-B
H

um
an

-A
H

um
an

-B
H

um
an

-B
H

um
an

-B
N

12
12

12
12

13
13

10
11

16

S
E

N
T

B
L

E
U

0.
44

1
0.

85
1

0.
63

9
0.

67
6

0.
64

7
0.

83
7

0.
43

7
0.

79
7

0.
91

7
B

L
E

U
0.

45
8

0.
86

8
0.

67
2

0.
66

5
0.

65
8

0.
81

4
0.

48
0

0.
73

8
0.

93
8

T
E

R
0.

23
3

0.
49

5
0.

57
7

0.
69

5
-0

.1
31

-0
.1

38
0.

46
6

0.
81

2
0.

85
0

C
H

R
F

+
+

0.
55

5
0.

91
7

0.
74

8
0.

65
0

0.
59

2
0.

80
5

0.
43

7
0.

81
5

0.
94

7
C

H
R

F
0.

59
9

0.
91

9
0.

77
2

0.
64

5
0.

65
1

0.
81

2
0.

44
2

0.
82

1
0.

94
8

PA
R

B
L

E
U

0.
34

9
0.

67
6

0.
58

0
0.

68
2

0.
56

9
0.

78
7

0.
49

8
0.

71
6

0.
92

6
PA

R
C

H
R

F
+

+
0.

57
3

0.
89

0
0.

74
8

0.
69

8
0.

55
9

0.
77

6
0.

44
7

0.
80

3
0.

95
0

C
H

A
R

A
C

T
E

R
0.

47
2

0.
89

0
0.

73
6

0.
63

8
0.

68
7

0.
85

0
0.

41
0

0.
85

6
0.

93
8

E
E

D
0.

44
7

0.
89

8
0.

68
5

0.
64

6
0.

67
9

0.
83

0
0.

46
6

0.
86

1
0.

91
0

Y
IS

I-
0

0.
51

4
0.

89
2

0.
72

8
0.

72
4

0.
24

4
0.

27
4

0.
56

6
0.

86
0

0.
89

8
S

W
S

S
+

M
E

T
E

O
R

−
−

−
−

−
−

−
0.

86
6

0.
91

4
M

E
E

0.
51

2
0.

88
6

0.
71

9
0.

64
2

−
−

0.
39

9
0.

85
5

0.
94

1
P

R
IS

M
0.

47
2

0.
72

7
0.

73
1

0.
74

2
0.

15
7

0.
16

6
0.

59
1

0.
83

7
0.

94
2

Y
IS

I-
1

0.
64

0
0.

89
5

0.
83

0
0.

69
7

0.
77

3
0.

91
6

0.
71

3
0.

82
2

0.
94

3
Y

IS
I-

C
O

M
B

I
0.

60
7

0.
89

1
0.

80
1

0.
70

2
−

−
−

−
−

B
L

E
U

R
T-

Y
IS

I-
C

O
M

B
I

0.
60

7
0.

89
1

0.
80

1
0.

70
2

−
−

−
−

−
B

E
R

T-
B

A
S

E
-L

2
−

−
−

−
−

−
0.

78
5

0.
81

3
0.

92
2

B
E

R
T-

L
A

R
G

E
-L

2
−

−
−

−
−

−
0.

79
4

0.
81

9
0.

92
3

M
B

E
R

T-
L

2
0.

84
5

0.
87

6
0.

87
5

0.
81

0
0.

86
8

0.
90

7
0.

74
8

0.
78

9
0.

92
5

B
L

E
U

R
T

−
−

−
−

−
−

0.
75

4
0.

82
3

0.
92

3
B

L
E

U
R

T-
E

X
T

E
N

D
E

D
0.

88
8

0.
89

6
0.

88
3

0.
83

8
0.

86
5

0.
91

0
0.

81
1

0.
75

7
0.

91
4

E
S

IM
0.

71
9

0.
92

0
0.

87
0

0.
74

4
0.

83
7

0.
92

4
0.

76
5

0.
81

9
0.

91
1

PA
R

E
S

IM
-1

0.
68

7
0.

90
5

0.
85

6
0.

76
3

0.
82

2
0.

91
0

0.
79

8
0.

81
5

0.
91

1
C

O
M

E
T

0.
85

4
0.

89
4

0.
87

9
0.

82
2

0.
07

8
0.

06
2

0.
75

9
0.

82
1

0.
91

6
C

O
M

E
T-

2R
0.

82
0

0.
86

6
0.

87
7

0.
86

5
0.

00
9

-0
.0

03
0.

75
6

0.
83

7
0.

91
1

C
O

M
E

T-
H

T
E

R
0.

84
0

0.
87

1
0.

86
9

0.
85

1
0.

00
6

-0
.0

01
0.

76
1

0.
71

8
0.

85
7

C
O

M
E

T-
M

Q
M

0.
83

9
0.

87
6

0.
85

9
0.

82
5

0.
15

8
0.

15
4

0.
68

2
0.

72
2

0.
84

6
C

O
M

E
T-

R
A

N
K

0.
78

2
0.

87
0

0.
83

0
0.

79
4

0.
57

8
0.

56
5

0.
70

9
0.

72
5

0.
89

6
B

A
Q

D
Y

N
−

−
−

−
0.

73
9

−
−

−
0.

23
6

B
A

Q
S

TA
T

IC
−

−
−

−
0.

91
5

−
−

−
0.

23
9

E
Q

D
Y

N
−

−
−

−
0.

72
9

−
−

−
−

E
Q

S
TA

T
IC

−
−

−
−

0.
92

5
−

−
−

−
C

O
M

E
T-

Q
E

0.
88

5
0.

88
5

0.
84

4
0.

84
4

0.
47

3
0.

48
1

0.
80

6
0.

74
9

0.
86

5
O

P
E

N
K

IW
I-

B
E

R
T

0.
74

1
0.

74
1

0.
83

5
0.

83
5

0.
48

7
0.

52
1

0.
65

5
0.

68
2

0.
74

2
O

P
E

N
K

IW
I-

X
L

M
R

0.
73

6
0.

73
6

0.
79

5
0.

79
5

0.
05

3
0.

05
0

0.
66

0
0.

69
4

0.
89

3
Y

IS
I-

2
-0

.3
33

-0
.3

33
-0

.0
39

-0
.0

39
-0

.1
90

-0
.1

98
0.

12
3

0.
51

3
0.

88
2

Ta
bl

e
7:

E
va

lu
at

in
g

H
um

an
tr

an
sl

at
io

n:
Pe

ar
so

n
co

rr
el

at
io

n
of

m
et

ri
cs

w
ith

D
A

hu
m

an
as

se
ss

m
en

tf
or

al
lM

T
sy

st
em

s
pl

us
H

um
an

tr
an

sl
at

io
n.

T
he

su
bs

cr
ip

tB
re

pr
es

en
ts

an
al

te
rn

at
e

re
fe

re
nc

e,
P

re
pr

es
en

ts
a

pa
ra

ph
ra

se
d

re
fe

re
nc

e.
N

is
th

e
to

ta
ln

um
be

r
of

M
T

sy
st

em
s

(e
xc

lu
di

ng
ou

tli
er

s)
an

d
H

ID
is

th
e

id
en

tit
y

of
th

e
hu

m
an

tr
an

sl
at

io
n

ev
al

ua
te

d.
C

or
re

la
tio

ns
of

m
et

ri
cs

no
ts

ig
ni

fic
an

tly
ou

tp
er

fo
rm

ed
by

an
y

ot
he

rf
or

th
at

la
ng

ua
ge

pa
ir

ar
e

hi
gh

lig
ht

ed
in

bo
ld

.

699



For to-English language pairs, only the secondary
human reference translations were manually scored
with DA as the primary human reference transla-
tion was shown to the monolingual annotators.

For these language pairs, the metrics can score
a human translation by using the other one as the
reference translation. For simplicity, we add the
second human reference translation to the list of
translation outputs and observe how its scoring by
the given metric affects the correlation.

Table 7 shows how well the metrics correlate
with the WMT human evaluation when including
human translations as additional output. In most
cases, the correlation decreases as metrics strug-
gle to correctly score translations that are different
from MT systems. Metrics that rely on fine-tuning
on existing human assessments from the previous
WMT campaigns (e.g. BLEURT, ESIM, COMET)
can handle human translations much better on av-
erage. Also, the Paraphrased references help the
lexical metrics correctly identify the high quality
of human translations.

We present a deeper analysis of how metrics
score human translations in Section 5.1.2. We base
this discussion on scatterplots of human vs metric
scores. We include scatterplots of selected metrics
in Appendix B.

Influence of References Rewarding multiple al-
ternative translations is the primary motivation be-
hind multiple-reference based evaluation. It is gen-
erally assumed that using multiple reference trans-
lation for automatic evaluation is helpful as we
cover a wider space of possible translations (Pap-
ineni et al., 2002b; Dreyer and Marcu, 2012; Bojar
et al., 2013). Nevertheless, new studies (Freitag
et al., 2020) showed that multi-reference evaluation
does not improve the correlation for high quality
output anymore. Since we have multiple references
available for five language pairs, we can look at
how much the choice of reference(s) influences
correlation.

Table 8 compares metric correlations on the pri-
mary reference set newstest2020, alternative refer-
ence newstestB2020, paraphrased reference new-
stestP2020 (only for English-German), or using
all available references newstestM2020. We only
report system-level correlations of metrics on MT
systems after discarding outliers.

4.2 Segment- and Document-Level
Evaluation

Segment-level evaluation relies on the manual
judgements collected in the News Translation Task
evaluation. This year, again we were unable to
follow the methodology outlined in Graham et al.
(2015) for evaluating of segment-level metrics be-
cause the sampling of segments did not provide
sufficient number of assessments of the same seg-
ment. We therefore convert pairs of DA scores for
competing translations to DARR better/worse pref-
erences as described in Section 2.3.2. We further
follow the same process to generate DARR ground
truth for documents, as we do not have enough
annotations to obtain accurate human scores.

We measure the quality of metrics’ scores
against the DARR golden truth using a Kendall’s
Tau-like formulation, which is an adaptation of the
conventional Kendall’s Tau coefficient. Since we
do not have a total order ranking of all translations,
it is not possible to apply conventional Kendall’s
Tau given the current DARR human evaluation
setup (Graham et al., 2015).

Our Kendall’s Tau-like formulation, τ , is as fol-
lows:

τ =
|Concordant| − |Discordant|
|Concordant|+ |Discordant| (2)

where Concordant is the set of all human compar-
isons for which a given metric suggests the same
order and Discordant is the set of all human com-
parisons for which a given metric disagrees. The
formula is not specific with respect to ties, i.e. cases
where the annotation says that the two outputs are
equally good.

The way in which ties (both in human and met-
ric judgement) were incorporated in computing
Kendall τ has changed across the years of WMT
Metrics Tasks. Here we adopt the version used in
WMT17 DARR evaluation. For a detailed discus-
sion on other options, see also Macháček and Bojar
(2014).

Whether or not a given comparison of a pair of
distinct translations of the same source input, s1
and s2, is counted as a concordant (Conc) or dis-
concordant (Disc) pair is defined by the following
matrix:

In previous years, we used bootstrap resampling
(Koehn, 2004; Graham et al., 2014) to estimate con-
fidence intervals for our Kendall’s Tau formulation,
and metrics with non-overlapping 95% confidence
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Metric
s1 < s2 s1 = s2 s1 > s2

H
um

an s1 < s2 Conc Disc Disc
s1 = s2 − − −
s1 > s2 Disc Disc Conc

intervals are identified as having statistically sig-
nificant difference in performance. The tests are
inconclusive for most metric pairs this year and we
do not include them in the paper.

4.2.1 Segment-Level Results
Results of the segment-level human evaluation for
translations sampled from the News Translation
Task are shown in Tables 9 and 10, We expect that
comparing between segments translated by two
MT systems that are far apart in quality would be a
relatively easier task for automatic metrics. So we
also include results after discarding segments that
were translated by outlier systems.

Note that we do not include any human-
translated segments in this evaluation.

4.3 Document-level Results

Results of the document-level human evaluation
for translations sampled from the News Translation
Task are shown in Tables 11 and 12.

5 Discussion

5.1 System-Level Results

In general, there is no clear best metric this year
across all language pairs. For most language pairs,
the William’s significance test results in large clus-
ters of metrics. The set of “winners” according to
the test (i.e., the metrics that are not outperformed
by any other metric) are typically not consistent
across language pairs.

The sample of systems we employ to evaluate
metrics is often small, as few as six MT systems for
Pashto→ English, for example. This can lead to
inconclusive results, as identification of significant
differences in correlations of metrics is unlikely at
such a small sample size. Furthermore, Williams
test takes into account the correlation between each
pair of metrics, in addition to the correlation be-
tween the metric scores themselves, and this latter
correlation increases the likelihood of a significant
difference being identified. In extreme cases, the
test would have low power when comparing a met-
ric that doesn’t correlate well with other metrics,

resulting in this metric not being outperformed by
other metrics despite having a much lower value of
correlation.

To strengthen the conclusions of our evaluation,
in past years (Bojar et al., 2016, 2017; Ma et al.,
2018), we included significance test results for
large hybrid-super-samples of systems 10K hybrid
systems were created per language pair, with cor-
responding DA human assessment scores by sam-
pling pairs of systems from the News Translation
Task, creating hybrid systems by randomly select-
ing each candidate translation from one of the two
selected systems. However, as WMT human an-
notations are collected with document context in
2020, this style of hybridization is susceptible to
breaking cross-segment references in MT outputs
and it would be unreasonable to shuffle individual
segments. The creation of hybrid systems would
need to be done by sampling documents instead of
segments from all sets of systems. Finally, it is pos-
sible that including documents translated by outlier
systems might falsely lead to high correlations. We
believe that this merits further investigation based
on data from previous of metrics tasks, and we do
not attempt it this year.

In the rest of this section, we present analysis
of various aspects of system-level evaluation based
on scatterplots of all metrics. Appendix B contains
scatterplots of metrics for each language pair. We
include BLEU, chrF, the “best” reference-based
metric and the “best” reference-free metric (we
acknowledge that this is not the best way to define
the best metric, but we choose the metric that is
most highly correlated with humans on the set of
all MT systems after removing outliers).

5.1.1 Influence of Domain in English→
Inuktitut

English→ Inuktitut training data was the Canadian
Hansards domain, and the development data con-
tained a small amount of news data. The test set
was a mix of in-domain data from the Hansards and
news documents. The evaluation was only done
on the out-of-domain news documents, so we also
look at metric scores computed only on the subset
of news sentences.

Figure 1 shows that BLEU scores on the out-
of-domain dataset are considerably smaller than
the full dataset, showing that MT systems have a
higher quality on the in-domain dataset. The rela-
tive scores of metrics remain mostly stable when
we compare scores on the full test set to scores on
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Figure 1: English → Inuktitut: Human vs. BLEU
scores on the full dataset vs. the news subset. Only
the news subset was included in the human evaluation.
Each dot corresponds to an MT system, the outlier on
the top-right is UQAM TANLE.

only the news subset that was evaluated. The main
exception is UQAM TANLE; BLEU scores are re-
ally high on the out-of-domain data, and increase
very little when computed on the full dataset. When
looking at correlations with human scores (Table 7),
we expected correlations to increase when com-
puted over the news subset. This is true for most
metrics such as COMET-QE, but the correlation
stays the same or actually decreases for other met-
rics like PARBLEU.

5.1.2 Scoring Human Translations
The alternate reference was included in the man-
ual evaluation for German→ English, Russian→
English and Chinese→ English. All human refer-
ences were included in the out-of-English manual
evaluation.7

German → English: HUMAN-B was ranked
third in the manual evaluation. The lexical met-
rics (BLEU, CHRF, CHARACTER, EED, MEE,
YISI-0, CHRF++, PARBLEU, PARCHRF) give ex-
tremely low scores to the HUMAN-B reference.
This is also true for PRISM and all the reference-
free metrics except COMET-QE. The neural met-
rics also give low scores to the human reference,
however, the margin of error is much smaller.

7Findings 2020 in the official tables label the alternate
reference in into-English direction simply as HUMAN. The
“first” reference, which serves as the primary reference for
us, was not scored manually in DA into English. Out of
English, the primary reference for us is labelled HUMAN-A
in Findings.

COMET-QE is the only metric that gives high
scores to the HUMAN-B reference.

Appendix B also shows the scatterplot “new-
stestB2020” where HUMAN-B served as the refer-
ence for the metrics. We see some differences in
the vertical axis but the general picture remains the
same even with this fairly different human transla-
tion.

Russian→ English: The HUMAN-B reference
was ranked after 6 MT systems in the manual evalu-
ation but still within the same cluster, so not signif-
icantly distinguishable. Lexical metrics give rela-
tively low scores to HUMAN-B. The neural metrics
give relatively higher scores, but score it above
Online-A and below ariel197197, i.e. differently
than DA judgements.

Chinese→ English: The Human translation is
ranked 12th in the manual evaluation (in a giant
cluster which puts together all but one top and one
bottom system), and most metrics place it more
or less correctly. Many metrics, including lexical
metrics, still have correlations above 0.9 even after
including the Human translation.

English→German: According to the WMT hu-
man evaluation, the HUMAN-B reference receives
the highest scores, the HUMAN-A reference is
ranked fourth and Human-P, which was generated
by linguists paraphrasing the WMT references, is
ranked lower at 10th place. Each human reference
falls into a separate cluster of significance.

Lexical metrics score around 10 MT systems
above each WMT reference (using the other WMT
human translation as reference). COMET-QE and
some neural metrics (BLEURT, COMET-MQM,
COMET-HTER and MBERT-L2) score HUMAN-
A and HUMAN-B as better than all MT systems.

When using either of the WMT references, most
metrics, including all the lexical metrics, score the
paraphrased reference much lower than the rest of
the systems. The COMET family of metrics and
BLEURT-EXTENDED are the only metrics that
are able to recognise the merit of the paraphrased
references.

When using the paraphrased references, all
reference-based metrics score the two human trans-
lations above all MT systems, often by a large
margin. PRISM is the sole exception; it scores
the HUMAN-B reference about half way between
the MT systems. Interestingly, most of these met-
rics score HUMAN-A above HUMAN-B, i.e. dis-
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agreeing with DA judgements. Metric correlations
when including HUMAN-A system drop dramati-
cally when using the alternate WMT reference, but
the correlations are higher with the paraphrased ref-
erence. This also holds when scoring HUMAN-B
using the paraphrased vs the main WMT reference
(Table 7).

Of the reference-free metrics, COMET-QE
scores the two WMT references above all MT sys-
tems, and ranks the paraphrased reference similar
to its rank in the manual evaluation. OPENKIWI-
BERT and OPENKIWI-XLMR are a little bi-
ased against these human translations, and YISI-2
scores all human translations below all MT sys-
tems.

English → Chinese The manual evaluation
ranks the two Human translations above all MT
systems, but most metrics give these much low
scores.

To summarize, we see that the current MT met-
rics generally struggle to score human translations
against machine translations reliably. Rare excep-
tions include primarily trained neural metrics and
reference-less COMET-QE. While the metrics are
not really prepared to score human translations,
we find this type of test relevant as more and more
language pairs are getting closer to the human trans-
lation benchmark. A general-enough metric should
be thus able to score human translation comparably
and not rely on some idiosyncratic properties of
MT outputs. We hope that human translations will
be included in WMT DA scoring in the upcoming
years, too.

5.1.3 Influence of Outliers
There are no outlier systems for some language-
pairs like Khmer→ English and English → Rus-
sian. For others, we have systems whose score is
far away from the scores of the rest of the systems.
As these outliers have a large influence on Pear-
son correlation, computing the correlation without
outliers typically makes the task harder for metrics
and results in a decrease in correlation.

For example, we identify three outliers in the
German → English set; the quality of the last
system is extremely low compared to rest. All
reference-based metrics have high correlations
when including all systems, but correlations drop
when discarding outliers. In particular, CHRF and
PARESIM both had a correlation of 0.95 when
computed over all systems, but this drops to 0.69

and 0.83 respectively after removing outliers, re-
vealing that PARESIM is more reliable with this
language pair. An even larger drop is observed for
CHRF and CHRF++ in English→ Czech, from 0.8
to 0.3. We find this particularly surprising because
CHRF has always performed well on this language
pair, including in the evaluation on the gradually
reducing set of top N systems, i.e. in harder and
harder conditions, see SACREBLEU-CHRF in Ap-
pendix A.4 of Ma et al. (2019).

In some cases, metrics can be inaccurate when
scoring outliers, resulting in an increased corre-
lation when correlation is recomputed over non-
outlier systems. For example, with Chinese
→ English, the score of WMTBIOMEDBASE-
LINE score is much lower than the next system.
Most metrics correctly rank it last as well, but
COMET-HTER, COMET-MQM, COMET-QE and
OPENKIWI-BERT give it a higher score than the
next system(s). Note that the other metrics all have
a correlation of above 0.9 even after removing the
outlier.

In other cases, removing outliers decreases the
correlation of a metric and yet it helps its final
outcome. For instance SENTBLEU averaged over
all sentences becomes one of the “winners” in the
system-level evaluation of translation into English
(Table 5). If we trust the results without outliers
more, using averaged sentBLEU seems better than
using plain old BLEU and not significantly worse
than any other metric going from English into sev-
eral target languages.

For some language-pairs, we override the de-
cisions made by the outlier detection algorithm,
based on whether we believe including or remov-
ing these systems from consideration would have
an impact on the correlations: For example, with
Tamil→ English, the last two systems are not clas-
sified as outliers by the algorithm, but their human
scores is some distance away from the rest of the
systems. CHRF, CHRF++ and PARCHRF++ are the
only metrics that correctly order these two systems.
OPENKIWI-BERT and OPENKIWI-XLMR both
get these two systems wrong with a large margin.
But for all metrics, removing these systems leads
to a significant drop in correlation. Thus we count
these two systems as outliers.

Another example is Japanese → English. For
this language-pair, we have two clusters of 7 and
3 systems. Metrics have high correlations when
considering all systems, but when looking at MT
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systems within individual clusters, there are dis-
crepancies between the metric scores compared
to human scores. The outlier detection algorithm
flags only the last two systems as outliers, but the
presence of the third system has a disproportion-
ate impact on the correlation. We include all three
systems in the set of outliers.

The influence of references For all language
pairs where multiple references were available, the
correlations are typically very close whether us-
ing the primary reference or the alternate reference.
For metrics where we do see a difference, there is
no consistent pattern whether metrics prefer one
reference or the other. We note that although the
change in correlations is small when comparing
across reference sets, the set of “winners” accord-
ing to the William’s test for statistical significance
is not stable, particularly for English→ German.
When combining references, in most cases, the cor-
relation with multiple references lies between the
correlation of the individual references. For exam-
ple, with English→German, BLEU correlates best
with the secondary reference with a correlation of
0.844. But with multiple references, the correlation
is 0.825, just above the correlation with the primary
reference with is 0.822 (Table 8).

There are a few exceptions where there is a small
increase in metric correlation above both individual
references. For example, the correlation of CHAR-
ACTER with German → English increases from
0.687 and 0.696 with a single reference to 0.713
with both references ( Table 8). But there are no
metrics which consistently show an improvement
with multiple references across multiple language
pairs.

5.1.4 Neural vs. Lexical Metrics
For many language pairs, when we look at cor-
relation clustering of the reference-based metrics
based on their system-level scores, we end up with
two major clusters: neural metrics and lexical met-
rics. We have seen that lexical and neural metrics
differ in how they score the human translations.
For English→ German, all lexical metrics have a
slightly higher correlation than any neural metric
when evaluating MT systems. However, these met-
rics make major errors evaluating the HUMAN-A
translations with the HUMAN-B reference.

We also see such differences with some MT sys-
tems. Selected examples:

• English→ Czech: All lexical metrics includ-

ing BLEU and CHRF are very biased towards
ONLINE-B, with metric scores indicating that
this system is better than all others by a large
margin. It is ranked 7th in the human evalua-
tion. Neural metrics and reference-free met-
rics are more or less correct when scoring this
system. Surprisingly, ESIM is an exception to
this, and also ranks ONLINE-B on top.

• Polish→ English: Lexical metrics like BLEU
give very low scores to ONLINE-G.

• Tamil → English: Lexical metrics con-
sistently score ONLINE-Z above MI-
CROSOFT STC INDIA, but the remaining
metrics including the reference-free metrics
rank them in the opposite order. The human
evaluation agrees with the lexical metrics.

• Khmer→ English: lexical metrics score the
best system lower than the next two, whereas
most neural metrics get the order of the top
systems right.

5.1.5 Other Discrepancies between Metric
and Human Scores

Here we briefly draw attention to particularities we
spotted when manually examining the results.

• German→ English: All metrics score Tohoku-
AIP-NTT higher than OPPO, and UEDIN
higher than PROMT NMT.

• Russian → English: ONLINE-A, which is
ranked 2nd in the human evaluation, receives
low metric scores. In contrast, some met-
rics including BLEU and PARBLEU choose
ARIEL197197, which is ranked 6th in the hu-
man evaluation, as the best system.

• Tamil → English: The highest ranked sys-
tem according to human scores, GTCOM, re-
ceives lower metric scores than the next three
to six systems. Metrics are biased towards
ONLINE-A and against ONLINE-Z.

• Chinese→ English: HUOSHAN TRANSLATE

is a clear winner according to human evalua-
tion, but BLEU ranks it lower than the next 3
systems. The different between human scores
for the next 8 systems is not statistically sig-
nificant where metric ordering of the systems
differently than human scores and these dis-
crepancies aren’t penalised harshly by Pear-
son correlation.
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• English→ Chinese: HUOSHAN TRANSLATE

is a clear winner according to human eval-
uation, but BLEU ranks it lower than the
next 3 systems. The different between hu-
man scores for the next 8 systems is not sta-
tistically significant where metric ordering of
the systems differently than human scores and
these discrepancies aren’t penalised harshly
by Pearson correlation. While many metrics
including BLEU have high correlations, oth-
ers make major errors scoring the NIUTRANS.
OPENKIWI-BERT assigns really low scores
to

Overall, we note that these metric-human discrep-
ancies often feature online systems which are prob-
ably more diverse that the MT system submissions
to the WMT shared tasks.

5.1.6 Pearson vs. Kendall Tau
Overall, we found that Pearson correlation doesn’t
always give us the complete picture. In particular,
outliers have a large influence on the correlation
and can mask the presence of discrepancies be-
tween metric and human scores with the rest of the
systems. But making a decision on which systems
to discard is not easy.

In this paper, we also explore Kendall’s Tau as an
alternative to Pearson correlation. Tables 16 and 17
in the Appendix show Kendall Tau correlation of
metrics over all MT systems (not including human
translations).

Kendall’s Tau is less sensitive to outliers, and
directly measures whether metrics agree with hu-
mans when comparing pairs of systems. However,
Kendall’s Tau doesn’t consider the differences in
scores, and two metrics whose errors differ in mag-
nitude can have the same Kendall’s Tau correlation
(Figure 2).

5.2 Segment and Document-Level Results
On the more fine-grained evaluation scales, PRISM
and the trained neural metrics (the COMET and
BLEURT family of metrics) have a better agree-
ment with human judgements than lexical metrics

The correlations of the to-English language pairs
are consistently much lower, on average, compared
to that of the out-of-English language pairs. The
difference could be due to the differing set of anno-
tators: the to-English human evaluation was crowd-
sourced and therefore is likely to be noisier.

Finally, we find that correlations drop markedly
for most language pairs if we consider only the
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Figure 2: Scatterplots of human scores against two met-
rics that have the same Kendall Tau correlation with
human scores, though OPENKIWI-BERT has bigger er-
rors.

segment/document pairs that do not contain outlier
systems. We suspect that as the quality of outlier
system translations is typically low, and most of the
generated better-worse pairs that contain outliers
can be easy for metrics. Removing these pairs
would make the task a lot harder. It is also very
likely that the remaining pairs of translations are
noisier, which decreases metric agreement with
these pairwise judgements.

The document-level correlations are typically
higher than segment-level correlations. This could
be due to reduced noise in human scores when aver-
aging the scores of multiple segments. Computing
metric scores over documents that contain multiple
segments also helps reduce metric noise.

5.3 Reference-Based Metrics vs.
Reference-Free Metrics

We have four submissions of metrics that directly
compare MT outputs with the source segment:
COMET-QE, OPENKIWI-BERT, OPENKIWI-
XLMR, and YISI-2. Other members of the
COMET family of metrics use information from
both the source and reference. The remaining met-
rics compute scores by comparing the MT output
with the reference.

While the task of comparing segments in differ-
ent languages is harder than comparing segments in
the same language, reference-free metrics have one
advantage: they are not encumbered by reference-
bias. COMET-QE is the only metric that correctly
gives a high score to the human translation in Ger-
man→ English , and one of the few metrics that
does so for English→ Chinese.

This year, the reference-free metrics are highly
competitive with reference-based metrics for all
language-pairs. For English → Tamil, COMET-

710



QE which has a near perfect correlation of 0.97
even after discarding outliers. In contrast, many
reference-based metrics including BLEU and chrF
give really high scores to ONLINE-B, which results
in low correlations.

6 Use Automatic Metrics to Detect
Incorrect Human Preference

It has been argued that non-expert translators lack
knowledge of translation and so might not notice
subtle differences that make one translation better
than another. Castilho et al. (2017) compared the
evaluation of MT output of professional translators
against crowd workers. Results showed that for
all language pairs, the crowd workers tend to be
more accepting of the MT output by giving higher
fluency and adequacy scores. Toral et al. (2018)
showed that the ratings acquired by professional
translators show a wider gap between human and
machine translations compared to judgments by
non-experts. They recommend using professional
linguists for MT evaluation going forward. Läubli
et al. (2020) show that non-experts assess parity
between human and machine translation where
professional translators do not, indicating that the
former neglect more subtle differences between
different translation outputs. Given the previous
work and the fact that the WMT human evalua-
tion has been conducted with a mix of researchers
and crowd workers, we rerun human evaluation
for a subset of the submissions with professional
linguists. In particular, we want to investigate if
we can use the quality scores obtained by the au-
tomatic metrics to detect incorrect human ratings.
We filtered out all pairs of systems where the hu-
man evaluation results disagree with all automatic
metrics. Taking the metric scores as a signal, we
rerun human evaluation for a subset of submis-
sions for 2 language pairs: German→English and
English→German. We hired 10 professional lin-
guists, who rerun the source-based direct assess-
ment human evaluation with the same document-
based template that has been used for the original
WMT ratings.

6.1 German→English

For German→English, we found that all automatic
metrics disagree with the human evaluation results
for OPPO and TOHOKU. OPPO yields a higher
human rating, while all automatic metrics gave TO-
HOKU a higher score. To investigate which of the

results to trust, we rerun the source-based direct
assessment for these 2 systems with professional
linguists. The results in Table 13 show that profes-
sional linguists in fact prefer the output of TOHOKU

as predicted by all automatic metrics.

Evaluation OPPO TOHOKU

avg metric
8.85 8.95

(HUMAN-A ref)
avg metric

10.15 10.26
(Human-B ref)
WMT 84.6 81.5
z-score 0.220 0.179

prof. linguist 81.0 81.7
z-score -0.005 0.010

Table 13: WMT 2020 German→English comparing
the reference-based ratings acquired with crowd work-
ers/researcher (WMT) against source-based ratings ac-
quired with professional linguists.

6.2 English→German
For English→German, we rerun human evaluation
for the top 2 ranked MT systems (based on hu-
man evaluation): OPPO, TOHOKU and the human
translation HUMAN-A. The quality of human trans-
lations is usually underestimated by automatic met-
rics when computed with standard references. This
is also visible in this year’s evaluation campaign
where the average metric scores of all submission
for the human translation HUMAN-A is much lower
when compared to the top MT submissions. To
overcome this problem, Freitag et al. (2020) intro-
duced paraphrased references that also value the
translation quality of human translations and al-
ternative (less simple/monotonic) MT output. As
we can see in Table 14, the average metric scores
of all submissions when computed with the para-
phrased references HUMAN-P yield a much higher
score for the human translation HUMAN-A when
compared to all MT outputs.

The official WMT human evaluation ranked the
human translation third, right behind the two MT
outputs from OPPO and TOHOKU. Interestingly,
based on the z-scores, WMT predicts OPPO to be
of higher quality than TOHOKU which is in dis-
agreement with most of the metric scores when
calculated against both types of reference transla-
tions. Overall, the automatic metrics come to a
very different ranking than the human evaluation
for the top performing submissions.
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Evaluation OPPO TOHOKU HUMAN-A

avg metric
10.05 10.09 9.14

(Human-B ref)
avg metric

11.93 12.07 15.74
(Human-P ref)
WMT 87.39 88.62 85.10
z-score 0.495 0.468 0.379

prof. linguist 73.66 74.70 84.09
z-score -0.051 -0.037 0.088

Table 14: WMT 2020 English→German comparing
the source-based ratings acquired with crowd work-
ers/researcher (WMT) against source-based ratings ac-
quired with professional linguists.

We rerun the human evaluation with the same
template, but with professional linguists. Inter-
estingly, the human translation has been ranked
first by a large margin. Furthermore, the MT out-
put of TOHOKU has been rated as higher quality
when compared to the MT output from OPPO.
The results of the human evaluation with profes-
sional linguists yield a perfect correlation to the
metric scores calculated with the paraphrased ref-
erence. This indicates not only the advantages of
paraphrased references when scoring human trans-
lations, but also that automatic metrics can be used
to identify incorrect human ratings.

7 Conclusion

This paper summarizes the results of WMT20
shared task in machine translation evaluation, the
Metrics Shared Task. Participating metrics were
evaluated in terms of their correlation with human
judgement at the level of the whole test set (system-
level evaluation), as well as at a more fine-grained
level (document-level evaluation and sentences or
paragraphs for segment-level evaluation). We re-
ported scores for standard metrics requiring the
reference as well metrics that compare MT out-
put directly with the source text. For system-level,
best metrics reach over 0.95 Pearson correlation
or better across several language pairs. In many
cases, this correlation drops considerably when the
correlation is recomputed after discarding outlier
systems.

Computing Pearson correlation without outliers
can change the rankings of metrics, and selecting
these outlier systems is not an exact science. We re-
port results both with all systems and after discard-
ing outliers as together, and also include Kendall

Tau correlation, and hope that together, they give
a more complete picture than just reporting only
one of these numbers. In the end, we believe that
it is impossible to adequately describe data with
summary numbers, and that it’s best to visualise
data to understand patterns.

The results confirm the trends from previous
years, namely metrics based on word or sentence-
level embeddings, achieve the highest perfor-
mance (Ma et al., 2018, 2019).

For some language pairs, we had two references
available. On these test sets, we found that com-
puting scores with two references rarely helped
metrics achieve a higher correlation than using ei-
ther reference individually. This contradicts earlier
research that shows that multiple references im-
prove correlation (Bojar et al., 2013), but is in line
with more recent papers that show additional inde-
pendent references might not be helpful (Freitag
et al., 2020). We believe that the utility of addi-
tional independent references is dependent on the
MT systems evaluated, that perhaps they are not as
helpful when scoring high quality MT systems as
with low/mid quality MT.

In addition to scoring MT systems, this year, we
also requested scores for human reference transla-
tions. This highlighted the difference between lexi-
cal and embedding-based metrics, as lexical met-
rics consistently gave low scores to human transla-
tions. However, when using the English-German
paraphrased references, all metrics scored the other
human references above all MT systems, highlight-
ing the advantages of using paraphrased references
when scoring human translations.

In addition to human references, there are some
MT systems where metrics (either the majority of
metrics, or only the lexical metrics) make major
errors. It remains an open question as to what it
is about these systems that metrics struggle with
scoring them correctly.

Compared to last year, the performance of the
reference-free metrics has improved, and the corre-
lations this year are competitive with the reference-
based metrics, and in many cases, outperform
BLEU. In particular, COMET-QE is good at recog-
nising the high quality of human translations where
BLEU falls short.

In terms of segment-level Kendall’s τ results,
the standard metrics correlations was very low for
the to-English language pairs, particularly after dis-
carding translations by outlier systems. The corre-
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lations of the out-of-English language pair are more
in line with recent years, reaching a maximum of
above 0.6.

It has been shown that context is really important
when humans are rating MT outputs (Toral et al.,
2018), and the WMT human evaluation is moving
towards evaluating segments with the document
context (Barrault et al., 2019). This creates a mis-
match with automatic metrics, all of which, this
year, score each segment independently. This year,
we introduce document-level evaluation of metrics.
When computing document-level scores, some met-
rics from the COMET family include document
context when computing segment scores within the
document. All other metrics included in this year’s
evaluation either use the average of the segment
scores or compute the document score based on
statistics computed independently for each segment.
In the future, we hope to see more metrics that con-
sider broader context when evaluating translations
at all three levels.

For this year, we are unable to draw any mean-
ingful conclusions from the document-level evalua-
tion task, as it is hard to tease apart the influence of
noise in the ground truth, inadequate segment-level
translations and inadequate translation in context
of the document.

We believe that the noise in the DARR judge-
ments is a big factor in the low correlations in
the to-English language pairs. We need further
research into understanding the factors that con-
tribute to the Kendall Tau scores and how much we
can trust these results.

There are shortcomings in the methods used to
evaluate metrics at the system-, document-, and
segment-level, and we believe that improving meth-
ods for evaluating and analysing automatic metrics
is a rich area for future research.

Finally, we assume that any discrepancies be-
tween metrics and WMT manual evaluation is a
metric error, and we acknowledge that this might
not be true in all cases. There is always scope for
improvement in human evaluation methodology,
and the best practice recommendations for human
evaluation are always evolving.

We rerun human evaluation by using the same
template as the WMT evaluation, but switching
the rater pool from non-experts to professional lin-
guists for a subset of translations where all metrics
disagree with the WMT human evaluation. This
experiment revealed a new use case of automatic

metrics and demonstrated that automatic metrics
can be used to identify bad ratings in human eval-
uations. The new obtained ratings were in line
with the scores suggested by the automatic metrics
and also confirmed the higher translation quality of
human translations when compared to MT output.

In this paper, we looked at how outliers influence
metric evaluation, and we wonder how the presence
of these systems influence DA annotations. In a
perfect world, annotators score each translation on
its own merits without being influenced by previ-
ous instances. In this world, given the presence
of much worse translations, do annotators assign
high scores to the remaining translations that look
relatively better? Does an MT system receive an
unfair advantage if it is consistently scored along-
side a low-scoring outlier? And does standardising
the scores of individual annotators exacerbate this
issue? These and other research questions remain
open this year, keeping the WMT tasks increas-
ingly interesting as MT systems are getting closer
to human performance.
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A List of Outliers

lp Outliers

cs-en ZLABS-NLP.1149, CUNI-DOCTRANSFORMER.1457
de-en YOLO.1052, ZLABS-NLP.1153, WMTBIOMEDBASELINE.387
iu-en NIUTRANS.1206, FACEBOOK AI.729
ja-en ONLINE-G.1564, ZLABS-NLP.66, ONLINE-Z.1640
pl-en ZLABS-NLP.1162
ru-en ZLABS-NLP.1164
ta-en ONLINE-G.1568, TALP UPC.192
zh-en WMTBIOMEDBASELINE.183
en-cs ZLABS-NLP.1151, ONLINE-G.1555
en-de ZLABS-NLP.179, WMTBIOMEDBASELINE.388, ONLINE-G.1556
en-iu news UEDIN.1281, OPPO.722, UQAM TANLE.521
en-iu full UEDIN.1281, OPPO.722, UQAM TANLE.521
en-iu UEDIN.1281, OPPO.722, UQAM TANLE.521
en-pl ONLINE-Z.1634, ZLABS-NLP.180, ONLINE-A.1576
en-ta TALP UPC.1049, SJTU-NICT.386, ONLINE-G.1561

Table 15: List of all MT systems that we consider as outliers

B Scatterplots

Here we show scatterplots of human and metric scores of selected metrics.
We report the correlation of each metric with human scores on all systems as well as all systems minus

the outliers. Note that we do not exclude human translations when computing these correlations.
In the following scatterplots, the violet triangles indicate individual indicate MT system submissions by

researchers and pink downward triangles are online systems. 8 The red crosses are outlier systems.
The black diamonds are human translations. For newstest2020 reference set, this is the HUMAN-A

translation, and for newstestB2020 reference set, this is the HUMAN-B translation. The plots for English
→ German have two human translations included, and we annotate the label in the plot. In many cases,
metric errors scoring these translations stand out.

Metric scores of MT systems with multiple references does not deviate from the scores of either
reference. So we do not include the scatterplots of the other reference sets unless a human translation is
included (which is interesting).

We will have scatterplots for all metrics over all reference sets in the metrics package to be made
available at http://www.statmt.org/wmt20/results.html
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8We distinguish between the two in these scatterplots as we notice that metrics often make errors when scoring online
systems.

717



de-en newstest2020a

0.1 0.0 0.1 0.2

32

34

36

38

40

42

44
BLEU:  r = 0.81/ 0.48

0.1 0.0 0.1 0.2

0.60

0.62

0.64

0.66

0.68

chrF:  r = 0.88/ 0.44

0.1 0.0 0.1 0.2

0.1

0.0

0.1

0.2

0.3

BLEURText:  r = 0.96/ 0.81

0.1 0.0 0.1 0.2

0.20

0.25

0.30

0.35

COMETQE:  r = 0.96/ 0.81

aIncluding the YOLO.1052 system, which has an extremely low quality, would make it hard to distinguish between the rest of
the systems, so these plots exclude the system.
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C Additional System-level Results

We also report Kendall Tau correlation of metrics at the system level.
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cs-en de-en ja-en pl-en ru-en ta-en zh-en iu-en km-en ps-en
12 12 10 14 11 14 16 11 7 6

HUMAN RAW 0.727 0.758 0.778 0.429 0.673 0.604 0.650 0.891 0.905 1.000
SENTBLEU 0.788 0.758 0.733 0.297 0.564 0.692 0.850 0.455 0.619 0.600
BLEU 0.848 0.697 0.778 0.407 0.455 0.692 0.833 0.309 0.714 0.600
TER 0.758 0.788 0.689 0.287 0.600 0.780 0.800 0.514 0.878 0.867
CHRF++ 0.818 0.697 0.778 0.407 0.673 0.714 0.850 0.418 0.619 0.733
CHRF 0.818 0.727 0.822 0.363 0.709 0.714 0.833 0.418 0.619 0.733
PARBLEU 0.809 0.779 0.778 0.420 0.491 0.685 0.807 0.404 0.714 0.867
PARCHRF++ 0.818 0.727 0.822 0.407 0.709 0.714 0.817 0.491 0.619 0.733
CHARACTER 0.758 0.758 0.822 0.341 0.745 0.692 0.800 0.527 0.810 0.733
EED 0.788 0.727 0.733 0.297 0.782 0.758 0.833 0.636 0.714 0.733
YISI-0 0.758 0.758 0.689 0.231 0.782 0.802 0.833 0.600 0.714 0.733
SWSS+METEOR − − 0.822 0.341 0.818 0.736 0.817 0.491 0.714 0.733
MEE 0.758 0.697 0.867 0.363 0.709 0.692 0.783 0.636 0.714 0.733
PRISM 0.758 0.727 0.867 0.341 0.564 0.648 0.800 0.673 0.714 0.867
YISI-1 0.758 0.758 0.778 0.451 0.564 0.692 0.817 0.673 1.000 0.867
BERT-BASE-L2 0.758 0.848 0.822 0.407 0.491 0.604 0.633 0.564 1.000 0.867
BERT-LARGE-L2 0.758 0.848 0.867 0.341 0.564 0.626 0.700 0.527 1.000 0.867
MBERT-L2 0.758 0.818 0.822 0.429 0.564 0.604 0.750 0.673 1.000 0.867
BLEURT 0.758 0.788 0.822 0.407 0.600 0.604 0.650 0.527 1.000 0.867
BLEURT-EXTENDED 0.727 0.848 0.778 0.341 0.455 0.582 0.617 0.527 0.905 0.867
ESIM 0.727 0.848 0.822 0.451 0.491 0.670 0.717 0.636 1.000 0.867
PARESIM-1 0.727 0.879 0.822 0.451 0.491 0.670 0.700 0.636 1.000 0.867
COMET 0.727 0.758 0.778 0.407 0.564 0.626 0.733 0.636 1.000 0.867
COMET-2R 0.727 0.788 0.778 0.451 0.527 0.582 0.717 0.600 1.000 0.867
COMET-HTER 0.667 0.788 0.822 0.275 0.491 0.604 0.533 0.564 1.000 0.867
COMET-MQM 0.667 0.727 0.822 0.275 0.455 0.582 0.517 0.636 1.000 1.000
COMET-RANK 0.576 0.727 0.822 0.341 0.455 0.626 0.650 0.309 0.810 1.000
BAQ DYN − − − − − − 0.817 − − −
BAQ STATIC − − − − − − 0.867 − − −
COMET-QE 0.697 0.788 0.778 0.297 0.455 0.516 0.550 0.491 0.905 0.733
OPENKIWI-BERT 0.697 0.667 0.733 0.187 0.455 0.429 0.450 -0.055 0.714 0.467
OPENKIWI-XLMR 0.727 0.636 0.822 0.275 0.418 0.560 0.567 0.018 1.000 0.867
YISI-2 0.576 0.515 0.778 0.319 0.527 0.582 0.750 0.491 0.810 0.867

Table 16: Kendall Tau correlation of system-level metrics with DA human assessment for all MT systems not
including Human translations. In addition to the metrics, we also include raw human scores where annotator
scores were not standardised.
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en-cs en-de en-ja en-pl en-ru en-ta en-zh en-iu full en-iu news
12 14 11 14 9 15 12 11 11

HUMAN RAW 1.000 0.868 0.964 0.846 0.778 0.810 0.818 0.600 0.600
SENTBLEU 0.515 0.802 0.855 0.604 0.944 0.867 0.727 0.236 0.273
BLEU 0.515 0.802 0.818 0.582 0.889 0.829 0.727 0.236 0.236
TER 0.515 0.824 0.018 0.641 0.556 0.752 0.242 0.309 0.309
CHRF++ 0.485 0.868 0.782 0.604 0.889 0.829 0.727 0.309 0.309
CHRF 0.485 0.868 0.818 0.604 0.889 0.810 0.727 0.345 0.309
PARBLEU 0.504 0.736 0.611 0.633 0.761 0.842 0.718 0.404 0.345
PARCHRF++ 0.515 0.846 0.818 0.670 0.889 − 0.727 − −
CHARACTER 0.515 0.890 0.782 0.560 0.944 0.771 0.697 0.236 0.345
EED 0.545 0.868 0.782 0.604 0.833 0.867 0.727 0.273 0.273
YISI-0 0.545 0.846 0.818 0.604 0.944 0.790 0.515 0.236 0.345
MEE 0.576 0.802 − 0.582 0.667 0.829 − 0.273 0.382
PRISM 0.818 0.868 0.818 0.670 0.611 0.562 0.576 0.418 0.600
YISI-1 0.606 0.868 0.782 0.626 0.833 0.810 0.758 0.091 0.273
YISI-COMBI − 0.824 − − − − − − −
BLEURT-YISI-COMBI − 0.824 − − − − − − −
MBERT-L2 0.788 0.846 0.782 0.736 0.778 0.752 0.909 − −
BLEURT-EXTENDED 0.879 0.802 0.782 0.780 0.833 0.771 0.848 0.382 0.345
ESIM 0.606 0.912 0.855 0.692 0.833 0.752 0.788 0.382 0.455
PARESIM-1 0.667 0.890 0.818 0.692 0.833 0.752 0.818 0.382 0.455
COMET 0.909 0.846 0.745 0.736 0.722 0.771 0.606 0.382 0.382
COMET-2R 0.909 0.890 0.891 0.714 0.611 0.790 0.606 0.309 0.418
COMET-HTER 0.909 0.802 0.818 0.736 0.667 0.619 0.576 0.491 0.491
COMET-MQM 0.909 0.802 0.818 0.736 0.667 0.619 0.545 0.527 0.455
COMET-RANK 0.848 0.780 0.782 0.692 0.556 0.524 0.515 0.127 0.345
BAQ DYN − − − − − − 0.697 − −
BAQ STATIC − − − − − − 0.788 − −
EQ DYN − − − − − − 0.727 − −
EQ STATIC − − − − − − 0.818 − −
COMET-QE 0.848 0.802 0.709 0.802 0.667 0.543 0.576 0.600 0.673
OPENKIWI-BERT 0.758 0.780 0.236 0.538 0.722 0.314 0.606 -0.273 0.200
OPENKIWI-XLMR 0.909 0.780 0.818 0.692 0.667 0.657 0.545 0.018 0.200
YISI-2 0.485 0.582 0.527 0.077 0.444 0.886 0.121 0.309 0.455

Table 17: Kendall Tau correlation of out-of-English system-level metrics with DA human assessment for all MT
systems not including Human translations. In addition to the metrics, we also include raw human scores where
annotator scores were not standardised.
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Abstract

Following two preceding WMT Shared Tasks
on Parallel Corpus Filtering (Koehn et al.,
2018, 2019), we posed again the challenge
of assigning sentence-level quality scores for
very noisy corpora of sentence pairs crawled
from the web, with the goal of sub-selecting
the highest-quality data to be used to train ma-
chine translation systems. This year, the task
tackled the low resource condition of Pashto–
English and Khmer–English and also included
the challenge of sentence alignment from doc-
ument pairs. 10 participants from companies,
national research labs, and universities partici-
pated in this task.

1 Introduction

The field of Machine Translation has experienced
significant advances in recent years thanks to im-
provements in neural modeling (Bahdanau et al.,
2015; Gehring et al., 2016; Vaswani et al., 2017),
as well as the availability of large parallel corpora
for training (Tiedemann, 2012; Smith et al., 2013;
Bojar et al., 2017). Unfortunately, today’s neu-
ral machine translation models, perform poorly
on low-resource language pairs, for which clean,
high-quality training data is lacking (Koehn and
Knowles, 2017). Improving performance on low
resource language pairs has high impact consider-
ing that these languages are spoken by a large frac-
tion of the world population. This is a particular
challenge for industrial machine translation sys-
tems that need to support hundreds of languages
in order to provide adequate services to their mul-
tilingual user base.

While there have been advances in using mono-
lingual corpora (Lample et al., 2018; Liu et al.,
2020) and parallel corpora in multiple language

pairs (Aharoni et al., 2019; Fan et al., 2020), the
best training data for machine translation are still
parallel corpora in the targeted language pair and
domain.

Parallel corpora are typically gathered from any
available source without much guarantees about
quality. This is especially the case for parallel
corpora that are extracted from the web without
much control over which web sites are mined.
Since noisy training data has been recognized as
a challenge for neural machine translation training
(Khayrallah and Koehn, 2018), an essential step
in using such data is filtering or discounting noisy
sentence pairs.

Recently, there is increased interest in the fil-
tering of noisy parallel corpora to improve the
data that can be used to train translation systems.
The Shared Task on Parallel Corpus Filtering and
Alignment at the Conference for Machine Trans-
lation (WMT 2020) was organized to promote re-
search to make learning from noisy data more vi-
able for low-resource languages. It is similar to
the previous year’s task but tackles different lan-
guages (Pashto and Khmer instead of Nepali and
Sinhala) and also included the challenge to extract
sentence pairs from document pairs.

The shared task is organized similarly to previ-
ous years (Koehn et al., 2018, 2019). We provide
about 11.6 million word noisy parallel data for
Pashto-English and 58.3 million word noisy paral-
lel data for Khmer-English. We also provide small
amounts of clean parallel data of varying quality
and monolingual data from Wikipedia and Com-
monCrawl.

Participants developed methods to assign a
quality score for each sentence pair. These scores
are used to filter the web crawled corpora down to
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a fixed size (5 million English words), train neu-
ral machine translation systems on these subsets,
and measure their quality with the BLEU score
on a test set of multi-domain Wikipedia content
(Guzmán et al., 2019).

This paper gives an overview of the task,
presents the results for the participating systems
and provides analysis on additional subset sizes,
the average sentence length of sub-selected data,
and overlap between the submissions.

2 Related Work

Although the idea of crawling the web indiscrimi-
nately for parallel data goes back to the 20th cen-
tury (Resnik, 1999), work in the academic com-
munity on extraction of parallel corpora from the
web has so far mostly focused on large stashes
of multilingual content in homogeneous form,
such as the Canadian Hansards, Europarl (Koehn,
2005), the United Nations (Rafalovitch and Dale,
2009; Ziemski et al., 2015), or European Patents
(Täger, 2011). A nice collection of the products of
these efforts is the OPUS web site1 (Tiedemann,
2012).

2.1 Parallel Corpus Acquisition

Noisy parallel documents and parallel sentences
were sourced from the CCAligned2 dataset (El-
Kishky et al., 2020a), a massive collection of
cross-lingual web documents covering over 8k
language pairs aligned from 68 Common Crawl
snapshots. Additional parallel data was sourced
from the Paracrawl project – a large-scale effort to
crawl text from the web3 (Bañón et al., 2020).

Acquiring parallel corpora from the web (El-
Kishky et al., 2020b) is an active area of research
that typically involves identifying web sites with
parallel text, downloading the documents from
the web site, aligning document pairs (Buck and
Koehn, 2016; Thompson and Koehn, 2020; El-
Kishky and Guzmán, 2020), and aligning sentence
pairs. A final stage of the processing pipeline fil-
ters out non-parallel sentence pairs. Such noise
exists either because the original web site did not
have any actual parallel data (garbage in, garbage
out), only partially-parallel data, or due to failures
of processing steps.

1http://opus.nlpl.eu
2http://statmt.org/cc-aligned
3http://www.paracrawl.eu/

2.2 Sentence Alignment

Sentence alignment has been a very active field of
research since the early days of statistical machine
translation. An influential early method is based
on sentence length, measured in words (Gale and
Church, 1993). Several researchers proposed in-
cluding lexical information (Chen, 1993; Moore,
2002) with the emergence of tools that use pro-
vided bilingual dictionaries (Varga et al., 2005) or
acquire them during in an unsupervised fashion
(Braune and Fraser, 2010). Later work introduced
scoring methods that use MT to get both docu-
ments into the same language (Sennrich and Volk,
2010) or use pruned phrase tables from a statisti-
cal MT system (Gomes and Pereira Lopes, 2016).
Both methods anchor high-probability 1–1 align-
ments in the search space and then fill in and refine
alignments. More recently, Thompson and Koehn
(2019) introduced the use of sentence embeddings
and a coarse-to-fine search method to the task (Ve-
calign).

2.3 Filtering Noisy Parallel Corpora

In 2016, a shared task on sentence pair filtering4

was organized, albeit in the context of cleaning
translation memories which tend to be cleaner than
the data at the end of a pipeline that starts with web
crawls.

There is a robust body of work on filtering out
noise in parallel data. For example: Taghipour
et al. (2011) use an outlier detection algorithm
to filter a parallel corpus; Xu and Koehn (2017)
generate synthetic noisy data (inadequate and non-
fluent translations) and use this data to train a clas-
sifier to identify good sentence pairs from a noisy
corpus; and Cui et al. (2013) use a graph-based
random walk algorithm and extract phrase pair
scores to weight the phrase translation probabili-
ties to bias towards more trustworthy ones.

Most of this work was done in the context of sta-
tistical machine translation, but more recent work
targets neural models. Carpuat et al. (2017) fo-
cus on identifying semantic differences in trans-
lation pairs using cross-lingual textual entailment
and additional length-based features, and demon-
strate that removing such sentences improves neu-
ral machine translation performance.

As Rarrick et al. (2011) point out, one type of
noise in parallel corpora extracted from the web

4NLP4TM 2016: Shared task
http://rgcl.wlv.ac.uk/nlp4tm2016/shared-task/
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are translations that have been created by machine
translation. Venugopal et al. (2011) propose a
method to watermark the output of machine trans-
lation systems to aid this distinction, with a neg-
ligible loss of quality. Antonova and Misyurev
(2011) report that rule-based machine translation
output can be detected due to certain word choices,
and statistical machine translation output can be
detected due to lack of reordering. It is notable that
none of the participants in our shared task have
tried to detect machine translation.

There is a rich literature on data selection which
aims at sub-sampling parallel data relevant for a
task-specific machine translation system (Axelrod
et al., 2011). Van der Wees et al. (2017) find that
the existing data selection methods developed for
statistical machine translation are less effective for
neural machine translation. This is different from
our goals of handling noise since those methods
tend to discard perfectly fine sentence pairs that
are just not relevant for the targeted domain. Our
task is focused on data quality that is relevant for
all domains.

2.4 Impact of Noise on Neural Machine
Translation

Belinkov and Bisk (2017) investigate the impact
of noise on neural machine translation. They focus
on creating systems that can translate the kinds of
orthographic errors (typos, misspellings, etc.) that
humans can comprehend. In contrast, Khayrallah
and Koehn (2018) examine noisy training data and
focus on types of noise occurring in web-crawled
corpora. They carried out a study about how noise
that occurs in crawled parallel text impacts statis-
tical and neural machine translation.

Neural machine translation model training may
combine data selection and model training, taking
advantage of the increasing quality of the model to
better detect noisy data or to increasingly focus on
cleaner parts of the data (Wang et al., 2018; Kumar
et al., 2019).

2.5 Findings of Previous Shared Tasks
We organized versions of this shared task in the
previous two years. In 2018, we started with
a high-resource language pair (German–English)
and a very large web-crawled parallel corpus, a
subset of the Paracrawl corpus consisting of 1 bil-
lion English words (Koehn et al., 2018). The best-
performing submission (Junczys-Dowmunt, 2018)
used neural machine translation systems in both

translation directions to score sentence pairs with
dual cross-entropy.

Last year, we moved the focus to low resource
languages (Koehn et al., 2019) with smaller noisy
parallel corpora, comprising 50-60 million words
for Nepali–English and Sinhala–English. For
these languages much less clean parallel data was
available and hence many of the methods devel-
oped for high-resource languages are less reliable.
The best-performing submission that year (Chaud-
hary et al., 2019) also considered dual cross-
entropy but found that matching multilingual sen-
tence embeddings (Schwenk, 2018) gave better re-
sults.

2.6 Monolingual Pre-Training

By now, neural machine translation systems are
rarely trained only on the parallel corpus of the de-
sired language pair. Common foundations are pre-
trained models trained on multiple language pairs
which share the source or target language (Aha-
roni et al., 2019; Fan et al., 2020) or monolingual
pre-training methods (Liu et al., 2020). Often, the
models are also improved by a second stage of
training that uses back-translated synthetic paral-
lel data that was generated from first stage model
— a process that may be iterated (Hoang et al.,
2018).

To reflect such a more realistic training setup,
we provided pre-trained models that were trained
on monolingual data using a denoising auto-
encoder method called mBART (Liu et al., 2020).
Here, monolingual data is converted into input and
output pairs by (a) masking out words in the in-
put, forcing the model to learn the correct word or
word sequence from the context, and (b) shuffling
the order of a few concatenated sentence pairs.

3 Shared Task Definition

The shared task tackled the problem of filtering
parallel corpora. Given a noisy parallel corpus
(crawled from the web), participants developed
methods to align sentences in document pairs and
to filter it to a smaller size of high quality sentence
pairs.

3.1 Filtering

For the filtering-only task, we provided a very
noisy 58.3 million word corpus for Khmer–
English (English token count) and a 11.6 million
word corpus for Pashto–English, crawled from the
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web (see Section 4.3 for details). We asked par-
ticipants to generate sentence-level quality scores
that allow selecting subsets of sentence pairs that
amount to 5 million words, counted on the English
side. This amount was chosen based on prelimi-
nary experiments (we report below on additional
subset sizes).

Participants in the shared task submitted a file
with quality scores, one score per line, corre-
sponding to the sentence pairs. Scores are only
required to have the property that higher scores in-
dicate better quality. The scores were uploaded to
a Google Drive folder which remains publicly ac-
cessible.5

3.2 Alignment
We also released the document pairs from which
we extracted the sentence pairs. For Khmer–
English, we released 391,250 document pairs, for
Pashto-English 45,312 document pairs.

Participants were encouraged to develop novel
methods for sentence alignment. The resulting
sentence pairs also had to be annotated with qual-
ity scores, as in the filtering-only tasks, and up-
loaded with quality scores to the same Google
Drive folder.

3.3 Evaluation
The submissions were scored by building a
neural machine translation system (Ott et al.,
2019) trained on this data, and then measuring
their BLEU score on the flores Wikipedia test
sets (Guzmán et al., 2019). The neural ma-
chine translation model was either randomly ini-
tialized or initialized by monolingual pre-training
(mBART).

For development purposes, we released config-
uration files and scripts that mirror the official test-
ing procedure with a development test set. The de-
velopment pack consists of:
• A script to subsample corpora based on qual-

ity scores.
• fairseq scripts to train and test a neural ma-

chine translation system.
• A pre-trained mBART model for continued

training.
• The flores-dev set of Wikipedia transla-

tions as development set.
• The flores-devtest set of Wikipedia

translations as development test set.
5https://bit.ly/2IoOXOr

Corpus Sentence English
Pairs Words

Pashto-English GNOME 95,312 277,188
KDE4 3,377 8,881
Tatoeba 31 239
Ubuntu 9,645 26,626
Bible 13,432 298,522
TED Talks 664 11,157
Wikimedia 737 37,566

Table 1: Provided clean parallel data for Pashto–
English.

The web site for the shared task6 provided de-
tailed instructions on how to use these tools to
replicate the official testing environment.

4 Data

We provided three types of data for this shared
task: (1) clean parallel and monolingual data, in-
cluding related language data in Hindi, to train
models that aid with the filtering task, (2) the noisy
parallel data crawled from the web which partici-
pants have to score for filtering, and (3) develop-
ment and test sets that are used to evaluate transla-
tion systems trained on filtered data.

4.1 Clean Parallel Data

For Pashto (see Table 1 for detailed statistics),
the largest data sets are the Bible (prepared for
us by Arya McCarthy and David Yarowsky), var-
ious data sets from OPUS7 (GNOME, KDE4,
and Unbuntu software localization; Tatoeba vol-
unteer translations; and Wikimedia), and a TED
Talks corpus created for this task, crawled from
TED web site, and sentence-aligned with Vecalign
(Thompson and Koehn, 2019).

For Khmer (see Table 2 for detailed statistics),
the largest data sets are the alignment of 2 En-
glish with 4 Khmer Bibles, various data sets from
OPUS (GNOME, KDE4, and Ubuntu software lo-
calization; GlobalVoices citizen journalism arti-
cles; Tatoeba volunteer translations; and Wikime-
dia). We also re-aligned the Jehova’s Witness cor-
pus (JW300), a collection of religious texts, with
Vecalign.

6http://www.statmt.org/wmt20/
parallel-corpus-filtering.html

7http://opus.nlpl.eu/
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Corpus Sentence English
Pairs Words

GNOME 56 233
GlobalVoices 793 14,294
KDE4 120,087 767,919
Tatoeba 748 3,491
Ubuntu 6,987 27,413
Bible 54,222 1,176,418
JW300 107,156 1,827,348

Table 2: Provided clean parallel data for Khmer–
English.

Wikipedia CommonCrawl

Pashto 76,557 6,558,180
Khmer 132,666 13,832,947
English 67,796,935 1,806,450,728

Table 3: Provided clean monolingual data (number of
sentences).

For both language pairs, the available clean
parallel data is rather small and mostly out-of-
domain. It is not sufficient to build reasonable ma-
chine translation systems. In fact, even the pro-
vided raw unfiltered noisy parallel data gives bet-
ter results when used directly for training.

4.2 Clean Monolingual Data

Monolingual data is always available in much
larger quantities, and we provided data from two
sources: Wikipedia and CommonCrawl. Both
contain language that is similar to what is expected
in the noisy web data to be filtered.

We filtered the data to eliminate overlap with
the development and test sets. See Table 3 for de-
tailed statistics.

4.3 Noisy Parallel Data

Noisy parallel data sourced from CCAligned and
Paracrawl follow different philosophies. While
CCAligned mines bitexts from a high-precision
set of aligned web-documents yielding cleaner
parallel bitexts, the noisy parallel corpora from
Paracrawl are the outcome of a processing pipeline
aimed at high recall at the cost of precision,
yielding noisy bitexts. They exhibit noise of all
kinds: wrong language in source and target, sen-
tence pairs that are not translations of each other,

bad language (incoherent mix of words and non-
words), incomplete or bad translations, etc.

To ensure that CCAligned yields additional
noisy pairs, we don’t perform any filtering after
mining bitexts from the CCAligned corpus.

We used the processing pipeline of the
Paracrawl project to create the data, using the
clean parallel data to train underlying models such
as the dictionary used by Hunalign (Varga et al.,
2007) and a statistical translation model used by
the document aligner. The provided parallel cor-
pus is the raw output of the crawling pipeline, with
sentence pairs de-duplicated but otherwise no fur-
ther filtering performed. See Table 4 for statistics
of the corpus and Tables 5 and 6 for some example
sentences.

4.4 Development and Test Sets

For test and development purposes, we use the
flores Wikipedia data sets (Guzmán et al.,
2019). These sets are multi-domain, that is they
were sampled from Wikipedia documents with a
diverse set of topics. In Table 7 we present the
statistics of these sets. The official scoring of ma-
chine translation systems generated from the sub-
sampled data sources is done on the test set.

5 Evaluation Protocol

The testing setup mirrors the development envi-
ronment that we provided to the participants.

5.1 Participants

We received submissions from 10 different orga-
nizations, and an additional baseline LASER sub-
mission that was posted on the website. See Ta-
ble 8 for the complete list of participants. The par-
ticipant’s organizations are quite diverse, with 3
participants from the United States, 2 participants
from China, and 1 participant each from Canada,
Egypt, Turkey/China, Scotland, and Spain. 3 of
the participants are universities, 4 are companies,
1 is a joint company/university participant, and 2
are national research organizations. There was lit-
tle participant overlap between this year’s shared
task and last year’s shared task. Only AFRL and
NRC participated also last year.

Each participant submitted up to 3 different sets
of scores, not all participants addressed both lan-
guages, resulting in a total of 16 different submis-
sions for Pashto and 11 different submissions for
Khmer, including a baseline submission of using
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Sentence Pairs English Words Document Pairs

Pashto–English 1,022,883 11,551,009 45,312
Khmer–English 4,169,574 58,347,212 391,250

Table 4: Noisy parallel data to be filtered (de-duplicated raw output). Data is made available as aligned sentence
pairs (see table for number of English words) and as document pairs for which sentence alignment has to be
performed.

Table 5: Examples of relatively good sentence pairs from the noisy corpus for Pashto–English. Note that unreliable
sentence splitting for Pashto led to merging of sentence pairs.

Table 6: Examples of relatively good sentence pairs from the noisy corpus for Khmer–English. Note the lack of
word segmentation in Khmer leads to very long tokens.

just the LASER scores that was provided to par-
ticipants at the outset.

5.2 Methods used by Participants

This year, participants in general used a broader
range of features and more sophisticated classifier
approaches than previously. We first provide an
overview of methods and then give a short sum-

mary of each submission.

5.2.1 Methods

Pre-filtering Almost all participants employ
pre-filtering rules, based on the length of sen-
tences in terms of tokens or characters, ratio of the
lengths, ratio of alpha-numerical tokens, overlap
between the English and the foreign sentence (to
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Pashto Khmer

Sentence Pairs English Words Sentence Pairs English Words

dev 3,162 55,439 2,378 40,436
dev test 2,698 46,175 2,309 44,471
test 2,719 47,695 2,320 40,341

Table 7: Statistics for the flores test sets used to evaluate the machine translation systems trained on the subsam-
pled data sets. Word counts are obtained with wc on tokenized text.

Short Name Participant and System Description Citation

AFRL Air Force Research Lab, USA
Alibaba Alibaba, China (Lu et al., 2020)
Bytedance Bytedance, China (Xu et al., 2020)
Edinburgh University of Edinburgh, Scotland
Huawei Huawei, Turkey/China (Açarçiçek et al., 2020)
JHU-Kejriwal Ankur Kejriwal, Johns Hopkins University, USA (Kejriwal and Koehn, 2020)
JHU-Koerner Felicia Koerner, Johns Hopkins University, USA (Koerner and Koehn, 2020)
Microsoft Microsoft, Egypt Development Center, Egypt (Nokrashy et al., 2020)
NRC National Research Council, Canada (Lo and Joanis, 2020)
UA-Prompsit University of Alicante and Prompsit, Spain (Esplà-Gomis et al., 2020)
LASER Officially provided baseline

Table 8: Participants in the shared task.

avoid copy noise), or mismatched email addresses,
URLs or numbers.

A common pre-filtering method is also lan-
guage ID. However mixed results were reported
and some participants decided to not use it for
Pashto (Açarçiçek et al., 2020).

Some participants worked on morphological
segmentation of Khmer but this did not lead to any
improvements (Esplà-Gomis et al., 2020; Koerner
and Koehn, 2020).

LASER We provided LASER scores that per-
formed well in previous year’s filtering task.
LASER sentence embeddings are trained as a bot-
tleneck feature for a neural machine translation
model and trained on a large collection of paral-
lel corpora in 93 languages8 which include Khmer
but not Pashto. A similarity score for a sentence
pair is computed as the cosine distance between
the English sentence embedding and the foreign
sentence embedding (Nokrashy et al., 2020; Kejri-
wal and Koehn, 2020; Koerner and Koehn, 2020).

8https://github.com/facebookresearch/LASER#
supported-languages

Dual cross entropy Neural machine translation
systems trained on the provided clean parallel data
can be used by feeding in the English sentence and
computing the probability of the foreign sentence
according to the model, and vice versa. Junczys-
Dowmunt (2018) proposed a metric that uses not
only the individual computed cross entropy scores
but also the difference between them (Lu et al.,
2020; Koerner and Koehn, 2020).

Language models To assess the quality of sen-
tences by themselves, i.e., preferring sentences
that are fluent in the language, statistical or neural
language models are trained, typically using pro-
vided Wikipedia and CommonCrawl corpora (Lu
et al., 2020; Esplà-Gomis et al., 2020; Kejriwal
and Koehn, 2020; Koerner and Koehn, 2020; Lo
and Joanis, 2020).

Statistical word translation scores Words in
the two sentences should be translation of each
other. To what degree this is the case can be as-
sessed with classic word translation models which
are learned with the EM algorithm over the clean
parallel data (Lu et al., 2020; Lo and Joanis, 2020;
Esplà-Gomis et al., 2020).
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Classifier An increasing number of participants
framed the quality estimation problem as a clas-
sification task. This requires positive examples
drawn from the provided clean parallel text and
negative examples created by corrupting these
examples. Typically this involves mismatched
sentences, truncated sentences, sentences with
swapped word order (Esplà-Gomis et al., 2020;
Açarçiçek et al., 2020; Nokrashy et al., 2020; Xu
et al., 2020). To create harder negative examples
for the classifier, a sentence is paired not with
a random sentence from the foreign corpus but
with a neighboring sentence of the correctly paired
sentence and sentences that have 60% similarity
(measured by fuzzy match score) to the correct
translation (Açarçiçek et al., 2020).

5.2.2 Individual Submissions

AFRL use their corpus-building method (Erd-
mann and Gwinnup, 2019) but with a bidirectional
quality metric that nearly eliminates pre-filtering
(used only for the limit on training line length).
The coverage metric encourages the addition of a
sentence that improves corpus-level bilingual vo-
cabulary frequencies. The new quality metric is
the average of sentence-level NMT scores (“log-
likelihoods”) in both directions.

Alibaba (Lu et al., 2020) use a number of fea-
tures that are combined linearly: a bilingual GPT-
2 model trained on source-target language pairs as
well as monolingual GPT-2 model each of the lan-
guages, dual cross entropy from neural machine
translation models trained in both directions and
statistical word translation model scores. They
report that they experimented with classifiers to
weight features but found this to be not beneficial.

Bytedance (Xu et al., 2020) tackle only the com-
bined alignment/filtering task. The sentence align-
ment methods draws on statistical lexical trans-
lation scores, as used in YiSi-2. They iteratively
improve the lexical model by adding high-quality
mined sentence pair to its training data. Their
filtering method is a classifier based on mono-
lingual language models and a cross-lingual lan-
guage model (XLM), followed by an added con-
volutional layer. They also use language ID and
n-gram coverage during a re-ranking stage and en-
semble model variations (different architectures,
hyper parameters).

Huawei (Açarçiçek et al., 2020) focus on an end-
to-end classifier approach that learns to distinguish
clean parallel data from misaligned sentence pairs.
The model first uses a Transformer model to ob-
tain sentence representations, followed either by
a classifier (Siamese network) or additional lay-
ers that are fine-tuned. They report better perfor-
mance with a RoBERTa-style Transformer setup
over a BERT-style Transformer. A relatively small
training corpus is used (2,000 or 10,000 sentence
pairs) with 10x over-sampled negatives.

JHU-Kejriwal (Kejriwal and Koehn, 2020) use
LASER scores with some novel transformation
of score ranges, language ID confidence scores,
monolingual language models trained on words
and characters, and length-based filters.

JHU-Koerner (Koerner and Koehn, 2020) em-
ploy a linear combination of LASER scores,
monolingual language model scores, dual cross
entropy, and use a sentence duplication penalty.

Microsoft (Nokrashy et al., 2020) focus on the
LASER scores, using both the provided LASER
scores, custom LASER scores using a model
trained on the provided clean parallel data (which
are better for Pashto but worse for Khmer), and
a classifier built on a pair of LASER sentence
embeddings trained to distinguish between clean
sentence pairs and artificially bad sentence pairs.
While these three scores fare differently for the
two languages pairs, a combination of them per-
forms best.

NRC (Lo and Joanis, 2020) tackle both filtering
and alignment. Their filtering score is mainly
based on Yisi-2 (Lo, 2019), a language model
trained on the target side, and representations
obtained with XLM-RoBERTa (Conneau et al.,
2020) pre-trained for Pashto, Khmer, and English.
Sentence alignment is based on the approach by
Moore (2002), first applied to align paragraphs
and then sentences.

UA-Prompsit (Esplà-Gomis et al., 2020) use an
extended version of the established Bicleaner tool
which is a classifier that uses several features rang-
ing from coarse (e.g., statistical word translation
models scores) to shallow (e.g., average token
length, length ratio, punctuation count). The clas-
sifier uses the extremely randomized tree algo-
rithm. They also use a 7-gram character language
model as refinement.
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LASER scores were provided to participants,
with filtering for language ID and maximum 60%
overlap between source and target sentence.

Edinburgh did not submit a system description
paper.

5.3 Subset Selection
We provided to the participants a file containing
one sentence pair per line (see Section 4.3) each
for the two languages. A submission to the shared
task consists of a file with the same number of
lines, with one score per line corresponding to the
quality of the corresponding sentence pair.

To evaluate a submitted score file, we selected
subsets of a predefined size, defined by the number
of English words (5 million). We chose the num-
ber of English words instead of Pashto or Khmer
words, since the latter would allow selection of
sentence pairs with very few non-English words
and many English words which are beneficial for
decoder training but do not count much towards
the non-English word total.

Selecting a subset of sentence pairs is done by
finding a threshold score, so that the sentence pairs
that will be included in the subset have a quality
score at and above this threshold. In some cases, a
submission assigned this threshold score to a large
number of sentence pairs. Including all of them
would yield too large a subset, excluding them
yields too small a subset. Hence, we randomly
included some of the sentence pairs with the exact
threshold score to get the desired size in this case.

5.4 Evaluation System Training
Given a selected subset of a given size for a sys-
tem submission, we built neural machine transla-
tion systems from scratch (SCRATCH) and by con-
tinued training on a pre-trained model (MBART) to
evaluate the quality of the selected sentence pairs.

SCRATCH For from-scratch training, we used
the fairseq (Ott et al., 2019) transformer model
with the parameter settings shown in Figure 1.
Preprocessing was done with sentence piece for a
5000 subword vocabulary on tokenized text using
the Moses tokenizer (but no truecasing was used).
Decoding was done with beam size 5 and length
normalization 1.2. Training a system for the 5
million subsets took about 13 hours, on a single
GTX 1080ti GPU. Scores on the test sets were
computed with Sacrebleu (Post, 2018). We report
case-insensitive scores.

--arch transformer
--share-all-embeddings
--encoder-layers 5
--decoder-layers 5
--encoder-embed-dim 512
--decoder-embed-dim 512
--encoder-ffn-embed-dim 2048
--decoder-ffn-embed-dim 2048
--encoder-attention-heads 2
--decoder-attention-heads 2
--encoder-normalize-before
--decoder-normalize-before
--dropout 0.4
--attention-dropout 0.2
--relu-dropout 0.2
--weight-decay 0.0001
--label-smoothing 0.2
--criterion label smoothed cross entropy
--optimizer adam
--adam-betas ’(0.9, 0.98)’
--clip-norm 0
--lr-scheduler inverse sqrt
--warmup-update 4000
--warmup-init-lr 1e-7
--lr 1e-3 --min-lr 1e-9
--max-tokens 4000
--update-freq 4
--max-epoch 100
--save-interval 10

Figure 1: The baseline flores model settings9 for the
NMT training from scratch with fairseq

MBART For mBART evaluation, we initialize
the weights of transformer with the mBART bilin-
gual pre-training. We used monolingual text from
CommonCrawl with denoising objective to pre-
train the transformer. We trained 2 bilingual
mBART models, one with English and Pashto text
and another with English and Khmer text. Both
these models were pre-trained with batch size of
256 for 500, 000 updates, which took about 57
hours on 16 V100 GPUs.

Continued training on the filtered subsets uses
some different parameter settings, as listed in Fig-
ure 2. This continued training is faster; it takes
about half as much time.

6 Results

In this section we present the results of the shared
task evaluation. We added additional unofficial
condition at 2, 3, and 7 million English words, to
better observe tendencies.

6.1 Core Results
The results are reported in Table 9 (Pashto) and
Table 10 (Khmer). The tables contains the BLEU

9https://github.com/facebookresearch/
flores#train-a-baseline-transformer-model
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--dropout 0.1
--attention-dropout 0.1
--relu-dropout 0.0
--weight-decay 0.0
--label-smoothing 0.1
--adam-eps 1e-06
--lr 0.0001
--max-update 100000
--patience 10

Figure 2: Different model settings for continued train-
ing of the provided mBART model. The other settings
are the same.

scores for

• development test set and final test set
• neural machine translation from scratch and

mBART pre-training
• 2, 3, 5 and 7 million word subsets.

The official scoring is for the 5 million word
data settings on the final test set. In the table,
we highlight cells for the best scores for each of
these settings, as well as scores that are close to it.
Results for the unofficial 2, 3 and 7 million word
baseline are shown without highlighting.

For almost all submission the highest BLEU
scores is reached with subsets of 5 million words.
There is also fairly high consistency between rel-
ative performance under training from scratch and
mBART training. The best showings are by Al-
ibaba and Huawei, followed by NRC and UA-
Prompsit, with Microsoft still competitive. Other
submissions score at least 1 BLEU points behind
these.

Participants that also worked on sentence align-
ment of the provided document pairs were able to
outperform the provided sentence pairs. The peak
for these submissions shifts in most cases to the 7
million word subset. So, they were able to extract
more useful sentence pairs. The best submissions
for this setup comes from Bytedance. They out-
perform the provided sentence pairs and LASER
scores by +3.8 BLEU (from 7.7 to 11.5) for Pashto
from-scratch, +2.6 BLEU (from 10.3 to 12.9) for
Pashto mBART, +4.3 BLEU (from 8.4 to 12.7)
for Khmer from-scratch, +2.6 BLEU (from 12.9
to 15.5) for Khmer mBART.

6.2 Variance in the Evaluation

During the exploration of the evaluation protocol,
we had some concerns about the stability of the
BLEU scores obtained from training runs on a data

set. This concern was reinforced by feedback from
participants who did not match the baseline scores
that we reported on the shared task web page.

To assess this, we executed three training runs
for each subset of 5 million words selected from
participant submissions. The resulting scores vary
at most by 0.3 BLEU points for an identical train-
ing corpus, and differ most frequently just 0.1
BLEU point difference or are identical across all
runs. The official reported results in Tables 9
and 10 are the average score across these three
runs.

There may be higher differences for training
on different hardware. We used a single NVidia
GeForce GTX 1080ti GPU.

6.3 Average Sentence Length

Given the quality scores, subsets are selected by
including the highest ranked sentence pairs until
the total number of English words in these sen-
tences reaches the specified size. So, if a quality
scores prefers shorter sentences, more sentences
are selected. It is not clear in general, all things be-
ing otherwise equal, if shorter or longer sentences
are better for training machine translation systems.

What choices did the participants make in their
quality scores? Table 11 and Table 12 show the
number of sentences and the corresponding av-
erage number of words per sentence for the of-
ficial subsets for all submissions. The average
sentence length differs quite significantly, ranging
from 12.3 to 29.0 words per sentence for Pashto,
and 17.0 to 27.3 words per sentence for Khmer.
Cross-referencing this against the effectiveness of
the scores, methods that selected shorter sentences
on average performed better.

In contrast to this, the average sentence length
of submissions that also tackled sentence align-
ment is longer when compared to each partici-
pant’s filtering-only submission.

6.4 Diversity of Submissions

The different submissions subselect different sen-
tences, but how different are they?

Tables 13 and 14 give detailed statistics about
how many sentence pairs the subsets of any two
submissions for the two languages and two data
conditions have in common.

The tables show for the 5 million word subset
selected for each submission how many sentence
pairs it contains (e.g., AFRL: 172,145), how many
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Pashto 2 million 3 million 5 million 7 million

SCRATCH MBART SCRATCH MBART SCRATCH MBART SCRATCH MBART

DEVT TEST DEVT TEST DEVT TEST DEVT TEST DEVT TEST DEVT TEST DEVT TEST DEVT TEST
AFRL 6.2 4.8 9.6 8.7 7.4 5.9 10.7 9.8 9.4 8.2 11.2 10.1 9.3 7.4 11.0 9.1
Alibaba 9.9 8.4 12.0 11.0 10.3 9.4 12.6 11.6 10.8 9.5 13.1 12.2 10.0 8.8 12.8 11.6
Edinburgh 9.6 8.5 11.4 10.8 10.3 8.5 11.6 10.5 10.0 8.3 11.3 10.5 9.6 7.7 11.6 9.7
Huawei 9.7 8.6 11.5 10.6 10.7 9.3 12.3 11.7 10.9 9.7 13.3 12.2 - - 12.6 10.1
JHU-Kejriwal 0.8-5 8.0 6.7 10.5 9.9 9.1 7.7 10.8 10.1 9.7 7.8 11.3 10.2 9.4 7.2 11.5 10.0
JHU-Kejriwal 0.9-0 7.9 6.7 10.4 9.9 9.1 7.3 11.0 10.5 9.6 8.0 11.7 10.2 9.4 7.9 11.6 10.3
JHU-Kejriwal 0.9-5 8.2 6.9 10.2 9.8 9.1 7.6 11.0 10.2 9.6 7.7 11.6 10.4 9.4 7.5 11.4 9.9
JHU-Koerner dual-xent 7.7 6.0 9.4 9.4 8.9 7.6 11.3 10.7 9.8 8.0 10.9 10.3 9.5 7.4 11.3 9.5
JHU-Koerner laser-lm 9.1 7.7 11.0 10.4 9.7 8.4 11.4 10.3 9.9 8.3 11.1 10.0 9.5 7.8 11.0 9.6
LASER 9.1 7.6 10.9 10.2 9.4 7.8 11.0 10.3 9.7 7.7 11.4 10.3 9.7 8.2 11.1 9.8
Microsoft 9.4 8.5 11.2 10.6 10.5 9.2 11.7 11.1 10.1 8.5 12.8 11.6 9.9 8.5 11.7 10.3
NRC 8.7 7.5 9.3 8.8 10.2 8.6 11.4 10.7 10.5 8.9 12.9 12.0 9.8 8.5 12.5 11.5
UA-Prompsit 9.9 9.2 11.2 10.8 10.3 9.5 11.8 11.1 10.8 9.2 12.6 11.7 10.2 8.4 11.7 10.3
Alibaba alignment 9.1 8.8 11.7 10.9 10.8 10.0 12.2 11.8 11.7 10.4 13.2 12.4 11.2 9.8 12.8 11.8
Bytedance alignment 11.2 9.9 12.1 11.4 11.7 10.7 12.8 12.3 12.2 11.4 13.4 12.8 12.9 11.5 13.6 12.9
NRC alignment 11.4 10.1 12.2 11.1 12.0 10.5 12.7 11.7 11.8 10.5 13.4 12.4 11.1 10.0 13.1 11.9

Table 9: Results for Pashto: BLEU scores are reported for systems trained on 2, 3, 5 and 7 million word subsets of
the data, subsampled based on the quality scores provided by the participants.

Khmer 2 million 3 million 5 million 7 million

SCRATCH MBART SCRATCH MBART SCRATCH MBART SCRATCH MBART

DEVT TEST DEVT TEST DEVT TEST DEVT TEST DEVT TEST DEVT TEST DEVT TEST DEVT TEST

Alibaba 8.2 9.3 10.3 12.5 8.7 10.3 10.9 12.9 8.9 11.0 11.5 14.0 7.8 10.1 10.6 13.2
Huawei 8.5 9.8 10.2 13.0 8.8 10.5 11.1 13.8 8.8 10.8 11.4 14.0 8.2 10.5 11.1 14.0
JHU Kejriwal 0.8-6 6.6 7.9 9.4 11.3 6.9 8.3 9.7 12.0 7.1 8.3 9.8 12.5 6.7 7.8 10.1 12.1
JHU-Kejriwal 0.8-5-filt 6.4 7.6 9.2 11.4 6.6 7.9 10.1 12.2 7.1 8.4 9.9 12.7 6.3 7.6 10.1 12.2
JHU-Kejriwal 0.8-5 5.5 6.1 6.0 8.1 5.9 6.8 6.8 7.9 6.5 7.4 10.0 12.1 6.5 7.8 9.8 12.2
LASER 6.4 7.7 9.2 10.9 7.0 8.0 9.7 12.0 7.1 8.4 10.5 12.9 6.7 8.6 10.5 12.6
Microsoft 7.2 8.7 9.7 11.9 8.0 9.3 10.3 12.5 7.8 9.3 11.2 13.3 7.8 9.7 11.1 13.7
NRC 7.7 9.5 10.4 12.6 8.5 10.6 10.5 13.4 8.7 10.8 11.2 13.7 8.4 10.3 11.2 13.8
UA-Prompsit 7.9 9.1 10.0 12.2 8.4 9.7 10.7 13.0 8.4 10.0 10.8 13.8 7.6 9.4 10.9 13.2
Bytedance alignment 9.3 11.2 11.2 14.0 9.8 11.8 11.7 14.6 10.5 12.7 12.3 14.9 10.3 12.5 12.7 15.5
NRC alignment 8.3 9.9 10.3 12.6 8.5 10.8 11.0 13.2 9.1 11.3 11.5 14.2 9.4 11.9 11.7 14.5

Table 10: Results for Khmer: BLEU scores are reported for systems trained on 2, 3, 5 and 7 million word subsets
of the data, subsampled based on the quality scores provided by the participants.
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Pashto Sentences Words/S

AFRL 172,145 29.0
Alibaba 375,507 13.3
Edinburgh 274,021 18.2
Huawei 383,554 13.0
JHU Kejriwal 0.8-5 208,922 23.9
JHU Kejriwal 0.9-0 257,060 19.5
JHU Kejriwal 0.9-5 209,059 23.9
JHU-Koerner laser-lm 225,750 22.1
JHU-Koerner dual-xent 205,346 24.3
LASER 225,725 22.2
Microsoft 238,612 21.0
NRC 405,330 12.3
UA-Prompsit 315,133 15.9

Alibaba alignment 222,539 22.5
Bytedance alignment 219,887 22.7
NRC alignment 244,622 20.4

Table 11: Number of sentences and the corresponding
average sentence length (counting English words) for
Pashto.

Khmer Sentences Words/S

Alibaba 258,044 19.4
Huawei 278,534 18.0
JHU Kejriwal 0.8-5 218,851 22.7
JHU Kejriwal 0.8-5-filt 191,864 26.0
JHU Kejriwal 0.8-6 182,126 27.3
LASER 240,978 20.7
Microsoft 256,762 19.4
NRC 293,414 17.0
UA-Prompsit 206,018 24.3

Bytedance alignment 169,492 29.5
NRC alignment 264,796 18.8

Table 12: Number of sentences and the corresponding
average sentence length (counting English words) for
Khmer.

sentence pairs are unique to this submission’s sub-
set (e.g., AFRL: 7.6% of the 172,145 sentence
pairs) and how many are in common with other
submission (e.g,, 59.2% of AFRL’s subset are also
in Alibaba’s subset).

The leading submissions show mostly about
60% overlap, although there are also more similar
submissons (Alibaba’s and Huawai’s share around
80% of sentence pairs). The alignment submis-
sions tend to be quite different, not surprisingly.

7 Conclusion

We report on the findings of the WMT 2020
Shared Task on Parallel Corpus Filtering and
Alignment. Ten participants used a variety of
methods that gave quite different results, as mea-
sured by translation quality, optimal subset sizes,
sentence length, etc. We hope that this task pro-
vides a benchmark for future research and im-
provements on this task.
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AFRL 172145 7.6% - 59.2% 6.0% 19.2% 61.3% 57.2% 42.6% 43.3% 42.7% 53.8% 47.5% 47.5% 51.6% 60.5% 30.9% 60.2%
Alibaba 375507 4.6% 27.1% - 3.9% 12.5% 45.9% 82.2% 36.6% 44.6% 36.8% 41.6% 36.8% 36.8% 42.8% 66.4% 31.1% 59.2%
Alibaba alignment 222539 62.8% 4.6% 6.6% - 32.4% 5.9% 6.6% 3.5% 3.4% 3.5% 5.2% 3.9% 3.9% 5.1% 6.5% 7.9% 6.0%
Bytedance alignment 219887 45.2% 15.1% 21.3% 32.8% - 19.1% 22.0% 14.0% 13.6% 14.1% 18.1% 15.0% 15.0% 18.1% 21.1% 19.4% 19.2%
Edinburgh 274021 5.6% 38.5% 62.9% 4.8% 15.4% - 60.3% 50.4% 51.9% 50.6% 46.3% 58.7% 58.7% 53.4% 56.3% 32.4% 59.9%
Huawei 383554 3.0% 25.7% 80.5% 3.9% 12.6% 43.1% - 36.4% 44.0% 36.6% 42.3% 34.1% 34.1% 42.1% 72.3% 31.2% 59.2%
JHU-Kejriwal 0.8-5 208922 0.2% 35.1% 65.8% 3.7% 14.7% 66.1% 66.8% - 95.7% 98.5% 63.8% 74.8% 74.8% 64.8% 57.6% 31.1% 58.6%
JHU-Kejriwal 0.9-0 257060 2.0% 29.0% 65.2% 3.0% 11.7% 55.4% 65.6% 77.7% - 78.0% 56.5% 68.3% 68.3% 59.0% 55.2% 26.4% 54.0%
JHU-Kejriwal 0.9-5 209059 0.0% 35.2% 66.2% 3.7% 14.8% 66.3% 67.2% 98.5% 95.9% - 63.9% 75.1% 75.1% 65.1% 58.0% 31.4% 58.9%
JHU-Koerner dual-xent 205346 1.6% 45.1% 76.0% 5.6% 19.4% 61.8% 79.1% 64.9% 70.7% 65.1% - 56.6% 56.6% 62.3% 68.5% 39.0% 68.1%
JHU-Koerner laser-lm 225750 0.0% 36.3% 61.2% 3.9% 14.6% 71.3% 58.0% 69.2% 77.8% 69.5% 51.5% - 100.0% 77.3% 50.8% 28.5% 54.8%
LASER 225725 0.0% 36.3% 61.2% 3.9% 14.6% 71.3% 58.0% 69.2% 77.8% 69.5% 51.5% 100.0% - 77.3% 50.8% 28.5% 54.8%
Microsoft 238612 0.9% 37.2% 67.4% 4.7% 16.7% 61.3% 67.7% 56.7% 63.5% 57.0% 53.6% 73.1% 73.1% - 66.6% 32.5% 58.5%
NRC 405330 12.7% 25.7% 61.5% 3.6% 11.4% 38.1% 68.4% 29.7% 35.0% 29.9% 34.7% 28.3% 28.3% 39.2% - 29.7% 50.1%
NRC alignment 244622 42.2% 21.7% 47.8% 7.2% 17.5% 36.3% 48.9% 26.6% 27.7% 26.8% 32.8% 26.3% 26.3% 31.7% 49.1% - 41.7%
UA-Prompsit 315133 7.4% 32.9% 70.6% 4.3% 13.4% 52.1% 72.0% 38.8% 44.1% 39.1% 44.4% 39.2% 39.2% 44.3% 64.5% 32.4% -

Table 13: Overlap for Pashto. For each submission, a row in the table lists the total number of sentence pairs, the
ratio of unique sentence pairs that are in included in no other submission, and the ratio of sentence pairs shared
with each of the other submissions.
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Alibaba 258044 13.7% - 19.1% 68.7% 35.7% 35.3% 37.1% 41.9% 54.8% 59.6% 32.7% 41.1%
Bytedance alignment 169492 62.6% 29.0% - 29.6% 18.7% 15.9% 18.8% 19.4% 24.9% 27.1% 24.0% 21.0%
Huawei 278534 11.4% 63.7% 18.0% - 33.7% 38.1% 35.2% 41.8% 53.5% 58.1% 30.7% 42.4%
JHU Kejriwal 0.8-6 182126 0.2% 50.6% 17.4% 51.5% - 78.0% 99.0% 91.1% 82.6% 47.2% 26.0% 31.3%
JHU-Kejriwal 0.8-5 218851 11.9% 41.7% 12.3% 48.5% 64.9% - 68.8% 66.3% 60.8% 43.9% 20.3% 24.4%
JHU-Kejriwal 0.8-5-filt 191864 0.1% 49.9% 16.6% 51.1% 94.0% 78.5% - 91.6% 82.8% 46.4% 25.3% 30.7%
LASER 240978 6.2% 44.8% 13.6% 48.3% 68.8% 60.2% 72.9% - 82.1% 42.3% 22.4% 28.7%
Microsoft 256762 4.4% 55.1% 16.4% 58.0% 58.6% 51.9% 61.8% 77.0% - 48.7% 26.9% 33.8%
NRC 293414 26.1% 52.4% 15.7% 55.1% 29.3% 32.8% 30.3% 34.8% 42.6% - 32.1% 34.5%
NRC alignment 264796 58.9% 31.9% 15.3% 32.3% 17.9% 16.8% 18.4% 20.4% 26.1% 35.6% - 21.6%
UA-Prompsit 206018 28.1% 51.5% 17.3% 57.4% 27.7% 25.9% 28.6% 33.6% 42.1% 49.2% 27.8% -

Table 14: Overlap for Khmer. For each submission, a row in the table lists the total number of sentence pairs,
the ratio of unique sentence pairs that are in included in no other submission, and the ratio of sentence pairs shared
with each of the other submissions.
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Abstract

We report the results of the WMT20 shared
task on Quality Estimation, where the chal-
lenge is to predict the quality of the output
of neural machine translation systems at
the word, sentence and document levels.
This edition included new data with open
domain texts, direct assessment annotations,
and multiple language pairs: English–
German, English–Chinese, Russian–English,
Romanian–English, Estonian–English,
Sinhala–English and Nepali–English data for
the sentence-level subtasks, English–German
and English–Chinese for the word-level
subtask, and English–French data for the
document-level subtask. In addition, we made
neural machine translation models available
to participants. 19 participating teams from 27
institutions submitted altogether 1374 systems
to different task variants and language pairs.

1 Introduction

This shared task builds on its previous eight edi-
tions to further examine automatic methods for
estimating the quality of neural machine transla-
tion (MT) output at run-time, without the use of
reference translations. As in previous editions, it
includes the (sub)tasks of word-level, sentence-
level and document-level estimation. Important
elements introduced this year are: a variant of
the sentence-level task where sentences are anno-
tated with direct assessment (DA)1 scores instead
of labels based on post-editing; a new multilingual
sentence-level dataset mainly from Wikipedia arti-
cles, where the source articles can be retrieved for
document-wide context; the availability of NMT

1We note that the procedure followed for our data diverges
from that proposed by Graham et al. (2016) in three ways: (a)
we employ fewer but professional translators to score each
sentence, (b) scoring is done against the source segment (bilin-
gual annotation) and not the reference, and (c) we provide
translators with guidelines on the meaning of ranges of scores.

models to explore system-internal information for
the task.

In addition to advancing the state of the art at all
prediction levels, our main goals are:

• To create a new set of public benchmarks for
tasks in quality estimation.

• To investigate models for predicting DA
scores and their relationship with models
trained for predicting post-editing effort,

• To study the feasibility of multilingual (or
even language independent) approaches to
QE.

• To study the influence of source-language
document-level context for the task of QE.

• To analyse the applicability of NMT model
information for QE.

We have three subtasks: Task 1 aims at predict-
ing DA scores at sentence level (Section 2.1); Task
2 aims at predicting post-editing effort scores at
both sentence and word levels, i.e. words that need
editing, as well as missing words and incorrect
source words (Section 2.2); Task 3 aims at predict-
ing a score for an entire document as a function
of the proportion of incorrect words in such a doc-
ument, weighted by the severity of the different
errors (Section 2.3).

Tasks make use of large datasets produced from
either post-editions or DA annotations, or error an-
notation, all done by professional translators. The
text domains vary for each subtask. Neural MT
systems were built on freely available data using
an open-source toolkit to produce translations, and
these models were made available to participants.
We provide new training and test datasets for Tasks
1 and 2, and a new test set for Task 3. The datasets
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and models released are publicly available. Partic-
ipants are also allowed to explore any additional
data and resources deemed relevant.

Baseline systems were entered in the platform
by the task organisers (Section 3). The shared task
uses CodaLab as submission platform, where par-
ticipants (Section 4) could submit up to 30 systems
for each task and language pair. Results for all
tasks evaluated according to standard metrics are
given in Section 5, while a discussion on the main
goals and findings from this year’s task is presented
in Section 6.

2 Subtasks

In what follows we give a brief description for each
subtask, including the datasets provided for them.

2.1 Task 1: Predicting sentence-level DA
This task consists in scoring translation sen-
tences according to their perceived quality score
– which we refer to as direct assessment (DA).
For that, a new dataset, was created contain-
ing seven languages pairs using sentences mostly
from Wikipedia2. These language pairs are
divided into 3 categories: the high-resource
English→German (En-De), English→Chinese
(En-Zh) and Russian→English (Ru-En) pairs;
the medium-resource Romanian→English (Ro-
En) and Estonian→English (Et-En) pairs; and
the low-resource Sinhala→English (Si-En) and
Nepali→English (Ne-En) pairs.

Translations were produced with state-of-the-
art transformer-based NMT models trained using
publicly available data and the fairseq toolkit (Ott
et al., 2019); and were manually annotated for per-
ceived quality. The quality label for this task ranges
from 0 to 100, following the FLORES guidelines
(Guzmán et al., 2019). According to the guidelines
given to annotators, the 0-10 range represents an
incorrect translation; 11-29, a translation with few
correct keywords, but the overall meaning is dif-
ferent from the source; 30-50, a translation with
major mistakes; 51-69, a translation which is un-
derstandable and conveys the overall meaning of
the source but contains typos or grammatical er-
rors; 70-90, a translation that closely preserves the
semantics of the source sentence; and 91-100, a
perfect translation.

2This dataset is a superset of MLQE (Fomicheva et al.,
2020c) which included 6 language pairs and is sourced en-
tirely from Wikipedia. The newly-added English-Russian DAs
follow the same guidelines, but come from diverse sources.

Statistics on the dataset are shown in Table 1.
More details are given in Fomicheva et al. (2020a).
The complete data can be downloaded from the
public repository3.

Participation was encouraged for each language
pair and also for the multilingual variant of the
task, where submissions had to include predictions
for all six Wikipedia-based language pairs (all ex-
cept Ru-En). The latter aimed at fostering work on
language-independent models, as well as models
that can leverage data from multiple languages.

2.2 Task 2: Predicting post-editing effort

This task follows from previous editions of the
WMT shared task and consists in scoring transla-
tions according to the proportion of their words that
need to be fixed using HTER as label, i.e. the mini-
mum edit distance between the machine translation
and its manually post-edited version, as well as de-
tecting where errors are in the translation of source
sentences. It uses a subset of the languages from
Task 1, namely the two high-resource language
pairs (En-De and En-Zh, Table 1).

Sentence-level post-editing effort The label for
this task is the percentage of edits that need to be
fixed (HTER). Starting with the En-De and En-
Zh source-machine translation segment pairs, the
machine translation sentences were post-edited by
two human translators, one per language, who are
paid editors from the Unbabel community. The
two translators had no access to the direct assess-
ments above. In other words, the DA and HTER
annotations were collected independently.

The average human translation error rate be-
tween the machine translated text and the post-
edited text was 0.32 for En-De, and 0.62 for En-Zh.
HTER labels were computed using TERCOM 4

with default settings (tokenised, case insensitive,
exact matching only), with scores capped to 1.

Word-level errors This variant evaluates the ex-
tent to which we can detect word-level errors in
MT output. Based on the post-edited translations,
as described above, we annotate each token of the
target and the source sentence, as well as word
omission errors. The code to produce this set of
tags from any prior WMT corpora is available for

3https://github.com/sheffieldnlp/
mlqe-pe

4https://github.com/jhclark/tercom
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Sentences Tokens

Languages Train Dev Test Train Dev Test DA PE

En-De 7,000 1,000 1,000 114,980 16,519 16,371 X X
En-Zh 7,000 1,000 1,000 115,585 16,307 16,765 X X
Ru-En 7,000 1,000 1,000 82,229 11,992 11,760 X
Ro-En 7,000 1,000 1,000 120,198 17,268 17,001 X
Et-En 7,000 1,000 1,000 98,080 14,423 14,358 X
Ne-En 7,000 1,000 1,000 104,934 15,144 14,770 X
Si-En 7,000 1,000 1,000 109,515 15,708 15,821 X

Table 1: Statistics of the data used for Task 1 (DA) and Task 2 (PE). The number of tokens is computed based on
the source sentences.

download.5 More specifically, the following types
of labels were produced:

• Source side: Each word in the source side is
labelled as OK (correctly translated) or BAD
(caused a translation error).

• Target side: Each word in the target side is
labelled as OK (a correct translation) or BAD
(should be replaced or deleted). Additionally,
we consider gap ‘tokens’ at the beginning of
the sentence, at the end and between each
two words. They are labelled OK if no word
should be inserted in that position (according
to the post-edited version), and BAD other-
wise.

In order to obtain the labels, we first align source
and MT using the IBM Model 2 alignments from
FastAlign (Dyer et al., 2013), and compute edit
distances between the generated and post-edited
translations with TERCOM, using default settings
and disabled shifts.

2.3 Task 3: Predicting document-level MQM
This task consists in finding document-level trans-
lation errors and estimating a quality score accord-
ing to the amount of minor, major, and critical
errors present in the translation. The predictions
are compared to a ground-truth obtained from an-
notations produced by crowd-sourced human trans-
lators from Unbabel community.

Each document contains zero or more errors, an-
notated according to the MQM taxonomy6, and

5https://github.com/deep-spin/
qe-corpus-builder

6Multidimensional Quality Metrics; see
http://www.qt21.eu/mqm-definition/
definition-2015-12-30.html for details.

Error Annotation

Coup de sifflet Fox 40 CMG classique doigt

officiel Grip

Figure 1: Example of fine-grained document annota-
tion. Spans in the same color belong to the same an-
notation. Error severity and type are not shown for
brevity.

may span one or more tokens, not necessarily con-
tiguous. Errors have a label specifying their type,
such as wrong word order, missing words, agree-
ment, etc. They provide additional information,
but do not need to be predicted by the systems.
Additionally, there are three severity levels for er-
rors: minor (if it is not misleading nor changes
meaning), major (if it changes meaning), and criti-
cal (if it changes meaning and carries any kind of
implication, possibly offensive).

Figure 1 shows an example of fine-grained error
annotations for a sentence. Note that there is an
annotation composed by two discontinuous spans:
a whitespace and the token Grip — in this case, the
annotation indicates wrong word order, and Grip
should have been at the whitespace position.

Document-level scores were then generated from
the word-level errors and their severity using the
method described in Sanchez-Torron and Koehn
(2016, footnote 6). Namely, denoting by n the
number of words in the document, and by nmin,
nmaj, and ncri the number of annotated minor, ma-
jor, and critical errors, the final quality scores were
computed as:

MQM = 1− nminor + 5nmajor + 10ncrit
n

(1)
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Note that MQM values can be negative if the
total severity exceeds the number of words.

As this year’s dataset, we reused the training
data from previous years, adding the test sets from
2018 and 2019 to the training set, keeping the same
development set from 2019, and released a new test
set. The documents are short product title and de-
scriptions in English, extracted from the Amazon
Product Reviews dataset (McAuley et al., 2015;
He and McAuley, 2016) (Sports and Outdoors cat-
egory). The documents were machine translated
into French using a state of the art online neural
MT system. The dataset statistics are presented in
Table 2.

3 Baseline systems

Sentence-level baseline systems: For Tasks 1
and 2, both word and sentence-level, we used the
LSTM-based Predictor-Estimator approach (Kim
et al., 2017), implemented in OpenKiwi (Kepler
et al., 2019b). The Predictor model was trained on
the same parallel data as the NMT systems for each
language pair (made available at the task website),7

while the the Estimator was trained on the 7, 000
QE labelled data for each task.

Word-level baseline systems: For Task 2, we
also used the Predictor-Estimator as above, but it
was trained to predict jointly word-level tags and
sentence-level scores.

Document-level baseline system: For Task 3,
similarly as last year, we used a baseline which
treats sentences independently and casts the prob-
lem as word-level QE, such that all words and gaps
within an error span are given the tag BAD. We
then trained a Predictor-Estimator model, regroup-
ing any contiguous sequence of tokens tagged as
BAD in a single error annotation. In order to get
MQM scores, instead of computing the value ac-
cording to its definition, we compute it simply as 1
minus the the ratio of BAD tags.

4 Participants

Table 3 lists all participating teams submitting sys-
tems to any of the tasks, and Table 4 report the
number of successful submissions to each of the
sub-tasks and language pairs. Each team was al-
lowed up to two submissions for each task vari-
ant and language pair. In the descriptions below,

7http://statmt.org/wmt20/
quality-estimation-task.html

participation in specific tasks is denoted by a task
identifier (T1 = Task 1, T2 = Task 2, T3 = Task 3).

Bergamot-LATTE (T1): Bergamot-LATTE sub-
mitted two systems to the two variants of
sentence-level predictions: (i) a black-box ap-
proach based on pre-trained representations;
(ii) an unsupervised glass-box approach that
leverages information extracted from the neu-
ral MT system. The black-box model consists
of stacking a 2-layer multilayer perceptron
on the vector representation of the CLS to-
ken from the contextualised representation
from XLM-R(Conneau et al., 2020), using
both the source and the target sentences as
input. The glass-box approach explores the
best-performing unsupervised quality indica-
tors presented in Fomicheva et al. (2020c) that
rely on uncertainty quantification based on
the Monte Carlo dropout method: D-TP and
D-Lex-Sim.

Bergamot (T1, T2): Bergamot explores recent
work on glass-box QE that exploits NMT out-
put distribution and attention to capture uncer-
tainty as a proxy to MT quality. Specifically,
they use three groups of unsupervised qual-
ity indicators described in Fomicheva et al.
(2020c) as features for a regression model.

Bering Lab (T2): Bering Lab proposes a fine-
tuned version of a pre-trained XLM-R model.
The model is first trained on a huge artificial
QE data that is created by (i) translating a
parallel corpus with an OpenNMT system;
and (ii) using the TER tool to produce artici-
fial labels for both word- and sentence-levels.
The model is then fine-tuned using the shared
task’s data. For predictions at word-level, the
final hidden vector of each token, including
the <S>, is fed into a linear layer with sig-
moid activation in order to predict the proba-
bility of each of these token to be BAD. Qual-
ity labels for tokens and gaps are predicted
separately with two distinct binary classifica-
tion layers. For predictions at sentence-level,
the final hidden vector of the first <S> token,
considered as a pooled representation, is fed
into two linear layers with tanh activation.
Submitted predictions are results of an ensem-
ble of 5 models trained with different seeds:
averaged predictions for sentence-level, and
majority voting for word-level.
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Documents Sentences Tokens

Train Dev Test Train Dev Test Train Dev Test

En-Fr 1,448 200 180 8,592 1,301 895 189,735 28,092 18,545

Table 2: Statistics of the data used for Task 3. The number of tokens is computed based on the source sentences.

ID Participating team

Bergamot-LATTE University of Sheffield & Imperial College London, UK & Johns Hop-
kins University & Facebook AI, US & University of Tartu, Estonia

(Fomicheva et al., 2020b)

Bergamot University of Tartu, Estonia (Fomicheva et al., 2020b)
Bering Lab Bering Lab, Republic of Korea (Lee, 2020)
Elturco.AI Elturco AI, Turkey –

FVCRC Nagoya University, Japan & University of Sydney, Australia (Zhou et al., 2020)
HW-TSC Huawei Translation Services & East China Normal University, China (Wang et al., 2020a)

IST & Unbabel Instituto Superior Técnico Lisbon & Unbabel, Portugal (Moura et al., 2020)
JXNU-CCLQ Jiangxi Normal University, China –

Mak University of Wolverhampton, UK –
NICT Kyoto National Institute of ICT, Japan (Rubino, 2020)

NiuTrans Northeastern University & NiuTrans Reasearch, China (Hu et al., 2020)
NJUNLP Nanjing University, China (Cui et al., 2020)

Papago KAIST & Naver, Republic of Korea (Baek et al., 2020)
RTM Boğaziçi University, Turkey (Biçici, 2020)

TMUOU Osaka University & Tokyo Metropolitan University, Japan (Nakamachi et al., 2020)
Tencent Inc. Tencent Inc, China (Wang et al., 2020b)
TransQuest University of Wolverhampton, UK (Ranasinghe et al., 2020)

WL Research WL Research, US, Canada and Turkey (Kane et al., 2020)
XC Imperial College London, UK –

Table 3: Participants in the WMT20 Quality Estimation shared task.

Task/LP # submission

Task 1 – Sent-level Direct Assessment 747
Multilingual 43
English-German 132
English-Chinese 146
Romanian-English 150
Nepali-English 56
Estonian-English 68
Sinhala-English 74
Russian-English 78

Task 2 – Post-Editing Effort 435
English-German (sent-level) 131
English-Chinese (sent-level) 235
English-German (word-level) 38
English-Chinese (word-level) 31

Task 3 – Document-Level QE 192
English-French (annot.) 97
English-French (score) 95

Total 1374

Table 4: Number of submissions to each sub-task
and language-pair at the WMT20 Quality Estimation
shared task. In the results (Section 5) we only report
the top two submissions per team for each task and lan-
guage pair.

Elturco.AI (T2): Elturco.AI uses a generative
model and a discriminative model, inspired
by Electra (Clark et al., 2020). The two mod-

els are jointly trained on a parallel corpus, in
order to create increasingly difficult artificial
samples for quality estimation. The genera-
tive model consists of a transformer encoder
and two transformer decoders, for forward and
backward direction. In addition to predicting
tokens, it is also trained to predict gap loca-
tions on the target side given the source sen-
tence and left and right contexts on the target
side. Distorted translations are generated by
sampling on generator outputs on token and
gap locations, which can be shorter or longer
than the original translation. The distorted
translations are compared to original transla-
tions for generating token and gap tags. The
discriminator, a transformer encoder-decoder
with full attention mask on the decoder side, is
trained to predict the generated tags given the
source and distorted translation. Once trained,
the discriminator is fine-tuned on the actual
quality estimation dataset.

FVCRC (T1): FVCRC’s system builds on
BERTScore, a text generation evaluation sys-
tem based on pretrained BERT contextual em-
beddings, originally for Metrics tasks. By
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using pre-trained multilingual BERT-based
model, they experiment with BERTScore on
QE tasks. Without reference translations,
it makes more errors in terms of word (or
sub-word) alignments when perform greedy
matching on pairwise cosine similarity, which
is believed to be main cause of its drop of
performance in QE tasks. They introduce
GIZA++ word (subword) alignments and n-
grams similarity matching to tackle misalign-
ments and sentence perplexity of candidate
translation as additional information to the
evaluation score. Otherwise, the default set-
ting of BERTScore (Zhang* et al., 2020)
is used: pre-trained bert-base-multilingual-
cased and xlm-mlm-100-1280 for embedding
extraction, with a single model. This system
is not trained on human labels (DA) and is not
optimised on additional data.

HW-TSC (T2): HW-TSC submissions follows the
Predictor-Estimator architecture (Kim et al.,
2017), with a pre-trained Transformer as Pre-
dictor, and task-specific classifiers and regres-
sors as Estimators. HW-TSC uses a unified
model to solve both word- and sentence-level
tasks, trained under multi-task learning. To
improve the transfer-learning efficiency across
tasks while preventing over-fitting, a Bottle-
neck Adapter Layer (Houlsby et al., 2019)
is added to the Transformer after the self-
attention and the feedfoward layers, while
keeping the original parameters of the Trans-
former model fixed.

IST & Unbabel (T1, T2, T3): IST & Unba-
bel submitted two systems per task vari-
ant: OPENKIWI-BASE and KIWI-GLASS-
BOX-ENSEMBLE for predicitons at both
word- and sentence-levels; KIWI-DOC and
KIWI-DOC-IOB for document-level predic-
tions. OPENKIWI-BASE is based on the re-
implementation of the Predictor-Estimator
architecture (Kim et al., 2017) available in
OpenKiwi (Kepler et al., 2019b): the Predic-
tor model is replaced with pre-trained con-
textualised representations (such as BERT or
XLM-R) and the bi-LSTM Estimator is re-
placed by linear layers. KIWI-GLASS-BOX-
ENSEMBLE is similar to OPENKIWI-BASE

with a bottleneck layer introduced in the Es-
timator in order to concatenate the features

extracted from the Predictor, with sentence-
level uncertainty features extracted from the
NMT system provided by the shared task.
Those glass-box features are based on work
by Fomicheva et al. (2020c) and exploit en-
tropy measures at prediction time. Unlike
OPENKIWI-BASE, the KIWI-GLASS-BOX-
ENSEMBLE model is trained for source, target
and sentence level predictions simultaneously,
using a multi-task learning approach. KIWI-
DOC is the same as in Kepler et al. (2019a)
while KIWI-DOC-IOB frames the task of anno-
tating as Name Entity Recognition task: the
severity annotations are projected to tags in
IOB format (‘O‘, ‘B-major‘, ‘I-major‘, ‘B-
critical‘, etc.) and the model is trained with a
CRF output layer to enforce correctness of the
tag-sequence at prediction time. The predicted
tags are converted into annotations without the
resort to a grouping and labelling heuristic.

JXNU-CCLQ (T1): JXNU-CCLQ proposes a
model composed of a Transformer bottleneck
layer and a bidirectional LSTM. The param-
eters of the Transformer bottleneck layer are
first optimised with a bilingual parallel cor-
pus, and the entire model is then fine-tuned
on the training quality labelled dataset of the
shared task. At test time, the translation out-
puts, which are estimated with teacher forcing
and special masking, are put together with the
source sentences and put through a unified
neural network model to predict the quality of
the translations.

Mak (T1): Mak represents the source and its trans-
lation sentence pairs as a set of 70 black-
box sentence-level features extracted with
Quest++(Specia et al., 2015), using the re-
sources used to train the English-Russian
NMT system (Ng et al., 2019). Those features
are then fitted into a support vector regressor
with default settings.

NICT Kyoto (T2): The English–German and
English-Chinese sentence-level QE systems
for Task 2 are ensembles of pre-trained cross-
lingual language models (XLM) (Conneau
and Lample, 2019), fine-tuned in a multi-task
fashion with two linear output layers for sen-
tence and word-level quality estimation. A
total of 8 XLM models with various mask-
ing hyper-parameters were domain-adapted
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using a subset of the additional resources pro-
vided by the QE shared task organisers, as
well as a subset of the WikiMatrix corpus [2].
The translation language model training ap-
proach (TLM) was used before fine-tuning
the XLM models for the QE task, comple-
mented with a novel self-supervised learning
task which aims to model errors inherent to
machine translation outputs.

NiuTrans (T1, T2, T3): For Task 1, NiuTrans ex-
plored the combination of pre-trained models
and multi-task learning. They used three dif-
ferent model settings, including multilingual-
bert (∼200M parameters), xlm-roberta-base
(∼300M parameters) and xlm-roberta-large
(∼600M parameters). They continued pre-
training all models on the WMT dataset and
utilised task adaptive pre-training to further
boost the models’ performance. The out-
put of different models was combined using
a weighting scheme to get final predictions.
For Task 2, an ensemble of 10 transformer-
based predictor-estimator models was used,
with multi-task training for the word-level
tasks. Each single model contains 10M pa-
rameters. They also submitted an ensemble
result of multilingual-bert and xlm-roberta-
base for sentence-level scoring tasks. For
Task 3, they used an ensemble of 8 predictor-
estimator models and multi-task training for
the word-level subtask. The single model con-
tains 150M parameters. For the scoring sub-
task, they explored an ensemble of linear re-
gression models and pre-trained models. They
also used WMT 2014 English-French dataset
for fine-tuning.

NJUNLP (T2): This system is an ensemble using
NuQE and QUETCH models (Kepler et al.,
2019b), as well as the QE Brain model (Fan
et al., 2019). In addition to these pre-existing
models, the ensemble also uses a masked ver-
sion of the QE Brain, where some tokens in
the translation are masked during training, and
a masked language model (Devlin et al., 2018).
For sentence-level, the different models are
used as feature extractors, which are used as
inputs of a dense layer to produce the predic-
tions. For word-level, they use majority voting
to ensemble the different models.

Papago (T1, T3): Papago’s submission for Task 1

En-De is an ensemble of three models based
on pre-trained contextualised representations:
multilingual BERT (mBERT), XLM-Masked-
Language-Modelling (XLM-MLM), and
XLM-Causal-Language-Modelling (XLM-
CLM). Three scores were produced from
these models: an extension of BERTScore
using the multilingual BERT model, Sen-
tenceBERT score (Reimers and Gurevych,
2019), and target (German) language model
score using a pre-trained GPT-2 model.
Additionally, the scores were computed for
synthetic data created using WMT News
translation data by randomly performing
different methods, including swapping
word order, omiting words or repeating
phrases. The three models are pre-trained
from these data in a multi-task regression
setting. Lastly, these pre-trained models are
fine-tuned using the QE corpus. For Task 3,
the submitted system uses an ensemble of
four models leveraging either multilingual
BERT or XLM. The training scheme is very
task-oriented: erroneous sentence pairs and
their pseudo-MQM scores are generated from
Europarl and this QE task’s training corpus.

RTM (T1, T2): For Task 1 and Task 2’s sentence-
level prediction, the RTM model treats QE as
a parallel semantic similarity prediction task
within machine translation performance pre-
diction (MTPP) or a monolingual semantic
similarity when the source or the target lan-
guage are unknown or have scarce resources.
En-De and Ru-En were modelled as parallel
MTPP and the rest as monolingual MTPP us-
ing only the English side of the training and
development datasets. Machine learning algo-
rithms including ridge regression, SVR, and
regression trees were used and the submis-
sions were constrained to the resources pro-
vided. RTM selects a subset of parallel and
monolingual text for each translation direc-
tion.

TMUOU (T1): TMUOU proposes an ensemble
of four regression models based on XLM-R
large: model 1 uses the final hidden vector
of the CLS token; model 2 concatenates the
feature of model 1 with the mean of the final
hidden vector of each token; models 3 and 4
are based on models 1 and 2, respectively, but
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adds a special token for language identifica-
tion at the beginning of each sentence. The
ensemble model is a gradient boosting regres-
sor that features the predictions of these four
models, the sentence probability of the target
translation system, and one-hot vectors that
indicate both the source and target languages.

Tencent (T2): Tencent-TTL’s submission for
the sentence-level Task 2 use a predictor-
estimator model. They use two predictors
as feature extractors: a transformer trained
with WMT provided parallel corpus and a fine-
tuned cross-lingual language model (XLM).
For the XLM-based predictor, it produces two
kinds of contextual token representations, i.e.,
masked representations and non-masked rep-
resentations. For transformer-based predictor,
only the non-masked representation is pro-
duced. The estimator was trained with LSTM
or Transformer. Finally, they ensembled the
systems with different models and the same
model with different parameters using logistic
regression to produce a single sentence-level
prediction.

TransQuest (T1, T2): TransQuest proposes
two architectures: MONOTRANSQUEST and
SIAMESETRANSQUEST, both using pre-
trained XLM-R large transformer model. The
MONOTRANSQUEST architecture uses the
computed CLS token pooled representation
from a single transformer model and uses it
as input of a softmax layer that predicts the
quality score of the translation. The SIAME-
SETRANSQUEST architecture encodes both
the source sentence and its translation with
two separate XLM-R transformer models. For
each transformer model, the it computes the
mean of all output vectors of the input words,
and applies the cosine similarity measure be-
tween the two outputs. The final submission
is an ensemble of the two architectures.

WL Research (T1): WL’s NUBIA method has
three modules: a neural feature extractor, an
aggregator and a calibrator. The feature ex-
tractor consists of different transformer-based
architectures fine-tuned on relevant tasks of
language evaluation such as semantic simi-
larity (RoBERTa model fine-tuned on STS-
B), logical inference (RoBERTa fine-tuned on

MNLI) and sentence likelihood (GPT2 per-
plexity score). The aggregator uses the fea-
tures extracted by the transformers as well as
non-neural features such as hypothesis sen-
tence length and is trained to predict the qual-
ity of the hypothesis sentence. These features
are then used to train a 10 hidden layer neural
network. Given that NUBIA takes as input
sentences in English, as pre-processing step,
Google Translate was used to translate either
the non-English candidate or source to have
both in English.

XC (T1): This was a multilingual system trained
using TransQuest (with BERT embeddings
bert-base-multilingual-cased) and data for all
language pairs concatenated. An attempt was
also made to use project the BERT source
and target sentence embeddings into a space
where they are highly correlated using CCA
(Canonical Correlation Analysis) followed by
an MLP regressor trained to predict the quality
score, but this did not perform as well as a
vanilla TransQuest.

5 Results

5.1 Task 1
Submissions for Task 1 are evaluated against the
true z-normalised direct assessment label using
Pearson’s r correlation score as primary metric.
This is what was used for ranking system sub-
missions. Mean Absolute Error (MAE), and Root
Mean Squared Error (RMSE) were also computed
as secondary metrics. Statistical significance on
Pearson r was computed using William’s test.8

Table 5 summarises the results for all language
pairs, as well as the multilingual variant, in terms
of Pearson’s r correlation with direct assessments,
ranking systems by their average performance for
all language pairs (using 0 as Pearson score for
other languages). In the Appendix, Tables 11, 12,
13, 14, 15, 16, 17 and 18 provide the detailed results
for all language pairs and the multilingual variant,
ranking participants by their performance for each
of these cases. The detailed tables show a striking
difference in performance by Pearson scores versus
MAE/RMSE, especially for the top systems. This
requires further investigation.

Best performers The two top performing sys-
tems, TransQuest and Bergamot-LATTE (black-

8https://github.com/ygraham/mt-qe-eval
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Model Si-En Ne-En Et-En Ro-En En-De En-Zh Ru-En Multi
TransQuest 0.68 0.82 0.82 0.91 0.55 0.54 0.81 0.72
Bergamot-LATTE (black-box) 0.68 0.81 0.83 0.91 0.54 0.53 0.80 0.72
IST and Unbabel (Kiwi-glass-box-ensemble) 0.64 0.79 0.77 0.89 0.52 0.49 0.77 0.67
TMUOU 0.67 0.78 0.79 0.90 0.48 0.44 0.78 0.69
XC 0.63 0.78 0.76 0.88 0.47 0.47 0.78 -
WL Research 0.58 0.69 0.64 0.82 0.25 0.30 0.60 0.55
Bergamot 0.56 0.66 0.68 0.80 0.48 0.43 - -
Bergamot-LATTE (glass-box) 0.51 0.60 0.64 0.69 0.26 0.32 - 0.49
IST and Unbabel (OpenKiwi-base) 0.56 0.60 0.69 0.71 0.27 0.35 - 0.58
BASELINE 0.37 0.39 0.48 0.68 0.15 0.19 0.55 0.38
FVCRC 0.39 0.49 - 0.65 0.11 0.08 0.40 -
RTM 0.54 - 0.61 0.70 - 0.26 - -
Shrangin ‡ - - - 0.85 - - - -
Mak - - - - - - 0.54 -
Papago - - - - 0.50 - - -
aj54 ‡ - - - - - 0.44 - -
JXNU-CCLQ - - - - - 0.43 - -
jackielo ‡ - - - - - - 0.41 0.46
zhanghuimeng ‡ - - - - 0.39 - - -
DexinWang ‡ - - - - 0.25 - - -
Hancheng-Deng ‡ - - - - 0.17 - - -
NiuTrans † 0.70 0.83 0.83 0.92 0.56 0.55 0.82 0.73

Table 5: Pearson correlation with direct assessments for the submissions to WMT20 Quality Estimation Task 1.
For each language pair, results marked in bold correspond to the winning submissions, as they are not significantly
outperformed by any other system according to the Williams Significance Test (Williams, 1959). Baseline systems
are highlighted in grey; † indicates teams that have been identified as having submitted more systems than the
allowed limit to the leaderboard; ‡ indicates Codalab username of participants from whom we have not received
further information.

box) perform the same or very closely for all lan-
guage pairs. Both make use of the XML-R large
pre-trained representations, and ensembles. This
is clearly a booster, as these systems achieve al-
most double the correlation of the baseline. Note
that the baseline also uses pre-trained word embed-
dings, but these are obtained using much smaller
datasets: those used to train the NMT models for
each respective language pair.

Except for a few systems for some language
pairs, the vast majority of submissions outperform
the baseline system, often by a large margin, ex-
cept for Russian-English which had fewer submis-
sions and where 1/3 of the systems are below the
baseline. It is hard to make any conclusions about
this difference across languages as Russian-English
systems that are below the baseline did not sub-
mit systems for other languages. In relative terms,
the improvement over the baseline for top systems
in this language is similar to the other language
pairs. The range of performances is remarkably
wide, with the winning systems often doubling the
Pearson correlation of the bottom pack, notably for
English-Chinese and English-German.

To gain a better understanding in the perfor-
mance of different QE approaches for different
language pairs, Figure 2 shows the scatter plots for

the baseline and the best performing system for
each language pair. Note the remarkable difference
in correlation between the baseline and the top per-
formers across languages. In the figures, we can
visualise the substantial gains are achieved, largely
due to the use of strong pre-trained representations.

High-resource performance MT quality for the
high-resource language pairs, in particular English–
German, was the most challenging to predict. As
discussed in Fomicheva et al. (2020a), the MT out-
puts for this language pair have little variability in
terms of perceived MT quality. The vast majority
of translations were assigned high scores during
DA evaluation, which makes it difficult to capture
any meaningful variation between the DA scores.
We observe that the results for HTER prediction for
this language pair are more positive, a difference
which we discuss in Section 6.

Low-resource performance Interestingly, the
results for the low-resource language pairs, Sinhala–
English and Nepali–English, are comparable with
the rest. The fact that the performance of the
winning approaches based on multilingual pre-
trained representations does not degrade for the
low-resource language pairs is worth noticing. It
could indicate that: (i) the source language does
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Figure 2: Scatter plots for the predictions against true scores for the baseline and top-performing systems. Sub-
figures (a) through (n) show systems trained on direct assessment, while sub-figures (o) through (r) show systems
trained on HTER. Predictions are scaled to [0..1].
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not have as high an impact on QE as the target
language, which has been previously observed as
a problem for QE with partial-input experiments
(Sun et al., 2020); (ii) shared supervision on the
target side is beneficial, and thus having more train-
ing data into English inherently benefits multiple
languages; or (iii) the distribution of scores is more
balanced for low- and medium-resource languages,
which makes the task easier. To shed more light on
this, for future shared tasks, we recommend having
more low resource languages as the target language
for QE, or more data with shared languages on the
source.

High correlations Finally, for some language
pairs the performance of the top system is very
high, particularly for Romanian–English (Pearson
r = 0.91). As shown in Figure 2f, there is a number
of very low-quality sentences that the QE systems
are able to successfully detect. By inspecting those
cases, we find that they correspond to ‘hallucinated‘
outputs from the Romanian–English MT system
that do not have anything to do with the original
sentences. Detecting such cases should be trivial
for QE systems, which explains the particularly
high correlation values for this language pair. This
highlights a possible issue with using Pearson cor-
relation to evaluate the performance of QE systems:
strong correlations can be achieved by having an
over-representation extreme values (i.e. really bad
or really good translations), and bad correlations
can be an artefact of the lack of representation of
extreme values (as in the case of English-German).

5.2 Task 2

Sentence-level post-editing effort: For this task
variant, evaluation was performed against the true
HTER label using the same metrics as in Task 1,
with Pearson’s r correlation score as the primary
metric. Statistical significance on Pearson r was
computed using the William’s test.

Table 6 summarises the results for English–
German and English–Chinese tracks, ranking sys-
tems by their average performance for the two lan-
guage pairs (with 0 as Pearson score for languages
without systems). In the Appendix, Tables 19 and
20 show the detailed evaluation results for the two
language pairs, ranking participating systems best
to worst using Pearson’s r correlation as primary
key.

For English–German, the two top performing
systems, HW-TSC and Bering Lab, are substan-

tially ahead of the other participants’ systems, with
a considerable advantage for HW-TSC, which is
the top system with statistical significance. For
English–Chinese, Tencent and IST/Unbabel glass-
box system were the top performing systems and
neither outperforms the other; for this language
pair, the range of Pearson scores achieved by partic-
ipants’ systems is much narrower than for English-
German. Finally, for both language pairs, we see
that all submissions outperform the baseline system
by a large margin, most prominently for English–
German.

Word-level errors For this task, the primary
evaluation metric is Matthews correlation coef-
ficient (MCC, Matthews, 1975). We also report
the F1-scores for the OK and BAD classes. Sim-
ilarly to the 2019 edition, we evaluate separately
the source and target side, with the latter including
predictions on actual target words as well as gaps.
The word-level results for Task 2 are summarised
in Tables 7 and 8, ordered by the MCC metric on
target errors.

The number of submissions per language pair
was different, which limits any conclusions that can
be made with respect to general rankings of sys-
tems. For English–German, the findings are similar
to the sentence-level task: the Bering Lab and HW-
TSC teams are the top performing systems by a
great margin, with the former better at predicting
source side errors and the latter slightly better at
predicting target side errors. For English–Chinese,
the range of scores is narrower, with HW-TSC,
NICT Kyoto, and IST/Unbabel all performing very
closely (with HW-TSC on top). For both language
pairs, all systems performed above the baseline,
and we also see that the scores for the source side
are substantially lower than the target side.

5.3 Task 3
MQM score estimation For the document-level
estimation task, submissions are evaluated in terms
of Pearson’s correlation r, as in Tasks 1 and 2, be-
tween the true and predicted document-level scores.
Participants results are shown in Table 9. This
task attracted fewer participants than the other two,
probably because it is more complex. Papago has
the best results, with a considerable gap to the
IST/Unbabel, which in turn also were well ahead
of the baseline.

Fine-grained annotations Fine-grained annota-
tions are evaluated as follows. For each error anno-
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Model En-De En-Zh
IST and Unbabel (Kiwi-glass-box) 0.633 0.651
NJUNLP 0.618 0.642
NICT Kyoto 0.615 0.643
Bergamot 0.613 0.613
IST and Unbabel (OpenKiwi-base) 0.531 0.593
TransQuest 0.499 0.612
BASELINE 0.392 0.506
HW-TSC 0.758 -
Bering Lab 0.723 -
Tencent Inc. - 0.664
niuniuniu ‡ - 0.569
aj54 ‡ - 0.552
zhanghuimeng ‡ 0.494 -
DexinWang ‡ 0.402 -
NiuTrans † 0.649 0.675

Table 6: Pearson correlation with direct assessments for the submissions to WMT20 Quality Estimation Task 2.
For each language pair, results marked in bold correspond to the winning submissions, as they are not significantly
outperformed by any other system according to the Williams Significance Test (Williams, 1959). Baseline systems
are highlighted in grey; † indicates teams that have been identified as having submitted more systems than the
allowed limit to the leaderboard; ‡ indicates Codalab username of participants from whom we have not received
further information.

Target Side Source Side
Model MCC F1-BAD F1-OK MCC F1-BAD F1-OK

Bering Lab 0.597 0.662 0.935 0.454 0.609 0.818
HW-TSC 0.583 0.644 0.938 0.523 0.649 0.875
NICT Kyoto 0.485 0.568 0.916 0.353 0.537 0.806
IST and Unbabel (Kiwi-glass-box) 0.465 0.550 0.916 0.349 0.535 0.801
NJUNLP 0.451 0.498 0.929 – – –
IST and Unbabel (OpenKiwi-base) 0.432 0.522 0.909 0.324 0.516 0.799
Elturco.AI 0.423 0.520 0.887 – – –
BASELINE 0.358 0.468 0.879 0.266 0.477 0.779
NuiTrans † 0.500 0.581 0.916 0.347 0.532 0.806

Table 7: Official results of the WMT20 Quality Estimation Task 2 word-level for the English–German dataset.
Baseline systems are highlighted in grey; † indicates teams have been identified as having submitted more systems
than the allowed limit to the leaderboard.

Target Side Source Side
Model MCC F1-BAD F1-OK MCC F1-BAD F1-OK

HW-TSC 0.587 0.714 0.866 – – –
NICT Kyoto 0.582 0.704 0.878 0.336 0.668 0.669
IST and Unbabel (OpenKiwi-base) 0.575 0.706 0.850 0.287 0.705 0.410
IST and Unbabel (Kiwi-glass-box) 0.567 0.701 0.842 0.287 0.705 0.403
NJUNLP 0.551 0.672 0.877 – – –
BASELINE 0.509 0.658 0.849 0.270 0.682 0.547
NuiTrans † 0.610 0.723 0.887 0.308 0.666 0.639

Table 8: Official results of the WMT20 Quality Estimation Task 2 word-level for the English–Chinese dataset.
Baseline systems are highlighted in grey; ‡ indicates teams have been identified as having submitted more systems
than the allowed limit to the leaderboard.
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tation asi in the system output, we look for the gold
annotation agj with the highest overlap in number
of characters. The precision of asi is defined by the
ratio of the overlap size to the annotation length;
or 0 if there was no overlapping gold annotation.
Conversely, we compute the recall of each gold
annotation agj considering the best matching anno-
tation ask in the system output,9 or 0 if there was no
overlapping annotation. The document precision
and recall are computed as the average of all anno-
tation precision in the corresponding system output
and recalls in the gold output; and therewith we
compute the document F1. The final score is the
unweighted average of the F1 for all documents.

The annotation scores are shown in Table 10.
Only one participant, IST/Unbabel submitted valid
results, but still better than the baseline.

6 Discussion

In what follows, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

General progress. Overall, participating sys-
tems achieved very promising results, with the
best performing submissions showing moderate to
strong correlation for sentence-level DA and HTER
prediction tasks. One reason for high correlation
levels is likely to be that top performing systems
are based on pre-trained representations. Like in
other NLP tasks, for QE it had already been shown
to substantially improve the results over models
that do not use such representations, with heavier
pre-trained embeddings contributing substantially
more (Kepler et al., 2019a). Strong pre-trained
embeddings such as XLM-R were used by most
submissions this year.

When interpreting the results for all tasks, it
should be noted that most of the participants use
extremely resource-heavy systems, ensembles of
multiple models with more than 500M parameters,
which could make them difficult to use in practice.
Reporting the number of parameters could be a
good practice for the future.

Comparison to previous years submissions are
not possible as they use very different datasets, ex-
cept for Task 3, where a new test set was collected
from the same initial larger dataset, but the train-
ing data is virtually the same. For the fine-grained

9Notice that if a gold annotation ag
j has the highest overlap

with a system annotation as
i , it does not necessarily mean that

as
i has the highest overlap with ag

j .

version of the task, results are on par with last year
(0.48 F1), while for the scoring variant the results
this year are more encouraging: while the baseline
remains similar (Pearson = 0.39 this year and 0.35
last year), the top system is significantly better this
year: 0.57 Pearson instead of 0.37 last year.

Unfortunately, the document-level task still at-
tracts very few participants, being naturally more
difficult to model. However, document-level trans-
lation quality is a growing concern in the MT com-
munity, and we believe it is interesting that this task
continues to exist, possibly with a different dataset
and format, in the next editions.

Comparison between HTER and DA. Com-
pared to the results from the previous editions of
this shared task, participating systems show overall
higher correlation with DA labels. Besides the QE
systems getting much stronger, DA labels might be
easier to predict, as HTER is a semi-automatic met-
ric and may suffer from the same issues as TER, as
it does not capture to what extent the overall qual-
ity of the sentence is affected by MT errors. We
should note, however, that for the language pairs se-
lected for post-editing this year (English–German
and English–Chinese) the correlation is higher for
HTER. A possible reason is a very skewed output
distribution of the DA scores for these particular
language pairs.

HTER and DA annotation capture different as-
pects of translation quality. In fact, as shown in
Fomicheva et al. (2020a), the correlation between
the two types of scores is fairly low. An interesting
question is whether the approaches that perform
best for predicting DA also achieve the best results
for HTER. Figure 3 plots sentence-level Pearson
correlation with HTER and direct assessments for
the systems that participated in both tasks. While
the systems with the highest and the lowest ranks
are the same, results change considerably for the
systems in the middle. Specifically, TransQuest is
one of the winning submissions for the prediction
of DA, but is outperformed by the submissions that
use glass-box features, i.e. Bergamot and IST and
Unbabel (Kiwi-glass-box) for the HTER task.

Multilingual approaches. Most of the partici-
pating approaches rely on pre-trained multilingual
representations and use the provided data annotated
with quality labels for fine-tuning. This shows the
potential for multilingual prediction in these sys-
tems making them much more appealing in prac-
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Model Pearson r MAE RMSE

Papago 0.573 15.611 23.327
IST and Unbabel (Kiwi-doc-iob) 0.475 17.127 25.530
BASELINE 0.389 19.939 26.608
NiuTrans † 0.494 20.607 24.258

Table 9: Official results of the WMT20 Quality Estimation Task 3 scoring for the English–French dataset. Base-
line systems are highlighted in grey; † indicates teams have been identified as having submitted more systems than
the allowed limit to the leaderboard.

Figure 3: Pearson correlation for the systems that participated in both Task 1 and Task 2 at sentence level for
English-German (left) and English-Chinese (right). OpenKiwi-base and Kiwi-glass-box submissions are marked
with ∗ and ∗∗ respectively.

Model F1

IST and Unbabel (Kiwi-doc) 0.472
BASELINE 0.416
NiuTrans † 0.418

Table 10: Official results of the WMT20 Quality Es-
timation Task 3 annotation for the English–French
dataset. Baseline systems are highlighted in grey; † in-
dicates teams have been identified as having submitted
more systems than the allowed limit to the leaderboard.

tice where having dedicated systems for each lan-
guage pair may be infeasible. However, in the task
most submissions built models specific to each lan-
guage pair, and then submitted their predictions to
the multilingual task. A notable exception is the
Bergamot-LATTE team, where a single prediction
model was trained for all languages.

Influence of source-language document-level
context. To investigate the utility of document-
level information, we offered to participants the
title of the Wikipedia article where the sentences
were extracted for Tasks 1 and 2. However, no par-
ticipating system requested these additional labels,
and therefore this remains an open question.

Applicability of NMT model information.
Multiple submissions use glass-box features based
on the information extracted from the NMT system
in an unsupervised manner (Bergamot-LATTE), in
a regression setting (Bergamot) or in combination
with pre-trained representations (IST and Unba-
bel). Results show the potential of this approach.
Although substantially outperformed by the top
submissions that use pre-trained representations
trained with very large amounts of data, glass-box
approaches beat the baseline, which use the same
amount of training data as the NMT system, by a
large margin. These approaches might offer a bet-
ter trade-off between accuracy and efficiency for
cases where the NMT model is accessible.

New publicly available benchmarks. Creating
the multi-language, multi-label dataset for this
year’s edition was a significant joint effort from
various institutions, and we hope it will be useful
for researchers in QE as well as in related areas.
For example, Task 2 data was also used for the
WMT20 Automatic Post-Editing task. We hope to
continue adding data to this collection following
the same principles, and that others will also con-
tribute by adding other languages to it in the future.
We made all submissions to the task available for
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those interested in further analysing the results, in-
vestigating approaches for prediction ensembling,
among others.

7 Conclusions

This year’s edition of the QE Shared Task intro-
duced a number of new elements: the largest num-
ber of languages ever, new types of annotation (di-
rect assessment, in addition to labels derived from
post-editing and manual error tagging), and number
of samples annotated overall. It also attracted the
largest number of teams and submissions. We be-
lieve the current set of tasks covers a broad enough
range of challenges that are far from solved, such as
improving performance for languages with skewed
distributions, addressing low resource languages,
predicting source words that lead to errors, multi-
lingual or language-independent models, etc. In fu-
ture editions, we hope to keep pushing for progress
in these areas.
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Lopes, and André FT Martins. 2019a. Unbabel’s
participation in the wmt19 translation quality estima-
tion shared task. arXiv preprint arXiv:1907.10352.
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A Official Results of the WMT20 Quality Estimation Task 1

Tables 11, 12, 13, 14, 15, 16, 17 and 18 show the results for all language pairs and the multilingual variant,
ranking participating systems best to worst using Pearson’s r correlation as primary key for each of these
cases.

Model Pearson r MAE RMSE

TransQuest 0.722 0.480 0.596
Bergamot-LATTE (black-box) 0.718 0.408 0.527
TMUOU 0.686 0.418 0.543
IST and Unbabel (Kiwi-glass-box-ensemble) 0.673 0.433 0.569
IST and Unbabel (OpenKiwi-base) 0.583 0.547 0.719
WL Research 0.546 0.538 0.683
Bergamot-LATTE (glass-box) 0.489 0.895 1.062
jackielo ‡ 0.462 0.918 1.141
BASELINE 0.376 0.788 0.999
NiuTrans † 0.732 0.529 0.653

Table 11: Official results of the WMT20 Quality Estimation Task 1 for the Multilingual variant. Baseline systems
are highlighted in grey; † indicates teams that have been identified as having submitted more systems than the
allowed limit to the leaderboard; ‡ indicates Codalab usernames of participants from whom we have not received
further information.

Model Pearson r MAE RMSE

• TransQuest 0.554 0.613 0.740
• Bergamot-LATTE (black-box) 0.544 0.451 0.616
IST and Unbabel (Kiwi-glass-box-ensemble) 0.523 0.470 0.635
Papago 0.498 0.454 0.637
TMUOU 0.482 0.455 0.625
Bergamot 0.476 0.483 0.636
XC 0.465 0.739 0.861
zhanghuimeng ‡ 0.392 0.715 0.964
IST and Unbabel (OpenKiwi-base) 0.267 0.525 0.683
Bergamot-LATTE (glass-box) 0.259 0.819 0.940
WL Research 0.253 0.527 0.683
DexinWang ‡ 0.246 0.503 0.680
Hancheng Deng ‡ 0.171 0.490 0.726
BASELINE 0.146 0.679 0.967
FVCRC 0.111 0.805 1.063
NiuTrans † 0.562 0.558 0.676

Table 12: Official results of the WMT20 Quality Estimation Task 1 for the English-German dataset. Teams
marked with ”•” are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; † indicates teams that have
been identified as having submitted more systems than the allowed limit to the leaderboard; ‡ indicates Codalab
usernames of participants from whom we have not received further information.
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Model Pearson r MAE RMSE

• TransQuest 0.537 0.675 0.831
Bergamot-LATTE (black-box) 0.530 0.452 0.587
IST and Unbabel (Kiwi-glass-box-ensemble) 0.494 0.459 0.592
XC 0.465 0.782 0.944
aj54 ‡ 0.444 1.020 1.170
TMUOU 0.438 0.585 0.739
Bergamot 0.429 0.467 0.612
JXNU-CCLQ 0.426 0.709 0.890
IST and Unbabel (OpenKiwi-base) 0.346 0.518 0.684
Bergamot-LATTE (glass-box) 0.321 1.094 1.228
WL Research 0.298 0.796 0.970
RTM 0.259 68.010 68.414
BASELINE 0.190 0.885 1.068
FVCRC 0.085 0.873 1.059
NiuTrans † 0.551 0.499 0.654

Table 13: Official results of the WMT20 Quality Estimation Task 1 for the English-Chinese dataset. Teams
marked with ”•” are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; † indicates teams that have
been identified as having submitted more systems than the allowed limit to the leaderboard; ‡ indicates Codalab
usernames of participants from whom we have not received further information.

Model Pearson r MAE RMSE

• TransQuest 0.908 0.300 0.392
• Bergamot-LATTE (black-box) 0.906 0.281 0.388
TMUOU 0.896 0.294 0.414
IST and Unbabel (Kiwi-glass-box-ensemble) 0.891 0.398 0.530
XC 0.882 0.556 0.661
Shrangin ‡ 0.846 0.727 1.009
WL Research 0.821 0.393 0.520
Bergamot 0.796 0.438 0.554
IST and Unbabel (OpenKiwi-base) 0.708 0.508 0.655
RTM 0.703 0.517 0.654
Bergamot-LATTE (glass-box) 0.693 0.994 1.132
BASELINE 0.685 0.760 1.052
FVCRC 0.650 0.840 1.174
NiuTrans † 0.917 0.583 0.691

Table 14: Official results of the WMT20 Quality Estimation Task 1 for the Romanian-English dataset. Teams
marked with ”•” are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; † indicates teams that have
been identified as having submitted more systems than the allowed limit to the leaderboard; ‡ indicates Codalab
usernames of participants from whom we have not received further information.
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Model Pearson r MAE RMSE

• Bergamot-LATTE (black-box) 0.826 0.427 0.540
• TransQuest 0.824 0.485 0.604
TMUOU 0.792 0.493 0.636
IST and Unbabel (Kiwi-glass-box-ensemble) 0.770 0.740 0.919
XC 0.764 0.745 0.906
IST and Unbabel (OpenKiwi-base) 0.690 0.531 0.652
Bergamot 0.681 0.565 0.682
Bergamot-LATTE (glass-box) 0.642 0.918 1.096
WL Research 0.637 0.567 0.714
RTM 0.614 66.362 67.656
BASELINE 0.477 0.918 1.138
NiuTrans † 0.833 0.561 0.716

Table 15: Official results of the WMT20 Quality Estimation Task 1 for the Estonian-English dataset. Teams
marked with ”•” are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; † indicates teams that have
been identified as having submitted more systems than the allowed limit to the leaderboard.

Model Pearson r MAE RMSE

• TransQuest 0.822 0.372 0.474
Bergamot-LATTE (black-box) 0.814 0.368 0.475
IST and Unbabel (Kiwi-glass-box-ensemble) 0.792 0.433 0.549
TMUOU 0.785 0.397 0.511
XC 0.778 1.414 1.512
WL Research 0.687 0.452 0.594
Bergamot 0.662 0.486 0.612
IST and Unbabel (OpenKiwi-base) 0.604 0.497 0.648
Bergamot-LATTE (glass-box) 0.600 0.727 0.854
FVCRC 0.488 0.918 1.046
BASELINE 0.386 0.735 0.871
NiuTrans † 0.830 0.481 0.629

Table 16: Official results of the WMT20 Quality Estimation Task 1 for the Nepalese-English dataset. Teams
marked with ”•” are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; † indicates teams that have
been identified as having submitted more systems than the allowed limit to the leaderboard.
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Model Pearson r MAE RMSE

• TransQuest 0.685 0.436 0.534
• Bergamot-LATTE (black-box) 0.682 0.429 0.539
TMUOU 0.668 0.459 0.572
IST and Unbabel (Kiwi-glass-box-ensemble) 0.639 0.506 0.642
XC 0.626 0.879 1.021
WL Research 0.577 0.492 0.614
IST and Unbabel (OpenKiwi-base) 0.565 0.515 0.634
Bergamot 0.560 0.490 0.602
RTM 0.541 49.675 50.774
Bergamot-LATTE (glass-box) 0.513 0.673 0.819
FVCRC 0.388 0.694 0.848
BASELINE 0.374 0.752 0.898
NiuTrans † 0.698 0.445 0.543

Table 17: Official results of the WMT20 Quality Estimation Task 1 for the Sinhala-English dataset. Teams marked
with ”•” are the winners, as they are not significantly outperformed by any other system according to the Williams
Significance Test (Williams, 1959). Baseline systems are highlighted in grey, and † indicates teams have been
identified as having submitted more systems than the allowed limit to the leaderboard.

Model Pearson r MAE RMSE

• TransQuest 0.808 0.402 0.583
Bergamot-LATTE (black-box) 0.796 0.412 0.584
XC 0.784 0.603 0.759
TMUOU 0.781 0.433 0.622
IST and Unbabel (Kiwi-glass-box-ensemble) 0.767 0.428 0.613
WL Research 0.596 0.575 0.763
BASELINE 0.548 0.825 1.193
Mak 0.543 0.590 0.811
jackielo ‡ 0.411 0.878 1.267
FVCRC 0.400 0.831 1.220
NiuTrans † 0.816 0.535 0.687

Table 18: Official results of the WMT20 Quality Estimation Task 1 for the Russian-English dataset. Teams
marked with ”•” are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; † indicates teams that have
been identified as having submitted more systems than the allowed limit to the leaderboard; ‡ indicates Codalab
usernames of participants from whom we have not received further information.
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B Official Results of the WMT20 Quality Estimation Task 2 (Sentence-level)

Tables 19 and 20 show the evaluation results for English-German and English-Chinese respectively,
ranking participating systems best to worst using Pearson’s r correlation as primary key for each language
pair.

Model Pearson r MAE RMSE

• HW-TSC 0.758 0.099 0.133
Bering Lab 0.723 0.107 0.140
IST and Unbabel (Kiwi-glass-box) 0.633 0.137 0.178
NJUNLP 0.618 0.129 0.160
NICT Kyoto 0.615 0.151 0.197
Bergamot 0.613 0.130 0.160
IST and Unbabel (OpenKiwi-base) 0.531 0.138 0.180
TransQuest 0.499 0.149 0.184
zhanghuimeng ‡ 0.494 0.163 0.198
DexinWang ‡ 0.402 0.155 0.196
BASELINE 0.392 0.150 0.190
NiuTrans † 0.649 0.123 0.154

Table 19: Official results of the WMT20 Quality Estimation Task 2 sentence-level for the English-German dataset.
Teams marked with ”•” are the winners, as they are not significantly outperformed by any other system according
to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; † indicates teams
that have been identified as having submitted more systems than the allowed limit to the leaderboard; ‡ indicates
Codalab usernames of participants from whom we have not received further information.

Model Pearson r MAE RMSE

• Tencent Inc. 0.664 0.129 0.160
• IST and Unbabel (Kiwi-glass-box) 0.651 0.135 0.171
NICT Kyoto 0.643 0.129 0.161
NJUNLP 0.642 0.129 0.161
Bergamot 0.613 0.136 0.169
TransQuest 0.612 0.135 0.168
IST and Unbabel (OpenKiwi-base) 0.593 0.143 0.175
niuniuniu ‡ 0.569 0.142 0.177
aj54 ‡ 0.552 0.145 0.176
BASELINE 0.506 0.147 0.181
NiuTrans † 0.675 0.125 0.156

Table 20: Official results of the WMT20 Quality Estimation Task 2 sentence-level for the English-Chinese dataset.
Teams marked with ”•” are the winners, as they are not significantly outperformed by any other system according
to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; † indicates teams
that have been identified as having submitted more systems than the allowed limit to the leaderboard; ‡ indicates
Codalab usernames of participants from whom we have not received further information.
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Abstract

We describe the WMT 2020 Shared Tasks in
Unsupervised MT and Very Low Resource Su-
pervised MT. In both tasks, the community
studied German↔Upper Sorbian MT, which
is a very realistic machine translation scenario
(unlike the simulated scenarios used in partic-
ular in much of the unsupervised MT work in
the past). We were able to obtain most of the
digital data available for Upper Sorbian, a mi-
nority language of Germany, which was the
original motivation for the Unsupervised MT
shared task. As we were defining the task, we
also obtained a small amount of parallel data
(about 60000 parallel sentences), allowing us
to offer a Very Low Supervised MT task as
well. Six primary systems participated in the
unsupervised shared task, two of these systems
used additional data beyond the data released
by the organizers. Ten primary systems partic-
ipated in the very low resource supervised task.
The paper discusses the background, presents
the tasks and results, and discusses best prac-
tices for the future.

1 Introduction

There is no machine translation available for most
of the approximately 7000 languages spoken on
the planet Earth. This is because very limited or no
parallel corpora are available. Research on unsu-
pervised and very low resource machine translation
is important for alleviating this problem. Unsu-
pervised machine translation requires only mono-
lingual data, while very low resource supervised
machine translation uses very limited parallel data.

At WMT 2018 and WMT 2019, the first shared
task (Bojar et al., 2018) and second shared task
(Barrault et al., 2019) on Unsupervised Machine
Translation (UMT), were held as part of the news
translation track. In both 2018 and 2019 the scenar-
ios simulated low resource setups using medium
or high resource languages. In 2018, the language

pairs were Turkish-English, Estonian-English and
German-English. In 2019, we tested unsupervised
systems for German to Czech unsupervised trans-
lation (where no German/Czech parallel data was
allowed).

In the 2020 shared task we proposed a third edi-
tion on UMT, which aimed at a more realistic sce-
nario, German to Upper Sorbian (and Upper Sor-
bian to German) translation. Upper Sorbian is a
minority language of Germany that is in the Slavic
language family (e.g., related to Lower Sorbian,
Czech and Polish), and we provide here most of
the digital data that is available for Upper Sorbian,
as far as we know. The amount of monolingual
data available for Upper Sorbian is quite small (see
below), making unsupervised machine translation
very challenging.

While working on the UMT task we were able to
obtain a very small amount of parallel data (about
60000 parallel sentences) for this language pair,
which allowed us to additionally offer the very low
resource supervised translation task.

The exact tasks studied in the shared tasks were:

• Unsupervised Machine Translation: German
to Upper Sorbian. Upper Sorbian to German.

• Very Low Resource Supervised Machine
Translation: German to Upper Sorbian. Upper
Sorbian to German.

The data used can be downloaded from the
shared task webpage.1

This paper will give some background for the
task, discuss the data made available (with a par-
ticular focus on considerations for benchmarks for
future UMT and very low resource MT research),
discuss how the tasks went with a presentation of
the results, and then conclude.

1http://www.statmt.org/wmt20/unsup_
and_very_low_res/
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2 Background

The 2020 shared tasks focused on the very low re-
source language Upper Sorbian (a Slavic minority
language spoken in the Eastern part of Germany).
The Sorbian language (referring to Upper Sorbian
and Lower Sorbian) has a special protected sta-
tus in the “Grundgesetz” of Germany (similar to a
constitution).

Working with the Sorbian Institute2 we initially
prepared an unsupervised MT task. We expect this
task to become a standard benchmark for unsu-
pervised MT development. This task particularly
relies on having high quality Upper Sorbian mono-
lingual data, which we obtained from the Sorbian
Institute and the Witaj Sprachzentrum. We also
offered data which LMU Munich obtained through
web crawling. Finally, the Sorbian Institute has
also provided medium quality data which has not
been quality checked.

The Witaj Sprachzentrum (Witaj Language Cen-
ter3) then provided a small training corpus of Ger-
man/Upper Sorbian parallel data, which was used
in the Very Low Resource Supervised Machine
Translation task. We expect this task to become
a standard task for very low resource scenarios,
and note that the results are important as they will
directly inform efforts to create state-of-the-art ma-
chine translation systems for use by the Upper Sor-
bian community.

The Witaj Sprachzentrum provided development
and “development test” (not blind test) sets for
German to Upper Sorbian and Upper Sorbian to
German translation. The development set is used
to tune parameters, while the devtest set is used
to measure progress using automatic metrics. The
Witaj Sprachzentrum also provided the blind test
sets, which were released just in time for the evalu-
ation.

We note that CIS (LMU Munich), the Sorbian
Institute and the Witaj Sprachzentrum hope to orga-
nize a task for Unsupervised Lower Sorbian trans-
lation in the near future.

LMU Munich would be interested in adding new
typologically diverse languages as unsupervised
and/or very low resource tasks in future WMT
Shared Tasks.

2https://www.serbski-institut.de/en/
Institute/

3https://www.witaj-sprachzentrum.de/

3 Basic Tasks and Evaluation

We provide some basic details about the tasks and
evaluation here.

Unsupervised MT: Unsupervised translation
from German to Upper Sorbian, and unsupervised
translation from Upper Sorbian to German. We al-
low the use of all German data released for WMT,
except that the German side of the small parallel
German/Upper Sorbian training corpus may not be
used. All Upper Sorbian data we release may be
used. No other language data may be used.

Very Low Resource Supervised MT: Super-
vised translation from German to Upper Sorbian,
and supervised translation from Upper Sorbian to
German. We allow the use of all German and Up-
per Sorbian data released for WMT, including the
small parallel German/Upper Sorbian training cor-
pus. Other WMT data for other languages may
also be used. Upper Sorbian is a Slavic language
which has strong similarities to Czech, so the Ger-
man/Czech data we discuss below may be of par-
ticular interest for multilingual systems.

We used automatic metrics for the evaluation of
this task. We believe that manual evaluation may
not be so necessary for unsupervised MT and very
low resource MT development, because automatic
metrics worked well at relatively low translation
quality levels in the past. Translation to Upper
Sorbian would have been fairly difficult to evaluate
in a human evaluation, as we do not have easy
access to a large number of native speakers.

4 Data

We describe the data released for the two scenarios,
Unsupervised and Very Low Resource Supervised.

The Unsupervised MT scenario allowed the
use of all German data released for WMT, except
that the German side of the small parallel Ger-
man/Upper Sorbian training corpus could not be
used. All Upper Sorbian data available on the web
page was allowed. No other language data could be
used (no parallel, no other monolingual data sets
for any language except those explicitly listed as
usable for Unsupervised).

The Very Low Resource Supervised MT sce-
nario allowed the use of all German and Upper Sor-
bian data released for WMT, including the 60000
sentence parallel German/Upper Sorbian training
corpus. Other WMT 2020 data for other languages
were also allowed. Upper Sorbian is a Slavic
language which is related to Czech, so the Ger-
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man/Czech parallel data we briefly describe next
were of particular interest for building multilingual
systems. We would also like to express our thanks
to the Opus project for the German/Czech parallel
data.

In addition to training data, we also provided de-
velopment data. Specifically, we provided devel-
opment and test sets for German to Upper Sorbian
and Upper Sorbian to German. These were usable
for both Unsupervised and Very Low Resource.
The dev set was intended for use for parameter
tuning (and the participants were asked to not use
it as a parallel training corpus). The test set was
intended for system evaluation during development
(likewise, the participants were asked to not use
it as a parallel training corpus). We would like to
thank Jindřich Libovický for creating the data splits
and for work on the training data.

The specific data sets are presented in Table 1.
The translation output was submitted as real case,

detokenized, and in SGML format. We used the
Matrix for submission, thanks to Barry Haddow for
assistance. The standard script wrap-xml.perl was
used to create the sgm files for upload.

5 Results

In this section we discuss the results for the Unsu-
pervised track, a non-constraint system that does
not use parallel German/Sorbian data but does use
German-English parallel data (which does not meet
the constraints for the Unsupervised Task), and the
Very Low Resource task.

We note that the absolute BLEU scores are sur-
prisingly high, this may be due to unusually homo-
geneous train and test sets.

5.1 Unsupervised MT

There were four submissions to the Unsupervised
MT which used only the allowed data for the track,
see Table 2. The citations are listed in the table.
Highlights of systems here included the use of
transfer learning to obtain better initialization for
the lower resource language and refinements of
BPE, see the papers (and the analysis below) for
further details.

5.2 Unsupervised MT with Multilingual
Transfer Learning

Two primary submissions to Unsupervised MT
were not restricted to the allowed data for the track,
see Table 3. One system used data mined from

German and Upper Sorbian Wikipedia, see (Dutta
et al., 2020) for more details. The creators of the
other system (Li et al., 2020) used parallel data for
English to German to initialize an unsupervised
system, which is a reasonable scenario to consider.
This was highly effective. We suggest that this
result be used as an initial benchmark for multi-
lingual transfer-based unsupervised systems. We
consider these results to be separate from the sim-
pler unsupervised benchmark that was previously
proposed. See the subsequent analysis and discus-
sion for more details.

5.3 Very Low Resource MT

A Moses baseline from the Witaj Sprachzentrum
using only the data from the shared task web page
scored 46.36 for DE-HSB (BLEU-cased, 11b) and
47.70 for HSB-DE (BLEU-cased, 11b). The results
for the shared task systems are presented in Table
4. Note that the last system did not submit a shared
task paper.

6 Analysis

Overall we proposed two new benchmark tasks for
low resource MT. The Unsupervised MT track can
be used as a benchmark for testing new unsuper-
vised MT approaches. The Very Low Resource
track can be used as a benchmark for testing MT
systems when one language has very little parallel
data. Additionally, one system which was con-
ceptually unsupervised (in that it used no parallel
German-Upper Sorbian data), effectively defined a
new benchmark, which we will call Unsupervised
MT with Multilingual Transfer, by using additional
English-German parallel data, see below.

6.1 Task Definitions

Unsupervised MT: The data released for the Un-
supervised MT track should be considered to be a
new realistic benchmark for testing unsupervised
MT systems. Artetxe et al. (2020) (a best practices
paper at ACL 2020) made a number of suggestions
in terms of how to setup future Unsupervised MT
research. The guidelines we set agree with their
guidelines except with respect to one point. We
disagree with Artetxe et al. in terms of whether
development sets should be made available. The
dev set is traditionally used for setting a small num-
ber of open parameters. Artetxe et al. argue that
this data should not be made available, as it rep-
resent parallel data that is not really in spirit with
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Monolingual Upper Sorbian Data
sorbian institute monolingual.hsb.gz Upper Sorbian monolingual data provided by the Sor-

bian Institute. This contains a high quality corpus
and some medium quality data which were mixed
together.

witaj monolingual.hsb.gz Upper Sorbian monolingual data provided by the
Witaj Sprachzentrum (high quality).

web monolingual.hsb.gz Upper Sorbian monolingual data scraped from the
web by CIS, LMU (thanks to Alina Fastowski). This
should be used with caution, it is probably noisy, it
might erroneously contain some data from related
languages.

Monolingual German Data
See the news translation task web page for allowed
monolingual German data. All monolingual German
sets allowed in this years News task were allowed in
both scenarios.

Upper Sorbian side of parallel training corpus
train.hsb-de.hsb.gz This file was usable for both the Unsupervised and

Very Low Resource Supervised scenarios. In the
Unsupervised scenario, it was used as a small high
quality monolingual corpus.

German side of parallel training corpus
train.hsb-de.de.gz This file was not usable for Unsupervised.

Dev and Test Sets
devtest.tar.gz The participants were requested to please use dev to

tune system parameters, and test to measure progress.
These files were allowed in both tracks.

German/Czech Parallel Data
This data was not allowed for Unsupervised. For Very
Low Resource MT we allowed all German/Czech par-
allel corpora obtainable from the Opus project. The
de-cs corpora we particularly recommended using
are: Europarl v8 and JW300 v1. These two corpora
may be somewhat similar to the DE-HSB parallel
training and test data, but this is far from certain.

Table 1: Data sets for both tasks.
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System Name DE-HSB HSB-DE citation
LMU Munich-NMT 35.0 31.6 (Chronopoulou et al., 2020)
CUNI-Synthetic 25.0 23.4 (Kvapilı́ková et al., 2020)
NITS-CNLP 15.4 (Singh et al., 2020)
rug hsbde unsup sel 20.1 (Edman et al., 2020)

Table 2: Four primary submissions to the Unsupervised MT Task using only the allowed data for the track, sorted
by DE-HSB BLEU score.

System Name DE-HSB HSB-DE citation
SJTU-NICT 40.3 32.8 (Li et al., 2020)
UdS-DFKI 10.3 9.0 (Dutta et al., 2020)

Table 3: Two primary submissions to the Unsupervised MT Task using additional English-German parallel data
(row 1) and German and Upper Sorbian monolingual data from Wikipedia (row 2).

the unsupervised MT paradigm. In practice one
could create a “very very low resource” system by
simply training a supervised system on this data.
We however argue that system developers need to
have access to standard dev and devtest sets in or-
der to measure progress. Having access to a dev set
simulates having access to, e.g., a native speaker
of the low resource language, who is able to look
at outputs during MT development and judge the
changes in quality obtained through simple hyper-
parameter changes. In our view the use of a devtest
set to measure BLEU (which is completely stan-
dard in all unsupervised MT research) is similar to
this, and of course also represents a small amount
of available parallel data. A further argument for
our view is that having a designated dev set for
parameter tuning strongly helps with replicability
of results. However, it is important in our view that
this data not be trained on (in terms of using it as
a parallel corpus to training a supervised system).
The restriction of the rest of the data to be monolin-
gual and carefully controlled makes sense for the
straightforward testing of bilingual unsupervised
systems, but we describe an interesting different
multilingual scenario next.

Unsupervised MT with Multilingual Trans-
fer: SJTU-NICT submitted a system to Unsu-
pervised MT which looked at the reasonable sce-
nario of assuming that the high resource language
(German for German-Upper Sorbian) has parallel
corpora with another language. In their system
they used an English-German parallel corpus to
initialize their German-Upper Sorbian Unsuper-
vised MT system. This makes their system con-
ceptually a multilingual system. Another obvious
choice would be to try German-Czech and/or Ger-

man paired with another Slavic language (and in
fact, in the Very Low Resource Track, this was
a common strategy). There were no competing
systems for this unplanned benchmark (which was
essentially created by SJTU-NICT’s submission),
but we suggest that this result is also interesting for
comparison in future research and intend to offer a
new track for this scenario in the shared task next
year.

Very Low Resource MT: Please see the shared
task system descriptions to see the wide variation
in the exact data used for the Very Low Resource
task.

There was obviously a high level of interest over-
all in this task, and we already have plans to offer
more tasks of this kind as well. This task is very
interesting as even if an unsupervised MT system
is actually deployed for a particular language pair,
the users of the system can post-edit the output of
that system and will soon therefore be interested
in training higher quality supervised systems us-
ing the Very Low Resource scenario. The parallel
data used in this track was in fact created manually
by the Witaj Sprachzentrum in order to be used
by the Upper Sorbian community in Germany (to
train the baseline Moses system we mentioned in
the results section, and for future neural machine
translation work which will be informed by the re-
sults produced by the research community). As the
result of the existence of this pipeline more data
may become available in the future.

6.2 What Worked Well

We highlight four interesting trends in terms of the
results. Two of the trends we observe here involve
transfer learning (i.e., pretraining). For all three
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System Name DE-HSB HSB-DE citation
SJTU-NICT 60.7 58.5 (Li et al., 2020)
Helsinki-NLP 57.9 59.6 (Scherrer et al., 2020)
NRC-CNRC 57.3 58.9 (Knowles et al., 2020)
LMU-supervised-ensemble 56.5 57.6 (Libovický et al., 2020)
CUNI-Transfer 55.5 56.9 (Kvapilı́ková et al., 2020)
Brown-NLP-b 46.2 45.7 (Berckmann and Hiziroglu, 2020)
IITBHU-NLPRL-DE-HSB 45.9 47.9 (Baruah et al., 2020)
Adobe-AMPS 45.2 47.6 (Singh, 2020)
UdS-DFKI 40.9 (Dutta et al., 2020)
HierarchicalTransformer 38.2 40.1

Table 4: Ten primary systems submitted to the Very Low Resource Task, sorted by DE-HSB BLEU score.

benchmarks (Unsupervised, Unsupervised with
Multilingual Transfer, and Very Low Resource)
transfer learning is a critical component of many or
all systems. The trends we will discuss are transfer
learning using monolingual corpora and transfer
learning using bilingual corpora. For Unsupervised,
transfer learning using monolingual corpora was
an important aspect of successful systems. Please
see the system description papers for more detail
about how the monolingual data was used to ini-
tialize successful Unsupervised systems. For Un-
supervised with Multilingual Transfer, the use of
English-German bilingual corpora to initialize the
Unsupervised system seems to have been highly
effective, with a particularly strong result for the
DE-HSB translation direction, perhaps due to a
very strong starting point for the German encoder.
For Very Low Resource, heavy usage of both types
of transfer were made as well, with one particular
focus being on efforts to leverage the similarity
of Czech and Upper Sorbian using Czech/German
parallel corpora.

The third trend was that another area of study for
many systems was word segmentation (typically
with a variant of BPE) and/or the use of morpho-
logical information, sometimes learned in transla-
tion at BPE or character level, sometimes monolin-
gually. Finally the fourth trend was that there was
also a significant focus on trying to make Czech
more like Upper Sorbian using a variety of tech-
niques, and/or sampling German data like Upper
Sorbian data.

7 Conclusion

The WMT 2020 Shared Tasks in Unsupervised
MT and Very Low Resource Supervised MT have
created three interesting new benchmarks for fu-

ture research. In addition to the initially proposed
benchmark on straight-forward bilingual Unsuper-
vised MT, we suggest the use of the Unsupervised
Multilingual Transfer result as an additional new
benchmark. The very low resource MT bench-
mark also generated strong participation from the
research community.

We hope that additionally we have played a role
in raising the interest of the NLP community in
Upper Sorbian language processing, and that this
interest will extend to Lower Sorbian language pro-
cessing and in fact extend to working on other un-
derstudied languages as well.

We plan to organize similar tasks for the three
benchmarks next year. Options include, e.g., more
parallel data for Upper Sorbian, an Unsupervised
Task for Lower Sorbian, and more ambitiously the
inclusion of new typologically diverse languages.
Please don’t hesitate to contact us if you are inter-
ested, particularly if you have access to appropriate
data.
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Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 Conference on Machine Trans-
lation (WMT19). In the Fourth Conference on Ma-
chine Translation, WMT 2019, Florence, Italy, Au-
gust 1-2, 2019 - Volume 2: Shared Task Papers, Day
1.

Rupjyoti Baruah, Rajesh Kumar Mundotiya, Amit Ku-
mar, and Anil Kumar Singh. 2020. NLPRL system
for very low resource supervised machine transla-
tion. In the Fifth Conference on Machine Transla-
tion.

Tucker Berckmann and Berkan Hiziroglu. 2020. Low
resource translation as language modeling. In the
Fifth Conference on Machine Translation.
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Abstract
In this paper, we describe the Bering Lab’s
submission to the WMT 2020 Shared Task
on Automatic Post-Editing (APE). First, we
propose a cross-lingual Transformer architec-
ture that takes a concatenation of a source sen-
tence and a machine-translated (MT) sentence
as an input to generate the post-edited (PE) out-
put. For further improvement, we mask incor-
rect or missing words in the PE output based
on word-level quality estimation and then pre-
dict the actual word for each mask based on
the fine-tuned cross-lingual language model
(XLM-RoBERTa). Finally, to address the over-
correction problem, we select the final out-
put among the PE outputs and the original
MT sentence based on a sentence-level qual-
ity estimation. When evaluated on the WMT
2020 English-German APE test dataset, our
system improves the NMT output by −3.95
and +4.50 in terms of TER and BLEU, respec-
tively.

1 Introduction

Automatic post-editing (APE) is the task of auto-
matically correcting errors in the output of a ma-
chine translation (MT) system by learning from hu-
man corrections (Chatterjee et al., 2019). APE can
be viewed as a cross-lingual sequence-to-sequence
task, which takes a source sentence and the corre-
sponding MT output as inputs and generates the
post-edited (PE) output.

Our work is inspired by XLM-RoBERTa (XLM-
R) (Conneau et al., 2019), a cross-lingual lan-
guage model, which shows the state-of-the-art per-
formance for a wide range of cross-lingual tasks.
XLM-R takes a concatenation of two sentences in
different languages as an input to generate cross-
lingual representations. Similarly, we propose a
Transformer (Vaswani et al., 2017) architecture for
APE in which the encoder uses the same architec-
ture as XLM-R.

In addition, we use XLM-R-based translation
quality estimation (QE) (Lee, 2020) to further im-
prove the PE output of the Transformer. QE is
the task of estimating the quality of the MT out-
put when only the source text is provided (Fonseca
et al., 2019). We use two granularity levels of QE:
word-level and sentence-level. Based on the word-
level QE, we try to correct the wrong words or
insert the missing words in the PE output. Through
the sentence-level QE, we select the best translation
among PE outputs and the original MT sentence
to prevent over-correction (i.e., one of the APE
models rephrases an already correct MT output).

Our contributions are summarized as follows:

• We propose a Transformer (Vaswani et al.,
2017) architecture for APE in which an en-
coder takes concatenation of a source and
MT sentence as an input to generate a cross-
lingual representation and a decoder generates
a PE output.

• We incorporate a word-level QE-based word
masking. We replace BAD words with
<mask> token or insert <mask> token for
missing words in the PE output of the Trans-
former based on word-level QE.

• To predict the most probable word for each
masked token, we use XLM-R (Conneau et al.,
2019) that is fine-tuned using the translation
language modeling (TLM) objective (Con-
neau and Lample, 2019).

• To address the over-correction problem, we
introduce a sentence-level QE-based output
selection. We select the sentence with the
lowest predicted HTER among the MT and
PE sentences as the final output.

In the experiment using the WMT 2020 English-
German APE test set, our system achieves −3.95
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Figure 1: The cross-lingual Transformer architecture
for APE.

TER and +4.50 BLEU improvement over the base-
line (NMT output).

2 Methodology

Our approach for APE comprises three compo-
nents: 1) a cross-lingual Transformer, 2) word
masking based on word-level quality estimation
(QE) and XLM-R-based mask prediction, and 3)
output selection based on sentence-level QE.

2.1 Cross-Lingual Transformer for APE

As the first step of APE, we propose a cross-lingual
Transformer (Vaswani et al., 2017) architecture that
takes the concatenation of a source and MT sen-
tence as a single input and generates a post-edited
(PE) sentence, as illustrated in Figure 1.

A source sentence and its corresponding MT
sentence are tokenized based on the same BPE
model (Sennrich et al., 2016) that is trained using
shared vocabulary of English and German. The in-
put of the Transformer is a concatenated sequence
of source tokens and MT tokens along with special
tokens (<s>, </s>) as follows:

<s> src1, ..., src|S| </s> mt1, ...,
mt|M | </s>

The output of the Transformer is a sequence of
PE tokens that is also tokenized based on the same
BPE model. Since the input and output use the
shared dictionary, we tie the weights of the encoder
word embedding layer, decoder word embedding
layer, and decoder output layer. The rest of the
model architecture follows that of Vaswani et al.
(2017).

2.2 Word-level QE-based Word Masking and
XLM-R-based Mask Prediction

We further improve the APE performance based on
the word-level quality estimation (QE) (Fonseca
et al., 2019) and XLM-R-based mask prediction
(Conneau et al., 2019).

Word-QE-based Masking We use the word-
level QE to predict if a word in the MT sen-
tence is OK or BAD and if there are any missing
words. We replace the words predicted as BAD
with the <mask> token and insert the <mask> to-
ken where the missing words are predicted to exist.
For the word-level QE, we use the same model ar-
chitecture and hyperparameters from Lee (2020)
but with the probability threshold for BAD as 0.8
instead of 0.5 because masking the correct token
may degrade APE performance.

XLM-R Fine-Tuning We fine-tune pre-trained
XLM-R using a parallel corpus based on the transla-
tion language modeling (TLM) objective (Conneau
and Lample, 2019). A source (English) and target
(German) sentences are tokenized with the same
BPE model (Sennrich et al., 2016), which is trained
based on shared vocabulary. We concatenate source
and target tokens with a separation token (</s>)
and use it as an input of XLM-R. Then, we ran-
domly mask 20% of the BPE tokens in the target
sentences and train the model to correctly predict
the masked tokens.

Mask Prediction We use the concatenated se-
quence of source tokens and masked MT tokens as
the input to the fine-tuned XLM-R. To predict the
corresponding word for each masked token, we fol-
low the highest probability first strategy proposed
by Lawrence et al. (2019). We replace the <mask>
tokens iteratively, and in each step, the <mask>
token predicting the word with the highest proba-
bility is replaced with the predicted word.
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2.3 Sentence-level QE-based Output
Selection

There are cases where the APE models can degrade
translation quality owing to unnecessary correc-
tions, known as the over-correction problem (Fon-
seca et al., 2019). To prevent this, we select the best
translation among the MT sentence and output sen-
tences from APE models based on a sentence-level
QE.

Sentence-level QE aims to predict the human
translation error rate (HTER) (Snover et al., 2006)
of the MT sentence, which measures the required
amount of human editing to fix the MT sentence.
We use the XLM-R-based sentence-level QE model
proposed by Lee (2020) to predict the HTER for
each of 1) the MT sentence, 2) PE output sentence
of the cross-lingual Transformer, and 3) PE output
sentence of word-level QE-based mask prediction.
Finally, we select the sentence with the lowest pre-
dicted HTER as the final PE output.

2.4 Data Augmentation

Supervised learning for APE requires triplets com-
prised of source sentences, machine-translated
(MT) sentences, and human post-edited (PE) sen-
tences. Since the cost involved in achieving PE
sentences is significant, we use a parallel corpus
including only source and target sentences to build
artificial triplets following the ideas from Negri
et al. (2018).

First, we split the parallel corpus into a training
set and test set. We then train an NMT model with
the training set and use the test set to generate arti-
ficial triplets. We generate MT sentences based on
the trained NMT model and we use the target sen-
tences of the parallel corpus as PE sentences. We re-
peat this process with different data splits to amass
large quantities of artificial triplets. Finally, we
oversample the human-labeled triplets and merge
them with the artificially-generated triplets to build
a final training dataset (Junczys-Dowmunt and
Grundkiewicz, 2018).

3 Experiments

3.1 Experimental Setup

We evaluate our model with the WMT 2020
English-German APE dataset.1 For the evaluation
metrics, we use the translation error rate (TER)

1http://www.statmt.org/wmt20/ape-task.html

(Snover et al., 2006) and BLEU (Papineni et al.,
2002).

To generate artificial triplets (§2.4), we use
the English-German parallel corpus provided by
the shared task that consists of 23,440,059 pairs.
We use 90% of the pairs to train a Trans-
former (Vaswani et al., 2017) NMT model using
OpenNMT-py (Klein et al., 2017) and the rest of
the pairs to generate artificial triplets. As a result of
running the process five times with different data
splits, we achieve 11,720,029 artificial triplets.

As a final training dataset, we oversample the
official English-German APE dataset that consists
of 7000 triplets 50 times and merge them with
artificial triplets. We use the final triplets to train
the cross-lingual Transformer (§2.1) and source-PE
pairs to train the XLM-R with a TLM objective
(§2.2).

3.2 Model Configuration
For the cross-lingual Transformer, we follow most
of the hyperparameters from the base model of
Vaswani et al. (2017), but for 5 epochs with early
stopping. For the ensembling, we train five models
with different random seeds. For the word-level
and sentence-level quality estimation, we follow
the model architectures and hyperparameters from
Lee (2020). For mask prediction, we fine-tune
XLM-R-Large (Conneau et al., 2019) using the
Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 5e-6, a batch size of 8 for 1 epoch,
and a dropout (Hinton et al., 2012) rate of 0.1.

3.3 Experimental Result
Table 1 presents the result of the ablation analy-
sis for the proposed methods without the ensem-
ble on the dev set. First, our cross-lingual Trans-
former improves the MT output by−1.85 TER and
+2.33 BLEU. Sentence-level QE-based output se-
lection further improves the performance of −0.42
TER and +0.29 BLEU. This demonstrates that our
sentence-level QE-based output selection is effec-
tive for addressing the over-correction problem. Al-
ternatively, when we use the word-level QE-based
mask prediction model instead of the cross-lingual
Transformer, the TER and BLEU are improved
over the baseline by−1.10 and +0.62, respectively.
This result shows that our word-masking and mask
prediction models also significantly improve the
translation quality. When we add the mask predic-
tion model after the cross-lingual Transformer, the
TER is improved by −0.27, but the BLEU slightly
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Systems TER↓ BLEU↑
Baseline (MT Output) 31.37 50.37
APE Transformer 29.52 52.70
APE Transformer + Sentence-QE 29.10 52.99
Word-QE + Sentence-QE 30.27 50.83
APE Transformer + Word-QE + Sentence-QE 28.83 52.80

+ Ensemble 28.47 53.82

Table 1: Ablation analysis without ensemble on the WMT 2020 English-German APE dev dataset.

Systems TER↓ BLEU↑
HW-TSC 20.21 66.89
MinD 26.99 55.77
POSTECH-ETRI 27.02 56.37
Ours - Primary (Bering Lab) 27.61 54.71
Ours - Contrastive (Bering Lab) 27.96 54.60
POSTECH 28.22 54.51
Baseline (MT output) 31.56 50.21
KAISTxPAPAGO 32.00 49.21

Table 2: Official results evaluated on the WMT 2020 English-German APE test dataset.

decreased (−0.19). Finally, through the ensem-
ble, we achieve an additional performance gain of
−0.36 and +1.02 for the TER and BLEU, respec-
tively.

Table 2 presents the official result evaluated on
the WMT 2020 English-German APE test set. Our
primary system contains all of the proposed meth-
ods, whereas the contrastive system does not con-
tain word-level QE-based mask prediction. As can
be seen, our primary system outperformed the con-
trastive system in terms of both TER and BLEU. In
addition, our primary system achieves −3.95 TER
and +4.50 BLEU improvement over the NMT out-
put.

4 Conclusion

In this paper, the Bering Lab’s submission to the
WMT 2020 English-German APE shared task is de-
scribed. A cross-lingual Transformer architecture
is proposed for APE in which a single encoder takes
the concatenation of a source and a MT sentences
as an input to generate intermediary cross-lingual
representations, and then a decoder outputs post-
edited results. In addition, methods to improve
the APE performance through translation QE are
proposed. First, the incorrect or missing words in
the post-edited output are masked based on a word-

level QE. Then, the actual word for each mask is
predicted based on the fine-tuned XLM-R using the
translation language modeling (TLM) objective. Fi-
nally, a sentence-level QE-based output selection
method is proposed to prevent over-correction. The
experimental results show that our APE system sig-
nificantly improves the NMT output in terms of
both TER and BLEU.
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Abstract

This paper describes POSTECH-ETRI’s sub-
mission to WMT2020 for the shared task on
automatic post-editing (APE) for 2 language
pairs: English–German (En–De) and English–
Chinese (En–Zh). We propose APE sys-
tems based on a cross-lingual language model,
which jointly adopts translation language mod-
eling (TLM) and masked language modeling
(MLM) training objectives in the pre-training
stage; the APE models then utilize jointly
learned language representations between the
source language and the target language. In
addition, we created 19 million new sythetic
triplets as additional training data for our fi-
nal ensemble model. According to experi-
mental results on the WMT2020 APE develop-
ment data set, our models showed an improve-
ment over the baseline by TER of −3.58 and
a BLEU score of +5.3 for the En–De subtask;
and TER of−5.29 and a BLEU score of +7.32
for the En–Zh subtask.

1 Introduction

Automatic post-editing (APE) is a subtask of MT,
which aims to improve MT outputs by directly
modifying machine-translated sentences (Chatter-
jee et al., 2019). Using APE systems to correct
such errors that are automatically detectable can
greatly reduce human effort compared to correct-
ing machine-translated sentences manually from
scratch (Pal et al., 2016).

Given that neural-network systems require a
large quantity of training data, creating APE
triplets, which each consist of a source sentence
(src), a machine-translated sentence (mt), and a
manually post-edited sentence (pe), requires a lot
of human labor. Furthermore, because neural APE
is a recently minted field of study, only a few small-
sized training data sets are available at present. To
mitigate such data shortage, several methods are

proposed such that 1) create artificial APE triplets
(Junczys-Dowmunt and Grundkiewicz, 2016; Ne-
gri et al., 2018); and 2) apply ‘transfer learning’
(Correia and Martins, 2019; Lopes et al., 2019).
We believe that pre-trained models such as ELMo
(Peters et al., 2018), OpenAI GPT (Radford et al.,
2018), and BERT (Devlin et al., 2019) helped APE
models learn rich language representations that
compensated for the performance loss caused by
using an insufficient quantity of training data.

APE is a task that handles both src and mt si-
multaneously, and learning a joint representation
of these two inputs requires an understanding of
both languages. Although previous works that used
BERT have shown that transfer learning is effective
in APE (Correia and Martins, 2019; Lopes et al.,
2019), adopting BERT as a pre-trained language
model may restrict to properly model the relation
between two different languages because BERT
is trained only on monolingual data sets. There-
fore, following the recent trend of adopting transfer
learning to various NLP tasks, we propose a new
method that adopts a cross-lingual language model
as a pre-trained langauge model for APE.

2 Related Work

2.1 APE models using BERT-based
Encoder-Decoder

Lopes et al. (2019) proposed an APE system to
which transfer learning is applied; the system uses
multilingual BERT (Devlin et al., 2019) as its pre-
trained language model in a Transformer encoder-
decoder structure. They also introduced “conserva-
tiveness penalty”, which discourages the APE sys-
tem from frequently editing mt, into the system. In
addition to using BERT as a cross-lingual encoder,
they followed Correia and Martins (2019), which
used pre-trained BERT to initialize weights of both
the encoder and decoder, and shared weights of the
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Figure 1: A comparison of the MLM objective and the TLM objective, taken from Conneau and Lample (2019)

self-attention layers both in the encoder and in the
decoder.

Furthermore, they used a single encoder that ac-
cepts the concatenation of src and mt as input. To
distinguish between the languages, they assigned
different segment-embeddings for each language.
This BERT-based encoder-decoder system showed
the best performance for the English–German (En–
De) language pair among all submissions for the
WMT2019 APE shared task, proving the effective-
ness of transfer learning.

2.2 XLM

After BERT had proposed masked language mod-
eling (MLM), which requires monolingual data
only (Devlin et al., 2019), Conneau and Lample
(2019) introduced translation language modeling
(TLM), which is an extension of MLM and allows
the model to use parallel corpora as its input in the
pre-training stage; the model can mask any token
regardless of its language, and constructs its em-
bedding by considering both sides of the context
(Figure 1). The model learns through this process
a cross-lingual representation during the training
phase.

Considering that the APE task is a cross-lingual
task, we expect that learning a cross-lingual rep-
resentation of two different languages at the pre-
training stage will be effective also in APE. Thus,
we built a cross-lingual language model, which di-
rectly learns the joint representation of the two lan-
guages while being trained for the TLM objective,

and we supplied it to our system. We describe our
proposed model’s architecture in the next section.

3 Model Description

Our APE system is built on top of Transformer’s
encoder-decoder structure (Vaswani et al., 2017).
In the following subsections, we describe the main
features of the encoder and decoder, respectively.
Figure 2 illustrates the overall structure of our
model.

3.1 Encoder

Transfer Learning. We built a cross-lingual
language model and adopted this pre-trained
language model to the encoder. It contains
bidirectional and cross-lingual representations
of the source and target languages, which are
learned from predicting masked tokens from a big
quantity of parallel data. Although a MLM+TLM
model that was trained in 15 languages has been
already released on the XLM GitHub page1, to use
a model that is trained with specific language pair
corresponding to src and mt only, we built new
MLM+TLM models. For En–De, we trained our
model with the TLM objective on the pre-trained
En–De MLM model which is released on the XLM
Github page. For En–Zh, we trained our model
with both the MLM and TLM objectives from
scratch.

1https://github.com/facebookresearch/XLM
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Figure 2: The architecture of our proposed APE model

Input representation. Unlike APE models
that use a multi-source encoder that encodes
src and mt separately (Junczys-Dowmunt and
Grundkiewicz, 2018; Lee et al., 2019), we followed
Lopes et al. (2019) so that the concatenation
of src and mt was fed in to a single encoder.
To distinguish one language from the other,
we assigned different segment-embeddings to
src and mt, respectively, and we also assigned
individual positional-embeddings to src and mt.

3.2 Decoder

Because our pre-trained language model does not
have a decoder, between two options, either ran-
domly initializing the decoder or using another set
of pre-trained weights, we chose the former; in
contrast to Correia and Martins (2019), who made
the encoder’s self-attention weights be shared with
the decoder, we randomly initialized the context
attention layers and did not make the encoder and
decoder share their parameters. To compensate for
resulting variations in performance, we made an
ensemble model of three to four individual models
that have identical structures.

Reference Corpus En–De En–Zh

WMT2020
News
Translation
Task

Europarl v10 X –
ParaCrawl v5.1 X –
Tilde RAPID X –
Tilde EESC X –
News Commentary v15 X X
WikiMatrix X X
UN Parallel Corpus – X
Back-translated news – X

OPUS
Wikipedia X –
MultiUN X X
QED X X

WMT2019 QE Task Parallel Corpus X –

Table 1: The list of data sets we used to train TLM in
the pre-training stage for the En–De & En–Zh language
pairs. All data sets were filtered to contain only such
sentences with a length between 3 and 70 tokens.

4 Experiments

4.1 Dataset

We applied Byte-Pair Encoding (Sennrich et al.,
2016) to all the corpora in both the source and tar-
get language. We used the En–De shared sub-word
vocabulary that is released on XLM GitHub, but
we compiled an En–Zh shared vocabulary by using
Wikipedia’s dump files in English and Chinese. As
in the WMT2020 official data, all English and Ger-
man data sets were truncated and tokenized with
Moses (Koehn et al., 2007) scripts, and the Chinese
data set was tokenized with the Jieba tokenizer.2

4.1.1 Pre-training stage
We collected parallel corpora from the WMT2020
News Translation Task website,3 OPUS,4 and the
WMT2019 Quality Estimation website.5 Table 1
shows the list of parallel corpora that we used to
pre-train our models for the two language pairs. To
build a pre-trained language model for En–Zh, we
built a MLM+TLM model from scratch because we
did not have available MLM models that are trained
only on the English and Chinese data. Whereas we
trained TLM on the whole parallel corpora, we
trained MLM only using each side of the paral-
lel corpora as monolingual data. For En–De, we
trained only TLM; we used the En-De pre-trained
MLM model that is released on the XLM Github
page. The sizes of the final parallel corpora that we
used in the pre-training stage are 51.7M triplets for
En–De and 43.8M for En-Zh.

2https://github.com/fxsjy/jieba
3http://www.statmt.org/wmt20/translation-task.html
4http://opus.nlpl.eu/
5http://www.statmt.org/wmt19/qe-task.html
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English-German English-Chinese
WMT20 Dev WMT20 Test WMT20 Dev WMT20 Test
TER BLEU TER BLEU TER BLEU TER BLEU

Baseline 31.36 50.37 31.56 50.21 60.41 22.62 59.49 23.12
Single 28.39 54.81 – – 56.25 28.68 – –
Primary - Top3Ens 27.78 55.67 27.37 55.83 55.12 29.94 54.92 28.90
Contrastive - Top4Ens 27.94 55.61 27.02 56.37 55.74 29.69 55.08 28.97

Table 2: TER and BLEU scores for En–De and En–Zh language pairs. APE results for the WMT2020 test data
will be provided by the shared task organizers. ‘Single’ is the model which showed the best performance among
all the models that later became constituents of the ensemble model.

4.1.2 APE training stage
We used the WMT2018 and WMT2020 official
APE data sets for En–De, and the WMT2020 offi-
cial APE data sets for En–Zh. As supplementary
training data, we created new synthetic triplets by
following the method to make the eSCAPE NMT
data set (Negri et al., 2018); we used the parallel
corpora that are released as additional resources
for the WMT2020 Quality Estimation task.6 To
create those triplets, we first reused each side of the
parallel corpora as src and pe. We then applied
the QE NMT model (Fomicheva et al., 2020)7 to
src and then used the resulting translations as mt.
As a result, we obtained 19M new synthetic triplets
for both En–De and En–Zh.

4.2 Training Details

We modified Facebook’s XLM implementation that
is released on Github8 to adapt it for the APE task.
Most hyperparameters such as the number of layers,
the hidden size, and the number of attention heads,
were set to those that XLM used for the MT task
(Conneau and Lample, 2019). We then used differ-
ent optimizer-settings for the pre-training and APE
training stage, respectively. We used the Adam op-
timizer (Kingma and Ba, 2014) with a learning rate
of 5×10−5 in the pre-training stage, and 1×10−4,
β1 = 0.9, β2 = 0.999, ε = 1 × 10−6 in the APE
training. We used 30k warm-up steps and a batch
size of 32.

Similar to Lee et al. (2019), we divided the APE
training process into two parts. The first is to
train the model with 19M triplets, consisting of
the 15-times up-sampled WMT official training

6http://www.statmt.org/wmt20/quality-estimation-
task.html

7https://github.com/facebookresearch/mlqe/tree/master/
nmt models

8https://github.com/facebookresearch/XLM

data and our new synthetic data; we also added
the WMT2018 official training data without up-
sampling only for En-De. This first part took about
three days on a single Tesla V100 GPU. The sec-
ond is to fine-tune the model using only 7k triplets,
which are official WMT2020 APE data. This sec-
ond part took about three hours on the same GPU.

In the decoding stage, we used beam decoding
with a beam size of five. We randomly initialized
the weights of decoder’s context attention layers
and experimented our models four times to form
an ensemble model of those four models. Our pri-
mary model is an ensemble model of three models,
excluding one model that scored worst in terms
of TER; this model showed the best performance
on the WMT2020 development data set. Our con-
trastive model (Top4Ens) is an ensemble model of
all the four models.

4.3 Results

We evaluated our results by comparing them to the
MT baseline, which is uncorrected outputs of MT
system. We used two evaluation methods that the
WMT2020 APE task organizers suggested: Trans-
lation Error Rate (TER) and Bilingual Evaluation
Understudy (BLEU). We used tercom software9

to measure TER and a script of XLM GitHub to
measure BLEU.

Table 2 describes the results of our proposed
model on the WMT2020 official development and
test data sets. For the development data set, our ‘sin-
gle’ model outperformed the MT baseline in both
language pairs. This result implies that our model
successfully enhances the original quality of mt.
Moreover, our primary ensemble model (Top3Ens)
showed improvements over the MT baseline: for
En–De by TER of −3.58 and by a BLEU score of

9http://www.cs.umd.edu/ snover/tercom/
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+5.3 and for En–Zh by TER of−5.29 and a BLEU
score of +7.32.

Especially, for the test data set, our contrastive
ensemble model showed a significant improvement
for En–De by TER of −4.54 and a BLEU score
of +6.16. For En–Zh, our primary submission
showed an improvement over the MT baseline by
a big margin: TER of −4.57 and a BLEU score of
+5.78.

Although we submitted Top3Ens as our primary
model, Top4Ens showed better TER and BLEU
scores on the En–De test data set. We speculate
that this result may have been caused by generality
problem in which certain differences between the
WMT2020 development and test data sets could
occur.

5 Conclusion

For the WMT2020 APE shared task, we propose
APE systems that adopt cross-lingual pre-trained
language models. To better apply transfer learning
to the APE task, we trained TLM in addition to
using the original MLM models and initialized the
decoder’s weights in the same way as the encoder.
Furthermore, we created new synthetic triplets to
augment the training data and used the ensemble
technique to build our final model.

Experimental results show that our proposed
model achieved significant improvements on the
WMT2020 development and test data sets in terms
of TER and BLEU scores for both En–De and En–
Zh language pairs.
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Abstract

This paper describes POSTECH’s submission
to WMT20 for the shared task on Automatic
Post-Editing (APE). Our focus is on increasing
the quantity of available APE data to overcome
the shortage of human-crafted training data.
In our experiment, we implemented a nois-
ing module that simulates four types of post-
editing errors, and we introduced this module
into a Transformer-based multi-source APE
model. Our noising module implants errors
into texts on the target side of parallel cor-
pora during the training phase to make syn-
thetic MT outputs, increasing the entire num-
ber of training samples. We also generated
additional training data using the parallel cor-
pora and NMT model that were released for
the Quality Estimation task, and we used these
data to train our APE model. Experimental
results on the WMT20 English-German APE
data set show improvements over the baseline
in terms of both the TER and BLEU scores:
our primary submission achieved an improve-
ment of -3.15 TER and +4.01 BLEU, and our
contrastive submission achieved an improve-
ment of -3.34 TER and +4.30 BLEU.

1 Introduction

There has been a surge of interest in developing
Automatic Post-Editing (APE) models, which is ca-
pable of automatically correcting errors produced
by a machine-translation (MT) system, and thus is
an attractive way to improve the quality of the MT
output. Currently, sequence-to-sequence modeling
has become a dominant approach to constructing
APE models (Chatterjee et al., 2019, 2018), which
requires a large quantity of training samples. How-
ever, APE data1 — comprising triplets of three
texts: source (src), a machine-translation (mt) of
src, and a human-crafted post-edited sentence (pe)
of mt — is too small and costly to acquire. Con-
sequently, the lack of APE data becomes a great

1http://www.statmt.org/wmt20/ape-task.html

obstacle to a satisfactory performance of sequence-
to-sequence models.

To reduce such data scarcity, there have been
several attempts at constructing synthetic APE
data (Negri et al., 2018; Junczys-Dowmunt and
Grundkiewicz, 2016). Most notably, Negri et al.
(2018) proposed a simple but effective way to con-
struct a large-scale synthetic APE data set eSCAPE
(src, mt, ref ), of which src and ref is the source
and target text of freely available parallel corpora,
respectively, and mt is a translation of src produced
by the MT system that had been trained on those
parallel corpora.

As eSCAPE has shown to be beneficial in train-
ing APE models (Chatterjee et al., 2019), it has
become feasible to train deep APE models and also
what most recent works have been relying on so far.
Nevertheless, the availability of a limited quantity
of parallel corpora may not only be insufficient, but
also vary depending on the language pair, that is,
while some language pairs have plenty of resources,
some others have relatively few resources. We thus
argue that further works to supply additional re-
sources should be needed to mitigate the potential
data scarcity.

In this work, we introduce a noising scheme
by which corrupted texts (refnoise) are produced
from ref of parallel corpora, resulting in additional
APE triplets (src, refnoise, ref ), where src and ref
is the source and target text of parallel corpora,
respectively. During post-editing, certain editing
operations including the word insertion, deletion,
substitution, and shifting are applied to translated
texts (noisy texts) for error correction. Thus, we
applied such operations to target texts (clean texts)
of parallel corpora to inject errors in reverse. More-
over, to simulate the quantity of errors that the
target MT system produces, we refer to the distri-
bution of “Translation Error Rate” (TER) (Snover
et al., 2006) occurring in the actual APE data to
determine the quantity of errors to be injected.
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Figure 1: An illustration of the noising procedure

While we trained our models using the noising
module, we supplied to the models synthetic APE
data in addition to the WMT’20 APE data set as
training data. The synthetic data was produced by
using the eSCAPE method, which uses parallel cor-
pora and a trained NMT model. We observed that
models with noising module improved up to about
-0.7 TER and +1.45 BLEU on the English-German
(EN-DE) WMT’20 APE validation set compared
to models without noising. Finally, our primary
and contrastive submission to the WMT’20 APE
shared task respectively recorded 28.41 TER and
54.22 BLEU, and 28.22 TER and 54.51 BLEU on
the blind EN-DE WMT’20 APE test set.

2 Related Work

Noise injection to input sentences has become a
popular method to let auto-encoders (Hill et al.,
2016; Vincent et al., 2008) or pre-trained language
models (Lewis et al., 2019; Devlin et al., 2019)
learn how to reconstruct the original input. Be-
cause post-editing is a process of reconstructing
corrupted translations, simulating corrupted MT
outputs by injecting noise to the target sentence is
a way to get synthetic APE training samples.

In the APE task, Xu et al. (2019) employed a data
noising technique that incorporates a noise vector
generated from a Gaussian or uniform distribution
into the word embedding vector. However, their
noising process has an effect on all tokens in a

sequence, whereas only certain tokens in a given
MT output are to be corrected in the APE process.

3 Method

3.1 Post-Editing Noise
Post-editing of mt texts requires four editing opera-
tions: insertion, deletion, substitution, and shifting.
In other words, mt texts contain the following types
of errors (The examples on the left side and right
side are mt and pe, respectively.):

• Insertion operation implies that mt includes
deletion errors:
We the world→ We are the world

• Deletion operation implies that mt includes in-
sertion errors:
We are in the world→ we are the world

• Substitution operation implies that mt includes
substitution errors:
We is the world→ we are the world

• Shifting operation implies that mt includes shift-
ing errors:
We the world are→ we are the world

Considering the characteristics of editing opera-
tions, applying these operations to a clean text can
simulate a corrupted mt text that can be post-edited
to the original text. Thus, we corrupted a portion of
words in a target text of parallel corpora, yielding a
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Figure 2: The categorical TER distribution of the
WMT’20 training data, representing the proportion y
[%] of samples belong to a specific TER range x.

new synthetic mt text which form a new synthetic
triplet together with the corresponding source and
target text in the parallel corpora.

3.2 Noising Procedure

Given an input sentence, we consider a noising
procedure (Figure 1) (1) that specifies the quantity
of words to become noise; (2) that selects specific
words that will become noise according to the spec-
ified quantity; (3) and that determines the types of
noise to be injected into the selected words.

Noising Quantity and Candidate Selection

The first step is to specify the quantity of words
that will become noise in a given input sentence.
Choosing a static proportion can be one option (De-
vlin et al., 2019), but imitating the proportion of
errors that the target MT system produces would
be more helpful to simulate the original mt text,
considering that APE aims to correct the output
produced by a particular MT system.

Accordingly, we refer to TER scores between
mt and pe of the WMT’20 train set, which indicate
the proportion of errors in mt that need to be cor-
rected. Specifically, a TER range (e.g. (45, 50])
is drawn from the TER distribution in intervals of
5 (Figure 2), and then a specific value (e.g. 48)
uniformly sampled from that range will be used as
the error rate (e.g. 48→ 0.48). Finally, the noising
quantity is calculated by multiplying the error rate
by the input length. After specifying the noising
quantity, we randomly select noising candidates
among words in a given sentence according to the
specified quantity.

Noise Application
Once the noising candidates have been selected,
we now need to determine the types of noise that
will be assigned to each candidate, and this process
relies entirely on randomness. In particular, we
produce four random numbers, making their sum-
mation equal to the noising quantity, and then this
numbers are used as the quantity for each of the
‘insertion’, ‘deletion’, ‘substitution’, and ‘shifting’
post-editing noise. According to the quantity of
each noising type, each type of noise is applied
to words that are randomly selected among the
noising candidates. Here, we present an example
scenario as follows:

• Suppose that the noising quantity is 5 and
the noising candidates are w1, w4, w7, w9, w11

where wi represents an input word in the i-th
position.

• Given that the randomly selected numbers are
{1, 2, 0, 2}, according to each of these four se-
lected numbers, the words are randomly se-
lected among the noising candidates, forming
four subsets of selected words.
(e.g.: {{w4}, {w1, w9}, {Ø}, {w7, w11}}).
• Finally, one corresponding noise operation is

applied to each subset of selected words. e.g.:
{w4}: insertion noise, {w1, w9}: deletion noise,
{Ø}: substitution noise, {w7, w11}: shifting
noise.

4 Experiment

4.1 Setup
Data. We collected publicly available parallel
corpora that are listed on the WMT’20 Quality Es-
timation (QE) task webpage2, which had been used
to train the MT system by which mt texts of the
WMT’20 QE corpus had been produced, and then
we generated about 20M synthetic APE triplets
(src, mt, ref ) in the same manner as the eSCAPE
method by using the pretrained MT system3 that
has been released on the QE task webpage. This
synthetic APE triplets were used together with the
official APE train set to train our APE model and
a BPE model4 by which we obtained a shared vo-
cabulary of 32K subwords. During the training
phase, the collected parallel corpora were used to

2http://www.statmt.org/wmt20/quality-estimation-
task.html

3https://github.com/facebookresearch/mlqe
4https://github.com/google/sentencepiece
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Figure 3: The structure of our APE model.

generate another synthetic APE triplets produced
by our noising approach.

Model configuration. We adopted the ”sequen-
tial APE model” proposed by Lee et al. (2019)
to construct our APE model (Figure 3) by ap-
plying some minor modifications: the ReLU ac-
tivation (Nair and Hinton, 2010) in the ’feed-
forward’ layers was replaced with the GELU activa-
tion (Hendrycks and Gimpel, 2016), an additional
residual connection between the outputs of the first
and third multi-head attention layer was added in
the decoder. Additionally, we removed some de-
tails such as ”stack-level attention” and ”future
masking to mt”. We set our model’s hyperparam-
eters as follows: the size of the word embedding
and all hidden dimensions at 768; the size of the
inner dimension of feed-forward layers at 3072;
8 heads; 6 layers; and dropout rate at 0.1. The
model was optimized using Adam (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.998, and ε = 1e−8,
and we used the same learning rate scheduling as
Vaswani et al. (2017) with 15,000 warmup steps.
We implemented and trained our model by using
the OpenNMT-py5 framework.

5https://github.com/OpenNMT/OpenNMT-py

Model
WMT’20 dev WMT’20 test
TER BLEU TER BLEU

Baseline 31.37 50.37 31.56 50.21
APEbase 29.42 52.32 – –

+Noise 28.72 53.77 – –
Submission (Ensemble)

Primary 28.70 53.77 28.41 54.22
Contrastive – – 28.22 54.51

Table 1: The evaluation results. APEbase stands for
the model trained without using our noising approach.

4.2 Training Details

Training procedure. Training of the APE model
is composed of two steps. At the first step, both
the synthetic triplets and WMT’20 training data are
used to train the model. Every time each training
batch is assigned to the model, 25% of the syn-
thetic triplets (src, mt, ref ) in the batch are replaced
with another synthetic triplets (src, ref noise, ref ) by
applying the noising procedure (§3.2) to each ref.
We here set the batch size at 33,000 tokens. The
following step is to fine-tune the model by only us-
ing the WMT’20 data, starting at the convergence
point found in the first step. At this step, we set the
batch size at 1,024 tokens.

Ensemble. We trained two ensemble models for
submission. Our primary submission (TERNoise-
Ops-Ens8) is an ensemble of eight runs. We first
selected the top five runs, which had the lowest
TER on the development set, for three individual
weight initializations. To form the ensemble model,
we then selected among them the top two runs,
for each of four edit operations, that make correc-
tions most frequently. Our contrastive submission
(TERNoise-nFold-Ens8) is also an ensemble of
eight runs. Aiming for generalization to unseen
data, all runs were trained and validated in a 4-fold
setting on a data set into which the training data
and development data had been merged. Then we
selected the top two runs for each fold to form the
ensemble model.

4.3 Result

Table 1 presents our evaluation results. As the
WMT20 test data is blind to users, we were not
able to conduct an evaluation on the test data set,
but we observed that applying our noising scheme
improved the post-editing quality of the model on
the development data set. As a result, our primary
submission, which is an ensemble of models adopt-
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ing the noising scheme, showed an improvement
of −3.15 TER score and +4.01 BLEU score on
the test data set. In addition, our contrastive sub-
mission, which is an ensemble of models trained
on the separate training data set to seek generality
performance on unseen data, showed better results
than our primary submission, resulting in its high
generalization capability to the unseen the WMT20
test data.

5 Conclusion

We propose a noising scheme to supply APE mod-
els with synthetic APE triplets during the training
phase. Our noising scheme is designed based on
the error types that are defined in the APE task, and
the quantity of noise that are injected during the
training phase are determined in consideration of
the distribution of those error types in the official
training data. According to the experimental re-
sults, applying our noising scheme to APE models
showed an improvement of the post-editing quality
in terms of both TER and the BLEU scores, which
indicates that our noising scheme was effective in
training APE models although there may be differ-
ences between the synthesized errors and the actual
MT errors. Therefore, in future work, we will aim
to reduce those gaps caused by our noising scheme.
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Abstract
The goal of Automatic Post-Editing (APE) is
basically to examine the automatic methods
for correcting translation errors generated by
an unknown machine translation (MT) sys-
tem. This paper describes Alibaba’s submis-
sions to the WMT 2020 APE Shared Task
for the English-German language pair. We
design a two-stage training pipeline. First,
a BERT-like cross-lingual language model is
pre-trained by randomly masking target sen-
tences alone. Then, an additional neural de-
coder on the top of the pre-trained model is
jointly fine-tuned for the APE task. We also ap-
ply an imitation learning strategy to augment
a reasonable amount of pseudo APE training
data, potentially preventing the model to over-
fit on the limited real training data and boost-
ing the performance on held-out data. To ver-
ify our proposed model and data augmentation,
we examine our approach with the well-known
benchmarking English-German dataset from
the WMT 2017 APE task. The experiment re-
sults demonstrate that our system significantly
outperforms all other baselines and achieves
the state-of-the-art performance. The final re-
sults on the WMT 2020 test dataset show that
our submission can achieve +5.56 BLEU and
-4.57 TER with respect to the official MT base-
line.

1 Introduction and Related Work

Even machines can approach and achieve parity
with human translations (Hassan et al., 2018) em-
powered by a sequence-to-sequence fashion (Bah-
danau et al., 2014; Vaswani et al., 2017), post-
editing is still an important and necessary step
in the translation process, especially in scenarios
where extremely high-quality translation results
are essentially required such as business legal doc-
uments, technical product guides, medicine instruc-
tions and so on. It is the process whereby humans

∗* indicates equal contribution.

amend machine-generated translation to achieve an
acceptable final product. Translation crowdsourc-
ing paradigm, computer assisted translation (CAT)
thus comes into being as demanded, which includes
a hybrid of machine translation and human post-
editing to meet translation scenarios with different
quality requirements accordingly for accuracy, clar-
ity, fluency, and domain adaptation.

However, post-editing, while improving, that
can match human understanding of meaning, nu-
ance, tone, humor–the list goes on, it’s often worth
paying extra more. The time spent on translation
mistake corrections by humans remains substantial
to the extent (Läubli et al., 2013) so that it even
occasionally offsets the efficiency gained from the
neural machine translation (NMT) systems. In this
paper, we explore automatic post-editing (APE) in
a deep learning framework where a two-stage train-
ing pipeline is engaged. The goal of APE task is
to examine automatic methods of correcting trans-
lation mistakes produced by a black-box machine
translation engine to improve the MT results. Hu-
man efforts are correspondingly reduced in the later
editing process (Läubli et al., 2013) if our APE sys-
tem can approach human translations as much as
possible.

Traditionally, APE is a supervised learning task,
requiring sufficient training data in the triplet of
source (SRC), machine translation (MT) and post
editing (PE) that are usually expensively available.
Due to the limited number of such APE data re-
leased officially in this year’s APE tasks and the
specific domain, Wikipedia, which is quite different
from the previous years’(IT domain), we adopt an
imitation learning to mine WMT corpora, eSCAPE
(Negri et al., 2018), Opus Wikipedia corpus (Wołk
and Marasek, 2014) and our own English-German
corpus to augment APE training data. However,
pseudo data strategy is far from enough to train
the state-of-the-art APE system. Inspired by the
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Figure 1: The APE model structure including detailed operations in pre-training and training

masked language model objective in the encoder
BERT (Devlin et al., 2018), we introduce our Bert-
like cross-lingual training objective to the encoder-
decoder framework by adapting the decoder to be-
come a memory encoder (Fan et al., 2019), allow-
ing us to pre-train the target language model similar
to BERT but conditioned on the source language
text. Knowledge learned from the pre-training
can be extensively transferred to many second-
step downstream tasks, including but not limited
to translation quality estimation, parallel corpus
filtering and of course, automatic post-editing. The
overall framework of our APE model is the same
with the generative automatic post-editing model’s
structure in Wang et al. (2020).

Similar training mechanism is applied in the win-
ner system of WMT 2019 APE Shared Task (Lopes
et al., 2019), that wisely takes full advantage of the
pre-trained multilingual BERT (mBERT) (Devlin
et al., 2018) and achieves top performances.They
concatenate the source and machine translation sen-
tences to feed into the encoder mBERT and then
fine tune the encoder and a transformer decoder
where the context attention block is initialized by
the self-attention weights of mBERT as well.

We examine our approach on the public En-
glish–German dataset from WMT 2017 APE
shared task. Our system outperforms the top ranked
methods in both BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) metrics. For this year’s

WMT APE task, we finally submitted two ensem-
ble English-German APE models according to dif-
ferent model selection methods and accomplish
+5.56 increase in BLEU and -4.57 decline in TER
on 2020 test set.

2 Methodology

In this section, we will introduce our APE model
in terms of general structure and some computa-
tion details together with our data augmentation
strategy.

2.1 APE Model Structure

The structure of our APE pre-training model origi-
nates from adapting the decoder in the transformer
(Vaswani et al., 2017) to a memory encoder, fol-
lowing the exactly same design in Fan et al. (2019).
We randomly pick 15% tokens in the target sen-
tences during each training step to be substituted
with a special [mask] token where predictions will
be requisites accordingly, covering 12% masked,
1.5% substituted and 1.5% unchanged. In order
to train a masked language model on the target
sentences conditional on the sources, we accord-
ingly remove the future mask matrix in the self-
attention of the decoder to form a memory encoder,
aiming to learn deep syntactic and alignment in-
formation of the ground truth. Therefore, during
pre-training stage, the model is trained with high-
quality English-German parallel corpora.
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After we fully train the conditional language
model on the target side, we apply an auto-
regressive decoder on top of the pre-trained
encoder-memory encoder model to decode the post-
editing results in the stage of APE training by using
the triplet data.

Figure 1 shows the details of our model struc-
ture. The part in the dotted line represents the
pre-training stage with the removal of future mask
in the memory encoder, and the whole picture de-
scribes the APE training process when the encoder-
memory encoder pre-training model has been
trained thoroughly. Note that the order of joint
attentions of encoder and memory encoder with
the decoder separately can be switched. Our exper-
imental results in the following section illustrate
this slight change can bring benefits to the diver-
sity of the models and enhance the final ensemble’s
performance.

2.2 Data Strategies

High-quality parallel corpus filtering Our pre-
training model requests high-quality parallel cor-
pora. The dual conditional cross-entropy model
(Junczys-Dowmunt, 2018) has been proven effec-
tive in WMT 2018 Corpus Filtering Shared Task.
The cross-entropy scores according to two inverse
translation models trained on clean data are used
as the quality indicator so that we are able to mine
qualified parallel sentences from noisy parallel cor-
pora.

APE training data augmentation. Domain
Adaption methods have been also investigated be-
cause of the small amount of official English-
German APE training set and the special domain,
Wikipedia. A semi-supervised CNN domain classi-
fication model (Chen and Huang, 2016) trained
with in-domain seed and other general-domain
data is utilized to extract in-domain source and
target sentences from English-German corpora to
augment pseudo sources and post-edits for APE
training. To generate the corresponding machine
translations of the classified in-domain source sen-
tences, we use the rest of our corpus to train a
neural machine translation model with model set-
ting in Vaswani et al. (2017) to produce the MT
results. The pseudo sources and post-edits are used
as supplementary data during pre-training, and the
pseudo triplets improve APE performance on the
basis of only using official APE training set.

Algorithm 1 Imitation Learning for Fine-tuning

Require: Reference Set R = {(si,mi, ei)}Mi=1, Full Train-
ing Set T = {(sj ,mj , ej)}Nj=1, hyperparameters K ∈
[1,+∞), α ∈ (0, 1).

1: Set the output dataset R = {}.
2: for each (si,mi, ei) in R do
3: ~Vr = (TER(ei,mi), Length(ei))
4: Candidate Set C = {}
5: for each (sj,mj, ej) in T do
6: ~Vt = (TER(ej ,mj), Length(ej))
7: for m in 0,1 do
8: if

∥∥∥( ~Vr[m]− ~Vt[m])/ ~Vr[m]
∥∥∥ > α then

9: Skip this training sample
10: end if
11: end for
12: Add this training sample (sj,mj, ej) to C
13: end for
14: if size of C > K then
15: Sort candidates in C by its cosine similarity to ~Vr

16: Remain only the top K candidates in C
17: end if
18: for each candidate in C do
19: Add it to F
20: Remove it from T
21: end for
22: end for
23: return Filtered Dataset F .

Imitation learning. To boost the APE model per-
formance, we optimize our model during the APE
training stage with further filtered APE data by an
imitation learning method, since we noticed that
there are gaps between the distributions of TERs
in different types of our APE training set. Deeply
motivated by Junczys-Dowmunt and Grundkiewicz
(2016), we leverage the official training data con-
taining real 7000 in-domain APE triplets as a refer-
ence set and apply Algorithm 1 to sample a subset
of the whole training data in Table 1. Then we fine
tune the APE model further with such a subset that
has a similar distribution with this year’s official
training data. All the details of data usage will be
described in the following experiment section.

3 Experiment

We conduct our experiments on two different
datasets: First, to make a fair comparison with
other top-ranked systems on WMT APE tasks in
recent years, we perform a single model evaluation
on the WMT 2017 English-German APE Shared
Task without any other pseudo data except the
Artificial dataset (Junczys-Dowmunt and Grund-
kiewicz, 2016) provided officially (for fair compar-
isons, and we avoid using the Escape Corpus (Ne-
gri et al., 2018) which has not been released until
2018); Second, we carry out a series of experiments
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Real/Pseudo MT Engine In/Out Domain Up-sample Weight Description Size

Real SMT Out-domain 10 Train set of WMT 16&17 APE task 23k
Real NMT Out-domain 20 Train set of WMT 18 APE task 13.4k
Real NMT In-domain 40 Train set of WMT 20 APE task 7k

Pseudo SMT Out-domain 1 Artificial Dataset 4.4M
Pseudo NMT Out-domain 1 Escape Corpus (NMT) 4.9M
Pseudo NMT In-domain 1 Our in-domain pseudo data 20M

Total - - - Final training set 30M

Table 1: Compositions of the Training Data for the WMT 2020 APE Shared Task
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Figure 2: Results in the English-German Development Set of WMT 2020 APE Shared Task of Different Model
Structures with/without Data Augmentation

on the WMT 2020 English-German APE Shared
Task with strategies including data argumentation,
quality filtering, domain adaptation, and model en-
semble to accomplish the overall performance of
our model.

3.1 Setup

Dataset. For the experiments on WMT 2017
APE, we verify our APE model design on the open
public WMT 2017 English-German APE Shared
Task (Ondrej et al., 2017). The official training
set consists of 23K real triplets (SRC, MT, PE) for
training and another 2K triplets for testing from
the Internet Technology (IT) domain. Besides, the
shared task offers a large-scale artificial synthetic
corpus containing around 500K high-quality and
4 million relatively low-quality synthetic triplets.
We over sample the APE real data by 20 times
and merge it with the synthetic data, resulting in
roughly 5 million of triplets for both pre-training
and APE training. The final APE system is selected
based on WMT 2016 APE test set.

For the experiments on WMT 2020 APE, we use

all available APE triplets of WMT English-German
APE tasks released since 2016, including about
43.4K real triplets as well as 9.3M synthesized
data made up with Artificial (Junczys-Dowmunt
and Grundkiewicz, 2016) and Escape (Negri et al.,
2018). Considering the application domain for this
year’s task changes from IT to Wikipedia and the
size of the official in-domain training set is quite
small (only 7000 samples), we generate about 20M
in-domain pseudo data for our model training as
follows:

1. We apply the cross-entropy scoring algorithm
described in section 2.2 on our own English-
German parallel corpus and filter out about
200 million high-quality parallel data with a
proper threshold.

2. We collect the Wikipedia corpus from Wołk
and Marasek (2014), which contains more
than 2 million of English-German parallel sen-
tences. We up-sample the SRC of this year’s
training data 20 times and mix them with the
English side of Wikipedia corpus as our in-
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domain seeds and train a domain classifica-
tion model as described in section 2.2 with
other general-domain data including the news
and biomedical dataset from the WMT 2020
website. Afterwards, the domain classfication
model is applied to extract about 20 million of
in-domain parallel sentences from the 200M
high-quality parallel data mentioned above.

3. The left 180 million are used to train a English-
German transformer-based neural machine
translation model (Vaswani et al., 2017) with
the OpenNMT (Klein et al., 2017) source
code. The sources and targets of the 20M high-
quality in-domain parallel corpus are treated
as SRCs and PEs and the decoding results
from the trained NMT model are regarded as
corresponding MTs. These in-domain pseudo
triplets are mixed with all available training
set from the WMT APE Shared Task since
2016 with differentiated up-sample weights
as our final training set, as shown in Table 1.

Pre-processing. In all of our experiments, we
apply truecasers trained independently for English
and German seperately (Koehn et al., 2007) and
process our data into subword units (Kudo, 2018)
with a 32K shared vocabulary. Triplets with more
than 70 subword units in any one of the SRCs, MTs
or PEs are removed.

Evaluation Metrics. We mainly evaluate our
systems with the metrics, translation edit rate
(TER) (Snover et al., 2006) and bilingual evalu-
ation understudy (BLEU) (Papineni et al., 2002),
since they are standard and widely employed in
evaluation of the WMT APE tasks.

Model Setting. All experiments are trained on 8
NVIDIA P100 GPUs for maximum 100,000 steps
for about two days until convergence, with a to-
tal batch-size of 65536 tokens per step and the
Adam optimizer (Kingma and Ba, 2014). Parame-
ters are being tuned with 12,000 steps of learning
rates warm-up (Vaswani et al., 2017). Except these
modifications, we follow the default transformer-
based configuration (Vaswani et al., 2017) for other
hyper-parameters settings.

3.2 Results on WMT 2017 APE Shared Task

We verify the validity and efficiency of our pro-
posed model on WMT 2017 APE test data since
all of the winners of WMT APE Shared Tasks of

recent years do report their results of single mod-
els on this dataset (Junczys-Dowmunt and Grund-
kiewicz, 2018; Correia and Martins, 2019). To
make a fair comparison, we do not use any extra
data for training as described in the data setup.

The main results of APE systems are presented
in Table 2, demonstrating that our single model,
even without pre-training, outperforms all winners
of the WMT APE Shared Task from 2017 to 2019
on both BLEU and TER metrics.
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Figure 3: TERs on the English-German Development
Set of WMT 2020 APE Shared Task from the Further
Optimized Models with Different Values of Conserva-
tiveness Penalty

3.3 Results on WMT 2020 APE Shared Task

For this year’s task, we adopt various of strategies
including data augmentation, further optimization
by imitation learning and model ensemble.

Data Augmentation As described in section 2.2,
we utilize several algorithms, quality filtering and
domain adaption, to construct our own in-domain
pseudo data for APE training. We conduct experi-
ments with and without in-domain pseudo data on
two different model structures described in Section
2.1 for decoder joint attention switching (referred
as SRC-First and MT-First respectively in the fol-
lowing discussion). Results on the 2020 develop-
ment set in Figure 2 indicate that our data augmen-
tation strategies can generate powerful pseudo data
which significantly improve the model performance
in this year’s APE task.

Further Optimization via Imitation Learning
The hyper-parameters α and K in Algorithm 1 are
set to 0.3 and 500 according to empirical studies.
Finally, around 2M triplets are filtered from the full
training set via the imitation learning algorithm.
We compare TERs before and after APE fine tun-
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Model BLEU↑ TER↓ Note

Official Baseline 62.49 24.48 Do nothing to the original machine translation
FBK (Ensemble) 70.07 19.60 Ensemble model, winner of WMT17 APE task

MS-UEdin 69.72 19.49 Single model, winner of WMT18 APE task
Unbabel (BED) 70.66 19.03 Single model, winner of WMT19 APE task.

Proposed Model w/o pre-training 70.90 18.90 Single model without pre-training
Proposed Model w pre-training 71.52 18.44 Single model with pre-training

Table 2: Performance Comparisons on WMT 2017 APE English-German Test Set

Model BLEU↑ TER↓ Note

Official Baseline 50.37 31.37 Do nothing with the original machine translation
Ensemble×5 of BED 55.09 27.85 The winning system of last year

Our Single Model 54.88 27.83 MT-First structure
+ Optimizing 54.50 27.76 Optimized on filtered subset
+ Conservativeness Penalty 54.87 27.64 Conservativeness penalty = 0.5

Our Ensemble×5 55.87 27.02 Our contrastive submission
Our Ensemble×5 56.06 26.99 Our primary submission

Table 3: Main Results in the English-German Development Set of the WMT 2020 APE Shared Task

Model BLEU↑ TER↓
Official Baseline 50.21 31.56

Our Primary Submission 55.58 27.03
Our Contrastive Submission 55.77 26.99

Table 4: Submission Results in the English-German
Test Set of the WMT 2020 APE Shared Task

ing with the filtered data in Figure 4 with the two
different model structures. It can be clearly shown
that the APE model can be further improved.
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Figure 4: TERs on the English-German Development
Set of WMT 2020 APE Shared Task for Different
Model Structures with/without Further Optimizing

Ensemble We train the two different APE mod-
els (SRC-First & MT-First), each for three times
with 30M APE training set to get 6 primary APE
models and fine tune all of them with 2M filtered
APE data via imitation learning for further opti-
mization. Then, we obtain 12 APE models, 6
primary models and 6 optimized ones. Our final
primary submission is an ensemble of the top 5
primary models with lowest TERs. In contrast, an
ensemble of the top 5 optimized models is sub-
mitted as well for validation of imitation learning
method.

Following the winning system of last year, we
apply the conservativeness penalty (Lopes et al.,
2019) on each model before ensemble. As shown in
Figure 3, the local optimal solutions for the conser-
vativeness penalty may be various among models.
Therefore, instead of a fixed constant, we apply the
most appropriate penalties for each model accord-
ing to their performance on the 2020 development
set. Results of our ensemble models in the devel-
opment set and the test set can be found at Table 3
and Table 4 respectively.

Besides, we also train last year’s winning sys-
tem five times (BED (Lopes et al., 2019)) with the
exactly same data we use for WMT 2020 APE task
based on the source code they released1 and pro-

1https://github.com/deep-spin/OpenNMT-APE
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duce an ensemble result reported in Table 3. Eval-
uated on 2020 development set, both of our final
ensemble model in primary and contrastive sub-
missions outperform the winning system of 2019.
The final results on the 2020 test set released offi-
cially show that our ensemble models significantly
improve the machine translations with significant
margins in TER and BLEU (-4.57 TER and +5.56
BLEU).

4 Conclusion

This paper describes our automatic post-editing
system for the WMT 2020 English-German APE
Shared Task. We introduce a cross-lingual Bert-
like conditional model with an innovative memory
encoder which can capture the deep semantic in-
formation of machine translations conditional on
the source sentences. In addition, efforts on data
augmentation strategies, corpus filtering and imi-
tation learning, are able to overcome the scarcity
of real APE data and further improve the model
performance together with the ensemble strategy.
Our single APE model outperforms all winner sys-
tems of recent years’ WMT APE Shared Tasks
on the WMT 2017 English-German test set and
achieves impressive performances on the WMT
2020 English-German APE test set.
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reia, Jonay Trenous, and André FT Martins. 2019.
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Abstract
The paper presents the submission by HW-
TSC in the WMT 2020 Automatic Post Edit-
ing Shared Task. We participate in the
English→German and English→Chinese lan-
guage pairs. Our system is built based on the
Transformer pre-trained on WMT 2019 and
WMT 2020 News Translation corpora, and
fine-tuned on the APE corpus. Bottleneck
Adapter Layers are integrated into the model
to prevent over-fitting. We further collect ex-
ternal translations as the augmented MT can-
didates to improve the performance. The ex-
periment demonstrates that pre-trained NMT
models are effective when fine-tuning with the
APE corpus of a limited size, and the perfor-
mance can be further improved with external
MT augmentation. Our system achieves com-
petitive results on both directions in the final
evaluation.

1 Introduction

Automatic post editing (APE) has been used in
many scenarios where the performance of a black-
box Machine Translation (MT) system is unknown,
or, domain specific corrections are required (Pal
et al., 2016; Junczys-Dowmunt and Grundkiewicz,
2017; Correia and Martins, 2019; Chatterjee et al.,
2020). The continuous improvements of NMT sys-
tems’s performances along with deep learning ad-
vancements insert great challenges on developing
sound APE systems, as simple translation errors
are rarely seen in machine translation outputs nowa-
days while the remaining errors are still tough to
solve. Transfer learning and data augmentation
techniques have demonstrated their efficiency in re-
cent years when models are trained on datasets with
limited size (Devlin et al., 2018). Therefore, such
techniques are also adopted in APE tasks (Lopes
et al., 2019; Chatterjee et al., 2019).

Participants in the APE tasks are required de-
velop systems to automatically post edit the trans-

lation outputs from an unknown MT system (Chat-
terjee et al., 2019). In this year, the dataset has
changed in terms of domain (from IT to Wikipedia)
and quality of MT ( a significant decrease in
BLEU). Using previous dataset or officially pro-
vided synthetic corpus (such as Artificial and
eSCAPE) (Junczys-Dowmunt and Grundkiewicz,
2016; Negri et al., 2018) to enlarge the training set
might not be appropriate under such circumstance
due to the change in data distribution. Therefore,
we decide to perform transfer learning with the offi-
cially released training set and integrate Bottleneck
Adapter Layers (BAL) (Houlsby et al., 2019; Yang
et al., 2020) to prevent over-fitting.

Our model is built based on Transformer
(Vaswani et al., 2017) and is pre-trained on the
WMT 2019 and 2020 news translation corpora.
Compared with the work by (Lopes et al., 2019),
we consider that it is more intuitive to use a pre-
trained NMT model rather than a pre-trained multi-
lingual language model (LM) (Devlin et al., 2018).
During our experiment, we find that fine-tuning the
model only on the officially released corpus could
easily reach the performance ceiling. As a result,
we wondered whether it is possible to introduce
external translations as additional MT candidates
for data augmentation so as to provide more diver-
sified features. Fortunately, our experiment results
demonstrate the effectiveness of such approach.
The architecture of our model is shown in Figure 1.

The contributions of our work are as follows:

• We fine-tune the pre-trained NMT models on
APE tasks, demonstrating the effectiveness of
transfer learning.

• BAL is integrated into the model, further im-
proving the training efficiency as well as the
performance.

• Additional MT candidates are introduced to

797



Add &Norm

Feed Forward

Add &Norm

Multi-Head
Attention

Input
Embedding

Add &Norm

Feed Forward

Add &Norm

Masked
Multi-Head
Attention

Output
Embedding

Multi-Head
Attention

<s>, src, <s>, mt, <s>, mt ' <s>, pe

Linear

Softmax

pe, </s>

Add &Norm

BAL

BAL

BAL

BAL

In Project

Out Project

ReLU

<s> am 23. August 1968
verloren die Bills einen
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Vorsaison gegen die
Houston Oilers . </s>

on August 23 , 1968 , the
Bills suffered a blowout
preseason loss to the
Houston Oilers . <s>

am 23. August 1968 erlitt die
Bills einen Blowout

Vorsaison Verlust an den
Houston Oilers . <s>

am 23. August 1968 erlitten
die Bills einen Verlust vor der

Saison für die Houston
Oilers .

Figure 1: This figure shows the architecture of our
model, where MT and augmented MT are concatenated
with SRC for passing into the encoder, and PE are gen-
erated with the decoder. An example is also shown in
the box below the architecture figure.

improve feature diversity, which also signifi-
cantly improves the performance.

• A detailed case study on the dev set is con-
ducted. We divide post-editing operations into
three categories and 10 sub-categories based
on their patterns, offering fine-grained sugges-
tions for researchers to build APE models to
deal with specific patterns.

2 Task

The dataset contains 7,000 sentences for the train-
ing set, 1,000 for the dev and 1,000 for the test.
Note that it is also used for the WMT 2020 Word-
and Sentence-level Quality Estimation (QE) shared
task. Detailed statistics of the dataset is listed
in Table 1, showing some metrics of the source
(SRC) and translation (MT). From the BLEU (Pap-
ineni et al., 2002) scores we can see that the gaps
between MTs and PEs are relatively large when
compared with that in WMT 2019 (BLEU > 70+).

Attributes En-De En-Zh

# Instance 7,000 7,000
# SRC Token 11,4980 115,585
# MT Token 112,342 120,015
% MT Token BAD 28.15 54.33
% MT Gap BAD 4.60 8.04
% SRC Token BAD 26.95 53.60
BLEU (MT, PE) 49.40 30.40
µ(HTER) 0.3181 0.6280
σ(HTER) 0.2017 0.2040

Table 1: The statistics of the training set for both lan-
guage pairs.

From this aspect, we consider the task is easier this
year because over correction will not be a serious
problem. However, as the corpora size is much
smaller than that of the previous year, this year’s
APE task is challenging in another way. The eval-
uation metrics used this year, TER (Snover et al.,
2006) and BLEU (Papineni et al., 2002), are exactly
the same as that of previous years.

3 Method

3.1 Model
As described in the previous section, due to the
limited corpus size, our team decide to employ
transfer learning in this task. However, unlike the
method proposed in (Lopes et al., 2019), where a
multilingual BERT is used as encoder and decoder,
we use a pre-trained NMT model and regard it as a
more intuitive approach.

We basically treat the APE task as an NMT alike
problem, which takes source (SRC) and machine
translations (MT) as input and generate PE autore-
gressively. To adapt this idea with Transformer,
we simply concatenate the SRC and MT with the
token < s >. For models with shared vocabu-
lary and embeddings such as our pre-trained En-De
model, this strategy works fine. But for models
without sharing input and output embedings such
as our En-Zh model, we perform the concatenation
with the hidden features after passing through the
word embedding separately with the encoder and
decoder input embeddings, but keeps the positional
embedding normally used.

We perform experiments with this model on the
2019 and 2020 in-domain dataset and find two prob-
lems:

• The model converges fast (less than 4 epochs),
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but starts over-fitting soon.

• The performance of the model is not good
enough on the 2019 dataset, which means it
might not be competitive on the 2020 evalua-
tion.

3.2 Bottleneck Adapter Layer

Regarding the first problem, we decide to use the
bottleneck adapter layer to reduce the model com-
plexity by only updating the introduced adapter
but keeping other parameters fixed. The bottle-
neck adapter is proposed by (Houlsby et al., 2019),
which is similar to the FFN layer in the Trans-
former but with a low dimensional hidden layer
for non-linear activation. In the experiment, we
integrate the adapter layer after the self attention
layer and the FFN layer for each block in both
encoder and decoder. In addition, we find that ex-
panding the hidden size of the neck to the double
of the model’s hidden size could make the model
converge to lower dev loss comparing with using
“thinner” or “thicker” necks (i.e. 1/2× d model and
2 × d model). We suppose this size could restrain
the complexity of the model at the most suitable
level.

3.3 Augmentation with External MT

To further improve the performance, we start in-
vestigating the probabilities of adopting external
resources for data augmentation. However, as men-
tioned in previous sections, the domain of eSCAPE
(Negri et al., 2018) and the artificial (Junczys-
Dowmunt and Grundkiewicz, 2016) corpora are
different from that of this task. Afraid of introduc-
ing additional biases if incorporating such corpora,
we choose to generate more MT candidates (de-
noted as MT’) with the training set and let the
model learn complementary information from each
other.

More specifically, we first use an additional MT
system to create the MT’ from the provided SRC
text. Then, we simply concatenate the MT’ with the
SRC and MT sequence to form the new sequence:
[SRC, < s >, MT, < s >, MT′], then, use it same
as before.

Intuitively, MT’ with higher quality can be bene-
ficial for the performance because it is closer to the
PE when comparing with the official MT. There-
fore, we translate the training set with different
MT systems including NMT models trained by us
and some publicly available online MT systems.

En-De En-Zh
System BLEU TER BLEU TER

baseline 50.37 31.374 22.62 60.417
+ Fine-tuning 59.51 25.941 31.74 49.257
+ External MT 65.72 20.959 37.37 47.830
+ Ensemble 66.96 20.222 37.83 46.918

Submission 66.89 20.21 37.69 47.36

Table 2: The experimental result of two language pairs
evaluated with BLEU and TER on the 2020 dev set, as
well as the officially published submission result on the
test set. Note that we ensemble 4 and 2 models for En-
De and En-Zh, respectively.

Finally, we find that the translation from Google
Translate has the best quality (in terms of BLEU
for dev set, 67.8 for En-De and 41.77 for En-Zh),
and thereby its outputs becomes our augmented
MT.

4 Experiment

4.1 Experimental Settings

Our En-De model is implemented with fairseq (Ott
et al., 2019) since their published model is pre-
trained on WMT 2019 news translation dataset,
with BLEU score of 42.7 in evaluation. Our En-
Zh model is implemented with THUMT (Zhang
et al., 2017) and trained for the WMT 2020 news
translation task, which achieved a BLEU score of
46.0 in evaluation. The Transformer model used
for both language pairs is Transformer-big with 6
encoders and 6 decoders, and the hidden size is
8192 for FFN layers and 1024 for all other layers.

Note that the vocabulary and encoder/decoder
embeddings of the En-De model are shared be-
tween two languages and contains 42K of sub-
tokens. The vocabulary of the En-Zh model is
not shared, and contains 32K and 30K sub-tokens
for En and Zh respectively. The BAL used in our
model is also modified to have a larger parameter
size, where the hidden size of the middle layer is
set to 2048.

All models are trained on an Nvidia Tesla V100
GPU with 32G memory. We use the Adam
(Kingma and Ba, 2015) optimizer with a constant
learning rate of 1e-4 for optimization, and the batch
size is 32. FP16 is also used to accelerate training.
Models with BALs could converge in less than 8
epochs within 5 minutes.
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Categories Patterns Num of samples Proportion

Knowledge Complement
Named Entity 448 20.38%

38.38%Transcreation 206 9.38%
Terminology 190 8.65%

MT Error Correction

Typo 364 16.57%

43.84%

Disfluency 293 13.34%
Illogical 148 6.74%
Punctuation Error 71 3.23%
Mis-Translation 71 3.23%
Over-Translation 16 0.73%

Stylized Correction Personal Preference 383 17.45% 17.45%

Table 3: Three categories with eleven types of PE patterns and their proportions, where the MT Error Correction
takes the largest part, and are considered as most likely to be solved by APE models.

4.2 Experimental Results

Table 2 shows the experimental results evaluated
on the 2020 dev set, where the baseline result is
produced by directly calculating scores between
the provided MT and PE.

The first experiment is performed by fine-tuning
all parameters of the pre-trained Transformer on
the official training set, which obtains 8+ of per-
formance gains comparing with the baseline. This
demonstrates that fine-tuning the pre-trained NMT
model on the limited dataset can be useful.

The experiment of adding external MT for data
augmentation shows significant improvements on
the performance. However, after performing exper-
iments with different MT candidates, we find that
the quality of augmented MTs could influence the
performance to a large extent, which motivates us
to further improve the robustness of the model.

5 Analysis

Except from focusing on modelling and experi-
menting, we also conduct an in-depth analysis of
the dataset by tagging the PE operations on the dev
set. Based on the tags, we categorize PE operations
into three categories and try to figure out which
kind of PE operations can be learned by an APE
system.

We analysis the En-Zh dev set and labeled to-
tally 2196 PE operations, where each sentence has
approximately 2.2 corrections. By categorizing
these PE operations, we conclude three categories
with 10 sub-categories, as described in Table 3.
For the first category, SRC text often contains do-
main specific knowledge or implicit contexts, like

Named Entities, terminologies. Strong background
knowledge is required when a post-editor translate
such text (Yang et al., 2020, 2019). The second
category mainly deals with explicit grammar or
semantic errors like typo, mis-translations or log-
ical errors, mostly requiring only commonsense
to correct. Modifications under the third category
are mainly related to the editor’s preferences, for
example, the format of names and dates. Several
examples of the three categories have been shown
in the Table 4 in the Appendices.

By observing the output of our system, we find
that the first and third categories are relatively diffi-
cult for the model to learn in an open domain set-
ting, because of their complexity and uncertainty.
For the second category, a pre-trained model has
the prior learned from the massive bilingual text,
and thereby can be easily fine-tuned to detect and
make correction on these mistakes. We believe that
further investigation can be performed to explore
methods to improve the performance on specific
patterns, which is also the research direction of our
work.

6 Conclusion

This paper presents our work in the WMT 2020
APE shared task. We adopt transfer learning and
data augmentation by fine-tuning a pre-trained
Transformer on the provided dataset with external
MTs. The experimental results demonstrate the ef-
fectiveness of our method. Meanwhile, we achieve
competitive results on the test set in the evaluation.
Apart from that, we also conducted an in-depth
analysis on the dev set, and group the PE opera-
tions into several fine-grained categories, serving
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as a clearer direction for our future research.
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Pattern SRC MT PE

Transcreation 12.Bd2 a5 13.Nxc5 bxc5 14.f4
Nd7 15.Bf3 when Jeremy Silman
prefers White .

12 . Bd2 a5 13 . Nxc5 bxc5 14
. f4 Nd7 15 . Bf3，Jeremy Sil-
man喜欢白色。

12 . Bd2 a5 13 . Nxc5 bxc5 14
. f4 Nd7 15 . Bf3 ，当Jeremy
Silman掷白棋时。

Named Entities however , he finished 2nd in the
Budweiser Shootout to Dale Jar-
rett .

但是，他在布威 赛赛中第二
名，以贾雷特而告终。

然而，他在百威啤酒 大赛
（Budweiser Shootout ）中获
得第二名，仅次于Dale Jarrett
。

Terminology these include the bald eagle , barn
owl , and osprey .

这包括秃鹰、谷仓猫头鹰
和猎物 .

这些包括秃鹰、仓和鱼鹰。

Disfluency Columbia also produced the only
slapstick comedies conceived for
3D .

哥伦比亚还制作了为3D 设计
的唯一的滑稽喜剧 .

哥伦比亚大学还制作了唯一
一部为将会使用3D技术播放
的滑稽喜剧。

Mis-Translation although most adult Pacific
salmon feed on small fish ,
shrimp , and squid , sockeye feed
on plankton they filter through
gill rakers .

虽然大多数的太平洋鲑鱼以
小鱼、虾和鱿鱼为饲料，但
这些鲑鱼是以浮游生物为饲
料的，它们通过刺甲过滤器
过滤。

尽管大多数成年太平洋鲑鱼
以小鱼、虾和鱿鱼为食，但
红鲑以浮游生物为食，它们
通过鳃耙过滤。

Over-Translation ’ materials on the Language and
Folklore of the Eskimoes , Vol .

”关于爱斯基摩人的语言和民
俗的材料，第二卷。

爱斯基摩人语言和民俗学材
料，卷

Personal Preference between 1840 and 1890 as many
as 40,000 Canary Islanders emi-
grated to Venezuela .

1840年至1890年间，多达40 ,
000加那利群岛居民移居委内
瑞拉。

在1840 年至1890 年之间，多
达4万个加那利群岛移民移居
到委内瑞拉。

Table 4: This table presents several examples showing the corrections with specific patterns, where the red and
green part are the location related to such pattern.
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Abstract

This paper describes LIMSI’s submissions
to the translation shared tasks at WMT’20.
This year we have focused our efforts on
the biomedical translation task, developing a
resource-heavy system for the translation of
medical abstracts from English into French,
using back-translated texts, terminological re-
sources as well as multiple pre-processing
pipelines, including pre-trained representa-
tions. Systems were also prepared for the ro-
bustness task for translating from English into
German; for this large-scale task we devel-
oped multi-domain, noise-robust, translation
systems aim to handle the two test conditions:
zero-shot and few-shot domain adaptation.

1 Introduction

This paper describes LIMSI’s submissions to the
translation shared tasks at WMT’20. This year
we have focused our efforts on the biomedical
translation task, developing a resource-heavy sys-
tem for the translation of medical abstract from
English into French, using back-translated texts,
terminological resources as well as multiple pre-
processing pipelines, including pre-trained repre-
sentations. Systems where also prepared for the
robustness task for translating from English into
German; for this large-scale task we developed
multi-domain, noise-robust, translation systems
aim to handle the two test conditions: zero-shot
and few-shot domain adaptation.

Machine translation for the biomedical domain
is gaining interest owing to the unequivocal sig-
nificance of medical scientific texts. The vast ma-
jority of these texts are published in English and
Biomedical MT aims to also make them available
in multiple languages. This is a rather challenging
task, due to the scope of this domain, and the cor-
responding large and open vocabulary, including
terms and non-lexical forms (for dates, biomedical
entities, measures, etc). The quality of the resulting

MT output thus varies depending on the amount
of biomedical (in-domain) resources available for
each target language.

We participated in this years WMT’20 biomedi-
cal translation evaluation for English to French di-
rection. English-French is a reasonably resourced
language pair with respect to Biomedical parallel
corpora, allowing us to train our Neural Machine
Translation (NMT) (Sutskever et al., 2014) with
only in-domain corpora and dispense with the pro-
cessing of large out-of-domain data that exist for
this language pair. Our main focus for this year’s
participation was to develop strong baselines by
making the best of auxiliary resources: back trans-
lation of monolingual data; partial pre-translation
of terms; pre-trained multilingual contextual em-
beddings and IR retrieved in domain corpora. Two
pre-prossessing pipelines, one using the standard
Moses tools1 and subword-nmt (Sennrich et al.,
2016b) and other using HuggingFace BERT API
were developed and compared. All systems are
based on the transformer architecture (Vaswani
et al., 2017), or and on the related BERT-fused
transformer model of Zhu et al. (2020). If our base-
lines were actually strong, we only managed to get
relatively small gains from our auxiliary resources,
for reasons that by and large remain to be analyzed
in depth. Our biomedical systems are presented in
Section 2.

We also participated in the Robustness transla-
tion task, developing a multi-domain, noise-robust
and amenable to fast adaptation translation system
for the translation direction English-German. Our
main focus was to study in more depth the adap-
tor architecture initially introduced in (Bapna and
Firat, 2019) in a large-scale setting, where multi-
ple heterogeneous corpora of unbalanced size are
available for training, and explore ways to make
the system robust to spelling noise in the test data.
The zero-shot system is a generic system which

1http://www.statmt.org/moses/
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does not use any adaptation layer; for our few-shot
adaptation submission, we did not use the supple-
mentary data provided by the organizers, which
turned out to be only mildly relevant for the test
condition, but resorted to a data selection strategy.
In any case, our submissions are constrained and
only use the parallel WMT data for this language
pair; they are further described in Section 3.

2 Bio-medical translation from English
into French

2.1 Data sources

We trained our baseline systems on a collection of
biomedical corpora, excluding by principle any out-
of-domain parallel corpus, so as to keep the size of
our systems moderate and a reduced training time.
Table 1 details the corpora used in training.

Parallel
Corpus Wrds (M) Sents.

English French

Ufal 89.5 100.3 2.72 M
Edp 0.04 0.04 2.44 K
Medline titles 5.97 6.43 0.63 M
Medline abstracts 1.23 1.44 0.06 M
Scielo 0.17 0.21 7.84 K

Cochrane-Reference 2.23 2.74 0.12 M
Cochrane-PE 0.43 0.53 20.5 K
Cochrane-GooglePE 0.63 0.77 30.3 K
Taus 20.1 23.2 8.86 M

IR Retrieved 13.2 14.7 3.6M

Development

Scielo 0.09 0.13 4333
Edp 6.2K 7.1K 328
Khresmoi 28K 33K 1500

Test

Medline 18 5.7K 6.9K 265
Medline 19 9.8K 12.4K 537
Medline 20 12.7K 16.2K 699

Monolingual

Corpus English French Sent.
(Synthetic) (Human)

Lissa 8.79 7.70 0.33 M
Med Fr 16.3 16.2 0.06 M

Table 1: Data sources for the English-French biomedi-
cal task (before tokenization)

We gathered parallel and monolingual corpora

available for English-French in the biomedical do-
main. These first included the biomedical texts
provided by the WMT’20 organizers: Edp, Med-
line abstracts and titles (Jimeno Yepes et al., 2017),
Scielo (Neves et al., 2016) and the Ufal Medical
corpus2 consisting of Cesta, Ecdc, Emea (Open-
Subtitles), PatTR Medical and OpenSubtitles. In
addition, we used the Cochrane bilingual paral-
lel corpus (Ive et al., 2016)3 and the Taus Corona
Crisis corpus.4. We finally experimented with ad-
ditional in-domain data selected using Informa-
tion Retrieval (IR) techniques from general domain
corpora including News-Commentary, Books and
Wikipedia corpus obtained from Open Parallel Cor-
pus (OPUS) (Tiedemann, 2012). These were se-
lected using the data selection scheme described
in (Abdul-Rauf and Schwenk, 2009). Medline titles
were used as queries to find the related sentences.
We used 3-best sentences returned from the IR
pipeline as additional corpus to build the models
(these are shown as X7 in table2).

For development purposes, we used Khresmoi,
Edp and Scielo test corpora. The Medline test sets
of WMT’18 and 195 were used as internal test data.

2.1.1 Monolingual sources
Supplementary French data from two monolingual
sources were collected from public archives: ab-
stracts of medical papers published by Elsevier
from the Lissa portal6 and a collection of research
articles collected from various sources7 henceforth
referred to as Med Fr (Maniez, 2009). The former
corpus contains 41K abstract and totals approx-
imately 7.7M running words; the latter contains
65K sentences, for a little more than 1.5M running
words.

These texts were back-translated (Sennrich et al.,
2016a; Burlot and Yvon, 2018) into French us-
ing a relatively basic neural French-English engine
trained with the official WMT data sources for the
biomedical task, using the HuggingFace pipeline
(see details below). This system had a BLEU score
of 31.2 on Medline 18 test set.

Note that back-translation has also been effec-
2https://ufal.mff.cuni.cz/ufal_

medical_corpus
3https://github.com/fyvo/

CochraneTranslations/
4https://md.taus.net/corona
5With our own sentence alignment.
6https://www.lissa.fr/dc/#env=lissa
7https://crtt.univ-lyon2.fr/

les-corpus-medicaux-du-crtt-613310.kjsp
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Symptoms of bacterial pneumonia frequently overlap those present with viral infections or
reactive airway disease.
Symptoms of pneumonie bactérienne frequently overlap those present with infections virales
or reactive airway maladie.

Figure 1: An example sentence containing pre-translated terms in French

tively used to cater for parallel corpus shortage in
the Biomedical domain in (Stojanovski et al., 2019;
Peng et al., 2019; Soares and Krallinger, 2019).

2.2 Pre and post-processing

The document level corpora were first retrieved
from xml, split8 into sentences and sentence
aligned using Microsoft bilingual aligner (Moore,
2002): these include Cochrane, Scielo and some
unaligned documents from Edp. All train, develop-
ment and test corpora were cleaned by removing
instances of empty lines, URLs and lines contain-
ing more than 60% non-alphabetic forms.

For tokenization into words and subwords units,
two pipelines were considered. The first one is
set up as follows (a) tokenize the French and En-
glish texts using Moses scripts9; (b) compute a
joint Byte-pair Encoding (BPE) inventory of 32K
units with subword-nmt;10 (c) generate the transla-
tion; (d) detokenize and truecase the output, again
with Moses scripts. Systems based on this pipeline
are prefixed M*. The second one is slightly more
complex as it heavily relies on the HuggingFace
API11 for accessing pre-trained BERT models. The
corresponding systems are prefixed with H* and
comprise the following steps: (a) a simple tok-
enization script, (b) a multilingual segmenter map-
ping BPE units to pre-trained encodings generated
according to (Devlin et al., 2019) as input to the
translation system (step (c)). In that case, the MT
output is also a sequence of multilingual BPE units
that further needs (d) to be reaccentuated and re-
cased, before a final (e) detokenization. Step (d)
is non-trivial and is performed by a monolingual
translation system trained to convert HuggingFace
BPE units into Moses BPE units,12 which can then
be properly reassembled and detokenized as for the

8https://github.com/berkmancenter/
mediacloud-sentence-splitter

9http://www.statmt.org/moses/
10https://github.com/rsennrich/

subword-nmt
11https://Huggingface.co/transformers/

model_doc/bert.html
12This process is not completely error prone, and yields a

BLEU score of 98.2 on Medline 18 test set.

Moses pipeline.

2.2.1 Fine-tuning
The fine-tuning process starts from corresponding
models trained to convergence, based on BLEU
score on dev sets. These are then further fine-tuned
using a selected part of the training corpus con-
taining only the Medline abstracts and the three
Cochrane corpora, again until convergence. The
corresponding systems are post-fixed with *-ft.

2.2.2 Pre-translating terms
Medical terms, made of monolexical or polylexical
units, are abound in medical terms, and getting their
translation right is a very difficult task. Approaches
to Biomedical MT have tried to deal this in vari-
ous ways including explicitly using terminology
list (Carrino et al., 2019), domain adaptation (Hira
et al., 2019; Stojanovski et al., 2019) and trans-
fer learning (Khan et al., 2018; Peng et al., 2019;
Saunders et al., 2019).

We developed systems aimed at improving the
translation of terms mainly following the recent
proposals of (Dinu et al., 2019; Song et al., 2019).
They mostly imply to pre-translate English terms
into French, merely replacing the English version
with a desired translation in a preprocessing step.
The translation system thus inputs mixed-language
sentences comprising both English and French
words. In our implementation, we followed (Song
et al., 2019) and did not mark the pre-translated
segments in the input. The target side (French) re-
mained unchanged. Figure 1 displays a sentence
extracted from Medline 18 before and after pre-
translation (in the latter, French segments are un-
derlined).

Terms are extracted from the French-English
version of the Medical Subject Headings thesaurus
(MeSH), available in XML format.13 We extracted
a list of about 30K English terms and their preferred
translation. This list was extended by searching
our training corpus for instances where (a) a term
is found in the English sentence; (b) a possible
translation is found in the French sentence. Step (b)

13http://mesh.inserm.fr/FrenchMesh/
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ID Train Detail ID Medline ID Medline ID Medline
18 19 20 18 19 20 18 19 20

Moses HuggingFace

X0 wmt WMT data M0 20.7 22.6 27.3 H0 26.8 29.6 33.7 B0 26.1 29.0 32.9
X1 base All data M1 24.7 25.9 32.6 H1 27.7 30.2 35.9 B1 28.6 31.1 37.2

X2 base-ft X1 ⇒ X2 M2∗2 25.6 26.1 32.9 H2 28.1 30.0 35.5 B2 38.8 29.5 35.8
Back Translations of Monolingual data

X3 base+bt X1 + BT - - - - H3 27.9 30.8 36.7 B3 28.0 31.0 36.3

X4 base+bt-ft X3 ⇒ X4 - - - - H4∗1 28.7 30.7 37.0 B4 31.6 30.8 36.2

Using Pre-translated terms

X5 base+bt-pt X3 ⇒ X5 - - - - H5 27.5 30.0 35.9 B5 29.0 30.2 36.3

X6 base+bt-pt-ft X5 ⇒ X6 - - - - H6 33.0 27.0 32.5 B6 36.0 28.8 35.2

Using IR retrieved corpus

X7 base+bt+IR X3 + IR - - - - H7 28.8 31.4 37.2 B7 28.8 31.2 36.5

X8 base+bt+IR-ft X7 ⇒ X8 - - - - H8 29.4 31.0 37.3 B8∗3 31.7 30.6 36.5

Table 2: BLEU scores for the various biomedical systems on Medline 18, 19 and 20 test sets. Superscripts ∗n

denote the runs submitted: H4, M2, B8.

relies on a much larger list of about 800K possible
associations, also extracted from the MeSH. The
final term list contains about 40K entries.

Training was performed in two steps: starting
with our best system (M3), we resume training
with partially pre-translated sentences, using only
the following corpora: Cochrane, Medline, Taus
and a large portion of Scielo (for a grand total of
2M sentence pairs). This process is performed
until convergence. The same fine-tuning process as
described above is optionally performed.

In testing, we replace any matching English term
with its translation subject to length constraints to
avoid irrelevant, ambiguous or accidental matches.
We only substitute terms of (source+target) length
greater or equal to 7 characters, yielding the pre-
translation of 462 and 795 terms respectively in
the Medline 18 and Medline 19 test sets. Cases
where one term has several translations are dis-
ambiguated based on frequency of occurrences in
training. These systems appear in the last two rows
of Table 2 with the postfix *-pt.

2.3 Translation framework

We mostly used two architectures to build our
systems: basic Transformer models (Vaswani
et al., 2017) as well as BERT-fused transformer
models (Zhu et al., 2020). All systems use
Facebook’s seq-2-seq library fairseq (Ott et al.,

2019) with parameters settings borrowed from
transformer iwslt de en.14 We used mem-
ory efficient FP16 optimizer. The ReLU activation
function was used in all 6 encoder and 6 decoder
layers, 1024 hidden layer size and batch size of 4K.
Training was optimized using Adam and a learning
rate of 0.0005 was fixed for all experiments.

For the BERT-based models, we relied on BERT-
NMT.15 This allowed us to build the BERT-fused
models using the same architecture and parameters
as the baseline transformer models and to establish
fair comparisons. In BERT-fused NMT model, the
contextual representations are first computed by
the BERT model for each token (in the source and
target), these are then combined at each encoder
and decoder layer using the attention mechanism.
Full details are in Zhu et al. (2020).

Given the size of our training data, the ”lazy”
output dataset implementation was used to enable
data loading in the RAM. Systems were trained
until convergence based on the BLEU score on
the development sets. Evaluation is performed
using sacrebleu (Post, 2018). Scores are chosen
based on the best score on the development set
(Khres+Edp+Scielo) and the corresponding scores
for that checkpoint are reported on Medline 18 and

14https://fairseq.readthedocs.io/en/
latest/models.html

15https://github.com/bert-nmt/bert-nmt
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Medline 19 test sets. For systems using terminol-
ogy pre-translation, Khresmoi and Edp were used
as development sets.

2.4 Results

Results are in Table 2, where we report BLEU
scores for the three tracks explored in this work.
M∗ denotes the Moses tokenization pipeline, H∗
represents the HuggingFace pipeline and B∗ de-
notes the BERT models with HuggingFace tok-
enization. We computed the scores on Medline 18,
Medline 19 and Medline 20 test sets,16 based on
the best checkpoint on our development corpus.
Base systems are given on the left, (⇒) identifies
the derived (fine-tuned) systems.

We first built baseline systems for the three
tracks. X0 denotes the systems built using only
the data provided by the organizers. X1 are our
baseline systems built using all our parallel cor-
pora. We see a unanimous improvement in all
tracks ranging from 0.6 to 5.3 BLEU points, which
is obtained by adding around 1M sentences of ad-
ditional Cochrane and Taus corpora to the already
available 2.9M sentences from WMT20. This
hints at the relevance of the additional in-domain
parallel corpora used.

These baselines X1 are then further fine-tuned
with Cochrane and Medline abstracts as discussed
in section 2.2.1, these are shown post-fixed with
*-ft. All the systems show an improvement in
the Moses track. Similarly, we see gain for all
tracks for Medline 18 with the highest improve-
ment on BERT-fused systems. For Medline 19 and
20, fine-tuning resulted in a small drop in perfor-
mance across the board (except than Moses track),
for reasons that remain to be analyzed.

Comparing M1-M2 with H1-H2, we see that
the Moses pre-processing, which is simpler that
HuggingFace’s and relies on domain-adapted BPE
units is slightly better than the alternative. As using
HuggingFace’s tools was a way to also experiment
with BERT and other extensions, it was nonetheless
used for the other systems.

Having established the adequacy of the sup-
plementary parallel corpora, we built systems
with back-translated monolingual corpora (sec-
tion 2.1.1). These appear as X3 and X4 in Table 2.
These back-translations were somewhat helpful,
not to the extent that we were expecting them to
be. Comparing with our baseline X1 systems, we

16Again with our own sentence alignment.

see a small gain of (0.2,0.6,0.8) for our transformer
models using HuggingFace tokenization (H1 vs.
H3) but no gain for the BERT track (B1 vs. B3).
We can speculate about various reasons for this be-
haviour: (a) genre mismatch with the test set: even
though the monolingual corpora also contain sci-
entific texts in biomedical domain, the use of full
documents might yield subtle differences in style
and term used with what is observed in abstracts,
which are more rigidly structured; (b) the use of a
comparatively small amount of back-translations
as compared to the baseline corpora; (c) the quality
of back translations.

Our experiments with pre-translated terms re-
sulted in a small drop of the BLEU scores for the
corresponding systems (X5, X6). Our initial analy-
sis of term use17 in the references and in the system
outputs helps understand why this is the case. As it
turns out, references translations contain a smaller
proportion of licensed terms than our baseline trans-
lations (55.6% for the reference, 61.1% and 61.6%
for respectively X3 and X4), which in turn contain
less terms than our term-sensitive systems (H5 and
H6, for which these numbers are respectively 68.9
and 64.2). Another way to look at this is to real-
ize that only 58.6% of our pre-translations were
actually in the reference. All in all, using more
translations from the MeSH makes our output less
similar to the reference than the baselines, and con-
tributes to degrade the BLEU score. It is however
reinsuring to see that pre-translating terms actu-
ally increases the number of terms in the output
– in fact, for H5 and H6 we find that respectively
84.2% and 81.9% of these pre-translations are ac-
tually copied in the target, even though there was
no indication of these French inserts in the mixed-
language input. We can also note that the majority
of the pre-translated terms were frequent Biomed-
ical terms (such as ”patients”, ”health”, etc) that
were also correctly translated by the baseline sys-
tems. Evaluating these outputs with more useful
metrics than BLEU still needs to be performed.

Adding the IR retrieved sentences finally
brought us nearly one extra BLEU point on all test
sets for the HuggingFace systems, but not much
improvement for the BERT-fused system.

17Based on the proportion of source word in our term list
that are actually translated with a translation that exists in the
Mesh. These proportions are computed on an aggregate of
the Medline testsets for 2018, 2019 and 2020, only counting
terms with source+target length greater than 7.
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Domain Corpus sents. words words
(en) (de)

web Paracrawl 50,875 978 919

economy Tilde EESC 2,858 61 58

news
Commoncrawl 2,399 51 47
Tilde rapid 940 20 19
News commentary 361 8 8

tourism Tilde tourism 7 0.1 0.1

gov Epps 1,828 45 42

medical Tilde EMEA 347 5 5

banking Tilde ECB 4 0.085 0.074

wiki Wikipedia Matrix 5,473 91 88

Table 3: Data used in the Robustness task: number of
parallel lines (×103), number of tokens (×106)

2.5 Conclusion

In conclusion, our participation to this year’s WMT
biomedical task has enabled us to develop basic
tools and pipelines for a variety of architectures
and to start exploring domain-adapted extensions
of a baseline Transformer architecture, using com-
plementary resources, such as supplementary cor-
pora, pre-trained embeddings and terminological
resources. If all these extensions were not equally
useful, we still were able to develop strong systems
for this task that provide us with a solid starting
point for further developments of domain-adapted
NMT systems.

3 Robustness: translating English
challenge test sets into German

3.1 Data sources

Our sole data sources are the parallel corpora dis-
tributed by the organizers for the News task, which
we significantly down-sampled in order to reduce
the overall computational training cost. Monolin-
gual data sources were not considered. These paral-
lel corpora were then grouped into 8 broad domains.
Statistics for each corpus / domain are in Table 3.

Our development set is composed of a varied set
of common benchmarks, aimed to represent a wide
diversity of genres and domains.

3.2 Pre-processing

The first step of pre-processing consists of cleaning
the parallel corpora using the following rules: (a)
discard sentences based on length (with a maxi-
mum length of 99 words), and on the source/target
length ratio (in the interval [2/3; 3/2]); (b) dis-

card instances of non-English and non-German
sentences, using the langid toolkit;18 (c) remove
duplicates sentence pairs. After cleaning, the par-
allel corpus used in training contains 50,875,449
sentences pairs.

The next step is to lowercase and to tokenize
the text into words and subword units. We use the
Tokenizer library from OpenNMT.19 We first low-
ercased every word, adding a special marker at the
beginning of capitalized words, and likewise for
uppercased words and segments. For instance, this
procedure replaces ”It” with ”U it”, and ”NOVEM-
BER RAIN” with ”BU november EU BU rain EU”.
These markers are preserved during the BPE tok-
enization. We learned a joint BPE vocabulary for
both languages using 32K merge operations.

3.3 Training a robust multi-domain system

Our approach to robustness aims at building a sys-
tem that (a) could fare well for test sets that would
be similar to the training domain; (b) could also
accommodate data from new, unseen, domains; (c)
would be easy to adapt to a new domain (for the
few-shot condition); (d) could be robust to spelling
noise in the test. Requirements (a)-(c) lead us to im-
plement an extension of the baseline Transformer
architecture with residual adapters (more on this in
section 3.3.2); to meet requirement (d), we imple-
mented a data augmentation technique described
in Section 3.3.3.

3.3.1 Baseline
The baseline system relies on the Transformer
Large architecture from (Vaswani et al., 2017). We
set the embeddings size and the hidden layers size
to 1024. Transformers use multi-head attention
with 16 heads in each of the 6+6 layers; the inner
feedforward layer contains 4096 cells. Training
uses a batch size of 12288 tokens; optimization
uses Adam with parameters β1 = 0.9, β2 = 0.98
and Noam decay (warmup steps = 4000) and a
dropout rate of 0.1 for all layers.

3.3.2 Residual adapters
Our main source of inspiration is the work of Bapna
and Firat (2019), who initially introduced the use
of residual adapter modules for domain adaption.
In a nutshell, this proposal adds an additional,
domain-specific layer on top of every layer of the
encoder and the decoder. It thus provides us with

18https://github.com/saffsd/langid.py
19https://github.com/OpenNMT/Tokenizer
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a lightweight, computationally efficient alternative
to domain adaptation with full fine-tuning, which
implies to update all the system parameters. We
generalize this approach by training (or rather fine-
tuning) a distinct residual adapter for each of the
8 train domains, while freezing the parameters of
the baseline (generic) system. These adapter mod-
ules are made of 2-layer perceptrons, with an inner
ReLU activation function operating on normalized
entries of dimension 2048.

Any test sentence from a known domain would
then use the corresponding adapter; for test sen-
tences from new domains two options are possible:
use only the generic system (without adapter), or
use the adapter for the more similar domain. This
methodology was chosen in the view of the few-
shot task, where a new adapter could easily be
learned for a new domain, even with a very small
amount of data.

We evaluate the effectiveness of the residual
adapters architecture using a varied set of internal
test sets. Table 4 reports the BLEU scores of the
baseline, generic model, prior to adaptation, as well
as the adapted system. As expected, performance
are overall better when selecting the appropriate
domain for each test set.

We applied this idea to improve the ability our
generic model to handle noisy data. Recall that
most of the training data (with the exception of the
web domain) comes from ”clean” sources. To this
end, we generated artificial training data for an ad-
ditional ”noise” domain, by automatically altering
the source side of randomly selected training data.
The noise generation procedure is described below.
By doing this way, we expect the model to take ad-
vantage of the residual layer when input with noisy
data that is similar to our artificial noisy domain,
while keeping (a) its good performance on the other
known domains, (b) a reasonable behaviour on any
other clean data (using the generic baseline model
without adapter).

3.3.3 Artificial noise generation
In order to account for possible user generated con-
tent (UGC) at test time, we explored the possibility
of learning typical UGC noise at the character-level.
To this end, we used an automatically scrapped
Wikipedia correction corpus (Grundkiewicz and
Junczys-Dowmunt, 2014), which has been filtered
to keep only word replacements with, at most, a
character edit distance of 30% of the word length.
In the end, we kept a total of roughly 17.8M pairs

of errors and editions. We then trained a character-
level Transformer with the same architecture as
our base translation model, which had a perfect-
match error rate of 22% on the test data partition.
Finally, we augmented the original training data
by sampling random original words according to
a uniform probability distribution and replacing
them with the prediction of our character-based
UGC noise generator, resulting in the same num-
ber of sentences in the original corpora. We have
set a 7% probability of replacement, that has been
estimated by the percentage of Out-of-Vocabulary
words in a real-world UGC corpus. This heuristic
later seemed, as discussed in Section 3.4, to overes-
timate the quantity of noise to be added and, in ret-
rospective, we should have used other metrics to es-
timate the noise level, such as the n-gram Kullback-
Leibler divergence, as discussed in (Alonso et al.,
2016; Rosales Núñez et al., 2019). Table 5 dis-
plays some examples of noise entries produced by
our character-based generator. Regarding these,
although typographical errors prevail, due to the
nature of automatic filtering of the Wikipedia edi-
tions, some learned replacements operations can
change the semantics and syntax of the sentence,
e.g. (using→ use), (for→ in) or (may→ can); thus
introducing unexpected confusion in the training
data.

3.4 Results

We report the BLEU scores of our various systems
in Table 6. Our submission to the zero-shot eval-
uation was FT-Adapt-Noise, which we found
was sub-optimal afterwards. However, interest-
ingly, the residual adapter mechanism proved to
substantially outperform the classical fine-tuning
of the whole model (i.e. FT-Full-Noise). Fi-
nally, the residual adapter fine-tuned using the
ParaCrawl corpus (FT-Adapt-Web) had the best
performance on the test set, probably due to
the higher similarity of this corpus to the tar-
get test. In addition, we noted that the base-
line and FT-Adapt-Noise output a consider-
able number of English phrases, leaving most
of the source sentence unchanged, whereas the
FT-Adapt-Web reduced the number of sen-
tences that presented this issue.

In order to assess how much the 172 sen-
tences that were left completely untranslated im-
pact the performance of the FT-Adapt-Noise
model, we replaced them with the output of the

7
809



Test set IT Khresmoi NT17 NT18 NT19 EPPS EESC RAPID Tourism Wiki ECB
Domain tech medical news gov eco news tourism wiki bank

Baseline 36.27 29.78 26.24 41.27 37.24 29.31 30.48 31.93 17.64 14.92 38.11

FT-Adapt
domain - 29.46 26.48 41.43 37.24 29.65 30.45 32.43 19.21 - 48.99

Table 4: BLEU scores on various test sets using our baseline and adapted NMT systems for each domain. NT
stands for NewsTest

original the combination may concerning using no common developing for status also
noisy this combonation can concering use not comon developping in staus aslo

Table 5: Examples of clean and artificially noisy word inputs

baseline and observed a performance increase
to 31.3 BLEU. This suggests that our data augmen-
tation technique introduced confusion to the base
model after fine-tuning and the resulting translation
system was less adapted to the zero-shot test set.

robustness-set1 #EN Sents.
Baseline 31.6 120

FT-Adapt-Noise 30.2 172
FT-Full-Noise 24.6 256

FT-Adapt-Web 34.2 34
FT-Full-Web 33.8 49

Table 6: BLEU scores for the EN-De models developed
for the Robustness track. We also report, for each sys-
tem, the number of sentences that were left unchanged.

The design and organization of the few-shot
part of the evaluation was not fully satisfactory:
while we did train an adapter module using the
new data seemingly corresponding to a novel do-
main, it seems that the corresponding test set was
never released and we could not fully evaluate our
approach. Working on this task was nonetheless
very instructive, and helped us better understand
the strength and pitfall of the residual adapter archi-
tecture when applied to a very large scale task and
in the face of unbalanced, heterogeneous, training
data.

4 Conclusions

In this paper, we have described the development
undertaken for this year’s participation to WMT
shared tasks. Taking part to the Biomedical track as
allowed us to collect and prepare useful resources
(monolingual and bilingual corpora, term lists) for
this domain, and to explore several pipelines and
translation architectures. The general results are

overall satisfactory, even though a deeper analysis
of the MT is still needed to strengthen our conclu-
sions. They will also help us prepare for next year
tasks, where we expect to work on more language
pairs. Our experiment for the Robustness track
were less successful: we were not really prepared
for the general tone and style that was observed in
the zero-shot test set; we also did not understand
the general orientation taken for the few-shot adap-
tation, as it seemed to us that the adaptation data
was not really relevant for the only test set that was
ever released.
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Abstract

This article describes the systems submitted
by Elhuyar to the 2020 Biomedical Transla-
tion Shared Task, specifically the systems pre-
sented in the subtasks of terminology transla-
tion for English-Basque and abstract transla-
tion for English-Basque and English-Spanish.
In all cases a Transformer architecture was
chosen and we studied different strategies to
combine open domain data with biomedical
domain data for building the training corpora.
For the English-Basque pair, given the scarcity
of parallel corpora in the biomedical domain,
we set out to create domain training data in a
synthetic way. The systems presented in the
terminology and abstract translation subtasks
for the English-Basque language pair ranked
first in their respective tasks among four par-
ticipants, achieving 0.78 accuracy for terminol-
ogy translation and a BLEU of 0.1279 for the
translation of abstracts. In the abstract transla-
tion task for the English-Spanish pair our team
ranked second (BLEU=0.4498) in the case of
OK sentences.

1 Introduction

General purpose translation systems usually per-
form poorly where domain specific knowledge is
required (Koehn and Knowles, 2017). Therefore,
it is essential to develop translation systems for
specific domains. However, high quality parallel
corpora for domain specific tasks are only avail-
able for a few major languages and obtaining in
domain translated data for the majority of language
pairs becomes a challenge. With such scarcity of
resources, various domain adaptation techniques
have shown promising results (Currey et al. 2017,
Saunders et al. 2019, Sennrich et al. 2017).

The biomedical domain is of great interest for
the application of machine translation. It is a sector
of great importance in society, even more so after
the advent of COVID-19, where the handling of

documentary information plays a major role. There-
fore, it is a scenario where machine translation can
be of great help in order to facilitate the flow of
information between different languages.

We can find different works in the literature
that address the task of developing NMT systems
adapted to the biomedical domain (Yepes et al.,
2017; Sennrich et al., 2017; Khan et al., 2018). In
contrast, few papers focus on language pairs where
training data is scarce. This is precisely the case
of the task of translation from English to Basque.
The work of Soto et al. (2019) is specially relevant
in this case, which presents a clinical domain ori-
ented system for Basque-Spanish based on RNN
and Transformer architectures and which does not
require bilingual domain texts but only bilingual
clinical terminology (SNOMED CT).

Our participation in the Biomedical Translation
Shared Task addresses the translation of biomed-
ical terminology from English to Basque and the
translation of biomedical abstracts from English to
Basque and from English to Spanish. Given the
scarcity of real parallel biomedical domain corpora,
our approach focused on different strategies to com-
bine open domain data with in-domain biomedical
data. In the case of the English to Basque transla-
tions, back translation technique has been applied
to generate synthetic examples from a real biomedi-
cal Spanish-Basque corpus and several monoligual
in-domain Basque corpora have been merged to the
training data by copying target side examples to
source. Furthermore, we have considered finetun-
ing previously available open domain systems in
order to take advantage of the learnt general, open
domain patterns.

This article is structured as follows: the fol-
lowing section reviews the most relevant related
works. Section 3 describes the systems presented
to the sub-tasks that include the English-Basque
and English-Spanish pairs, as well as the results
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obtained in the experimentation. Section 4 presents
the results obtained in the official evaluation, and fi-
nally, we end the paper outlining the most relevant
conclusions drawn from this work.

2 Related work

Most of the related work on domain adaptation
focuses on using either in-domain monolingual cor-
pora, synthetically generated corpora or small par-
allel corpora.

Regarding in-domain monoligual corpora, Cur-
rey et al. (2017) analyze the benefits of augmenting
available data by copying the target side monolin-
gual data to source and training the system. Results
show significant gains in accuracy on named enti-
ties and words remaining identical in source and
target languages.

Several studies show the effectiveness of gener-
ating synthetic parallel corpora for domain adap-
tation. Sennrich et al. (2015) use the back trans-
lation technique with target monolingual data to
strengthen the decoder, Zhang and Zong (2016)
make use of source side monolingual data and Park
et al. (2017) use both, source and target monolin-
gual data to improve in-domain translations.

Finally, when in-domain parallel corpora is avail-
able, previous work focuses on mixed domain
NMT systems by using both in-domain and out of
domain data. Chu et al. (2017) propose to use con-
trol tags to mark in-domain sentences prior to con-
catenating multiple domain corpora. Sajjad et al.
(2017) compare different methods for training a
multi domain system, such as, concatenation, in-
teractively training on different domains, selecting
out of domain data close to the in domain data and
ensembling different domain models. Wang et al.
(2017) exploit the internal sentence embeddings to
find sentences that are close to in-domain data from
out of domain data.

Several works in the literature address the task
of developing NMT systems adapted to the biomed-
ical domain. Saunders et al. (2019) apply transfer
learning technique by training on a large, general
domain corpus and finetuning a series of systems
on different biomedical domains. They perform
multi domain ensembling to further improve the
results. Khan et al. (2018) iteratively apply transfer
learning on various biomedical domains.

Regarding works dealing with Basque the work
of Soto et al. (2019) presents a clinical domain
oriented system for Basque-Spanish based on RNN

and Transformer architectures, which does not re-
quire bilingual domain texts but bilingual clinical
terminology (SNOMED CT). They also analyse dif-
ferent back translation techniques. Aimed at trans-
lating clinical terminology into Basque, we find the
work of Perez-de Viñaspre (2017) which proposes
a system for translating SNOMED CT into Basque
by combining lexical resources, transliteration of
neoclassical terms, generation of nested terms and
a domain-adapted RBMT system.

3 Experiments

In this section we describe the experiments car-
ried out when training the translation systems. We
compare the results obtained by the systems on dif-
ferent open domain and in-domain test sets prior to
selecting the best runs to submit for the biomedical
translation task. We also detail the Transformer
architecture used and its parameters.

3.1 Datasets

For the experiments, we considered open domain
general data and in-domain task specific data for
fine-tuning purposes. Open domain data comprises
the publicly available Paracrawl v5 (Esplà et al.,
2019) corpus for English-Spanish and a Elhuyar’s
internal synthetic corpus for Basque-Spanish.

Due to the scarcity of in-domain data in the case
of English-Basque, back translation has also been
applied to generate synthetic examples. Further-
more, we augmented training data by using mono-
lingual Basque data gathered from artificially gen-
erated hospital notes, SNOMED-CT terminologi-
cal content and Wikipedia biomedical articles. We
have created parallel data by copying the Basque
sentences to source so that each source sentence
is identical to the target sentence. Table 1 offers a
summary of the corpora used.

3.2 Architecture

For training the models the Transformer architec-
ture (Vaswani et al., 2017) has been chosen. Specif-
ically, the Python implementation of the OpenNMT
(Klein et al., 2017) library has been used. Trans-
formers are based on an encoder-decoder system
with an attention mechanism. Both the encoder and
the decoder are composed of 6 layers composed in
turn by a feed forward network and a multi-head
attention mechanism. Default values of the archi-
tecture without any optimization of the parameters
have been applied. The size of the recurrent neu-
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Corpus Pair Domain Description Sentences
Elhuyar synthetic
(ELH Syn)

EN-EU Open Elhuyar’s internal synthetic corpus obtained by translating an internal
ES-EU corpus with our best performing ES-EN out of domain system

6.9M

EHU books EN-EU Biomed. Collection of biomedical books translated from English to Basque 22.6k
ICD-10 EN-EU Biomed. ICD-10 codes translated from English to Basque and publicly available

for the shared task
25.9k

EHU Synthetic
(EHU Syn)

EN-EU Biomed. Synthetically generated corpus by back translating an in domain EHU
book collection dataset (ES-EU) from Basque to English with a previ-
ously trained in domain EU-EN system

303k

Hospital notes EU Biomed. Artificially generated hospital notes to use as guide for practitioners 2.2k
SNOMED EU Biomed. Automatic translation of the terminological content of SNOMED-CT

(2020), no manually revised
105k

Wikipedia EU Biomed. Medical domain articles from Wikipedia 1.3k
Paracrawl v5
(PCv5)

EN-ES Open Publicly available Paracrawl v5 corpus, which comprises parallel seg-
ments crawled from the web

33.3M

Biomedical (Mix) EN-ES Biomed. Comprises subsets of the Scielo dataset (Soares et al., 2018), and
previous years’ WMT shared task datasets

560k

Table 1: Size of corpora used for training the systems.

ral network of each layer is 512. Thus, 512 size
embeddings have been used for both source and
target sentences. Adam optimizer has been used
during the training, and a learning-rate of 2 with
a warm-up phase of 8000 steps. The dropout ratio
is 0.1 and the batch size is 4096 sentences. All
models have been trained until the results on the
development set stopped improving.

To avoid the open vocabulary issue and for a bet-
ter translation of unknown words, BPE tokeniza-
tion (Sennrich et al., 2016) has been applied to
source and target sequences. Rare or unseen words
are represented as a sequence of subword units. In
the case of Basque, this encoding is particularly
useful as declensions generate a larger vocabulary.

3.3 EN-EU experiments

In this section we provide a detailed description of
the experiments carried out for the English-Basque
pair. We describe the systems built and the results
obtained on different test sets. Looking for a robust
experimental setup, we conducted both open do-
main and in-domain evaluation. A brief description
of the test sets can be found on Table 2.

3.3.1 Systems
For the English-Basque pair we trained the follow-
ing systems:

Baseline1. A strong baseline by pivoting Elhu-
yar’s best out of domain EN-ES and ES-EU models.
These models are trained on the PCv5 corpus and
a Elhuyar’s internal Spanish-Basque corpus respec-
tively.

Baseline2. A further improvement of Baseline1,
by fine-tuning the EN-ES pivoting system with
Medline and SCIELO in-domain biomedical data.

Baseline3. A previously available out of do-
main EN-EU system trained with back translated
synthetic data.

Baseline4. A simple baseline trained with the
task’s official in-domain data (ICD-10 corpus).

SystemA1, SystemA2 and SystemA3. These
systems are the result of fine-tuning Baseline3 with
in-domain data. SystemA1 uses a subset (250k) of
ELH Syn open domain corpus as well as shared
task ICD-10 in domain data. A small portion of
the ICD-10 corpus (1k) is used for validation. Sys-
temA2 is a variant of SystemA1 by adding more
in domain data from the EHU books corpus. A
small subset of the EHU books corpus (1k) is also
added to the validation set. Finally, SystemA3 in-
cludes a subset (5k) of the out of domain ELH Syn
corpus in the validation set in order to prevent the
system from forgetting about prior out of domain
knowledge.

SystemA4. A variant of SystemA3 using all the
available ELH Syn open domain data.

SystemB1. This system was trained by adding
synthetically generated EHU Syn in-domain data
to the data used in SystemA4. To create synthetic
data, a fine-tuned EU-EN model has been used to
back translate an internal ES-EU biomedical corpus
gathered from a collection of EHU books.

SystemB2. This system was trained by fur-
ther augmenting data from SystemB1 with copied
monolingual Basque target data from the shared
task (Hospital notes, SNOMED terminology and
Wikipedia).

SystemC. A variant of SystemB2. Synthetic
Medline data from the WMT19 EN-ES biomedi-
cal shared task was added to the validation set to
improve the performance on the Medline domain.
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Test Pair Domain Description Sentences
Synthetic (Syn) EN-EU Open Subset of the Elhuyar’s internal synthetic corpus 5k
EHU books (EHU) EN-EU Biomed. Subset of the collection of biomedical books translated

from English to Basque
1k

Medline pro (PRO) EN-EU Biomed. Professional translation from Spanish to Basque of the
WMT19 ES-EN shared task data

200

Terminology (ICD-10) EN-EU Biomed. Subset of the shared task in-domain ICD-10 terminology
set

368

Paracrawl v5 (PCv5) EN-ES Open Subset of the Paracrawl v5 corpus 5k
Elhuyar TMs (ELH) EU-ES Open Data collected from Elhuyar’s internal translation mem-

ories
1k

WMT18 EU-ES Biomed. WMT18 biomedical task test set 277
WMT19 EU-ES Biomed. WMT19 biomedical task test set 368

Table 2: Description of the test sets used to evaluate the models.

Open In-domain
System Train data Dev data Syn ICD-10 EHU PRO
Baseline1 - - 15.05 10.02 15.58 13.31
Baseline2 - - 15.06 10.03 16.62 13.37
Baseline3 ELH Syn ELH Syn 15.28 9.28 15.08 11.80
Baseline4 ICD-10 ICD-10 0.00 89.18 0.00 0.0
SystemA1 ELH Syn (250k); ICD-10 ICD-10 9.33 90.46 9.86 6.29
SystemA2 ELH Syn (250k); ICD-10; EHU books ICD-10; EHU books 10.42 90.26 32.20 8.19
SystemA3 ELH Syn (250k); ICD-10; EHU books ELH Syn; ICD-10; EHU books 12.72 87.60 13.76 9.38
SystemA4 ELH Syn (all); ICD-10; EHU books ELH Syn; ICD-10; EHU books 15.47 80.36 24.43 12.95
SystemB1 ELH Syn (all); ICD-10; EHU books;

EHU Syn
ELH Syn; ICD-10; EHU books 15.81 82.05 26.45 12.85

SystemB2 ELH Syn (all); ICD-10; EHU books,
EHU Syn ; Monoligual

ELH Syn; ICD-10; EHU books 15.69 81.01 26.51 13.61

SystemC ELH Syn (all); ICD-10; EHU books;
EHU Syn; Monoligual

ELH Syn; ICD-10; EHU books;
Medline Syn 19

15.91 83.79 27.73 13.50

Table 3: BLEU scores for the English to Basque experiments on out of domain and in-domain test sets.

3.3.2 Results

Table 3 shows BLEU scores for the English to
Basque experiments on out of domain and in-
domain test sets (Table 2).

As for abstract translation, SystemA4, Sys-
temB1, SystemB2 and SystemC showed a signif-
icant improvement on those test sets when com-
pared to the other trained systems. In particular,
SystemB2 obtained the best results on PRO test
and SystemC the second best result.

The gap between SystemA4 and the other three
SystemA’s showed that using all the available out
of domain data helps avoiding the ”catastrophic for-
getting” phenomena, where all previous knowledge
fades when learning new in-domain examples.

SystemB1 introduces in-domain synthetic data
in the training process, which significantly im-
proves the results on the EHU test. This is due
to the fact that synthetic data and the EHU test set
share the same domain (EHU biomedical books).
However, the drop on the PRO test is almost in-
significant and it also improves all the baselines on
the Synthetic test.

SystemB2 further improves the results on the

PRO test set by adding monolingual corpora to the
training data and SystemC shows the effect of the
validation set by adding more biomedical domain
data to the validation set. Both systems improve all
the baselines on every test set.

SystemB2 (run1), SystemC (run2) and Baseline2
(run3) were submitted as the best runs for the En-
glish to Basque abstract translation task.

Terminology translation task greatly differs from
the abstract domain which can be clearly seen in the
results. In this case, the best results are obtained by
SystemA1 which only includes a small part of the
available out of domain data. Furthermore, results
are not distant from Baseline4 which was trained
with ICD-10 training data. This behaviour shows
the specificity of the task where previous complete
sentence translation knowledge is not essential.

SystemA2 (run1), SystemA1 (run2) and Base-
line4 (run3) were submitted as the best runs for the
English to Basque terminology translation task.

3.4 EN-ES experiments

Below we present the different systems trained for
the English-Spanish pair and the results obtained
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for each of them.

3.4.1 Systems
For the English-Spanish pair we trained the follow-
ing systems:

Baseline1. We have considered a strong base-
line by using Elhuyar’s best out of domain EN-ES
model. This model was trained on the PCv5 corpus.

SystemA. This model has been trained from
scratch mixing in-domain and out domain data. In-
domain data comprises previous years’ shared tasks
Medline data and a subset of the SCIELO dataset.
Out of domain data was obtained from the PCv5
corpus.

SystemA’. A variant of SystemA by averaging
the three best performing checkpoints.

3.4.2 Results
Table 4 shows BLEU scores for the English to Span-
ish experiments on out of domain and in-domain
test sets (Table 2).

SystemA improves the baseline on all the test
sets and SystemA’ further improves those results
obtaining the best results for the task. Similar to the
English to Basque abstract translation task, for the
English to Spanish pair adding in-domain data and
fine-tuning a previously trained out of domain sys-
tem improved the results. Furthermore, averaging
the first three best checkpoints helped improving
the results of the best checkpoint.

SystemA’ (run1), SystemA (run2) and Baseline1
(run3) were submitted as the best runs for the En-
glish to Spanish abstract translation task.

4 Official results

For the English to Basque abstract translation task
we selected the PRO test as the most representative
one when choosing the best runs for submission.
We assumed that this test set would be the closest
to the official task test. The EHU test set was also
a great indicator of how robust our system was for
the biomedical domain.

BLEU scores were calculated using the multi-
eval tool and tokenization as provided in Moses.
Table 5 shows the performance of all the submitted
runs for the official abstract translation test set. Our
submitted run2 has obtained the best score on the
official task test, achieving a 0.1279 BLEU score.
When compared to other teams, all our submitted
runs significantly outperform all the runs. It is
worth mentioning that our Baseline2 (run3) which

is based on pivoting between two systems (EN-
ES and ES-EU) has obtained really close results
which indicates that some biomedical knowledge
was present in the Spanish to Basque system.

In the case of the terminology task, ICD-10 test
set is the official validation task and therefore the
most representative one for choosing the best runs.

For the evaluation of terminology we provide
two metrics: (i) accuracy, by relying on strict
matches (case insensitive) between ground truth
ans predictions; and (ii) BLEU score, as measured
by the NLTK module sentence bleu. Table 6 shows
the performance of all the submitted runs for the
official terminology test set.

Our best submitted run has obtained the best
score on the official task test, achieving 0.78 accu-
racy and a 0.7373 BLEU score. When compared to
other teams, all our submitted runs outperform all
the runs, except for DCU MT’s run2. It is worth
mentioning that out Baseline4 (run3) which was
trained on task’s English-Basque data has outper-
formed almost all of the others teams’ results. This
highlights the improvements obtained by our sys-
tems over the baseline.

Finally, for the English to Spanish abstract trans-
lation task WMT19 and WMT18 test sets were
selected as reference for selecting the best runs.

Table 7 shows the performance of all the submit-
ted runs for the official English to Spanish abstract
translation test set. Our best submitted run has ob-
tained the fifth best score on all sentences achiev-
ing a 0.4364 BLEU score and the second best team
with OK sentences (BLEU=0.4498). In this case,
our submitted baseline (run3) also shows a great ro-
bustness, indicating some prior biomedical domain
knowledge.

5 Conclusions

For the Biomedical Translation Task 2020, we con-
sidered several strategies combining open domain
and in-domain biomedical data. We have suc-
cessfully applied transfer learning by fine-tuning
a previously available open domain system with
in-domain specific data. To tackle the scarcity of
English-Basque domain data, we have performed
data augmentation by back translating real data.

The systems submitted for the terminology and
abstract translation tasks for the English-Basque
pair have ranked first on the official task test,
achieving 0.78 accuracy for terminology transla-
tion and a BLEU of 0.1279 for the translation of
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Open In-domain
System Train data Dev data PCv5 ELH wmt19 wmt18
Baseline1 PCv5 PCv5 44.69 35.68 44.27 30.73
SystemA PCv5 and Biomedical Mix PCv5 and Biomedical Mix 46.37 36.25 45.72 30.99
SystemA’ PCv5 and Biomedical Mix PCv5 and Biomedical Mix 46.54 36.29 45.74 31.22

Table 4: BLEU scores for the English to Spanish experiments on out of domain and in-domain test sets.

Team Runs BLEU
Elhuyar NLP run1 0.1271
Elhuyar NLP run2 (1) 0.1279
Elhuyar NLP run3 0.1268
DCU MT run1 0.0867
DCU MT run2 0.0825
DCU MT run3 0.0808
UTS NLP run1 0.0530
UTS NLP run2 0.0549
UTS NLP run3 0.0528
Ixamed run1 0.0815
Ixamed run2 0.0782
Ixamed run3 0.0884
Baseline - 0.0596

Table 5: Performance scores on the official English to
Basque abstract translation test set.

Team Runs Accuracy BLEU
Elhuyar NLP run1 (1) 0.78 (1) 0.7373
Elhuyar NLP run2 0.77 0.7356
Elhuyar NLP run3 0.75 0.7229
DCU MT run1 0.73 0.7083
DCU MT run2 0.76 0.7239
DCU MT run3 0.75 0.7179
UTS NLP run1 0.73 0.7115
UTS NLP run2 0.73 0.7122
UTS NLP run3 0.73 0.7085
Ixamed run1 0.12 0.1314
Ixamed run2 0.08 0.0721
Ixamed run3 0.13 0.1481

Table 6: Performance scores on the official terminol-
ogy test set.

abstracts. For the English to Spanish abstract trans-
lation task our systems have obtained competitive
enough results, being the second team for OK sen-
tences (BLEU=0.4498).

In all cases, even developed baselines have
achieved outstanding results. For the English-
Spanish task, Paracrawl v5 has proven to be a ro-
bust baseline for biomedical domain systems, as
it seems to contain some biomedical crawled web-
sites. For the English-Basque task, fine-tuning one

Team Runs BLEU BLEU OK
Elhuyar NLP run1 (5) 0.4364 (4) 0.4498
Elhuyar NLP run2 0.4359 0.4493
Elhuyar NLP run3 0.4263 0.4394
Ixamed run1 0.4052 0.4171
Ixamed run2 0.3729 0.3836
Ixamed run3 0.3755 0.3858
Sheffield run1 0.4493 0.4493
TRAMECAT run1 0.4238 0.4361
UNICAM run1 0.4434 0.4572
UNICAM run2 0.4464 0.4672
UNICAM run3 0.4453 0.4662
Baseline - 0.3709 0.3813

Table 7: Performance scores on the official English to
Spanish test set.

of the pivoting pairs (EN-ES) we have created a
robust baseline for the biomedical domain.

Adding monolingual corpora to the training data,
as copied target, seems to improve the decoder by
adapting the systems to better perform on domain
specific terminology. Even though some noise is
introduced by copying the target to the source side,
the results are improved.

Terminology task showed promising results
when translating biomedical domain terms, which
could lead to a production ready system.
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Abstract

This report describes YerevaNN’s neural

machine translation systems and data

processing pipelines developed for WMT20

biomedical translation task. We provide

systems for English-Russian and English-

German language pairs. For the English-

Russian pair, our submissions achieve the

best BLEU scores, with en→ru direction

outperforming the other systems by a

significant margin. We explain most of

the improvements by our heavy data

preprocessing pipeline which attempts to

fix poorly aligned sentences in the parallel

data.

1 Introduction

Biomedical machine translation is a perfect

playground to develop narrow domain neural

machine translation models. In such tasks, the

available parallel in-domain data is usually limited

and noisy which creates many challenges.

In the previous works (Bawden et al., 2019),

researchers focused on transfer learning methods

(Saunders et al., 2019) or attempted to mix the

training data with other sources (Peng et al., 2019)

to address the issue of data scarcity. In this work,

we show that the transfer performance is very

dependent on the quality of the training data, and

with a little effort, it is possible to improve the given

MEDLINE training data and gain a significant

performance boost.

We have manually created a much higher quality

subset of the original MEDLINE training data for

local evaluation purposes. The insights collected

during this manual analysis was then used to fix

the most common issues within the training data.

In particular, we noticed that the original dataset

contained paper abstracts in two languages without

sentence-level alignments, and the training corpus

provided by the organizers was created using an

automated sentence segmentation and alignment

process, which was not perfect. We built a data

pipeline1 that handles 1) cleanup, 2) sentence

segmentation, 3) alignment of translation sentence

pairs and 4) preprocessing.

In our experiments, we did not use any data

source other than MEDLINE. We chose our

baseline model and two other models with the

highest BLEU scores on a local test set as our three

submissions. The best ones got 35.2% BLEU on

English-German and 41.3% on German-English

test sets. For English-Russian and Russian-English

directions we reached BLEU scores of 37.9%

and 43.2% respectively, which are the best scores

among all submissions of WMT20 Biomedical

Translation Task. Moreover, our models are cheap

to train: the average training time of our best models

is approximately 30 minutes on a single NVIDIA

Titan V GPU.

The paper is organized as follows: Section 2

presents fine-tuning details and evaluation methods

for our NMT systems, Section 3 describes the data

used in the experiments and the data processing

pipeline, Section 4 presents our novel method

of monotonic alignment based on multilingual

language models. Section 5 discusses the results.

2 System Description

2.1 Pretrained Models

All our NMT models are built on top of WMT19

News Translation task winner models by Ng et al..

We employ FairSeq library (Ott et al., 2019) to fine-

tune pretrained models on the in-domain translation

data.

The pretrained models are based on

transformer_wmt_en_de_big architecture

(Vaswani et al., 2017) with a modified feedforward

1Our data pipeline is available at https://github.com/
YerevaNN/parasite
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dimension (8192) and a shared matrix for input and
output embeddings. Additionally, en↔de models

share vocabulary and embeddings for both source

and target sides.

2.2 Fine-Tuning

We start fine-tuning single_model versions of

Facebook’sWMT19models2 on in-domain parallel

data and stop the training when the perplexity on the

validation set does not improve for 5 consecutive
epochs.

To fight noisy training data we use label-

smoothed cross-entropy loss (Müller et al., 2019).

The neural architecture and related

implementation details cannot be changed in

the fine-tuning scenario. While this limited our

experimental setup, however, it also allowed us to

care less about hyperparameter tuning and focus

on other parts of the pipeline.

2.3 Implementation Details

The hyperparameters for our baseline models

(run1) are as follows. The models are fine-tuned
on the training data using an inverse-square-root

learning rate schedule with 4000 warm-up steps
with an initial learning rate of 10−5. Instead of

using a fixed batch size, we make batches of

maximum 3584 tokens to fit in the memory. For
label smoothing, we set a smoothing coefficient of

0.1. Unlike the pretrained models, we use standard
Adam betas and disable dropout.

Training with bigger batches (implemented using

gradient accumulation, a single update per 128
batches) not only helped us to reduce total training

time 4x but also resulted in better models (including
our best submissions run2 and run3).
All the models are trained on a single NVIDIA

Titan V GPU with 16-bit floating-point operations.

The average duration of fine-tuning with bigger

batches was 30 minutes.

Finally, we use a beam size of 32 in the inference
mode.

2.4 Evaluation and Model Selection

We use two kinds of validation sets for model

selection. For early stopping, we calculate the

perplexity on a regular validation set which is

extracted from the training data. To determine our

2 wmt19.en-de.joined-dict.single_model ,
wmt19.de-en.joined-dict.single_model,
wmt19.en-ru.single_model,
wmt19.ru-en.single_model

best models for submissions, we use a separate

in-domain dataset which we call “local test set”

and calculate BLEU score on it. All BLEU scores

are calculated with SacreBLEU case-insensitive

configuration.

3 Data

3.1 Parallel Data

For all directions, we use only MEDLINE training

data provided by the shared task organizers. We

take random 50 documents from the training data

as the validation set. In case of en↔de we use OK-

tagged sentence-pairs from WMT’19 biomedical

translation test set (Bawden et al., 2019) as the local

test set. To have a local test set of a similar quality

for en↔ru, we take another random 50 documents,
then manually fix misaligned sentences and filter

out a few pairs with incorrect translations.

During the manual review of the en↔ru local

test set we noticed that the provided data was poorly

aligned, and it was possible to get high-quality

sentence pairs by re-aligning the sentences (only 9
sentences were dropped except the titles/subtitles,

out of 504 sentences). Then we tried to use these
insights to build a new automated system for

monotonic alignment of the sentences (described

in Section 4).

Table 1 exhibits the most common issues found

in the MEDLINE training data:

• The bitext documents may be misaligned: the

translation of a source sentence may appear

on a different line, or even on multiple lines,

in the target side,

• Headings and section names may occur next to

a sentence on one side only, or on both sides,

• English documents may start with titles (often

wrapped in brackets), while the Russian ones

do not.

These issues are too common in the training set,

and simply removing incorrect pairs of sentences

would significantly reduce the dataset. Instead, we

decided to fix the misaligned sentences to preserve

as much parallel content as possible. The solution

is described in Section 4.

3.2 Monolingual Data

Although the base models we use are already

trained with backtranslation, we try to fine-tune

with backtranslation as well. We obtain translations
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1 [Risk factors of stroke in men exposed to environmental

factors at workplace]. OBJECTIVE

Цель исследования - изучение факторов риска раз-

вития инсульта у мужчин разных возрастных групп,

подвергающихся воздействию неблагоприятных про-

изводственных факторов.

2 To explore risk factors of stroke in men of different

age groups exposed to adverse environmental factors at

work.

Материал и методы.

3 MATERIAL AND METHODS Four hundred and eleven

men after stroke, aged from 30 to 65 years, including

335 patients, who had been exposed to adverse

environmental factors at work, were compared to

76 patients who had not been exposed to adverse

environmental factors.

Обследованы 411 мужчин в возрасте от 30 до 65 лет,

перенесших инсульт, из них 335 пациентов подвер-

гались влиянию неблагоприятных производственных

факторов и 76 пациентов, которые воздействия вред-

ных факторов не испытывали (группа сравнения).

4 RESULTS Результаты.

5 The distribution of the frequencies of risk factors of

stroke depending on the character of adverse factors was

shown.

Установлена частота распределения факторов риска

развития инсульта у мужчин в зависимости от харак-

тера профессиональных вредностей.

Table 1: A hand picked example from MEDLINE en↔ru training set (document #26978637) which demonstrates
the most common issues in the dataset. The first line in English includes the title of the paper which is not present

in Russian. The English version of the main content of the first line in Russian is given on the second line. Line 3

in English has an extra heading which corresponds to Line 2 on the right side. The rest of the third line on the left

matches to the third line on the right side, and the last two lines are correct.

with the fine-tuned models mentioned above, then

fine-tune newmodels on a mixed data consisting of

the regular parallel training data and backtranslated

data with equal proportions.

To perform backtranslation we need a set of in-

domain monolingual sentences that do not overlap

with the test set. To train backtranslated de↔en and

ru↔ en directions, we took all English sentences

from all parallel corpora available from MEDLINE

(both training and test sets) excluding the parallel

corpora we would eventually train on. This way we

collected 296,052 (236,379) English sentences for

German (for Russian). To obtain a parallel corpus

we translated them using our models, and then

filtered them using the same process as with the

regular training data (see the next subsection). We

ended up with 281,054 (220,916) sentence pairs for

en↔de (en↔ru).

We did not perform backtranslation from

Russian or German (directions en→de and en→ru),

as we did not expect to find in-domain sentences

that are not present in MEDLINE.

When translating the monolingual sentences, we

tried sampling, sampling-top5, greedy, beam,
beam+noise decoding methods similar to (Edunov
et al., 2018), but no major difference in terms of

the final BLEU score has been observed.

3.3 Preprocessing

The preprocessing pipeline for our models has to be

identical to the one used for pretrainedmodels. First,

we perform punctuation normalization (quotation,

commas, numbers, replacing punctuation and

removing control characters) using SacreMoses
library. Then, we tokenize the resulting sentences

using Moses (Koehn et al., 2007) tokenizer with

aggressive dash splits and escaping XML entities.

Finally, we use subword segmentation (Sennrich

et al., 2016) (fastbpe implementation) with BPE

codes from pretrained models, with 24k and 32k

splits for Russian and for joint English & German,

respectively.

We perform additional filtering of the parallel

data before the training: we skip those sentence

pairs where 1) source or target sentence has more

than 250 subwords and/or 2) the ratio of lengths of

the source and target sentences is more than 3/2.

During inference, we truncate sentences to the

first 1024 subwords (the number of the positional
embeddings).

During our early experiments we noticed several

issues with our preprocessing pipeline which we

fixed for the later experiments. In particular,

we noticed that some sacremoses command

line flags were broken, and the out-of-the-box

inference tool from FairSeq did not fully replicate
the preprocessing pipeline used for training

(punctuation normalization and vocabulary-aware

subword segmentation). The original pipeline

(called v1) was used for our baseline models. The

later experiments used the fixed implementations

of sacremoses and FairSeq (denoted by v2).
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4 Monotonic Alignments

The problems of the training set described in

Section 3.1 can be caused by poor 1) XML

parsing, 2) sentence segmentation, or 3) monotonic

segment alignment method. Here we describe a

novel method for monotonic sentence alignment

using multilingual language models and discuss

the contribution of its hyperparameter choices.

Multilingual language models have been previously

shown to be effective in parallel data mining

(Kvapilíková et al., 2020). We also compare our

approach to the baseline data pipeline by the

shared task organizers which is based on Syntok
segmentation system and GMA (Melamed, 2001).

Our method of monotonic sentence alignments

is as follows: we calculate a similarity matrix of all

source-target candidate pairs and decode pairs to

maximize the similarity of the resulting sentence

pairs. We consider two approaches for the decoding

step: greedy and dynamic.

4.1 Similarity Matrix

The similarity matrix is calculated using Euclidean

distances of sentence embeddings from a pretrained

multilingual language model. We found xlm-
roberta-large (Conneau et al., 2019) to be the

best one. In order to obtain a fixed size vector for

each sentence, we simply take the average of the

wordpiece embeddings (Cer et al., 2018; Artetxe

and Schwenk, 2019).

We also attempt to address some common issues

concerning the given MEDLINE abstracts that may

harm the quality of the alignments: 1) we remove

titles from the English version that are absent in

the Russian version, 2) we detect the headings that

often get attached to adjacent sentences, 3) we

lowercase the text before obtaining embeddings

(as the English headings are written in capitals,

unlike the Russian ones), 4) we experiment with

different sentence segmentation systems such as

SciSpacy (Neumann et al., 2019) (in-domain, for

English) and Razdel3 (focused on Russian), 5)

we also penalize candidates with source/target

length ratios exceeding 2. Additionally, we consider
using normalized distances and the margin based

approach described in (Artetxe and Schwenk,

2019).

3https://github.com/natasha/razdel

4.2 Greedy Approach

In greedy approach, we construct the set of correct

sentence pairs in an iterative process. Given the

similarity matrix, at each step we add the sentence

pair with the maximum similarity score. As there

is an assumption that the alignments should be

monotonic, after each step we exclude all remaining

candidate sentence pairs that would break the

monotonicity. Our implementation finds at most

one target sentence for a source sentence (and vice

versa).

Algorithm 1: Greedy decoding

SN , TM ← source and target sentences

Di,j ← Sim(Si, Tj)
Res← {}
while |Align| < min(N,M) do

i, j ← argmax(D)
Align← Align ∪ {i, j}
Di..N,0..j , D0..i,j..M ← 0

end

Result: Align

4.3 Dynamic Algorithm

In the dynamic algorithm, we consider maximizing

the sum of the similarity scores of the selected

sentence pairs according to the given matrix. Our

implementation of this approach, unlike the greedy

one, can produce sentences consisting of multiple

(up to K) segments on each side. To find the

mapping with the best total similarity score we use

dynamic programming.

5 Results

For WMT20 Biomedical Translation Task we

prepared three submissions: run1 for all directions

was the baseline model, while for run2 and run3
we chose the best models according to their BLEU

score on the local test set at the time of the

submission. In run2 and run3, all the models

besides de→en of run2 are trained with our data

pipeline and bigger batches. The official BLEU

scores on samples with “OK” aligned sentences

alongside with our local test set are presented in

Table 2.

For de→en of run2, backtranslation data was
collected with beam search (size of 8), in case of

ru→en, we had noise added similar to Edunov et al.,

and for run3 we used a simple sampling strategy.
Our experiments with backtranslation showed no
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BLEU Scores on WMT20 Test / Local Test

Models en→de de→en en→ru ru→en

run1 35.2 / 34.5 41.3 / 45.4 32.6 / 27.7 NA / 30.7

run2 41.4 / 44.7 39.4 / 31.6 43.3 / 33.0

run3 35.2 / 35.1 41.3 / 45.6 37.9 / 31.8 43.2 / 33.1

Table 2: BLEU scores of our submissions

Algorithm 2: One-to-many (K) dynamic

decoding

SN , TM ← source and target sentences

BestN,M ← 0
ResN,M ← {}
for i = 1→ N do

for j = 1→M do

for u, v = 1→ K do
candidate← Besti−u,j−v +
Sim(Si−u..i, Tj−v..j)
if candidate > Besti,j then

Besti,j ← candidate
Resi,j ← Resi−k,j ∪
{Si−k..i, Tj−v..j}

end

end

end

end

significant advantage of any of those compared to

the others.

For run2 and run3, we used v2 preprocessing,
the sentence splitting was done with scispacy
(for English and German) and a slightly modified

version of razdel (for Russian).

After our submissions, we further improved our

data pipeline. Table 3 is an empirical analysis of the

effect of different components of our data pipeline,

as measured by the performance on the final

translation task. Each row of the table corresponds

to a model trained on the data obtained from a

pipeline with certain components enabled. There is

no other between the rows, all models are trained by

fine-tuning the general domain baseline using our

default hyperparameters. We measure the BLEU

score on the local test set.

Fixing the issues of the standard preprocessing

(v2 vs. v1) gives a significant boost, especially

when decoding to Russian (en→ru direction). The

effect of training with bigger batch sizes gives only

a slight improvement, while the absolute training

duration reduces drastically.

Model en→ru ru→en

baseline model 27.7 30.7

+ v2 preprocessing 30.5 31.3

+ train with bigger batches 30.7 31.3

+ greedy alignments 30.1 31.8

+ detect section names 30.7 32.3

+ remove titles 31.3 32.5

+ optimize total similarity 30.4 32.2

+ normalize distance matrix 30.8 32.1

+ penalize source/target ratio 31.2 31.5

+ one-to-many (K=3) 32.2 32.3

Table 3: The effect of different components of the data

processing pipeline. We report BLEU scores on the

local test set.

As mentioned previously, there were issues with

section names and titles in the provided parsed

documents. After addressing these issues, our

greedy approach gives better alignments.

The total similarity optimization using dynamic

programming is not always better than the greedy

method, but the performance improves for en→ru

with another +1.1% BLEU score. Overall, the

new data pipeline gives an enhancement in NMT

performance: +1.6% BLEU for ru→en and a bigger

gain of +4.5% BLEU score for en→ru.

Although we observe consistent performance

improvement for both directions en↔ru, the effect

for en→ru direction is more significant. We could

not determine the reason for such assymmetry.

6 Conclusion

This work presents the systems our team developed

for English-German and English-Russian language

pair tracks of WMT20 Biomedical Translation

Task. We achieve the best results on the official

test set for English↔Russian language pair,

outperforming competitors by a significant margin

on English→Russian direction. We show that

it is possible to improve the performance of

neural machine translation models by simply

improving the quality of the in-domain parallel
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data. The suggested method for monotonic sentence

segment alignment based on pretrainedmultilingual

language models demonstrated promising results.

We explored how different components of our data

processing pipeline contributed to the quality of the

resulting translation systems. In future work, we

plan to investigate the applicability of this pipeline

to a wider set of language pairs and domains.
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Abstract

This paper describes the machine translation
systems proposed by the University of Tech-
nology Sydney Natural Language Processing
(UTS NLP) team for the WMT20 English-
Basque biomedical translation tasks. Due to
the limited parallel corpora available, we have
opted to train a BERT-fused NMT model that
leverages the use of pretrained language mod-
els. Furthermore, we have augmented the
training corpus by backtranslating monolin-
gual data. Our experiments show that NMT
models in low-resource scenarios can benefit
from combining these two training techniques,
with improvements of up to 6.16 BLEU per-
centage points in the case of biomedical ab-
stract translations.

1 Introduction

Nowadays, most of the literature and scientific ter-
minology produced in the biomedical field is in
English, which limits the access to this information
by non-English speaking researchers, doctors and
patients. Thus, it would be very useful to avail
of machine translation systems that can effectively
translate this information into other languages, so
that more people can be able to access it and benefit
from it.

However, many of the world languages lack
sufficient parallel corpora to properly train ma-
chine translation systems in this domain. State-of-
the-art neural machine translation (NMT) models
(Sutskever et al., 2014; Bahdanau et al., 2015) suf-
fer from overfitting when trained on insufficient
data, and thus fail to generate accurate translations
(Koehn and Knowles, 2017).

In this paper we address this problem for a low-
resource language, Basque. We have taken part
in the WMT20 Biomedical Translation challenge,
which has released two interesting shared tasks

involving this language, namely, the English-to-
Basque translation of biomedical article abstracts
and the English-to-Basque translation of medical
terminology. In order to overcome the issue of
having limited supervised training data, we have
decided to apply two promising ideas proposed
in the literature. First, we have applied transfer
learning by training a BERT-fused NMT model
(Zhu et al., 2020) that uses source-language contex-
tual embeddings inferred by a pretrained language
model (LM) as additional input features, both in the
encoder and in the decoder. Second, we have aug-
mented the training corpus using backtranslation
(Sennrich et al., 2016; Burlot and Yvon, 2018). For
this, a BERT-fused NMT model has been trained
in the opposite translation direction (Basque →
English) to translate sentences from large monolin-
gual corpora (e.g. Wikipedia, medical texts).

The experiments have shown that an NMT base-
line can greatly benefit from combining these train-
ing techniques. The three best performing systems
in both tasks (terminology and abstracts) have been
submitted to the WMT20 biomedical translation
shared task under the UTS NLP team name.

2 Related Work

2.1 Pretrained LMs

Pretrained LMs have been one of the most re-
markable advancements in transfer learning for
NLP in recent years. They are large neural net-
works that are trained over massive datasets (mil-
lions of sentences) in an unsupervised manner, and
can effectively learn the regularities/patterns of a
language. Then, such general networks can be
applied to efficiently train smaller networks for
downstream tasks, using much smaller annotated
datasets. ELMo (Peters et al., 2018), BERT (De-
vlin et al., 2019) and GPT-2 (Radford et al., 2018)
are some examples of pretrained LMs that have
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achieved state-of-the-art results in various natural
language understanding tasks such as, among oth-
ers, sentiment analysis, paraphrase detection, and
question answering.

In NMT, various recent works have proposed
incorporating pretrained LMs into the standard
encoder-decoder architecture. Lample and Con-
neau (2019) have proposed pretraining an LM with
a novel “cross-lingual LM objective” that uses par-
allel training data to predict masked words of ei-
ther language. Edunov et al. (2019) have replaced
standard word embeddings with contextual word
embeddings learned by a pretrained LM. Their ex-
periments have showed that contextual embeddings
are more effective in the encoder and when fixed
(“ELMo-style augmentation”). Conversely, Clin-
chant et al. (2019) have initialized the encoder of
an NMT model with the weights of a pretrained LM
network, and fine-tuned them (“GPT-2/BERT-style
augmentation”), reaching similar performance, but
faster convergence. Yang et al. (2020) have added
the contextual embeddings of a pretrained LM as
additional input features to the standard embed-
dings, and incorporated a dynamic switch to let
the model learn how to weigh each input. Finally,
the BERT-fused NMT model (Zhu et al., 2020)
follows a similar idea, by adapting the architec-
ture of the transformer network in order to have an
extra self-attention layer that learns to weigh the
contextual embeddings of the LM. This attention-
layer is seamlessly added to both the encoder and
the decoder. Given the improvement in perfor-
mance achieved by the BERT-fused NMT on sev-
eral datasets and the well-supported code by the
authors (built on top of fairseq), we have decided
to adopt this model in our experiments.

2.2 Backtranslation

In NMT, backtranslation (Sennrich et al., 2016;
Burlot and Yvon, 2018) has become a common
approach to alleviate the problem of having lim-
ited parallel data for training. It consists of first
training a target → source NMT model with the
available parallel corpus. Then, this model is used
to translate a large number of sentences from mono-
lingual corpora in the target language, which are
usually more available than parallel corpora, to the
source language. The resulting “silver corpus” is
used as additional training data for the source→
target NMT model, and can often help to boost the
fluency of the generated translations.

However, the most effective way of using back-
translation is still an open research question. Pon-
celas et al. (2018) have explored different com-
binations of backtranslated and human-translated
datasets, and have found that in their low-resource
scenario a 2:1 backtranslated-to-human-translated
sentences ratio is optimal; beyond that, increasing
the size of the backtranslated data deteriorates the
performance. Edunov et al. (2018) have shown
that backtranslating by either sampling from the
model or adding noise to a standard beam search
can improve the final translation accuracy substan-
tially. Burlot and Yvon (2018) have generated
more natural pseudo-source sentences by training
a generative adversarial network (GAN). Finally,
Soto et al. (2020) have found that combining back-
translated data from different sources (i.e. out-of-
domain data, in-domain data) and different models
(i.e. rule-based, SMT, NMT) can also improve the
accuracy of the final translations. In our work, we
have explored using a BERT-fused NMT model
for backtranslating monolingual data, expecting
that the transfer learning achieved from using pre-
trained LM in Basque will produce better quality
pseudo-source sentences.

3 Resources

All the experiments have been carried out using
only the parallel and monolingual training data
recommended by the organisers on the shared task
website. Table 1 summarizes all the data used in
our experiments.

3.1 Parallel Data

The medical terminology translation task consists
on translating ICD-10 (International Clasification
of Diseases) code descriptions from English to
Basque. The descriptions are relatively short sen-
tences (8 tokens on average). The organizers have
provided an in-domain parallel corpus for training
and validation. The blind test set contains 2,000
sentences in English.

The abstract translation task involves translat-
ing sentences of abstracts from biomedical scien-
tific research papers. The sentence in this task are
longer compared to those in the terminology task
(24 tokens on average). However, for this task
the organizers have not provided any in-domain
parallel data for training or validation, only 375
English sentences for blind testing. Consequently,
we have decided to form a small validation set from
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train dev test
in-domain (IO)

ICD-10 25,900 2,000 2,000
abstracts - 50 375

out-of-domain (OOD)
EhuHac 550,000 - -

QED 16,000 - -
TED talks 5,623 - -

(a) Parallel data.

general
wikipedia 1.5M

biomedical
wikipedia biomedical 8,000

hospital notes 2,000
Snomed CT 50,000

(b) Monolingual data in Basque.

Table 1: Number of sentences in each dataset.

the English-Italian biomedical abstract translation
dataset provided on the website. We have selected
50 sentences in English from that dataset and trans-
lated them manually into Basque. In this way, we
have managed to assemble a small, yet high-quality
validation dataset in a domain similar to that of the
actual task, and used it for selecting the best models
for submission.

Finally, we have used out-of-domain (OOD)
parallel corpora to compensate for the lack of in-
domain training data. From the data provided by
the organizers, we have used: the EhuHac dataset,
which consists of translations of 136 fiction books;
the QED dataset, which are translations of subtitles
for educational videos and lectures; and the TED
talks dataset, containing transcripts of TED talk
videos.

3.2 Monolingual Data

The monolingual data have been grouped in two
categories. First, we have the general domain texts,
which include 1.5M sentences from the Basque
Wikipedia. Second, we have the biomedical do-
main texts, which include a group of medical arti-
cles from the Basque Wikipedia and hospital notes
written by doctors. We have applied backtransla-
tion to generate pseudo-parallel datasets from these
monolingual data. A BERT-fused NMT model has
been trained over the available OOD parallel data
in the reverse translation direction, and applied to
translate Basque sentences to English. For more

details on the training of the BERT-fused NMT
model, please see Section 4.

Additionally, we have included as part of the
biomedical monolingual data the subset of Basque
SNOMED CT terms provided by the organizers,
which have been automatically translated from En-
glish using a rule-based machine translation system.
Using the IDs of the terms, we have been able to
match them with the original English terms and
include them as additional training data.

3.3 Pretrained BERT Models
We have explored using several different pretrained
BERT LMs to include them in our BERT-fused
NMT model. The pretrained BERT models have
been downloaded from Hugging Face1 :

• bert-base-uncased : Original BERT LM
model proposed by Devlin et al. (2019). Pre-
trained on the BookCorpus (800M words)
(Zhu et al., 2015) and the English Wikipedia
(2,500M words).

• bert-pubmed: Pretrained over biomedi-
cal articles and journals collected from
PubMed. There is no clear descrip-
tion of the amount of data used for pre-
training. Hugging Face model name:
monologg/biobert v1.1 pubmed.

• bert-mimic-pubmed: Pretrained over
biomedical articles and journals collected
from PubMed and electronic health records of
intensive care unit patients from MIMIC-III
(Johnson et al., 2016). There is no clear
description of the amount of data used for
pretraining. Hugging Face model name:
adamlin/NCBI BERT pubmed mimic.
uncased base transformers

• bert-discharge-summaries: Pretrained
model proposed by Alsentzer et al. (2019)
trained on all discharge summaries from
MIMIC-III. Hugging Face model name:
emilyalsentzer/Bio Discharge
Summary BERT.

Pretrained LM for backtranslation:

• berteus-base-cased: Pretrained LM in
Basque (Agerri et al., 2020) trained over
the Basque Media Corpus (BMC) (224M
words). Hugging Face model name:
ixa-ehu/berteus-base-cased.

1https://huggingface.co/models
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4 Training and Hyperparameter Tuning

We have trained a BERT-fused NMT model (Zhu
et al., 2020) with the open-source code provided by
the authors2, which is built on top of fairseq3. Fol-
lowing the authors recommendation, as a warmup
step, first a standard transformer-based (Vaswani
et al., 2017) NMT model has been trained over the
training data. Then, this model has been used as
both a baseline and to initialize the weights that
the BERT-fused NMT model has in common. We
have used the transformer iwslt de en ar-
chitecture as the NMT model, which consists of
a 6-layer transformer network as the encoder and
the decoder, with the embedding dimension set to
512 and the hidden layer dimension to 1024. Ad-
ditionally, we have used the following training hy-
perparameters: dropout 0.1, label-smoothing 0.1,
inverse sqrt learning scheduler, warmup up-
dates 4, 000, warmup initialization learning rate
1e−7, minimum learning rate 1e−9, weight decay
0.0001, BERT encoder dropout 0.5 and the Adam
optimizer (Kingma and Ba, 2015). The learning
rate [0.0002, 0.00002] and the number of tokens
per batch [1024, 4048] have been tuned using the
validation set. All the datasets have been lower-
cased and tokenized using the moses tokenizer. Ad-
ditionally, we have learned subword units using
Byte Pair Encoding (BPE) (Sennrich et al., 2015)
with 10, 000 merge operations in order to reduce
the vocabulary size and handle unknown words.

In the terminology translation task we have only
used the in-domain ICD-10 code description data to
train our models, because adding additional OOD
parallel data or backtranslated data was degrading
the performance of the model. This is probably
likely due to the specific and structured language
used in the code descriptions, which is very differ-
ent from the rest of the available texts. The baseline
NMT was warmed up for 50 epochs and the best
model over the validation was selected. Then, the
BERT-fused models was tuned for 10 more epochs.

In the abstract translation task, due to the fact
that in-domain parallel data were not available, we
have explored training the model with different
combinations of the OOD parallel data, the ICD-10
training data and the backtranslated data. The ICD-
10 data and the backtranslated biomedical data have
been upsampled x5 and x10, respectively. In this
task, the baseline NMT was warmed up for 30

2https://github.com/bert-nmt/bert-nmt
3https://github.com/pytorch/fairseq

epochs, as the training data are much larger (longer
training times) and because we have seen no notice-
able improvement after the 30th epoch. Like in the
previous task, the BERT-fused models have been
tuned for another 10 epochs over the best baseline
model.

Evaluation of the models has beeen carried out
using the standard BLEU metric (Papineni et al.,
2002). In the case of the terminology translation
task, we have also used a case-insensitive strict
accuracy metric, in which an ICD-10 code descrip-
tion is considered correct only if it is a complete
string match with the reference (no partial scores).

5 Results

5.1 Terminology Translation

In the terminology translation task (Table 3a) all the
models have achieved high numerical results over
the validation set (> 73% accuracy and > 88.7
BLEU). In terms of translation scores, one could
say that this was an easy task and that it is almost
solved. However, we would like to argue that this
is not the case. Compared to other translation tasks
(e.g. abstracts, news, TED talks), the space of cor-
rect translations is much smaller in the ICD-10
task since even a single-word mistake (e.g. abscess
of bursa, right shoulder VS abscess of bursa, left
shoulder) may result in a misunderstanding with se-
rious consequences. Therefore, there is still margin
for improvement.

On the other hand, we have observed that the
BERT-fused NMT models have consistently out-
performed the baseline, on average by +1.61 per-
centage points (pp) of accuracy and by +0.7 pp of
BLEU. All pretrained BERT LMs have achieved
comparable results, yet surprisingly the bert-base-
uncased model has proved the best, despite be-
ing the only LM that had not been pretrained on
biomedical data.

5.2 Abstract Translation

In the abstract translation task (Table 3b) the over-
all performance of the models in terms of BLEU
scores has been considerably lower. This is un-
derstandable, as we did not have access to any
in-domain parallel data for training. The base-
line model using only the OOD parallel data has
achieved an 8.67 BLEU score.

Nevertheless, we have been able to improve this
result by applying our backtranslation and pre-
trained LMs. Just adding the backtranslated sen-
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Training Data
Models

baseline bert-base-uncased bert-pubmed bert-mimic-pubmed bert-discharge-summaries
Accuracy BLEU Accuracy BLEU Accuracy BLEU Accuracy BLEU Accuracy BLEU

ICD-10 train 73.15 88.70 74.93 89.49 74.60 89.39 74.67 89.31 74.78 89.42

(a) Terminology translation. Average results of 3 independent runs.

Training Data Models
baseline bert-base-uncased bert-pubmed bert-mimic-pubmed bert-discharge-summaries

OOD Parallel 8.67 9.36 9.92 9.84 9.55
+ backtranslated general 11.57 14.34 13.71 14.83 13.97
+ backtranslated biomedical

and ICD-10 train/dev 13.91 14.25 12.39 13.42 11.87

(b) Abstract translation. Average results of 3 independent runs.

Table 2: Results over the validation sets.

tences from Wikipedia (backtranslated general in
Table 2) to the training set has improved the base-
line by +1.90 BLEU pp, and adding the biomed-
ical domain backtranslated sentences (backtrans-
lated biomedical) and the ICD-10 parallel data has
achieved a further +2.41 BLEU pp.

Additionally, we have observed comparable im-
provements with the BERT-fused NMT models,
which have again consistently outperformed the
baseline. In this case, the best performing pre-
trained LM has been the bert-mimic-pubmed model
(14.83 BLEU) trained using only the backtrans-
lated general data. This model has achieved an
incremental improvement of +6.16 BLEU pp with
respect to the baseline trained only over the OOD
parallel data. It is interesting to see that adding the
backtranslated biomedical data to the BERT-fused
NMT model has not resulted in any improvement,
probably because the data are more “noisy” (not
grammatically well-structured sentences) and have
fewer samples than the general backtranslations
(∼ 60, 000 vs 1.5 M).

5.3 Results over the Blind Test Sets

Table 3 shows the results achieved by our best per-
forming models over the test sets. The translations
made by our models have been submitted “blindly”
and the results have been computed by the organiz-
ers. Our proposed runs for the terminology transla-
tion task have performed similarly to the validation
set, achieving over 73% accuracy. On the contrary,
the systems submitted to the abstract translation
task have underperformed compared to the results
in the validation set. We speculate this is likely
due to the domain differences between our vali-
dation data and the test data. Even though both
datasets are composed of translations of biomedi-

Model Accuracy
bert-mimic-pubmed (run 1) 73.00
bert-discharge-summaries (run 2) 73.00
bert-base-uncased (run 3) 73.00

(a) Terminology translation.

Model BLEU
bert-mimic-pubmed (run 1) 5.30
bert-pubmed (run 2) 5.49
baseline (run 3) 5.28

(b) Abstract translation.

Table 3: Official results over the blind test sets.

cal abstracts, they are probably coming from differ-
ent databases and may have significantly different
writing styles.

6 Conclusion

This work has described the translation systems
submitted by the UTS NLP team to the WMT20
Biomedical Translation shared task. The proposed
systems are BERT-fused NMT models trained on
a combination of in-domain parallel data, out-of-
domain parallel data and backtranslations of mono-
lingual data. The experiments have shown that
combining pretrained BERT LMs and backtransla-
tions during training has contributed to achieve con-
siderable accuracy improvements with respect to
a standard transformer-based NMT model trained
only on the parallel data. Nevertheless, the offi-
cial test results have shown that the performance of
the systems can significantly drop if the translation
domain is different. Therefore, there is still signifi-
cant work to do to improve the domain adaption of
these models.
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Abstract

Despite the widespread adoption of deep learn-
ing for machine translation, it is still expensive
to develop high-quality translation models. In
this work, we investigate the use of pre-trained
models, such as T5 (Raffel et al., 2019) for
Portuguese-English and English-Portuguese
translation tasks using low-cost hardware. We
explore the use of Portuguese and English pre-
trained language models and propose an adap-
tation of the English tokenizer to represent Por-
tuguese characters, such as diaeresis, acute and
grave accents. We compare our models to the
Google Translate API and MarianMT on a sub-
set of the ParaCrawl dataset, as well as to the
winning submission to the WMT19 Biomedi-
cal Translation Shared Task. We also describe
our submission to the WMT20 Biomedical
Translation Shared Task. Our results show that
our models have a competitive performance
to state-of-the-art models while being trained
on modest hardware (a single 8GB gaming
GPU for nine days). Our data, models and
code are available at https://github.com/
unicamp-dl/Lite-T5-Translation.

1 Introduction

With the advent of deep neural networks, results in
machine translation have recently improved over
classical statistical strategies (Wu et al., 2016;
Artetxe et al., 2018). For instance, in the Third
and Fourth Conference on Machine Translation
(WMT18 (Edunov et al., 2018) and WMT19 (Ng
et al., 2019)), the top-performing systems for
English-German and German-English competitions
were based on transformers (Vaswani et al., 2017).

Transformer models are state-of-the-art architec-
tures for Machine Translation (MT) tasks and are
capable of translating the same word to different
words based on the context. For instance, the word
’bank’ in Portuguese can be translated to ’bench’
or ’bank’ depending on the context.

This work explores translation strategies using
language models pre-trained on Portuguese and
English corpora. More specifically, we investi-
gate the use of Text-to-Text Transfer Transformer
(T5) pre-trained model for these tasks. T5 is
a text-to-text Transformer trained with a similar
masked language modeling objective as BERT. In
this model, all target tasks are cast as sequence-
to-sequence tasks. An illustration of T5 for the
English-Portuguese translation task is shown in
Figure 1. The main contributions of this work are:

• We show that it is possible to train translation
models that are competitive with the state of
the art using few computational resources. We
trained our models on a gaming desktop with
an Nvidia RTX2070 GPU, i5 CPU, and 32GB
RAM. In comparison, the winning submis-
sion of the WMT19 Biomedical Translation
Shared Task used four NVIDIA V100 GPUs,
each being approximately ten times more ex-
pensive than an RTX2070.

• We created and made public ParaCrawl 99k,
a dataset of 99k sentence pairs extracted from
ParaCrawl’s v6.0 English-Portuguese paral-
lel corpus (Bañón et al., 2020). This large
test corpus allows researchers to evaluate their
models on a general-domain translation task.

• We evaluated Google Translate on ParaCrawl
99k, allowing other researchers to compare
their results to a high-quality commercial sys-
tem.

• We developed an adaptation for the English
pre-trained tokenizer and achieved better re-
sults on English-Portuguese translation tasks
than using the tokenizer without any changes.
This allows us to efficiently adapt language
models to a vocabulary that was not seen dur-
ing pre-training.
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2 Related Work

The winning system of WMT’19 Biomedical com-
petition for en-pt and pt-en translation tasks (Soares
and Krallinger, 2019a) is a Neural Machine Trans-
lation (NMT) system. They used OpenNMT-py to
train a transformer model on seven parallel corpora.
However, differently from our models, their model
was trained from scratch.

Recent works (Peters et al., 2018; Devlin
et al., 2018) have shown the advantages of us-
ing pre-trained models for tasks such as question-
answering and text classification. The intuition is
to allow the network to use information from pre-
training language representations to increase the
performance on specific tasks.

Edunov et al. (2019) evaluated the use of a
pre-trained encoder-decoder model for translation.
Both encoder and decoder weights were tied, but
they were pre-trained on different languages. This
is an expensive strategy for techniques that use a
trainable tokenizer, such as SentencePiece (Kudo
and Richardson, 2018), because it is necessary to
re-train the entire model if the vocabulary changes,
as new token embeddings need to be learned.

Many commercial systems, such as Google
Translate (GT) and Amazon Translate (AT), have
an excellent performance on MT, but they are ex-
pensive if one needs to translate vast amounts of
text. For example, we estimate that it would cost
50,000 USD to translate the 20 million sentences
of ParaCrawl using GT. Unfortunately, no commer-
cial system that we are aware of provides metric
scores on public datasets that would allow us to
compare their systems to ours.

3 Methods

We proposed two main strategies for translating:
using a T5 model pre-trained on a Portuguese cor-
pus and adapting the original T5 tokenizer to work
with Portuguese texts.

3.1 Pre-trained Language Model

We evaluated four different scenarios: English-
Portuguese translation with T5 pre-trained on a
Portuguese corpus; English-Portuguese transla-
tion with T5 pre-trained on an English corpus;
Portuguese-English translation with T5 pre-trained
on an English corpus; Portuguese-English transla-
tion with T5 pre-trained on a Portuguese corpus.

These variations allow us to evaluate how the

language used during pre-training affects the trans-
lation’s performance.

3.2 Adaptation of the English tokenizer to
Portuguese

Here we investigate if we can adapt to the English-
Portuguese translation task a model already pre-
trained on languages other than Portuguese.

We observe that using a non-Portuguese tok-
enizer can cause translation problems, since some
Portuguese characters cannot be represented, such
as letters with the tilde accent (e.g. ’ã’). To fix
this issue, we propose an adaptation of the origi-
nal T5 tokenizer using a pre-processing and post-
processing strategy. The tokenizer’s adaptation
allows it to represent all possible characters in the
Portuguese language.

We can divide this adaptation into two stages:
Token Completion and Word Regrouping. The first
stage allows the use of Portuguese special charac-
ters, such as accented vowels, whereas the second
stage merges these extra tokens back to form cor-
rect words.

3.2.1 Token Completion Stage
In this step, we start adding to the tokenizer Por-
tuguese accented vowels that were not present in
it. We ended up adding fourteen of those charac-
ters, as well as the word ’não’, which is the most
common word in the ParaCrawl pt-en dataset.

A list of all added tokens is available in Table 1.
The addition of these tokens allowed the model to
learn and generate them in en-pt translation.

This is also an inexpensive method for increas-
ing the number of words that can be represented
since only the embeddings of the new tokens have
to be learned from scratch. The existing token
embeddings, which represent the majority of the
non-Portuguese tokens, were already learned dur-
ing the pre-training phase and can be reused in the
fine-tuning phase.

We show in Table 2 some encoding and decoding
examples after adding tokens to the tokenizer.

ı̀ ò Á Í Ó Ú ı́ ú Â Ê Ã Õ ã õ não

Table 1: List of tokens added to the T5 tokenizer by
our adaption method.

3.3 Word Regrouping Stage
When adding tokens directly to the tokenizer, the
HuggingFace’s (Wolf et al., 2019) SentencePiece
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Figure 1: The text-to-text framework used by T5. The purple boxes and red connections represent the task used in
this work. Figure adapted from (Raffel et al., 2019).

Tokenizer without additional Port. tokens
original→ after encoding/decoding
eu gosto de arroz→ eu gosto de arroz
eu não como→ eu n ? o como
indignação completa→ indignaç ? o
completa
Tokenizer with additional Port. tokens
original→ after encoding/decoding
eu gosto de arroz→ eu gosto de arroz
eu não como→ eu não como
indignação completa→ indignaç ã o
completa

Table 2: Comparing tokenizer results before and after
adding the Portuguese tokens.

implementation used in our work interprets the
result as a new complete token, i.e., not part of a
word. For example, the word ’pão’ is broken into
three different tokens ’p’ ’ã’ ’o’.

In this step, we regroup the added tokens of vow-
els with accents separated erroneously by the to-
kenizer. We find in the translated text all tokens
added in the Token Completion step, and merge
them with their neighboring words.

In Figure 2, we illustrate our algorithm.

4 Datasets

We trained our models using six different datasets,
and we evaluate our system on two datasets: the
WMT19 Biomedical Translation Task dataset and
a subset of 99,000 sentence pairs of the ParaCrawl
dataset. We also present the results of our submis-
sion to the WMT20 Biomedical Translation Task
competition.

Figure 2: An example of separated tokens merged back
into a single word. Our algorithm searches for an iso-
lated special token (in this case, ’ã’) and merges it with
its neighbors. It can be merged at the beginning, mid-
dle, or end of a sentence.

4.1 Training Datasets
We have two different strategies for training our
models depending on the test datasets. For the eval-
uation on the ParaCrawl dataset, we only trained
the models on ParaCrawl data. ParaCrawl is a pub-
lic parallel corpus of many European languages
available online. Its v6.0 version contains approx-
imately 20M English-Portuguese sentence pairs.
Due to our small computational budget, we ran-
domly selected approximately 5M pairs for train-
ing.

For WMT19 and WMT20 Biomedical Transla-
tion Tasks, we train our models on the ParaCrawl
dataset as well as on the following datasets, which
are mostly of the same domain as WMT’s Biomed-
ical data:

• EMEA Corpus (Tiedemann, 2012): A parallel
corpus of European Medicines Agency docu-
ments.

• CAPES Parallel Dataset (Soares et al., 2018b):
A parallel corpus of theses and dissertations
abstracts collected from the CAPES website.

• Scielo Dataset (Soares et al., 2018a): A paral-
lel corpus of scientific articles collected from
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SciELO.

• JRC-Acquis (Steinberger et al., 2006): A par-
allel corpus of European Union (EU) docu-
ments in all official EU languages.

• Biomedical Domain Parallel Corpora (Névéol
et al., 2018): A repository of the challenge that
contains links to different parallel corpora. We
used the Medline, Scielo, and ReBEC training
datasets.

Besides being of the same domain as WMT’s
Biomedical task, an advantage of these datasets
over ParaCrawl is that they are in Brazilian Por-
tuguese, such as most of WMT’s Biomedical data.
The number of sentence pairs used for training
from each dataset is shown in Table 3.

Corpus Sent. Pairs
EMEA 1,082,144
CAPES 1,157,610
Scielo 2,828,916
JRC-Acquis 1,236,846
Biomedical Domain Corpora 331,937
Total 6,637,453

Table 3: Number of sentence pairs of each domain-
specific dataset used to train our models for the
WMT19 and WMT20 Biomedical tasks.

4.2 Testing Datasets

We created a general-domain test set from the
ParaCrawl dataset. We begin by randomly select-
ing 128,000 sentence pairs from its 20M pairs.
ParaCrawl is originally deduplicated, but similar
sentences still might exist in our split of the training
and test sets. Thus, we apply as stricter dedupli-
cation process to increase the quality of our test
set. To increase the speed in verifying similarity
of sentence pairs, we used MinHash and Locality-
Sensitive Hashing (LSH) (Rajaraman and Ullman,
2011) to compare sentences of training and test
datasets. We set a Jaccard similarity threshold to
0.7, i.e., all sentences with similarity greater than
0.7 were discarded from the test set. LSH found
28,913 sentences in the test set with a similarity
score above 0.7 of sentences in the training set.
The final test set ended up having 99,087 sentence
pairs, which we called ParaCrawl 99k test set. This
dataset and its corresponding translations using GT
are available in our GitHub repository.

We also evaluated our system on the WMT19
Biomedical Shared Task test set. This is a dataset
composed of approximately 500 parallel sentences
of Medline abstracts.

Finally, we submitted our results to the WMT20
Biomedical Shared Task competition. The WMT20
test set has 544 parallel sentences for the English-
Portuguese translation task and 498 sentences for
the Portuguese to English task.

5 Experiments

We conducted several experiments using different
configurations of T5. We divided the experiments
into two groups: model hyperparameter optimiza-
tion and different pre-training studies. All experi-
ments were performed on a desktop computer with
an Nvidia 8GB RTX 2070 Super, 32 Gb RAM
memory, and a 4-core Intel processor running on
Ubuntu 18.04. We used PyTorch (Paszke et al.,
2017), HuggingFace Transformer, and Pytorch-
Lightning (Falcon, 2019) frameworks to train and
evaluate our models.

5.1 Model Hyperparameter Optimization

We tuned the hyperparameters using the original
T5 checkpoint available in the HuggingFace library.
This model was pre-trained on a corpus whose ma-
jority of documents were in English with a small
proportion of German, French, and Romanian doc-
uments. We first conducted a small training using
100k sentence pairs and evaluated on another 50k
sentence pairs to determine some hyperparame-
ters of the T5 model, such as batch size and the
maximum length of tokens in the source and tar-
get sentences. We also evaluated the optimizer
and found the best convergence with the AdamW
Optimizer (Loshchilov and Hutter, 2017). All hy-
perparameters used are in Table 4. With this con-
figuration, we evaluated the performance of adding
Portuguese-only characters to the tokenizer in com-
parison to using the original T5 tokenizer. The
results are available in Table 5. Our proposed to-
kenizer adaption resulted in an improvement of
almost 5 BLEU points over the original tokenizer
in the en-pt translation task. All BLEU scores
reported in this paper were generated using Sacre-
BLEU (Post, 2018) with “intl” tokenization.

After finding these hyperparameters, we ana-
lyzed the trade-off between model sizes in a subset
of the ParaCrawl dataset of 1M sentence pairs and
evaluated them in a 150k sentence subset. We did
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Hyperparameters Values
Batch Size 256
Source Sequence Length (SSL) 96
Target Sequence Length (TSL) 160
Learning Rate 5 · 10−3

eps 1 · 10−5

Table 4: Hyperparameters used for training the mod-
els.

Translation Type BLEU
Original T5 tokenizer 31.15

+ Portuguese characters 35.95 (+4.8)

Table 5: Effects in performance of using our adaption
of the original T5 tokenizer to the English-Portuguese
translation task. Numbers are from ParaCrawl’s 99k
en-pt test set.

not use any sentence from the test set. The results
of this analysis are reported in Table 6. We trained
the T5-small and T5-base models with different
epoch sizes. Training 3 epochs of T5-small takes
almost the same time as training one epoch with a
T5-base model.

The performance would possibly increase if we
used large models such as T5-large, T5-3B, or T5-
11B. However, we could fit only the T5-base model
in our 8GB GPU. We used batch accumulation to
achieve batches of size 256 as the T5-small can
only handle batch size 4 in 8GB. Thus, one of
the contributions of this work is to show that it is
possible to train translation models that are close
to the state of the art on a relatively inexpensive
hardware.

We also conducted experiments changing SSL
and TSL lengths. We found that it is not necessary
to set large TSL and SSL values, e.g., 256 for both,
but it is essential to choose a value that can repre-
sent the distribution of target and source sequences.
In later sections, we conduct experiments with TSL
and SSL 140 and 160, respectively, since 99.8 %
of our training dataset is shorter than these values.

All experiments in the following sections using
Tokenizer’s Adaptation Steps (3.2) were performed
using the best pre-processing and post-processing
strategies presented in Table 6.

5.1.1 Pre-training Studies

We also evaluated the effects of pre-training the
model in a corpus of the same language of the target
language. The intuition here is that it would be eas-

Translation Type Sacre
BLEU

Adding Top 25 words in Port.
+ T5-small + 3 epochs 43.03
Adding tokens of Table 1 in Port.
+ T5-small + 3 epochs 43.48
Adding tokens of Table 1 in Port.
+ T5-base + 1 epoch 44.52

Table 6: Effects in performance of different strategies
for adapting the original T5 tokenizer to Portuguese.
Numbers are from our dev set of ParaCrawl.

ier for the model to learn the target language than
having previous knowledge of the source language.
Since the tokenizer mainly has tokens of one of the
two languages, it is better to have a smaller quantity
of tokens to learn. This is because, if the Senten-
cePiece tokenizer does not have the word in its
vocabulary, it will use subtokens to form the origi-
nal word. For example, the sentence ’They like to
drink coconut water’ is represented by six tokens
in English SentencePiece and thirteen tokens in
Portuguese SentencePiece. We are not evaluating
here the possibility to train the pre-training model
from scratch with both languages together, as it is
not possible with our modest hardware setup.

For the Portuguese pre-trained model, we used
PTT5-base model (Carmo et al., 2020) with Por-
tuguese tokenizer. PTT5 was pre-trained on
BrWAC, a large corpus of Brazilian Portuguese
webpages. PTT5 started training using T5’s offi-
cial published weights as initial weights, so it also
uses English learning in its model. For the English
pre-trained model, we used the Huggingface imple-
mentation of T5 with its default tokenizer, which
is based on SentencePiece.

In Table 7, we compare both models with Google
Translate in the ParaCrawl 99k test set. Both mod-
els perform similarly in the Portuguese-English
translation task, but the Portuguese pre-trained
model gives a better result than the English pre-
trained model in the English-Portuguese translation
task. We are on par with Google Translate on en-pt,
but a few BLEU points below on pt-en.

6 WMT19 and WMT20 Results

We now evaluate our models on the WMT19
Biomedical Translation Task and the results of our
best models and official submission to the WMT20
Biomedical Translation Task.
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pt-en en-pt
Google Translate API 51.20 45.17
Ours - English pre-training 46.49 44.56
Ours - Portuguese pre-training 46.35 45.44

Table 7: BLEU comparison between GT and our ap-
proach in Paracrawl 99k test set.

In Table 8, we show WMT19 results of our mod-
els as well as the winning submission of WMT19
Biomedical tasks (Soares and Krallinger, 2019b)
and the MarianMT (Junczys-Dowmunt et al., 2018)
implementation available on the HuggingFace’s
Transformer Library.1 MarianMT’s translation uses
a multilingual Romance model, which is only pos-
sible to set the target language. This explains Mari-
anMT’s low performance on Portuguese to English
translation since the model has to infer that the in-
put sentence is in Portuguese. Models pre-trained
on Portuguese obtained the best performance in
both translation tasks. Notably, we achieved an im-
provement of +6.31 BLEU points in the English to
Portuguese translation task by using the Portuguese
pre-trained model and +9.75 with an increase of
target and source sequence lengths. We also ob-
tained an improvement of +0.62 in the Portuguese
to English translation task using the Portuguese
pre-trained model and +2.27 when increasing tar-
get and source sequence lengths.

We believe that the improvement of Portuguese
pre-training models is associated with PTT5’s train-
ing strategy that uses English pre-trained weights
as initial weights. The intuition is that PTT5 carries
information from the English model too.

The results for WMT20’s challenge are in Ta-
ble 9. Our submission is 2.17 BLEU points below
the winning team in Portuguese-English, but it is
4.48 BLEU points higher than the baseline. For the
English-Portuguese task, our results are below the
baseline. That can be attributed to not using the Por-
tuguese pre-trained model, which was not available
at the time of our submission. As noted above, we
achieved a large improvement on WMT19 when
we switched from the English to the Portuguese
pre-trained model. Therefore, we assume that a
Portuguese pre-trained model would obtain supe-
rior results to the baseline on WMT20.

We also evaluated our Portuguese pre-training
models with the best participants submissions of

1https://huggingface.co/transformers/
model_doc/marian.html

pt-en en-pt
MarianMT 27.91 47.44
BSC
(Soares and Krallinger, 2019b) 39.90? 48.18?

Ours - English pre-training 45.89 39.31
Ours - Portuguese pre-training 46.51 45.62

+ TSL=256 and SSL=256 − 49.06
+ TSL=140 and SSL=160 48.16 −

Table 8: BLEU scores on the test set of WMT19
Biomedical Shared Task. Portuguese pre-training was
tested in three different scenarios: one with default hy-
perparameters available in Table 4 and two with dif-
ferent Target Sequence Length (TSL) and Source Se-
quence Length (SSL). ?This is the official submission
score.

Team Names pt-en en-pt
Sheffield 48.16 44.57
Unicamp DL 45.99? 38.08?

baseline 41.51 39.77

Table 9: BLEU scores on WMT20’s automatic evalua-
tion. ?Since the Portuguese T5 model was not available
at the time of our submission, we used the original (En-
glish) T5. Hence, results for en-pt and pt-en could be
improved by switching to the Portuguese pre-trained
model.

the WMT20 Biomedical Shared Task. The results
of this comparison are in Table 10 and are slightly
different from Table 9 since we are using Sacre-
BLEU as the evaluation script. Our best transla-
tion models are 1.3-1.5 BLEU points bellow the
winning submission (Sheffield) in both translation
directions (pt-en and en-pt).

Team Names pt-en en-pt
Unicamp DL 48.67 40.18
Sheffield 52.25 46.69
Ours - Portuguese pre-training

+ TSL=256 and SSL=256 − 45.33
+ TSL=140 and SSL=160 50.75 −

Table 10: BLEU scores on the test set of WMT20
Biomedical Shared Task.

7 Conclusions and Future Work

We show that it is possible to develop English-
Portuguese translation models close to the state of
the art using modest hardware. Despite not reach-
ing the same level of performance of Google Trans-
late on pt-en, the fact that our system was devel-
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oped mostly by the first author on its personal com-
puter shows that implementing high-quality ma-
chine translation systems has become possible for
anyone, including small companies and research
labs. We also cannot guarantee that Google did not
use our testing data for training.

We presented our submission strategies for the
WMT20 Biomedical Translation Shared Task using
a T5 model. We show that a simple adaption of the
original T5 tokenizer to the Portuguese language
largely improves the translation quality and does
not require any further pre-training, which is ex-
pensive. However, we achieve the best results with
models pre-trained on Portuguese.

As directions for future work, we plan to experi-
ment with larger models and models pre-trained on
both Portuguese and English languages simultane-
ously, as recent work showed that this a successful
strategy (Wu et al., 2016; Arivazhagan et al., 2019).
We believe that we could improve the translation
results with larger and more complex models (Lep-
ikhin et al., 2020).
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Abstract

This paper describes the ADAPT Centre’s sub-
missions to the WMT20 Biomedical Transla-
tion Shared Task for English-to-Basque. We
present the machine translation (MT) systems
that were built to translate scientific abstracts
and terms from biomedical terminologies, and
using the state-of-the-art neural MT (NMT)
model: Transformer. In order to improve our
baseline NMT system, we employ a number of
methods, e.g. “pseudo” parallel data selection,
monolingual data selection for synthetic cor-
pus creation, mining monolingual sentences
for adapting our NMT systems to this task, hy-
perparameters search for Transformer in low-
resource scenarios. Our experiments show
that systematic addition of the aforementioned
techniques to the baseline yields an excellent
performance in the English-to-Basque transla-
tion task.

1 Introduction

The ADAPT Centre participated in the Biomedical
Translation Shared Task of the Fifth Conference of
Machine Translation (WMT20). This task is about
evaluating systems on the translation of documents
from the biomedical domain. The test data consists
of biomedical abstracts and terminologies. The task
addresses a number of language pairs, and we par-
ticipated in the English-to-Basque translation task.
To make the readers familiar with the biomedical
translation task and to understand the challenges of
this task, we show a couple of examples from the
blind test set and two terminological expressions
from terminology test set in Table 1.

For building our MT systems we used the Trans-
former model (Vaswani et al., 2017). Our strategies
to build the competitive MT systems for the task
roughly include (i) pseudo in-domain parallel and
monolingual data selection, (ii) augmenting train-
ing data (Sennrich et al., 2016a; Zhang and Zong,
2016; Burlot and Yvon, 2018; Poncelas et al., 2018;
Caswell et al., 2019; Chen et al., 2019), (iii) mining

(1) No cardiovascular risk factor differences
were found in terms of age.

(2) Congenital tumors show a different pattern
than tumors in other pediatric ages.

(3) Open bite of thyroid gland, sequela
(4) poisoning by oxytocic drugs, undetermined,

subsequent encounter

Table 1: Sentences ((1) and (2)) from the blind test set
and sample terminological expressions ((3) and (4)).

monolingual sentences to adapt our NMT systems
to the task, and (iv) finding the optimal hyperpa-
rameter configuration for Transformer in this low-
resource settings.

The remainder of the paper is organized as fol-
lows. In Section 2, we present our methods, and
Section 3 details of the data sets used. Section 4
presents the results and discussions, while Section
5 concludes our work with avenues for future work.

2 Our Approaches

2.1 Selecting pseudo In-domain Parallel
Sentences

The shared task organisers released parallel training
data with a limited number of in-domain examples
(only 24,247). The organisers also provided the par-
ticipants with moderate-sized three out-of-domain
corpora (totalling to approximately 770K bitexts).
In an attempt to improve the quality of our base-
line MT systems, we extracted those sentence-pairs
from the out-of-domain corpora that are similar
to the styles and domain of the texts we aim to
translate, and were used in system building.

2.1.1 Selection using Bilingual Cross-Entropy
Difference

We followed the state-of-the-art sentence selec-
tion approach of Axelrod et al. (2011) that extracts
pseudo in-domain sentences from out-of-domain
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corpora using bilingual cross-entropy difference
over each side of the corpus (source and target).
The bilingual cross-entropy difference is computed
by querying in- and out-of-domain (source and tar-
get) language models.

2.1.2 Selection using Terminology
Terms are usually indicators of the nature of a do-
main and plays a critical role in domain-specific
MT (Haque et al., 2020). Sentences that contain
domain terms are likely to be a domain text. How-
ever, a ambiguous term could have more than one
potential meaning. As an example of lexical ambi-
guity, ‘cold’ has several possible meanings in the
Unified Medical Language System Metathesaurus
(Humphreys et al., 1998) including ‘common cold’,
‘cold sensation’ and ‘cold temperature’ (Stevenson
and Guo, 2010). We can see that ‘cold’ could have
very different meanings depending on the context
in which it appears. Moreover, a polysemous term
(e.g. ‘cold’) could have many translation equiva-
lents in a target language.

In our second sentence selection approach, we
mine those sentences from large out-of-domain or
general domain corpus that contain domain terms.
As pointed out above, an extracted sentence that
contain a domain term may not represent the de-
sired domain; however, the training examples that
include such extracted sentences may play crucial
role in minimising lexical selection errors as far as
terminology translation is concerned (Haque et al.,
2020).

To this end, we exploit the approach of Rayson
and Garside (2000) and Haque et al. (2014, 2018)
in order to automatically identify terms in the in-
domain texts. The idea is to identify those words
which are most indicative (or characteristic) of
the in-domain corpus compared to a reference cor-
pus. Haque et al. (2014, 2018) used a large cor-
pus which is generic in nature as a reference cor-
pus. We adopted their approach and used a large
generic corpus in order to identify terms in the
in-domain source (English) and target (Basque)
corpora. Given the lists of source and target terms,
we mine sentences independently from the source-
and target-sides of the out-of-domain bilingual cor-
pus. We select those sentence-pairs from the out-
of-domain bilingual corpus whose source or target
sides contain at least one domain term.

2.2 Training Data Augmentation

The data augmentation methods in NMT (Sen-
nrich et al., 2016a; Zhang and Zong, 2016; Burlot
and Yvon, 2018; Bogoychev and Sennrich, 2019;

Caswell et al., 2019; Chen et al., 2019), which usu-
ally employ the unlabeled monolingual data in ad-
dition to limited bitexts, can positively impact trans-
lation quality and are very popular among the MT
developers and researchers (Barrault et al., 2019).
In other words, use of synthetic data to improve
a NMT system is nowadays a common practice,
especially in the under-resource scenarios.

The synthetic training data whose source-side
sentences are original is more effective for domain
adaptation. The learning method that uses such
training data is called self-training (Ueffing et al.,
2007). The synthetic training data whose target-
side is original is more effective for domain text
translation and generation of fluent translations
(Sennrich et al., 2016a). Many studies (e.g. Chen
et al. (2019); Bogoychev and Sennrich (2019)) have
shown that self-training and back-translation can
be complementary to each other.

In this task, in order to improve our baseline
Transformer models, we augmented our training
data with both the target- and source-original syn-
thetic data. As in Caswell et al. (2019), in order
to let the NMT model know that the given source
is synthetic, we tag the source sentences of the
synthetic data with the extra tokens.

Iterative generation and training on synthetic
data can yield increasingly better NMT systems,
especially in low-resource scenarios (Hoang et al.,
2018; Chen et al., 2019). Since our baseline source-
to-target and target-to-source MT systems are al-
ready excellent in quality, those were used to trans-
late the monolingual data.

As in Section 2.1, we extract those sentences
from large monolingual data that are similar to the
styles of texts we aim to translate. We used the ex-
tracted pseudo in-domain monolingual sentences to
produce the source- and target-original synthetic bi-
texts. As for the NMT training, we believe that syn-
thetic parallel data created from pseudo in-domain
sentences could be the better alternatives than those
selected randomly.

2.2.1 Selection using Language Model
Perplexity

Sentences of a large monolingual corpus similar to
the in-domain sentences when selected based on
the perplexity according to an in-domain language
model were found to be effective in MT (Gao et al.,
2002; Yasuda et al., 2008; Foster et al., 2010; Ax-
elrod et al., 2011; Toral, 2013). Accordingly, we
select “pseudo” in-domain sentences from a large
monolingual data based on their perplexity scores
accoring to the in-domain language model, which
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are then translated to form synthetic training data.

2.2.2 Selection using Terminology
We mine “pseudo” in-domain sentences from large
monolingual corpora following the method de-
scribed in Section 2.1.2. We select those sentences
from the monolingual corpus that contain at least
one domain term. For mining monolingual sen-
tences we create an efficient Trie structure given
the large monolingual data. The idea is to store in-
dices of the sentences (i.e. we restrict this number
to 50) for each n-gram (upto trigram) of the corpus.
Given the domain terms of the in-domain text, we
can instantly retrieve the sentences from corpus.

2.3 Mining Sentences for Fine-tuning
Chinea-Rı́os et al. (2017) demonstrated that in case
of specialised domains or low-resource scenarios
where parallel corpora are scarce sentences of a
large monolingual data that are more related to
the test set sentences to be translated could be ef-
fective for fine-tuning the original general domain
NMT model. They select those instances from
large monolingual corpus whose vector-space rep-
resentation is similar to the representation of the
test set instances. The selected sentences are then
automatically translated by an NMT system built
on a general domain data. Finally, the NMT system
is fine-tuned with the resultant synthetic data. In a
similar line of research, it has also been shown that
an NMT system built on general domain data can
be fine-tuned using just a few sentences (Farajian
et al., 2017, 2018; Wuebker et al., 2018; Huck et al.,
2019).

2.3.1 Mining Source Language Monolingual
Sentences

Since English–Basque is a low-resource language-
pair and have a little amount of bitexts pertaining
to the targeted domain (biomedical), we followed
Chinea-Rı́os et al. (2017) in order to mine those sen-
tences from large monolingual data that could be
beneficial for fine-tuning the original NMT models.
In other words, we followed the method described
in Section 2.1.2 in order to extract sentences form
large monolingual corpus. As above, we identify
terms in the test set (i.e. scientific abstracts of Med-
line) to be translated. As for the sub-task where
the task is to translate the domain terms from En-
glish to Basque, we observed that many termino-
logical entries are in fact a part of full sentences
(e.g. ‘person on outside of car injured in collision
with pedestrian or animal in traffic accident, ini-
tial encounter’) and contain general domain tokens.
Therefore, we treat the terminological entries as

normal sentences and translate them similarly to
the Medline abstracts.

In addition to following the standard terminol-
ogy extraction methods of Haque et al. (2014, 2018)
who used a large corpus which is generic in nature
as a reference corpus, in a second setup, we used ei-
ther side of the authentic training bitexts on which
the NMT systems were trained as the reference cor-
pus. The intuition is to extract those terminological
expressions from the test set that do not occur or
rarely occur in the training data and are more in-
dicative of the test corpus. We merged the two sets
of terms extracted following the two setups above.
Given the resultant list of terms, we mine sentences
from monolingual corpus. The source sentences
that have been mined are translated with the MT
system in order to form synthetic bitexts to be used
for adaptation.

2.3.2 Mining Bitexts
Farajian et al. (2017, 2018) exploit the similarity
between the source sentences of the training exam-
ples and each test sentence and update their generic
NMT model on-the-fly on a set of most similar
training examples. Like them, we mine training
examples form the bilingual training corpus. How-
ever, unlike them, our extraction process is driven
by the domain terms appearing in the test set which
is to be translated. In sum, we follow the bilin-
gual sentence-pair extraction method described in
Section 2.1.2 given the test set. For extraction we
considered both in-domain and out-of-domain par-
allel corpora. The extracted bitexts are merged
with the generated synthetic segment-pairs above
(cf. Section 2.3.1). As in Chinea-Rı́os et al. (2017),
the best NMT system is finally fine-tuned on the
combined train data.

2.4 Tuning Hyperparameters for
Transformer

The NMT systems are Transformer models
(Vaswani et al., 2017). To build our NMT systems,
we used the MarianNMT (Junczys-Dowmunt et al.,
2018) toolkit. The tokens of the training, evaluation
and validation sets are segmented into sub-word
units using Byte-Pair Encoding (BPE) (Sennrich
et al., 2016b). We found that performance of the
Transformer model more-or-less similar whether
BPE is applied individually or jointly on the source
and target languages. We kept the former setup, i.e.
BPE is applied individually on the source and target
languages. Recently, Sennrich and Zhang (2019)
demonstrated that commonly used hyperparame-
ter configuration do not lead to the best results in
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low-resource settings. Accordingly, we carried out
a series of experiments in order to find the best hy-
perparameter configuration for Transformer in our
low-resource setting. In particular, we played with
some of the hyperparameters, and found that the
following configuration lead to the best results in
our low-resource translation settings: (i) the BPE
vocabulary size: 6,000, (ii) the sizes of the en-
coder and decoder layers: 4 and 6, respectively, and
(iii) learning-rate: 0.0003. The models are trained
with the Adam optimizer (Kingma and Ba, 2014),
reshuffling the training corpora for each epoch. As
for the remaining hyperparameters, we followed
the recommended best setup from (Vaswani et al.,
2017). The early stopping criteria is based on cross-
entropy; however, the final NMT system is selected
as per the highest BLEU score on the validation set.
The beam size for search is set to 12. We make our
final NMT model with ensembles of 8 models that
are sampled from the training run.

3 Data Used

This section presents the data sets which were used
for system building. We used the bilingual data
provided by the WMT20 Biomedical Shared Task
organisers only. As for English monolingual cor-
pus, we used all in-domain texts released by the
organisers including the English side of the bilin-
gual corpora of the language-pairs. As for Basque
monolingual data, organisers provided us with a
tiny set of in-domain sentences. Since the partic-
ipants are allowed to use external data, we used
the CommonCrawl1 corpus for Basque. Table 2
presents the corpus statistics. The out-of-domain

Bilingual
in-domain sentences words (EN) words (EU)
train 24,247 201,583 205,334
development 2,000 16,324 16,667
out-of-domain 770,273 12,637,438 11,289,811
Monolingual (sentences)

in-domain CommonCrawl
Basque 41,151 12,583,122
English 9,015,051

Table 2: The Corpus statistics.

parallel corpora for the English-to-Basque task are
from three different sources (i.e OPUS (Tiedemann,
2012), IWSLT 2018 (Jan et al., 2018) and WMT16
IT Shared task (Bojar et al., 2016)). We merged
segment-pairs of all three data sources, and after ap-
plying cleaning scripts to the data we are left with
770K parallel segments (cf. fifth row of Table 2).

1https://commoncrawl.org/

Since the size of English in-domain monolingual
corpus is reasonably big, we did not use any En-
glish out-of-domain data for system building. In or-
der to perform tokenisation for English and Basque
texts, we used the standard tool of the Moses toolkit.
The development data released by the task organ-
isers contains 2,000 sentences (cf. fourth row of
Table 2), out of which 1,000 sentences are used
as the test set. The remaining sentences of the
development set are used for validation.

4 Experiments and Results

This section presents the performance of our MT
systems in terms of the automatic evaluation metric
BLEU (Papineni et al., 2002). Additionally, we per-
formed statistical significance tests using bootstrap
resampling methods (Koehn, 2004).

4.1 The Baseline MT System
First, we build an English-to-Basque NMT sys-
tem on the in-domain parallel corpus (cf. Table 2)
only, and we refer the MT system as Base. Note
that size of the original test set is 1,000 and its
sentences were randomly sampled from develop-
ment set released by the organisers (cf. Section
3). We evaluate Base on the original test set and
report its BLEU score in Table 3. As far as the
BLEU score on original test set is concerned, it
is excessively high. When we looked at the trans-
lations, we saw that they are nearly perfect. We

BLEU
Original test set (1,000) 91.12
test set (200) 47.14

Table 3: The BLEU scores of the basline NMT system
(Base).

checked how similar the original test set sentences
is to the in-domain training set sentences. For this,
we apply fuzzy string matching with a threshold
of 80%, and used SimString2 algorithm (Okazaki
and Tsujii, 2010) for search. We found that the
number of the non-matching sentences of the test
set is 200 (out of 1,000), and same of the devel-
opment set is 194 (out of 1,000). This indicates
that the test and development sets sentences are
very similar to those of the training set. The scores
on the original test and development sets could be
misleading for the evaluation and validation of MT
systems. Therefore, for fair evaluation we used
the non-matching sentences as the test set (200).

2http://www.chokkan.org/software/
simstring/

844



Note that the BLEU scores reported in this paper
are on this test set. The BLEU scores of Base on
the test set is reported in the last column of Table
3. Similarly, we used the non-matching sentences
of the original development set as the development
set (194).

4.2 The Improved MT Systems
We applied the pseudo in-domain bilingual sen-
tence selection strategies described in Section 2.1
to the out-of-domain bilingual data (cf. Table 2).
We first apply the bilingual cross-entropy differ-

BLEU
Base+BCED-100K 50.68
Base+BCED-150K 49.02
Base+BCED-200K 47.38
Base+BiTerm 52.19
Base+BiTerm+BCED-100K 53.07

Table 4: The BLEU scores of the NMT systems trained
on the in-domain added with the pseudo in-domain
training data.

ence (BCED) measure described in Section 2.1.1.
The so-called pseudo in-domain parallel sentences
that were extracted from the out-of-domain data
were appended to the in-domain training data, and
the BLEU scores of the NMT systems trained on
the combined training data are shown in the top
rows of Table 4. As can be seen from the ta-
ble, when the size of pseudo in-domain data is
100K, the MT system (Base+BCED-100K) pro-
duces 50.68 BLEU on the test set (a 3.54 BLEU
points corresponding to 7.5% relative gain over the
Base).

Next, we apply our second method (cf. Sec-
tion 2.1.2), and the pseudo bilingual corpus ex-
tracted following this method contains 294,998
segment-pairs. As above, we append this data to
the in-domain data. The BLEU score of MT system
(Base+Term) built on the combined data is reported
in Table 4. We see from the table that this strategy
provides us a 5.05 BLEU points (corresponding to
10.7% relative) gain over the baseline.

When we merge these two pseudo in-domain
parallel data with the real in-domain data and
train the MT model on the combined data, we
further achieved a moderate BLEU gain over the
baseline (a 5.95 BLEU points corresponding to
12.6% relative gain). We used this MT system
(Base+BiTerm+BCED-100K) for further experi-
mentation, which, from now on, is referred to
Base2.

BLEU
Base2+BT1 52.72
Base2+BT2 53.65
Base2+BT3 53.70
Base2+FT1 52.02
Base2+FT2 51.45
Base2+BT3+FT1 52.76

Table 5: The BLEU scores of the NMT systems trained
on augmented training data.

As pointed out above, we augment our bilingual
training data with forward and back-translated syn-
thetic data. The BLEU scores of the MT systems
trained on the augmented training data are reported
in Table 5.

First, we create a synthetic train data by back-
translating the tiny monolingual in-domain training
data, and the BLEU score of the MT system built
on the training data that includes this synthetic
data is shown in the second row of Table 5 (i.e.
Base2+BT1). This data could not improve Base2.

We extract 275,125 sentences from Basque
monolingual data following the method described
in Section 2.2.2 (i.e. using the list of terminology
extracted from in-domain corpus), and created syn-
thetic bitexts as above. We further add these syn-
thetic bitexts to the training data.3 The BLEU score
of the MT system trained on this data (Base2+BT2)
is shown in Table 5. This MT system brings about
a 0.58 BLEU points improvement over Base2, and
this time, the improvement is not statistically sig-
nificant.

We further select top 200K target sentences
(Basque) based on perplexity scores following the
method described in Section 2.2.1. Note that many
extracted sentences overlap with those extracted
using terminology. We obtained the similar BLEU
score on the test set when the synthetic data that
is created from this data is further appended to
training data (i.e. Base2+BT3).

As mentioned above, we have large monolingual
in-domain corpus for English (cf. Table 2). There-
fore, we directly used the in-domain English sen-
tences for self-learning. We carried out a number
of experiments with adding the source-original syn-
thetic sentences with the original training data, e.g.
Base2+FT1 and Base2+FT2 refer to 200K and 1M
synthetic segment-pairs. We started doing forward
translation with the Medline text. The self-training
strategy could not surpass the best-performing MT

3Note that this training data refers the one that corresponds
to Base2+BT1.
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system, i.e. Base2+BT3.

4.3 Fine-tuning the best NMT systems
This section presents the MT systems that were
prepared by the adaptation technique described
in Section 2.3. We select Base2+BT3 and
Base2+BT3+FT1 for adaptation. Following the
method described in Section 2.3.1 we mine the
source monolingual sentences from the large En-
glish in-domain corpus given the list of terms ex-
tracted from the test set. Then, synthetic data
is created by translating the source sentences
by the source-to-target MT systems. We follow
the method described in Section 2.3.2 and mine
sentence-pairs from in- and out-of-domain bitexts
given the list of terms extracted from the test set.
The synthetic data and extracted sentence-pairs are
merged to form training data for adaptation. Finally,
the best MT systems were fine-tuned on this train-
ing data. The BLEU scores of the adapted MT sys-
tems on the test set are reported in Table 6. When
we compare the original MT systems reported in
Table 5 with the adapted MT systems, we see that
(i) the adapted version of Base2+BT3 produces
a 1.1 BLEU points (corresponding to 2.05% rela-
tive) improvement over Base2+BT3, and (ii) the
same of Base2+BT3+FT1 produces a 1.51 BLEU
points (corresponding to 2.87% relative) improve-
ment over Base2+BT3+FT1. The improvements
are statistically significant.

BLEU
Base2+BT3 54.80
Base2+BT3+FT1 55.21

Table 6: The BLEU scores of the adapted MT systems.

As above, we create the adapted MT systems
for the blind test set and terminology. Then, we
translate the blind test set sentences and termi-
nological entries with the adapted MT systems
(Base2+BT3, Base2+BT3+FT1). For our third
submission we chose a non-adapted MT system,
Base+BiTerm+BCED-100K (cf. Table 4).

In Table 7, we show the BLEU scores of MT
systems on the blind test sets. As for abstract trans-
lation, Base+BiTerm+BCED-100K is found to be
the best system. This system earned us the third
position in the task. For the evaluation of terminol-
ogy translation, in addition to BLEU, the organis-
ers used the accuracy metric which relies on strict
matches between ground truth and predictions (cf.
Table 7). Base2+BT3 and Base2+BT3+FT1 pro-
duce the best BLEU and accuracy scores, respec-

BLEU
Base+BiTerm+BCED-100K 8.67
Base2+BT3 (adapted) 8.25
Base2+BT3+FT1 (adapted) 8.08

Acc. BLEU
Base+BiTerm+BCED-100K 0.73 70.83
Base2+BT3 (adapted) 0.75 72.39
Base2+BT3+FT1 (adapted) 0.76 71.79

Table 7: Performance of our submitted MT systems
in the abstract (top 3 rows) and terminology (bottom
3 rows) translation tasks.

tively, on the terminology test set. Our systems
earned us the second position in the terminology
translation task.

5 Conclusion

This paper presents the ADAPT system description
for the WMT20 Biomedical Translation Shared
Task. We participated in the English-to-Basque
translation task. The task is to translate scientific
abstracts and terms from biomedical terminologies.
We aimed to build a competitive translation system
for this task. For this, we applied various strategies,
e.g. selecting monolingual and bilingual texts that
are similar to the in-domain data, mining monolin-
gual sentences, applying adaptation technique for
adapting the neural MT models to the task, hyper-
parameters search. We found that our strategies
to improve the baseline MT system were effective
and yields excellent performance.

This paper demonstrated a novel adaptation ap-
proach for translating domain texts. This method
is found to be effective in this translation task. In
the future, we aim to test the on-the-fly adaptation
method (Farajian et al., 2017, 2018) to translate
domain texts.
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Abstract

This paper reports system descriptions for
FJWU-NRPU team for participation in the
WMT20 Biomedical shared translation task.
We focused our submission on exploring the
effects of adding in-domain corpora extracted
from various out-of-domain sources. Systems
were built for French to English using in-
domain corpora through fine tuning and selec-
tive data training. We further explored BERT
based models specifically with focus on effect
of domain adaptive subword units.

1 Introduction

In this paper, we present Neural Machine Transla-
tion (NMT) systems developed by Fatima Jinnah
Women University for participation in WMT20,
Biomedical shared Translation task. The sys-
tems are developed for translating English/French
(EN/FR) in both directions for biomedical domain
using fairseq (Ott et al., 2019) and BERT (Devlin
et al., 2018). To tackle in-domain corpus shortage
challenge, selective data training and fine tuning
are explored. We focused our submission on in-
vestigating the effects of adding in-domain corpora
extracted from out-of-domain sources of various
domains, objective was to study the effect of do-
main non-relatedness in schemes involving data
selection through information retrieval or any sen-
tence selection method. We further explored BERT
based models specifically with focus on effect of
domain adaptive subword units.

Neural Machine Translation systems have shown
substantial growth with the ongoing introduction of
new tool kits and training techniques to support de-
velopers in training models (Bahdanau et al., 2014;
Wu et al., 2016). But the availability and cleaning
of domain related corpora to achieve terminology
advantage and fluency is still a challenge for many
researchers as the accessible corpora is relatively

small in size and comparatively noisy. In order to
improve in-domain NMT systems, out-of-domain
data is used and the most common method is to
fine tune pre trained NMT models on in-domain
data and selective data training (Hira et al., 2019).

Our last years submission presented promising
results using selective data training incorporating
data retrieved from News Commentary corpus by
building two layered RNN systems. We extend
our framework to study the quality of retrieved sen-
tences from 3 more parallel corpora. We did not
restrict to parallel data for mining biomedical sen-
tences, rather this year we included monolingual
data in our framework and studied the effect of us-
ing Back Translations (BT) in our framework. For
building NMT models we explored subword units
and report the results on using pre-trained BERT
fused embedding.

2 Data Selection Architecture

Improving translation quality is a challenging task
especially for domains where enough in-domain
parallel corpus is not available to train a good trans-
lation system. To overcome data scarcity prob-
lem, several data selection techniques have been
proposed over the years including information re-
trieval (IR) (Rauf and Schwenk, 2011), edit dis-
tances (Wang et al., 2013), cross entropy measures
(Axelrod et al., 2011) and several others. We used
the approach of relative query sentences using in-
formation retrieval to retrieve matching sentences
from general domain corpora.

French-English is not a resource scarce language
pair and has numerous parallel corpora available
for various domains. There exist sizable corpus
for the Biomedical domain to train the initial sys-
tems, but the great difference of terminologies and
language jargon in various sub domains makes it
challenging as the results of previous years bio med-
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Figure 1: Data selection Architecture.

ical tasks indicate. Parallel corpora extracted from
"other" easily available corpora, like compara-
ble corpora and monolingual corpora do help im-
prove MT performance (Abdul-Rauf and Schwenk,
2009; Abdul-Rauf et al., 2016). But, what is the
effect of the domain of the corpus used to find the
related sentences, is the question we focus on in
our data selection design.

Our aim is to study the improvements achieved
by using the sentences from different genre/domain
of corpora. However, to be able to extract size-
able amount of biomedical sentences, the cor-
pora should not be very unrelated, for example,
the Europarl corpus (Koehn, 2005) which is com-
posed of Parliament proceedings would not be
a good choice1. Our intent was to do a com-
parative study of quality of extracted sentences
from varied but yet not too far off domain cor-
pora. Thus, for mining related sentences from gen-
eral domain corpora we used Books2, News Com-
mentary3 and WikiPedia4 corpus obtained from
Open Parallel Corpus (OPUS) (Tiedemann, 2012).

1It must have some biomedical sentences from parliamen-
tary debates on health issues, but the amount will be very
little.

2http://opus.nlpl.eu/Books-v1.php
3http://opus.nlpl.eu/

News-Commentary-v14.php
4http://opus.nlpl.eu/Wikipedia-v1.0.

php

French WikiPedia5 (FrWikipediaMono) was also
used which was available as monolingual corpus
and was translated to English.

Corpus Retrieved Unique
Corpus Size Sentences Sentences

Books 127085 1235684 42827
News Commentary 209479 1244026 72011
WikiPedia 818302 1236092 105880
FrWikiPediaMono 8766978 938834 162743

Table 1: Number of sentences retrieved for each cor-
pus for top-2 using French side of Medline tiltles as
queries.

Our data selection strategy is graphically pre-
sented in figure 1. We followed the data selec-
tion approach based on IR as proposed by (Abdul-
Rauf et al., 2016). The choice of corpus to use as
queries was a critical one: queries should have max-
imum biomedical terminologies to enable target-
ing and choosing domain specific sentences from
the general domain corpora. We chose Medline
titles as queries hypothesising on the fact that the
title essentially contains the specific domain ter-
minology. We used English side of Medline ti-
tles as queries when retrieving similar sentences

5https://www.dropbox.com/s/
le4yxfijxt0uiia/frwiki-20181001-corpus.
xml.bz2?dl=0
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from English side of the corpora and French side
of Medline titles as queries for IR from French
side. We retrieved 10-best sentences and ex-
perimented with top-1, top-2 and top-3 sen-
tences as shown in section 4. Table 1 shows the
number of retrieved sentences per each corpus and
the unique sentences chosen from these to build
our models.

Corpus Sentences
In-domain training data

Ufal 2358164
Scielo 6827
EDP 2200
Medline Abstracts 51520
Medline Titles 567257

Selective IR training data

News Commentary-IR1 40645
News Commentary-IR2 60671
News Commentary-IR3 75347
Books-IR1 27938
Books-IR2 39901
Books-IR3 48291
WikiPedia-IR1 46439
WikiPedia-IR2 74595
WikiPedia-IR3 97554

Monolingual

FrWikipediaMono-IR1 81851
FrWikipediaMono-IR2 133259
FrWikipediaMono-IR3 177266

Development data

Scielo 3606
EDP 295
Khresmoi 1452

Test Data

Medline 18 231
Medline 19 442

Table 2: Sentence Pairs for Training, Development and
Test sets. Sizes are given for cleaned corpora.

3 Corpora

In this section, we present details of corpora used
to train our systems, pre-processing and training pa-
rameters. We used the in-domain corpora provided
by the organizers along with our mined in-domain
sentences from the general domain corpora. The
in-domain corpora included were:

• Ufal medical corpus, where a subset of medi-
cal corpora were extracted including CESTA,
ECDC, EMEA, Subtitles and patTR medical
corpus. (Yepes et al., 2017)

• Scielo corpus that included scientific bio-
domain articles. (Neves et al., 2016)

• EDP dataset containing documents from EDP
database for scientific publications. (Névéol
et al., 2018)

• Medline abstracts and titles from publica-
tions.(Bawden et al., 2019)

Books, News Commentary, WikiPedia and Fr-
WikipediaMono corpora were used as the out-
domain corpora to perform in data selective train-
ing experiments by extracting relevant in-domain
sentences as explained in section 2. Development
set included EDP, Scielo and Khresmoi (Dušek
et al., 2017). Medline test corpora provided by
WMT18 (Neves et al., 2018) and WMT19 (Baw-
den et al., 2019) were used as test sets.

3.1 Pre-processing
Our pre-processing pipeline includes data clean-
ing, punctuation normalization, tokenization, true-
casing and subword segmentation.

Data cleaning was done to remove noisy data.
Some of the provided corpora, including EDP, Sci-
elo and Subtitles, were not completely aligned so
we used Microsoft’s bilingual sentence aligner6

(Moore, 2002) for their complete alignment. Empty
lines, hyperlinks, parenthesis, white spaces if
present at the beginning of sentences were re-
moved. Sentences having more than 120 tokens
were dropped using Moses cleaning scripts (Koehn
et al., 2007), punctuation and normalization was
also applied. Table 2 shows our corpus sizes in
terms of number of sentences (after cleaning).

For our French to English systems, we tokenized
the corpora using Moses tokenizer7. Byte Pair En-
coding (BPE) sub word units with a vocabulary of
32K units were computed on true cased data using
subword-nmt (Sennrich et al., 2015) . BertTok-
enizer8 was only used for our submitted English to
French system.

6https://www.microsoft.com/en-us/
download/details.aspx?id=52608

7https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

8https://huggingface.co/transformers/
model_doc/bert.html
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ID Train Set Size Test sets
French to English (No of sentences) Medline18 Medline19

Baseline WMT 2,985,968 29.6 34.7

WMT + News Commentary-IR1 3,026,613 32.5 35.1

S1 WMT + News Commentary-IR2 3,046,639 33.1 36.8
WMT + News Commentary-IR3 3,061,315 29.5 34.2

WMT + Books-IR1 3,013,906 32.7 36.4

S2 WMT + Books-IR2 3,025,869 32.9 37.0
WMT + Books-IR3 3,034,259 29.4 32.7

WMT + WikiPedia-IR1 3,032,407 33.1 36.4

S3 WMT + WikiPedia-IR2 3,060,563 31.9 37.2
WMT + WikiPedia-IR3 3,083,522 29.4 33.6

WMT + FrWikipediaMono-IR1 3,067,819 32.3 36.1

S4 WMT + FrWikipediaMono-IR2 3,119,227 32.5 36.9
WMT + FrWikipediaMono-IR3 3,163,234 31.4 35.5

Table 3: BLEU scores for (BERT-fused NMT) French to English Models trained with selective data training from
out-of-domain corpus

3.2 Training and Parameters

We used Fairseq (Ott et al., 2019), an open-source
toolkit for training simple transformer (Vaswani
et al., 2017) model and Bert-nmt9 for training
BERT-fused NMT systems. Our experiments can
be grouped in three categories depending upon
the corpora used during training and their train-
ing approach. I) Models trained using all the in-
domain corpora provided by WMT. II) Models
trained on all the in-domain WMT corpora with
addition of in-domain corpus retrieved from out-of-
domain corpora using IR. III) Models fine tuned
on Medline abstracts and titles (since test corpus
is from Medline), from few models built in sec-
ond category. We used transformer base (Vaswani
et al., 2017) architecture provided by fairseq
as transformer iwslt de en. Adam opti-
mizer and a batch size of 4K words was used in all
the experiments. Training was done till complete
convergence, models were checked for improve-
ments on test data, and training was stopped if no
further improvement in BLEU scores is calculated
after 2-3 successive checkpoints. For BERT-fused
NMT models same training parameters were used
as for NMT models except that multilingual bert

9https://github.com/bert-nmt/bert-nmt

base was incorporated during training following
the approach of (Zhu et al., 2020)

4 Experiments and Results

In this section we report the details of the ex-
periments we performed for our participation in
the WMT20 Biomedical task. We performed sev-
eral different experiments to investigate the perfor-
mance of NMT with different training approaches.
Several different models were trained for French
to English translation direction and one model was
trained for English to French translation direction.
The experiments were conducted as an extension of
our last year’s submission (Hira et al., 2019) with
two different objectives. First, to investigate the
performance of BERT-fused NMT over state-of-
the art transformer model and the other to explore
the effect of out-of-domain corpus used for selec-
tive data training. We evaluated our models on
Medline 18 and Medline 19 test sets, scores were
calculated using sacrebleu (Post, 2018).

4.1 Corpus Selection for Selective Data
training

The significant gains in performance due to selec-
tive data training, as achieved in our WMT19 par-
ticipation moved us to explore further to catego-

852



ID Approach Training sets Test sets
French to English Medline 18 Medline 19

M1 Transformer WMT 33.2 36.3

M2 BERT-fused transformer (cased) WMT 29.5 32.6

M3 BERT-fused transformer (uncased) WMT 29.6 34.7

R1 BERT-fused transformer (SD) WMT + all IR2 31.8 37.2

R2 R1 fine tuned WMT + all IR2 35.1 38.4
R3 BERT-fused transformer (SD) WMT + all IR3 29.7 34.0

R4 R3 fine tuned WMT + all IR3 47.5 36.8

English to French

M4 Transformer WMT + Books + WikiPedia 32.5 35.8

Table 4: BLEU scores for BERT-fused NMT with IR incorporated French to English models.

rize which out-of-domain corpus is a better choice.
We extended out-of-domain corpora to four differ-
ent resources for selective data training. Along-
with News Commentary, which was also used in
WMT19 participation, we extended the list with
WikiPedia corpus, Books corpus and back trans-
lated FrWikipediaMono corpus. These were used
to build four different sets of models from S1 to
S4 as listed in Table 3. Adding the IR retrieved
data has unanimously helped improve the scores to
almost 3 BLEU points on both test sets.

These models were trained using WMT20 in-
domain corpora with addition of selective top-1,
top-2 and top-3 retrieved IR sentences. S1
represents models built using additional News com-
mentary IR corpus. Best scores were obtained on
top-2 yielding 33.1 and 36.8 BLEU points on
Medline 18 and Medline 19 test sets. S2 consists of
models trained on additional Books IR corpus and
best scores were again achieved on top-2 giving
32.9 and 37.0 points on Medline 18 and Medline 19
test sets. S3 comprises of models trained using ad-
ditional WikiPedia IR corpus that reveal change
in trend by giving best points 33.1 on top-1 for
Medline 18 and 37.2 on top-2 for Medline 19 test
sets. Similarly, systems represented by S4 show
the effect of adding back translated FrWikipedia-
Mono IR corpus in training set, that followed the
trend of S1 and S2 giving best points 32.5 and
36.9 on top-2 for Medline 18 and Medline 19
respectively. We can safely conclude that top-2
IR retrieved sentences give us the best score. As
for the effect of domain/type of the corpus used for

IR, we don’t see any significant advantage of any
corpus over the other. For example, News Com-
mentary and Books are very different corpora, but
still sentences from both the corpora yield more or
less the same improvement. Same is the case with
WikiPedia, whether parallel or monolingual. This
is an expected outcome as the IR process retrieves
the sentences most relevant to the query sentence
(Medline titles in our case).

4.2 BERT-fused NMT

To target our second objective, investigation of
BERT-fused NMT performance over transformer
model, we trained three models using in-domain
data provided by WMT20 Bio-medical translation
task; M1, M2 and M3. And four models, R1 to
R4, using additional IR data, for French to English
translation direction. Whereas 1 model (M4) for
English to French translation direction, as shown in
table 4. M1 was trained with simple transformer ar-
chitecture without BERT fusion and it scored 33.2
and 36.3 BLEU points on Medline 18 and Med-
line 19 test sets respectively. M2 was trained under
BERT-fused NMT setting with cased multilingual
BERT base fused in transformer architecture. This
model yielded 29.5 BLEU score on Medline 18
and 32.6 BLEU score on Medline 19 test set. Unex-
pectedly M2, despite being trained in BERT-fused
NMT setting, didn’t show improvements in BLEU
points over simple transformer model (M1). One
reason of this unexpected decrease in the BLEU
scores of M2 over M1 could be the use of BERT
trained on general domain. It seems that BERT
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trained on much huge general domain corpus has
suppressed the learned parameters from in-domain
training corpus. M3 was trained as similar to M2
but with uncased BERT, to explore the difference
in the performance of cased and uncased BERT
model, and it showed little improvement than M2
on Medline 18 test data with a difference of only
0.1 BLEU points whereas an increase of 2.1 BLEU
points on Medline 19 test set, as listed in Table 4.
Based on this result, we selected uncased BERT
model for our further experiments.

Further, we tried to evaluate the performance of
selective data training in BERT-fused NMT setting,
and trained four models for this investigation as
shown in Table 4. R1 was trained over in-domain
WMT20 corpus concatenated with top-2 queried
all IR data, since these proved to be most benefi-
cial as shown by the results from section 4.1. R1
scored 31.8 and 37.2 BLEU points on Medline 18
and Medline 19 test sets respectively. Comparing
R1 with M2 depicts that BERT-fused NMT also
benefits from data selective training approach, as
the results show considerable increase in BLEU
points, increasing 2.3 and 2.5 BLEU scores on
Medline 18 and Medline 19 respectively by adding
only 0.3M (308426 sentences) IR data. Though
the addition of IR data for training R1 improved
scores compared to M2 but did not outperform
M1 which initiated the need to verify our assump-
tion that general domain BERT is suppressing the
learned parameters from in-domain training data.
So, for verification we fine tuned R1 on Medline
abstracts and Medline titles data to train a new sys-
tem R2. R2 showed improvements in scores as
fine tuned on in-domain corpus (Medline abstracts
and titles). It gave highest BLEU score points of
38.4 for medline 19 test set and also producing 35.1
BLEU points on Medline 18. This verify that our
assumption about the unexpected results of BERT-
fused NMT model was correct. Another model
R3 was built to test the effect of queried IR data.
R3 was trained over in-domain WMT20 corpus
concatenated with top-3 queried all IR data. It
yielded 29.7 and 34.0 BLEU scores on Medline 18
and Medline 19 respectively. R3 is then fine tuned
on Medline abstracts and Medline titles data to
train a new system R4. R4 scored highest BLEU
points of 47.5 for Medline 18 and gave 36.8 BLEU
points for Medline 19 test set.

For English to French translation direction, we
trained transformer model with hugging face BERT

tokenizer instead of BERT-fused NMT (M4). The
model was trained with transformer architecture
on in-domain data and selective data from Books
and WikiPedia corpus. This model ranked third
in official results provided by WMT20 and scored
32.5 and 35.8 BLEU points on Medline 18 and
Medline 19 test sets respectively.

5 Related Work

Numerous challenges arise when dealing with
biomedical data used for translation due to limited
size of corpus and unstructured alignments. Vari-
ous approaches have been adopted by researchers
in WMT biomedical translation. (Khan et al., 2018)
submitted a NMT system that combined in-domain
data set and used transfer learning approach to train
the model along with ensemble learning. (Huck
et al., 2018) trained by using transformer architec-
ture using biomedical and news domain and em-
ployed cascaded word segmentation along with
BPE. (Tubay and Costa-jussà, 2018) emphasize
on using multi-source approach like Romance lan-
guages with in-domain data by implementing trans-
former architecture using OpenNMT in PyTorch.
(Carrino et al., 2019) created terminology list for
biomedical words using BabelNet API, inserted the
information at a token level and trained NMT sys-
tem using transformer model (Vaswani et al., 2017).
(Hira et al., 2019) used selective learning for build-
ing additional corpus from out-of-domain data and
incorporated transfer learning approach by using
recurrent encoder decoder NN model for training
of in-domain biomedical data.(Peng et al., 2019)
trained their Transformer model on in-domain and
out-of-domain data for six translations using trans-
fer learning methods. The model used attention
mechanism along with RELU activation function
yielding better results for in-domain biomedical
data. (Saunders et al., 2019) used transfer learning
using Bayesian Interpolation for multi-domain data
for ensemble weighting. (Soares and Krallinger,
2019) participated in WMT19 with four transla-
tion directions by creating concatenating corpora
from UMLS, out-of-domain and in-domain data
and trained the systems using Transformer model.

6 Conclusion

In this paper, we present our submission for
WMT20 Biomedical tasks. Our model trained for
English to French language direction ranked third
in official scores provided by WMT20. We trained
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different models to investigate the performance
of BERT-fused NMT over transformer model and
to explore the effect of selective data training in
BERT-fused NMT for French to English language
direction. Results show decline in performance of
BERT-fused NMT models over transformer archi-
tecture as general domain BERT suppressed the
learned parameters from in-domain training corpus.
BERT-fused models yielded better results when
fine tuned on in-domain corpus and trained with IR
data.
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Abstract

This paper describes Huawei’s submissions
to the WMT20 biomedical translation shared
task. Apart from experimenting with fine-
tuning on domain-specific bitexts, we explore
effects of in-domain dictionaries on enhanc-
ing cross-domain neural machine translation
performance. We utilize a transfer learning
strategy through pre-trained machine trans-
lation models and extensive scope of engi-
neering endeavors. Four of our ten sub-
missions achieve state-of-the-art performance
according to the official automatic evalu-
ation results, namely translation directions
on English⇔French, English→German and
English→Italian.

1 Introduction

Neural machine translation (NMT) models built
upon the Transformer architecture (Vaswani et al.,
2017) start to dominate the leader board of WMT
biomedical shared tasks in recent years (Bawden
et al., 2019). In-domain data (parallel and monolin-
gual corpora) have been widely used in finetuning
general domain NMT models. Despite ongoing
improvements on the translation quality observed
from recent biomedical shared tasks, domain adap-
tation remains an open problem. The in-domain
data is hard to obtain and, as a consequence, greatly
limits the cross-domain translation capability an
NMT model can offer. Domain terminologies, on
the other hand, are regarded as critical resources to
improve the quality of machine translation by miti-
gating effects of scarce in-domain bitexts (Bawden
et al., 2019). However, few research works lever-
age domain-specific terminologies (or dictionaries)
in training cross-domain NMT systems.

In this paper, we present the system architecture
and research approaches underpinning Huawei’s
submissions to the WMT20 biomedical translation

task. We implement two NMT systems to max-
imize the performances of the shared task. The
system I is an in-house NMT system built upon
the transformer-big architecture (Vaswani et al.,
2017) and trained using general domain data. We
explore means to enhance cross-domain coverage
of an NMT model by finetuning the NMT model
with in-domain bitexts. We also investigate the
effects of domain dictionaries in this domain adap-
tation process. Reusing pre-trained models has
been regarded as an efficient way of transfer learn-
ing. Pre-trained NMT models (Ng et al., 2019) are
adopted in the system II to this end.

All NMT systems are evaluated against the test
set released in the WMT19 biomedical shared
task. We submitted translated results for a total
of ten language directions between English (EN)
and other five languages including French (FR),
German (DE), Italian (IT), Russian (RU) and Chi-
nese (ZH). Four of the submissions achieve the
best BLEU scores according to the official auto-
matic evaluation results. Substantial increases in
BLEU scores are recorded in translation directions
of DE→EN (+3.9 BLEU), ZH→EN (+3.5 BLEU),
and EN→DE (+2.8 BLEU) compared to our sub-
missions last year (Peng et al., 2019). The im-
provements on EN⇔DE can be ascribed to strong
pre-trained NMT baseline models and a series of
optimization techniques, for example, in-domain
data augmentation and a reranking method with
strong language models. High-quality in-domain
data and large-scale back-translation contribute to
the improvements of the ZH→EN model.

2 The Data

Table 1 captures the number of sentences pairs
used in this shared task. The system I is trained
using in-house general domain data (OOD) and
finetuned on the in-domain data (IND) provided by
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Directions Train Dev. Test Vocab.
OOD IND IND-Dict. IND-Aug.

System I

EN→FR 146M 4M 59K - 4K 440 40K
FR→EN 186M 4M 59K - 4K 417 40K
EN→IT 83M 219K - - 3.8K 400 40K
IT→EN 150M 219K - - 3.8K 400 40K
EN→ZH 164M - 59K - 5K 448 50K
ZH→EN 200M - 59K 55M 5K 115 50K

System II

EN→DE - 40K - 56K 435 - 42K
DE→EN - 40K - 56K 373 - 42K
EN→RU - 54K - - 300 - 32K(EN)/31K(RU)
RU→EN - 54K - - 300 - 32K(EN)/31K(RU)

Table 1: Data used for training and finetuning systems I and II. Note that “IND-Dict.” refers to the in-domain
dictionary. “IND-Aug.” is the augmented data derived from processing IND data. For the system I, “IND-Aug.”
is created from back-translating monolingual data. For the system II, “IND-Aug.” is the pre-processed IND data
in combination with the data selected from some OOD data based on the similarity to the Medline data. M is for
“million,” and K stands for “thousand”.

WMT20.1 The in-domain data consist of bitexts
from EMEA (Tiedemann, 2012), UFAL,2 Pubmed,
and Medline.3 The data is processed by methods
in the next section. The test data for the system I
are from the WMT19 shared task.

The data used for finetuning the system II are
different from those for the system I. The system
II only focuses on Medline as we discovered it is
the most effective IND data for this shared task.
The development (dev.) set for the system II is the
OK-aligned test data from the WMT19 biomedical
shared task.

A batch of monolingual Medline data in English
dated before July 2018 has been extracted to pro-
vide a basis for data augmentation and noisy chan-
nel model reranking (Ng et al., 2019). It produces
the augmented IND data for the ZH→EN transla-
tion direction via back-translation (“IND-Aug.” in
Table 1). Due to time and resource constraints, we
could not fully explore this monolingual Medline
data in other translation directions.

3 The Approaches

The proposed systems are finetuned and enhanced
using the following methods. All models are
trained on Tesla V100 GPUs. Systems I and II

1http://www.statmt.org/wmt20/biomedical-translation-
task.html

2https://ufal.mff.cuni.cz/ufal medical corpus
3https://github.com/biomedical-translation-

corpora/corpora

use batch sizes of 6,144 and 8,000 tokens respec-
tively in the finetuning process.

3.1 In-domain Dictionary

Bilingual dictionaries have been studied in the ma-
chine translation community for various purposes.
The lexicons are used to enhance the translation
quality for rare and unknown words in the parallel
corpus (Zhang and Zong, 2016). Research works
in domain adaptation for NMT showed that incor-
porating domain-specific dictionaries is a viable
solution (Hu et al., 2019; Thompson et al., 2019;
Peng et al., 2020). Inspired by these studies, we
apply domain-specific dictionaries derived from
SNOMED-CT, 4 which is a collection of multi-
lingual clinical terminology, to finetune general
domain NMT models to boost cross-domain cover-
age. The dictionaries are treated as bitexts attached
to the end of training data.

3.2 Reranking

Apart from adopting a data-driven approach men-
tioned above, we also apply a transfer learning ap-
proach by reusing the publicly available pre-trained
NMT models provided at fairseq (Ott et al., 2019).
5 After finetuning the selected pre-trained NMT
models on the in-domain data, we apply a noisy
channel model reranking method (Ng et al., 2019).
The weights λ in Equation 1 are learned with a

4https://www.nlm.nih.gov/healthit/snomedct/index.html
5https://github.com/pytorch/fairseq

858



System I EN→FR FR→EN EN→IT IT→EN EN→ZH ZH→EN

baseline 38.98 38.31 30.85 35.73 36.22 34.37
+ ft BS, IND - - 31.04 35.93 - -
+ ft IND, IND-Dict. 41.66 38.44 - - - -
+ ft BS,IND-Dict.,IND-Aug. - - - - 35.90 35.66
WMT19 Submission 42.41 38.24 - - 37.09 32.16

WMT20 Submission 43.51 44.45 42.57 49.74 45.46 35.28

WMT20 Best Official 43.51 44.45 42.57 50.11 46.86 35.28

Table 2: BLEU scores of the system I on all related submissions. The baseline models are finetuned (ft) in various
configurations, including mixed finetuning on in-house OOD data (aka BS), IND bitexts, “IND-Dict.” and the
augmented IND data (“IND-Aug.”). Note that the WMT20 best official score for ZH→EN excludes those results
currently under investigation.

random search for the best performing candidate
on the validation data.

λ1logP (y|x) + λ2logP (y) + λ3logP (x|y) (1)

Due to time constraints, we did not implement
the reranking approach on the system I.

3.3 Data Processing
A data processing pipeline is applied to enhance
the quality of training data:

• Data cleaning is implemented to filter out
noisy data. An important step is to handle
misalignment in the parallel corpus. An align-
ment model trained by fast-align (Dyer et al.,
2013) 6 is applied to this end (Lu et al., 2018).
In addition, we remove bitexts with a source
and target sentence length ratio exceeding a
certain threshold (i.e., 2.5). A language detec-
tion tool 7 is used to filter out bitexts with ab-
normal language patterns, i.e., sentences with
undesirable langid. Other noisy data, such as
those with HTML tags and extra spaces, are
removed.

• Scripts from Moses (Koehn et al., 2007) are
used to perform punctuation normalization
and tokenization. SentencePiece (Kudo and
Richardson, 2018) segments words into sub-
words.

• We extract “in-domain” data which are close
to Medline from general domain data by us-
ing TFIDF-based similarities. Similar data
augmentation approaches can be identified in
Wang et al. (2017) and Peng et al. (2020).

6https://github.com/clab/fast align
7https://github.com/aboSamoor/polyglot

• Post-processing is performed after decoding
to detokenize subwords and remove undesir-
able spaces between special characters and
numbers, i.e., converting “23 - 25” into “23-
25”.

4 Experimental Results

The systems are trained with OOD data and fine-
tuned using IND data to produce the submitted
results. We benchmarked the submissions using
WMT19 test data. The BLEU scores are calculated
using the MTEVAL script from Moses (Koehn
et al., 2007). Results are shown in Table 2 and
Table 4. The final two rows demonstrate the scores
of our submissions on this year’s test sets and the
best official records released by the organizers.

4.1 English⇔ French

The system I is our in-house system equipped with
an extensive data processing pipeline to handle
noisy data, i.e., the application of sentence align-
ment and language detection tools. Our EN→FR
and FR→EN submissions achieve the best official
results in the WMT20 shared task. IND bitexts and
“IND-Dict.” have contributed to up to 2.7 BLEU in
enhancing the baseline performance. We presume
the improvement is due to the enhanced domain
coverage the IND data brought forth. Note that
even with much larger OOD bitexts than last year,
the system produces similar benchmark scores. It
appears an over-representation of OOD data is not
helpful in cross-domain NMT. An analysis of do-
main coverage is performed to investigate the effect
of IND information on cross-domain translation.
We count the number of unique terms (1-2 grams)
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Data EN→FR FR→EN
Unigrams Bigrams Unigrams Bigrams

OOD 2,763 5,752 2,989 6,317
OOD + IND + IND-Dict. 2,773 (+10) 5,827 (+75) 2,997 (+8) 6,372 (+55)

Table 3: Domain coverage analysis for data used to train English⇔French.

System II EN→DE DE→EN EN→RU RU→EN

baseline 34.12 37.39 - -
+ ft All Medline 35.58 (+1.46) 39.06 (+1.67) - -
+ ft Pre-proc. Medline 36.90 (+1.32) 40.98 (+1.92) 27.30 33.38
+ ft IND-Aug. 37.13 (+0.23) 41.79 (+0.81) - -
+ reranking 38.17 (+1.04) 42.74 (+0.95) - -
WMT19 Submission 35.39 38.84 - -

WMT20 Submission 36.89 41.46 34.64 43.03

WMT20 Best Official 36.89 41.65 39.36 43.31

Table 4: BLEU scores of system II on English⇔ German. “Pre-proc.” stands for “pre-processed.” Note that “IND-
Aug.” contains the pre-processed Medline data and the data derived from OOD via TFIDF selection. Numbers in
the brackets depict the incremental increase from the baseline models.

at the intersection of a data source (i.e., the OOD
training data) and the test data. Table 3 indicates
that the increase of BLEU may be associated with a
level of domain coverage enhancement. An increas-
ing number of distinctive IND terms is recorded.

4.2 English⇔ German

We perform ablation tests on pre-trained NMT mod-
els (the system II) in English⇔ German under var-
ious conditions. As shown in Table 4, an EN→DE
model finetuned on a preprocessed version of Med-
line outperforms that trained on the full version
of Medline by 1.32 BLEU, indicating the effec-
tiveness of the data preprocessing method. The
EN→DE model finetuned on the “IND-Aug.” data
adds 0.23 to the BLEU score. The performance of
the model can be boosted by 1.04 BLEU using the
reranking method. Both EN→DE and DE→EN
models outperform our last year’s submissions sig-
nificantly by 2.78 and 3.90 BLEU, respectively.

4.3 Other Translation Directions

The submissions for other translation directions are
illustrated in Table 2 and Table 3. Note that we did
not perform the experiments on the same level as
those for English⇔German due to time constraints.
It is observed that finetuning on IND data has con-
tributed to improving the performance of baseline
models in EN→IT, IT→EN, and ZH→EN direc-

tions. The result for EN→ZH is inconclusive, most
likely due to potential issues during training.

5 Conclusion

This paper depicts Huawei’s submissions to the
WMT20 biomedical shared task. For all ten trans-
lation directions, we have explored the effects of
using IND bitexts and dictionaries on enhancing
the performances of cross-domain NMT. We have
demonstrated the benefits of the transfer learning
strategy of reusing pre-trained NMT models. Four
of our ten submissions achieve the best records
according to the released WMT20 official results.
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Abstract
The 2020 WMT Biomedical translation task
evaluated Medline abstract translations. This
is a small-domain translation task, meaning
limited relevant training data with very distinct
style and vocabulary. Models trained on such
data are susceptible to exposure bias effects,
particularly when training sentence pairs are
imperfect translations of each other. This can
result in poor behaviour during inference if the
model learns to neglect the source sentence.

The UNICAM entry addresses this problem
during fine-tuning using a robust variant on
Minimum Risk Training. We contrast this
approach with data-filtering to remove ‘prob-
lem’ training examples. Under MRT fine-
tuning we obtain good results for both direc-
tions of English-German and English-Spanish
biomedical translation. In particular we
achieve the best English-to-Spanish transla-
tion result and second-best Spanish-to-English
result, despite using only single models with
no ensembling.

1 Introduction

Neural Machine Translation (NMT) in the
biomedical domain presents challenges in addition
to general domain translation. Text often contains
specialist vocabulary and follows specific stylistic
conventions. For this task fine-tuning generic pre-
trained models on smaller amounts of biomedical-
specific data can lead to strong performance, as we
found in our 2019 biomedical submission (Saun-
ders et al., 2019). For our WMT 2020 submis-
sion we start with strong single models from that
2019 submission and fine-tune them exclusively
on the small Medline abstracts training sets (Baw-
den et al., 2019). This allows fast training on
very relevant training data, since the test set is also
made up of Medline abstracts.

However, fine-tuning on relevant but small cor-
pora has pitfalls. The small number of training

examples exacerbates the effect of any noisy or
poorly aligned sentence pairs. We treat this as a
form of exposure bias, in that model overconfi-
dence in training data results in poor translation
hypotheses at test time.

Our contributions in this system paper are:

• A discussion of exposure bias in the form
of imperfect training data, focusing on the
biomedical domain.

• An exploration of straightforward ways to
mitigate exposure bias via data preparation
and training objective.

• A discussion of our 2020 Biomedical task re-
sults for single models fine-tuned on small,
domain-specific data sets.

1.1 Exposure bias in the biomedical domain
Exposure bias for an autoregressive sequence de-
coder refers to a discrepancy between decoder
conditioning during training and inference (Ben-
gio et al., 2015; Ranzato et al., 2016). During
training the decoder generates a hypothesis for the
tth output token ŷt conditioned on y1:t−1, the gold
target sequence prefix. During inference, the gold
target y is unavailable, and ŷt is conditioned in-
stead on the hypothesis prefix ŷ1:t−1.

Previous work has interpreted the risk of expo-
sure bias primarily in terms of the model over-
relying on correct gold target translations, result-
ing in error propagation when mistakes are made
during inference. We take a different view, focus-
ing on mistakes in the training data which harm the
model through teacher-forcing exposure and cause
it to make related mistakes during inference.

We identify a specific feature of the Medline ab-
stract training data which caused noticeable trans-
lation errors. The data contains instances in which
either the source or target sentence contains the
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English source [Associations of work-related strain with subjective sleep quality and individual daytime sleepiness].
Human translation [Zusammenhang von arbeitsbezogenen psychischen Beanspruchungsfolgen mit subjektiver

Schlafqualität und individueller Tagesschläfrigkeit.]
MLE Zusammenfassung.
MRT [Assoziationen arbeitsbedingter Belastung mit subjektiver Schlafqualität und individueller Tagess-

chläfrigkeit].
English source [Effectiveness of Upper Body Compression Garments Under Competitive Conditions: A Ran-

domised Crossover Study with Elite Canoeists with an Additional Case Study].
Human translation [Effektivität von Oberkörperkompressionsbekleidung unter Wettkampfbedingungen: eine ran-

domisierte Crossover-Studie an Elite-Kanusportlern mit einer zusätzlichen Einzelfallanalyse.]
MLE Eine randomisierte Crossover-Studie mit Elite-Kanuten mit einer Additional Case Study wurde

durchgeführt.
MRT Eine randomisierte Crossover-Studie mit Elite-Kanüsten mit einer Additional Case Study hat zur

Wirksamkeit von Oberkörperkompressionsbekleidung unter kompetitiven Bedingungen geführt.

Table 1: Two sentence from the English-German 2020 test set with hypothesis translations from various models,
demonstrating the effects of exposure bias from training on imperfectly aligned training sentences. The first MLE
example output is completely unrelated to the source sentence, but the second MLE translation is more misleading.

correct translation of the other sentence, but adds
information that is not found in translation. For
example, the following sentence appears in the En-
glish side of en-de Medline abstract training data:

[The effects of Omega-3 fatty acids in clinical
medicine]. Effects of Omega-3 fatty acids (n-3 FA)
in particular on the development of cardiovascu-
lar disease (CVD) are of major interest.

Its corresponding German sentence is
Der Nutzen von Omega-3-Fettsäuren (n-3-FS)

in der Medizin, hauptsächlich in der Prävention
kardio- und zerebrovaskulärer Erkrankungen,
wird aktuell intensiv diskutiert. (Translated: ‘The
uses of Omega-3 fatty acids in medicine, espe-
cially in prevention of cardiovascular and cere-
brovascular diseases, are currently heavily dis-
cussed.’)

Some of the English sentence is present in the
German translation, but the square-bracketed arti-
cle title is not. In this example it might be possi-
ble to remove only the segment in square brackets,
but in other examples there is even less overlap,
while source and target sentences may still be re-
lated and therefore challenging to filter. For exam-
ple, the following English and German sentences
also correspond with still less overlap:

[Conflict of interest with industry–a survey of
nurses in the field of wound care in Germany , Aus-
tralia and Switzerland]. Background.

Hintergrund: Pflegende werden zunehmend von
der Industrie umworben. (Translated: ‘Back-
ground: Nurses are being increasingly courted by
industry.’)

These examples are quite frequent in Medline
abstract data, especially in the form of titles. It
is common to insert the English title of a non-

English article into its translation, marked with
square brackets (Patrias and Wendling, 2007). The
marked title is not present in the original article.
Consequently models trained on English source
sentences with titles can behave erratically when
given sentences with square-bracketed titles at test
time: an exposure bias effect.

One possible approach to this problem is ag-
gressively filtering sentences which may be poorly
aligned. However, with such a small training set,
this risks losing valuable examples of domain-
specific source and target language. We hypoth-
esise that such filtering is not the only way to
reduce the effects during inference. Instead, we
propose an approach in terms of the parameter
fine-tuning scheme with Minimum Risk Training
(MRT). Wang and Sennrich (2020) have recently
shown MRT as effective for combating exposure
bias in the context of domain shift – test sentences
which are very different from the training data. We
propose that MRT is also more robust against ex-
posure to misaligned training data.

The examples in Table 1 show the different be-
haviour of MLE and MRT in such cases. In the
first example, the MLE hypothesis is unrelated to
the source sentence, while the MRT output is rel-
evant. In the second example, the MLE output is
more plausible and therefore misleading, as it still
misses the first clause which the MRT hypothe-
sis covers. Both MLE and MRT hypotheses are
phrased like opening sentences rather than titles,
and both feature the untranslated phrase ‘Addi-
tional Case Study’: while MRT may be more ro-
bust, it is not immune to exposure bias.

We note that title translations may not exist
in the human reference. In these cases failure
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to translate the title will not negatively impact
BLEU. However, we argue a biomedical transla-
tion model should be able to translate such sen-
tences if required. It is also important to note that
title translations are not the only case of inexact
training pairs, but are simply easily identifiable.

1.2 Document MRT

Figure 1: Two MRT schemes with an S = 2 sen-
tence minibatch and N = 3 samples / sentence. In
standard MRT (middle) each sample has a score, e.g.
sBLEU. For doc-MRT (right) samples are sorted into
minibatch-level ‘documents’, each with a combined
score, e.g. document BLEU. Doc-MRT scores are less
sensitive to individual samples, increasing robustness.

Minimum Risk Training (MRT) aims to mini-
mize the expected cost between N sampled target
sequences y

(s)
n and the corresponding gold refer-

ence sequence y(s)∗ for the S sentence pairs in
each minibatch. For translation MRT is usually
applied using a sentence-level BLEU (sBLEU)
score corresponding to cost function 1 − sBLEU,
and sentence samples are generated by auto-
regressive sampling with temperature τ during
training (Shen et al., 2016). Hyperparameter α
controls sharpness of the distribution over sam-
ples. While MRT permits training from scratch, in
practice it is exclusively used to fine-tune models.

Doc-MRT is a recently proposed MRT variant
which changes sentence cost function to a docu-
ment cost function, D(.) (Saunders et al., 2020).
D measures costs between minibatch-level ‘docu-
ments’ Y ∗ and Yn. Y ∗ is formed of all S refer-
ence sentences in the minibatch, and Yn is one of
N sample ‘documents’ each formed of one sample
from each sentence pair (x(s),y(s)∗). This permits
MRT under document-level scores like BLEU, in-
stead of sBLEU. The nth sample for the sth sen-
tence in the minibatch-level document, y(s)

n , con-

tributes the following term to the overall gradient:

α

N

∑

Y :y(s)=y
(s)
n

D(Y, Y ∗)∇θ logP (y(s)
n |x(s); θ)

In other words the gradient of each sample is
weighted by the aggregated document-level scores
for documents in which the sample appears.

Figure 1 gives a toy example of doc-MRT scor-
ing samples in context. Document-level metrics
aggregate scores across sentence samples, mean-
ing a minibatch with some good samples and some
poor samples will not have extreme score vari-
ation. Doc-MRT is therefore less sensitive than
standard MRT to variation in individual samples.

Doc-MRT has been shown to give better perfor-
mance than standard MRT for small datasets with
a risk of over-fitting, as well as improved robust-
ness to small N . More discussion of these results
and a derivation of the document-level loss func-
tion can be found in Saunders et al. (2020). Since
we are attempting fine-tuning on small datasets
and since N is a limiting factor for MRT on
memory-intensive large models, the biomedical
task is an appropriate application for doc-MRT.

1.3 Related work
Fine-tuning general models on domain-specific
datasets has become common in NMT. Simple
transfer learning on new data can adapt a general
model to in-domain data (Luong and Manning,
2015). Mixed fine-tuning where some original
data is combined with the new data avoids reduced
performance on the original data-set (Chu et al.,
2017). We are only interested in performance on
one domain, so use simple transfer learning.

For this task, we specifically fine-tune on a rel-
atively small dataset. Adaptation to very small,
carefully-chosen domains has been explored for
speaker-personalized translation (Michel and Neu-
big, 2018) , and to reduce gender bias effects
(Saunders and Byrne, 2020) while maintaining
general domain performance. We wish to adapt
to a very specific domain without need to main-
tain good general domain performance, but must
avoid overfitting. Related approaches include fine-
tuning a separate model for each test sentence (Li
et al., 2018; Farajian et al., 2017) or test document
(Xu et al., 2019; Kothur et al., 2018). We choose
to train a single model for all test sentences in a
language pair, but improve the robustness of that
model to overfitting and exposure bias using MRT.
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Phase Datasets Sentence pairs Dev datasets Sentence pairs

en-es

Pre-training

UFAL Medical1 639K

Khresmoi2 1.5K
Scielo3 713K
Medline titles4 288K
Medline abstracts 83K
Total 1723K / 1291K

Fine-tuning Medline abstracts 83K / 67.5K Biomedical19 800

en-de Pre-training
UFAL Medical 2958K Khresmoi 1.5K
Medline abstracts 33K Cochrane5 467
Total 2991K / 2156K

Fine-tuning Medline abstracts 33K / 28.6K Biomedical19 800

Table 2: Biomedical training and validation data used in the evaluation task. For both language pairs identical data
was used in both directions. Bolded numbers are totals after filtering

MRT has been widely applied to NMT in recent
years (Shen et al., 2016; Neubig, 2016; Edunov
et al., 2018). In particular, Wang and Sennrich
(2020) recently highlighted the efficacy of MRT
for reducing the effects of exposure bias.

2 Experimental setup

2.1 Data
We report on two language pairs: English-Spanish
(en-es) and English-German (en-de). Table 2 lists
the data used to train our biomedical domain eval-
uation systems. For each language pair we use
the same training data in both directions, and pre-
process all data with Moses tokenization, punctua-
tion normalization and truecasing. We use a 32K-
merge joint source-target BPE vocabulary (Sen-
nrich et al., 2016) learned on the pre-training data.

All of our submitted approaches involve fine-
tuning pre-trained models. We initialise fine-
tuning with the strong biomedical domain mod-
els that formed our ‘run 1’ submission for the
WMT19 biomedical translation task. Details of
data preparation and training for these models are
discussed in Saunders et al. (2019).

We fine-tune these models on Medline abstracts
data, validating on test sets from the 2019 Biomed-
ical task. For these we concatenate the src-trg and
trg-src 2019 test sets for each language pair, and
select only the ‘OK’ aligned sentences as anno-
tated by the organizers.

Before fine-tuning we carry out detected lan-
guage filtering on the Medline abstracts fine-

1https://ufal.mff.cuni.cz/ufal_
medical_corpus

2Dušek et al. (2017)
3Neves et al. (2016)
4https://github.com/

biomedical-translation-corpora/medline
(Yepes et al., 2017)

5http://www.himl.eu/test-sets

tuning data using the Python LangDetect pack-
age6. We find LangDetect has a tendency to incor-
rectly label short sentences or those with rare vo-
cabulary (very common in Medline) as a random
language. For each language pair we therefore fil-
ter out only sentences where LangDetect identifies
the source sentence as belonging to the target lan-
guage, and vice versa.

We then use a series of simple heuristics to fur-
ther filter the parallel datasets, removing dupli-
cate sentence pairs, those with source/target length
ratio of < 1:3.5 or > 3.5:1, and sentences with
> 120 tokens. For the more aggressively-filtered
‘no-title’ experiments we additionally remove all
lines containing multiple tokens in square brack-
ets, which in medical writing are used to denote
the English translation of a non-English article’s
title (Patrias and Wendling, 2007). This leaves
27.3K sentence pairs for en-de and 64.8K for en-
es: about 96% of the filtered data in both cases.

2.2 Model hyperparameters and training
We use the Tensor2Tensor implementation of the
Transformer model with the transformer big
setup for all NMT models (Vaswani et al., 2018).
We use the same effective batch size of 4k tokens
for both MLE and doc-MRT. Because of model
size constraints and the need to sample multiple
targets for doc-MRT, we achieve the 4k effective
batch size by accumulating gradients (Saunders
et al., 2018) over every 4 batches of 1k tokens for
MLE and every 16 batches of 256 tokens for doc-
MRT.

For doc-MRT we use sampling temperature τ =
0.3, smoothing parameter α = 0.6 and N = 8
samples per sentence, which gave the best results
for our doc-MRT experiments in Saunders et al.
(2020).

6https://pypi.org/project/langdetect/
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de2en en2de es2en en2es
1 Baseline 38.8 30.6 48.5 46.6
2 MLE fine-tuning from 1 40.9 32.5 48.5 46.0
3 Checkpoint averaging 2 (en-de) / 1 (en-es) 41.1 32.2 48.5 47.1
4 MRT from 1 40.0 31.1 49.0 47.4
5 MRT from 2 (en-de only) 41.3 32.9 - -
6 Checkpoint averaging 5 (en-de) / 4 (en-es) 41.3 33.0 48.9 47.7

Table 3: Validation BLEU developing models used in English-German and English-Spanish language pair submis-
sions. Scores for single checkpoints unless indicated. MLE fine-tuning did not improve over the en-es baselines,
so we do not use these models to initialise MRT.

de2en en2de es2en en2es
MLE from baseline 41.1 32.2 - -
MLE from baseline, no-title 41.4 31.8 - -
MRT from: MLE (en-de) / baseline (en-es) 41.3 33.0 48.9 47.7
MRT no-title from: MLE no-title (en-de) / baseline (en-es) 41.9 32.6 49.0 47.2

Table 4: Validation BLEU developing models used in English-German and English-Spanish language pair sub-
missions. Scores for averaged checkpoints. MLE fine-tuning with either dataset did not improve over the en-es
baselines.

For each approach we fine-tune on a single
GPU, saving checkpoints every 1K updates, until
fine-tuning validation set BLEU fails to improve
for 3 consecutive checkpoints. Generally this took
about 5K updates. We then perform checkpoint
averaging (Junczys-Dowmunt et al., 2016) over
the final 3 checkpoints to obtain the final model.

2.3 Inference

For the 2020 submissions, we additionally split
any test lines containing multiple sentences before
inference using the Python NLTK package7, trans-
late the split sentences separately, then remerged.
We found this gave noticeable improvements in
quality for the few sentences it applied to. In all
cases we decode with beam size 4 using SGNMT
(Stahlberg et al., 2017). Test scores are as pro-
vided by the organizers for ”OK” sentences using
Moses tokenization and the multi-eval tool. Vali-
dation scores are for case-insensitive, detokenized
text obtained using SacreBLEU8 (Post, 2018).

2.4 Results

We first assess the impact of small-domain adapta-
tion to the full title-included Medline training set.
Results in Table 3 show that small-domain MLE
can lead to over-fitting and reduced performance
(en-es) but also significant gains (en-de). Further
fine-tuning with doc-MRT improved performance
relative to the best MLE model for all transla-

7https://pypi.org/project/nltk/ sentence
splitter

8SacreBLEU signature: BLEU+case.lc+numrefs.1
+smooth.exp+tok.13a+version.1.2.11

tion directions by up to 0.8 BLEU when compar-
ing with or without checkpoint averaging. While
checkpoint averaging slightly decreased validation
set performance for en2de MLE, we use it in all
cases since it reduces sensitivity to randomness in
training (Popel and Bojar, 2018).

In Table 4 we explore the impact of fine-tuning
only on aggressively filtered ‘no-title’ data. This
does noticeably improve performance for de2en,
with a very small improvement for es2en. Since
the added information in ‘title’ sentences is on the
English side, this suggests that target training sen-
tence quality impacts both MLE and MRT perfor-
mance. However, removing these sentences en-
tirely results in a noticeable performance decrease
for the en2de and en2es models, demonstrating
that they can be valuable training examples.

We submitted three runs to the WMT20
biomedical task for each language pair. For en-de
run 1 was the baseline model fine-tuned on MLE
with all data, while for en-es we submitted the
checkpoint averaged baseline as MLE fine-tuning
did not improve dev set performance. Run 2 was
the run 1 model fine-tuned with doc-MRT on no-
title data. Run 3 was the run 1 model fine-tuned
with doc-MRT on all Medline abstract data. Table
5 gives scores for these submitted models.

Our best runs achieve the best and second-best
results among all systems for en2es and es2en re-
spectively as reported by the organizers. For en-de
our test scores are further behind other systems,
perhaps indicating that the baseline system could
have been stronger before fine-grained adaptation.
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de2en en2de es2en en2es
Dev Test Dev Test Dev Test Dev Test

MLE (all data) (en-de) / Baseline (en-es) 41.1 39.6 32.2 32.9 48.5 46.6 47.1 45.7
MRT (no-title data) 41.9 39.6 32.6 32.8 49.0 46.4 47.2 46.7
MRT (all data) 41.3 39.8 33.0 33.2 48.9 46.6 47.7 46.6

Table 5: Validation and test BLEU for models used in English-German and English-Spanish language pair sub-
missions. Test results are for ”OK sentences” as scored by the organizers.

This is also indicated by the strong improvement
of these models under simple MLE.

We submitted the MRT model on no-title data
instead of the MLE on no-title data because MLE
optimization did not improve over the baseline for
en-es or en-es, with or without title lines, whereas
MRT fine-tuning did. We also wanted to further
examine whether MRT was robust enough to ben-
efit from ‘noisy’ data like the title lines, or whether
cleaner no-title training data was more useful. In
fact both forms of doc-MRT performed similarly
on the test data, except in the case of en2de, where
‘no-title’ MRT scored 0.4 BLEU worse – further
confirmation that source sentences with more in-
formation than the gold target can benefit MRT.
We note that a MRT run was the best run or tied
best run in all cases.

For the test runs, we additionally experimented
with simply removing square bracket tokens from
source sentences, since these could act as ‘trigger-
ing’ tokens for title sentences. This did seem to
improve translations for the sentences it applied
to, but is clearly not applicable to all forms of ex-
posure bias, since it requires knowledge of all be-
haviours that could trigger exposure bias. MRT
does not require such knowledge, but still reduces
the effects of exposure bias.

3 Conclusions

Our WMT20 Biomedical submission investi-
gates improvements on the English-German and
English-Spanish language pairs under a single
strong model. In particular, we focus on the be-
haviour of models trained on sentences with some
predictable irregularities. We find that aggres-
sively filtering target sentences can help overall
performance, but that aggressively filtering source
sentence tends to hurt performance. We also find
that Minimum Risk Training can benefit from im-
perfectly aligned training examples while reduc-
ing the effects of exposure bias.
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Abstract

This paper describes the machine transla-
tion systems developed by the University
of Sheffield (UoS) team for the biomed-
ical translation shared task of WMT20.
Our system is based on a Transformer
model with TensorFlow Model Garden toolkit.
We participated in ten translation directions
for the English/Spanish, English/Portuguese,
English/Russian, English/Italian, and En-
glish/French language pairs. To create our
training data, we concatenated several paral-
lel corpora, both from in-domain and out-of-
domain sources.

1 Introduction

In this paper, we present the system developed
by the University of Sheffield for the Biomedical
Translation shared task in the Fifth Conference on
Machine Translation (WMT20), which consists in
translating scientific texts from the biological and
health domain.

Our participation in this task considered
the English/Portuguese, English/Spanish, En-
glish/Russian, English/Italian, and English/French
language pairs with translations in both directions.
For that matter, we developed a machine transla-
tion (MT) system based on neural machine trans-
lation (NMT), using Google’s TensorFlow Model
Garden. 1

2 Related Works

Previous participation in biomedical translation
tasks include the works of Costa-Jussà et al.
(2016) which employed Moses Statistic Machine
Translation (SMT) to perform automatic transla-
tion integrated with a neural character-based re-
current neural network for model re-ranking and
bilingual word embeddings for out of vocabulary

1https://github.com/tensorflow/models

(OOV) resolution. Given the 1000-best list of
SMT translations, the RNN performs a re-scoring
and selects the translation with the highest score.
The OOV resolution module infers the word in
the target language based on the bilingual word
embedding trained on large monolingual corpora.
Their reported results show that both approaches
can improve BLEU scores, with the best results
given by the combination of OOV resolution and
RNN re-ranking. Similarly, Ive et al. (2016) also
used the n-best output from Moses as input to a re-
ranking model, which is based on a neural network
that can handle vocabularies of arbitrary size.

More recently, Tubay and Costa-Jussà (2018)
employed multi-source language translation us-
ing romance languages to translate from Spanish,
French, and Portuguese to English. They used
data from SciELO and Medline abstracts to train
a Transformer model with individual languages to
English and also with all languages concatenated
to English.

In the last two WMT biomedical translation
challenges (WMT18 and WMT19) (Neves et al.,
2018; Bawden et al., 2019), the submissions
that achieved the best BLEU scores for the
ES/EN and PT/EN, in both directions (Soares and
Becker, 2018; Tubay and Costa-Jussà, 2018; Car-
rino et al., 2019; Saunders et al., 2019; Soares and
Krallinger, 2019), used the Transformer architec-
ture with enhancements such as handling of termi-
nology during tokenization (Carrino et al., 2019),
multi-domain inference (Saunders et al., 2019)
and exploitation of additional linguistic resources
(Soares and Becker, 2018; Soares and Krallinger,
2019).

3 Resources

In this section, we describe the language resources
used to train both models.
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3.1 Corpora

We used both in-domain and general domain cor-
pora to train our systems. For general domain data,
we used the ParaPat patent corpus (Soares et al.,
2020), which is available for several languages, in-
cluded the ones we explored in our systems. As
for in-domain data, we included several different
corpora:

• The corpus of full-text scientific articles from
SciELO (Soares et al., 2018a), which in-
cludes articles from several scientific do-
mains in the desired language pairs, but pre-
dominantly from biomedical and health ar-
eas.

• A subset of the UFAL medical corpus2, con-
taining the Medical Web Crawl data for the
English/Spanish language pair.

• The EMEA corpus (Tiedemann, 2012), con-
sisting of documents from the European
Medicines Agency.

• A corpus of theses and dissertations abstracts
(BDTD) (Soares et al., 2018b) from CAPES,
a Brazilian governmental agency respon-
sible for overseeing post-graduate courses.
This corpus contains data only for the En-
glish/Portuguese language pair.

• A corpus from Virtual Health Library3

(BVS), containing also parallel sentences for
the language pairs explored in our systems.

• A corpus from SciELO (Neves et al.,
2016), containing also parallel sentences
from abstracts in English/Portuguese, En-
glish/Spanish, and English/French.

A new crawl of MEDLINE using the Ebot pro-
vided by the National Library of Medicine.4

Table 1 depicts the original number of paral-
lel segments according to each corpora source. In
Section 4.1, we detail the pre-processing steps per-
formed on the data to comply with the task evalu-
ation.

2https://ufal.mff.cuni.cz/ufal_
medical_corpus

3http://bvsalud.org/
4https://www.ncbi.nlm.nih.gov/Class/

PowerTools/eutils/ebot/ebot.cgi

4 Experimental Settings

In this section, we detail the pre-processing steps
employed as well as the architecture of the Trans-
former.

4.1 Pre-processing

As detailed in the description of the biomedical
translation task, the evaluation is based on texts
extracted from MEDLINE. Since two of our cor-
pora, the one comprised of full-text articles from
SciELO and the new crawl from PubMed, may
contain a considerable overlap with MEDLINE
data, we decided to employ a filtering step in order
to avoid including such data.

The first step in our filter was to download the
parallel data from PubMed articles in Russian,
French, and Italian. For that matter, we used the
Ebot utility5 provided by NLM using the queries
ITA[la], FRE[la], and RUS[la], retrieving all re-
sults available. Once downloaded, we performed
sentence alignment using LF-Aligner6. To per-
form the filtering, we decided to use simple case
insensitive string matching with grep supplying
the option -xvf and the test set in English.

4.2 NMT System

As for the NMT system, we employed the offi-
cial Google’s implementation of the Transformer
architecture (Vaswani et al., 2017) to train ten MT
systems for the five language pairs. Tokenization
was performed using the WordPiece unsupervised
tokenizer with a vocabulary size of 32,000 on the
initial training data, with a shared vocabulary be-
tween source and target.

For systems where the target language was En-
glish, back-translation was used with a number
of sentences equals to the initial training system
where English was the source. For the Span-
ish/English language pair, the system used to pro-
duce the artificial parallel sentences was the one
developed by Soares and Krallinger (2019), while
for the other language pairs we used the same sys-
tems trained by our team.

The parameters of our network for all language
pairs excluding English/Portuguese are as follows.
Encoder and Decoder: Transformer; Word vec-
tor size: 512; Layers for encoder and decoder:

5https://www.ncbi.nlm.nih.gov/Class/
PowerTools/eutils/ebot/ebot.cgi

6https://sourceforge.net/projects/
aligner/
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Corpus
Sentences

EN/ES EN/PT EN/FR EN/RU EN/IT
ParaPat - - - 3.28M -
UFAL 286,779 - 1.6M - -
Abstract SciELO 767,069 669,629 - - -
Full-text SciELO 425,631 2.86M - - -
EMEA 1.01M 1.08M 609,852 - 1.08M
CAPES-BDTD - 950,252 - - -
BVS - 931,946 10,812 - -
MEDLINE
(titles and abstracts)

- - 582,007 11,271 1,298

Total 2.48M 6.49M 2.25M 3.28M 1.08M

Table 1: Original size of individual corpora used in our experiments

6; Attention heads: 16; RNN size: 512; Hidden
transformer feed-forward: 2048; Batch size: 8196.
For the English/Portuguese language pair, due to
the large training set, we employed a bigger net-
work as follows. Word vector size: 1024; Lay-
ers for encoder and decoder: 6; Attention heads:
16; RNN size: 1024; Hidden transformer feed-
forward: 4096; Batch size: 8192.

To train our systems, we used 5 Tensor Process-
ing Units (TPUs) v3, with a number of 250,000
steps (for all systems with exception of Russian,
which was trained with fewer steps). The models
with the best perplexity value were chosen as final
models.

For the English/Russian language pair, incre-
mental training was performed, since the size of
the in-domain dataset was reduced. For such, we
first trained our system in the out-of-domain data
from patents for 100,000 steps. We then pro-
ceeded with additional training for 25,000 steps
with in-domain data.

5 Results

We now detail the results achieved by our Trans-
former systems on the official test data used in the
shared task regarding automatic evaluation. Ta-
ble 2 shows the BLEU scores (Papineni et al.,
2002) for our systems for the 10 language pairs
we participated. For the Spanish and Portuguese
language pairs we achieve high competitive re-
sults. For ES/EN, the best system (NLE) achieved
BLEU of 0.5075, while the second best achieved
BLEU of 0.4662 (TRAMECAT), very close to
our result of 0.4624. For the opposite direction,
EN/ES, the best system (UCAM) achieved 0.4662,

Language Pair BLEU
EN/PT 0.4744
PT/EN 0.5334
EN/ES 0.4493
ES/EN 0.4624
EN/FR 0.3049
FR/EN 0.3514
EN/RU 0.2573
RU/EN 0.2936
EN/IT 0.2073
IT/EN 0.2276

Table 2: Official BLEU scores for the language pairs
we submitted systems. These scores are evaluated on
the ”OK” aligned sentences.

the second best (Elhuyar NLP) 0.4498, while our
system scored 0.4493.

For the Portuguese language, in both directions
we achieved the best scores, with an EN/PT BLEU
of 0.4744 and PT/EN of 0.5334. The second
team in both languages (UNICAMP DL) achieved
scores of 0.4095 and 0.4988, respectively.

As for the Russian, French, and Italian lan-
guages, our scores were not as competitive as the
best systems, with the exception of FR/EN, which
we stood as 3 out of 5 teams. After carefully
checking our training data, we found encoding is-
sues with the different gathered data for those lan-
guages, especially with the encoding and tokeniza-
tion of words containing apostrophes in French
and Italian, as well as the Cyrillic Kha.
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6 Conclusions

We presented the University of Sheffield (UoS)
machine translation system for the biomedical
translation shared task in WMT20. For our sub-
mission, we trained ten Transformers NMT sys-
tems, employing different corpora for each lan-
guage pair. In addition, for systems with English
as target language, back-translation was used, and
for the Russian language, incremental training
from Patent abstracts was used.

For model building, we included several cor-
pora from biomedical and health domain, and
from out-of-domain data that we considered to
have similar textual structure, such as books and
patents. Prior training, we also pre-processed our
corpora to ensure that we did not include any sen-
tence from the released test set, which could pro-
duce biased models.

Regarding future work, we are planning on op-
timizing our systems by performing pre-selection
of out-of-domain data, aiming at selecting only the
most similar sentences to the in-domain data. In
addition, we plan to explore the potential use of
domain-specific decoding, as proposed in Saun-
ders et al. (2019).
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Abstract

In this paper we describe the systems devel-
oped at Ixa for our participation in WMT20
Biomedical shared task in three language pairs,
en-eu, en-es and es-en. When defining our ap-
proach, we have put the focus on making an
efficient use of corpora recently compiled for
training Machine Translation (MT) systems
to translate Covid-19 related text, as well as
reusing previously compiled corpora and de-
veloped systems for biomedical or clinical do-
main. Regarding the techniques used, we base
on the findings from our previous works for
translating clinical texts into Basque, making
use of clinical terminology for adapting the
MT systems to the clinical domain. However,
after manually inspecting some of the outputs
generated by our systems, for most of the sub-
missions we end up using the system trained
only with the basic corpus, since the systems
including the clinical terminologies generated
outputs shorter in length than the correspond-
ing references. Thus, we present simple base-
lines for translating abstracts between English
and Spanish (en/es); while for translating ab-
stracts and terms from English into Basque
(en-eu), we concatenate the best en-es system
for each kind of text with our es-eu system. We
present automatic evaluation results in terms
of BLEU scores, and analyse the effect of in-
cluding clinical terminology on the average
sentence length of the generated outputs. Fol-
lowing the recent recommendations for a re-
sponsible use of GPUs for NLP research, we
include an estimation of the generated CO2
emissions, based on the power consumed for
training the MT systems.

1 Introduction

The WMT20 Biomedical shared task calls for de-
veloping systems for translating biomedical ab-
stracts and terminologies between several lan-
guages. In our case, we participate in the task

of translating biomedical terms and abstracts from
English into Basque (en-eu), as well as translating
biomedical abstracts between English and Spanish
(en-es and es-en). For translating the test data from
English into Basque, we concatenate our best en-es
system with our es-eu system, both for translating
abstracts and terminologies.

2 Related work

For translating biomedical texts from English into
Catalan, Costa-jussá et al. (2018) use a pivoting or
cascade approach, translating the texts first from
English into Spanish (en-es), and then from Span-
ish into Catalan (es-ca). This technique is useful
when there are more bilingual in-domain sentences
for each of the language pairs (en/es and es/ca) than
for the desired source and target languages (en/ca).
Since there are low resources for en/eu biomedical
domain, but we have access to many resources for
en/es and es/eu in the biomedical or clinical do-
main, we follow the same approach for translating
the test sets from English into Basque (en-eu).

Since most of the available in-domain corpus is
monolingual, we also make use of traditional back-
translation and forward translation techniques (Sen-
nrich et al., 2016).

In our previous work for translating clinical
texts between Basque and Spanish, we showed
that including clinical terminologies directly into
the training corpus was useful for domain adapta-
tion when no bilingual in-domain sentences were
available (Soto et al., 2019a). As clinical termi-
nologies, we refer to the automatic translation into
Basque of SNOMED CT (IHTSDO, 2014), which
is considered the most comprehensive, multilingual
clinical health care terminology collection in the
world. In this work, we extend the number of clini-
cal terminologies as part of the ongoing translation
of SNOMED CT into Basque (Perez-de-Viñaspre,
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2017), and include the provided ICD-10 resources
plus other smaller terminology collections recently
created for translating Covid-19 related texts.

3 Resources

For training our baseline en/es systems, we make
use of the Medline corpus provided by the organ-
isers of the WMT20 Biomedical shared task, as
well as the recently compiled TAUS Corona Crisis
Corpus.1

For backtranslation (es-en) and forward transla-
tion (en-es), we use the English corpus prepared
by Sketch Engine2, based on the Covid-19 re-
lated corpus compiled for a recent Kaggle com-
petition (Wang et al., 2020).

As a final step, we include several clinical ter-
minologies: 1) the ICD-10 (en-eu) corpus pro-
vided by the organisers of the WMT20 Biomed-
ical shared task, adding the corresponding Spanish
counterparts; 2) terms obtained from the automatic
translation into Basque of SNOMED CT (Perez-de-
Viñaspre, 2017), including terms up to 11 tokens; 3)
a recent SNOMED CT interim release of Covid-19
related terms3, manually translated into Basque by
a translator of the Basque public health service (Os-
akidetza); and 4) a collection of Covid-19 related
terms recently compiled by Elhuyar4, including all
the terms published until June 185.

For training our es-eu system, we use the afore-
mentioned terminologies together with an out-of-
domain corpus formed mainly by news (Etchegoy-
hen et al., 2016), previously applying a language
identification tool6 to exclude sentences where
most of the terms are named entities like locations
or person names. Doing this, a bigger part of the
vocabulary can be used to translate biomedical or
clinical terms. Furthermore, as in-domain corpus
we use clinical notes in Spanish coming from the

1https://md.taus.net/corona
2https://www.sketchengine.eu/covid19/
3http://www.snomed.org/

news-and-events/articles/
march-2020-interim-snomedct-release%
2DCOVID-19

4https://www.elhuyar.eus/
eu/site/prentsa-aretoa/368/
covid-19-gaitzaren-inguruko-terminologia%
2Dgure-hiztegietako-azkenaldaketak

5when the English term was missing, if there was no doubt
about how to translate it, the first author manually translated
it; while if there wasn’t a clear translation into English or the
term was more related to socioeconomics than biomedical
domain, it wasn’t included in the en/es corpus.

6https://github.com/saffsd/langid.py

hospital of Galdakao-Usansolo for forward transla-
tion and copying (Currey et al., 2017). This corpus
was compiled between 2008 and 2012.7

For the evaluation of en/es systems, we use
Khresmoi;8 while for es-eu we use templates of
clinical notes in Basque written in the Donostia
hospital (Joanes Etxeberri Saria V. Edizioa, 2014),
together with their manual translations into Spanish
made by a bilingual doctor.

Table 1 presents the description and statistics of
our corpora.

Description Sentences

en/es

Medline (WMT Biomedical) 388,068
TAUS Corona Crisis Corpus 902,133
Sketch Engine Covid-19 (en) 4,671,609
ICD-10 (WMT Biomedical) 27,696
SNOMED CT corpus 385,800
SNOMED CT Covid-19 corpus 84
Elhuyar Covid-19 corpus 113
Khresmoi (dev set) 500
Khresmoi (test set) 1,000

es-eu

out-of-domain 3,703,757
in-domain (es) 2,023,811
ICD-10 (WMT Biomedical) 27,696
SNOMED CT corpus 896,898
SNOMED CT Covid-19 corpus 84
Elhuyar Covid-19 corpus 126
Donostia hospital (dev set) 1,038
Donostia hospital (test set) 1,038

Table 1: Description and statistics of the used corpora.

4 Systems

For en/es we develop 3 systems: 1) using only
the bilingual in-domain corpus (Medline + TAUS
Corona Crisis Corpus), 2) including the Sketch En-
gine Covid-19 (en) corpus for backtranslation (es-
en) or forward translation (en-es), and 3) adding all
the clinical terminologies from ICD-10, SNOMED
CT and Elhuyar.

For es-eu we train a unique system using the out-
of-domain corpus and the clinical terminologies,
as well as the in-domain (es) corpus for forward
translation and copying.

For training the backtranslation (en-es) and for-
ward translation (es-en) systems, we used the bilin-
gual in-domain corpus (Medline + TAUS Corona
Crisis Corpus); while for es-eu we used the out-of-
domain corpus and a reduced set of SNOMED CT
terminologies, as used in Soto et al. (2019b).

7Due to privacy requirements, this corpus is not publicly
available. Prior to use, it was de-identified by reordering
sentences, and only authors who had previously signed a non-
disclosure commitment had access to it.

8https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-2122
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All the systems are Transformer (Vaswani et al.,
2017) models trained with OpenNMT (Klein et al.,
2017), using the recommended hyperparameters.9

When necessary, we halved the batch-size so that it
could fit in 2 GPUs, and accordingly doubled the
value for gradient accumulation.

We applied joint BPE-dropout (Provilkov et al.,
2020), with 32,000 merge operations for en/es and
90,000 for es-eu.

5 Results

Table 2 shows the BLEU scores of our systems
on the validation (dev) and test sets presented in
Table 1, together with previously published (es-eu)
results for comparison.

Lang. System dev test

es-en
Baseline (Medline + TAUS) 56.57 52.55
Baseline + backtranslation (bt) 61.60 57.25
Baseline + bt + terminologies 60.95 56.89

en-es
Baseline (Medline + TAUS) 48.02 46.30
Baseline + forward translation (ft) 50.20 47.19
Baseline + ft + terminologies 49.92 47.15

es-eu
Soto et al. (2019a) 11.30 12.04
Soto et al. (2019b) 11.85 11.24

This work 6.21 5.15

Table 2: BLEU scores for systems developed for es-en,
en-es and es-eu translation directions (Lang.).

As expected, backtranslation significantly im-
proves the es-en results (around 5 BLEU points);
while the gains obtained with forward translation
(en-es) are smaller (around 2 BLEU points in the
dev set and around 1 BLEU point in the test set).
However, we observe a slight decrease on BLEU
values when including the clinical terminologies
on the training corpus for both es-en and en-es
systems. For further analysing this, we calculate
the average sentence length of the different evalua-
tion corpora as translated by the different systems.
Table 3 shows the average sentence length of the
validation (dev) and test sets after being translated
by each of the es-en and en-es systems. As a ref-
erence, the average sentence length of the original
dev and test sets are 22.70 (es) / 21.06 (en) and
24.03 (es) / 21.91 (en).

We observe that, except for the dev set translated
by the en-es systems, the lower sentence length is
always obtained when using the system including
the clinical terminologies. This is confirmed by a
fast check of the outputs generated when translating

9http://opennmt.net/OpenNMT-py/FAQ.
html#how-do-i-use-the-transformer-model
(Accessed on July 18, 2020.)

Lang. System dev test

es-en
Baseline (Medline + TAUS) 20.54 22.02
Baseline + backtranslation (bt) 20.56 21.73
Baseline + bt + terminologies 20.40 21.56

en-es
Baseline (Medline + TAUS) 22.75 23.87
Baseline + forward translation (ft) 22.93 23.84
Baseline + ft + terminologies 22.99 23.76

Table 3: Average sentence length of the different eval-
uation corpora as translated by the systems developed
for es-en and en-es translation directions (Lang.).

the official test sets provided by the organisers,
where we see that the sentences translated by these
systems usually end before having translated all
of the terms that appear in the input. Overall, the
sentence lengths of the generated translations are
closer to the original sentence lengths when using
the baseline systems; therefore, for en-es and es-en
we submit as best systems the translations produced
by the baseline systems, using only Medline and
TAUS corpora.

Regarding es-eu, in Table 2 we can see a se-
vere decrease on BLEU scores comparing to our
previous works. For training the system in Soto
et al. (2019a) we used the same out-of-domain cor-
pus (without applying langid.py) and a reduced
set of SNOMED CT terminologies (151,111 en-
tries), both directly and inserted into artificial sen-
tences; while in Soto et al. (2019b) we used this
same corpus without the artificial sentences, which
didn’t prove to be useful. Nevertheless, after man-
ually checking the outputs generated by these 3
systems, we observe that the system developed for
this work performs generally better, so we submit
the translations produced by this system.10 As we
use a cascade approach for en-eu, we use the en-es
system including the terminologies for translating
abstracts; and the baseline system for translating
terminologies, as these were the best performing
systems on a fast human evaluation. 11

Once we have selected the best performing sys-
tems for each of the language pairs, since we are
allowed to submit 3 runs, in the case of en/es, for
each of the developed systems we submit an ensem-
ble of the 3 models which obtained higher BLEU

10It has to be noted that the evaluation corpus used for es-eu
has strong limitations, since the original sentences are written
for encouraging medicine students to write correctly; while the
translations into Basque made by a doctor are overall shorter,
use simplified grammar, often omit verbs and punctuation, and
use many acronyms.

11Both for en/es and en-eu systems, the translations of the
first 10 sentences of the official test sets were checked; and in
case of tie, the next 10 sentences were also observed.
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scores in the dev set during training; while for en-eu
we alternate between single and ensemble systems
for each of the en-es and es-eu systems. Specifi-
cally, we submit as best system an ensemble of the
baseline en-es system and a single es-eu system
for translating terminologies; while we use a single
en-es system including the terminologies and an
ensemble es-eu system for translating abstracts.

Table 4 shows the BLEU scores obtained on the
official test sets for each of the language pairs and
submitted runs for translating abstracts, as provided
by the organisers. We present in italics the result
of the expected best system for each language pair,
and in bold the highest BLEU score, as in previous
tables.

Lang. System BLEU

es-en
Baseline (Medline + TAUS) 40.65
Baseline + backtranslation (bt) 40.71
Baseline + bt + terminologies 39.96

en-es
Baseline (Medline + TAUS) 41.71
Baseline + forward translation (ft) 38.36
Baseline + ft + terminologies 38.58

en-eu
single (en-es) + ensemble (es-eu) 8.15
ensemble (en-es) + single (es-eu) 7.82
ensemble (en-es) + ensemble (es-eu) 8.84

Table 4: BLEU scores on the official test sets for trans-
lating abstracts in es-en, en-es and en-eu translation di-
rections (Lang.).

Comparing to the submissions made by other
teams, our systems submitted for en/es obtain the
lowest BLEU scores among all the participants;
while for en-eu our best run is the second among
the best runs of each participant, only surpassed by
the three runs submitted by Elhuyar.

Finally, Table 5 presents the accuracy and BLEU
scores obtained by our systems when used for trans-
lating terminologies (en-eu), as provided by the
organisers.

Lang. System Acc. BLEU

en-eu
single (en-es) + ensemble (es-eu) 0.12 13.14
ensemble (en-es) + single (es-eu) 0.08 7.21
ensemble (en-es) + ensemble (es-eu) 0.13 14.81

Table 5: Accuracy (Acc.) and BLEU scores on the offi-
cial test set for translating terminologies in en-eu trans-
lation direction (Lang.).

Surprisingly, the obtained automatic scores are
much lower than the ones obtained by the rest of
the participants (between 0.73 and 0.78 for accu-
racy, and approximately 71 to 74 BLEU scores).
However, the generated translations look quite sen-
sible, so we expect the human evaluation will shed

some light about the performance of our systems.

6 Measured power consumption and
estimated CO2 emissions

Following the recommendations by Strubell et al.
(2019), we report the power consumed by our
GPUs when training the systems developed for
this work, along with the estimated CO2 emissions.
For calculating the training time, we use the time
shown in the first and last lines of the log file gener-
ated while training the systems, including also the
initial time for preparing the data, so the presented
values constitute an upper bound of the actually
consumed power. Nonetheless, we have to point
out that OpenNMT makes an efficient use of the
power capabilities of the GPUs, so we can say that
the numbers shown here are an accurate estimation.
Table 6 shows the number of GPUs, training time,
power consumption and estimated CO2 emissions
for each of the developed systems. All the GPUs
used for this work are Nvidia Titan Xp models with
250W power. We present the values of the different
systems in the same order as in Table 2, and esti-
mate the CO2 emissions by applying equations (1)
and (2) in Strubell et al. (2019), considering only
the power consumed by our GPUs. Overall, the
CO2 emissions generated by our GPUs are approx-
imately 329.44 lbs.

Lang. GPUs Time (hh:mm) Power (kWh) CO2e (lbs)

es-en
4 43:19 43.33 65.31
2 46:30 23.26 35.06
2 45:37 22.82 34.39

en-es
4 45:09 45.16 68.07
2 47:24 23.70 35.73
2 47:21 23.68 35.69

es-eu 2 73:14 36.62 55.20
TOTAL 329.44

Table 6: Number of GPUs, training time, power con-
sumption and estimated CO2 emissions for each of the
developed systems (same order as in Table 2).

7 Conclusion and future work

In this work, we have presented a simple pro-
posal using previously compiled corpora from the
biomedical or clinical domain, as well as clinical
terminology included directly to the training cor-
pora. Apart from calculating BLEU scores, we
have also calculated the average sentence length of
the generated translations for en/es systems, and
observed that the systems including terminologies
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performed generally worse than the baseline sys-
tems.

As future work, we plan to incorporate these clin-
ical terminologies in a more efficient way (Dinu
et al., 2019; Wang et al., 2019). For improving
both training and evaluation, we’ll also use bilin-
gual clinical domain corpora being compiled now
in collaboration with the Basque public health ser-
vice (Osakidetza). Furthermore, since we have
observed that some of the translations generated by
the es-eu systems remain in Spanish, we’ll study
techniques to leverage in-domain monolingual data
in Basque like the one provided by the organisers
from Wikipedia.

Finally, we plan to keep reporting the consumed
power and consequently generated CO2 emissions,
probably making use of recently developed auto-
matic tools (Henderson et al., 2020)12.
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Abstract
This paper describes the Tencent AI Lab sub-
mission of the WMT2020 shared task on
biomedical translation in four language direc-
tions: German⇒English, English⇒German,
Chinese⇒English and English⇒Chinese. We
implement our system with model ensem-
ble technique on different transformer ar-
chitectures (DEEP, HYBRID, BIG, LARGE
Transformers). To enlarge the in-domain
bilingual corpus, we use back-translation of
monolingual in-domain data in the English
language as additional in-domain training
data. Our systems in German⇒English and
English⇒German are ranked 1st and 3rd re-
spectively according to the official evaluation
results in terms of BLEU scores.1

1 Introduction

Neural machine translation (Bahdanau et al., 2015;
Vaswani et al., 2017, NMT) has achieved great
progress in recent years. However, as Koehn and
Knowles (2017) pointed out, NMT systems suf-
fer from poor translation performance in out-of-
domain scenarios, which poses a great challenge
for the biomedical translation task.

In this paper, we present our submission to
the WMT20 shared task on biomedical translation
task. We participated in two language directions:
German-English and Chinese-English. To address
the domain problem, on one hand, we adopt model
ensemble technique (Liu et al., 2018) with differ-
ent transformer architectures to build a more ro-
bust model. On the other hand, we enlarge the
in-domain bilingual corpus with back-translation
approach (Sennrich et al., 2016a).

Our contributions are as follows:

• We adopt the model ensemble technique
and the back-translation approach to achieve

1Details of our systems are introduced in https://
github.com/hsing-wang/WMT2020_BioMedical

the state-of-the-art performance on WMT19
biomedical translation task test sets.

• To promote further studies, we release some
pre-trained models and the in-domain syn-
thetic Chinese-English bilingual data for the
community.

The rest of this paper is organized as follows.
Section 2 presents our system with four different
transformer architectures: DEEP, HYBRID, BIG,
LARGE Transformers. Section 3 describes the train-
ing data used in our system, including bilingual
data, monolingual data and synthetic bilingual data.
Section 4 reports experimental results in two lan-
guage directions. Finally, we conclude our work in
Section 5.

2 System

In our systems, we adopt four different model ar-
chitectures with TRANSFORMER (Vaswani et al.,
2017):

• DEEP TRANSFORMER (Dou et al., 2018;
Wang et al., 2019a; Dou et al., 2019) is the
TRANSFORMER-BASE model with the 40-
layer encoder.

• HYBRID TRANSFORMER (Hao et al., 2019b)
is the TRANSFORMER-BASE model with 40-
layer hybrid encoder. The 40-layer hybrid
encoder stacks 35-layer self-attention-based
encoder on top of 5-layer bi-directional ON-
LSTM (Shen et al., 2019) encoder.

• BIG TRANSFORMER is the TRANSFORMER-
BIG model as used by Vaswani et al. (2017).

• LARGE TRANSFORMER is similar to
TRANSFORMER-BIG model except that it
uses a 20-layer encoder.
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DEEP HYBRID BIG LARGE

Encoder Layer 40 40 6 20
Decoder Layer 6 6 6 6

Attention Heads 8 8 16 16
Embedding Size 512 512 1024 1024

FFN Size 2048 2048 4096 4096

Table 1: Hyper-parameters of different Transformer models used in our system.

The main differences between these models are
presented in Table 1. Pre-Norm (Wang et al.,
2019a) is adopted in above four models. All models
are implemented on top of the open-source toolkit
Fairseq2. Model ensemble is used through ensem-
ble decoding with different model architectures.

3 Data

The data used to train our system consists of three
parts: bilingual data, monolingual data and syn-
thetic bilingual data.

3.1 Bilingual Data

In-domain bilingual data The in-domain bilin-
gual data is provided by WMT20 biomedical trans-
lation shared task. For German-English, we choose
Biomedical Translation3 and UFAL Medical Cor-
pus4 to use as the in-domain training data. For
Chinese-English out-of-domain (OOD) data, we
adopt data selection (Axelrod et al., 2011; Liu et al.,
2014) to select the in-house data (8.5M sentence
pairs) as the in-domain training data.

General-domain bilingual data To alleviate
the data scarce problem, we collect general-
domain bilingual data from WMT20 news
translation shared task5. For German-English,
we use Europarl-v106, ParaCrawl-v5.17, News
Commentary-v158 and Wiki Titles-v29. For

2https://github.com/pytorch/fairseq (Ott
et al., 2019)

3https://github.com/
biomedical-translation-corpora/corpora

4https://ufal.mff.cuni.cz/ufal_
medical_corpus

5http://www.statmt.org/wmt18/
translation-task.html

6http://www.statmt.org/europarl/v10/
7https://www.paracrawl.eu/index.php
8http://data.statmt.org/wikititles/v2/
9http://data.statmt.org/

news-commentary/v15/

Chinese-English, we use CCMT Corpus10, UN Par-
allel Corpus v1.011, News Commentary-v1512.

3.2 Monolingual Data
As WMT20 biomedical translation shared task pro-
vides in-domain bilingual data in other language
pairs, we gather in-domain monolingual data from
bilingual data in other language pair. Specifically,
we collect the English side of the bilingual sen-
tence pairs from Biomedical Translation and UFAL
Medical Corpus.

The statistics of the in-domain bilingual and
monolingual data is listed in Table 2.

3.3 Synthetic Bilingual Data
To enlarge the in-domain bilingual corpus, we
adopt back-translation method (Sennrich et al.,
2016a) to generate synthetic bilingual sentence
pairs. For Chinese-English, as we lack of suf-
ficient in-domain bilingual data, we use an on-
line translation system TranSmart13 to translate the
in-domain monolingual English back to Chinese.
For German-English, we train a English-German
LARGE model on the combination of in-domain
and general-domain bilingual data, and use the
model to generate synthetic bilingual data.

4 Experiment

We report experimental results in four language
pairs: German-English (de/en), English-German
(en/de), Chinese-English (zh/en) and English-
Chinese (en/zh).

4.1 Experimental Setup
Data Pre-Processing We follow previous
work (Saunders et al., 2019; Peng et al., 2019) to

10http://mteval.cipsc.org.cn:81/
agreement/description

11https://conferences.unite.un.org/
UNCorpus/

12http://data.statmt.org/wikititles/v2/
13transmart.qq.com
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Corpus File Zh/En De/En En

Biomedical Translation

wmt18training/es-en n/a n/a 287,811
wmt18training/fr-en n/a n/a 627,576
wmt18training/pt-en n/a n/a 74,645
wmt19training/de-en n/a 40,398 40,398
wmt19training/fr-en n/a n/a 75,049
wmt19training/es-en n/a n/a 100,257
wmt19training/pt-en n/a n/a 49,918
wmt20training/it-en n/a n/a 14,756
wmt20training/ru-en n/a n/a 46,782

UFAL Medical Corpus

shuffled.de-en n/a 37,814,533 37,814,533
shuffled.cs-en n/a n/a 48,243,170
shuffled.es-en n/a n/a 92,999,169
shuffled.fr-en n/a n/a 88,526,658
shuffled.hu-en n/a n/a 48,783,611
shuffled.pl-en n/a n/a 39,442,076
shuffled.ro-en n/a n/a 62,034,179
shuffled.sv-en n/a n/a 23,142,661

Table 2: The detailed statistics of in-domain training data used in our system. “Zh/En” and “De/En” denote the
Chinese-English and German-English bilingual data, respectively. “En” denotes the monolingual English data.

use Moses scripts14 to preprocess15 the data and
filter the bilingual data with following heuristics
rules:

• Filter out duplicate sentence pairs (Khayrallah
and Koehn, 2018; Ott et al., 2018).

• Filter out sentence pairs with wrong lan-
guage (Khayrallah and Koehn, 2018).

• Filter out sentences pairs containing more
than 120 tokens or fewer than 3.

• Filter out sentence pairs with source/target
length ratio exceeding 1.5 (Ott et al., 2018).

4.2 Evaluation
For German-English, we use the Khresmoi develop-
ment data as the development set, and use the sen-
tence pairs with the correct alignment in WMT19
biomedical translation task test set as our test set.
For Chinese-English, we use the in-house bilingual
test set (1,000 sentence pairs) and the sentence pairs
with the correct alignment in WMT19 biomedical
translation task test set as development set and test
set, respectively.

14https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

15normalize-punctuation.perl, tokenizer.perl, remove-non-
printing-char.perl

Follow Bawden et al. (2019), we use multi-
bleu.perl from Moses16 to compute BLEU scores
and report case-sensitive BLEU scores on develop-
ment and test sets.

Data Pre-processing For each language pair, we
perform byte-pair encoding17 (BPE) (Sennrich
et al., 2016b) processing on the combination of
in-domain bilingual data and general-domain bilin-
gual data, and set the number of BPE merge opera-
tions to 50,000 for source and target sides, respec-
tively.

Model Training The learning rate is set to
0.0007. All models are trained for 600K steps on
8 Tesla V100 GPUs where each is allocated with a
batch size of 8192 tokens.

4.3 German-English Results

For German-English task, we first train the models
on the general-domain data. Then we combine the
general-domain data and the in-domain data and
train the models from scratch. Finally, we introduce
the synthetic bilingual data to the combination data
and use all data to train the models. The model

16https://github.com/moses-smt/
mosesdecoder/

17https://github.com/rsennrich/
subword-nmt
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Dataset Size DEEP HYBRID BIG LARGE ENSEMBLE

General Domain 37.8M 37.62 37.81 38.03 38.27 38.95
+ In-domain Data 2.5M 38.18 38.12 38.65 39.56 40.22

+ BT In-Domain Data 5.4M 38.55 38.74 38.85 40.16 40.68

Table 3: BLEU scores on the WMT19 German⇒English biomedical test set. Only the correctly aligned sentences
are used in the test set.

Dataset Size DEEP HYBRID BIG LARGE ENSEMBLE

General Domain 19.1M 20.31 19.56 19.41 20.52 21.26
+ BT In-Domain Data 5.4M 28.52 28.83 29.32 29.80 31.34

+ OOD In-house Data 8.5M 29.92 30.07 30.66 32.05 33.23

Table 4: BLEU scores on the WMT19 Chinese⇒English biomedical test set. Only the correctly aligned sentences
are used in the test set.

with best validation loss throughout the training
process is selected as the final model for the testing.
For model inference, the length penalty is set to 0.6
and the beam size is set to 4.

The German-English results are listed in Table 3.
Our observations are:

• Due to the largest model capacity, LARGE

model obtains the best translation perfor-
mance among the four model variants.

• Ensemble decoding with different transformer
architectures (ENSEMBLE in Table 3) achieves
best translation performance.

• Leveraging in-domain bilingual data (“+In-
domain”) and synthetic bilingual data (“+BT
In-domain”) achieves significant translation
improvement.

Data rejuvenation18 (Jiao et al., 2020) is an ap-
proach which exploits the inactive training exam-
ples for neural machine translation on large-scale
datasets. We adopt the data rejuvenation approach
to German⇒English translation task. Experimen-
tal results are presented in Tale 7 and the data re-
juvenation approach achieves significant improve-
ment over the baseline LARGE model.

4.4 Chinese-English Results
For Chinese-English task, we gradually add the
general-domain data, the synthetic bilingual data
and OOD in-house data to the training data and

18https://github.com/wxjiao/
Data-Rejuvenation

train the models from scratch. Since the develop-
ment set and test set have different data distribution,
we save checkpoints every epoch and average the
last 5 checkpoints rather than choose the model
with best validation loss. For model inference, the
length penalty is set to 2.0 and the beam size is set
to 8.

Similar phenomena are observed in Chinese-
English translation task. Table 4 shows Chinese-
English translation results. Finally, our systems
obtain 32.24 BLEU points and 33.23 BLEU points
on the development and test sets, respectively.

4.5 Main Results

Main results are reported in Table 5. Our submis-
sions (Tencent AI Lab Machine Translation, TMT)
with model ensemble technique achieve strong
performances in WMT19 German⇔English and
Chinese⇔English biomedical test sets.

5 Official Results

The official automatic evaluation results of our
submissions for WMT 2020 are presented in Ta-
ble 6. Our final systems rank the 1st and 3rd places
on German-English and English–German, respec-
tively, in terms of BLEU score.

6 Conclusion

In this paper, we present Tencent AI Lab machine
translation systems for the WMT20 biomedical
translation shared task and release the pre-trained
models as well as the in-domain synthetic Chinese-
English bilingual data for the research commu-
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System De-En En-De Zh-En En-Zh

ARC (Peng et al., 2019) 38.84 35.39 32.16 37.09
UCAM (Saunders et al., 2019) 38.07 34.69 n/a n/a

Our System 40.68 35.53 33.23 37.85

Table 5: Evaluation of translation performance on the WMT19 German⇔English and Chinese⇔English biomedi-
cal test sets. Only the correctly aligned sentences are used in the test sets.

System De-En En-De Zh-En En-Zh

Best Official 41.65 36.89 35.28 46.86
TMT Primary Run 41.65 35.24 30.48 39.43

Table 6: Official BLEU scores of our submissions for WMT20 biomedical task. Only the correctly aligned sen-
tences are used in the test sets.

Dev Bio19

LARGE 52.37 39.56
+data rejuvenation 52.69 40.31

Table 7: Effect of data rejuvenation strategy. BLEU
scores on the WMT19 German⇒English biomedical
test set. Only the correctly aligned sentences are used
in the test set.

nity. Our systems in German-English and English-
German are ranked 1st and the 3rd respectively
according to the official evaluation results in terms
of BLEU scores. We also participate in the news
translation (Wu et al., 2020) and the chat translation
tasks (Wang et al., 2020).

In the future, we plan to explore domain adap-
tation (Peng et al., 2019; Saunders et al., 2019;
Chu and Wang, 2018; Wang et al., 2017a), phrase
modeling (Wang et al., 2017b,c; Hao et al., 2019a),
structural modeling (Hao et al., 2019c; Wang et al.,
2019b) strategies to improve the system perfor-
mance.
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Abstract
We describe parBLEU, parCHRF++, and
parESIM, which augment baseline metrics
with automatically generated paraphrases pro-
duced by PRISM (Thompson and Post, 2020a),
a multilingual neural machine translation sys-
tem. We build on recent work studying how
to improve BLEU by using diverse automat-
ically paraphrased references (Bawden et al.,
2020), extending experiments to the multilin-
gual setting for the WMT2020 metrics shared
task and for three base metrics. We compare
their capacity to exploit up to 100 additional
synthetic references. We find that gains are
possible when using additional, automatically
paraphrased references, although they are not
systematic. However, segment-level correla-
tions, particularly into English, are improved
for all three metrics and even with higher num-
bers of paraphrased references.

1 Introduction

One of the major challenges faced when automati-
cally evaluating machine translation (MT) outputs
is that there are almost always multiple correct
translations of a sentence, and an automatic met-
ric should be able to reward them all. Some of the
most widely used MT metrics, including BLEU (Pa-
pineni et al., 2002) and CHRF++ (Popović, 2015,
2017), rely on a surface-form comparison of MT
outputs to a human-produced reference translation.
Both metrics support the use of multiple references.
However, even for metrics that support multiple ref-
erences, human-produced references are expensive
to produce and so are rarely available. To overcome
this problem, metrics that do not rely on the surface
form of reference translations have been developed.
One example is ESIM (Chen et al., 2017; Mathur
et al., 2019), which uses contextual embeddings
with the aim of creating an abstract meaning rep-
resentation of the reference, with the potential of
covering all translations with the correct meaning.

We explore an alternative way of increasing
the capacity of MT metrics to reward multiple
valid translations: create additional references by
automatically paraphrasing the original reference.
There have been previous efforts to provide some
sort of paraphrase support, mostly concentrating
on synonyms (Banerjee and Lavie, 2005; Kauchak
and Barzilay, 2006; Denkowski and Lavie, 2014).
However, we base our work on a more recent at-
tempt to improve BLEU using diverse automatic
parahrasing with high quality MT-style sentential
paraphrasing (Bawden et al., 2020).

We put this to the test in the WMT’20 metrics
shared task by applying Bawden et al.’s (2020) ap-
proach to three different metrics: BLEU, CHRF++
and ESIM. We compare the different metrics’ ca-
pacity to exploit automatically generated multi-
ple references. We choose to use diverse para-
phrases produced using PRISM (Thompson and
Post, 2020a), since they are available in multiple
languages, including most languages of the WMT
shared task. We find that gains in correlation are
possible, but this depends largely on the language
direction and on whether the metric is system- or
segment-level. The most positive gains are seen at
the segment level, especially for into-English and
even at higher numbers of additional paraphrases.
This holds for all three metrics, despite ESIM rely-
ing on more abstract semantic representations.

2 Overview of Base Metrics

In an extension of (Bawden et al., 2020), we aug-
ment three base metrics with automatic paraphras-
ing. The metrics vary in the basic units of com-
parison between MT outputs and the reference.
BLEU and CHRF++ compare surface representa-
tions, BLEU at the token level, whereas CHRF++
also takes into account character n-grams. ESIM

is an embedding-based metric, which aims to cap-
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ture the semantic relatedness of the sentences. A
description of each base metric can be found below.

2.1 BLEU

BLEU (Papineni et al., 2002) is the dominant metric
in MT. It is a modified form of n-gram precision,
calculated by averaging token n-gram precisions
(pn, n = 1..4) and multiplying by a brevity penalty
(BP) used to penalise overly short translations:

BLEU = BP · exp
(

N∑

n=1

wn log pn

)
(1)

BP =

{
1 if c > r

e1−r/c if c ≤ r
(2)

pn =

∑
h∈H

∑
ngram∈h#clip (ngram)

∑
h′∈H

∑
ngram’∈h′ #(ngram’)

, (3)

where c and r are the lengths of the hypothesis and
reference sets respectively, H is the set of hypoth-
esis translations, #(ngram) the number of times
ngram appears in the hypothesis, and #clip(ngram)
is the same but clipped to the maximum number
of times it appears in any one reference (if several
references are available).

BLEU is typically used in its corpus-based vari-
ant, where a single score is produced for a test set.
However, a segment-level variant also exists, where
each sentence is scored individually. Smoothing is
necessary in this segment-level variant to counter-
act the effect of 0 n-gram precision.

We use the sacreBLEU implementation1 of
BLEU (Post, 2018), with default tokenisation (and
-tok zh tokenisation for Chinese) and exponen-
tial smoothing for the sentence-level variant.

2.2 CHRF++

CHRF++ (Popović, 2017),2 like BLEU, is a surface-
based metric, but which relies on overlap in char-
acter n-grams as well as token n-grams (hence its
name ‘character n-gram F-score‘). This theoreti-
cally gives it an advantage over BLEU, since it is
able to reward partial token matches thanks to its
character-level component.

The original chrF (Popović, 2015) was calcu-
lated as follows using just character-level n-grams:

ngrFβ = (1 + β2)
ngrP · ngrR

β2 · ngrP + ngrR
,

1https://github.com/mjpost/sacrebleu
2https://github.com/m-popovic/chrF/

where ngrP and ngrR respectively stand for the
arithmetic average of n-gram precision and recall
over character n-grams from 1 to N , where β
gives more or less weight to precision than recall.
CHRF++ expands on this original metric by also
including token-level n-grams in this calculation
with n from 1 to M . The best results were found
with N = 6 and M = 1 or 2. We use the settings
used in the WMT19 shared task: N = 6, M = 1
and β = 3. Like BLEU, CHRF++ has a specific
corpus-level and sentence-level variant.

2.3 ESIM

ESIM (Chen et al., 2017; Mathur et al., 2019), is
an embedding-based metric, which relies on neural
models to handle inter-sentence semantic related-
ness, going beyond surface-level matching (as in
BLEU and CHRF++). ESIM was originally pro-
posed to compare and match sentence pairs for nat-
ural language inference (Chen et al., 2017). Mathur
et al. (2019) adapted it to evaluate MT performance
by pairing the human reference and the MT output
as ESIM input. Following (Mathur et al., 2019),3

we treat the evaluation task as a regression task, and
train ESIM models on segment-level human judg-
ments. We train ESIM on the WMT18 metric data
for WMT19 evaluation, and WMT18+WMT19
metric data for WMT20 evaluation. ESIM is a
sentence-level metric. Scores are averaged to pro-
duce a single score for a given corpus.

3 Experiment Setup

Paraphrase generation We use the PRISM sys-
tem to generate paraphrases. PRISM is a many-
many multilingual NMT system covering 39 lan-
guages, including all of those of WMT 2019, ex-
cept Gujarati. In their submission to the WMT
2020 Metrics task, Thompson and Post (2020c) re-
trained PRISM with five additional languages: Gu-
jarati (for WMT’19), and Inuktitut, Khmer, Pashto,
and Tamil (for WMT’20). This provided almost
complete coverage of the WMT 2019 and 2020
languages. We use this same model.

By design, PRISM approaches paraphrasing as a
zero-shot translation task. As a result, while good
for scoring, it is not a particularly good generative
model, in terms of being able to produce diverse
outputs. Thompson and Post (2020b) have tried
to address this, but their implementation does not

3https://github.com/nitikam/
mteval-in-context
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We reached a pretty quick agreement, Kouki said.
We reached a fairly quick agreement, Kouki said.
We reached a fairly quick agreement, Kouki was quoted as saying.
We reached a fairly quick agreement, Kouki said
We reached a fairly quick agreement, Kouki was quoted as telling reporters.
We reached a fairly quick agreement, Kouki was quoted to be quoted as saying.
We reached a fairly quick agreement, Kouki was quoted as adding.

Jamsen says the church bells don’t ring because of a malfunction.
Jamsen says the church bells do not ring because of a malfunction.
Jamsen says the church bells do not ring because of a maloperation.
Jamsen says the church bells aren’t ringing because of an improper functioning.
Jamsen says that the church bells don’t ring because of a mal-function.
It’s a technical malfunctory, to say it’s a technical malfunction.
It’s a technical malfunction, I’m sure.

Figure 1: Two examples of automatic paraphrasing
from fi–en WMT’20 (original references in bold).

produce n-best lists. We therefore produce n-best
lists from the model using Fairseq’s built-in di-
verse beam search tool. For every reference in the
WMT19 and WMT20 news test sets, we generate a
100-best list (Vijayakumar et al., 2016).4

Figure 1 shows examples of paraphrases of two
fi–en WMT’20 references. Note that the para-
phrases are divere and generally of high quality.
However, the later paraphrases may be noisier.

Integrating multiple references We augment
each of the base metrics described in Section 2 to
produce three new metrics: parBLEU, parCHRF++
and parESIM. Both BLEU and CHRF++ have in-
built support for multiple references. For ESIM,
we calculate the score for each reference separately
and then average them to get the final score.

Metrics Task Setup Awaiting the gold judg-
ments for WMT’20, we test and report the results
of each method on the WMT19 metrics task.5 We
follow the metrics task setup (Ma et al., 2019)
by calculating the correlation with manual direct
assessments (DA) of MT quality (Graham et al.,
2013). System-level scores are evaluated using
Pearson’s r and segment-level correlations using
Kendall’s τ on the DA assessments converted into
relative rankings. Statistically significant improve-
ments (over the single-reference base metric) are
marked in bold (with p ≤ 0.05). Significance is
calculated using the Williams test (Williams, 1959)
at the system level and bootstrap resampling at the
segment level.

4We pass the following arguments:
fairseq-interactive ... --beam 100
--nbest 100 --diverse-beam-groups 10
--diverse-beam-strength 1

5http://statmt.org/wmt19/results.html

4 Results

The results are reported in the following three
sections for each paraphrase-augmented metric:
parBLEU (Section 4.1), parCHRF++ (Section 4.2)
and parESIM (Section 4.3). We report results for
up to 100 additional paraphrased references, except
for parESIM, where we report up to 50 additional
references due to the length of time needed to cal-
culate results. There are some general trends:

• There is often a difference between into- and
from-English language directions, with more
positive results seen into English. This could
be due to the potential better quality of the
English paraphrases.

• Results are better for into-English at the
segment-level, where adding paraphrases
tends to help even with more paraphrases.

4.1 parBLEU

Results for parBLEU are found in Table 1 (system-
level) and Table 2 (segment-level).

#extra en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

0 0.988 0.959 0.970 0.736 0.849 0.989 0.968 0.901
1 0.986 0.954 0.968 0.737 0.876 0.982 0.977 0.941
2 0.986 0.953 0.968 0.738 0.875 0.981 0.979 0.938
5 0.986 0.954 0.968 0.738 0.879 0.980 0.980 0.933

25 0.984 0.958 0.969 0.739 0.883 0.976 0.982 0.927
50 0.982 0.959 0.969 0.740 0.887 0.974 0.982 0.924

100 0.977 0.957 0.965 0.743 0.888 0.973 0.982 0.897

(a) From-English language directions
#extra de-en fi-en gu-en kk-en lt-en ru-en zh-en

0 0.891 0.986 0.798 0.943 0.969 0.861 0.888
1 0.905 0.987 0.802 0.951 0.975 0.887 0.898
2 0.906 0.987 0.797 0.953 0.977 0.893 0.894
5 0.912 0.987 0.794 0.955 0.981 0.897 0.892

25 0.925 0.985 0.784 0.966 0.984 0.898 0.894
50 0.930 0.984 0.780 0.971 0.986 0.906 0.892

100 0.940 0.979 0.777 0.977 0.990 0.919 0.874

(b) To-English language directions

Table 1: parBLEU system-level results.

System-level results are variable, with a notable
difference between into-English and from-English
language directions. For a couple of from-English
languages, there are some slightly higher correla-
tions but these are not significant, and some dete-
riorations can be seen when adding paraphrase for
others. Adding paraphrased references is more suc-
cessful for into-English languages. For four of the
language directions, adding the maximum number
of 100 paraphrases provides the greatest significant
correlation gains, suggesting that even more gains
could be achieved with more paraphrases. These
gains are illustrated in Figure 2a.
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#extra en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

0 0.351 0.239 0.381 0.436 0.362 0.309 0.462 0.262
1 0.359 0.259 0.409 0.428 0.370 0.322 0.483 -0.313
2 0.361 0.260 0.412 0.426 0.370 0.318 0.485 -0.309
5 0.360 0.260 0.416 0.422 0.365 0.311 0.487 -0.309

25 0.366 0.265 0.422 0.415 0.362 0.314 0.489 0.263
50 0.362 0.267 0.425 0.414 0.357 0.318 0.489 0.266

100 0.369 0.268 0.423 0.398 0.333 0.327 0.488 -0.280

(a) From-English language directions
#extra de-en fi-en gu-en kk-en lt-en ru-en zh-en

0 0.050 0.223 0.166 0.363 0.248 0.106 0.312
1 0.055 0.227 0.175 0.367 0.264 0.113 0.321
2 0.054 0.226 0.178 0.362 0.268 0.114 0.320
5 0.056 0.227 0.181 0.363 0.272 0.112 0.317

25 0.065 0.235 0.185 0.372 0.275 0.126 0.321
50 0.070 0.241 0.186 0.375 0.284 0.127 0.324

100 0.066 0.243 0.191 0.371 0.293 0.134 0.311

(b) To-English language directions

Table 2: parBLEU segment-level results.

Segment-level results show variability according
to the language direction too. The greatest gains are
seen for the into-English directions, and the highest
scores are achieved for the higher order numbers
of paraphrases. Some gains are seen for most from-
English directions, even with higher numbers of
paraphrases. Interestingly, the language directions
that see gains at the segment level are not correlated
with those that see gains at the system level.

4.2 parCHRF++
System-level and segment-level results can be
found in Table 3 and Table 4 respectively. The
CHRF++ baseline (0 extra references) is higher
than the BLEU baseline for into-English at the
system-level and into all languages (except Chi-
nese) at the segment-level.

#extra en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

0 0.984 0.977 0.981 0.836 0.967 0.969 0.985 0.801
1 0.981 0.977 0.979 0.836 0.972 0.967 0.986 0.821
2 0.980 0.977 0.978 0.835 0.972 0.966 0.986 0.824
5 0.980 0.977 0.977 0.835 0.973 0.965 0.986 0.827

10 0.979 0.977 0.977 0.835 0.973 0.965 0.986 0.827
25 0.979 0.976 0.976 0.835 0.974 0.964 0.986 0.823
50 0.979 0.976 0.975 0.835 0.974 0.963 0.985 0.821

100 0.974 0.976 0.972 0.835 0.973 0.962 0.986 0.823

(a) From-English language directions
#extra de-en fi-en gu-en kk-en lt-en ru-en zh-en

0 0.909 0.991 0.947 0.966 0.936 0.918 0.955
1 0.919 0.991 0.948 0.967 0.948 0.930 0.961
2 0.922 0.991 0.948 0.968 0.950 0.932 0.960
5 0.925 0.991 0.948 0.969 0.952 0.936 0.961

25 0.930 0.991 0.952 0.972 0.952 0.940 0.962
50 0.933 0.991 0.953 0.973 0.953 0.942 0.962

100 0.938 0.990 0.950 0.982 0.963 0.949 0.963

(b) To-English language directions

Table 3: parCHRF++ system-level results.

At the system level, as with parBLEU, greater
gains are seen for into-English than from-English

language directions: all into-English language di-
rections bar fi–en show increases. Moreover, most
into-English language directions continue to see
improvements with higher numbers of references.
This trend can be seen in Figure 2b.

#extra en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

0 0.449 0.323 0.518 0.546 0.497 0.439 0.548 0.238
1 0.455 0.326 0.519 0.546 0.498 0.431 0.564 0.237
5 0.448 0.325 0.517 0.546 0.490 0.418 0.555 0.221

25 0.444 0.327 0.515 0.545 0.487 0.416 0.560 0.209
50 0.443 0.327 0.515 0.545 0.485 0.417 0.559 0.203

100 0.433 0.322 0.506 0.545 0.459 0.405 0.546 0.193

(a) From-English language directions
#extra de-en fi-en gu-en kk-en lt-en ru-en zh-en

0 0.125 0.288 0.254 0.393 0.303 0.182 0.373
1 0.123 0.288 0.258 0.396 0.311 0.182 0.375
5 0.126 0.286 0.261 0.398 0.317 0.182 0.377

25 0.129 0.291 0.263 0.398 0.322 0.183 0.375
50 0.128 0.291 0.265 0.397 0.327 0.182 0.378

100 0.120 0.285 0.269 0.397 0.313 0.180 0.367

(b) To-English language directions

Table 4: parCHRF++ segment-level results.

At the segment level, extra references help all
into-English directions, although this does depend
on the number of references added for some lan-
guage directions. From-English, some slight gains
are seen but in most cases, adding extra references
degrades results. At the segment level, the best re-
sults can be seen with just one additional reference.

4.3 parESIM

System-level and segment-level results can be
found in Table 5 and Table 6 respectively. As an au-
tomatic metric that relies on comparing continuous
representations (aiming to abstract away from sur-
face forms), we would expect paraphrases to help
ESIM less than the two other metrics, for which sur-
face form variation is one of the major limitations.

At the system level, additional paraphrases does
not seem to help for any of the language directions,
and is even harmful (decreasing correlations as the
number of paraphrases is increased). This could be
due to the addition of noise in the results, which
treats semantically divergent hypotheses as valid.
Note however that the correlations start from a
strong base—baseline ESIM has a much higher
correlation than BLEU and CHRF++.

The segment-level results are more positive:
paraphrasing significantly helps four from-English
directions (into cs, de, ru and zh). It brings even
more positive gains for the into-English language
directions, where the best results are often achieved
with the higher numbers of additional paraphrases.
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Figure 2: System-level results for into-English language directions.

#extra en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

0 0.924 0.990 0.943 0.946 0.978 0.960 0.978 0.942
1 0.918 0.988 0.935 0.942 0.972 0.941 0.977 0.947
2 0.916 0.987 0.932 0.935 0.970 0.932 0.977 0.949
5 0.913 0.986 0.928 0.916 0.967 0.921 0.975 0.949

10 0.912 0.985 0.926 0.895 0.966 0.916 0.975 0.949
25 0.910 0.985 0.924 0.870 0.966 0.912 0.973 0.949
50 0.909 0.984 0.923 0.857 0.966 0.910 0.973 0.950

(a) From-English language directions
#extra de-en fi-en gu-en kk-en lt-en ru-en zh-en

0 0.938 0.967 0.875 0.982 0.987 0.973 0.988
1 0.937 0.967 0.873 0.980 0.987 0.972 0.989
2 0.937 0.967 0.873 0.980 0.987 0.971 0.989
5 0.936 0.966 0.872 0.978 0.987 0.971 0.989

10 0.935 0.966 0.872 0.976 0.987 0.971 0.989
25 0.935 0.965 0.871 0.974 0.987 0.970 0.989
50 0.934 0.965 0.870 0.972 0.987 0.969 0.989

(b) To-English language directions

Table 5: parESIM system-level results.

#extra en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

0 0.471 0.356 0.535 0.545 0.508 0.487 0.582 0.330
1 0.475 0.366 0.532 0.517 0.494 0.489 0.593 0.352
2 0.476 0.364 0.526 0.488 0.476 0.477 0.593 0.348
5 0.480 0.368 0.520 0.413 0.452 0.467 0.596 0.344

10 0.477 0.370 0.519 0.359 0.436 0.467 0.595 0.345
25 0.475 0.370 0.514 0.307 0.426 0.463 0.589 0.339
50 0.476 0.370 0.515 0.290 0.424 0.464 0.592 0.343

(a) From-English language directions
#extra de-en fi-en gu-en kk-en lt-en ru-en zh-en

0 0.155 0.328 0.294 0.426 0.348 0.190 0.347
1 0.163 0.330 0.293 0.424 0.352 0.193 0.352
2 0.168 0.329 0.293 0.427 0.353 0.192 0.354
5 0.174 0.328 0.294 0.421 0.354 0.199 0.355

10 0.174 0.334 0.294 0.419 0.356 0.199 0.354
25 0.175 0.334 0.295 0.415 0.359 0.201 0.354
50 0.176 0.333 0.294 0.412 0.357 0.200 0.356

(b) To-English language directions

Table 6: parESIM segment-level results.

4.4 Additional parBLEU comparisons

Following the shared task, we explored some alter-
native versions of parBLEU.

Replacing the original reference Concurrently
to Bawden et al. (2020), Freitag et al. (2020) also
review paraphrasing for BLEU, although they fo-
cus on human paraphrasing. They find that better
correlations are achieved by replacing the original
reference with a human paraphrased one, as orig-
inal references often display translationese. We
test this observation here, but using our automatic
paraphrases. Results are shown in Table 7 (system
level) and Table 8 (segment level).

#extra en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

Original 0.988 0.959 0.970 0.736 0.849 0.989 0.968 0.901
Paraphrased 0.978 0.946 0.951 0.115 0.941 0.946 0.983 0.936

(a) From-English language directions
Metric de-en fi-en gu-en kk-en lt-en ru-en zh-en

Original 0.891 0.986 0.798 0.943 0.969 0.861 0.888
Paraphrased 0.916 0.988 0.799 0.952 0.978 0.905 0.902

(b) To-English language directions

Table 7: parBLEU system-level results when using the
original reference versus the first paraphrase.

#extra en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

Original 0.351 0.239 0.381 0.436 0.362 0.309 0.462 0.262
Paraphrased 0.327 0.228 0.342 -0.149 0.224 0.181 0.455 0.210

(a) From-English language directions
Metric de-en fi-en gu-en kk-en lt-en ru-en zh-en

Original 0.050 0.223 0.166 0.363 0.248 0.106 0.312
Paraphrased 0.046 0.222 0.167 0.360 0.253 0.106 0.316

(b) To-English language directions

Table 8: parBLEU segment-level results when using the
original reference versus the first paraphrase.

We find that replacing the original reference with
its first paraphrase results in higher correlations for
the into-English language directions at the system
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level (although the gain is only significant for three
directions), and there do not seem to be gains at
the segment level. In general, it harms both correla-
tion types for the from-English language directions,
probably due to the better quality of the English
paraphrasing compared to that of the other lan-
guages. This appears to confirm Freitag et al.’s ob-
servation, as long as the quality of the paraphraser
is good enough, which is our hypothesis concern-
ing the into-English language directions.

Type of paraphraser We compare three differ-
ent paraphrasers for the into-English language di-
rections: (i) the ‘sampled’ diverse paraphrasing
approach from (Bawden et al., 2020), (ii) the n-
best PRISM paraphrases, and (iii) the n-best di-
verse PRISM paraphrases used elsewhere in this
paper. The results are given in Table 9. Somewhat
surprisingly, even though they are not designed
to be diverse, the n-best paraphrases give good
correlations, at least up to 20 paraphrases, which
was the maximum number tested with the sampled
paraphraser. The sampled paraphrases also often
perform better than the diverse approach produced
by the PRISM paraphraser. One reason for this
could be that the sampled paraphraser is trained
specifically as an English paraphraser, whereas the
PRISM paraphraser is multilingual (therefore pro-
viding greater support for automatic evaluation).

Exclusion of outliers Mathur et al. (2020) sug-
gested that system-level correlations computed
with Pearson’s are artificially inflated due to the
presence of outliers, which are typically very
poorly performing systems with low human scores.
They propose a method based on mean average
deviation (MAD) to exclude those outliers. We
applied this method to the WMT19 system-level
data to exclude systems, and then recomputed the
system-level correlations.

The complete results are in Table 10. Comparing
this to Table 7, we see an absolute drop in values,
but little to nothing in the way of reversals between
the BLEU (single-reference, zero-paraphrase) base-
line and the paraphrase methods.

5 Conclusions and Future Work

The goal with any metric is to balance accu-
racy with ease-of-use. For our submission to the
WMT20 metrics task, we extended our work inves-
tigating paraphrased English references (Bawden
et al., 2020), by using a multilingual paraphraser.

Type #extra de-en fi-en gu-en kk-en lt-en ru-en zh-en

0 0.891 0.986 0.798 0.943 0.969 0.861 0.888

Sampled

1 0.915 0.985 0.801 0.960 0.984 0.907 0.891
2 0.926 0.986 0.799 0.962 0.987 0.918 0.896

10 0.942 0.980 0.800 0.970 0.992 0.932 0.906
20 0.946 0.976 0.800 0.973 0.992 0.933 0.907

n-best

1 0.910 0.987 0.801 0.952 0.975 0.884 0.899
2 0.913 0.988 0.802 0.954 0.975 0.894 0.901

10 0.935 0.989 0.801 0.959 0.978 0.915 0.907
20 0.938 0.989 0.800 0.960 0.981 0.923 0.913

diverse

1 0.905 0.987 0.802 0.951 0.975 0.887 0.898
2 0.906 0.987 0.797 0.953 0.977 0.893 0.894

10 0.061 0.225 0.182 0.369 0.272 0.121 0.320
20 0.926 0.985 0.784 0.964 0.984 0.899 0.893

(a) System-level
Type #extra de-en fi-en gu-en kk-en lt-en ru-en zh-en

0 0.050 0.223 0.166 0.363 0.248 0.106 0.312

Sampled

1 0.054 0.237 0.181 0.364 0.282 0.121 0.309
2 0.057 0.239 0.185 0.367 0.283 0.119 0.307

10 0.078 0.254 0.191 0.376 0.302 0.127 0.314
20 0.077 0.252 0.192 0.378 0.308 0.125 0.316

n-best

1 0.056 0.227 0.175 0.367 0.261 0.111 0.324
2 0.054 0.226 0.180 0.370 0.272 0.119 0.323

10 0.064 0.232 0.190 0.381 0.278 0.133 0.324
20 0.062 0.240 0.193 0.384 0.289 0.131 0.332

diverse

1 0.055 0.227 0.175 0.367 0.264 0.113 0.321
2 0.054 0.226 0.178 0.362 0.268 0.114 0.320

10 0.061 0.225 0.182 0.369 0.272 0.121 0.320
20 0.063 0.234 0.183 0.371 0.273 0.124 0.323

(b) Segment-level

Table 9: Correlation results for parBLEU for into-
English language directions.

#extra en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

0 0.988 0.828 0.961 0.736 0.591 0.989 0.946 0.901

1 0.986 0.827 0.953 0.737 0.560 0.982 0.964 0.941
2 0.986 0.824 0.953 0.738 0.559 0.981 0.969 0.938
5 0.986 0.826 0.951 0.738 0.563 0.980 0.972 0.933

25 0.984 0.837 0.951 0.739 0.559 0.976 0.972 0.927
50 0.982 0.837 0.948 0.740 0.563 0.974 0.972 0.924

100 0.977 0.821 0.939 0.743 0.530 0.973 0.970 0.897

(a) From-English language directions
#extra de-en fi-en gu-en kk-en lt-en ru-en zh-en

0 0.828 0.986 0.967 0.917 0.968 0.844 0.823

1 0.844 0.987 0.970 0.911 0.975 0.876 0.837
2 0.843 0.987 0.971 0.913 0.978 0.881 0.827
5 0.851 0.987 0.969 0.910 0.981 0.886 0.817

25 0.872 0.985 0.968 0.925 0.985 0.889 0.824
50 0.879 0.984 0.969 0.924 0.988 0.898 0.817

100 0.896 0.979 0.971 0.885 0.992 0.910 0.804

(b) To-English language directions

Table 10: System-level results with parBLEU with out-
lier systems excluded. The removed row denotes how
many systems were considered to be outliers

One component of ease-of-use, particularly for a
metric, is to avoid highly language-specific param-
eter searches. Our work here used a single model
and diversity parameter setting. It is possible that
other approaches would yield more success: for ex-
ample, varying the number of references based on
reference length or complexity, or looking at other
diverse generation techniques. However they are
not guaranteed to work and raise questions about
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the usefulness of extending surface-based metrics
in the neural age. BLEU is appealing because of
its simplicity and universality, but the emerging
evidence (cf. Mathur et al. (2020)) suggest that
the most promising approach for future work in
MT evaluation is in model-based deep-learning ap-
proaches. What is encouraging and also somewhat
surprising is that the embedding-based ESIM also
seems to benefit from the addition of automatically
paraphrased references at the segment level, espe-
cially into English.
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Abstract

We present an extended study on using
pretrained language models and YiSi-1 for
machine translation evaluation. Although
the recently proposed contextual embedding
based metrics, YiSi-1, significantly outper-
form BLEU and other metrics in correlating
with human judgment on translation quality,
we have yet to understand the full strength
of using pretrained language models for ma-
chine translation evaluation. In this paper, we
study YiSi-1’s correlation with human trans-
lation quality judgment by varying three ma-
jor attributes (which architecture; which inter-
mediate layer; whether it is monolingual or
multilingual) of the pretrained language mod-
els. Results of the study show further improve-
ments over YiSi-1 on the WMT 2019 Met-
rics shared task. We also describe the pre-
trained language model we trained for evalu-
ating Inuktitut machine translation output.

1 Introduction

Recent research on large-scale evaluation of au-
tomatic machine translation (MT) evaluation met-
rics (Ma et al., 2018, 2019; Mathur et al., 2020)
showed that the newly proposed contextual em-
bedding based metrics, like YiSi-1, BERTscore
(Zhang et al., 2020) and ESIM (Mathur et al.,
2019), significantly outperform BLEU (Papineni
et al., 2002) and other metrics in correlating with
human judgment on translation quality. YiSi-1 and
BERTscore use contextual embeddings extracted
from the pretrained language model, Devlin et al.
(2018), as-is without further fine-tuning or fitting
to existing labeled data predictions. Although fine-
tuning the pretrained language models for specific
downstream tasks show improvements in many
cases, using the pretrained language models with-
out fine-tuning makes the MT evaluation metrics
more portable to languages without labeled data

and the resulted metric scores are comparable to
each other over time across systems. Thus, instead
of spending efforts into fine-tuning the pretrained
language models for MT evaluation, we focus on
finding the most optimal way (which architecture;
which intermediate layer; whether it is a monolin-
gual or multilingual model) to utilize them as-is.
Zhang et al. (2020) investigated into a few as-

pects (architecture and layer) of the use of con-
textual embeddings in text generation evaluation.
They evaluated several model architectures of dif-
ferent sizes, such as BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), XLNet (Yang et al.,
2019) and XLM (Lample and Conneau, 2019). As
more pretrained language models that cover more
languages are released since then, we extend the
study on YiSi-1 to include more pretrained lan-
guage models and also compare the effect of us-
ing monolingual pretrained models versus multi-
lingual pretrained models.
In this paper, we experiment on different set-

tings of YiSi-1 in the WMT 2019 metrics shared
task, integrating it with different transformer-
based (Vaswani et al., 2017) contextual language
models in both monolingual or multilingual, such
as BERT (Devlin et al., 2018), ALBERT (Lan
et al., 2020), BART (Lewis et al., 2019), RoBERTa
(Liu et al., 2019), XLM-RoBERTa (Conneau et al.,
2020) and XLNET (Yang et al., 2019), using dif-
ferent intermediate layers. We show that YiSi-
1’s correlation with human judgment on transla-
tion quality is improved by using the results of this
study.

2 YiSi

YiSi (Lo, 2019) is a unified semantic MT qual-
ity evaluation and estimation metric for languages
with different levels of available resources. YiSi-
1 measures the similarity between a machine
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translation and human references by aggregating
weighted distributional (lexical) semantic similar-
ities, and optionally incorporating shallow seman-
tic structures. YiSi-0 is the degenerate version of
YiSi-1 that is ready-to-deploy to any languages by
using longest common character substring, instead
of cosine similarity of contextual embeddings, to
measure lexical similarity.
YiSi-2 is the bilingual, reference-less version,

which uses bilingual word embeddings to evaluate
cross-lingual lexical semantic similarity between
the input and MT output, and optionally incorpo-
rating shallow semantic structures. Improvements
in YiSi-2 for WMT 2020 metrics shared task is de-
tailed in (Lo and Larkin, 2020).

2.1 Pretrained Language Models

YiSi-1 relies on a language representation to evalu-
ate the lexical semantic similarity between the ref-
erence translation and the MT output. In WMT
2019 metrics shared task, it used pretrained BERT
(Devlin et al., 2018) for this purpose.
BERT captures the sentence context in the em-

beddings, such that the embedding of the same
subword unit in different sentences would be dif-
ferent from each other and be better represented
in the embedding space. Monolingual BERT pre-
trained model for English and Chinese and multi-
lingual BERT pretrained that covers the 104 largest
languages in Wikipedia were public released in
2019.

2.1.1 Monolingual models
Monolingual BERT in other languages After
the success of using monolingual BERT models
for downstream NLP tasks in Chinese and En-
glish, a number of monolingual BERT models in
other languages have been publicly released, such
as German (Chan et al., 2019), Finnish (Virtanen
et al., 2019), French (Martin et al., 2020), Japanese
Inui Laboratory (2019), Dutch (de Vries et al.,
2019). In our experiments, we compare the perfor-
mance of YiSi-1 using these monolingual models
against that using multilingual language models.

Other monolingual models in English A num-
ber of modifications to BERT have been proposed
to optimize the pretrained language models. Lan
et al. (2020) proposed ALBERT to reduce the
amount of parameters in BERT for lower mem-
ory consumption and faster training speed. BART
(Lewis et al., 2019) is effective when fine tuned

for text generation tasks. RoBERTa (Liu et al.,
2019) is a more robustly trained version of BERT
where the key hyperparameters are empirically
chosen. XLNET (Yang et al., 2019) an autoregres-
sive model that maximizes the expected likelihood
over all permutations of the input sequence fac-
torization order. We use these models in YiSi-1
for correlation analysis with human judgment on
translation quality.

2.1.2 Multilingual models
In addition to multilingual BERT used in Lo
(2019), XLM-RoBERTa (Conneau et al., 2020)
(XLM-R) is also a massive multilingual pretrained
language model. Similar to BERT, XLM-R is also
trained with a masked language model task on the
concatenation of non-parallel data. The differ-
ences betweenXLM-R andBERT are 1) XLM-R is
trained on the CommonCrawl corpus which is sig-
nificantly larger than the Wikipedia training data
used by BERT; 2) instead of a uniform data sam-
pling rate used in BERT, XLM-R uses a language
sampling rate that is proportional to the amount of
data available in the training set. Because of these
differences, XLM-R performs better on low re-
source languages than multilingual BERT. XLM-
R covers 100 languages. In this work, we use
XLM-Rlarge for the best performance on lexical
semantic similarity.

2.2 Inuktitut-English Cross-lingual
Language Model

Since Inuktitut is not covered by any publicly re-
leased pretrained language model, we trained our
own Inuktitut-English XLM (Lample and Con-
neau, 2019) using the Nunavut Hansard 3.0 (NH)
parallel corpus (Joanis et al., 2020). The model
was trained with masked language model and
translation language model tasks. The Inuktitut-
English XLM model has 12 layers with 8 heads
and embedding size of 512.

2.3 Model size and intermediate layers
In this study, we are interested in achieving the best
performance using the pretrained language mod-
els. Thus, if different sizes of the same model
architecture are released, we only evaluate the
largest one in out experiment. As suggested byDe-
vlin et al. (2018); Peters et al. (2018); Zhang et al.
(2020), we experimented using contextual embed-
dings extracted from different layers of the multi-
lingual language encoder to find out the layer that
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Figure 1: Average segment-level Kendall’s τ correlation with human direct assessment on WMT19 *-en news
translation test set of YiSi-1 using different pretrained language representation models. Solid lines represent the use
of pretrained monolingual models. Dotted line represents the use of pretrained XLM-R and dashed line represents
the use of pretrained multilingual BERT.

best represents the semantic space of the language.

3 Experiments and Results

We use WMT 2019 metrics shared task evaluation
set (Ma et al., 2019) for our development exper-
iments. The official human judgments for trans-
lation quality of WMT 2019 were collected using
reference-based direct assessment.
Since we use exactly the same correlation analy-

sis as the official metrics shared evaluation and the
2019 version of YiSi performed consistently well
among participants in WMT 2019, we only com-
pare our results with the 2019 version of YiSi and
BLEU. Our results are directly comparable with
those reported in Ma et al. (2019).

3.1 Architectures of monolingual English
models

In Figure 1, we plot the change of segment-
level Kendall’s τ correlation of YiSi-1 across
different layers of the monolingual and multi-
lingual pretrained language models for evaluat-
ing English MT output. We see that YiSi-1
using RoBERTalarge at layer −6 achieved the
correlation with human translation quality judg-
ment; marginally better than that using BERTlarge

and XLM-RoBERTalarge. Therefore, in WMT
2020 metrics shared task *-English MT out-
put evaluation, we submit YiSi-1 scores based
on embeddings extracted from the layer −6 of
RoBERTalarge.

3.2 Monolingual models vs. multilingual
models

In Figure 1 and 2, we identify a common pattern
that for evaluating English, Finnish, French and
Chinese, usingmonolingual models (RoBERTa for
English, CamemBERT for French and BERT for
Finnish and Chinese) in YiSi-1 achieved the best
correlation with human translation quality judg-
ment. The only exception is using German BERT
in YiSi-1 for evaluating German MT output where
YiSi-1 using XLM-RoBERTa significantly outper-
forms that using German BERT. One of the possi-
ble reasons is that there is a domain mismatch be-
tween the training data of the German BERT and
the MT output in the evaluation. The data used
in the German BERT included 20% of legal docu-
ments while the MT output of WMT 2019 metrics
shared evaluation set belongs to the news domain.
Since YiSi-1 using monolingual BERTmodel usu-
ally outperforms that using multilingual pretrained
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(a) de (b) fi

(c) fr (d) zh

Figure 2: Average segment-level Kendall’s τ correlation with human direct assessment on WMT19 (a) *-de, (b)
en-fi, (c) de-fr and (d)en-zh news translation test set of YiSi-1 using different pretrained language representation
models. Solid lines represent the use of pretrained monolingual models. Dotted line represents the use of pretrained
XLM-R and dashed line represents the use of pretrained multilingual BERT.

languagemodel, we believe that for evaluatingMT
output in WMT 2020 metrics shared task, using
YiSi-1 with the monolingual BERT (while avail-
able, i.e. CamemBERT for French, BERT for
Japanese and Chinese) would be a better model
choice.

Another common pattern we see is that YiSi-
1 using the monolingual BERTbase model usu-
ally achieved the best correlation with human
translation quality judgment at layer -4. There-
fore, in WMT 2020 metrics shared task *-
Chinese/French/Japanese MT output evaluation,
we submit YiSi-1 scores based on embeddings ex-
tracted from the layer −4 of the corresponding
monolingual BERT model.

3.3 Multilingual BERT vs. XLM-RoBERTa

In Figure 3, we plot the change of segment-
level Kendall’s τ correlation for YiSi-1 across
different layers of XLM-R and multilin-
gual BERT models for evaluating English-
Czech/Gujarati/Kazakh/Lithuanian/Russian.
We identify a common trend, YiSi-1 using
embeddings extracted from XLM-RoBERTa sig-
nificantly outperforms YiSi-1 using embeddings
extracted from multilingual BERT, except for
evaluating Kazakh MT output where the gains of
using XLM-RoBERTa is marginal. On average
in all translation directions, the optimal layer of
representation in XLM-R for YiSi-1 is layer −7.
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(a) cs (b) gu

(c) kk (d) lt

(e) ru

Figure 3: Average segment-level Kendall’s τ correlation with human direct assessment on WMT19 (a) *-cs, (b)
en-gu, (c) en-kk, (d) en-lt and (e) en-ru news translation test set of YiSi-1 using different pretrained language
representation models. Dotted line represents the use of pretrained XLM-R and dashed line represents the use of
pretrained multilingual BERT.
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Table 1: Kendall’s τ correlation of metric scores with the WMT 2019 official human direct assessment judgments
at segment level.

input de fi gu kk lt ru zh en en en en en en en en
output en en en en en en en cs de fi gu kk lt ru zh
YiSi-1 (2020) .172 .354 .328 .425 .385 .230 .438 .544 .384 .604 .589 .547 .550 .622 .360
YiSi-1 (2019) .164 .347 .312 .440 .376 .217 .426 .475 .351 .537 .551 .546 .470 .585 .355
YiSi-0 .117 .271 .263 .402 .289 .178 .355 .406 .304 .483 .539 .494 .402 .535 .266

Table 2: Kendall’s τ correlation of metric scores with
the WMT 2019 official human direct assessment judg-
ments at segment level.

input de de fr
output cs fr de
YiSi-1 (2020) .427 .403 .389
YiSi-1 (2019) .376 .349 .310
YiSi-0 .331 .296 .277

4 Improvements over previous version of
YiSi-1

Table 1 and 2 show the Kendall’s τ correlation
with the segment-level human direct assessment
relative ranking on the WMT 2019 evaluation set.
YiSi-1 (2020) shows consistent and significant im-
provements when comparing to the previous ver-
sion of YiSi-1 across all translation directions.
Table 3 and 4 show the Person’s ρ correlation

with the system-level human direct assessment rel-
ative ranking on the WMT 2019 evaluation set.
Although the improvements at system-level cor-
relation is less consistent across different transla-
tion directions, YiSi-1 (2020) outperforms YiSi-
1(2019) in the evaluation of two-third of all the
tested translation directions.

5 Conclusion

We have presented an extend study of the pre-
trained language models used in YiSi-1 for ma-
chine translation evaluation. From this study, we
conclude that for the best performance of YiSi-1:
1) when evaluating MT output in English, it is rec-
ommended to use the contextual embeddings ex-
tracted from layer −6 of RoBERTalarge; 2) when
evaluating MT output in languages where mono-
lingual pretrained model in the same or general
domain is available, it is recommended to use the
contextual embeddings extracted from those mod-
els; and finally 3) when evaluating MT output in
languages only covered by multilingual pretrained
language models, it is recommended to use the
contextual embeddings extracted from layer−7 of
XLM-RoBERTa.

This improved version of YiSi-1 is submitted
to the WMT 2020 metrics shared task. For eval-
uating Inuktitut↔English where one of the lan-
guage (Inuktitut) is not covered by any released
pretrained langauge model, we build our own
XLM cross-lingual language model with the par-
allel training data.

References
Branden Chan, Timo Möller, Malte Pietsch, Tanay

Soni, and Chin Man Yeung. 2019. Open sourcing
german bert.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Tohoku University Inui Laboratory. 2019. Pretrained
Japanese BERT models. https://github.com/
cl-tohoku/bert-japanese.

Eric Joanis, Rebecca Knowles, Roland Kuhn, Samuel
Larkin, Patrick Littell, Chi-kiu Lo, Darlene Stewart,
and Jeffrey Micher. 2020. The Nunavut Hansard
Inuktitut–English parallel corpus 3.0 with prelimi-
nary machine translation results. In Proceedings of
The 12th Language Resources and Evaluation Con-
ference, pages 2562–2572, Marseille, France. Euro-
pean Language Resources Association.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. Advances in
Neural Information Processing Systems (NeurIPS).

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

900



Table 3: Pearson’s ρ correlation of metric scores with the WMT 2019 official human direct assessment judgments
at system level.

input de fi gu kk lt ru zh en en en en en en en en
output en en en en en en en cs de fi gu kk lt ru zh
YiSi-1 (2020) .953 .987 .998 .991 .967 .929 .986 .971 .993 .979 .945 .991 .979 .980 .942
YiSi-1 (2019) .949 .989 .924 .944 .981 .979 .979 .962 .991 .971 .909 .985 .963 .992 .951
YiSi-0 .902 .993 .993 .991 .927 .958 .937 .992 .985 .987 .863 .974 .974 .953 .861

Table 4: Pearson’s ρ correlation of metric scores with
the WMT 2019 official human direct assessment judg-
ments at system level.

input de de fr
output cs fr de
YiSi-1 (2020) .981 .953 .924
YiSi-1 (2019) .973 .969 .908
YiSi-0 .978 .952 .820

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Chi-kiu Lo. 2019. YiSi - a unified semantic MT quality
evaluation and estimation metric for languages with
different levels of available resources. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion (Volume 2: Shared Task Papers, Day 1), pages
507–513, Florence, Italy. Association for Computa-
tional Linguistics.

Chi-kiu Lo and Samuel Larkin. 2020. Machine transla-
tion reference-less evaluation using yisi-2with bilin-
gual mappings of massive multilingual language
model. In Proceedings of the Fifth Conference on
Machine Translation: Shared Task Papers.

Qingsong Ma, Ondřej Bojar, and Yvette Graham. 2018.
Results of the WMT18 metrics shared task: Both
characters and embeddings achieve good perfor-
mance. In Proceedings of the Third Conference on
Machine Translation: Shared Task Papers, pages
671–688, Belgium, Brussels. Association for Com-
putational Linguistics.

Qingsong Ma, Johnny Wei, Ondřej Bojar, and Yvette
Graham. 2019. Results of the wmt19 metrics shared
task: Segment-level and strong mt systems pose big
challenges. In Proceedings of the Fourth Confer-
ence on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 62–90, Florence, Italy.
Association for Computational Linguistics.

Louis Martin, Benjamin Muller, Pedro Javier Or-
tiz Suárez, Yoann Dupont, Laurent Romary, Éric

de la Clergerie, Djamé Seddah, and Benoît Sagot.
2020. CamemBERT: a tasty French languagemodel.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7203–7219, Online. Association for Computational
Linguistics.

Nitika Mathur, Timothy Baldwin, and Trevor Cohn.
2019. Putting evaluation in context: Contextual em-
beddings improvemachine translation evaluation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2799–
2808, Florence, Italy. Association for Computational
Linguistics.

Nitika Mathur, Timothy Baldwin, and Trevor Cohn.
2020. Tangled up in BLEU: Reevaluating the eval-
uation of automatic machine translation evaluation
metrics. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4984–4997, Online. Association for Computa-
tional Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: amethod for automatic eval-
uation of machine translation. In 40th Annual Meet-
ing of the Association for Computational Linguistics
(ACL-02), pages 311–318, Philadelphia, Pennsylva-
nia.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma,
Juhani Luotolahti, Tapio Salakoski, Filip Ginter, and
Sampo Pyysalo. 2019. Multilingual is not enough:
Bert for finnish. arXiv preprint arXiv:1912.07076.

Wietse de Vries, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord, and
Malvina Nissim. 2019. BERTje: A Dutch BERT
model.

901



Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

902



Proceedings of the 5th Conference on Machine Translation (WMT), pages 903–910
Online, November 19–20, 2020. c©2020 Association for Computational Linguistics

Machine Translation Reference-less Evaluation using YiSi-2
with Bilingual Mappings of Massive Multilingual Language Model

Chi-kiu Lo and Samuel Larkin
Multilingual Text Processing

Digital Technologies Research Centre
National Research Council Canada (NRC-CNRC)

1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
{chikiu.lo,samuel.larkin}@nrc-cnrc.gc.ca

Abstract

We present a study on using YiSi-2 with mas-
sive multilingual pretrained language models
for machine translation (MT) reference-less
evaluation. Aiming at finding better seman-
tic representation for semantic MT evaluation,
we first test YiSi-2 with contextual embed-
dings extracted from different layers of two dif-
ferent pretrained models, multilingual BERT
and XLM-RoBERTa. We also experiment
with learning bilingual mappings that trans-
form the vector subspace of the source lan-
guage to be closer to that of the target language
in the pretrained model to obtain more accu-
rate cross-lingual semantic similarity represen-
tations. Our results show that YiSi-2’s corre-
lation with human direct assessment on trans-
lation quality is greatly improved by replacing
multilingual BERT with XLM-RoBERTa and
projecting the source embeddings into the tar-
get embedding space using a cross-lingual lin-
ear projection (CLP)matrix learnt from a small
development set.

1 Introduction

The machine translation quality estimation as a
metric (QE as a metric) task was first introduced in
WMT 2019 (Ma et al., 2019; Fonseca et al., 2019)
to encourage the exploration of reference-less eval-
uation metrics. QE as a metric task shifts the use
case of the QE systems from assisting professional
translators to estimate post-editing efforts to assist-
ingMTdevelopers or generalMT users to discrimi-
nate the translation quality of differentMT systems
without the presence of a human reference transla-
tion. YiSi-2, the reference-less variants of the YiSi
metric (Lo, 2019), was the only metric who partic-
ipated in evaluating all the translation directions in
WMT 2019 QE as a metric shared task.

The QE as a metric task is very similar to Task
1 (Sentence-level direct assessment) of WMT20’s

quality estimation shared task where metric per-
formance is evaluated in terms of correlation at
the sentence-level with human direct assessment
scores on translation quality. The subtle but cru-
cial difference between theWMT20QETask 1 and
the QE as a metric task is that QE systems for the
former task is trained specifically to estimate the
quality of a single MT system whereas QE met-
rics for the latter task is generalized for multiple
machine translation systems. The QE systems for
WMT20’sQETask 1 have access to theMT system
that generate the translations while the reference-
less metrics for the latter task have no information
on the MT systems being evaluated.
In WMT 2019 metrics shared task, pretrained

multilingual BERT (Devlin et al., 2018) was
used in YiSi for both MT reference-based (YiSi-
1) and reference-less (YiSi-2) evaluation in all
tested translation directions where monolingual
pretrained BERT model was not available for
the target language (such as Czech, German,
etc.). Since then, another massive multilingual
pretrained language model, XLM-RoBERTa (Con-
neau et al., 2020), has been published. We evaluate
the use of contextual embeddings extracted from
each of the intermediate layers of the two models
in MT reference-less evaluation.
In addition, despite using the same pretrained

embeddingmodel of last year, YiSi-2 showed a sig-
nificant performance degradation when comparing
to YiSi-1. For example, segment-level correlation
with human direct assessment for evaluating En-
glish→Czech drops from 0.475 (YiSi-1) to 0.069
(YiSi-2). This shows that the cross-lingual seman-
tic representation in pretrained multilingual BERT
is not as accurate as the monolingual semantic rep-
resentation for each language. In other words, we
observed the language clustering effect where a
clear segregation of vector subspace among differ-
ent languages in the multilingual contextual em-
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bedding model. Inspired by Zhao et al. (2020),
we employ aweakly-supervised bilingual mapping
learnt from a small development set that trans-
forms the contextual embeddings of the source sen-
tence to the target subspace for better cross-lingual
semantic similarity evaluation.
In this paper, we show that YiSi-2’s correlation

with human direct assessment on translation qual-
ity is greatly improved by replacing multilingual
BERTwith XLM-RoBERTalarge using the optimal
intermediate layer (7th layer count from the last)
and projecting the source embeddings into the tar-
get embedding space using a cross-lingual linear
projection matrix learnt from a small development
set.

2 YiSi-2

YiSi (Lo, 2019) is a unified semantic MT qual-
ity evaluation and estimation metric for languages
with different levels of available resources. YiSi-
1 measures the similarity between a machine
translation and human references by aggregating
weighted distributional (lexical) semantic similar-
ities, and optionally incorporating shallow seman-
tic structures. Improvements in YiSi-1 for WMT
2020 metrics shared task is detailed in (Lo, 2020).
YiSi-2 is the bilingual, reference-less version,

which uses bilingual word embeddings to evaluate
cross-lingual lexical semantic similarity between
the input and MT output.

2.1 Massive Multilingual Pretrained
Language Models

YiSi-2 relies on a cross-lingual language repre-
sentation to evaluate the cross-lingual lexical se-
mantic similarity. Previously, it used pretrained
multilingual BERT (Devlin et al., 2018) for this
purpose. BERT captures the sentence context in
the embeddings, such that the embedding of the
same subword unit in different sentences would
be different from each other and be better repre-
sented in the embedding space. Since multilin-
gual BERT is trained on the concatenation of non-
parallel data from each language, the circular de-
pendency deadlock between parallel resource and
cross-lingual semantic similarity is broken (Lo and
Simard, 2019). Multilingual BERT covers the 104
largest languages in Wikipedia.
XLM-RoBERTa (Conneau et al., 2020) (XLM-

R) is also a massive multilingual pretrained lan-
guage model. Similar to BERT, XLM-R is also

trained with a masked language model task on
the concatenation of non-parallel data. The differ-
ences betweenXLM-R andBERT are 1) XLM-R is
trained on the CommonCrawl corpus which is sig-
nificantly larger than the Wikipedia training data
used by BERT; 2) instead of a uniform data sam-
pling rate used in BERT, XLM-R uses a language
sampling rate that is proportional to the amount
of data available in the training set. Because of
these differences, XLM-R performs better on low
resource languages than multilingual BERT. XLM-
R covers 100 languages. In this work, we use
XLM-Rlarge for the best performance on cross-
lingual semantic similarity.
As suggested by Devlin et al. (2018); Peters

et al. (2018); Zhang et al. (2020), we experimented
using contextual embeddings extracted from differ-
ent layers of the multilingual language encoder to
find out the layer that best represents the semantic
space of the language.

2.2 Inuktitut-English Cross-lingual
Language Model

Since Inuktitut is neither covered by pretrained
multilingual BERT nor XLM-RoBERTa, we
trained our own Inuktitut-English XLM (Lample
and Conneau, 2019) using the Nunavut Hansard
3.0 (NH) parallel corpus (Joanis et al., 2020).
The model was trained with masked language
model and translation language model tasks. The
Inuktitut-English XLMmodel has 12 layers with 8
heads and embedding size of 512.

2.3 Cross-lingual Linear Projection
In the WMT 2019 metrics shared task (Ma et al.,
2019), we saw a very significant performance
degradation between YiSi-1 and YiSi-2. This
shows that current multilingual language models
construct a shared multilingual space in an unsu-
pervised manner without any direct bilingual sig-
nal, in which representations of context in the same
language are likely to cluster together in part of
the subspace and there is a language segregation in
the shared multilingual space. Inspired by Artetxe
et al. (2016) and Zhao et al. (2020), we obtain sub-
word token pairs from the news translation task
development set for each language (each contains
around 1k to 3k sentence pairs) aligned by maxi-
mum alignment of their semantic similarities. We
then train a cross-lingual linear projection (Zhao
et al., 2020) that transforms the source embeddings
into the target embeddings subspace.
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Figure 1: Segment-level Kendall’s τ correlation with human direct assessment averaged over all WMT 2019 news
translation test sets of YiSi-2 using contextual embeddings extracted from different layers of the multilingual pre-
trained language models. On the x-axis, layer−nmeans, YiSi-2 based on the embeddings of the nth layer, counting
from the last, of XLM-RoBERTalarge (blue circles), multilingual BERT (red triangles) and layer −7 of of XLM-
RoBERTalarge with source embeddings projected to target language space using CLP (blue star).

Table 1: Segment-level Kendall’s τ correlation of metric scores with the WMT 2019 official human direct assess-
ment judgments.

input de fi gu kk lt ru zh en en en en en en en en
output en en en en en en en cs de fi gu kk lt ru zh
Reference-based evaluation metric
YiSi-1 (2019) .164 .347 .312 .440 .376 .217 .426 .475 .351 .537 .551 .546 .470 .585 .355
YiSi-0 .117 .271 .263 .402 .289 .178 .355 .406 .304 .483 .539 .494 .402 .535 .266
sentBLEU .056 .233 .188 .377 .262 .125 .323 .367 .248 .396 .465 .392 .334 .469 .270
QE as a metric
YiSi-2 (2020) .116 .271 .249 .370 .281 .121 .340 .299 .329 .459 .512 .459 .314 .078 .158
YiSi-2 (2019) .068 .126 -.001 .096 .075 .053 .253 .069 .212 .239 .147 .187 .003 -.155 .044

Table 2: Segment-level Kendall’s τ correlation of met-
ric scores with the WMT 2019 official human direct as-
sessment judgments.

input de de fr
output cs fr de
Reference-based evaluation metric
YiSi-1 (2019) .376 .349 .310
YiSi-0 .331 .296 .277
sentBLEU .203 .235 .179
QE as a metric
YiSi-2 (2020) .355 .294 .226
YiSi-2 (2019) .199 .186 .066

3 Results

We useWMT 2019metrics task evaluation set (Ma
et al., 2019) for our development experiments. The
official human judgments for translation quality of
WMT 2019 were collected using reference-based
direct assessment.

Since we use exactly the same correlation analy-
sis as the official metrics shared evaluation and the
2019 version of YiSi performed consistently well
among participants in WMT 2019, we only com-
pare our results with the 2019 version of YiSi and
BLEU. Our results are directly comparable with
those reported in Ma et al. (2019).
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Figure 2: Segment-level Kendall’s τ correlation with human direct assessment on WMT 2019 de-en, fi-en, gu-en,
kk-en, lt-en and ru-en news translation test set of YiSi-2 using contextual embeddings extracted from different layers
of the multilingual pretrained language models. On the x-axis, layer −n means YiSi-2 based on the embeddings of
the nth layer, counting from the last, of XLM-RoBERTalarge (blue circles), multilingual BERT (red triangles) and
layer −7 of of XLM-RoBERTalarge with source embeddings projected to target language space using CLP (blue
star). 906



Figure 3: Segment-level Kendall’s τ correlation with human direct assessment on WMT 2019 zh-en, en-cs, en-de,
en-fi, en-gu and en-kk news translation test set of YiSi-2 using contextual embeddings extracted from different lay-
ers of the multilingual pretrained language models. On the x-axis, layer−nmeans YiSi-2 based on the embeddings
of the nth layer, counting from the last, of XLM-RoBERTalarge (blue circles), multilingual BERT (red triangles)
and layer −7 of of XLM-RoBERTalarge with source embeddings projected to target language space using CLP
(blue star). 907



Figure 4: Segment-level Kendall’s τ correlation with human direct assessment on WMT 2019 en-lt, en-ru, en-zh,
de-cs, de-fr and fr-de news translation test set of YiSi-2 using contextual embeddings extracted from different layers
of the multilingual pretrained language models. On the x-axis, layer −n means YiSi-2 based on the embeddings of
the nth layer, counting from the last, of XLM-RoBERTalarge (blue circles), multilingual BERT (red triangles) and
layer −7 of of XLM-RoBERTalarge with source embeddings projected to target language space using CLP (blue
star). 908



Table 3: System-level Pearson’s ρ correlation of metric scores with theWMT 2019 official human direct assessment
judgments.

input de fi gu kk lt ru zh en en en en en en en en
output en en en en en en en cs de fi gu kk lt ru zh
Reference-based evaluation metric
YiSi-1 (2019) .949 .989 .924 .944 .981 .979 .979 .962 .991 .971 .909 .985 .963 .992 .951
YiSi-0 .902 .993 .993 .991 .927 .958 .937 .992 .985 .987 .863 .974 .974 .953 .861
BLEU .849 .982 .834 .946 .961 .879 .899 .897 .921 .969 .737 .852 .989 .986 .901
QE as a metric
YiSi-2 (2020) .898 .959 .739 .981 .935 .461 .980 .773 .963 .906 .890 .977 .761 .473 .449
YiSi-2 (2019) .796 .642 .566 .324 .442 .339 .940 .324 .924 .696 .314 .339 .055 .766 .097

Table 4: System-level Pearson’s ρ correlation of metric
scores with theWMT 2019 official human direct assess-
ment judgments.

input de de fr
output cs fr de
Reference-based evaluation metric
YiSi-1 (2019) .973 .969 .908
YiSi-0 .978 .952 .820
BLEU .941 .891 .864
QE as a metric
YiSi-2 (2020) .860 .853 .461
YiSi-2 (2019) .606 .721 .530

3.1 Segment-level correlation with human
judgment

In Figure 1, 2, 3 and 4, we plot the change of
segment-level Kendall’s τ correlation for YiSi-2
across different layers of XLM-R and multilingual
BERT models. We identify a common trend, YiSi-
2 using embeddings extracted from XLM-R signif-
icantly outperforms YiSi-2 using embeddings ex-
tracted frommultilingual BERT. From figure 1, we
see that, on average, on all translation directions,
the optimal layer of representation in XLM-R for
YiSi-2 is layer −7. Learning the cross-lingual lin-
ear projection matrix to transform the source em-
beddings into the target language subspace shows
a greater improvement overall. This is our “YiSi-2
(2020)” submission to the QE as a metric task.
Table 1 and 2 show the Kendall’s τ correlation

with the segment-level human direct assessment
relative ranking on the WMT 2019 evaluation set.
YiSi-2 (2020) shows consistent and significant im-
provements when comparing to the previous ver-
sion of YiSi-2 across all translation directions.
Although YiSi-2 (2020) still performs worse

than YiSi-1, YiSi-2 (2020) correlates better with
human judgment than the reference-based metric,
sentBLEU, and its performances are comparable
to those of the character-based YiSi variant, YiSi-
0, on evaluating translation quality for most of the
translation directions.

3.2 Correlation with human judgment at
system level

Table 3 and 4 show the Person’s ρ correlation with
the system-level human direct assessment relative
ranking on the WMT 2019 evaluation set.
Similar to the segment-level results, although

YiSi-2 (2020) still performs significantly worse
than YiSi-1, we observe significant improvements,
compared to the previous version of YiSi-2, con-
sistently across all translation directions. We also
show that by replacing the multilingual BERTwith
XLM-R and using bilingual mappings to better
align the source and target language subspaces
in XLM-R, YiSi-2 (2020) correlates better with
human judgment than the reference-based metric,
BLEU, on evaluating translation quality for most
of the translation directions.

4 Conclusion

We have presented an improved version of YiSi-
2 that uses XLM-RoBERTa and a cross-lingual
linear projection of the source embedding to the
target language subspace to better capture the se-
mantic representation across languages. Our re-
sults show that YiSi-2 correlates better with hu-
man judgement on evaluating translation quality
than BLEU for most of the evaluation conditions.
This improved version of YiSi-2 is submitted to
the WMT 2020 Metrics shared task QE as a met-
ric track. For evaluating Inuktitut↔English where
one of the language (Inuktitut) is not covered by
XLM-R, we build our own XLM cross-lingual lan-
guage model with the parallel training data. Po-
tential research directions definitely include im-
proving massive multilingual pretrained language
model to close the performance gap between YiSi-
1 and YiSi-2 and expanding the language coverage
of these models in post-hoc and unsupervised man-
ner.
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Abstract

We present the contribution of the Unbabel
team to the WMT 2020 Shared Task on Met-
rics. We intend to participate on the segment-
level, document-level and system-level tracks
on all language pairs, as well as the “QE
as a Metric” track. Accordingly, we illus-
trate results of our models in these tracks with
reference to test sets from the previous year.
Our submissions build upon the recently pro-
posed COMET framework: we train several es-
timator models to regress on different human-
generated quality scores and a novel ranking
model trained on relative ranks obtained from
Direct Assessments. We also propose a simple
technique for converting segment-level predic-
tions into a document-level score. Overall, our
systems achieve strong results for all language
pairs on previous test sets and in many cases
set a new state-of-the-art.

1 Introduction

In this paper we describe our submission to the
WMT20 Metrics shared task. Our work is based
on the COMET1 framework, as presented in Rei
et al. (2020), and extended here to evaluation of
MT output at segment, document and system-level,
forming the basis of our submissions to the cor-
responding task tracks. Recently, automatic eval-
uation of MT has followed most other sub-fields
in NLP with a notable interest in leveraging the
power of large, pre-trained language models. Met-
rics such as BERT REGRESSOR (Shimanaka et al.,
2019), BERTSCORE (Zhang et al., 2020), BLEURT

(Sellam et al., 2020) and our more recent COMET

(Rei et al., 2020), all build upon developments in
language modelling to generate automatic metrics
with high correlation with human judgement. Our

1Crosslingual Optimized Metric for Evaluation
of Translation hosted at: https://github.com/
Unbabel/COMET

MT evaluation models follow a similar strategy,
specifically utilizing the most recent iterations of
the XLM-RoBERTa model presented in Conneau
et al. (2020).

The uniqueness of our approach comes from our
inclusion of the source text as input which was
demonstrated in Takahashi et al. (2020) and Rei
et al. (2020) to be beneficial to the model. In our
contribution to the shared task, we demonstrate
methods of further exploiting information in the
source text as well as a technique to fully harness
the power of pre-trained language models to further
improve the prediction accuracy of our evaluation
framework when more than one reference transla-
tion is available.

For the shared task, we utilize two primary
types of models built using the COMET frame-
work, namely; the Estimator models, which regress
directly on human scores of MT quality such as
Direct Assessment; and the COMET-RANK (base)
model used to rank MT outputs and systems.

In addition to the models themselves, we also
make the following research contributions:

1. We introduce a method for handling multiple
references at inference time and for optimiz-
ing the utility of information from all available
text inputs

2. We propose a simple technique for calculat-
ing a document-level score from a weighted
average of segment-level scores

We demonstrate that our COMET framework
trained models achieve state-of-the-art results or
are competitive on all settings introduced in the
WMT19 Metrics shared task, outperforming, in
some cases, more recently proposed metrics such
as BERTSCORE (Zhang et al., 2020), BLEURT (Sel-
lam et al., 2020) and PRISM (Thompson and Post,
2020).

911



2 The COMET Framework

As outlined in Rei et al. (2020), the COMET frame-
work allows for training of specialized evaluation
metrics that correlate well with different types of
human-generated quality scores. The general struc-
ture of the framework consists of a cross-lingual
encoder that produces a series of token-level vector
embeddings for source, hypothesis and reference
inputs, a pooling layer which converts the various
token-level representations into segment-level vec-
tors for each input, and a predictive neural network
that generates a quality score. The latter model can
either be trained to regress directly on a score to
produce predictions of segment-level quality, or can
be trained as a ranker to differentiate MT systems.
In our contribution to the shared task, we introduce
two varieties of models built on the COMET frame-
work that are extensions of the models evaluated in
Rei et al. (2020).

3 COMET Models

3.1 Estimator Models
Our Estimators generally follow the architecture
proposed in Rei et al. (2020), that is to say we
encode segment-level representations using XLM-
RoBERTa and pass these outputs through a feed-
forward regressor. As in Rei et al. (2020), we train
three versions of this basic estimator model against
different types of human judgement; Human-
mediated Translation Edit Rate (HTER) (Snover
et al., 2006), a proprietary implementation of Mul-
tidimensional Quality Metric (MQM) (Lommel
et al., 2014) and (in-line with the present task) Di-
rect Assessments (DA) (Graham et al., 2013). The
hyper-parameters used for these models are exactly
as described in Rei et al. (2020), excluding the fol-
lowing alterations: we use XLM-RoBERTa large
instead of base and we increase the feed-forward
hidden sizes (from 2304 in the first layer and 1152
in the second to 3072 and 1536 hidden units, respec-
tively). We also keep the embedding layer frozen
and apply a layer-wise learning rate decay (as pro-
posed in Howard and Ruder (2018)) by which each
transformer layer has a learning rate scaled at 0.95
times the rate of the layer above. By doing this,
we hope that our metric generalizes better to new
language pairs introduced this year.

3.2 Translation Ranking Model
While for the Estimators using a larger pretrained
encoder seems to improve performance we found

that for the Translation Ranking Model, larger pre-
trained encoders lead to training instability and an
overall worse performance. For that reason we de-
cided to keep the model proposed in (Rei et al.,
2020) without any alteration.

4 Corpora

Below we provide an outline of the various datasets
used to train our models:

4.1 HTER Corpora

Our HTER corpus is a concatenation of two pub-
licly available corpora: the QT21 corpus and the
APE-QUEST corpus. While the QT21 corpus con-
tains segments from the information technology
and life sciences domains (Specia et al., 2017), the
APE-QUEST contains segments from the legal do-
main (Ive et al., 2020). Concatenation of these two
corpora gives a total of 211K tuples with source
sentence, corresponding human-generated refer-
ence, MT hypothesis, and post-edited MT (PE).
With regard to the language pairs in each corpus,
QT21 covers: English to German (en-de), Latvian
(en-lt) and Czech (en-cs), and German to English
(de-en); while APE-QUEST covers: English-Dutch
(en-nl), English-French (en-fr), English-Portuguese
(en-pt). Finally, the HTER score is obtained by cal-
culating the translation edit rate (TER) (Snover
et al., 2006) between the MT hypothesis and the
corresponding PE. By doing this, we were able
to create a large HTER corpus covering several
language pairs and different domains.

4.2 MQM Corpus

Our MQM corpus is an extension of the proprietary
corpus presented in Rei et al. (2020). This internal
data consists of customer support chat messages
translated using a domain adapted MT model and
their corresponding references (consisting of post-
edited translations from earlier iterations of the
MT systems). The data was then MQM-annotated
according to the guidelines set out in Burchardt and
Lommel (2014). Our final corpus contains 27K
tuples from English into 15 different languages
and/or dialects: German (en–de), Spanish (en–es),
Latin-American Spanish (en–es-latam), French (en–
fr), Italian (en–it), Japanese (en–ja), Dutch (en–nl),
Portuguese (en–pt), Brazilian Portuguese (en–pt-
br), Russian (en–ru), Swedish (en–sv), Turkish (en–
tr), Polish (en–pl), simplified Chinese (en–zh-CN),
and Taiwanese Chinese (en–zh-TW).
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4.3 DA Corpora

Every year, since 2008, the WMT News Transla-
tion shared task organizers collect human judge-
ments in the form of DAs. Since 2017, due to a
lack of annotators, these scores are mapped to rel-
ative rankings (DARR). We take advantage of this
data in two ways: 1) we use the scores directly
in order to train an estimator model, 2) as in Rei
et al. (2020), we use the DARR to train a translation
ranking system. The collective corpora of 2017,
2018 and 2019 contain a total of 24 language pairs,
including low-resource languages such as English-
Gujarati (en-gu) and English-Kazakh (en-kk). For
the purposes of this paper we use the data from
2017 and 2018 to train and the data from 2019 to
validate. Later, for participation in the 2020 shared
task, we intend to include the data from 2019 in
our training corpus.

5 Segment-Level Task

At segment-level, we take each of our Estimator
models trained to predict MQM, HTER and DA
and predict segment-level scores on the DARR data
from WMT19. We then generate pairwise rankings
based on these predicted scores. For each language
pair we apply the formulation of Kendall’s Tau (τ )
from the shared task (Ma et al., 2019) as follows:

τ =
Concordant− Discordant
Concordant + Discordant

(1)

Concordant here being the number of times a
metric assigns a higher score to the “better” hy-
pothesis h+ and Discordant, the number of times
a metric assigns a higher score to the “worse” hy-
pothesis h−, or that the evaluation was otherwise
equal.

6 Document-Level Task

In the WMT2019 News Translation the organiz-
ers introduced a document-level translation task
(Barrault et al., 2019) for en-de and en-cs. This
means that for those language pairs we are able to
obtain document-level direct assessments. We can
compute a score taking into account an entire doc-
ument and correlate it with the human evaluation
also carried out at document-level.

For our document-level submission we propose
the generation of a document-level score as a
weighted average of the predicted scores for each
segment composing that document (hereinafter

called micro-average score), where the same is
weighted by segment length.

To calculate this score at inference time we
pass the entire document (divided into segments)
through the model as a single batch. This has the
added effect of reducing inference time.

7 System-level Task

Following previous years, the metric used in the
System-level Task will be Pearson’s r correlation
score. The correlation is calculated between the av-
erage of all DA human z-scores for a given system
and language pair, and the average of the corre-
sponding scores predicted by a given metric. Be-
cause the goal of some metrics is to maximize the
correlation with human judgements (i.e. BLEU),
while for others is to minimize that correlation (i.e.
HTER), the value reported is its absolute value.

7.1 Robustness to high-permorming systems

One important finding from WMT19 is the general
deterioration of metrics’ performance when consid-
ering only the top n MT systems (Ma et al., 2019).
Previously, we showed robustness of our metrics in
this scenario in terms of Kendall’s Tau at segment-
level (Rei et al., 2020). Mathur et al. (2020) show
that at system-level, Pearson correlation is highly
influenced by outliers and that performances for
metrics such as BLEU drop significantly when con-
sidering only the top systems. To address this,
we propose a system-level pairwise comparison
measured with the same Kendall’s Tau formulation
used for segment-level analysis outlined in section
5 above. By doing this, we are not only better han-
dling possible outliers, but emulating a real world
application of these metrics: In most cases (both
in academia and industry), we want a metric that
can successfully differentiate between two systems,
even if those systems are very close in terms of
performance, which is often the case.

8 Quality Estimation as a Metric

Given the clear parallels between the COMET

framework and modern approaches to Quality Es-
timation such as Kepler et al. (2019), we used our
framework to participate in the “QE as a Metric”
track of the shared task by removing the reference
at input and proportionately reducing the dimen-
sions of the feed-forward network to accommodate
the reduced input.
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Table 1: Segment-level Kendall’s Tau (τ ) correlations for language pairs from English-to-other for the WMT19
Metrics DARR corpus.

en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh
No Tuples 27178 99840 31820 11355 18172 17401 24334 18658 avg.
BLEU 0.364 0.248 0.395 0.463 0.363 0.333 0.4691 0.235 0.410
CHRF 0.444 0.321 0.518 0.548 0.510 0.438 0.548 0.241 0.510
BERTSCORE (F1) 0.486 0.350 0.526 0.559 0.534 0.464 0.581 0.350 0.550
PRISM 0.580 0.416 0.590 - 0.529 0.555 0.581 0.373 0.518
COMET-MQM (large) 0.595 0.405 0.594 0.580 0.546 0.607 0.693 0.400 0.553
COMET-HTER (large) 0.610 0.427 0.610 0.587 0.569 0.615 0.707 0.405 0.566
COMET-DA (large) 0.618 0.435 0.620 0.617 0.585 0.619 0.711 0.427 0.579
COMET-RANK (base) 0.603 0.427 0.664 0.611 0.693 0.665 0.580 0.449 0.587

Table 2: Segment-level Kendall’s Tau (τ ) correlations on language pairs with English as a target for the WMT19
Metrics DARR corpus.

de-en fi-en gu-en kk-en lt-en ru-en zh-en
No Tuples 85365 32179 20110 9728 21862 39852 31070 avg.
BLEU 0.054 0.236 0.194 0.276 0.249 0.115 0.321 0.206
CHRF 0.123 0.292 0.240 0.323 0.304 0.177 0.371 0.261
BERTSCORE (F1) 0.191 0.354 0.292 0.351 0.381 0.221 0.433 0.318
BLEURT (large-512) 0.174 0.374 0.313 0.372 0.388 0.220 0.436 0.325
PRISM 0.189 0.366 0.320 0.362 0.382 0.220 0.434 0.325
COMET-MQM (large) 0.191 0.360 0.289 0.346 0.373 0.213 0.426 0.314
COMET-HTER (large) 0.193 0.351 0.286 0.340 0.375 0.209 0.429 0.312
COMET-DA (large) 0.220 0.368 0.316 0.378 0.405 0.231 0.462 0.340
COMET-RANK (base) 0.202 0.399 0.341 0.358 0.407 0.180 0.445 0.333

9 Multi-Reference Handling

In this year’s shared task we are provided with
a second human-generated reference for German-
to-English (de-en), Russian-English (ru-en) and
Chinese-to-English (zh-en). Given that our base
framework currently supports the input of only one
single reference, we introduce a method of leverag-
ing information from a second reference at infer-
ence time.

During standard training of our models, we in-
put source, hypothesis and reference in that order,
resulting in a concatenation of embeddings as de-
tailed further in Rei et al. (2020). During training,
with a probability of p = 0.5 we switch the po-
sitions of source and reference, such that the sys-
tem receives the reference as the source and vice
versa. This has two primary effects on our model.
Firstly, during fine-tuning of the underlying lan-
guage model, the source embeddings are aligned
with the target language embedding space resulting
in more useful source embeddings. Secondly, it
forces the model to treat source and reference as in-

terchangeable inputs, allowing it to handle switch-
ing of inputs at inference time without excessively
hindering the model’s predictive ability. Finally, at
inference time we embed source s, hypothesis h,
reference r and the alternative reference r̂. These
embeddings are then passed to the feed-forward
neural network in the following six permutations:
[s;h; r], [r;h; s], [s;h; r̂], [r̂;h; s], [r;h; r̂] and
[r̂;h; r].

Six passes through the feed-forward gives us six
predictions. Final, aggregated scores are achieved
by taking the mean of the six predictions and mul-
tiplying it by 1 minus the standard deviation (σ).
The intuition being that 1− σ gives something of
an idea of confidence of the model at the segment-
level and that scaling the mean prediction to penal-
ize lower confidence might align better with human
judgement.

10 Experimental Results

Below we present results of our various COMET

models on WMT19 evaluation sets as described
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Table 3: Kendall’s Tau (τ ) correlation and standard deviation (σ) across all language pairs for the top 5 high-
performing systems.

Model Avg. Kendall (all) Avg. Kendall (en)

BLEU 0.387±0.366 0.257±0.395
CHRF 0.387±0.463 0.343±0.513
BERTSCORE (F1) 0.453±0.267 0.429±0.279
BLEURT - 0.571±0.355
PRISM 0.52±0.270 0.514±0.279
COMET-MQM (large) 0.587±0.277 0.543±0.276
COMET-HTER (large) 0.547±0.325 0.486±0.363
COMET-DA (large) 0.653±0.233 0.629±0.269
COMET-RANK (base) 0.547±0.256 0.543±0.276

above. Segment-level and document-level results
are outlined in the corresponding tables within the
body of the paper, the remaining tables for other
task results are contained in the Appendices hereto.

10.1 Segment-level Task

Our segment-level results on the shared task test
sets for WMT19 are detailed in tables 1 and 2. We
note that for all language pairs out of English (Table
1) both our DA Estimator and our COMET-RANK

(base) outperform prior metrics, in some cases by a
significant margins. The same can be said in most
language pairs into English, where we consistently
perform at the level competitive with or exceed-
ing prior metric performance in this task. Table 6
(contained in the appendices) further illustrates per-
formance of our models on non-English language
pairs. We note that in all settings our COMET mod-
els outperform state-of-the-art for these language
pairs.

10.2 System-level Task

System-level results are outlined in tables 7, 8 and
9 in the appendix. In most language pairs we out-
perform the best metrics in terms of correlation
with human judgement. For those language pairs
for which our metrics are outperformed by others,
we note that ours are at least competitive with other,
recent metrics.

An unexpected result is that at system-level our
COMET-RANK (base) does not perform as well as
our Estimators, regardless of its strong segment-
level results. We believe that this is an artifact of
training directly on DARR data. Since in WMT
shared tasks, the DA rating scale employed is de-
fined at the 0-25-50-75-100 point margins, the min-
imum required difference between two hypothesis

to produce DARR judgement is 25 points (Ma et al.,
2019). All other segments are discarded, as within
that range the notion of which hypothesis is better
becomes ambiguous. As a result we believe that
our ranker model learns to successfully discrim-
inate less ambiguous examples and struggles to
correctly assign a score otherwise.

10.2.1 Robustness to high-performing
systems

As outlined above, we also complement our eval-
uation at system-level with an analysis of metric
performance in terms of the pairwise ranking of the
top five performing systems from each language
pair. For each setting we output the Kendall’s Tau
(that is to say the formulation outlined in section 5
above) and report the mean and standard deviation
of results across language pairs in table 3.

In both settings we note that our DA Estimator
(large) model significantly outperforms other met-
rics both in terms of mean and standard deviation.
This strongly suggests that not only do we perform
well in terms of system-level Pearson but that at a
practical level, our model can much more success-
fully differentiate high-performing systems.

10.3 Document-level Task
Table 10 compares the micro-averaging against a
simple unweighted average. From table 10 we can
observe that micro-averaging outperforms macro-
averaging by a small margin. Table 4 summarizes
our results for the Document-level Task using our
segment-level Estimators with micro-averaging. In
this task, the HTER Estimator shows generally su-
perior performance on average surpassing our best
performing segment-level model, the DA Estimator.
An important conclusion to draw from the strong
document-level correlations noted here is that a
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model trained to generate segment-level scores, can
also perform well as a document-level metric.

Table 4: Pearson correlation (r) between Document-
level DAs and micro average segment-level scores for
English-to-German and English-to-Czech.

en-cs en-de
No Documents 1115 2355 avg.
COMET-MQM (large) 0.638 0.516 0.577
COMET-HTER (large) 0.655 0.558 0.607
COMET-DA (large) 0.667 0.528 0.598

Table 5: Pearson correlations (r) and adequacy (as re-
ported in Freitag et al. (2020)) for segment-level DA
using our DA Estimator (large) model on WMT19 Met-
rics shared task test data for en-de. We show Pearson’s
r for the single reference scenario using the correspond-
ing reference (‘1-ref’) and the multi-reference scenario
where the reference is combined with the original in the
manner outlined in section 9 above (‘2-ref’).

Reference Adequacy r (1-ref) r (2-ref)
WMT 85.3 0.523 -
AR 86.7 0.539 0.555
WMTp 81.8 0.470 0.529
ARp 80.8 0.476 0.537

10.4 Multi-Reference Handling

Additional references were obtained for two lan-
guage pairs: en-de and de-en. For the former, we
conducted experiments using 3 additional refer-
ences from Freitag et al. (2020): AR reference (an
additional high quality reference translation), ARp
reference (a paraphrased-as-much-as-possible ver-
sion of AR), and WMTp reference (a paraphrased-
as-much-as-possible version of the original WMT
reference); for the latter, we use the alternative
reference given in the WMT19 News shared task
test set. Conveniently, Freitag et al. (2020) also
offer a notion of the quality of the extra references
for en-de by providing human-generated adequacy
assessments for each. In table 5 we show the per-
formance of our DA Estimator (large) model with
each reference, either as a single reference or com-
bined in the manner described in section 9 above
with the original reference.

While we lack data to draw any statistically sig-
nificant conclusions, there is a strong suggestion
from these results of a positive correlation between
reference quality and utility to the predictive model.

AR ref. ARp ref. WMTp ref.

0.43

0.435

0.44

0.445

0.45

0.455

Segment-level Kendall’s Tau (τ )

Figure 1: Performance impact of using different kinds
of references in combination with the original WMT
English-to-German reference. In we observe the
Kendall-Tau τ ranking correlation achieved by our
multi-reference Estimator model (section 9). In
we present the Kendall-Tau τ ranking correlation of
our “one-reference” Estimator model using the alter-
native reference. Finally, for comparison, in we
show the Kendall-Tau τ ranking correlation of our
“one-reference” Estimator model using the original ref-
erence.

For de-en, using an alternative reference did not
offer any gain in Pearson’s r. We note that when
using it alone we only achieve r=0.34 compared to
using the original reference which achieves r=0.42.
We speculate, based on our observations above,
that this might be due to the alternative reference
being of lower quality.

These results potentially show that for ap-
proaches such as COMET, quality is more impor-
tant than quantity, and that lower-quality additional
references can potentially hurt rather than help im-
prove the correlations obtained using only one sin-
gle high-quality reference.

With regard to the Kendall Tau measured at
segment-level, by looking at Figure 1 (en-de), we
see no significant differences in using the multi-
reference technique. This suggests that having a
higher Pearson’s r score does not necessarily guar-
antee a better Kendall’s Tau.

We note that by design, with an approach such as
COMET that is based on a meaning-representation
of references, extra references are expected to pro-
vide only minor additional value, especially versus
lexical-based metrics such as BLEU (Papineni et al.,
2002). Whereas the adequacy of the reference(s)
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is (again by design) expected to have a more sig-
nificant impact on the performance of the model.
Our initial results seem to strongly support this
hypothesis.

11 Conclusions

In this paper we present COMET, Unbabel’s con-
tribution to the WMT 2020 Metrics shared task.
We leverage the framework outlined in Rei et al.
(2020) to demonstrate state-of-the-art or otherwise
competitive levels of correlation with human judge-
ments in all tasks and introduce a novel method of
making optimal use of alternative references and
demonstrate that the quality of the reference used
is relevant to the success of our framework. Further
investigation of the latter, in particular how to bet-
ter leverage different kinds of references, represent
an interesting direction for future work.
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Table 6: Segment-level Kendall’s Tau (τ ) correlations on language pairs not involving English for the WMT19
Metrics DARR corpus. COMET-RANK (base) scores are to be replaced with results of the large model.

de-cs de-fr fr-de
No Tuples 23194 4862 1369 avg.
BLEU 0.222 0.226 0.173 0.207
CHRF 0.341 0.287 0.274 0.301
BERTSCORE (F1) 0.356 0.330 0.277 0.321
PRISM 0.452 0.443 0.421 0.439
COMET-MQM (large) 0.413 0.422 0.327 0.387
COMET-HTER (large) 0.425 0.449 0.381 0.418
COMET-DA (large) 0.471 0.469 0.420 0.453
COMET-RANK (base) 0.389 0.444 0.331 0.388

Table 7: System-level Pearson correlation (r) for the from-English language pairs from WMT19 DA corpus. DARR
Ranker (base) scores are to be replaced with results of the large model.

en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh
No Systems 11 22 12 11 10 12 12 12 avg.
BLEU 0.988 0.952 0.978 0.780 0.864 0.979 0.973 0.762 0.910
CHRF 0.986 0.983 0.988 0.839 0.969 0.964 0.979 0.822 0.941
BERTSCORE (F1) 0.983 0.990 0.969 0.907 0.983 0.972 0.989 0.927 0.965
PRISM 0.964 0.987 0.947 - 0.978 0.929 0.914 0.900 0.946
COMET-MQM (large) 0.943 0.968 0.949 0.946 0.979 0.985 0.966 0.958 0.962
COMET-HTER (large) 0.948 0.991 0.959 0.948 0.965 0.982 0.973 0.943 0.964
COMET-DA (large) 0.964 0.995 0.969 0.964 0.989 0.982 0.987 0.969 0.977
COMET-RANK (base) 0.943 0.937 0.914 0.817 0.963 0.973 0.861 0.942 0.919

Table 8: System-level Pearson correlation (r) for the into-English language pairs from WMT19 DA corpus. DARR
Ranker (base) scores are to be replaced with results of the large model.

de-en fi-en gu-en kk-en lt-en ru-en zh-en
No Systems 16 11 9 7 11 13 15 avg.
BLEU 0.879 0.984 0.975 0.959 0.969 0.840 0.895 0.929
CHRF 0.916 0.988 0.967 0.982 0.938 0.942 0.952 0.955
BERTSCORE (F1) 0.949 0.984 0.990 0.995 0.961 0.901 0.982 0.966
BLEURT (large-512) 0.939 0.984 0.989 0.989 0.992 0.980 0.994 0.981
PRISM 0.954 0.981 0.992 0.992 0.994 0.905 0.992 0.973
COMET-MQM (large) 0.926 0.974 0.972 0.971 0.986 0.889 0.959 0.954
COMET-HTER (large) 0.918 0.953 0.958 0.951 0.983 0.924 0.978 0.952
COMET-DA (large) 0.946 0.983 0.993 0.996 0.993 0.970 0.993 0.982
COMET-RANK (base) 0.922 0.981 0.963 0.932 0.987 0.674 0.967 0.918
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Table 9: System-level Pearson correlation (r) for language pairs not involving English from WMT19 DA corpus.

de-cs de-fr fr-de
No Systems 9 11 10 avg.
BLEU 0.936 0.934 0.869 0.913
CHRF 0.994 0.933 0.908 0.945
BERTSCORE (F1) 0.988 0.953 0.942 0.961
PRISM 0.988 0.924 0.922 0.945
COMET-MQM (large) 0.936 0.950 0.885 0.924
COMET-HTER (large) 0.951 0.901 0.924 0.925
COMET-DA (large) 0.973 0.972 0.954 0.966
COMET-RANK (base) 0.819 0.941 0.927 0.896

Table 10: Document-level Pearson correlation (r) for micro average and macro average for English-to-German and
English-to-Czech.

en-cs en-de
Micro-avg. Macro-avg. Micro-avg. Macro-avg.

COMET-DA (large) 0.667 0.660 0.528 0.529
COMET-MQM (large) 0.638 0.639 0.516 0.519
COMET-HTER (large) 0.655 0.650 0.558 0.552

0.653 0.649 0.534 0.533
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Abstract

The quality of machine translation systems has
dramatically improved over the last decade,
and as a result, evaluation has become an in-
creasingly challenging problem. This paper
describes our contribution to the WMT 2020
Metrics Shared Task, the main benchmark for
automatic evaluation of translation. We make
several submissions based on BLEURT, a pre-
viously published metric which uses transfer
learning. We extend the metric beyond En-
glish and evaluate it on 14 language pairs for
which fine-tuning data is available, as well as 4
“zero-shot” language pairs, for which we have
no labelled examples. Additionally, we focus
on English to German and demonstrate how to
combine BLEURT’s predictions with those of
YISI and use alternative reference translations
to enhance the performance. Empirical results
show that the models achieve competitive re-
sults on the WMT Metrics 2019 Shared Task,
indicating their promise for the 2020 edition.

1 Introduction

The recent progress in machine translation mod-
els has led researchers to question the use of n-
gram overlap metrics such as BLEU, which fo-
cus solely on surface-level aspects of the gener-
ated text, and thus may correlate poorly with hu-
man evaluation (Papineni et al., 2002; Lin, 2004;
Ma et al., 2019; Mathur et al., 2020; Belz and
Reiter, 2006; Callison-Burch et al., 2006). This
has led to a surge of interest for more flexi-
ble metrics that use machine learning to capture
semantic-level information (Celikyilmaz et al.,
2020). Popular examples of such metrics include
YISI-1 (Lo, 2019), ESIM (Mathur et al., 2019),
BERTSCORE (Zhang et al., 2020), the Sentence

∗ Work done during a summer internship. Permanent
email address: amy pu@brown.edu.

†Work done as a member of the Google AI Residency
Program.

Mover’s Similarity (Zhao et al., 2019; Clark et al.,
2019), and BLEURT (Sellam et al., 2020). These
metrics utilize contextual embeddings from large
models such as BERT (Devlin et al., 2019) which
have been shown to capture linguistic information
beyond surface-level aspects (Tenney et al., 2019).

The WMT Metrics 2020 Shared Task is the ref-
erence benchmark for evaluating these metrics in
the context of machine translation. It tests the
evaluation of systems that are to-English (X →
En) and to other languages (X → Y), which re-
quires a multilingual approach. An additional
challenge for learned metrics is that human rat-
ings are not available for all language pairs, and
therefore, the models must use unlabeled data and
perform zero-shot generalization.

We describe several learned metrics based on
BLEURT (Sellam et al., 2020), originally devel-
oped for English data. We first extend BLEURT to
the multilingual setup, and show that our approach
achieves competitive results on the WMT Metrics
2019 Shared Task.1 We also present several sim-
ple BERT-based baselines, which we submit for
analysis. Finally, we focus on English to German
and enhance BLEURT’s performance by combin-
ing its predictions with those of YISI (Lo, 2019)
as well as by using alternative references.

2 Background and Notations

Task Reference-based NLG evaluation seeks to
assign a score to a triplet of sentences (input, refer-
ence, candidate), where input is a sentence in the
source language, reference is a reference transla-
tion kept secret at inference time, and candidate is
a translation produced by an MT system.

1We use the following languages for fine-tuning and/or
testing: Chinese, Czech, German, English, Estonian, Finnish,
French, Gujarati, Kazakh, Lithuanian, Russian, and Turkish.
In addition, we also pre-train on Inuktitut, Japanese, Khmer,
Pastho, Polish, Romanian, and Tamil.
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Similar to BLEU (Papineni et al., 2002) and
the previous editions of the WMT Metrics shared
task, we omit the input and treat the task as a re-
gression problem : we aim to learn a function
f : (x, x̃) → y that predicts a quality score y
for a candidate sentence x̃ = (x̃1, .., x̃p) given
a reference sentence x = (x1, .., xq). The func-
tion is supervised on a corpus of N human ratings
{(xi, x̃i, yi)}Nn=1.

BLEURT Most experiments presented in this pa-
per are based on BLEURT, a metric that leverages
transfer learning to achieve high accuracy and in-
crease robustness (Sellam et al., 2020). BLEURT

is a BERT-based regression model (Devlin et al.,
2019). It embeds sentence pairs into a fixed-width
vector vBERT = BERT(x, x̃) with a pre-trained
Transformer, and feeds this vector to a linear layer:

ŷ = f(x, x̃) = WvBERT + b

where W and b are the weight matrix and bias
vector respectively.

In its original (English) version, BLEURT is
trained in three stages. (1) It is initialized from
a publicly available BERT checkpoint. (2) The
model is then “warmed up” by exposing it to
millions of sentence pairs (x, x̃), obtained by
randomly perturbing sentences from Wikipedia.
During this phase, the model learns to predict a
wide range of similarity scores that include ex-
isting metrics (BERTSCORE, BLEU, ROUGE),
scores from an entailment model, and the likeli-
hood that x̃ was generated from x with a round-
trip translation by a given translation model. We
denote this stage as mid-training. (3) In the
final stage, the model is fine-tuned on human
ratings from WMT Metrics (Bojar et al., 2017;
Ma et al., 2018, 2019), using a regression loss
ℓsupervised = 1

N

∑N
n=1 ‖yi−ŷ‖2. We found that En-

glish BLEURT achieved competitive performance
on four academic datasets, WebNLG (Gardent
et al., 2017), and the WMT Metrics Shared Task
years 2017 to 2019.

3 Extending BLEURT Beyond English

3.1 Modeling
An approach to extend BLEURT would be to use
MBERT, the public version of BERT pre-trained
on 104 languages, and “mid-train” with non-
English signals as described above. Yet, the ev-
idence we gathered from early experiments were

inconclusive. On the other hand, we did observe
that models trained on several languages were of-
ten more accurate than monolingual models, pos-
sibly due to the larger amount of fine-tuning data.
Thus, we opted for a simpler approach where we
start with a multilingual BERT model and fine-
tune it on all the human ratings data available for
all languages (X → Y and X → En). In most
cases, we found that such models could perform
zero-shot evaluation: if a language Y does not
have human ratings data, the metric can still per-
form evaluation in this target language as long as
the base multilingual BERT model contains un-
labeled data for Y, as observed in the past litera-
ture (Karthikeyan et al., 2019; Pires et al., 2019).

We experiment with two pre-trained multilin-
gual models: MBERT and MBERT-WMT, a cus-
tom multilingual variant of BERT. The MBERT-
WMT model is larger that MBERT (24 Trans-
former layers instead of 12), and it was pre-trained
on 19 languages of the WMT Metrics shared task
2015 to 2020.

Details of MBERT-WMT pre-training We
trained MBERT-WMT model with an MLM
loss (Devlin et al., 2019), using a combination of
public datasets: Wikipedia, the WMT 2019 News
Crawl (Barrault et al.), the C4 variant of Com-
mon Crawl (Raffel et al., 2020), OPUS (Tiede-
mann, 2012), Nunavut Hansard (Joanis et al.,
2020), WikiTitles2, and ParaCrawl (Esplà-Gomis
et al., 2019). We trained a new WordPiece vo-
cabulary (Schuster and Nakajima, 2012; Wu et al.,
2016), since the original vocabulary of mBERT
does not support the alphabets of Pashto, Khmer
and Inuktitut. The model was trained for 1 million
steps with the LAMB optimizer (You et al., 2020),
using the learning rate 0.0018 and batch size 4096
on 64 TPU v3 chips.

3.2 Experimental Setup

Datasets At the time of writing, no human rat-
ings data is available for WMT Metrics 2020.
Therefore, we use the human ratings from WMT
Metrics years 2015 to 2019 for both training and
evaluation. We do so in two stages. In the
first stage, we use 2015 to 2018 for training
(216,541 sentence pairs in 8 languages), setting
10% aside for early stopping. We use 2019 as a de-
velopment set, to choose hyper-parameters and to

2https://linguatools.org/tools/
corpora/wikipedia-parallel-titles-corpora/
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support high-level modeling decisions. In the sec-
ond stage, we use 2015 to 2019, that is, all the data
available, for training and uniformly sample 10%
of the data for early stopping and hyper-parameter
tuning. This adds 289,895 sentence pairs and 4
additional languages to our training set, approxi-
mately doubling the size of the training data. We
report our results on the first setup, but submit
our predictions to the shared task using the second
setup.

Hyper-parameters We run grid search on the
learning rate and export the best model, using val-
ues {5e-6, 8e-6, 9e-6, 1e-5, 2e-5, 3e-5}. We
use batch size 32 and evaluate the model every
1,000 steps on a 10% held-out data set to pre-
vent over-fitting. During preliminary experiments,
we additionally experimented with the batch size,
dropout rate, frequency of continuous evaluation,
balance of languages, pre-training schemes, Word-
Piece vocabularies, and model architecture.

3.3 Additional Models and Baselines

English BLEURT We fine-tune a new BLEURT

checkpoint, following the methodology described
above. The main difference with Sellam et al.
(2020) is that we incorporate the to-English ratings
of year 2019, which were not previously available.

Monolingual baselines based on BERT We ex-
periment with three baselines and submit the re-
sults to the WMT Metrics Shared Task for anal-
ysis. BERT-L2-BASE and BERT-L2-LARGE are
two regression models based on BERT and trained
on to-English ratings. We use the same setup as
English BLEURT, but we omit the mid-training
phase. A similar approach was described in Shi-
manaka et al. (2019). BERT-CHINESE-L2 is
similar to BERT-L2-BASE, but it uses BERT-
CHINESE and it is fine-tuned on to-Chinese rat-
ings.

Other Systems We compare our setups
to other state-of-the-art learned metrics:
BERTSCORE (Zhang et al., 2020), and Yisi (Lo,
2019) all apply rules on top of BERT embeddings
while ESIM (Mathur et al., 2019) is a neural
sentence similarity model. PRISM (Thompson
and Post, 2020) trains a multilingual translation
model that is used as a zero-shot paraphrasing
system. All the aforementioned systems take
sentences pairs as input. Concurrent work has
investigated incorporating the source with great

success (Rei et al., 2020). We leave this line of
research for future work.

4 Results

Tables 1 and 2 show the results in the X → En
direction, at the segment- and system-level respec-
tively. In the majority of cases, one of the BLEURT

configurations yields the strongest results. The
original BLEURT metric seems to perform better
at the segment-level. At the system-level it may be
dominated by PRISM (3 out of 7 language pairs)
or by one of the simpler BERT-based models (4
out of 7 language pairs).

Tables 3 and 4 present the results for the other
languages. MBERT-WMT yields solid results at
the segment-level (it achieves the highest correla-
tions for 7 out of 11 language pairs), in particular
for the “zero-shot” setups, En → Gu, En → Kk,
and En → Lt. It outperforms MBERT consis-
tently, except for En → Ru and En → Zh where
it lags behind the other metrics. The results are
consistent at the system-level.

Strategy for the WMT Metrics Shared Task
Based on these results, we make two “compet-
itive” submissions. We present BLEURT as de-
scribed above, which we ran on all the X → En
sentence pairs. Additionally, we submitted a mul-
tilingual system that combines MBERT-WMT
(for all languages except Chinese) and BERT-
CHINESE-L2 (for Chinese). We ran the multi-
lingual system for all language pairs including
to-English, as the large amount of non-English
fine-tuning data made available in 2019 may ben-
efit this setup too. We also release the pre-
dictions of BERT-BASE-L2, BERT-LARGE-L2,
and MBERT for analysis.

5 Additional Improvements on
English→German

For English→German, the organizers of WMT20
provide three different reference translations: two
standard references and one additional para-
phrased reference. Given this novel setup, we in-
vestigate how to combine our predictions. More-
over, we use a similar framework to ensemble
the predictions of different metrics. In particular,
we average the predictions of BLEURT, YISI-
1 and YISI-2. All three metrics are different in
their approaches. While BLEURT and YISI-1
are reference-based metrics, YISI-2 is reference-
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de-en fi-en gu-en kk-en lt-en ru-en zh-en avg

YISI 0.164 0.347 0.312 0.440 0.376 0.217 0.426 0.326
YISI1-SRL 0.199 0.346 0.306 0.442 0.380 0.222 0.431 0.332
ESIM 0.167 0.337 0.303 0.435 0.359 0.201 0.396 0.314
BERTSCORE 0.176 0.345 0.320 0.432 0.381 0.223 0.430 0.330
PRISM 0.204 0.357 0.313 0.434 0.382 0.225 0.438 0.336

BLEURT Configurations, English-only
BERT-L2-BASE 0.142 0.326 0.274 0.406 0.367 0.197 0.358 0.296
BERT-L2-LARGE 0.172 0.361 0.305 0.424 0.388 0.210 0.420 0.326
BLEURT 0.175 0.365 0.316 0.451 0.397 0.223 0.444 0.339

BLEURT Configurations, Multi-lingual
MBERT 0.172 0.352 0.300 0.430 0.388 0.222 0.397 0.323
MBERT-WMT 0.187 0.363 0.306 0.439 0.398 0.226 0.425 0.335

Table 1: Segment-level agreement with human ratings on the WMT19 Metrics Shared Task on the to-English
language pairs. The metric is WMT’s Direct Assessment metric, a robust variant of Kendall τ . The scores for
YISI, YISI1-SRL, and ESIM come from Ma et al. (2019). The scores for BERTSCORE and PRISM come
from Thompson and Post (2020).

de-en fi-en gu-en kk-en lt-en ru-en zh-en avg

YISI 0.949 0.989 0.924 0.994 0.981 0.979 0.979 0.971
YISI1-SRL 0.950 0.989 0.918 0.994 0.983 0.978 0.977 0.969
ESIM 0.941 0.971 0.885 0.986 0.989 0.968 0.988 0.961
BERTSCORE 0.949 0.987 0.981 0.980 0.962 0.921 0.983 0.966
PRISM 0.954 0.983 0.764 0.998 0.995 0.914 0.992 0.943

BLEURT Configurations, English-only
BERT-L2-BASE 0.938 0.992 0.930 0.992 0.991 0.976 0.997 0.974
BERT-L2-LARGE 0.940 0.987 0.819 0.992 0.990 0.985 0.993 0.958
BLEURT 0.943 0.989 0.865 0.996 0.995 0.984 0.990 0.966

BLEURT Configurations, Multi-lingual
MBERT 0.937 0.976 0.863 0.984 0.978 0.959 0.978 0.954
MBERT-WMT 0.950 0.991 0.815 0.989 0.992 0.968 0.980 0.955

Table 2: System-level agreement with human ratings on the WMT19 Metrics Shared Task on the to-English lan-
guage pairs. The metric is Pearson’s correlation. The scores for YISI, YISI1-SRL, and ESIM come from Ma
et al. (2019). The scores for BERTSCORE and PRISM come from Thompson and Post (2020).

free and calculates its score by comparing trans-
lations only to the source sentence. BLEURT is
fine-tuned on previous human ratings, while YISI-
1 is based on the cosine similarity between BERT
embeddings of the reference and the candidate.

In the remainder of this section, we report
BLEURT results using the MBERT-WMT setup
unless specified otherwise.3

5.1 Modifications to YiSi-1

Before combining BLEURT and YISI, we per-
form a series of modifications to YISI-1 and eval-
uate their impact on English→German.

Experimental Setup All experimental results
are summarized in Table 5. We report
both segment-level (DARR) and system-level
(Kendall τ ) correlations. To replicate the multi-
reference setup of 2020, we compute correlations

3We use a different checkpoint from the one described in
Section 4. The model was trained for 880K steps instead of
1 million, and it uses a sequence length of 256 tokens instead
of 128.

with the standard WMT references as well as the
paraphrased reference from Freitag et al. (2020).

Improving YiSi’s Predictions Our baseline is
similar to the YISI-1 submission from WMT
2019 (Lo, 2019): we run YISI-1 with the pub-
lic multilingual MBERT checkpoint. We then
experiment with the underlying checkpoint. We
continued pre-training MBERT on the in-domain
German NewsCrawl dataset. The resulting model
+pre-train NewsCrawl layer 9 increases the corre-
lation for both reference translations. We improve
the correlation further on the paraphrased refer-
ence by using the 8th instead of the 9th layer.

Other experiments We tried pre-training BERT
on forward translated sentences from German
NewsCrawl, to adapt the word embeddings to MT
outputs. We also trained a BERT model from
scratch on the German NewsCrawl data. These
experiments did not result in higher correlations
with human ratings.
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en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh de-cs de-fr fr-de avg

YISI1 0.475 0.351 0.537 0.551 0.546 0.470 0.585 0.355 0.376 0.349 0.310 0.446
YISI1-SRL - 0.368 - - - - - 0.361 - - 0.299 -
ESIM - 0.329 0.511 - 0.510 0.428 0.572 0.339 0.331 0.290 0.289 -
BERTSCORE 0.485 0.345 0.524 0.558 0.533 0.463 0.580 0.347 0.352 0.325 0.274 0.435
PRISM 0.582 0.426 0.591 0.313 0.531 0.558 0.584 0.376 0.458 0.453 0.426 0.482

BLEURT Configurations
BERT-CHINESE-L2 - - - - - - - 0.356 - - - -
MBERT 0.506 0.364 0.551 0.550 0.529 0.516 0.592 0.381 0.385 0.388 0.291 0.459
MBERT-WMT 0.603 0.422 0.615 0.577 0.558 0.584 0.492 0.337 0.461 0.449 0.427 0.502

Table 3: Segment-level agreement with human ratings on the WMT19 Metrics Shared Task on non-English lan-
guage pairs. The metric is WMT’s Direct Assessment metric, a robust variant of Kendall τ . Languages without
fine-tuning data are denoted in italics. The scores for YISI, YISI1-SRL, and ESIM come from Ma et al. (2019).
The scores for BERTSCORE and PRISM come from Thompson and Post (2020).

en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh de-cs de-fr fr-de avg

YISI1 0.962 0.991 0.971 0.909 0.985 0.963 0.992 0.951 0.973 0.969 0.908 0.961
YISI1-SRL - 0.991 - - - - - 0.948 - - 0.912 -
ESIM - 0.991 0.957 - 0.980 0.989 0.989 0.931 0.980 0.950 0.942 -
BERTSCORE 0.981 0.990 0.970 0.922 0.981 0.978 0.989 0.925 0.969 0.971 0.899 0.961
PRISM 0.958 0.988 0.949 0.624 0.978 0.937 0.918 0.898 0.976 0.936 0.911 0.916

BLEURT Configurations
BERT-CHINESE-L2 - - - - - - - 0.953 - - - -
MBERT 0.942 0.987 0.953 0.949 0.982 0.950 0.947 0.949 0.972 0.970 0.924 0.957
MBERT-WMT 0.993 0.991 0.987 0.959 0.993 0.989 0.888 0.953 0.986 0.988 0.962 0.972

Table 4: System-level agreement with human ratings on the WMT19 Metrics Shared Task on non-English language
pairs. The metric is Pearson’s correlation. Languages without finetuning data are denoted in italics. The scores
for YISI, YISI1-SRL, and ESIM come from Ma et al. (2019). The scores for BERTSCORE and PRISM come
from Thompson and Post (2020).

sys-level seg-level
Ref Metric model Kendall τ DARR

std BLEURT MBERT-WMT¶ 0.896 0.420

std YiSi-1
MBERT (WMT19 subm.) 0.810 0.351
+pre-train NewsCrawl layer 9 0.870 0.373
+pre-train NewsCrawl layer 8 † 0.853 0.376

para BLEURT MBERT-WMT¶ 0.852 0.413

para YiSi-1
MBERT (WMT19 subm.) 0.844 0.316
+pre-train NewsCrawl layer 9 0.887 0.365
+pre-train NewsCrawl layer 8 † 0.896 0.373

src YiSi-2 MBERT¶ 0.307 0.106

2std+para YiSi-comb comb of 3 († systems) 0.905 0.399
all-comb avg of 7 († & ¶ systems) 0.878 0.454

Table 5: Agreement with human ratings on the
WMT19 Metrics Shared Task for English→German.
The first set of results are generated by using the stan-
dard reference translations for WMT 2019. The second
set of results is generated by using the paraphrased ref-
erence translations. YiSi-2 is reference free and only
uses the source sentences.

5.2 Combining BLEURT, YISI-1 and YISI-2
on Multiple References

We describe our two submissions to WMT 2020,
YISI-COMB and ALL-COMB, which result from
our efforts to use multiple references for auto-
matic evaluation. YISI-COMB is a multi-reference
version of the YISI score (Lo, 2019) aimed at
achieving better system-level correlations. ALL-

COMB leverages metrics from BLEURT, YISI-1,
and YISI-2 on multiple references to achieve bet-
ter segment-level correlation.

YISI-COMB YISI scores are F1 scores of YISI

precision and YISI recall. For the YISI-COMB

submission, we take the minimum of the YISI re-
calls for the three different references as the multi-
reference recall, and the maximum of the YISI

precision as the multi-reference precision. Using
the same notations as in (Lo, 2019), the final score
is the F1 of the recall and precision computed with
α = 0.7 (see Figure 1). This submission aims to
maximize the system-level correlation.

As shown in Table 5, YISI-1 has the high-
est system-level correlation on paraphrased refer-
ences. Given that we used α = 0.7, YISI scores are
quite similar to YISI recalls (when α = 1.0, YISI

scores are equal to YISI recalls). YISI-1 scores
for paraphrased references are usually much lower
than those of standard references, therefore tak-
ing the minimum recall is oftentimes equivalent to
taking the YISI recall from the paraphrased refer-
ences. Furthermore, we found that using the max-
imum precision, in combination with aggregating
recalls, usually performs the best.
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Figure 1: Correlations with respect to different α set-
tings for Yisi-1. The system-level correlation is highest
when α = 0.7, which is the α we use for the submis-
sion.

ALL-COMB We combined the predictions of
YISI-1 with those of BLEURT and YISI-2. YISI-
2 usually performs worse than the reference-based
metrics, but we found that incorporating its pre-
dictions can help. Having three different metrics
(BLEURT, YISI-1, YISI-2) and three different
reference translations, we take all seven predic-
tions and average the scores for each segment. The
combined prediction ALL-COMB outperforms ev-
ery single metric at the segment level, though the
system-level correlation drops in comparison to
the best YISI-1 score on paraphrased references.
This submission aims to maximize the segment-
level correlation.

6 Summary

We submit the following systems to the WMT
Metrics shared task:

• BLEURT as previously published, fine-tuned
on the human ratings of the WMT Metrics
shared task 2015 to 2019, to-English.

• A multi-lingual extensions of BLEURT based
on a 20 languages variant of MBERT and
BERT-CHINESE.

• Three baseline systems based on BERT-
BASE, BERT-LARGE, and MBERT.

• Two combination methods for English to
German that use YiSi and alternative refer-
ences, YISI-COMB and ALL-COMB.
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Ondřej Bojar, Yvette Graham, and Amir Kamran.
2017. Results of the wmt17 metrics shared task. In
Proceedings of WMT.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluation the role of bleu in ma-
chine translation research. In Proceedings of EACL.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2020. Evaluation of text generation: A survey.
arXiv.

Elizabeth Clark, Asli Celikyilmaz, and Noah A Smith.
2019. Sentence mover’s similarity: Automatic eval-
uation for multi-sentence texts. In Proceedings of
ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of NAACL HLT.
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Abstract

An important aspect of machine translation is
its evaluation, which can be achieved through
the use of a variety of metrics. To compare
these metrics, the workshop on statistical ma-
chine translation annually evaluates metrics
based on their correlation with human judge-
ment. Over the years, methods for measuring
correlation with humans have changed, but lit-
tle research has been performed on what the
optimal methods for acquiring human scores
are and how human correlation can be mea-
sured. In this work, the methods for evaluating
metrics at both system- and segment-level are
analyzed in detail and their shortcomings are
pointed out.

1 Introduction

In the past, machine translation (MT) metrics have
been extensively studied and evaluated, at both
system- and segment-level (Bojar et al., 2016, 2017;
Ma et al., 2018, 2019). When performing system-
level evaluation, the average score of a MT sys-
tem is taken into account. Segment-level evalu-
ation uses each sentence (segment) separately to
compute correlation. The results of these metric
evaluations are critical to the way MT metrics are
perceived. In particular the correlation with human
judgment is of great importance.

For this reason, an understanding for the work-
ings of the evaluation method is required. Propos-
als to identify relevant system-level human scores
have been discussed (Koehn, 2012; Sakaguchi et al.,
2014), but no comprehensive analysis on this topic
has been conducted. In particular, detailed studies
on the segment-level evaluation are neglected, al-
though it is an integral part of the metric evaluation.

Since the goal of a metric is to evaluate a trans-
lation as close as possible to a human’s rating, it
is important to clearly define the methods of deter-
mining human score and the methods of correla-

tion measurement. This work aims to present an
overview of the methods used in the evaluation, an-
alyze their strengths and weaknesses, and propose
solutions to some of the pitfalls of the methods.

2 Human Scores

To measure the correlation between the score of a
metric and the score of a human, a method of deter-
mining human scores is required. Thus, a person
has to judge the quality of a translated sentence.
This is not a simple task, as different people may
have different opinions about the exact quality of
the translation. Another aspect to consider is that
in order to calculate correlation, the score must
be quantifiable in some way. Thus, the methods
used to detect human judgment must use a suf-
ficient number of human judges for them to be
reproducible.

In the Workshop on Statistical Machine Trans-
lation (WMT), three different methods are used to
determine the human score: direct assessment (DA)
(Graham et al., 2017), relative ranking (RR) (Stano-
jevic et al., 2015) and, in recent years, relative
ranking out of direct assessment (DARR) (Bojar
et al., 2017).

2.1 Direct Assessment

The DA measures the quality of a translation on
a scale from 0 to 100, based on the adequacy and
fluency of the sentence. To obtain the score, the
human judges are provided with a reference trans-
lation and the output of a single MT system, which
makes the evaluation process monolingual. To en-
sure reproducibility, a large number of judges are
needed – at least 15 (Ma et al., 2019). Addition-
ally, scores are standardized (Graham et al., 2017)
to eliminate individual distortions, such as judges
who only provide high or low scores. Furthermore,
a form of quality control is applied to filter out
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judges who exhibit a high variance in comparison
to their peers.

Overall, DA is one of the best ways to obtain
human judgement. It provides a numerical score
that can be easily used in common statistical meth-
ods, such as Spearman’s ρ (Spearman, 1987) or
Pearson’s r (Pearson and Galton, 1895), at both the
segment- and the system-level. However, to obtain
statistically significant correlation measurements
and ensure reproducibility, a high number of hu-
man scores are required. For the segment-level it is
therefore infeasible to obtain DA scores. This leads
to the need to use a completely different method
for determining human judgements at the segment-
level. Another possibility is to establish a relative
ranking of the few obtained DA scores (DARR).

2.2 Relative Ranking

The RR produces, as the name implies, a ranking
between multiple translations. In WMT, the judges
are presented with five system outputs with the cor-
responding source and reference sentence, making
the evaluation process bilingual. Each judge ranks
the five sentences from the best to worst, taking
equality (tie) into account. To simplify the evalua-
tion, identical sentences from different systems are
collapsed into one.

The resulting relative ranking of five tuples is
not as straightforward to use for correlation calcu-
lation, since most correlation coefficients rely on
absolute ranking information. One approach to ob-
taining a correlation is to use a variant of Kendall’s
τ (Kendall, 1938; Machácek and Bojar, 2014). This
entails converting the scores produced by metrics
into relative rankings. Naturally, this has the dis-
advantage that the fine granularity of the scores is
lost. However, this method can be used for both
segment- and system-level correlation calculations.

Another option used in WMT16 (Bojar et al.,
2016) is to convert relative rankings to absolute
rankings through TrueSkill (Herbrich et al., 2006;
Sakaguchi et al., 2014). This method uses the rela-
tive rankings to estimate an absolute score for each
system, which is then used to calculate the correla-
tion (by Pearson’s r or Spearman’s ρ). The score
of each system is represented by a Gaussian distri-
bution, with the mean of the predicted score of the
system and the variance of the confidence in that
prediction. Due to the nature of the method, it can
only be used for the system-level correlation calcu-
lation. This, in turn, makes it difficult to interpret

the results since normally two different correlation
calculation methods must be used for the different
evaluation levels.

2.3 DARR

Due to the difficulty of obtaining enough DA scores
for a statistically significant segment-level corre-
lation calculation, Bojar et al. (2017) introduced
the concept of obtaining a relative ranking from the
DA used at the system-level and termed DARR. For
this purpose, all possible sentence pairs, for which
a DA score is available, are generated between all
participating systems. These sentence pairs are
then filtered to remove ties. The criterion used by
Ma et al. (2019) is to remove sentence pairs, whose
difference on the DA scale is less than 25. This
should lead to the removal of all ties and produce an
RR that scores the systems only as better or worse.
However, this is not the case. Table 1 shows the
RR of sentences with a sentence identifier (SID)
on different language pairs (LP). The system that
has achieved a better translation according to the
DA score for these sentences is under the column
better. In this case, the sentences generated by
both systems are completely identical, as can be
seen in Table 2, although they have been classified
as different according to the DARR method. Such
identical sentences occur across multiple language
pairs in the WMT19 data set.

Another important aspect is that tie filtering is
not applied to the metrics scores and therefore ties
are possible for metrics. This makes the correlation
calculation, especially for identical sentences, a dif-
ficult task. It is therefore of interest to determine
how many identical sentences are present after fil-
tering. For this reason, a brief analysis is carried
out on the basis of the WMT19 data using six lan-
guage pairs, which is shown in Table 3. There
are no identical sentences for the language pairs
Gujarati→English (gu-en) and Kazakh→English
(kk-en). However, for all other language pairs,
especially Chinese→English (zh-en), there are
identical sentences. Note that these identical sen-
tences are present after the tie filtering. Table 3 also
shows the amount of ties produced by two metrics:
YiSi-1 (Lo, 2019) and EED (Stanchev et al., 2019).
It is clear that a significant amount of the ties for
the two metrics come from identical sentences.

In addition, a considerable amount of data is
eliminated. Figure 1 depicts the effect of varying
the equivalence threshold, i.e. cases, in which the
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LP data SID better worse
de-en newstest2019 1200 uedin.6749 UCAM.6461
zh-en newstest2019 604 Baidu-system.6940.zh-en MSRA.MASS.6996.zh-en
en-zh newstest2019 1351 NEU.6830 UEDIN.6158

Table 1: RR human scores for segment-level with their corresponding sentences from WMT191.

LP SID system-generated hypotheses (identical for both systems)
de-en 1200 Music cabaret: Gender understanding with heart - Wolbeck - Westphalian News
zh-en 604 China Resources Beer closed at HK $28.85 on Friday, down nearly 4.5% in the past month.
en-zh 1351 他还希望赋予议会更大的权力来建造新的住房。

Table 2: Corresponding sentences from Table 1 for the two systems.

LP #sentences #identical YiSi-1 EED

sentences #ties #ties
gu-en 31k 0 2 27
kk-en 27k 0 74 115
zh-en 31k 152 336 361
en-gu 11k 5 8 13
en-kk 18k 23 53 64
en-zh 19k 84 205 455

Table 3: Number of identical sentences vs. ties in the
WMT19 corpus used for human correlation.

difference in DA scores is below the specified value,
are considered as ties. Note that the threshold in-
fluences the amount of data used immensely. By
having virtually no threshold (a threshold of 1) the
average number of sentences is five times higher
than when using a threshold of 50. The threshold
of 25 used by WMT19 almost halves the amount
of data used to acquire the correlation.

Figure 1: The average number of sentences
over different language pairs (to-English and
from-English directions) when excluding ties
based on various equivalence thresholds.

Overall DARR provides a method for calculating
the correlation at the segment-level in a scenario
where there is not enough DA data. However, re-
moving ties as part of the human component makes
the evaluation unfair. This is aggravated by the fact
that after DA-based tie filtering, not all ties are suc-
cessfully removed. One possible solution, which
remains to be tested, is to consider the ties of the
human component carefully. This would at least
equal the domain of metrics and human scores.

3 Measuring the Correlation

Obtaining human scores is only part of the corre-
lation calculation. The other one is to use both
human and metric scores to compute their similar-
ity or correlation. The case, where both human and
metric scores are represented by absolute values, is
straightforward to compute using methods such as
Pearson’s r or Spearman’s ρ. However, DA relies
on a large amount of annotators that cannot always
be guaranteed, especially at the segment-level. In
the case where RR or DARR is used for human
scores, this task is not that easy. For this reason,
the focus here is on the case where a form of RR is
used – typically for the segment-level correlation
calculation.

As previously mentioned, WMT uses a form
of Kendall’s τ to obtain a correlation given the
relative ranking. The coefficient definition in its
most general form is shown in Equation (1)

τ =
|concordant− discordant|
|concordant + discordant| , (1)

where the concordant pairs denote cases in which
there is agreement between the metric and the hu-

1Scripts and data from:
http://ufallab.ms.mff.cuni.cz/˜bojar/
wmt19-metrics-task-package.tgz
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man score, and the discordant pairs cases in which
there is disagreement.

To formally define agreement and disagreement,
a matrix can be used as described by Machácek
and Bojar (2014). The various matrix formulations
that have been used in WMT over the years are
shown in Table 4. For metric scores to be inter-
pretable in these matrices, a relative ranking must
be constructed from the absolute scores for each
participating metric. This is achieved by perform-
ing a pairwise comparison of the participating sys-
tems at the segment-level, taking into account ties.
All three matrices treat matches and mismatches
identically:

• discordant pairs are always cases where there
are disagreements between the human and
metric scores: {<,>} or {>,<},

• concordant pairs are always cases where the
scores match: {<,<} or {>,>}.

The only difference between the three methods is
the treatment of ties.

Table 4a ignores the existence of ties. However,
this is not desirable since ties are possible for met-
rics. Therefore, metrics are not evaluated on the
same amount of sentences. This can be particularly
detrimental to metrics that produce a large number
of ties. For example, a metric with 99 ties and
1 concordant pair would achieve perfect correla-
tion, while a metric without ties and 70 concordant
and 30 discordant pairs would give a correlation of
0.4. The discrepancy in the results due to the data
difference is evident.

On the other hand, incorporating ties while not
considering human score ties can also lead to un-
desirable results. In Table 4c, which is used in
WMT19, metric ties are considered as a discor-
dant pair {<,=} and {>,=}. Since ties are not
defined (or included) in human scores, every tie
produced by a metric results in a discordant pair.
This in turn reduces its correlation. Thus, a “per-
fect” metric would never produce a tie between two
sentences. This assumption does not reflect reality.
In addition, the matrix is not symmetric since there
are more possible discordant pairs than concordant
ones. This means that a reasonable interpretation
of the negative correlation is not possible. There-
fore, metrics that have a negative correlation, such
as TER (Snover et al., 2006), CHARACTER (Wang
et al., 2016) and EED (Stanchev et al., 2019), must
be mapped from an error (or edit) rate (E) to an

accuracy score to ensure a relatively fair evaluation.
This is not trivial, as there is no standard way to
convert these metrics into the accuracy rate: neither
1− E nor −E is optimal.

A middle ground between the penalization and
the ignoring of ties is the matrix in Table 4b. The
ties are not penalized directly, but affect the overall
correlation since they are part of the denominator:

τ =
|concordant− discordant|

|concordant + discordant + ties| (2)

Since there is no hard penalization for metrics
that produce more ties, such metrics are at a dis-
advantage. For example, a metric with 20 ties and
80 concordant pairs would achieve a correlation
of 80/(80 + 20) = 0.8, although all non-tie pairs
achieve perfect correlation. On the other hand, a
metric that overproduces ties, for example, with 80
ties and 20 concordant pairs, would have a correla-
tion of 20/(20 + 80) = 0.2. It can also be argued
that measuring the correlation on metrics with a
too high percentage of ties is not significant, since
there are too few sentence pairs that are concordant
or discordant.

One possible solution to the problem is shown
in Table 5. The cases where there is clear agree-
ment or disagreement between humans and metrics
remain unchanged. In cases of tie disagreements,
a soft penalization is added. This soft penalization
is realized the same manner as in Table 4b using
Equation (2). In the case where both the metric and
human scores tie the two systems, a concordant pair
(1) for accuracy-based metrics and a discordant pair
(-1) for error rate-based metrics are given. This al-
lows the process to be symmetrical and avoids the
problem of having to map error rate to accuracy
or vice versa. In addition, ties can now positively
affect the correlation and all metrics are evaluated
on the same amount of data. Naturally, this alter-
ation of the evaluation method requires that ties
be included in the RR. When using DARR, this
can be achieved by considering all pairs, where the
DA score difference is less than 25, and where the
system translations are identical, as ties. A disad-
vantage of this method is that a distinction has to
be made between metrics that aim for a strong neg-
ative correlation and metrics that aim for a strong
positive correlation. Moreover, the exact range,
where a tie is considered, is not necessarily clear.
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Metric
< = >

H
um

an < 1 X -1
= X X X
> -1 X 1

(a) No tie penalization

Metric
< = >

H
um

an < 1 0 -1
= X X X
> -1 0 1

(b) Soft tie penalization

Metric
< = >

H
um

an < 1 -1 -1
= X X X
> -1 -1 1

(c) Hard tie penalization

Table 4: Kendall’s τ evaluation matrices (Machácek and Bojar, 2014; Ma et al., 2019).

Metric
< = >

H
um

an < 1 0 -1
= 0 {1,-1} 0
> -1 0 1

Table 5: Integration of human ties in Kendall’s τ .

4 Discussion

The MT metric evaluation is an area that needs
further investigation. This work gives an overview
of the methods used so far and highlights some of
their shortcomings. The system-level assessment
currently seems to be good, but the evaluation meth-
ods at the segment-level still need to be explored (in
particular, if there is not enough DA data to directly
calculate the correlation at the segment-level):

• It might not be a good idea to rule out tie
cases: in theory, there are identical transla-
tions and translations of the same quality, and
the metrics should be able to give them the
same score; in practice, we have shown that
excluding all tie cases eliminated a large pro-
portion of the scores collected, which will
have a significant impact on the final results.
However, it is difficult to clearly define the
tie cases for human evaluations, as in DA, on
a scale from 0 to 100, different human anno-
tators can give different scores for identical
translations.

• The threshold for tie cases is not well defined.
Further studies on the threshold value can
be carried out. And also whether a thresh-
old should be applied to the automatic metric
scores. This study itself may not be a theoreti-
cally well-defined task, but some insight could
be gained by examining the performance of
various metrics under different thresholds.

• The used correlation coefficient is not sym-

metrical. Then the metrics with negative cor-
relations have to be preprocessed before the
evaluation, which can lead to inconsistencies.
The proposed solution may also have potential
problems as described, but it is worth doing
further studies to define a better correlation
coefficient.

In general, the task of creating a metric evaluation
that is fair and reproducible for all metric types
remains to be solved and deserves more attention
and study.

Acknowledgements

This work has received funding from the Euro-
pean Research Council (ERC) (under the European
Union’s Horizon 2020 research and innovation pro-
gramme, grant agreement No 694537, project “SE-
QCLAS”) and the Deutsche Forschungsgemein-
schaft (DFG; grant agreement NE 572/8-1, project
“CoreTec”). The work reflects only the authors’
views and none of the funding parties is responsi-
ble for any use that may be made of the information
it contains.

References
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Abstract

Copying mechanism has been commonly used
in neural paraphrasing networks and other text
generation tasks, in which some important
words in the input sequence are preserved in
the output sequence. Similarly, in machine
translation, we notice that there are certain
words or phrases appearing in all good trans-
lations of one source text, and these words
tend to convey important semantic informa-
tion. Therefore, in this work, we define
words carrying important semantic meanings
in sentences as semantic core words. More-
over, we propose an MT evaluation approach
named Semantically Weighted Sentence Simi-
larity (SWSS). It leverages the power of UCCA
to identify semantic core words, and then cal-
culates sentence similarity scores on the over-
lap of semantic core words. Experimental
results show that SWSS can consistently im-
prove the performance of popular MT evalua-
tion metrics which are based on lexical similar-
ity.

1 Introduction

Machine Translation Evaluation (MTE) is to evalu-
ate the quality of sentences produced by Machine
Translation (MT) systems. Most automatic MT
evaluation metrics compare the candidate sentences
from MT systems with reference sentences from
human translation to produce a similarity score, in
contrast some other reference-less metrics directly
compare candidate sentences and source sentences.

According to the observation of well-translated
sentences, we find out that there are certain words
or phrases appearing in all good translations of
one source text. This phenomenon is consistent
with the intuition of copying mechanism (Gu et al.,
2016), which has been widely used in lots of text
generation tasks. In the field of MT evaluation,
Meteor++ (Guo et al., 2018) firstly proposes the
concept of copy knowledge to define the words with

Word A    
Word B ...
Word E    
Word F ...

UCCA graph
Semantic Core
Words Within

All WordsCandidate

Reference

Word
Match F1

Score
Output
Score

Penalties

Extract

Extract Word A    
Word C ...
Word D    
Word E ...

Figure 1: An illustration of the process of SWSS.

copy property, and it further incorporates the copy
knowledge into Meteor (Denkowski and Lavie,
2014) to improve its performance. Specifically,
it attempts to find copy words of references and
candidate sentences, and uses the overlap of these
words to modify the calculation of precision and
recall of Meteor. However, Meteor++ uses named
entities as an alternative to copy knowledge in its
experiments, resulting in a limited range of selected
copy words and a slight improvement.

In this work, we argue that words undertaking
important semantic meanings should be exactly
expressed during the translation procedure, which
we define as semantic core words. This concept is
much more general and closer to linguistic intuition
compared to the copy knowledge used in Meteor++.
In order to apply semantic core words in the process
of MT evaluation, we design a mechanism named
Semantically Weighted Sentence Similarity (SWSS)
illustrated in Figure 1. Firstly, SWSS extracts se-
mantic core words according to the annotated se-
mantic labels in Universal Conceptual Cognitive
Annotation (UCCA) (Abend and Rappoport, 2013),
a multi-layered semantic representation. UCCA
is an appealing candidate for this mechanism as it
includes a lot of fundamental semantic phenomena,
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such as verbal, nominal and adjectival argument
structures and their inter-relations. Also, seman-
tic units in UCCA are anchored in the text, which
simplifies the aligning procedure a lot. With the
assumption that all high-quality translations should
have the same semantic core words, SWSS then
calculates precision and recall based on the overlap
of semantic core words between sentence pairs and
their corresponding F1 scores. Finally, we modify
the F1 score according to the differences of two
UCCA representations. For example, Scenes are
involved in the penalties, which are essential nodes
in UCCA indicating actions and states of the sen-
tences. Our experimental results show that SWSS
can be combined with other popular MT evaluation
metrics to improve their performance significantly.

2 Related Work

2.1 Machine Translation Evaluation

BLEU (Papineni et al., 2002) and Meteor are two
most popular MT evaluation metrics. BLEU mea-
sures n-grams overlapping between the candidate
sentences and reference sentences, while Meteor
aligns words and phrases to calculate a modified
weighted F-score. The two metrics are based on
lexical similarity but somehow neglect semantic
structure information of the sentences.

Efforts have been made to incorporate linguis-
tic features and resources into MT evaluation.
RED (Yu et al., 2014) makes use of dependency
tree and MEANT (Lo et al., 2012) makes use
of semantic parser. Categories such as part-of-
speech (Avramidis et al., 2011) and named en-
tity (Buck, 2012) also have their effects. In or-
der to complement WordNet (Miller, 1998) and
paraphrase table in Meteor, Meteor++2.0 (Guo
and Hu, 2019) applies syntactic-level paraphrase
knowledge.

2.2 Semantic Representation

Semantic representation focuses on how meaning
is expressed in a sentence. Some semantic repre-
sentation frameworks such as UNL (Uchida and
Zhu, 2001) and AMR (Banarescu et al., 2013) use
concept nodes to represent content words of sen-
tence, and use directed edges with labels to indicate
the semantic relation between nodes.

UCCA is a novel multi-layered semantic repre-
sentation framework, which converts a sentence
into a directed acyclic graph (DAG). Leaf nodes of
UCCA graph correspond to words in the sentence,

John and Mary

bought

the sofa

I sold

together

H

A

C N C

P A

E C E

A P

D

A

Figure 2: UCCA representation of sentence ”John
and Mary bought the sofa I sold together”. Labels in-
clude Parallel Scene (H), Participant (A), Process (P),
Adverbial (D), Center (C), Connector (N), Elaborator
(E). Dash line indicates a secondary semantic relation.
There are two scenes in this sentence, the whole sen-
tence and ”I sold (sofa)”.

and a non-leaf node represents the combination of
meanings of its child nodes. A parent node and a
child node are connected by a directed edge which
demonstrates the semantic role of the child node
in the meaning of the parent node. Figure 2 is an
example of UCCA representation.

Scene is an essential concept in UCCA. A scene
describes some movement, action or a state in the
sentence. Scene nodes in UCCA representation
may be connected to the root node, or embedded
in other scenes as arguments or modifiers. A scene
node has a main relation, either a Process or a
State, and may have some Participants or some
Adverbials. These non-scene nodes may also have
inner structure.

UCCA has been applied in many fields of Nat-
ural Language Processing. SAMSA (Sulem et al.,
2018) is a Text Simplification evaluation metric
that defines minimal center of UCCA representa-
tion and compares simplified text with the minimal
centers of original sentences. It is also used in eval-
uation of faithfulness in Grammatical Error Corre-
lation (Choshen and Abend, 2018) and human MT
evaluation (Birch et al., 2016).

3 Proposed Method

3.1 Semantic Core Words

The most popular MT evaluation metrics such as
BLEU and Meteor are based on lexical similar-
ity. This kind of metrics cannot obtain insight
into semantic structure of the whole sentence. Our
proposed semantic core words are extracted from
UCCA semantic structures and used to improve
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Figure 3: An example of semantic core words. The
sentence is the same with Figure 2. All semantic core
words are bold and the semantic labels of related edges
are italic.

these lexical metrics as we expect them to play the
role of copy words.

It is a linguistic intuition that some words carry
more semantic information than other words in a
sentence. For example, a modifier is usually less
important than the word it modifies. In this paper,
We define words that have important semantic in-
formation as semantic core words. According to
their semantic importance, they are expected to be
accurately translated during translation. Therefore,
we assume that in all good translation results of a
specific sentence, the set of semantic core words
should be the same, behaving like copy words.

We extract semantic core words of a sentence
from its UCCA semantic representation. The low-
est semantic role label in the representation for
each word is considered, which also indicates the
most basic semantic role of a word. A word whose
lowest semantic role is Process, State, Participant
or Center is identified as semantic core words. Fig-
ure 3 marks semantic core words of the example
sentence. The result is consistent with our intu-
ition of which word has important meaning in this
sentence.

3.2 Word Matching
After semantic core words are extracted from
UCCA representations, a word matching algorithm
should be applied in order to match all words be-
tween the two sentences. In this paper, we use a
stemming algorithm. Two words are matched if
they have the same stem.

We count how many semantic core words in a
candidate sentence can be matched to any semantic
core words in the reference sentence, and compute
the proportion as precision. Similarly, we calculate
the matched proportion of semantic core words in

reference sentence as recall. In our word matching
algorithm, it is possible that a word in a sentence is
matched to multiple words in the other sentence be-
cause they all have the same word stem. However,
just like what is conducted in BLEU, a word can-
not be contained in multiple matching pairs. The
precision and recall are then used to calculate F1
score. We use F1 score here to ensure that SWSS is
symmetrical and can be directly used as a sentence
similarity metric.

P =

∑
iw(hi) ·m(hi)∑

iw(hi)

R =

∑
iw(ri) ·m(ri)∑

iw(ri)

F1 =
2P ·R
P +R

(1)

Take the calculation of precision as an example. hi
means each semantic core word in the candidate
sentence, and w(hi) is its weight. Though in this
paper the weight is fixed to 1, it can be fine-tuned
or trained in future work. If hi can be matched to
any semantic core word in the reference sentence,
m(hi) is set to 1, otherwise m(hi) is set to 0. How-
ever, m(hi) can also be different values related to
matching type like the operation in Meteor, which
might be conducted in future work.

A fact is that the UCCA parser we used might oc-
casionally produce an analysis result in which there
are no semantic core words in a sentence, which
causes division by zero during calculation. In these
cases a fixed score ω is used as an alternative.

3.3 Penalty and Combination

According to the intuition that good translation
results of a specific sentence should have similar
semantic structures, we introduce three penalties
concerning statistical differences of two UCCA
representations.

• The ratio between counts of scenes of
two representations. Let S1, S2 be the
counts of scenes, the penalty PS is 1 −
min(S1, S2)/max(S1, S2).

• The ratio between counts of nodes of
two representations. Let N1, N2 be the
counts of nodes, the penalty PN is 1 −
min(N1, N2)/max(N1, N2).

• The ratio between counts of edges towards
critical semantic roles of two representations,
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Base Model BLEU Meteor Meteor++
Method None +UCCA None +UCCA None +UCCA

WMT15
cs-en 0.377 0.418 0.605 0.609 0.610 0.613
de-en 0.420 0.464 0.620 0.638 0.637 0.651
fi-en 0.378 0.444 0.645 0.668 0.661 0.679
ru-en 0.445 0.477 0.628 0.634 0.620 0.629

Average 0.405 0.451 0.624 0.637 0.632 0.643
WMT16

cs-en 0.484 0.508 0.649 0.646 0.656 0.651
de-en 0.367 0.394 0.503 0.520 0.507 0.523
fi-en 0.325 0.368 0.537 0.548 0.557 0.564
ro-en 0.418 0.451 0.626 0.633 0.625 0.632
ru-en 0.377 0.413 0.574 0.578 0.583 0.585
tr-en 0.333 0.401 0.609 0.638 0.600 0.628

Average 0.384 0.423 0.583 0.594 0.588 0.597

Table 1: Segment-level Pearson correlation comparison between base model and the combination of SWSS and
base model. The smoothing parameter X of Meteor++ is set to 8, which is used on WMT15 dataset in its paper.

which are Process, State and Participant. This
count is the sum of count of scenes and count
of all arguments in the sentence. Let E1, E2

be the counts of these edges, the penalty PE

is 1−min(E1, E2)/max(E1, E2).

The three penalties are set to 0 if the counts are
equal and their upper bound is 1. Additionally, we
also notice that the average word count of a sen-
tence pair can act as another penalty Len. Apply-
ing the four penalties, the final score is calculated
by the equation below. All parameters here are
tunable.

Score = F1 · exp(− α1 · PS − α2 · PN

− α3 · PE − α4 · Len)
(2)

The SWSS score is calculated independently.
Therefore, as a semantic structure-based compo-
nent, it can be further combined with other MT
evaluation metrics to obtain a more accurate evalu-
ation metric. For example, we can obtain a simple
weighted model of SWSS and Meteor by tuning
the weight β below.

SWSS ?Meteor =Meteor + β · Score (3)

4 Experiments

4.1 Data
SWSS is evaluated on WMT15 (Stanojević et al.,
2015) and WMT16 metric task (Bojar et al., 2016)
evaluation sets and is tuned on WMT17 metric task
(Bojar et al., 2017) evaluation set. The datasets
are composed of pairs of system output sentences
and reference sentences, and also corresponding
human evaluation scores for the output sentences.

α1 0.2 α4 0.01
α2 1 β 0.2
α3 0.5 ω 0.5

Table 2: Parameters of SWSS in experiments.

The evaluation set of WMT15 has 4 language pairs
and each has 500 sentence pairs. WMT16 dataset
has 6 language pairs and WMT17 dataset has 7
language pairs, and each has 560 sentence pairs.
Performance of a metric is evaluated by Pearson
correlation between scores provided by the metric
and the human evaluation scores.

4.2 Settings
The parameters of SWSS are tuned on the dataset
from WMT17 metric task and are listed in Table
2. We use SpaCy library1 for word tokenization.
Word stems are extracted with Porter stemming
algorithm (Porter et al., 1980). UCCA represen-
tations are parsed with the pre-trained model of
TUPA (Hershcovich et al., 2017).

4.3 Results
SWSS is combined with base models including
BLEU, Meteor and Meteor++. Table 1 shows that
the combined models lead to significant improve-
ment of Pearson correlation compared to the base
models. It can be inferred that adding SWSS as a
component to MT evaluation metrics based on lex-
ical similarity can improve their performance. The
results also indicates that SWSS performs better
than Meteor++, as SWSS regards all semantic core
words as copy words while Meteor++ uses only
named entities in its experiments. Semantic core

1https://spacy.io/
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Method +UCCA -repr -len None
WMT15

cs-en 0.609 0.599 0.606 0.605
de-en 0.638 0.641 0.631 0.620
fi-en 0.668 0.662 0.666 0.645
ru-en 0.634 0.622 0.634 0.628

Average 0.637 0.631 0.634 0.624
WMT16

cs-en 0.646 0.648 0.645 0.649
de-en 0.520 0.512 0.512 0.503
fi-en 0.548 0.541 0.543 0.537
ro-en 0.633 0.631 0.627 0.626
ru-en 0.578 0.581 0.564 0.574
tr-en 0.638 0.632 0.627 0.609

Average 0.594 0.591 0.586 0.583

Table 3: Results of ablation experiments. ”+UCCA”
is the complete SWSS model combined with Meteor,
”-repr” means the penalties based on UCCA represen-
tation (PS , PN , PE) are removed, ”-len” means the
length penalty is removed, and ”None” contains only
Meteor without SWSS.

words is clearly a good and large-scale representa-
tion of copy words, according to the results.

We also conduct ablation study to figure out
whether the penalties we have introduced are redun-
dant or not. The base model is the combination of
SWSS and Meteor. If we remove the representation
penalties or the length penalty from the base model,
it can be found out from Table 3 that the modified
models have lower correlation than the complete
model. The result with p < 0.05 proves that these
penalties have a positive effect on the mechanism.

5 Conclusion

In this paper, we propose Semantically Weighted
Sentence Similarity (SWSS), which leverages the
power of UCCA to identify semantic core words,
and then calculates a similarity score for machine
translation evaluation. Inspired by copying mecha-
nism used in sequence generation tasks, we argue
that semantic core words, which carry important
meaning in the sentence, should exist in all good
translations. Additionally, SWSS also uses penal-
ties based on the differences between UCCA struc-
tures and sentence lengths, including the concept
of Scene in UCCA, in order to make the output
scores more accurate. Experimental results show
that SWSS can produce a higher correlation in MT
evaluation when combined with lexical MT evalua-
tion metrics such as BLEU and Meteor.
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Ondřej Bojar, Yvette Graham, and Amir Kamran. 2017.
Results of the WMT17 metrics shared task. In
Proceedings of the Second Conference on Machine
Translation, pages 489–513, Copenhagen, Denmark.
Association for Computational Linguistics.
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Abstract

This paper illustrates Huawei’s submission to
the WMT20 low-resource parallel corpus fil-
tering shared task. Our approach focuses on
developing a proxy task learner on top of a
transformer-based multilingual pre-trained lan-
guage model to boost the filtering capability
for noisy parallel corpora. Such a supervised
task also helps us to iterate much more quickly
than using an existing neural machine transla-
tion system to perform the same task. After
performing empirical analyses of the finetun-
ing task, we benchmark our approach by com-
paring the results with past years’ state-of-the-
art records. This paper wraps up with a dis-
cussion of limitations and future work. The
scripts for this study will be made publicly
available. 1

1 Introduction

Crawling web has been regarded as a de facto ap-
proach to produce bitexts, yet the crawled texts
are under-qualified often in some aspects to train
a proper machine translation system. Under-
qualified bitexts present misalignments, no align-
ments, wrong language pairs, sentences mostly
composed of numbers and mathematical formulas,
etc. Parallel corpus filtering in this manner holds a
critical research area to improve the performance
of machine translation systems. WMT organizes a
shared task for parallel corpus filtering since 2018
intending to filter our noisy bitexts to this end. The
challenge targets low-resource language pairs since
2019.

Many existing filtering methods require multiple
layers of elimination by implementing manually en-
gineered features such as length filtering, language
identification, normalizing, etc. These hand-picked
features work well for a language pair but don’t

∗Corresponding author
1https://github.com/WPti/proxy-filter

generalize well to another language pair or domain
and often bring algorithmic complexity to the over-
all system.

The LASER (Artetxe and Schwenk, 2019) model
achieved state-of-the-art (SOTA) records at the
WMT19 shared task on low-resource parallel cor-
pus filtering (Chaudhary et al., 2019). The sentence
representation model implemented in LASER pro-
vides a means for measuring the similarity between
a source and a target sentence. As stated in the
future work at Artetxe and Schwenk (2019), there
is still space to improve. Utilizing a self-attention
mechanism remains future work as the LASER was
not built upon the latest transformer architecture
(Vaswani et al., 2017). We are also interested in
designing a filtering tool that can be efficiently ap-
plied to a wide range of language pairs. Pre-trained
multilingual language models, such as BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019),
are exploited to this end.

We make two contributions to the field in this
manner. The first contribution is a proposal of
approaching the filtering problem as a discrimi-
nation task that can be trained with a proxy task
and synthetic training data generation (see in Sec-
tion 3.1). The other contribution is the empirical
knowledge learned from an analysis of the finetun-
ing pre-trained multilingual language models on
cross-lingual discrimination tasks.

2 Related Work

In the WMT18 shared task, participants mostly
used similar techniques in components as pre-
filtering, scoring the sentence pairs, and using a
classifier for feature functions. Teams applied pre-
filtering rules to eliminate noisy data, including:

• short or lengthy sentences;

• sentence pairs with few words and unbalanced
token lengths;

940



• sentence pairs with unmatched names, num-
bers, web addresses, etc.;

• sentences where a language identifier fails to
identify a source or target language type.

Scoring functions were mostly used to corre-
late qualified texts. Participants also used sentence
embeddings (Bouamor and Sajjad, 2018; Axelrod
et al., 2011; Artetxe and Schwenk, 2019) altogether
with a similarity function to detect the similarity
of pairs. The WMT19 shared task focused on low-
resource languages, namely Nepali-English and
Sinhala-English. Participants mostly applied ba-
sic filtering techniques similar to those used in
2018. Chaudhary et al. (2019) used sentence em-
beddings that were trained on parallel sentence
pairs. Another approach was to train a machine
translation system on the clean data and then used it
to translate the non-English side to make a compar-
ison. Several metrics were used to match sentence
pairs such as METEOR, Levenshtein distance, and
BLEU.

We found that our work relates to the submission
from Bernier-Colborne and Lo (2019). However,
their submission was unable to show the effective-
ness of the proposed method due to potential issues
in the pretraining process. Besides the parallel cor-
pus filtering task, we come across several works
utilizing a similar approach. In Yang et al. (2019),
BERT rescoring method is more effective at bi-
text mining than heuristic scoring methods, i.e.,
marginal cosine distance. In Grégoire and Langlais
(2018), a similar negative random sampling tech-
nique has been used for generating synthetic bad
pairs. Also, attempts to create harder negative pairs
were proven effective in bitext mining (Guo et al.,
2018).

3 Methodology

Transformer models are currently state-of-the-art
systems on most NLP classification and regression
tasks. With the emergence of multilingual pre-
trained models, their cross-lingual capabilities can
be exploited with little effort.

3.1 Proxy Task

To treat this problem as a supervised one, we design
a proxy learner to model this task. The correctly
aligned pairs can be regarded as positive samples
in a simple sense for binary classification.

Most of the noise in the corpus originate from ill-
aligned sentence pairs. The intuitive idea is to treat
the misalignments as synthetic negative samples
for our proxy task learner.

Taking random samples of the target sentences
for all source sentences was the easiest way to cre-
ate negative samples. But this results in an easily-
classifiable training data which offers little assis-
tance to the low-resource bitext filtering task. We
need to create more valuable training data, which
is referred to as harder examples.

3.1.1 Generating Harder Examples

Instead of training transformers with easily-
discernible random negative samples, we need to
create harder examples to confuse the model to
boost its performance on the filtering task. We try
the following ways to generate harder examples:

Neighborhood Awareness The neighbor sen-
tences in the corpus have a higher chance of sharing
common semantics and topics than those randomly
extracted from corpus-wide. Alignment slips are
most likely to occur in this context. This concept
of neighborhood awareness inspires us to gener-
ate harder training data. For every positive pair,
we create two negative pairs by pairing adjacent
sentences of that target sentence with the source
sentence. Incorporating this simple strategy may
help to boost filtering performance.

Fuzzy String Matching Sampling Instead of
randomly sampling negative examples from bitexts,
we develop a new sampling strategy inspired by
KNN (the k-nearest neighbors algorithm). To cre-
ate harder examples for finetuning, we sampled lex-
ically similar but semantically different sentences
using a fuzzy string search method. 2 For each one
of the source sentences (S), we perform a fuzzy
search and identify the N similar sentence respect-
ing to the fuzzy string score (F). We set a limit (L)
on the F and ignore sentences with similarities over
this limit (L) to avoid duplicated or highly related
candidates. Then we pair the corresponded target
sentences of those N similar sentences with the
source sentences to create N negative pairs. We ap-
ply a setting with an L value of 60 (in a 100 scale)
and N values of 2 and 3 to generate the validation
and training data.
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Model Architecture Siamese Finetuning
Bert-base-Multi-cased 0.62 0.69
Xlm-Roberta-Base 0.84 0.86
Xlm-Roberta-Large 0.88 0.92

Table 1: Model performances on proxy task as accu-
racy in F1 scores.

3.1.2 Architecture
We explore two candidate architecture in this study,
one of which is a Siamese network (Reimers and
Gurevych, 2019). The other model is a pre-trained
transformer with a binary classification learner to
differentiate ok-aligned sentence pairs with their
negative counterparts. A comparison between the
performance of architecture can be seen in the Ta-
ble 1.

Sentence Transformers Reimers and Gurevych
(2019) adopt a Siamese architecture, which allows
us to feed sentence pairs separately to a transformer
network like BERT. Each sentence pairs are en-
coded into fixed-size embeddings connected to a
classifier network. Embeddings can be compared
using a cosine similarity function at the inference
stage. We reach on par performance to the LASER
in the WMT19 parallel corpus filtering task (Ta-
ble 3).

Transformer Finetuning with Pair Classifica-
tion BERT is a language model introduced by
Devlin et al. (2018). A pre-trained BERT model
can be finetuned by adding an extra output layer to
address many NLP tasks. One of BERT’s deriva-
tives is RoBERTa (Liu et al., 2019), and it is es-
sentially very similar to its successor in structure.
The authors of RoBERTa discarded the next sen-
tence prediction (NSP) task and altered the mask
language modeling task.

We compare multilingual variations of BERT
and RoBERTa, which contains both Khmer (km)
and Pashto (ps) monolingual data in the pretrain-
ing. The multilingual version of the RoBERTa, aka
XLM-R (Conneau et al., 2019), performs far supe-
rior as it leverages more data in training (Table 1).

3.1.3 Amount of Parallel Data
To observe the effect of the amount of the available
parallel corpus on this proxy learner’s performance,
we try two different data regimes. The orange line
in Figure 1 represents a very low resource setting,

2https://github.com/seatgeek/fuzzywuzzy

and we subsampled 2k parallel pairs to mimic that.
The blue line represents a 10k subsampled version
of the training data. As can be seen from Figure 1,
the more we increase the number of parallel sen-
tences used in training the proxy task, the more
performance we observe for the proxy task. Other
than that, a system using almost as little as 2k par-
allel sentence pair is enough to beat the benchmark
results. The proposed approach is promising for
other low-resource domains and applications.
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Figure 1: Proxy task validation performance in the
face of changing volumes of training data (Pashto - En-
glish).

3.1.4 Negative Sampling Ratio

The amount of negative data that can be used in
training is analyzed in the prior works (Section
2). Into our observations from Figure 1 and Fig-
ure 2, using larger negative ratios leads to better
performances. However, it is better to keep the pos-
itive/negative ratio to 1 : 10 for our datasets with a
presence of more parallel data.

We oversample the positive pairs in the finetun-
ing step to balance the positive-negative ratio. But
it didn’t make a noticeable change in proxy task
performance or filtering performance. The immu-
nity of the pre-trained transformer models to the
class-imbalance up to 20x is very surprising.

3.1.5 Learning Rate

To prevent the catastrophic forgetting problem in
the transformers, we apply a very small (2e−6)
learning rate with the inverse root scheduler and a
warmup step of 1, 000. We also try other learning
rate schedulers like cyclic learning rate scheduler
(CLR) from (Lee et al., 2020) but couldn’t observe
any benefit for this task. We suspect CLR may not
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apply to a finetuning process with a small epoch
number (i.e., 2 epochs in this study).

3.1.6 Finetuning and Scoring
We add a classification layer on top of XLM-R
having 2, 048 hidden units with RELU activations
and dropout. On single Nvidia V100 GPU, we
finetune our models for 2 epochs without any early
stopping. It takes about 6 hours to finetune on the
generated datasets. The scoring step is just getting
the probability of that pair being positive. Scoring
a sentence pair takes 5ms on average.

3.2 Rescoring
Bidirectional Scoring Similar to the bidirec-
tional scoring in Chaudhary et al. (2019), we re-
verse source and target sentences and train two
different networks, which produce two different
scores (SRC-TRG and TRG-SRC) for a pair. We
then combine these two scores under (min, mean,
max) strategies. In the “min” strategy, we aim to fil-
ter false-positive pairs by keeping the lowest score
from the (SRC-TRG and TRG-SRC) for each pair.
In “max” strategy, we use the highest score for each
pair. And in the “mean” strategy, an average of the
scores are applied. We observe that filtering on the
“max” score can turn some of the false-negative sen-
tences into true-positives, which increases NMT
performance (Table 2 ).

Strategy BLEU
SRC-TRG 12.97
TRG-SRC 12.65
Mean 12.42
Min 12.93
Max 13.17

Table 2: NMT results of systems trained after filter-
ing based on different bidirectional scoring strategies
(Pashto - English)

Ensembling We ensemble our top 3 trained
transformer models under (min, max, mean) strate-
gies and observe a minor improvement on the
Pashto-English (ps-en) dataset. On the Khmer-
English (km-en) dataset, there is no improvement
(Table 3).

3.3 Heuristic Filters
Heuristic filters like overlap filters, length ratio,
min-max length, and language identification are
applied. For the Pashto-English setup, this step
is not beneficial to the overall performance. For

the Khmer-English setup, we observe a minor gain
(Table 3). It appears that our scoring method can
learn heuristic filtering on the fly without reliant on
hard-coded heuristic filters.

4 Results

There is a relationship between F1 scores of the
proxy task and the final NMT system performance
(Figures 1-2). Improvements of the final NMT
in the proxy task peaks along with the negative
sampling rate and decreases potentially due to over-
fitting. By looking at the same ratio presented in
Figures 1-2, we can conclude a correlation between
the performance of the proxy task and that for the
filtering task, showcasing the proposed approach’s
effectiveness.
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Figure 2: MBART performance of the filtering model
(Pashto - English).

WMT20 Here we have presented our NMT per-
formances of the submitted filtering systems in Ta-
ble 3. Note that we measure all of the development
cycles and improvements with the MBART fine-
tuning (Liu et al., 2020). We do not replicate every
experiment with training from scratch regime due
to resource constraints. As shown in Table 3, our
method outperforms the LASER baseline without
needing any prefiltering rules and costly marginal
KNN scoring method in solving the hubness prob-
lem for both language settings.

4.1 Older Tasks
To find how our method generalizes across different
filtering scenarios, we test it for the past genera-
tions of this shared task.

WMT18 We use the same neural machine trans-
lation system defined by the organizers. Our NMT
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Method Pashto-English Khmer-English
Scratch MBART* Scratch MBART*

Baseline(LASER) 9.6 12.2 7.1 10.4
Sentence Transformers 9.7 12.5 7.5 10.6
XML-R finetuning 10.1 12.6 7.7 10.8

+Neighbourhood Awareness - 12.9 - -
+Fuzzy String Matching - 13.0 - -

+Bidirectional Scoring - 13.2 - 11.5
+Ensemble Scoring 10.9 13.3 - 11.5

+Heuristic Filters (3.3) 10.7 13.2 8.7 11.7

Table 3: NMT scores (BLEU) of the models that trained on a corpus filtered by the specified methods on WMT20
test sets. The bold fonts indicate the SOTA results. * indicates finetuning of the pretrained MBART model which
is provided by the organizers.

model using the submission by Junczys-Dowmunt
(2018) couldn’t reach the reported scores (can be
observed in Table 4 for the 10M subsampled set).
Although our method couldn’t match the SOTA
results under these settings, it achieves a reason-
able score. Note that we only used 10% of the
available clean parallel data to accomplish this re-
sult. Also, instead of finetuning a multilingual
pre-trained model, bilingual models can be tried to
avoid the curse of multilinguality (Conneau et al.,
2019).

WMT19 Our NMT model using the submission
by Chaudhary et al. (2019) couldn’t reach the re-
ported scores, as shown in Table 4 for the Nepalese-
English (ne-en) set. The mismatches mentioned
above with WMT18 and WMT19 are possibly due
to a result of using multiple GPUs with distributed
optimizers like stated in Koehn et al. (2019). In the
low-resource setting, our method can surpass the
SOTA results (Table 4).

Task SOTA OURS
WMT18 (de-en) *27.9 (28.62) 27.53
WMT19 (ne-en) *6.9 (7.1) 7.5

Table 4: WMT18 and WMT19 filtering tasks test re-
sults. Note that numbers with “*” represent the submit-
ted score performance under our NMT setup. Those in
parenthesis are the reported scores.

5 Conclusions and Future Work

We illustrate our submission to the WMT20 low-
resource parallel corpus filtering task. By develop-
ing a proxy task learner on top of a transform-based
pre-trained language model XLM-R, We are able
to improve the filtering capability for noisy data,

achieving SOTA results.
The parallel corpus filtering task is recall-

oriented. Therefore our model may not be suitable
for high-precision jobs. The model has limitations
in dealing with short sentences. It can be improved
by finetuning on dictionaries or phase-based bi-
texts. The model performs better in low-resource
and high-recall settings.

In our experiments depicted in the subsec-
tion 3.1.6, we observe low performances several
times. It may appear the model is suffering from
the random seeds caused fragility mentioned in
Risch and Krestel (2020). A close look ascribes
these abnormal results to the randomness in the
sampling strategy. We leave this issue to future
work.

Different kinds of synthetic noise generation
techniques can be adapted to increase the robust-
ness and accuracy of the model. For example in
the filtered data we observed several false-positive
cases which contains mis-translated numbers:

en reference:

“3) Sonar coverage: 45K at 200KHz”

ps to en translation:

“4) Sonar coverage: 90 at 125KHz”

Training an NMT model on this type of data
hurts the translation performance. But this kind of
noise can be fixed by altering the numerical val-
ues in the clean training data to sample negative
pairs for our proxy task. Moreover, all the other
synthetically generatable errors like a typo error,
one to many alignment errors, etc. can be incor-
porated into the training data. But its not viable
to model those kinds of errors independent from
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the language or domain with the naive assumptions
and inventing heuristic rules. We believe further
researches should focus on domain invariant noise
generation techniques.
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Abstract

This paper presents the description of our sub-
mission to WMT20 sentence filtering task. We
combine scores from custom LASER built for
each source language, a classifier built to dis-
tinguish positive and negative pairs and the
original scores provided with the task. For the
mBART setup, provided by the organizers, our
method shows 7% and 5% relative improve-
ment, over the baseline, in sacreBLEU score
on the test set for Pashto and Khmer respec-
tively.

1 Introduction

Neural machine translation (NMT) brings signifi-
cant gains to the field of machine translation. How-
ever, it is known to be very sensitive to the qual-
ity of parallel data (Khayrallah and Koehn, 2018).
This becomes a serious problem when using large
but very noisy corpora for training. There is a lot of
work on filtering noisy parallel data. For example,
the work in (Junczys-Dowmunt, 2018) provides
excellent results for large corpora. Low resource
languages are even more challenging and the re-
sults in (Chaudhary et al., 2019) using multilingual
embeddings are very encouraging.

This paper describes the system submitted to the
WMT20 Shared Task on Parallel Corpus Filtering
for Low Resource Conditions. Due to time limita-
tion our submission covers only sentence pair fil-
tering. However, some of the proposed techniques
could be used for sentence alignment and filtering.
The task focuses on the Pashto-English and Khmer-
English language pairs. It is required that the par-
ticipants calculate scores to sort very noisy parallel
sentence pairs provided for each language. The top
scoring pairs leading to 5M tokens on the English
side are then used to train machine translation for
each language pair. The organizers also provide
LASER-based scores as a baseline according to

the method in (Chaudhary et al., 2019), with possi-
bly some modifications. We describe our general
system architecture followed by development ex-
periments to evaluate the merit of different methods
and finally report the performance of our best setup
per language, using the fairseq recipe provided for
the task for both full training (from scratch), and
finetuning (mBART) settings. mBART (Liu et al.,
2020) is a recently proposed pretraining method.
Models initialized using mBART for both language
pairs are provided with the task.

Our proposed approach combine the scores pro-
vided by the organizers with the following two
scores:

• Margin distance calculated based on custom
LASER built for each language using parallel
data and a large amount of forward translated
mono data provided by the organizers.

• Cosine distance between the embeddings gen-
erated by a classifier taking the pretrained
LASER as input and trained to distinguish
parallel and non-parallel sentence pairs using
parallel data provided in the task.

More details on the approach are provided in Sec-
tion 2. For the mBART setup our method shows 7%
and 5% relative improvement in sacreBLEU score
on the test set for Pashto and Khmer respectively.

2 System Architecture

In this section we describe the overall system ar-
chitecture. We start by presenting language-based
preprocessing in Section 2.1.The scores provided
by the organizers use pretrained LASER (Artetxe
and Schwenk, 2019b) and margin distance (Artetxe
and Schwenk, 2019a; Johnson et al., 2017). Actu-
ally their method obtained state-of-the-art results
in WMT19 low resource filtering task for Sinhala,
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Nepali and Hindi and hence is a very strong base-
line. Therefore, we opt to construct sentence em-
beddings using two different methods, namely cus-
tom LASER and classifier-based embeddings, to
complement the baseline pretrained LASER. Each
embedding method is then used to generate a score
for each sentence pair and all the scores are com-
bined to form the final score. In the rest of this
section, we will describe custom LASER in Sec-
tion 2.2 followed by classifier-based embeddings
in Section 2.3 and finally we outline score combi-
nation in Section 2.4.

2.1 Preprocessing
We first preprocess the data using language iden-
tification on the source side. The results reported
in this paper use the BLING (BLING, 2020) tool
from Microsoft but preliminary experiments indi-
cate similar performance using python langid or
fasttext (Bojanowski et al., 2017). One interesting
feature of BLING is that it returns the percentages
of different language constituents of a sentence. In
the current implementation we keep sentences that
have a language identification score of the source
language of 80% or higher. All sentences that do
not satisfy the language identification threshold are
assigned a very low score and hence are not se-
lected in the final candidate pairs. We will report
results without using language identification in the
experiments. We generally found it helps a lot for
Khmer and actually hurts a bit for Pashto. We ex-
pect this is due to the larger Khmer size. Table 1
shows the original number of sentences and those
filtered at 80% threshold for Pashto and Khmer.

Language Original Filtered (kept)
Ps 1,022,883 615,451 (60.17%)
Km 4,169,574 2,714,664 (65.11%)

Table 1: Number of sentences before and after lan-
guage filtering

2.2 Custom LASER
Pretrained LASER (Artetxe and Schwenk, 2019b)
has 93 languages. Some of these languages are
under-represented and others, like Pashto, are
completely missing. While similar languages
tend to help each other it is clearly beneficial to
have a custom LASER trained for the languages
of interest. In WMT19 results (Chaudhary et al.,

2019), custom LASER trained on a combination
of Hindi, Sinhala and Nepali outperformed the
pretrained LASER for the filtering task. Here,
we build two separate models for Pashto and
Khmer. Since both languages have very different
origins we thought it is not beneficial to build
a combined model but we haven’t verified this
experimentally. We use the LASERtrain package
(Esplà and Sánchez-Martı́nez, 2019) to train the
custom LASER. This package follows the LASER
training as given in (Artetxe and Schwenk, 2019b)
and provides experiments on BUCC’18 with
good results. It is also possible to fine-tune the
pretrained LASER using the languages of interest.
We will explore this in future work.

Participants in WMT20 are limited to data
provided by the organizers. The supplied parallel
data for both languages is of rather limited size and
is dominated by domain specific data as software
localization and religious text and hence we use the
provided monolingual text to augment the training
data. For each language this is done as follows. We
start with the provided sentence scores and filter
5M English tokens as suggested in the task. We
use the resulting parallel data to train an mBART
initialized MT system. The sacreBLEU scores on
the development test set from the organizers and
our internal run are shown in Table 2.

Language-pair Organizers Internal
Ps-En 12.2 11.6
Km-En 10.6 10.4

Table 2: SacreBLEU for mBART on development test
set as provided by the organizers and for internal run.

In addition to the noisy parallel sentences, the or-
ganizers provide additional parallel data and mono-
lingual data for both languages. The parallel data
comes mainly from OPUS and consists of 290K
and 123K pairs for Khmer and Pashto respectively.
The monolingual data for Khmer has around 13M
sentences while that of Pashto has around 6M sen-
tences. For more information about the sources of
these data we refer the reader to (EMNLP, 2020).
The resulting internal system is used to forward
translate various amounts of monolingual data from
the source language into English. We found in pre-
liminary experiments that using around 3M mono-
lingual sentences gives good performance (more
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on the evaluation below). These sentences are ran-
domly selected from the monoingual data. The syn-
thetic pairs for Pashto-English and Khmer-English
are used to augment the provided clean parallel
data to train the custom LASER for each language.
The reason we build unidirectional custom LASER
is that most of our data is synthetic and the per-
formance of the translation in the opposite direc-
tion English-Pashto(Khmer) is expected to be quite
poor. In addition, English is very well represented
in the pretrained LASER.
It is good to have a way to evaluate the quality of
the built custom LASER. Building machine transla-
tion (MT) every time is very costly. To this end, we
use a BUCC-like setup to evaluate the quality of
the custom embeddings. We use the development
set for each language pair. For each sentence on
the source side we use the corresponding embed-
ding to find the nearest neighbor, based on cosine
distance, on the target side and calculate the top-1
accuracy. We do the same in the other direction
(target to source) and average both numbers.

BUCC(S) =
1

2|S|

(∑

i

I
(
argmax

j
Si,j = i

)

+
∑

j

I
(
argmax

i
Si,j = j

))

(1)

where S is the matrix of pairwise similarity scores
for pairs in the source-target development set.
Accuracies using pretrained and custom LASER
for Pashto and Khmer are shown in Table 3.

Language-pair Pretrained Custom
Ps-En 9.56% 31.97%
Km-En 1.04% 39.50%

Table 3: BUCC-like accuracy scores on devtest set of
the filtration task

Once the custom LASER of a language is trained
it is used to calculate the score of a sentence pair
using the margin distance as shown in Equation
2. The margin is implemented efficiently using

(Johnson et al., 2017).

score(x, y) =margin(cos(x, y),

0.5 (mean {cos(z, x) | z ∈ NNk(x)}
+mean {cos(z, y) | z ∈ NNk(y)}))

(2)

2.3 Classifier-Based Scores
In addition to custom LASER presented in the pre-
vious section we use scores provided from a classi-
fier trained to distinguish parallel and non-parallel
sentence pairs. It takes pretrained LASER embed-
dings of a sentence pair u and v and transforms
them using a fully-connected layer with ReLU non-
linearity. Similar to (Reimers and Gurevych, 2019)
it inputs the concatenation [utr; vtr; |utr − vtr|],
where utr and vtr are the outputs of the fully con-
nected layer, to a softmax classifier with two out-
puts representing the positive and negative pairs.
The network is trained using the cross-entropy cri-
terion. During testing, LASER embeddings of
a sentence pair are passed through the fully con-
nected layer and their cosine distance is calculated
as the required score. The rationale is that the trans-
formed embeddings provide better representation
to separate positive and negative pairs compared to
pretrained LASER.

For each language, the classifier is trained on
the positive pairs provided by the organizers. Fol-
lowing (Zhang et al., 2020) for each sentence the
negative pair is selected at random from the follow-
ing:

• Select a sentence from its adjacent sentences
within a window size of k (where k = 2 in our
experiments).

• Truncate 30-70% words of the sentence.

• Swap the order of 30-70% of the words of the
sentence.

After forming the positive and negative data around
500 example pairs, per language, are kept as vali-
dation set. The classification accuracy, on the vali-
dation set, for Pashto is 97% while that of Khmer
is 98.5%.

2.4 Score Combination
Based on the previous sections each input sentence
pair x, y has three scores. Assume the pretrained
LASER embeddings are xp and yp and the custom
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LASER embeddings are xc and yc. We can write
the combined score S(x, y) as follows:

S(x, y) = Smg(xp, yp)+Smg(xc, yc)+Scl(xp, yp)
(3)

where Smg() indicates margin distance and Scl()
indicates classifier distance. We choose to use a
simple sum instead of using trainable weights be-
cause the provided parallel data that could be used
to train the weights is very specific and could result
in biased estimates of the weights.

We also experiment with minimum-maximum
normalization that we found very useful in the case
of Khmer. For this normalization each component
score in Equation 3 is modified as follows:

Snorm =
S − Smin

Smax − Smin
(4)

where Smin and Smax are the minimum and maxi-
mum scores over all the pairs.

3 Experimental Results

In this section we first present the results of various
experiments to arrive at the final system architec-
ture for both languages in Section 3.1. An internal
system with a small architecture is used for fast
turn-around. This is followed by running experi-
ments with the final architecture using the official
scripts provided by the organizers for both the from
scratch and mBART settings.

3.1 Development Experiments
This section outlines various development experi-
ments for Pashto and Khmer. As mentioned above
an internal system with a small configuration is
used to compare different configurations. The
sacreBLEU scores for Pashto are shown in Table 4
while those for Khmer are in Table 5.

Dev. Set Test Set
B 7.4 8.4
C 9.3 9.3
B + C 9.2 10.4
B + C + Cl 9.5 10.5
B + C + Cl (BL) 8.3 9.6

Table 4: Pashto Development results (in SacreBLEU)
for different configurations on development and test
sets. B stands for baseline, C for custom, Cl for classi-
fier and BL for BLING

Dev. Set Test Set
B 8.8 7.0
C 4.3 3.6
C (BL) 6.5 5.2
B + C (BL) 9.5 7.6
B + C + Cl (BL) 9.9 8

Table 5: Khmer Development results (in SacreBLEU)
for different configurations on development and test
sets.B stands for baseline, C for custom, Cl for classi-
fier and BL for BLING.B+C+Cl result for Khmer uses
minimum-maximum normalization.

From the two tables we can see that there is some
significant difference in behavior between Pashto
and Khmer. This can be summarized as follows:

• While custom LASER is better than pre-
trained LASER for Pashto it is worse for
Khmer. We attribute this to the existence of
Khmer and absence of Pashto in pretrained
LASER. For Pashto, even with some small
parallel data and synthetic data we can see
some nice gains.

• BLING language filtering is crucial for Khmer
while it hurts a bit for Pashto. We attribute
this to the larger size and the noisier nature
(from the view point of having more English
words in the source side) of the Khmer data.

• Even if the custom LASER for Khmer is sig-
nificantly worse than the pretrained one it
helps when combined with the baseline.

3.2 Final Experiments
Based on the above observations, we decided to
have our configurations for the final experiments
of the two languages as follows:

• Use BLING filtering for Khmer but not for
Pashto.

• Use the combined scores of pretrained
LASER, custom LASER and classifier for
both Pashto and Khmer.

• Experiment with and without min-max nor-
malization.

The results using both from scratch (Full) and
mBART (FT) settings as supplied by the organizers
are shown in Table 6.
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Mode Base
Ensemble

min-max No norm

Ps-En
Full 10.04 10.12 10.05
FT 11.61 11.99 12.38

Km-En
Full 7.16 7.88 6.36
FT 10.56 11.12 9.02

Table 6: Final results in SacreBLEU on devtest set.
Full stands for from Scratch and FT for mBART.

Based on the results in the table our submission
used minimum-maximum normalization for Khmer
but not for Pashto. By looking into the unnormal-
ized scores we found that for Khmer they tend to
be dominated by the classifier score, undermining
both the baseline and custom LASER, and hence
the normalization helps to bring all scores to the
same dynamic range.

4 Summary

This paper present the description of our submis-
sion to WMT20 sentence filtering task. By building
custom LASER and a classifier to distinguish posi-
tive and negative pairs. For the mBART setup our
method shows 7% and 5% relative improvement
in sacreBLEU score on the test set for Pashto and
Khmer respectively.There are a lot of extensions
along the proposed directions to improve sentence
filtering for the low resource setting.
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Abstract
This paper describes the joint submission of
Universitat d’Alacant and Prompsit Language
Engineering to the WMT 2020 shared task
on parallel corpus filtering. Our submission,
based on the free/open-source tool Bicleaner,
enhances it with Extremely Randomised Trees
and lexical similarity features that account for
the frequency of the words in the parallel sen-
tences to determine if two sentences are paral-
lel. To train this classifier we used the clean
corpora provided for the task and synthetic
noisy parallel sentences. In addition we re-
score the output of Bicleaner using character-
level language models and n-gram saturation.

1 Introduction

This paper describes the joint submission of Univer-
sitat d’Alacant and Prompsit Language Engineer-
ing to the parallel corpus filtering shared task at the
Fifth Conference on Machine Translation (WMT
2020). Our submission is built upon Bicleaner
(Sánchez-Cartagena et al., 2018),1 a widely-used
free/open-source tool for detecting noisy parallel
sentences that participated in the 2018 edition of
this shared task and ranked fourth out of 17 submis-
sions on one of the sub-tasks. We provide quality
scores for the sentence pairs provided by the organ-
iser without re-aligning them.

The 2020 edition of the parallel corpus filter-
ing shared task focuses on two under-resourced
Asian languages paired with English: Khmer and
Pashto. Khmer (km) is the official language of
Cambodia and is spoken circa 16 million people
in Cambodia, Vietnam and Thailand.2 There are
about 500k English–Khmer parallel sentences in
OPUS,3 mainly belonging to narrow domains like

1https://github.com/bitextor/bicleaner
2Wikipedia: https://en.wikipedia.org/wiki/

Khmer_language
3http://opus.nlpl.eu

software products and religion. Pashto (ps) is spo-
ken by around 40 million people in Pakistan and
in Afghanistan, where it is official together with
Persian.4 There are around 100k English–Pastho
parallel sentence in OPUS, most of which belong
to the software domain.

Detecting noisy parallel sentences for under-
resourced language pairs, like those addressed in
this shared task, is challenging. Pastho is not di-
rectly supported by LASER (Schwenk and Douze,
2017), although it supports other Iranian languages,
and there are few bilingual resources for building
the Bicleaner’s models.

Bicleaner is based on a classifier that assesses
whether a pair of sentences are mutual translations
or not. It is trained on a parallel corpus (positive
samples) and on an automatically corrupted ver-
sion of the same corpus (negative samples). The
most important features used by the classifier are
lexical similarity scores obtained with the help of
probabilistic bilingual dictionaries, which are also
extracted from the parallel corpus. Our submis-
sion improves the performance of the version of
Bicleaner that took part in the 2018 shared task in
multiple ways: a new classification algorithm, new
lexical features that account for the frequency of
the words in the parallel sentences, and a novel
way of generating corrupted pairs of sentences.
In addition, we re-score the output of Bicleaner
combining character-level language models and an
n-gram saturation scorer in a linear combination
whose parameters are determined by fine-tuning
the MBART model provided by the organisers of
the shared task.

The rest of the paper is organised as follows.
Section 2 describes the Bicleaner classifier whereas
Section 3 explains how the score produced by the

4Wikipedia: https://en.wikipedia.org/wiki/
Pashto
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classifier is combined with the information pro-
vided by character-level language models and an
n-gram saturation algorithm to produce the sub-
mitted score. Section 4 then describes the process
followed to build the submission, and Section 5
lists related approaches. The paper ends with some
concluding remarks.

2 Bicleaner classifier

Bicleaner is based on an automatic classifier that
produces a score for a pair of sentences represent-
ing the probability that they are mutual translations.
Random Forests (Breiman, 2001), the classification
algorithm used in the 2018 submission, has been
replaced by Extremely-Randomised Trees (Geurts
et al., 2006) because the latter performed best on
preliminary experiments.

The Extremely Randomised Trees classification
algorithm works by selecting at each internal node
the best feature from a sub-set of features selected
at random from the whole set of features F , and us-
ing a random cut-off point. The hyper-parameters
controlling the training of these classifiers are there-
fore the method used to rank the features and se-
lect the best one, the size of the subset of features
selected at random, and the number of trees to
be used. To select the best hyper-parameters we
performed a grid search with the following hyper-
parameter values. For the ranking we tried with
Gini importance (Breiman et al., 1984, Ch. 4) and
information gain; for the size of the sub-set of fea-
tures we tried with |F |, log2|F | and

√
|F |; for the

number of trees we tried with 100, 200, 300, 400
and 500.

The features we used can be split in two groups:
those that account for the lexical similarity of the
two sentences, and those based on shallow proper-
ties of the sentences.

2.1 Lexical features
Bilingual lexical similarity is assessed by means of
the lexical feature Qmax(S,Θ, d), which was first
described by Sánchez-Cartagena et al. (2018) and
is inspired by the translation probabilities used in
statistical machine translation (Koehn, 2009). It is
defined as:

Qmax(S,Θ, d) =

(∏

t∈Θ

max
s∈S∪{NULL}

p(t|s; d)

) 1
|Θ|

where, S is a source-language (SL) sentence, S
is a set with the tokens in S, Θ is a set with the

tokens in the target-language (TL) sentence T that
appear at least once in the SL-to-TL probabilistic
bilingual dictionary d, and p(t|s; d) stands for the
translation probability of the target token t given
the source token s according to the bilingual dic-
tionary d. A smoothing is applied if, for a token t,
maxs∈S∪{NULL} p(t|s; d) equals zero; in that case,
this expression is set to the value of the smallest
probability in d divided by 10. One can interpret
that, in this case, the dictionary is providing evi-
dence that t is unlikely to be the translation of any
of the tokens in S. It is worth noting that this case
differs from the case in which a token t ∈ T does
not appear in the dictionary at all; in that case, no
evidence, either positive or negative, is available
for it. This is why Qmax is only computed for the
tokens in Θ instead of doing so for all the tokens
in T .

The informativeness of Qmax strongly depends
on the coverage of the probabilistic bilingual dic-
tionary used. To measure the coverage of this dic-
tionary, the feature Qmax is complemented with
two additional features: CoverT(T, d), which re-
turns the percentage of unique tokens in T ap-
pearing in d, and CoverTS(S, T, d), which re-
turns the percentage of unique tokens in T that
appear in d associated with at least one token in
S. All these features are also computed in the re-
verse direction: Qmax(Θ, S, d′), CoverS(S, d′),
and CoverST(T, S, d′), where d′ is a TL-to-SL
probabilistic bilingual dictionary.

Even though low-frequency words usually have
more discriminatory power (Ramos, 2003), the
original formulation of the Bicleaner lexical fea-
tures did not take into account word frequency
in any way. In order to allow the classifier to
give different weights to words from different
frequency ranks, we re-formulated the lexical
features: Qmax now becomes a set of features
{Qmaxq(S,Θ, d, R) | q ∈ [1, 4]}. While the sum-
mation in the original Qmax was computed for all
the tokens in Θ, in Qmaxq it is only computed for
those tokens in Θ that appear in the quartile q ∈
[1, 4] of the ranking of tokens R. R sorts tokens by
the logarithm of their relative frequency in a mono-
lingual corpus; in this way, quartile q = 1 contains
a large amount of tokens with low frequency, while
quartile q = 4 contains fewer tokens with high fre-
quency.5 The same adaptation is applied to obtain

5Preliminary experiments showed that no gain is obtained
by dividing word frequencies in more than four groups.

953



the set of features {CoverSq(T, d) | q ∈ [1, 4]}
and {CoverSTq(S, T, d) | q ∈ [1, 4]}. As in the
original Bicleaner, these features were also com-
puted in the reverse direction.

2.2 Shallow features
Shallow features do not make use of bilingual lex-
ical information and are aimed at complement-
ing the lexical features, which may not be reli-
able enough in sentence pairs with poor dictionary
coverage. The shallow features used can be fur-
ther split into those that model sentence length and
those that identify tokens and characters that give
hints about the parallelness of a pair of sentences.

Features that model sentence length are based on
the assumption that the ratio between the lengths
of a pair of parallel sentences is fairly constant for
a given language pair. Hence, sentence pairs that
deviate too much from this ratio are not likely to
be parallel. We measure how close is the ratio of a
given pair of sentences to the expected one as the
probability mass function of a Poisson distribution.
We also provide the raw lengths to the classifier.
The complete list of features based on sentence
length is the following. Each of these features is
computed independently for the SL sentence S and
for the TL sentence T of the pair.

• Likelihood of having a TL segment T with
length (in tokens) lT given lS , the length of
the SL segment S, and rts, the ratio between
the length of TL and SL computed on a train-
ing parallel corpus; likelihood is computed as
Pr(X = lT ;λ = lS · rts). This feature is also
computed for S: Pr(X = lS ;λ = lT · rst).
Note that Pr(X = k;λ = L) = e−L·Lk

k! .

• Number of tokens in the sentence.

• Number of characters in the sentence.

• Average token length (in characters) in the
sentence.

Parallel pairs of sentences are also likely to
share numerical expressions, punctuation marks
and proper nouns. The following features aim at
leveraging that information. Each of these features
is computed independently for S and T .

• Number of punctuation marks of each type.

• Proportion of numerical expressions in the
sentence that can be found in the other sen-
tence of the pair.

• Proportion of capitalised tokens in the sen-
tence that can be found in the other sentence
of the pair.

Finally, character counts can also be considered
hints for parallelness. They are taken into account
by the following features, which are computed in-
dependently for S and T :

• Number of characters in each of the main Uni-
code classes.

• Number of different characters.

• Number of occurrences of the three most
frequent characters, normalised by sentence
length.

• Entropy of the string, considering each char-
acter as an event whose probability is propor-
tional to the number of occurrences of the
character in the sentence.

• Maximum number of consecutive repetitions
of the same character.

Overall, 92 shallow features are used.

2.3 Modelling noise
For training the Bicleaner classifier, positive and
negative samples are used. The positive samples
are those found in the original parallel corpus. The
negative samples are generated by corrupting the
sentences in that corpus as explained next.

Three types of synthetic noise are applied for
corrupting the sentences:

• wrong alignment: parallel segments are ran-
domly re-aligned to produce pairs of segments
that are not parallel;

• wrong segmentation: one of the sentences in
the pair is truncated: a suffix starting from a
random position is removed, therefore emulat-
ing an error in sentence segmentation; and

• word replacement: a random number of words
in one of the sentences of the pair is replaced
by other words with similar frequency as com-
puted on a monolingual corpus.6

The amount of corrupted sentences we generated
equals the the size of the original parallel corpus,

6The ranking of token frequencies R described in Sec-
tion 2.1 was used for this replacements.
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and the three types of synthetic noise were applied
in the same proportion. The classifier is therefore
trained on a set of sentences twice as large as the
original parallel corpus. This strategy differs from
the one followed in the 2018 submission (Sánchez-
Cartagena et al., 2018) for generating corrupted
sentences, where only the “wrong alignment” type
of noise was used.

3 Re-scoring

Subsampling 5 million words from the raw corpus
based on the score described in the previous section
ensures that NMT systems are trained on parallel
data. However, some of the selected training paral-
lel samples may not bring useful information and
replacing them with other, more informative sam-
ples could improve the performance of the result-
ing NMT systems. We hypothesise that two main
reasons could make a pair of sentences which are
mutual translations non-informative: i) sentences
are not fluent enough and hence very different from
those that will be translated with the resulting NMT
systems: lists of keywords or website menus are
examples of such non-fluent sentences; and ii) the
pair of sentences is too similar to other training
samples.

To take into account these additional factors, the
final score assigned to each sentence pair was com-
puted as follows. First, each sentence received a
preliminary score, prescore, computed as:

prescore(s, t) = λ · bicleaner(S, T )+

(1− λ) ·min(fluencys(S),fluencyt(T )))

where S and T are respectively the SL and TL sen-
tence, bicleaner is the score described in Section 2,
and fluencys and fluencyt denote, respectively, flu-
ency scores in the SL and in the TL provided by
character language models.7

Fluency scores were computed as the nor-
malised perplexity of the sentence according to
a 7-gram character language model estimated with
KenLM (Heafield, 2011). Normalisation was
aimed at placing the perplexities in the [0, 1] in-
terval and consisted on a linear transformation that
ensured that the values in the raw corpus had a

7Values of λ close to 1.0 make lists of keywords or web-
site menus that are mutual translations to have the highest
scores. Value of λ around 0.5 make the top scored segment
pairs to be fluent, complete grammatical sentences. Values
of λ close to 0.0 make fluent but non-parallel sentences to
receive the highest scores.

mean of 0.5 and standard deviation of 0.25. As-
suming that the perplexities follow a normal dis-
tribution, 95% of the values fall into the desired
range. Those values with score lower than 0 or
higher than 1 after the transformation were set to 0
and 1, respectively.

After computing prescore, sentence pairs were
sorted by that score in descending order, and the
score of those pairs for which all their 3-grams
could be found in sentences with a higher score
was multiplied by a penalty β to promote diversity
in the subsampled corpus.

The values of the parameters λ and β, that con-
trol the contribution of parallelness, fluency and
novelty to the final score were optimised so as to
maximise the BLEU score obtained after fine tun-
ing the MBART model provided by the task or-
ganisers. The Nelder-Mead algorithm (Nelder and
Mead, 1965), which does not require gradient com-
putations, was used.

4 Building the submission

This section describes the process followed to build
our submission, which comprised selection of train-
ing data, corpora preprocessing, classifier training
and evaluation of different alternatives for some of
the steps.

4.1 Data used

For both language pairs, the classifier training data
was built from the concatenation of all the clean
parallel corpora provided by the shared-task organ-
isers. The length ratios used in shallow features
were computed on the same data, as well as the
bilingual dictionaries. In order to build the dictio-
naries, the parallel sentences were word-aligned
with MGIZA++.8 Alignments were symmetrised
with the heuristic grow-diag-final and the proba-
bilities in the bilingual dictionaries were estimated
afterwards by maximum likelihood.

The Wikipedia monolingual corpus provided by
the organisers was used to compute the word fre-
quencies for word ranking R as described in Sec-
tion 2.1. The same monolingual data was used
to train character language models. Pashto and
Khmer models were trained on the complete data.
A different English language model was trained
for each language pair on a random sample of the

8https://github.com/moses-smt/mgiza.
git
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English Wikipedia corpus that matched the size of
the Pashto/Khmer Wikipedia corpus.

4.2 Pre-filtering
The clean parallel data provided by the organis-
ers was filtered before their use. Those parallel
sentences in which at least one side contain less
than 20% of characters in the Unicode range of
the corresponding language were discarded. The
remaining parallel sentences were deduplicated.

The raw sentence pairs to be scored were also
pre-processed with a series of heuristic rules: the
score was set to zero if any of the conditions was
met. These rules were aimed at detecting segments
with evident flaws and speeding up the subsequent
steps. The rules were aimed at detecting the follow-
ing defects in the parallel sentences:

• Wrong language: same Unicode filtering ap-
plied to the clean corpora (see above).

• Too long sentences: those with more than
1024 characters.

• Untranslated: SL and TL segments are identi-
cal after removing numerical expressions and
punctuation marks.

• Not fluent: the sentence contain elements
such as URLs, arithmetic operators, too many
parentheses, escaped Unicode characters, and
other common defects that arise when crawl-
ing parallel corpora from the web. These ele-
ments were detected by means of regular ex-
pressions.

4.3 Tokenisation and word segmentation
Tokenization and subword segmentation have
shown to improve the recall of the probabilistic
dictionaries used to obtain the lexical features de-
scribed in Section 2.1. We experimented with the
following tokenisation and subword segmentation
methods, which were applied to the clean data as
well as to the raw sentences to be scored:

• Rule-based tokenisation (tok) for Pashto,
Khmer and English, as provided by the tool
Polyglot (Al-Rfou et al., 2013);

• Rule-based tokenisation plus word mor-
phological segmentation with Morfessor
(tok-morph). For this we used, after to-
kenisation, the pre-trained models for Morfes-
sor (Virpioja et al., 2013) included in Polyglot.

4.4 Training Bicleaner

As previously mentioned, the probabilistic bilin-
gual dictionaries were obtained from the same par-
allel corpus used to train the classifier. This strat-
egy has an important drawback. While almost all
words would be found in the bilingual dictionaries
when training the classifier, the coverage would be
much smaller when classifying the raw sentences
because of the small amount of parallel data avail-
able. In order to close the gap between training and
classification, we removed some dictionary entries
during training. Specifically, we removed the least
frequent entries so as to ensure that the coverage
of the truncated dictionaries on the training data
matches the coverage of the full dictionaries on the
raw sentences to be scored.

4.5 Results

Table 1 depicts the results obtained on the devel-
opment environment during the preparation of the
submission. The system that produced the scores
for our final submission is shown in bold.

We firstly evaluated the different tokenisation al-
ternatives described in Section 4.3, and applied the
re-scoring scheme described in Section 3 on top of
the best performing one. The results show that the
tokenisation with Polyglot without any kind of sub-
word segmentation (tok) leads to the best results.
It is also worth mentioning the poor performance
obtained with morphological segmentation, which
needs to be studied more carefully. Moreover, re-
scoring for increased fluency and diversity further
improved the results.

Table 1 also shows the results obtained by the
baseline LASER model,9 which was consistently
outperformed by Bicleaner. Comparing the results
of the version of Bicleaner used in this submission
with that used in 2018 also shows that the changes
introduced bring a positive impact.

5 Related work

A shared task on parallel corpus filtering was part
of the WMT conference programme for the first
time in 2018 (Koehn et al., 2018). That year the
task was targeted at a high-resource scenario. NMT
models, which already provide the probability of a

9These results do not exactly match those pub-
lished at http://www.statmt.org/wmt20/
parallel-corpus-filtering.html, probably
because of differences in the GPU hardware or random
initialization seed.
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Khmer–English Pashto–English
System fairseq MBART fairseq MBART
LASER (baseline) 6.80 10.33 9.55 11.50
Bicleaner 2018 tok 7.45 10.16 10.11 11.85
Bicleaner 2020 tok 7.76 10.66 10.10 12.35
Bicleaner 2020 tok-morph 7.33 10.56 8.64 10.94
Bicleaner 2020 tok + re-score 8.25 11.18 10.53 12.80

Table 1: BLEU scores obtained by the different configurations evaluated for Khmer–English and Pashto–English
on the development environment provided by the organisers.

TL sentence given an SL sentence, emerged as the
dominant approach (Junczys-Dowmunt, 2018).

Last year’s edition was focused on a low-
resource scenario (Koehn et al., 2019), where paral-
lel data big enough to build NMT models that pro-
vide reliable TL probability distributions was not
available. The best performing model was LASER,
a method based on multilingual sentence embed-
dings (Chaudhary et al., 2019) that takes advantage
of the data available for multiple language pairs. In
fact, a LASER model trained on 93 languages is
the baseline model published by the organisers for
this edition of the shared task.

Unlike LASER, our submission is mainly based
on lexical similarity scores analogous to those used
in statistical machine translation. They are com-
puted only on parallel data, without any kind of
transfer learning from other language pairs. The
approach we follow to detect sentences that are mu-
tual translations is similar to the one by Munteanu
and Marcu (2005) for detecting parallel sentences
in comparable corpora. However, we use a larger
set of shallow features not related to lexical simi-
larity and follow a more sophisticated method for
generating negative samples.

Concerning our re-scoring strategy for includ-
ing information about fluency and diversity, partici-
pants from past editions also used these attributes to
score sentences. For instance, Axelrod et al. (2019)
and Vázquez et al. (2019) devised a scoring strategy
under the assumption that parallel sentences should
have similar monolingual language model perplexi-
ties, and many other submissions included a penalty
for repetitive sentences (González-Rubio, 2019;
Erdmann and Gwinnup, 2019; Bernier-Colborne
and Lo, 2019). Nevertheless, to the best of our
knowledge, our approach is the first one that di-
rectly optimises the weight of these attributes to-
wards an automatic translation evaluation metric.

6 Concluding remarks

We described the joint submission of Universitat
d’Alacant and Prompsit Language Engineering to
the parallel corpus filtering shared task at the Fifth
Conference on Machine Translation (WMT 2020).
Our submission is based on Bicleaner, an open
source tool based on a classifier that uses lexical
similarity features inspired in the translation proba-
bilities used in statistical machine translation.

We presented a series of improvements over the
version of Bicleaner that participated in the 2018
edition of the shared task, namely a better clas-
sifier, more sophisticated generation of negative
samples and a reformulation of the lexical similar-
ity scores which takes into account word frequency.
We showed that these improvements are effective
and they allowed our submission to outperform
LASER, a state-of-the-art method based on multi-
lingual sentence embeddings. Moreover, combin-
ing Bicleaner scores with scores that account for
fluency and diversity further improved the results.

We plan to keep exploring subword segmenta-
tion algorithms that help to fight data sparseness
when computing lexical similarity scores with the
help of bilingual dictionaries. We also aim at in-
tegrating word embeddings into lexical similarity
scores, which would allow us to leverage monolin-
gual data in a more effective way.
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Ortiz-Rojas, and Gema Ramı́rez. 2018. Prompsit’s
submission to WMT 2018 parallel corpus filtering
shared task. In Proceedings of the Third Conference
on Machine Translation: Shared Task Papers, pages
955–962, Belgium, Brussels. Association for Com-
putational Linguistics.

Holger Schwenk and Matthijs Douze. 2017. Learn-
ing joint multilingual sentence representations with
neural machine translation. In Proceedings of the
2nd Workshop on Representation Learning for NLP,
pages 157–167, Vancouver, Canada. Association for
Computational Linguistics.
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Abstract

This document describes an exploratory look
into the Parallel Corpus Filtering Shared Task
in WMT20. We submitted scores for both
Pashto-English and Khmer-English systems
combining multiple techniques like monolin-
gual language model scores, length based fil-
ters, language ID filters with confidence and
norm of embedings.

1 Introduction

For this task the participants were provided with
a corpus of parallel data in Pashto-English (ps-en)
and Khmer-English (km-en). Additional parallel
and monolingual datasets were also provided. The
task organizers built neural machine translation
(NMT) systems from the scores produced, based
on parallel training sets of 5 million words. These
systems are sensitive towards noise (Khayrallah
and Koehn, 2018) and thus, it becomes important
to separate the useful data from the noise. We view
the task as data that passes through a pipeline of
filters in order to give us the best possible selection
of 5 million words in the end.

We determined that language ID filtering is a
very strong pre-processing filter and inducting con-
fidence scores is not needed. We also determined
that monolingual Language models can help us in
selecting sentences even if both the source and tar-
get language models are independent of each other.
Finally, using using the length of a sentence as a
filter helps us create a better NMT system.

We also learn that statistical intuitions do not
easily extend to neural embeddings.

2 Baseline

The idea behind our baseline system is to use the
cosine distance between two multilingual represen-
tations as a notion of parallelism between sentences
embedded in the same space. The tool we use for

this is LASER1 which uses an encoder-decoder
architecture to train a multilingual sentence rep-
resentation model. It has been shown by Artetxe
and Schwenk (2018b) that LASER is effective at
zero-shot cross-lingual natural language inference
in the XNLI dataset which makes it promising for
this task involving low-resource languages. Koehn
et al. (2019) has shown this to be a strong baseline.

We follow the work done by Artetxe and
Schwenk (2018a) and begin by generating mul-
tilingual sentence embeddings using LASER. The
LASER score is a function of the margin between
the cosine similarity between a given candidate and
it’s k nearest neighbors2:

Let f(x,y) =

∑

zεNNk(x)

cos(x, z)

2k
+

∑

zεNNk(y)

cos(y, z)

2k

LASER score(x,y) = margin(cos(x,y),f(x,y))
We experiment with the following definitions of
margin:

• Absolute: margin(a,b) = a
Essentially just cosine similarity.

• Distance: margin(a,b) = a - b
Subtracting the average cosine similarity from
that of the given candidate. We use this
when there are certain points that are extra-
ordinarily close to many other data points and
thus, degrade the quality of nearest neighbors.

• Ratio: margin(a,b) = a / b
This is the ratio between the candidate and the
average cosine of its nearest neighbors in both
directions.

1https://github.com/facebookresearch/
LASER

2cos(x,y) here refers to cosine similarity between the vec-
tors x and y
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We also experiment with the following techniques
of candidate generation:

• Intersection:
Each source sentence is aligned with exactly
one best scoring target sentence. Some tar-
get sentences may be aligned with multiple
source sentences or with none. We repeat this
process in the opposite direction and take the
intersection of the 2 alignments

• Max score:
We repeat the process used to generate can-
didates in Intersection, except we select the
alignment with the highest score instead of
discarding all inconsistent alignments

We find that the best settings were margin set to
ratio, candidate generation set to max-score and k
set to 4. Note that this list of nearest neighbors does
not include duplicates, so even if a given sentence
has multiple occurrences in the corpus, it would
have (at most) one entry in the list (Chaudhary
et al., 2019). These scores are in the range of [0,1].

The BLEU scores obtained by these systems are
11.16 for Pashto and 9.65 for Khmer.

3 Language ID

For our first step, we try to predict the most proba-
ble language of a given sentence using use fastText
(Joulin et al., 2016). We use the pre-trained model
released by the authors that is trained to identify
over 170 languages including Pashto, Khmer and
English. The intuition behind it is that when work-
ing in a bilingual setting, sentences from other lan-
guages or code-mixed sentences will be harmful to
the MT system. We call this simple language ID

if source = ps|km and target = en then
langID score = LASER score

else
langID score = 0

end if
An additional idea that we incorporate is how confi-
dent we are when predicting the language of a sen-
tence. For example, if we have a sentence where
the probability of the target sentence being English
is 0.9 and we have another sentence where the prob-
ability of the target sentence being English is 0.3,
then given the same LASER scores, we would want
to give preference to the sentence pair where the
probability of the target sentence is 0.9. We do this
for both the source and target language.

We try to only keep sentence pairs where we are
confident about both the source and target language
being correct. We implement this notion by setting
a cutoff c for the language ID probability. We call
this confident language ID

if prob(src=ps|km) > c and prob(tgt=en) > c
then

confidence = prob(src=ps|km) · prob(tgt=en)
else

confidence = 0
end if
langID score = LASER score · confidence

Where prob(p=q) is the probability of sentence p
being from language q.

We show our results for Pashto in Table 1 and
make the following observations.

• There is an overall increase in BLEU.

• Simple language ID seems to be better than
Confident language ID by a small margin.

• Confident language ID, has a local minima at
a cutoff of 0.75

• The scores in confident language ID tend to
decrease sharply after a cutoff of 0.8.

This leads us to believe that while good for iden-
tifying the language, the confidence scores are not
as strong as the LASER scores.

We experiment by including scores if they are
within the top 3 predicted languages but see no
significant change in scores.

We also experiment by adding the confidence
instead of multiplying it in confident language ID
but see no significant change in the BLEU scores.

As a result of our observations, we only perform
Simple Language ID for Khmer, giving us a BLEU
score of 11.51 for Pashto and 10.04 for Khmer.

4 Norm of embeddings as a filter3

Liu et al. (2020) showed us that the norm of
an embedding can represent how frequent and
how context insensitive the embedding is. Essen-
tially, smaller norms represent frequent and context-
insensitive rare words. There is an implicit assump-
tion here that the embedding size is large enough
to incorporate all the information present in a sen-
tence.

3Note: Throughout this section we shall be using the terms
”vector” and ”embedding” interchangeably.
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Figure 1: Cutoff vs BLEU scores for Pashto

For a vector xi = [xi1, xi2, ..., xin] the norm of
the vector is

norm(xi) =
√
x2i1 + x2i2 + ...+ x2in

We interpret the norm of an embedding as a
measure of the confidence we have in the embed-
ding of a sentence. The reason we do this is that
neural methods by their very nature are data hun-
gry and susceptible to noise. We are working in
a low-resource condition because of which it will
be harder to learn about sentences with context-
sensitive words. Additionally, it would be harder
to learn about sentences with low-frequency words
making their embeddings less reliable, thus, lead-
ing to a lower quality MT system.

We run 2 sets of experiments on the LASER
embeddings of the sentences.

• We assume that the elements in each vector
are comparable, i.e. on the same scale. We
simply take the norm of the embedding in this
case.

• We assume that the elements in a vector are
not directly comparable. In this case, we com-
pute the z-score of each element and take the
norm of the z-scores. z-score can be thought
of as how many standard deviations is a given
element away from it’s mean. Thus it gives
each element a relative value, making them
comparable. We finally take the norm of the
z-scores.

z-score = x−µ
σ

where µ is the mean and σ is the standard

deviation of that particular element across all
the vectors that have a non-zero langID score.

The langID scores we have until now are in the
range [0,1], while the norm of the embeddings the-
oretically have a range of [0,∞). To ensemble the
langID scores with the norm-scores, we need to
bring the distributions within a comparable range.
We do this by applying min-max normalization.

Let x = [x1, x2, ..., xn]
where
xi = norm (embedding (ith vector))
or
xi = norm (z-score (embedding (ith vector)))
for all vectors with langID score 6= 0 do

normalized (xi) = xi−min(x)
max(x)−min(x)

end for
norm score = langID score - normalized
We observe that in both the cases, there are very

few observations with a really high norm because
of which over 95% of the norm scores remained the
same up to 6th or more decimal place. To counter
this, we set the langID scores of these embeddings
to 0 and repeat the process recursively till we see an
impact on the 5 million token subselected corpus.

We make the following observations

• We see a drastic reduction in the Pashto BLEU
scores from 11.51 to 9.76 when we use z-
scores.

• When we do not use the z-scores, we see a
decrease in the BLEU score from 11.51 to
11.37 for Pashto. and an increase from 10.04
to 10.05 for Khmer. In both the cases the
change is really small and not significant.

• Manual observation here shows that sentences
with big URL’s were filtered out automatically
without any explicitly stated rule.

• Being more aggressive with the number of
loops led to a drastic decrease in BLEU
scores.

We finally ran experiments where we gave a
preference to only large norms and an experiment
where we gave a preference to both very large
norms and to very small norms. In both the cases
we had really bad scores leading to the conclusion
that the norm of LASER embeddings is not a good
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filter. Because of this poor performance when re-
lied on aggressively, we decided not to use it in our
final submission.

We also ran the same experiments using fasttext
generated embeddings (Bojanowski et al., 2017)
but that had poor results as well.

5 Monolingual Language Models

The motivation behind using Monolingual Lan-
guage Models is that we want to learn about sen-
tence pairs that have a high likelihood of coming
up in the test data. Ideally we would want both
the sides of the corpus to have a high probability
of coming up but we also realize it will often not
be the case. Thus, we make these language mod-
els independent of each other. We take inspiration
from Axelrod et al. (2019) and modify the work
of Junczys-Dowmunt (2018) to come up with a
language model filter. Junczys-Dowmunt (2018)
achieved the highest ranking score in WMT’18
and to do so they define HM (.|.) as the word-
normalized conditional cross-entropy of the proba-
bility distribution PM (.|.) for a model M:

HM (y) = −1

y

|y|∑

t=1

logPM (yt|y<t)

We use this as a measure of how fluent a given
sentence is. Lower scores indicate a better sentence
in this case.

While Axelrod et al. (2019) do create n-gram
language models, they hope that language mod-
els trained on similar but not parallel texts to have
similar perplexities over each half of a parallel test
set of the parallel corpus. This method does not
leverage the simple fact that we have more data
for one of the languages. This method also as-
sumes a close relationship between the frequencies
of letters which might not always be the case. Fi-
nally it does not leverage the expressive power of
neural language models. In order to improve on
this, we propose Neural Language Models that are
completely independent of each other.

5.1 Pre-processing
We first tokenize our data using Sentencepiece
(Kudo and Richardson, 2018). We set an upper
limit of 5,000 on the vocabulary size for Pashto
and Khmer, and an upper limit of 50,000 for the
English vocabulary. This is done at both the charac-
ter and word level and also both with and without
splitting at whitespace. We also reverse the data

–arch transformer lm
–dropout 0.1
–optimizer adam
–adam-betas ’(0.9, 0.98)’
–weight-decay 0.01
–clip-norm 0.0
–lr 0.0005
–lr-scheduler inverse sqrt
–warmup-updates 4000
–warmup-init-lr 1e-07 –patience 30

Figure 2: Language Model: Transformer architecture

–arch transformer lm wiki103
–max-lr 1.0
–t-mult 2
–lr-scheduler cosine
–lr-shrink 0.75
–warmup-init-lr 1e-07
–min-lr 1e-09
–optimizer nag
–lr 0.0001
–clip-norm 0.1 –patience 30

Figure 3: Language Model: Wiki103 architecture

to simulate right-to-left prediction of words. Thus
we have 8 possible tokenizations for every possible
sentence.

5.2 Language Model Architecture

For our Language Models, we use fairseq (Ott et al.,
2019) to implement the architecture given in Fig-
ure 2.

We also create a Language Model using the ar-
chitecture given by Baevski and Auli (2019) with
parameters as given in Figure 3.

We use 2 different models because while it is
tempting to use deeper and more sophisticated mod-
els, we need to have enough data to train it suffi-
ciently. If sufficient data is absent, it is in general
better to train simpler models.

In total we have 16 language models for each
language. In each case, we train the model in 2
further ways. In the first case, we keep the Com-
monCrawl monolingual data as the training set and
keep the Wikipedia monolingual data as the devel-
opment set. In the second case, we augment the
CommonCrawl data with Wikipeda data by over-
sampling. We make the number of lines taken by
the wikipedia data be between 40-50% of the num-
ber of lines taken by the CommonCrawl data.
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During training, the word level language models
that were not split on white-space were taking too
much time to train. As a result we had to halt their
training and use the best checkpoint achieved till
then.

5.3 Evaluating the Language models

We evaluated the Language Models by using their
word normalized cross entropy as defined in Equa-
tion 5. We find that the scores we got were ex-
tremely similar whether we used just the Common-
Crawl data or whether we augmented it with the
Wikipedia data. In addition, the Transformer archi-
tecture gave us better results.

We evaluate our created development set and
find that the word-level left-to-right and character
level left-to-right language models had the lowest
perplexities of their respective groups.4 Addition-
ally, the language models created for Pashto were
relatively much stronger than the language models
created for Khmer simply because of the script in
which Khmer is written.

5.4 Normalising LM-scores

Once again, the values of langID scores range be-
tween [0,1] and our language models scores range
between [0,∞]. In order to ensemble them, we
need to bring them to a comparable scale. We
again try to use min-max normalization to change
the range of the cross entropy values to be [0,1].
Once again we run into the same problem where
the value of maximum is so high that the change
bought about in langID scores was negligible. In-
stead of going for a recursive approach, we take a
more aggressive approach this time. We average
over the cross entropy values of sentences that we
would have selected using langID scores and we
replace the max(crossEntropy) with an empirically
chosen value close to it.

Let x = [x1, x2, ..., xn]
where xi = cross entropy (ith vector)
for all vectors do

new entropy (xi) = xi−min(x)
max(x)−min(x)

end for
LM score = langID score - new entropy
We display the results for only Pashto and a

few English Pashto ensemble models in Figure 4.

4Experiments on ensembling these models were still run-
ning at the time of submission
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Figure 4: BLEU score vs max(entropy) for Pashto

We can also see that just the word level language
models perform better than both the character level
models and the Word + Character ensemble mod-
els.5 Similar trends were observed for Khmer.

5.5 Length-based filters

We observed that our language model had a ten-
dency to pick proper nouns. While we want our lan-
guage model to learn about names, we don’t want
to select them over sentences because our transla-
tion is model is based on sentences. To counteract
this, we decided to add a simple length based fil-
ters to Pashto and English. Since they both used
white spaces and have an almost 1 to 1 mapping,
we added a penalty of -1 to their score if any of the
sentences were below 0, 5 and 8 in length. We call
this cutoff value lc. We decide on a penalty of -1
because the maximum score that any sentence can
get right now is 1. This results in that sentence not
being selected at all. Following work described in
Koehn et al. (2019) we also add a penalty term of
-1 whenever either the source or the target sentence
was over 3 times it’s counterpart in length. We call
this length ratio cutoff lr

if len(src) < lc and len(tgt) < lc then
LM score = LM score -1

end if
if len(src)/len(tgt) > lr or len(tgt)/len(src) > lr
then

LM score = LM score - 1
5We observed that the perplexities on the english side

tended to be about half of Pashto and one fourth of Khmer.
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Figure 5: Change in BLEU scores with respect to the
amount of weight given to Language Models

end if
In the Khmer-English case, we only experi-

mented with a sentence length on the English side
since there were no clear demarcations in Khmer.

if len(tgt) < lc then
LM score = LM score -1

end if
We then experiment with a penalty if there is an
overlap of more than 60% between the tokenized
texts. However this doesn’t show any significant
changes.

5.6 Assigning Weights to different scoring
mechanisms

While we tried to give an equal weight to the Lan-
guage model and LASER scores, we had no good
reason to believe that we should. We introduced a
hyperparameter α which lies between 0 and 1, and
we change the equation of LM score to be

Let x = [x1, x2, ..., xn]
where xi = cross entropy (ith vector)
for all vectors do

new entropy (xi) = xi−min(x)
40−min(x)

end for
LM score = (α)(langID score) - (1-α)(LM score)
We replaced the maximum with the value 40

from our findings in Section 5.4
We first run this on Pashto sentences with lc >

8. We use those results to narrow our seaarch with

lc > 5 and lc > 0. We then use those results to run
experiments for Khmer. The combined results are
shown in Figure 5

From figure 5 we can see that we have to local
maximas around 0.5 and 0.8 and a global maxima
at 0.8. In some cases the global maxima is at 0.9
and in some at 0.8. This leads us to believe that
these are the most suitable values for the task.

6 Final Submission

Our final pipeline is as follows:

1. Obtain LASER scores for each sentence pair

2. Pass it through a language id filter where we
set the LASER score to 0 if either the source
or target language doesn’t match

3. score the source and target half of the parallel
corpus using monolingual language models

4. combine the language model scores with
LASER scores

5. Apply a length based filter to remove sen-
tences that don’t provide too much informa-
tion

We submit what we believe to be the 3 most robust
solutions we have for each language pair. For
Pashto, we apply the language id filter, then we use
the Transformer architecture language model, set
lr to 3 and set(α, lc) to (0.8, 5), (0.9, 0) and (0.9,
5). For Khmer, we apply the language id filter,
then we use the Transformer architecture language
model and set (α, lc) at (0.8, 5) and (0.8, 6). Apart
from that, we also submit a scores with a filter
checking for token overlap over 30%. The (α, lc)
is set to (0.8, 5). At the time of submission our
best score for Pashto is 11.69 and the best score
for Khmer is 10.24 on the development set. The
findings of the shared task presented by Koehn
et al. (2020)
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Abstract

This paper describes our submission to the
WMT20 Parallel Corpus Filtering and Align-
ment for Low-Resource Conditions Shared
Task. This year’s corpora are noisy Khmer-
English and Pashto-English, with 58.3 mil-
lion and 11.6 million words respectively (En-
glish token count). Our submission focuses
on filtering Pashto-English, building on pre-
viously successful methods to produce two
sets of scores: LASER LM, a combination
of the LASER similarity scores provided in
the shared task and perplexity scores from lan-
guage models, and DCCEF DUP, dual condi-
tional cross entropy scores combined with a
duplication penalty. We improve slightly on
the LASER similarity score and find that the
provided clean data can successfully be sup-
plemented with a subsampled set of the noisy
data, effectively increasing the training data
for the models used for dual conditional cross
entropy scoring.

1 Introduction

Machine translation systems require large amounts
of high quality parallel corpora for training. Neu-
ral machine translation models in particular have
been found to both require more data (Koehn and
Knowles, 2017), and be more sensitive to noise in
training data (Khayrallah and Koehn, 2018) than
statistical machine translation models. While these
data can be acquired from online sources, the re-
sulting crawled texts are often noisy and require
filtering to produce large amounts of sufficiently
clean training data.

2 Related Work

We refer readers to (Koehn et al., 2019) for a more
detailed overview of methods for parallel corpus fil-
tering, here we describe the most relevant methods
to this work.

2.1 Rule-based Filtering
Most filtering methods employ some rule-based fil-
tering, usually to prepare the data for other scoring
methods, based on language models, classifiers, or
other translation models. (Sánchez-Cartagena et al.,
2018) apply hard rules to filter out data before using
a classifier to score sentence pairs. (Rossenbach
et al., 2018) use many rules, including limits on
sentence length, Levenshtein distance, length ratio,
and token ratio. We use basic language ID and
overlap rules only for the Dual Conditional Cross
Entropy Scores, this is described in more detail
in subsection 5.1. The LASER similarity scores
provided by the shared task organizers also apply a
language ID filter (assigning the pair a score of 0
if either of the sentences are not recognized as the
expected language).

2.2 Dual Conditional Cross Entropy Scores
The most successful scoring method in the WMT18
Shared Task on Parallel Corpus Filtering was
Dual Conditional Cross Entropy Filtering (dccef)
(Junczys-Dowmunt, 2018). This method trains an
NMT model in both translation directions, uses
these to calculate the cross-entropy for each sen-
tence, and finally produces a score based on their
agreement. As this year’s task deals with low-
resource languages (contrary to WMT18, which
was En-De), we explore a method to bootstrap the
available clean data, thus producing more training
data for the intermediate NMT models required for
the method (described in more detail subsection
5.2).

2.3 LASER Similarity Scores
LASER similarity scoring was the most successful
scoring method of the WMT19 Shared Task on Par-
allel Corpus Filtering for Low-Resource Languages
(Chaudhary et al., 2019). This method embeds par-
allel sentences with Language Agnostic SEntence
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Representations (LASER) (Artetxe and Schwenk,
2018), and uses these to compute cosine similarity
scores. This work attempts to augment LASER
similarity scores with language model scores (de-
scribed in more detail in subsection 4).

3 Shared Task

For this year’s shared task on Parallel Corpus Filter-
ing and Alignment for Low-Resource conditions,
participants are asked to produce scores for each
of the sentence pairs in the provided noisy 58.3
million-word (English token count) Khmer-English
corpus and 11.6 million-word Pashto-English cor-
pus. These scores are used to subsample sentence
pairs amounting to 5 million English words. The
resulting subset is evaluated by the quality of an
NMT system (fairseq (Ott et al., 2019)) trained
on this data.

Participants were given the scripts to either train
the evaluation system from scratch, or use the data
to fine-tune a provided pretrained MBART model.
The MBART model was trained on monolingual
data, the details of which are described in (Liu
et al., 2020). The performance of the NMT system
is measured by BLEU score on a held-out test set
of Wikipedia translations. Participants may also
provide re-alignments of the source and target sen-
tences. The organizers provide clean parallel and
monolingual data for both of the language pairs, as
well as LASER similarity scores, a previously suc-
cessful method in low-resource conditions (Chaud-
hary et al., 2019), (Koehn et al., 2019).

We participated in the Pashto-English track only,
after finding that the model-based methods we
explored did not produce meaningful scores for
Khmer-English. We did not submit sentence re-
alignments, focusing instead on sentence filter-
ing. Our submission builds on previously suc-
cessful methods from past WMT shared tasks on
parallel corpus filtering to produce two scores:
LASER LM, a combination of the LASER similar-
ity scores and perplexity scores from language mod-
els, and DCCEF DUP, dual conditional cross en-
tropy scores combined with a a duplication penalty.
All BLEU scores listed in this paper come from sys-
tems trained from scratch and run on the provided
development data.

4 LASER LM

A shortcoming of LASER similarity scores is that
they may produce a false positive in the event that

the source and target embeddings are similar to
each other, but not good translations of each other.
Consider, for example, a source and target pair in
which the target is simply a copy of the source. This
is clearly not a good translation; nothing has been
translated. However, the embeddings would be
exactly the same, and thus appear to be a very good
match. This exact scenario is easily remedied by
the use of a language identification filter, but other
instances may be more difficult to root out. For
example, a source and target sentence in which the
target sentence is a string of literal word-for-word
translations of the source sentence. To complement
the LASER similarity scores and introduce some
measure of fluency we train a language model for
both English and Pashto.

4.1 LASER Similarity Scores

The LASER similarity scores provided are pro-
duced using the methodology outlined in the
WMT19 submission (Chaudhary et al., 2019). A
language identification filter is applied, and sen-
tences pairs with an overlap between source and
target of greater than 60% are discarded. The sim-
ilarity scores are based on the cosine similarity
between the multilingual sentence embeddings in
the learned embedding space, and normalized with
a margin using the k nearest neighbors approach.

4.2 Language Model Scores

Language models were trained on the provided
clean monolingual data. For the English language
model was trained on the Wikipedia corpus with
67,796,935 sentences. The Pashto language model
was trained on a concatenation of the Common-
Crawl and Wikipedia corpora, with the Common-
Crawl oversampled by a factor of 64 to produce
a dataset of 9,273,763 sentences. The shuffled
datasets were split 90/10 (train/test) with test split
into 90/10 (dev/test). The language models were
trained using fairseq (Ott et al., 2019) with the
same settings as the WikiText103 example 1.

The language model, M , was used to produce
per-sentence perplexity scores for each of the sen-
tences in the corpus. Where s = w1, w2, ..., wn is
a sentence of length n:

PPLM (s) = 2−
1
n
logP (w1,w2,...,wn) (1)

1https://github.com/pytorch/fairseq/
blob/master/examples/language_model/
README.md
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scoring BLEU (%)
LASER 9.67
LASER + 0.4 PPL SCORE 9.82
LASER + 0.5 PPL SCORE 9.81
LASER + 0.6 PPL SCORE 9.62
LASER + 0.7 PPL SCORE 9.75
LASER + 0.8 PPL SCORE 9.88
LASER + 0.9 PPL SCORE 9.94
LASER + 1.0 PPL SCORE 9.57

Table 1: Results on development data (training
from scratch) for different scaling factors of the
PPL SCORE.

Perplexity scores for both sides (Pashto and En-
glish, Hps(x) and Hen(x) respectively) are then
added together.

PPL SCORE(x) = PPLMen(sen)

+ PPLMps(sps)
(2)

4.3 Combining LASER and LM Scores
The language model scores and LASER similar-
ity scores were combined to produce LASER LM.
Both scores were normalised to fall in the range
[0, 1] and the PPL SCORE subtracted from 1.0,
such that lower perplexity corresponded to a higher
score. Finally, the two scores were added together
to produce the final score in the range [0, 2]. We
experimented with different scaling factors f for
the PPL SCORE.

LASER LM = LASER

+ f · (1.0− PPL SCORE)
(3)

Table 1 shows the range of factors f explored to se-
lect the scaling factor used in the final score. Since
the BLEU scores produced differed only slightly,
we also evaluated the models on some of the pro-
vided clean data, randomly selecting 2500 lines
(roughly the size of the provided devset) from each
of the clean corpora, as well as 2500 lines of a
shuffled concatenation (concat) of the clean cor-
pora. Results are shown in table 2. For the most
part, they did not vary greatly, and where they did
there was no consistent winner across corpora. We
choose a factor of 0.5, as the model resulting from
these scores generally performed well, and, impor-
tantly, performed well on the provided devset.

5 DCCEF DUP

The dual conditional cross entropy scores produced
state-of-the-art performance on the WMT18 shared

task on filtering corpora for high-resource lan-
guages. However, this method requires two transla-
tion models trained in both the forward and back-
ward direction. This presents a challenge in low-
resource conditions due to the limited training data
available. We find that the model quality can be im-
proved by supplementing the provided clean data
with a subsampled set consisting of 1M English
tokens of the noisy data, subsampled based on the
LASER similarity scores.

5.1 Preprocessing

Sentence pairs in which one or both of the sen-
tences did not match the expected language (En-
glish or Pashto) as determined by fastText 2

were given a score of 0, effectively removing this
pair from consideration. This is a harsh filter, re-
moving around 45% of sentence pairs.

The resulting scores were scaled by the overlap
between source and target sentence tokens, produc-
ing a sort of non-word token matching score. Note
that this does not reward pairs that copy large por-
tions of the source sentence to the target, as these
are already removed by the language identification
filtering.

5.2 Dual Conditional Cross Entropy Scores

Dual Conditional Cross Entropy Filtering (Junczys-
Dowmunt, 2018) was found to be state of the art
in the WMT18 high-resource data filtering task
(Koehn et al., 2018). The method uses two transla-
tion models in the forward and backward direction,
which are used to compute crosslingual similar-
ity scores. Given the translation model M , sen-
tence pairs (x, y) from the noisy corpus were force-
decoded and a cross-entropy score produced:

HM (y|x) = 1

|y|

|y|∑

t=1

log pM (yt|y[1,t−1],x) (4)

Cross-entropy scores for both directions (source-to-
target and target-to-source, HF (y|x) and HB(x|y)
respectively) are then averaged with a penalty on a
large difference between the scores to produce the
overall score:

DCCEF(x, y) =
HF (y|x) +HB(x|y)

2
− |HF (y|x)−HB(x|y)|

(5)

2https://fasttext.cc/docs/en/
language-identification.html
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factor Concat Bible GNOME KDE4 Tatoeba Ubuntu Wikimedia TED Talks
0.4 5.84 1.79 13.08 6.98 5.21 10.73 4.65 5.76
0.5 6.28 1.07 14.09 7.72 10.31 11.02 4.83 5.17
0.6 6.76 1.62 13.89 7.41 11.39 10.36 4.34 5.43
0.7 6.43 1.18 14.02 7.98 11.02 11.42 4.28 5.21
0.8 6.20 1.00 13.71 7.87 6.66 10.92 5.11 5.71
0.9 6.25 1.80 12.99 7.32 5.80 10.32 6.02 6.15
1.0 6.67 1.63 13.77 7.44 9.53 10.75 4.54 5.69

Table 2: Results (BLEU(%)) on subsamples of clean data (training from scratch) for different scaling factors of
the PPL SCORE.

Translation models were trained using fairseq
(Ott et al., 2019) with the same parameters used in
the baseline flores model 3.

We used the provided clean training data to train
translation models in both directions, and used
these models to produce a dccef score as described
above. Initially only the dccef scores were used to
filter the noisy data and train a system, we did not
perform the preprocessing as described in 5.1. The
BLEU score produced by this system is shown in 3
under clean.

We then supplemented the clean training data
with a subsample of the noisy data and trained
translation models in both directions on the aug-
mented data. The subsample of 1 million English
tokens and their translations was selected based on
the provided LASER similarity score. Again, for
this experiment only the dccef scores were used
to filter the noisy data, no preprocessing was per-
formed. As shown in Table 3, supplementing the
training data with the subsampled set resulted in an
overall increase in 3.37 BLEU points.

Finally, we preprocessed the noisy data as de-
scribed in 5.1 and used both sets of systems (one
set trained on clean data, and one set trained on
augmented data) to score the preprocessed data. As
shown in Table 3, there were further, significant
gains, from preprocessing, and the dccef scores
from the systems trained on augmented data outper-
formed the dccef scores from the systems trained
on just the clean data. Prepocessing also reduced
the gap between the performance of dccef scores
produced by systems trained on just the clean data
and the performance of dccef scores produced by
systems trained on augmented data.

3https://github.com/
facebookresearch/flores#
train-a-baseline-transformer-model

5.3 Duplication Penalty
The scores were scaled by a duplication penalty for
duplicate (greater than one) occurrences of either
one or both of the target or source sentence of a
pair in the corpus as follows:

dup penalty =





1.0 neither side duplicate

0.9 one side duplicate

0.8 both sides duplicate
(6)

This resulted in a minor improvement in BLEU
score on the development data, as seen in Table 3.

6 Results

Various other combinations of the aforementioned
scores were explored, and the results are listed
in Table 4. Interestingly, the results suggest
that the duplication penalty did not improve the
LASER LM score, and combining the LASER LM
and DCCEF DUP scores did not result in a better
BLEU score. However, it should be noted that the
differences in BLEU scores resulting from differ-
ent combinations are generally minor and may not
be statistically significant.

None of the filtering methods significantly out-
performed the LASER-based method, but the im-
proved dccef filtering method can at least match
the LASER-based method when the training data
is augmented, and the preprocessing steps and du-
plication penalty are applied.

7 Conclusion

This paper describes the our submission to the
WMT20 Parallel Corpus Filtering Shared Task for
low-resource conditions. We find that filtering
based on dccef scores can compete with filtering
based on LASER similarity scores when the mod-
els trained for the dccef scores are augmented with
a subsample of the noisy data. This suggests that
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training data for Hen,Hps scoring method BLEU (%)
clean dccef 3.97
clean + top 1M noisy dccef 7.34
clean dccef + preprocessing 8.93
clean + top 1M noisy dccef + preprocessing 9.68
clean + top 1M noisy (dccef + preprocessing) · dup penalty 9.94

Table 3: Results on development data (training from scratch) for dccef scores.

training data for Hen,Hps (dccef) scoring method BLEU (%)
N/A laser 9.67
N/A laser + 0.5LM 9.81
N/A (laser + 0.5LM) · dup penalty 9.74
clean dccef 8.93
clean + top 1M noisy dccef 9.68
clean + top 1M noisy (dccef · dup penalty) 9.94
clean + top 1M noisy (dccef · dup penalty) + laser 9.30
clean + top 1M noisy (dccef · dup penalty) + laser + 0.5LM 9.58

Table 4: Results on development data (training from scratch). Bolded scores are the two scores submitted. All
dccef scores reported in this table were combined with preprocessing as described in 5.1

challenges posed by limited data for model-based
filtering methods can be somewhat mitigated by
bootstrapping additional data from the noisy cor-
pus.
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Abstract

The National Research Council of Canada’s
team submissions to the parallel corpus fil-
tering task at the Fifth Conference on Ma-
chine Translation are based on two key com-
ponents: (1) iteratively refined statistical sen-
tence alignments for extracting sentence pairs
from document pairs and (2) a crosslingual
semantic textual similarity metric based on a
pretrained multilingual language model, XLM-
RoBERTa, with bilingual mappings learnt
from a minimal amount of clean parallel data
for scoring the parallelism of the extracted sen-
tence pairs. The translation quality of the neu-
ral machine translation systems trained and
fine-tuned on the parallel data extracted by
our submissions improved significantly when
compared to the organizers’ LASER-based
baseline, a sentence-embedding method that
worked well last year. For re-aligning the sen-
tences in the document pairs (component 1),
our statistical approach has outperformed the
current state-of-the-art neural approach in this
low-resource context.

1 Introduction

The aim of the Fifth Conference onMachine Trans-
lation (WMT20) shared task on parallel corpus
filtering (Koehn et al., 2020) is essentially the
same as the two previous editions (Koehn et al.,
2018b, 2019): identifying high-quality sentence
pairs in a noisy corpus crawled from the web using
ParaCrawl (Koehn et al., 2018a), in order to train
machine translation (MT) systems on the clean
data.
This year, the low-resource language pairs being

tested are Khmer–English (km–en) and Pashto–
English (ps–en). Specifically, participating sys-
tems must produce a score for each sentence pair
in the test corpora indicating the quality of that
pair. Then samples containing the top-scoring 5M
words are used to train MT systems. While using

the filtered parallel data to train a FAIRseq (Ott
et al., 2019) neural machine translation (NMT) sys-
tem remains the same as last year, the organisers
are no longer building statistical machine transla-
tion (SMT) systems as part of the task evaluation.
Instead, as an alternative evaluation, the filtered
parallel corpus is used to fine-tune an MBART
(Liu et al., 2020) pretrained NMT system. Partic-
ipants were ranked based on the performance of
theseMT systems on a test set ofWikipedia transla-
tions (Guzmán et al., 2019), as measured by BLEU
(Papineni et al., 2002). A few small sources of
parallel data, covering different domains, were pro-
vided for each of the two low-resource languages.
Much larger monolingual corpora were also pro-
vided for each language (en, km and ps). In ad-
dition to the task of computing quality scores for
the purpose of filtering, there is also a sub-task
of re-aligning the sentence pairs from the original
crawled document pairs.
Cleanliness or quality of parallel corpora forMT

systems is affected by a wide range of factors, e.g.,
the parallelism of the sentence pairs, the fluency of
the sentences in the output language, etc. Previous
work (Goutte et al., 2012; Simard, 2014) showed
that different types of errors in the parallel training
data degrade MT quality in different ways. Cross-
lingual semantic textual similarity is one of the
most important properties of high-quality sentence
pairs. Lo et al. (2016) scored cross-lingual seman-
tic textual similarity in two ways, either using a
semantic MT quality estimation metric, or by first
translating one of the sentences usingMT, and then
comparing the result to the other sentence, using a
semantic MT evaluation metric. At the WMT18
parallel corpus filtering task, Lo et al. (2018)’s su-
pervised submissions were developed for the same
MT evaluation pipeline using a new semantic MT
metric, YiSi-1 (Lo, 2019) (see also section 2.3). At
the WMT19 parallel corpus filtering task, Bernier-
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Colborne and Lo (2019) exploited the quality esti-
mation metric YiSi-2 using bilingual word embed-
dings learnt in a supervised manner (Luong et al.,
2015) from clean parallel training data or a weakly
supervisedmanner (Artetxe et al., 2016) from bilin-
gual dictionary. Lo and Simard (2019) further
showed that using YiSi-2 with multilingual BERT
(Devlin et al., 2019) on fully unsupervised parallel
corpus filtering (i.e. without access of any parallel
training data) achieved similar results to those in
Bernier-Colborne and Lo (2019).
This year, the National Research Council of

Canada (NRC) team submitted one system to the
parallel corpus filtering task and one to the align-
ment task. The two systems share the same com-
ponents in scoring the parallelism of the noisy
sentence pairs, i.e., the pre-filtering rules and the
quality estimation metric YiSi-2. For the parallel
corpus aligning task, we use an iterative statisti-
cal alignment method to align sentences from the
given document pairs before passing the aligned
sentences to the scoring pipeline.
Our internal results show that MT systems

trained on pre-aligned sentences filtered by our
scoring pipeline outperform those trained on the
organizers’ LASER-based baseline (Chaudhary
et al., 2019) by 0.2–1.4 BLEU. Training MT sys-
tems on re-aligned sentences using our iterative sta-
tistical alignment method achieve further gains of
0.3–1.8 BLEU.

2 System architecture

There are a wide range of factors that determine
whether a sentence pair is good for training MT
systems. Some of the more important properties
of a good training corpus include:

• High parallelism in the sentence pairs, which
affects translation adequacy.

• High fluency and grammaticality, especially
for sentences in the output language, which
affect translation fluency.

• High vocabulary coverage, especially in the
input language, which helps make the transla-
tion system more robust.

• High variety of sentence lengths, which
should also improve robustness.

In previous years, we explicitly tried to maxi-
mize all four of these properties, but this year we
focused only on the first two in the scoring pre-
sented in section 2.3 below.

2.1 Iterative statistical sentence alignment
Our iterative statistical sentence alignment method
as detailed in Joanis et al. (2020) uses ssal, a
reimplementation and extension of Moore (2002)
which is part of the Portage statistical machine
translation toolkit (Larkin et al., 2010).
First, we train an IBM-HMM model (Och and

Ney, 2003) on the clean parallel training data and
the subsampled noisy corpora (see Table 1 for
statistics) and use it to align paragraphs in the given
document pairs, as Moore (2002) does. The sub-
sampled noisy corpora are those obtained by apply-
ing our filtering baseline as described in sections
2.2 and 2.3 (and denoted as “nrc.baseline” in table
2). Then, we segment the paragraphs in both lan-
guages into sentences using the Portage sentence
splitter. Finally, we align sentences within aligned
paragraphs using the IBMmodel again. In this pro-
cess, both the data used in training the IBM-HMM
model and the noisy document pairs for alignment
are punctuation tokenized using the Portage tok-
enizer.
In past work on sentence alignment (Joanis et al.

(2020) and other unpublished experiments), we
have found that first aligning paragraphs and then
aligning sentences within aligned paragraphs out-
performs approaches that align sentences without
paying attention to paragraph boundaries.

2.2 Initial filtering
The pre-filtering steps of our submissions are
mostly the same as those in Bernier-Colborne and
Lo (2019). We remove:

1. duplicates after masking email, web ad-
dresses and numbers,

2. sentence pairs with a majority of number mis-
matches,

3. sentence pairs with either side in the wrong
language according to the pyCLD2 language
detector1,

4. sentence pairs where over half of the source
sentence is non-alphabetical or target lan-
guage characters, and

5. sentence pairs where over half of the target
sentence is non-alphabetical characters.

An additional pre-filtering rule included in this
year’s submissions is the removal of pairs where
over 50% of the target English sentence is directly

1https://github.com/aboSamoor/pycld2
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Lang(s) Training data sources #sentence pairs #source tokens #target tokens
clean parallel
km–en JW300, Bible,

GNOME/KDE/Ubuntu,
Tatoeba, Global Voices

290k 6M 4M

ps–en Bible, GNOME/KDE/Ubuntu,
Wikimedia, TED Talks, Tatoeba

123k 792k 662k

filtered noisy
km–en ParaCrawl 288k 2M 5M
ps–en ParaCrawl 393k 6M 5M

Table 1: Data used to train the IBM-HMM model used in the iterative statistical sentence alignment.

copying from the source Khmer or Pashto sen-
tence.

2.3 Sentence pair scoring

The core of our sentence pair scoring component is
the semantic MT quality estimation metric, YiSi-
2. YiSi (Lo, 2019) is a unified semantic MT
quality evaluation and estimation metric for lan-
guages with different levels of available resources.
YiSi-1 measures the similarity between a machine
translation and human references by aggregating
weighted distributional (lexical) semantic similari-
ties, and optionally incorporating shallow seman-
tic structures. YiSi-2 is the bilingual, reference-
less version, which uses bilingual word embed-
dings to evaluate cross-lingual lexical semantic
similarity between the input and MT output or, in
this task, between the source and target sentences.
YiSi-2 relies on a crosslingal language represen-

tation to evaluate the crosslingual lexical semantic
similarity. Previously, it used pre-trained multilin-
gual BERT (Devlin et al., 2019) for this purpose.
In this work, we instead experiment with XLM-
RoBERTa (Conneau et al., 2020) because (1) at
the time this work was done, it was the only pre-
trained multilingual language encoder that covers
both Khmer, Pashto and English; and (2) it shows
better performance with lower-resource languages
than BERT.
As suggested by Devlin et al. (2019); Peters

et al. (2018); Zhang et al. (2020), we experiment
with using contextual embeddings extracted from
different layers of the multilingual language en-
coder to find out the layer that best represents the
semantic space of the language.
YiSi is semantic oriented. In the past, we no-

ticed that YiSi-based scoring functions failed to
filter out sentence pairs with disfluent target text.

Following Zhao et al. (2020), we experiment with
improving the sentence pair scoring function by
linearly combining YiSi score with the language
model (LM) scores of the target text obtained
from themultilingual languagemodel used inYiSi.
However, instead of using an additional pretrained
language model—GPT-2 (Radford et al., 2019)—
as in Zhao et al. (2020), we use the left-to-right
LM scores obtained from XLM-RoBERTa while
computing the crosslingual lexical semantic simi-
larity. The advantages of using the same pretrained
model for computing the crosslingual lexical se-
mantic similarity and the language model scores
are 1) it costs less in both memory and computa-
tion; 2) it is more portable to languages other than
English. We combined the LM scores in the prob-
ability domain linearly with the semantic similar-
ity scores with a weight of 0.1 assigned to the LM
scores.
In the WMT19 metrics shared task (Ma et al.,

2019), we saw a very significant performance
degradation between YiSi-1 and YiSi-2. This sug-
gests that current multilingual language models
construct a shared multilingual space in an unsu-
pervised manner without any direct bilingual sig-
nal, in which representations of context in the same
language are likely to cluster together in part of
the subspace and there is a language segregation in
the shared multilingual space. Inspired by Artetxe
et al. (2016) and Zhao et al. (2020), we sample 5k
clean sentence pairs and use the token pairs aligned
by maximum alignment of their semantic similar-
ity to train a cross-lingual linear projection that
would transform the source embeddings into the
target embeddings subspace.
Lo and Larkin (2020) provide a detailed cor-

relation analysis of YiSi-2 with all the improve-
ments mentioned above and human judgment on
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(a) km–en FAIRseq (b) km–en MBART

(c) ps–en FAIRseq (d) ps–en MBART

Figure 1: BLEU scores on the Khmer–English dev set for (a) FAIRseq and (b) MBART and the Pashto–English
dev set for (c) FAIRseq and (d) MBART trained on 5M-word parallel subsample extracted according to the scoring
functions as shown: on the x-axis, layer = −n means YiSi-2 based on the embeddings of the nth layer, counting
from the last, of XLM-RoBERTabase (blue circles) or XLM-RoBERTalarge (red triangles).

MT reference-less evaluation.

3 Experiments and results

We used the software provided by the task orga-
nizers to extract the 5M-word samples from the
original test corpora according to the scores gener-
ated by each alignment and/or filtering system. We
then trained a FAIRseqMT system or fine-tuned an
MBART pretrained NMT using the extracted sub-
samples. The MT systems were then evaluated on
the official dev set (“dev-test”).
We exhaustively experimented with the last

few layers of both XLM-RoBERTabase and XLM-
RoBERTalarge in order to find out the model and
layer best representing crosslingual semantic simi-
larity. Figure 1 shows the plots of the change in

BLEU scores of each MT system using the em-
beddings extracted from the nth layer, counting
from the last, of the multilingual LM for evalu-
ating crosslingual lexical semantic similarity. In
general, we see a trend of rising performance as
we roll back from the last layer. The perfor-
mance peaks at some point and starts to fall when
we roll back too far from the end. For XLM-
RoBERTabase, the peak performance of the MT
systems is achieved by the 3rd or 4th last layer (out
of 12 layers). For XLM-RoBERTalarge, the peak
performance of the MT systems is achieved by the
8th last layer (out of 24 layers). The peak perfor-
mance of MT systems trained on sentences filtered
byXLM-RoBERTalarge basedYiSi-2 is better than
that by XLM-RoBERTabase based YiSi-2.
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km–en ps–en
system alias FAIRseq MBART FAIRseq MBART
filtering only
LASER baseline 7.10 10.13 9.77 11.03
+ filter rules 7.55 10.44 9.87 11.91

YiSi-2-xlmr_large (layer -8) + filter rules nrc.baseline 8.43 11.29 9.96 12.54
+ LM score 8.53 11.31 9.61 12.82
+ LM score + CLP5k nrc.filtering 8.54 11.58 9.93 12.80

re-aligning and filtering
iterative alignment + nrc.filtering nrc.alignment 8.82 11.17 11.73 13.21

Table 2: BLEU scores of selected systems. The two final submitted systems are labelled nrc.filtering and
nrc.alignment.

Table 2 shows the results of the experiments
described in section 2.3. First, we show an im-
proved version of the organizers’ baseline by sim-
ply adding our initial filtering rules. This shows
that our initial filtering rules are able to catch bad
parallel sentences which are hard to filter by an
embedding-based filtering system.
Next, we see that using YiSi-2 with XLM-

RoBERTalarge’s 8th last layer as parallelism scor-
ing function outperforms the LASER baseline by
0.1–0.9 BLEU in different translation directions
and MT architectures. This is our “nrc.baseline”
system, and the baseline used for filtering the noisy
corpus in training the IBM-HMMalignmentmodel
for the “nrc.alignment” system. Adding the LM
score to the scoring function shows small improve-
ments. Learning the cross-lingual linear projec-
tion matrix to transform the source embeddings in
the target language subspace shows more improve-
ments overall. This is our “nrc.filtering” submis-
sion to the parallel corpus filtering task.
At last, we show that using our iterative statisti-

cal alignment method to redo the alignment of sen-
tences from the given document pairs improves the
translation quality of the resulting MT systems sig-
nificantly. This is our “nrc.alignment” submission
to the parallel corpus filtering task.

4 Conclusion and Future Work

In this paper, we presented the NRC’s two sub-
missions to the WMT20 Parallel Corpus Filtering
and Alignment for Low-Resource Conditions task.
Our experiments show that YiSi-2 is a scoring func-
tion of parallelism that is very competitive, and
that a statistical sentence alignment method is still
able to provide better alignment results than neural
ones in low resource situations. Further analysis

is required to understand the characteristics of the
sentence pairs aligned by the baseline vecalign and
our iterative statistical sentence alignment and how
the latter achieves better translation quality for the
trained MT systems.
It is worth highlighting that in this task, as

well as in our Inuktitut–English corpus alignment
work (Joanis et al., 2020), a well-tuned statistical
sentence-alignment system outperformed a state-
of-the-art neural one. We hypothesise that this is a
low-resource effect, but further work is still needed
to explore the best low-resource corpus alignment
methods. In particular, we intend to integrate YiSi-
2 into our sentence aligner to test whether it’s our
iterative alignment methodology that makes the
difference or the fact that the underlying scoring
function is statistical (we use IBM-HMM models
for sentence pair scoring in our aligner). It’s pos-
sible that the statistical approach might continue
to win here, because in the low-resource context
there might not be enough training data to tune the
orders of magnitude more parameters of the neu-
ral models; a counter-argument is that YiSi-2 did
better on the scoring task than statistical scoring
functions. Our future work will explore the trade-
offs between these two approaches, and consider
hybrid methods.
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Abstract

This paper describes the Alibaba Machine
Translation Group submissions to the WMT
2020 Shared Task on Parallel Corpus Filter-
ing and Alignment. In the filtering task, three
main methods are applied to evaluate the qual-
ity of the parallel corpus, i.e. a) Dual Bilin-
gual GPT-2 model, b) Dual Conditional Cross-
Entropy Model and c) IBM word alignment
model. The scores of these models are com-
bined by using a positive-unlabeled (PU) learn-
ing model and a brute-force search to ob-
tain additional gains. Besides, a few sim-
ple but efficient rules are adopted to evalu-
ate the quality and the diversity of the corpus.
In the alignment-filtering task, the extraction
pipeline of bilingual sentence pairs includes
the following steps: bilingual lexicon mining,
language identification, sentence segmentation
and sentence alignment. The final result shows
that, in both filtering and alignment tasks, our
system significantly outperforms the LASER-
based system.

1 Introduction

The parallel corpus is an essential resource for
building a high quality machine translation(MT)
system. It has been shown that, the higher the cor-
pus quality, the better the performance of a MT
system(Koehn and Knowles, 2017; Khayrallah and
Koehn, 2018). Many successful machine transla-
tion systems are built on the corpus crawled from
the web. In practice, this kind of parallel corpus
may be very noisy. The task of Parallel Corpus Fil-
tering is aimed at tackling the problem of cleaning
noisy parallel corpora.

We form the bilingual sentences quality in the
following aspects. Firstly, a high-quality parallel
sentence pair(also called bitext) should have the
property that its target sentence precisely translates
the source sentence, and vice versa. In this task, we
attempt to quantify the translation accuracy (also

Figure 1: Framework of parallel corpus filtering

called bilingual score) of bilingual sentence pairs.
Secondly, the monolingual quality of the target and
source sentences of a parallel corpus should also be
considered. In our system, we evaluate the mono-
lingual quality (also called monolingual score) of
a target sentence due to its importance for the MT
procedure. Finally, the bilingual and monolingual
scores are combined to evaluate bilingual sentence
pairs and filter out the ones with low quality.

The paper is structured as follows. Section 2 de-
scribes our methods which are used in the parallel
corpus filtering. In Section 3, we briefly outline
the pipeline of parallel sentence extraction. Sec-
tion 4 specifies the experiments and results as well
as the dataset for building model-based methods.
Conclusions are drawn in Section 5.

2 Parallel Corpus Filtering Methods

Figure 1 shows the framework of parallel corpus
filtering. The raw parallel corpus is firstly filtered
by heuristic rules so that the very noisy sentence
pairs will be removed. Then, the bilingual & mono-
lingual models are built to score all the remaining
sentence pairs. By using an ensemble model, the
partial scores of each sentence pair are combined
to a single quality score.

2.1 Rule-based Filtering

A series of heuristic rules(Lu et al., 2018) are ap-
plied to filter low quality sentence pairs. They are
simple, (almost) language independent but efficient,
which are described below.
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Monolingual Rules
• The length of the sentence which is too short

(≤ 2 tokens) or too long (> 200 tokens) will
be dropped. In our system, sentences(English,
Khmer and Pashto) are tokenized by Senten-
cePiece1.

• The ratio of the valid tokens count to the
length of the sentence. Here, valid tokens
are the ones which contain the letters in the
corresponding language. For example, a valid
token in English should contain English let-
ters. In our system, the sentence is filtered out
if its valid-tokens ratio is less than 0.2.

• Language filtering. For the Pashto-English
parallel corpus, the languages of source and
target sentences should be Pashto and English.
We detect the language of a sentence by using
a language detection tool we developed2. A
sentence pair is dropped when its source lan-
guage and target language are not Pashto and
English, respectively.

Bilingual Rules
• The length ratio of a source sentence to a tar-

get sentence. The sentence length is calcu-
lated by the number of sentencepiece tokens.
In our system, the ratio is set between 0.2 and
5.0 for both language pairs.

• The edit distance between the source token
sequence and the target token sequence. A
small edit distance indicates that the source
and target sentences are very similar, which
harms the performance of the NMT system a
lot (Khayrallah and Koehn, 2018).

• The consistency of special tokens (Taghipour
et al., 2010). For example, the high-quality
sentence pairs should contain the same email
address in both source and target sentences (if
exists). In this task, special tokens are email
addresses, URLs, and big Arabic numbers.

2.2 Dual Bilingual GPT-2 Model
Inspired by the Cross-lingual Language Model Pre-
training work of (Lample and Conneau, 2019),
we propose a Translation Language Model(called
Bilingual GPT-2 model) based on the GPT-2

1https://github.com/google/sentencepiece
2This tool is similar to Google’s CLD2:

https://github.com/CLD2Owners/cld2

Figure 2: Bilingual GPT-2 model structure

model(Radford et al., 2019). As illustrated in Fig-
ure 2, the Bilingual GPT-2 model is trained with
both monolingual and parallel sentences. For par-
allel sentence pairs, we concatenate the source and
target sides to obtain a long sentence and then feed
it to the model. For monolingual sentences, we
convert them to fake sentences pairs by assign-
ing the corresponding side sentence with a unique
token. For example, when an English sentence
”Hello word.” is used in the English-Khmer bilin-
gual GPT-2 model training, a fake sentence pair,
(“Hello word”, “<KM>”), will be used. Here, the
English sentence is the source and “<KM>” is the
target. While training, a large number of fake bilin-
gual corpora are firstly used to pre-train the model.
Then, the real clean parallel sentence pairs are used
to fine-tune the model. In this task, we trained two
Bilingual GPT-2 models for each language pair,
i.e., source-to-target and target-to-source models.
The two translation quality scores from the Dual
Bilingual GPT-2 model are given precisely by:

score1(x, y) =
1

2
(
∑

t∈|y|
log ps2t(yt)

+
∑

t∈|x|
log pt2s(xt)) (1)

score2(x, y) =
1

2
(
∑

t∈|y|
log ps2t(yt)− log pt2s(yt)

+
∑

t∈|x|
log pt2s(xt)− log ps2t(xt))

(2)

In Equation (1) and (2), x and y are the source
and target sentences. logps2t(yt) represents the
cross-entropy loss of the target side token yt,
which is obtained by the source-to-target model.
log pt2s(xt) represents the cross-entropy loss of
the source side token xt, which is obtained from
the target-to-source model.

We don’t use the BERT model here, as it is hard
for computing the cross-entropy loss efficiently.
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Figure 3: Optimized cross entropy model (source-to-
target)

2.3 Dual Conditional Cross-Entropy Model

The dual conditional cross-entropy model(Junczys-
Dowmunt, 2018) has been proven effective in par-
allel corpus filtering, which uses a combination of
forward and backward models to compute a force-
decoding score. In our system, the model is opti-
mized to better evaluate the quality of the parallel
sentences in low-resource languages.

Specifically, Figure 3 shows the structure of our
model. Each token in a target side sentence is
predicted by its left and right context and the source
text. Hence, the cross-entropy score of a sentence
pair is given below:

HM (y|x) = 1

|y|
∑

t∈|y|
log pM (yt|x, y<t, y>t)

The final bilingual quality score combines the
source to target and target to source cross-entropy
scores as below:

score(x, y) =
1

2
(HFwd(y|x) +HBck(x|y))
+ |HFwd(y|x) +HBck(x|y)|

As shown in Figure 3, the source sentence and
target context are encoded by two 12-layer trans-
former models with hidden size 768. In fact, the
target side model can be regarded as a bidirectional
GPT-2 model. In our system, the source and tar-
get side transformer models are pre-trained by us-
ing large amount of monolingual data. Then, the
models are fine-tuned by clean bilingual sentences
pairs.

2.4 IBM Word Alignment Model

The word alignment model can be used for evalu-
ating the translation quality of bilingual sentence
pairs (Khadivi and Ney, 2005; Taghipour et al.,
2010; Ambati, 2011). Inspired by the work of

(Khadivi and Ney, 2005), we simplify the origi-
nal algorithm, and the translation score of sentence
pairs is given below:

score(s, t) =
1

|s|
∑

si,tj∈as2t
log p(tj |si)

+
1

|t|
∑

si,tj∈at2s
log p(si|tj) (3)

In Equation (3), s and t represent the source and
target sentences respectively, p(w1|w2) indicates
the word translation probability, and as2t indicates
the source words to target words alignment.

In this task, by using the fast align toolkit (Dyer
et al., 2013), the word alignment model is trained
on a clean parallel corpus as described in Section
4.1 to get the forward and reverse word transla-
tion probability tables. This model is also called
alignment scoring model.

2.5 GPT-2 Language Model
In this task, GPT-2 language model is applied to
compute the monolingual scores of source and tar-
get sentences. We train GPT-2 models for each
language by using the HuggingFace Transformers
toolkit (Wolf et al., 2019) with the monolingual
data provided by the task organizers. The training
data is cleaned by the rules described in the Section
2.1. The configuration of the GPT-2 model is also
the same with the GPT2-large model described in
the work of (Radford et al., 2019).

2.6 Ensemble
Each sentence pair in the noisy parallel corpus is
scored by each of the models described above. As
a result, each sentence pair would obtain a few
partial scores. We need a single score based on the
partial scores to rank the sentence pairs.

At first, we turn the scores from each model
to the values between 0 and 1. Specifically, the
scores are normalized with the method described
in (Junczys-Dowmunt, 2018), which is based on
the entropy information.

Then, a single score f(x, y) is produced as the
product of partial scores fi(x, y). Since the dif-
ferent importance of the partial scores, the lower
boundary value of the scores is represented as θ,
where 0 ≤ θ ≤ 1, which results in a new normal-
ization range [θ, 1]. The more important the model
is, the closer to 0 the θ is. It means that the scores
from this model could distribute from 0 to 1, which
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would affect a lot on the final score. On the con-
trary, when we set θ close to 1, the model has minor
impact on the final score whatever its distribution
is. Hence, the single score is given by:

f(x, y) =
∏

i

fi(x, y), fi(x, y) ∈ [θi, 1] (4)

We applied the brute-force search to find the best θs
for the models. Compared to the pure production of
the partial scores, our method has improved 0.5% -
1.0% BLEU score(Papineni et al., 2002).

In addition, the ensemble could also be treated
as a Positive-Unlabeled classification task (Chaud-
hary et al., 2019). We use the officially released
high quality data and the sentence pairs which are
ranked top by our models mentioned above as the
positive samples. Meanwhile, the sentence pairs
from the noisy parallel corpus are treated as the
unlabeled samples. As a result, the PU classifica-
tion based on the random forest models has con-
tributed 0.1% - 0.2% improvement on the develop-
ment data.

In our final submissions, the brute-force search
method and PU-classification are used in Khmer-
English and Pashto-English filtering tasks respec-
tively.

3 Pipeline of Parallel Corpus Extraction

Bilingual Lexicon Extraction. In the first step,
by using the word alignment model, parallel token
pairs are extracted from the clean parallel corpus.
Specifically, after tokenization, the parallel corpus
is fed to the fast align toolkit to obtain the mutual
translation probabilities dictionary. We then ex-
tract the token pairs with forward and backward
translation probabilities higher than 0. The bilin-
gual lexicon (i.e., the collection of parallel token
pairs) will iteratively be updated after more bitexts
are mined, since the lexicon is the cornerstone of
bitexts mined from aligned documents which is
described below.

Language Identification. The second step is to
identify the language of each document by using a
language detection tool we developed. In this way,
a document pair will be discarded if its detection
results do not match the expected languages.

Sentence Segmentation. This step is to split sen-
tences in documents with rules or models. A few
rules based on end-of-sentence punctuations are
used to split sentences of language Pashto and

Language Sentences English Words
Khmer-English 270K 4.2M
Pashto-English 106k 1.9M

Table 1: Clean bitexts used in bilingual models training

Khmer. For English sentence segmentation, a seg-
mentation model is built via nltk toolkit3.

Sentence Alignment. In this step, a dynamic pro-
gramming framework based on bilingual lexicon
(Ma, 2006) is built to mine parallel sentence pairs.

Corpus Filtering. Finally, the extracted bitexts are
cleaned by using the methods described in section
2. And as mentioned above, we mix the new mined
bitexts with the provided bitexts from WMT2020
to iteratively run the fast align model to update
bilingual lexicon.

4 Experiments and Results

In this section, we specify the experimental settings
and results in the corpus filtering and alignment
task.

4.1 Corpora and Settings

The selection data pool4 (which we called noisy
dataset) is provided by WMT20 Corpus Filtering
and Alignment Task. It contains 1.02 million sen-
tences pairs of Pashto-English corpus and 4.17
million sentences pairs of Khmer-English corpus.
These parallel corpora are very noisy. The task’s
participants are asked to sub-select sentence pairs
that amount to 5 million English words for each
of the noisy parallel sets. The quality of the re-
sulting subsets is determined by the BLEU scores
of a neural machine translation system5 trained on
selected data. In our NMT experiments, we use
the NMT configuration that is provided by the task
organizers6 as well as the development and test
sets.

In addition, organisers provide the permissible
third-party sources of parallel corpora, which we
called “official parallel data”. Additional monolin-
gual corpora are also provided for English, Khmer
and Pashto languages. For sentence pair alignment
task, the organisers also provide the document pairs

3Natural Language Toolkit: https://github.com/nltk/nltk
4http://www.statmt.org/wmt20/parallel-corpus-

filtering.html
5https://github.com/pytorch/fairseq.git
6http://data.statmt.org/wmt20/filtering-task/dev-tools.tgz
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Method
km-en ps-en

pairs counts
(×104)

normal
train

finetune
pairs counts

(×104)
normal train finetune

LASER(Baseline) 24.1 7.35 10.4 22.5 9.66 10.76
LASER +Rules 24.7 7.56 10.89 22.9 9.88 11.13

IBM word align +Rules 25.7 8.25 11.04 35.6 10.37 12.49
Dual X-Ent +Rules 34.6 8.12 10.71 43.4 9.9 12.14

Dual bi-GPT-21 +Rules 33.3 8.3 10.86 30.2 9.95 11.62
Dual bi-GPT-22 +Rules 38.1 8.5 10.95 34.9 10.04 12.17

Ensemble + Rules 25.8 8.61 11.34 37.5 10.84 12.75
Alignment

+ Ensemble + Rules
- - - 21.2 11.36 13.29

Table 2: Main results for corpus filtering and alignment task

in which the participants can extract bilingual sen-
tence pairs.

In Section 2, we introduced 3 sub-models for
translation quality scoring, i.e. Dual Bilingual GPT-
2 Model, Dual Conditional Cross-Entropy and IBM
Word Alignment Model. These models can be
trained with the monolingual and clean parallel
corpus. In particular, the clean parallel data is more
important in training. Unfortunately, both Khmer-
English and Pashto-English are low-resource lan-
guage pairs and lack parallel corpus. Therefore,
in order to expand the clean parallel dataset, the
high quality sentence pairs are selected/extracted
from the noisy dataset or the parallel document
pairs by using an iterative process in our filtering
system. Specifically, the corpus filtering models
are initially trained by using the official parallel
data. Then, these models are used to estimate the
quality of the sentence pairs in the noisy dataset
and parallel documents. Finally, by applying some
rules and strict threshold value, the high quality
sentence pairs are selected and combined with offi-
cial parallel data to train the new version of filtering
models. The process described above was repeated
3 times and achieved larger clean parallel corpora
as detailed in Table 1.

For text preprocessing, we built two joint Sen-
tencePiece models for Khmer-English and Pashto-
English respectively with the 60k vocabulary size.
Then, monolingual and bilingual texts are tok-
enized by the corresponding SentencePiece mod-
els.

4.2 Experimental Results

Our main results are shown in Table 2. All NMT
experiments were done in the same environment

with 2 GPUs for normal training (i.e., NMT train-
ing from scratch) and 1 GPU for MBART-based
fine-tuning7. The LASER scores provided by the
organisers were used as baseline scores, which
achieved reasonable results in both normal train-
ing and MBART-based fine-tuning. Our rules pro-
posed above were firstly used to filter very noisy
sentence pairs and achieved a slightly better perfor-
mance. Then, the 3 main bitexts scoring models
were combined with rules respectively to test their
effectiveness in experiments. We found that, the
IBM word alignment model was reliable in most
cases and Dual Bilingual GPT-2 model slightly
outperformed the Dual Conditional Cross-Entropy
model. Finally, the ensemble model obtained the
highest BLEU scores in the filtering task.

In the task of sentence pairs alignment, we only
submitted the results of Pashto-English. While
extracting sentence pairs, 13,976 bilingual word
pairs were firstly obtained from the clean parallel
corpus. As a result, we mined 723,414 sentence
pairs from 45,307 document pairs and achieved an
improvement of 0.5 BLEU score.

5 Conclusions

In this paper, we present our corpus filtering sys-
tem for the WMT 2020 Corpus Filtering Task. In
our system, Dual Bilingual GPT-2 model, Dual
Conditional Cross-Entropy model and IBM word
alignment model are combined to filter the noisy
parallel corpus. Besides, a parallel sentence pairs
extraction system is built to re-align the bilingual
sentences. The experiments show that, compared

7The MBART pre-trained models were pro-
vided by the organizers and described here,
http://www.statmt.org/wmt20/parallel-corpus-filtering.html.
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to the baseline system, our filtering and extraction
system achieve much better results.
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Abstract

In this paper, we describe our submissions to
the WMT20 shared task on parallel corpus fil-
tering and alignment for low-resource condi-
tions. The task requires the participants to
align potential parallel sentence pairs out of
the given document pairs, and score them so
that low-quality pairs can be filtered. Our sys-
tem, Volctrans, is made of two modules, i.e., a
mining module and a scoring module. Based
on the word alignment model, the mining mod-
ule adopts an iterative mining strategy to ex-
tract latent parallel sentences. In the scoring
module, an XLM-based scorer provides scores,
followed by reranking mechanisms and ensem-
ble. Our submissions outperform the baseline
by 3.x/2.x and 2.x/2.x for km-en and ps-en on
From Scratch/Fine-Tune conditions.

1 Introduction

With the rapid development of machine translation,
especially Neural Machine Translation (NMT)
(Vaswani et al., 2017; Ott et al., 2018; Zhu et al.,
2020), parallel corpus in high quality and large
quantity is in urgent demand. These parallel cor-
pora can be used to train and build robust machine
translation models. However, for some language
pairs on low-resource conditions, few parallel re-
sources are available. Since it is much easier to
obtain quantities of monolingual data, it may help
if we can extract parallel sentences from monolin-
gual data through alignment and filtering.

The WMT19 shared task on parallel corpus fil-
tering for low-resource conditions (Koehn et al.,
2019) provides noisy parallel corpora in Sinhala-
English and Nepali-Englis crawled from the web.
Participants are asked to score sentence pairs so
that low-quality sentences are filtered. In this year,
the WMT20 shared task on parallel Corpus filter-
ing and alignment for low-resource conditions is
very similar, except that the language pairs become

Khmer-English and Pashto-English, and the pro-
vided raw data are documents in pair, which require
sentence-level alignment. Besides, no data in simi-
lar languages are provided for this year.

The participants are required to align sentences
within documents in different languages and pro-
vide a score for each sentence pair. To evaluate
the quality of the extracted sentence pairs, they are
subsampled to 5 million English words and used to
train a neural machine translation model. Finally,
the BLEU score of the machine translation system
is used to reflect the quality of the sentence pairs.

In this paper, we propose the Volctrans filtering
system, which consists of a mining module and
a scoring module. First, the mining module ex-
tracts and aligns potential parallel sentence pairs
within documents in different languages. In partic-
ular, we introduce an iterative mining strategy to
boost mining performance. We keep adding newly
aligned high-quality parallel sentences to train the
word alignment model, which is essential for the
mining module. Second, the scoring module is
based on XLM (Conneau and Lample, 2019), and
responsible for providing scores for each sentence
pair. Several reranking mechanisms are also used
in this module. We conduct experiments to tune the
hyper-parameters for the best filtering performance,
and four systems are ensembled to achieve the final
results.

2 System Architecture

2.1 Data Introduction
In detail, as is shown in Table 1, the WMT20 shared
task provides:

• Document pairs, including 391, 250 Khmer-
English and 45, 312 Pashto-English document
pairs;

• Sentence-aligned corpora extracted from the
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above document pairs, using Hunalign (DBL,
2008) and LASER (Artetxe and Schwenk,
2019), including 4, 169, 574 Khmer-English
and 1, 022, 883 Pashto-English sentence
pairs;

• Parallel data which can be used to build filter-
ing and alignment system, including 290, 051
Khmer-English and 123, 198 Pashto-English
parallel sentences;

• Monolingual data, including approximately
1.9 billion English, 14.0 million Khmer, and
6.6 million Pashto sentences.

Table 1: Statistics of Provided Data Scale

en-km en-ps
Document Pairs 391K 45K

Extracted Sentence Pairs 4.2M 1.0M
Parallel Sentences 290K 123K

2.2 Mining Module
Besides the given aligned sentences, we believe
that there are still more potential parallel sentences
that can be mined. Thus we choose to extract our
own set of sentence pairs from the provided docu-
ment pairs, and design a mining module aiming to
gather as many parallel sentence candidates as pos-
sible. We then elaborate on our mining procedure
and mining module, shown in Figure 1, in detail.

Word Alignment
Model

Mining 
Module

Scoring
Module

Document
Pairs

Initial 
Parallel Corpus

High
Quality?

LASER
Candidates

True

merge

Figure 1: Mining Procedure

2.2.1 Word Alignment
We trained the word alignment model on the pro-
vided clean parallel corpus by using the fast-align
toolkit (Dyer et al., 2013), and get the forward
and reverse word translation probability tables. It’s
worth mentioning that both of Pashto and Khmer
corpus are tokenized before word alignment model
training for accuracy consideration. We separate
Pashto words by moses tokenizer1. For Khmer, we
use the character (\u200B in Unicode) as separator
when it’s available and otherwise use a dictionary-
based tokenizer by maximizing the word sequence
probability.

2.2.2 Mining Parallel Sentences
This step is operated by our mining module. With
the bilingual word translation probability tables,
the mining module evaluates the translation quality
of bilingual sentence pairs by YiSi-2 (Lo, 2019),
which involves both lexical weight and lexical sim-
ilarity. The Document pairs are first segmented on
each language side using Polyglot 2. This initial
segmentation is represented as:

e = e1e2 · · · ea = ea1 (1)

f = f1f2 · · · f b = f
b
1 (2)

where ek (fk) is a segment of consecutive words
of document e (f ). Then we compute the sentence
similarity (translation quality) by iteration from the
initial segment (e1, f1). If the similarity reaches the
preset threshold for (ei, f j), we pick the segment
pair as parallel sentence candidate, and continue
the computation from (ei+1, f j+1).

We notice that the inconsistency of segmentation
in the document pairs can lead to the results: a
sentence in one language contains information only
part of a sentence in the other language, or two
sentences (in different languages) both contain part
of their information in common. These resulting
sentence pairs may have low similarity scores.

In order to alleviate this problem, we also in-
corporate a parallel segmentation method in our
mining module. We follow the basic idea proposed
in (Nevado et al., 2003) where the parallel segmen-
tation finding problem is treated as an optimization
problem and a dynamic programming scheme is

1https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

2https://github.com/aboSamoor/polyglot
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used to search for the best segmentation. We then
briefly introduce our method. 3

After obtaining the monolingual initial segmenta-
tion (ea1, f

b
1), a parallel segmentation is represented

as:

s ≡ ([ek11 , f
j1
1 ], [ek2k1+1, f

j2
j1+1],

· · · , [ek|s|k|s|−1+1, f
j|s|
j|s|−1+1])

(3)

where |s| is the number of segments for the par-
allel segmentation s and ei2i1 (f

i2
i1) are consecutive

segments ei1ei1+1 · · · ei2 (f i1f i1+1 · · · f i2). In this
setting, all initial segments will be included in the
parallel segmentation, and the order of the initial
segments cannot be inverse. Therefore, the align-
ment is monotone.

Then we search for the best parallel segmenta-
tion using the objective function:

max
S∈s

C ·
|s|∏

n=1

P (f
jn
jn−1+1|eknkn−1+1) (4)

where P (f
jn
jn−1+1|eknkn−1+1) is the translation qual-

ity of the pair (f
jn
jn−1+1, e

kn
kn−1+1).

Next, we use a dynamic programming algorithm
to compute the best segmentation S where we have
a restriction that no more than 3 initial segments
can be joined.

Finally, this set of parallel segments are com-
bined with the set of the extracted initial segment
pairs through global deduplication to serve as the
output of our mining module.

It is worth noting that the sequence can be very
long in the process of translation quality compu-
tation because several segments can be joined to-
gether. Therefore, while computing the similarity
of a segment pair, our method based on word trans-
lation probability tables can be more time-efficient
than LASER, as LASER is based on sentence em-
beddings and can be very slow when its LSTM
encoder is fed with long sequence. Thus we do
not consider using LASER to compute translation
quality in our mining procedure.

2.2.3 Iterative Mining Strategy
The quantity and quality of the mined data are ba-
sically dependent on the word alignment model.
Besides, more high-quality parallel corpus is used,
the word alignment model would be more accu-
rate and robust. Therefore, we propose an iterative

3More details can be found in (Nevado et al., 2003)

mining strategy. For the first time, all the provided
parallel data by the task are used to train the word
alignment model. But we keep mining data for sev-
eral times. We iteratively add new high-quality sen-
tence pairs to the parallel corpus and train the word
alignment model again to improve the word trans-
lation probability tables, thus boosting the mining
cycle.

2.3 Scoring Module

The scoring module consists of three parts. First,
we make use of both the parallel and monolingual
data to train an XLM-based classifier to score each
sentence pair. Secondly, different reranking mech-
anisms are used to adjust the scores. Finally, we
ensemble four different models to improve the per-
formance of our systems.

2.3.1 XLM-based Scorer
Recently, pre-trained transformer-based models
play an important role in a variety of NLP tasks,
such as question answering, relation extraction, etc..
Pre-trained models are often trained from scratch
with self-supervised objective, and then fine-tuned
to adapt to the downstream tasks. In our system,
we choose the XLM (Conneau and Lample, 2019)
as our main model. The reason are as follows: a)
Similar to BERT (Devlin et al., 2019; Yang et al.,
2019), XLM has Masked Language Model (MLM)
objective, which enables us to make the most use
of the provided monolingual corpora; b) XLM also
has Translation Language Model (TLM) objective.
Taking two parallel sentences as input, it predicts
the randomly masked tokens. In this way, cross-
lingual features can be captured; c) With a large
amount of training corpus in different languages,
XLM can provide powerful cross-lingual represen-
tation for downstream tasks, which is very suitable
for parallel corpus filtering situations.

We follow the instructions 4 to prepare the train-
ing data and train the XLM model. In detail, we
use Moses tokenizer to tokenize the text 5, and
fastbpe 6 to learn and apply Byte-Pair Encoding.
We use 50K BPE codes on the concatenation of
all the training data. After applying BPE codes to
the training data, we obtain a large vocabulary con-

4https://github.com/facebookresearch/
XLM

5We do not use the character-/dictionary- based method
introduced in Section 2.2.1 to tokenize Khmer here. Perfor-
mance may be improved with that method, but we have run
out of time, unfortunately.

6https://github.com/glample/fastBPE
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taining around 100K tokens. Therefore, we only
keep the top frequent 100, 000 tokens to form the
vocabulary and train the XLM.

We use monolingual data in MLM objective and
parallel data in TLM objective. In detail, the mono-
lingual data we use are as follows:

• Khmer: all the 14M provided sentences.

• Pashto: all the 6.6M provided sentences.

• English: because the number of english mono-
lingual sentences are so large, we subsample
25M sentences to keep a balance.

All the available parallel sentence pairs (29K
en-km and 12K en-ps) are used in TLM objective.
For each objective, we hold out 5K sentences or
sentence pairs for validation and 5K for the test.

We pre-train the XLM using two different set-
tings on 8 Tesla-V100 GPU: a) Standard: The em-
bedding size is 1024, with 12 layers and 64 batch
size. b) Small: The embedding size is 512, with
6 layers and 32 batch size. The other values of
hyperparameters are all set to the default values.
The two pre-trained XLM model is then fine-tuned
in downstream task and further ensembled.

To score sentence pairs according to their paral-
lelism, classification models are usually used (Xu
and Koehn, 2017; Bernier-Colborne and Lo, 2019).
In the training phrase, it is formulated as a binary
classification problem, whether the sentence pair
is semantically similar to each other or not. In
the inference phrase, the probability of the positive
class is considered as the score of the sentence pair.
Therefore, we use the provided parallel sentence
pairs as the positive instances, and construct nega-
tive instances taking advantage of such positive in-
stances similar to Bernier-Colborne and Lo (2019).
Specifically, we generate negative examples in the
following ways:

• Shuffle the sentences in source language and
target language respectively, and randomly
align them.

• Randomly truncate the length of the source
sentences or/and target sentences to 3.

• Randomly shuffle the order of the source sen-
tences or/and target sentences.

• Simply swap the source and target sentences.
Or replace the source/target sentences with
target/source sentences, such that the two sen-
tences are exactly the same.

We only add a linear or convolutional layer on
top of the pre-trained XLM model and predict
through a sigmoid function. The input of the model
is the concatenation of a sentence pair, separated
by one [SEP] token. Besides, to tackle the prob-
lem that some sentences may be too long, we sim-
ply truncate each sentence such that the maximum
length of sentence is 128. The dropout rate is set
to 0.5.

2.3.2 Reranking

We apply some reranking mechanisms in order to
compensate for the latent bias in the XLM-based
scorer, and aim to boost the quality of the whole cor-
pus rather than each sentence pair independently.

The first reranking mechanism is based on lan-
guage identification. For some sentences, they
may include many tokens that do not belong to
the corresponding language, and therefore dam-
age the performance of the machine translation
system. This phenomenon is rather common in
Khmer-English corpus in particular. We utilize
pycld2 tools 7 to identify the language of the sen-
tences. The scores of those which cannot be identi-
fied as the corresponding language are reranked by
a discount of α. α is a hyperparameter.

The second reranking mechanism is based on n-
gram coverage. Because the sentence pairs are
scored independently, redundancy may exist in
those high-score sentences. To enhance the diver-
sity of the selected corpus, we first sort the sentence
pairs in the descending order based on their scores.
Next we maintain a n-gram pool for source sen-
tences, and scan the source sentences from the top
down. Those sentences that have no n-gram differ-
ent from those in the pool will receive a discount
of β, and both n and β are hyperparameters.

Note that before reranking, we always normalize
the score according to their rankings, so that scores
provided by different models can be unified. The
score of the i-th sentence pair is:

scorei = 1− ranki
N

(5)

where i-th pair ranks ranki in all the sentence pairs
and N denotes total number of pairs.

We also try to rerank through language models,
but it does not bring improvements. Thus we do not
use this reranking mechanism in our submissions.

7https://github.com/aboSamoor/pycld2
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2.3.3 Ensemble
Different models may capture different features
during training and inference. To make use of
group wisdom and improve the final performance,
we ensemble the following four models by averag-
ing scores:

• Model 1: Standard XLM + Linear Layer. The
learning rate of XLM and linear layer are 1e−8

and 1e−5 respectively.

• Model 2: Standard XLM + Linear Layer. The
learning rate of XLM and linear layer are 1e−7

and 1e−4 respectively.

• Model 3: Standard XLM + Convolutional
Layer. The learning rate of XLM and linear
layer are 5e−7 and 5e−4 respectively.

• Model 4: Small XLM + Linear Layer. The
learning rate of XLM and linear layer are 5e−7

and 5e−4 respectively.

All the models use 16 batch size per GPU.

3 Experiments

We conduct various experiments to evaluate the per-
formance of different models, and select the most
proper hyperparameters for both Khmer-English
and Pashto-English. Note that FS and FT denote
From Sratch and Fine-Tune respectively.

Firstly, we conduct the experiments with both
the provided aligned sentence pairs (denoted as
Baseline) and our mined data at the first iteration
of the mining module. It shows that our system can
outperform the baseline remarkably and the ensem-
ble of four different models can further improve
the performance. As Table 2 illustrates, Model 1-4
outperform baseline by about 1 ∼ 2 BLEU in both
km-en and ps-en . Besides, the ensemble model
performs the best in general.

Table 2: BLEU Scores of Difference Models

Model
km-en ps-en

FS FT FS FT
Baseline 7.28 10.24 9.81 11.37
Model 1 8.33 11.43 11.21 13.11
Model 2 8.96 11.38 11.43 13.18
Model 3 8.72 11.29 11.26 12.74
Model 4 9.01 11.27 11.36 13.09
Ensemble 9.22 11.51 11.28 13.52

Next, to verify the effectiveness of the iterative
mining strategy in the mining module, we compare
the performance of the same ensemble model with
different mined data. In our paper, we iteratively
mine data for three times, and combine them with
the provided sentence-aligned corpus. Table 3 re-
veals the mining scale each time. As table 4 shows,
iteration 3 works best for km-en and iteration 2 for
ps-en respectively.

Table 3: The Number of Mined Sentence Pairs

Data km-en ps-en
Data 1 238K 200K
Data 2 330K 120K
Data 3 660K 20K

Table 4: BLEU Scores with Different Mined Data

Data
km-en ps-en

FS FT FS FT
+ Data 1 9.22 11.51 11.28 13.52
+ Data 1+2 9.47 11.56 12.17 13.19
+ Data 1+2+3 9.84 11.62 12.14 12.69

Finally, by introducing the reranking mechanism,
we can further improve the performance, which is
shown by Table 5 and 6. Note that α = 0 or β = 0
means it does not have any discount. We select
α = 0.2, n = 2, β = 0.2 and α = 0, n = 1, β =
0.1 for km-en and ps-en for our submissions.

Table 5: BLEU Scores with Reranking for km-en

FS FT
α = 0, β = 0 9.84 11.62
α = 0.2, n = 2, β = 0.05 10.40 12.25
α = 0.2, n = 2, β = 0.1 10.38 11.87
α = 0.2, n = 2, β = 0.2 10.50 12.45
α = 0.2, n = 3, β = 0.1 10.09 12.09
α = 0.3, n = 2, β = 0.05 10.40 12.25

4 Conclusion

In this paper, we present our submissions to the
WMT20 shared task on parallel Corpus filtering
and alignment for low-resource conditions. Our
Volctrans system consists of two modules: a) Min-
ing module is responsible for mining potential par-
allel sentence pairs out of the provided document
pairs. Word alignment model is utilized and an
iterative mining strategy is further taken to boost
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Table 6: BLEU Scores with Reranking for ps-en

FS FT
α = 0, β = 0 12.17 13.19
α = 0, n = 1, β = 0.1 12.28 13.34
α = 0.2, n = 1, β = 0.1 12.15 13.06
α = 0, n = 2, β = 0.1 12.20 13.38
α = 0, n = 2, β = 0.2 12.20 13.31

the mining performance. b) Scoring module aims
to evaluate sentence pairs quality according to their
parallelism and fluency properties, by exploiting
an XLM-based scorer. We further tune the out-
put score with different reranking mechanism, by
considering language detection confidence and n-
gram vocabulary coverage. Finally, four models
are ensembled to improve the final performance.
We also make some analysis through a variety of
experiments.
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Abstract

This paper describes the system submitted by
Papago team for the quality estimation task at
WMT 2020. It proposes two key strategies for
quality estimation: (1) task-specific pretrain-
ing scheme, and (2) task-specific data augmen-
tation. The former focuses on devising learn-
ing signals for pretraining that are closely re-
lated to the downstream task. We also present
data augmentation techniques that simulate the
varying levels of errors that the downstream
dataset may contain. Thus, our PATQUEST
models are exposed to erroneous translations
in both stages of task-specific pretraining and
finetuning, effectively enhancing their gener-
alization capability. Our submitted models
achieve significant improvement over the base-
lines for Task 1 (Sentence-Level Direct Assess-
ment; EN-DE only), and Task 3 (Document-
Level Score).

1 Introduction

With the widespread use of machine translation sys-
tems, there is a growing need to evaluate translated
results at low-cost. The task of quality estima-
tion (QE) addresses this issue, where the quality of
a translation is predicted automatically given the
source sentence and its translation. The estimated
quality can inform users about the reliability of the
translation, or whether it needs to be post-edited.

Previous QE systems generally include pretrain-
ing and finetuning steps, where the former step
involves masked language modeling (MLM) uti-
lizing large parallel corpora, with the expectation
that the models will learn cross-lingual relation-
ships (Kepler et al., 2019; Kim et al., 2019). The
models are, in turn, finetuned with task-specific
data. However, while the pretraining step involves

∗Equal contribution
† Work done during internship at Naver Corp.

Task-specific 
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Task1 (Section 2)

- Omitted word 
- Word order
- Lexical selection
- Repeated phrase

- SentenceBERT
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- GPT-2
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Task3 (Section 3)

- Omitted word (preposition, determiner) 
- Word order
- Lexical selection
- Wrong preposition

- Pseudo-MQM

Perturbations

Label

Pretrained model

Task-specific training

Figure 1: Overview of our approach for Task 1 and 3.

training data with near-perfect translations, low-
quality translations are only introduced during the
finetuning step.

In this work, we suggest two key strategies that
could alleviate this pretrain-finetune discrepancy
in QE tasks by: (1) adopting a task-specific pre-
training objective which is close to that of the
downstream task, and (2) generating abundant task-
specific erroneous sentence pairs and their learning
signals. Our approach, which is depicted in Fig-
ure 1, is motivated from BLEURT (Sellam et al.,
2020), where we extend their general approach to
the bilingual QE setting. Our submitted systems
achieve significant improvements in performance
over the baseline systems on WMT20 Shared Tasks
for QE (Specia et al., 2020): an absolute gain of
+35.2% in Pearson score for (Task 1) Sentence-
Level Direct Assessment (EN-DE), and +18.4% in
Pearson score for (Task 3) Document-Level Score.

2 Sentence-Level QE: Direct Assessment

The task of sentence-level QE for direct assessment
(DA) involves predicting the perceived quality of
the translation given the source and the translated
sentences.

Following the footsteps of the previous work
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on QE, our sentence-level system also utilizes the
pretrained multilingual language models such as
BERT (Devlin et al., 2018) and Cross-lingual Lan-
guage Model (XLM) (Conneau and Lample, 2019).
As the size of the training corpus for the QE task
is very limited (7K sentence pairs), it is crucial to
align these models closely to the task using more
data in the form of task-specific pretraining.

As opposed to pretraining the models on parallel
corpora using the standard MLM approach, we
pretrain the models in a multi-task setting using
learning signals and data that are arguably more
task-specific similar to Sellam et al. (2020).

2.1 Task-Specific Data Augmentation

In order to better align the pretrained models to the
QE task, synthetic sentence pairs that contain vari-
ous types of translation errors are generated from
clean parallel corpora1. For each target sentence,
we generate two perturbed sentences by separately
applying one of the four methods described below.

Omitted Word We randomly omit at most three
words from the target-side, simulating inadequate
translations.

Word Order Based on the part-of-speech (POS)
tag for each word in the target sentence, and pre-
defined sequences of POS patterns, we randomly
swap two target words if those words match one of
the patterns. The POS patterns can be contiguous,
e.g., adjective-space-noun, or long-ranged, e.g.,
noun-*-adjective. When none of the patterns are
matched, we randomly swap two words.

Lexical Selection For each target sentence, we
mask out at most three words randomly, and ap-
ply mask-filling via a German BERT model from
Hugging Face2. The purpose of this alteration is
to generate fluent but somewhat inadequate target
sentences.

Repeated Phrase In order to simulate the repe-
tition problem in translations generated by neural
machine translation models, we alter the target sen-
tence by adding a repetition of a random phrase
within the sentence. The length of the random
phrase is at most three tokens.

1Europarl v10 and News Commentary v15
2bert-base-german-cased,

https://huggingface.co/transformers/
pretrained_models.html

2.2 Task-Specific Learning Signals

As the goal of the downstream task is to predict the
DA scores which represent the “perceived quality”
of the translation, we need to consider pretraining
signals that can capture the somewhat subjective
notion of “good” and “bad” translations.

Consulting the related works, we prepared the
three learning signals:

• SentenceBERT score (Reimers and Gurevych,
2019)

• BERTScore (Zhang et al., 2019), extended to
multilingual setting

• Target (German) Language Model (GPT-2,
Radford et al. (2019)) score

For each sentence pair in the original bilingual
corpora as well as the augmented ones, the three
types of learning signals are computed, and later
used in the task-specific pretraining.

2.2.1 SentenceBERT Score
For a given sentence, SentenceBERT produces a
semantically meaningful sentence embedding that
can be compared using a distance metric.

We note that when comparing the distance be-
tween two sentence vectors, the Kendall rank cor-
relation coefficient (Kendall, 1938) is computed
instead of the cosine similarity measure as the for-
mer correlates better with the human judgement,
possibly because it produces a more widespread
range of scores than the latter especially when the
dimension of the sentence vectors is high.

In our experiments, we used the publicly avail-
able multilingual SentenceBERT model released
from UKPLab3 that supports 13 languages includ-
ing English and German.

2.2.2 Multilingual BERTScore
While SentenceBERT score looks at the sentence
embedding as a whole, BERTScore computes a
similarity score for each token in the pair of sen-
tences. We include BERTScore as one of the
learning signals because we feared that the mean-
pooling of the BERT-embedded tokens within the
SentenceBERT model, while effective in extracting
the overall meaning of the sentence, may overlook
some of the small semantic details within the sen-
tence.

3distiluse-base-multilingual-cased,
https://github.com/UKPLab/
sentence-transformers
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However, as the original BERTScore is designed
to work in monolingual setting, i.e. evaluating a
translation against a reference sentence, it needs to
be extended in multilingual setting using a multi-
lingual BERT (mBERT) model. Analogous to the
original approach, the multilingual BERTScores
can be computed in various ways depending on
which side we are computing the maximum simi-
larities from.

In our experiments, we devise a metric where we
merge both the source- and target-side maximum
similarities between tokens with the corresponding
inverse document frequency (IDF) weighting; thus,
given a sequence of vectorized source and target
tokens, s and t, we defined the mBERTScore of s
and t to be:

Ss→t + St→s∑
si∈s idf(si) +

∑
tj∈t idf(tj)

where

Ss→t =
∑

si∈s idf(si)maxtj∈tsi
⊤tj

St→s =
∑

tj∈t idf(tj)maxsi∈stj
⊤si

2.2.3 Target Language Model Score

While SentenceBERT and multilingual BERTScore
can be used as proxies for evaluating the “adequacy”
of the translation, empirically, we noticed that they
cannot seem to sufficiently represent the “fluency”
of translated target sentence. In other words, both
metrics may assign high scores to the translated
sentence if key source tokens are translated and
present in the translation, even when the overall
sentence may not be articulate.

To address this issue, the target language model
(GPT-2) score is added to the set of learning signals.
We simply use the arithmetic mean of the token-
level predictions to produce the score for a target
sentence. We utilize the pretrained GPT-2 model
for German released by Zamia Brain4.

2.3 Model Architecture

We have two stages for task-specific training, i.e.
first with the augmented data and the learning sig-
nals, and second with the provided QE dataset (ref.
Section 2.4). As the output to predict for each stage
is different, we utilize the following two types of
model architectures.

BERT’s 9th Layer or

XLM’s 5th Layer Conv1D

[CLS] MaxPoolMeanPool

Concat

Linear

Score

Block

Score ScoreScore

Model for Task-Specific Pretraining Score Block

[CLS] source [SEP] target [SEP]

Score

Block

Score

Block

Figure 2: The model architecture (left) for the task-
specific pretraining using the augmented dataset and
learning signals. It consists of three separate Score
Blocks (right) added on top of the BERT’s or XLM’s
layer.

Concatenated Vectors

Linear

Block

Concat

Linear

DA Score

Dropout

Linear

Tanh

Linear

×2

Model for Task-Specific Finetuning Linear Block

Linear

Block

Linear

Block

Figure 3: The model architecture (left) for the task-
specific finetuning using the provided QE dataset. For
each concatenated vector computed within each Score
Block (c.f. Fig. 2.), a Linear Block (right) is added on
top of it. The results from the Linear Blocks are con-
catenated and used to produce the final DA score.

2.3.1 Model for Task-Specific Pretraining
On top of the specific layer of the pretrained
mBERT or XLM models, we attach a series of
layers called “Score Block” for each type of learn-
ing signal as depicted in Figure 2. We utilize the
9th and 5th layer of the BERT and XLM models,
respectively, as these layers are reported to be more
semantically relevant (Jawahar et al., 2019; Zhang
et al., 2019).

In addition to using the vector representation
of the [CLS] token, utilizing the mean-pooled
and max-pooled vectors from all tokens further
improved the performance.

2.3.2 Model for Task-Specific Finetuning
Once the task-specific pretraining is completed, we
begin the finetuning by adding layers above the
concatenation layer within each Score Block, as

4gpt2-german-345M-r20191119,
http://zamia-speech.org/brain
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shown in Figure 3. Thus, we have three concate-
nated vectors being fed to three “Linear Blocks”
separately, whose purpose is to reduce the dimen-
sions of the hidden representation, preparing it for
the final regression layer.

We note that applying dropout (Srivastava et al.,
2014) to these linear layers helps with the perfor-
mance.

2.4 Task-Specific Training

We experiment with three different types of pre-
trained models: mBERT5, XLM trained with MLM
(XLM-MLM)6, and XLM trained with causal lan-
guage modeling (XLM-CLM)7. All of the pre-
trained models are available at Hugging Face.

2.4.1 Task-Specific Pretraining (TSP)
As the size of the provided QE dataset is small, we
make use of the existing parallel data as well as
the error-induced synthetic data. For the EN-DE
bilingual dataset, we select a subset from this year’s
training corpora for WMT News Translation Task,
summing to just under 10M sentence pairs; for the
synthetic dataset, the size is 3.4M.

Given the concatenated source and target sen-
tences as an input, the model for TSP is trained
to predict the three types of learning signals in a
multi-task setting by minimizing the sum of the
mean squared error losses for each signal (ref. Fig-
ure 2).

2.4.2 Task-Specific Finetuning (TSF)
Once the model is trained with the augmented data,
its parameters are loaded to the model for TSF
(ref. Figure 3), and finetuned using the QE dataset.
This time, the model learns to predict the mean
z-normalized DA score.

3 Document-Level QE: MQM Scoring

Given a source and its translated document, this
task involves identifying translation errors and es-
timating the translation quality of the document
based on the taxonomy of the Multidimensional
Quality Metrics (MQM)8. With the pre-defined
MQM taxonomy, human annotators assess whether
the translation satisfies the specifications, and from
these annotations, an MQM score is obtained. In

5bert-base-multilingual-cased
6xlm-mlm-ende-1024
7xlm-clm-ende-1024
8http://www.qt21.eu/mqm-definition

this work, we focus on building a system that pre-
dicts the MQM score for a given pair of source and
translated document.

The major difficulty that we encountered in this
task was the lack of training data. As the amount
of provided data is limited (8,591 sentence pairs),
a model that is solely finetuned on this small-scale
data was not capable enough to differentiate sen-
tences with varying level of errors.

To address this issue, we propose simple yet
effective methods for task-specific data augmenta-
tion, and task-specific training framework9.

3.1 Task-Specific Data Augmentation

We generate erroneous sentence pairs and their
pseudo-MQM scores from Europarl and QE train-
ing corpus in accordance with the MQM taxonomy.

3.1.1 Generating Erroneous Sentence Pairs

Out of the 45 error categories specified in QE anno-
tations, we select five frequent categories for which
we can automatically perturb the target-side of the
parallel corpus at little cost. More details on our
data augmentation technique for each category are
provided below.

Omitted Preposition We introduce an error into
the target-side of a sentence pair by randomly omit-
ting one of the French prepositions that exist in the
sentence.

Omitted Determiner The same process is done
for French determiners as for prepositions.

Wrong Preposition We replace a French prepo-
sition with another one. When more than one can-
didate exists, we choose one at random.

Word Order We exploit grammatical pattern
that most descriptive adjectives go after the noun
in French sentences (unlike English ones). Us-
ing an in-house French POS tagger, we identify
post-nominal adjectives and place them in front
of the corresponding nouns so that they are now
pre-nominal.

Lexical Selection We mask-out target tokens at
random positions, and substitute them with tokens
predicted by the Camembert language model (Mar-
tin et al., 2020).

9The code will be available at https://github.com/
naver/PATQUEST.
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Error name Sentence Length
Total

error severity
Pseudo
MQM

Original sentence Vous avez souhaité un débat à ce sujet dans les prochains jours, au cours de cette période de session. 21 0 100.0
(1) Wrong Preposition Vous avez souhaité un débat à ce sujet chez les prochains jours, au cours de cette période de session. 21 5 76.2
(2) Omit Determiner Vous avez souhaité un débat à ce sujet dans les prochains jours, au cours de cette période de session. 21 5 76.2
(1)+(2) Vous avez souhaité un débat à ce sujet chez les prochains jours, au cours de cette période de session. 20 10 52.4

Original sentence Cela placerait l’UE dans une situation délicate vis-à-vis de ces pays et de la communauté internationale. 23 0 100.0
(1) Word Order Cela placerait l’UE dans une situation délicate vis-à-vis de ces pays et de la internationale communauté. 23 5 78.3
(2) Lexical Selection Cela placerait l’UE dans une situation inconfortable vis-à-vis de ces pays et de la communauté internationale. 23 5 78.3
(1)+(2) Cela placerait l’UE dans une situation inconfortable vis-à-vis de ces pays et de la internationale communauté. 23 10 56.5

Table 1: Examples of erroneous sentence pairs generated from the Europarl corpus.

Error name Sentence Length
Total

error severity
Pseudo
MQM

Original sentence son travail a été présenté dans le washington post, quotidien bonbons, washingtonian, fit yoga et journal d’yoga. 23 15 34.8
(1) Wrong Preposition son travail a été présenté pour le washington post, quotidien bonbons, washingtonian, fit yoga et journal d’yoga. 23 20 13.0
(2) Omit Determiner son travail a été présenté dans le washington post, quotidien bonbons, washingtonian, fit yoga et journal d’yoga. 22 20 9.1
(1)+(2) son travail a été présenté pour le washington post, quotidien bonbons, washingtonian, fit yoga et journal d’yoga. 22 25 -13.6

Original sentence Brûleur deux plaque de cuisson anti-adhésive de Coghlan 10 5 50.0
(1) Omit Preposition Brûleur deux plaque de cuisson anti-adhésive de Coghlan 9 10 -11.1

Table 2: Examples of erroneous sentence pairs generated from the WMT20 QE corpus.

3.1.2 Task-Specific Learning Signal
Once we introduce different types of errors into
the target-side sentences, the next step is to obtain
pseudo-MQM scores for the altered sentence pairs.
Two key elements for computing MQM score are
the length of a text, and its total error severity as
follows:

Pseudo-MQM = 100(1 − 5.0 ∗ nerror + S

N
)

where N indicates the length of given target sen-
tence and nerror denotes the number of errors in-
troduced in it. We assign 5.0, the most frequent
severity, to each perturbation that we make. If an
error severity score, S, is assigned to the sentence
by human annotators, we add this score to compute
the total error severity score.

3.2 Model Architecture
We use pretrained mBERT or XLM10 as initial
parameters. The concatenation of a source sentence
and its corresponding target sentence with special
symbol tokens is taken as input: [CLS] source
[SEP] target [SEP].

We experiment with two strategies for obtaining
sentence embeddings. First, we feed a hidden state
vector corresponding to [CLS] token (h[CLS]) to
a linear layer to compute a sentence-level MQM
prediction of ŷ:

ŷ = Wh[CLS] + b

where W and b are the weight matrix and bias vec-
tor of the linear layer, respectively. For the other

10xlm-mlm-enfr-1024

method, we use the concatenation of a mean-pooled
source representation (s ∈ Rn), mean-pooled tar-
get representation (t ∈ Rn) and their element-wise
differences (|s − t| ∈ Rn) in an attempt to enlarge
the model capacity:

ŷ = W · ReLU(Wr(s, t, |s − t|) + br) + b

where Wr ∈ R3n×n and br are the weight ma-
trix and bias vector of an intermediate dimension-
reducing layer, respectively, and n denotes the di-
mension of hidden vectors. W and b are the weight
matrix and bias vector of the final linear layer.

3.3 Task-Specific Training

We suggest that the pretraining objective should be
similar to that of the downstream task in order to
mitigate the pretrain-finetune discrepancy (Yang
et al., 2019), and fully leverage the erroneous sen-
tence pairs that we generated. For this task, both
phases minimize the mean-squared loss function:
l = 1

K

∑K
k=1 ‖yk − ŷ‖2.

3.3.1 Task-Specific Pretraining (TSP)
We utilize Europarl parallel corpus (English-
French) to pretrain our submitted models11. To
acquire high quality data, we carried out the fol-
lowing filtering processes: (1) language detection
(filtering out non-English sentences in the source-
side, and non-French sentences in the target-side),
(2) length ratio filtering (eliminating sentence pairs
with length ratio greater than 1.8).

11We perform TSP after bringing pretrained parameters of
language models as initial weights.
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We assume that the remaining sentence pairs do
not contain any translation error. Therefore, we
assign the total error severity score of zero to these
pairs before the augmentation.

About 15.2 million examples12 are generated
with the above-mentioned data augmentation tech-
niques. The detailed examples are provided in Ta-
ble 1.

3.3.2 Task-Specific Finetuning (TSF)
The next step is to finetune our model using the
augmented QE train data. Unlike Europarl corpus,
we can fully leverage the MQM scores originally
assigned to the QE training dataset. We found that
performing the data augmentation with three cate-
gories (Omitted Determiner, Omitted Preposition,
and Wrong Preposition) effectively improves the
performance. The original QE training sentence
pairs represent about 5% of 169,997 sentence pairs
obtained from the data augmentation. We also pro-
vide the augmented examples for QE training data
in Table 2.

Since the learning objective is identical to that
of the pretraining phase, we can simply train the
same model with the augmented downstream task
data.

3.4 Document-Level MQM Score

We specify that the models are trained at sentence-
level, learning to predict the non-truncated version
of MQM scores which could take a range between
negative infinity and 100; this is to avoid potential
information loss that could arise from the trunca-
tion.

Given a document, the document-level MQM
score is computed from its sentence-level MQM
predictions in a closed form. Afterwards, we trun-
cate negative values to zero.

4 Experimental Results

4.1 Sentence-Level Task

Table 3 shows the Pearson correlation coefficient
between the predicted z-normalized DA scores and
the reference scores on the development set. We
note that the number of parameters for PATQUEST-
mBERT (724M) is greater than that of PATQUEST-
XLM (616M) models, resulting in the difference
in the correlation scores. Nevertheless, comput-
ing the arithmetic mean of the scores produced

12The size of the original Europarl English-French parallel
corpus is about 2M sentence pairs.

Model Pearson’s r ↑
PATQUEST-mBERT 0.486

PATQUEST-XLM-MLM 0.450
PATQUEST-XLM-CLM 0.452
PATQUEST-ensemble 0.501

Table 3: Results on the development set for Task 1 EN-
DE.

Model Pearson’s r ↑ MAE ↓ RMSE ↓
Baseline 0.146 0.679 0.967

PATQUEST-mBERT w/o synth. data 0.429 0.462 0.632
PATQUEST-ensemble w/o synth. data 0.457 0.464 0.640

PATQUEST-ensemble 0.498 0.454 0.637

Table 4: Submission results on the test set for Task 1
EN-DE.

by these three models improves the performance
(PATQUEST-ensemble).

The final result on the QE test set is shown in
Table 4. We observe that finetuning the model
with the additional error-induced synthetic data
improves the performance as well as ensembling
the models.

Our final submitted system (PATQUEST-
ensemble) finished 4th out of the 15 submitted sys-
tems13 in the final ranking of the sentence-level QE
task for English-German. In order to train a gen-
erally applicable QE system, we did not make use
of the data such as internal information from the
NMT models and in-domain Wikipedia texts that
could be extracted from the provided Wikipedia
titles.

4.2 Document-Level Task

The validation results on development set are
shown in Table 5. Both PATQUEST-mBERT
and PATQUEST-XLM models use representations
from [CLS] token. We build another two mod-
els, PATQUEST-mBERT variant 1 and 2, using the
concatenations of mean-pooled source representa-
tions, mean-pooled target representations, and their
element-wise differences.

Table 6 shows the test results of our submitted
PATQUEST models. For PATQUEST-ensemble,
we compute an average from the four models enu-
merated in Table 5.

In Table 7, the effectiveness of our training
scheme and data augmentation techniques is illus-
trated via an ablation study. Note that “Pretrained
mBERT (A)” in the table refers to the mBERT

13Excluding the disqualified team.
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Model Pearson’s r ↑ MAE ↓ RMSE ↓
PATQUEST-mBERT 0.431 14.401 22.330

PATQUEST-mBERT variant 1 0.406 14.418 22.872
PATQUEST-mBERT variant 2 0.380 14.909 23.215

PATQUEST-XLM 0.374 16.245 23.647

Table 5: Results on the development set of WMT20
document-level task.

Model Pearson’s r ↑ MAE ↓ RMSE ↓
Baseline 0.389 19.939 26.608

PATQUEST-mBERT 0.529 16.214 24.437
PATQUEST-XLM 0.546 15.821 23.846

PATQUEST-ensemble 0.573 15.611 23.327

Table 6: Submission results of PATQUEST models on
the test set of WMT20 document-level task.

model that is finetuned on the original QE data
without any task-specific training. Both TSP and
TSF enhance the generalization ability of model.
Note that the mBERT model trained via TSP and
TSF, “A + TSP + TSF”, is the same model as
PATQUEST-mBERT which itself achieves a sig-
nificant improvement over the baselines as shown
in Table 6.

Our final system (PATQUEST-ensemble) sub-
mitted for the document-level QE task, came 1st
out of the three submitted systems14. Similar to our
sentence-level system, our document-level system
also did not utilize any internal information from
the NMT models and in-domain Wikipedia data
tailored to the benchmark.

5 Conclusion

In this paper, we present a task-specific pretraining
scheme for the QE task. Our pretraining objective
is devised so that it is closely related (Task 1) or
identical (Task 3) to the finetuning objective. In ad-
dition, the models are exposed to abundant amount
of error-induced translations generated from large
parallel corpora, effectively alleviating the issue of

14Excluding the disqualified team

Model Pearson’s r ↑ MAE ↓ RMSE ↓
Pretrained mBERT (A) 0.263 16.146 23.090

A + TSF 0.341 (+ 0.078) 15.302 23.749
A + TSP 0.375 (+ 0.112) 15.496 23.444

A + TSP + TSF 0.431 (+ 0.168) 14.401 22.330

Table 7: Results on the development set of WMT20
document-level task adding up key components of our
model.

data scarcity.
Our proposed models yield significant improve-

ment over the baseline systems for the two tasks.
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2019. What does BERT learn about the structure
of language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3651–3657, Florence, Italy. Associa-
tion for Computational Linguistics.

Maurice G Kendall. 1938. A new measure of rank cor-
relation. Biometrika, 30(1/2):81–93.

Fabio Kepler, Jonay Trénous, Marcos Treviso, Miguel
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Abstract

We obtain new results using referential transla-
tion machines (RTMs) with predictions mixed
and stacked to obtain a better mixture of ex-
perts prediction. We are able to achieve better
results than the baseline model in Task 1 sub-
tasks. Our stacking results significantly im-
prove the results on the training sets but de-
crease the test set results. RTMs can achieve
to become the 5th among 13 models in ru-en
subtask and 5th in the multilingual track of
sentence-level Task 1 based on MAE.

1 Introduction

Quality estimation task in WMT20 (Specia et al.,
2020) (QET20) address machine translation (MT)
performance prediction (MTPP), where transla-
tion quality is predicted without using reference
translations, at the sentence- (Tasks 1 and 2),
word- (Task 2), and document-levels (Task 3).
Task 1 predicts the sentence-level direct assess-
ment (DA) in 7 language pairs categorized accord-
ing to the MT resources available:

• high-resource, English–German (en-de),
English–Chinese (en-zh), and Russian-
English (en-ru)

• medium-resource, Romanian–English (ro-
en) and Estonian–English (et-en), and

• low-resource, Sinhalese–English (si-en) and
Nepalese–English (ne-en).

en-ru contains sentences from both Wikipedia and
Reddit articles while others use only Wikipedia
sentences with 7000 sentences for training, 1000
for development, and 1000 for testing. The target
to predict in Task 1 is z-standardised DA scores,
which changes the range from [0, 100] for DA
scores to [3.178,−7.542] in z-standardized DA
scores.

RTM interpretants
Task Train Test setting Training LM
Task 1 (en-de) 8000 1000 bilingual 0.3 M 5 M
Task 1 (en-zh) 8000 1000 monolingual en 0.2 M 3.5 M
Task 1 (si-en) 8000 1000 monolingual en 0.2 M 3.5 M
Task 1 (ne-en) 8000 1000 monolingual en 0.2 M 3.5 M
Task 1 (et-en) 8000 1000 monolingual en 0.2 M 3.5 M
Task 1 (ro-en) 8000 1000 monolingual en 0.2 M 3.5 M
Task 1 (ru-en) 8000 1000 bilingual 0.2 M 4 M
Task 2 (en-de) 8000 1000 bilingual 0.3 M 5 M
Task 2 (en-zh) 8000 1000 monolingual en 0.2 M 3.5 M

Table 1: Number of instances in the tasks and the size
of the interpretants used.

The target to predict in Task 2 is sen-
tence HTER (human-targeted translation edit rate)
scores (Snover et al., 2006) and binary classifica-
tion of word-level translation errors. We partic-
ipated in sentence-level subtasks, which include
English-German and English-Chinese in Task 2.
Table 1 lists the number of sentences in the train-
ing and test sets for each task and the number of
instances used as interpretants in the referential
translation machine (RTM) (Biçici, 2018; Biçici
and Way, 2015) models (M for million).

We tokenize and truecase all of the corpora us-
ing Moses’ (Koehn et al., 2007) processing tools.1

LMs are built using kenlm (Heafield et al., 2013).

2 RTM for MTPP

We use RTM models for building our prediction
models. RTMs predict data translation between
the instances in the training set and the test set
using interpretants, data selected close to the task
instances in bilingual training settings or mono-
lingual language model (LM) settings. Interpre-
tants provide context for the prediction task and
are used during the derivation of the features mea-
suring the closeness of the test sentences to the

1https://github.com/moses-smt/
mosesdecoder/tree/master/scripts
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Figure 1: RTM depiction: parfwd selects interpretants close to the training and test data using parallel corpus in
bilingual settings and monolingual corpus in the target language or just the monolingual target corpus in mono-
lingual settings; an MTPPS use interpretants and training data to generate training features and another use inter-
pretants and test data to generate test features in the same feature space; learning and prediction takes place using
these features as input.

training data, the difficulty of translating them,
and to identify translation acts between any two
data sets for building prediction models. With
the enlarging parallel and monolingual corpora
made available by WMT, the capability of the in-
terpretant datasets selected to provide context for
the training and test sets improve as can be seen
in the data statistics of parfwd instance selec-
tion, parallel feature weight decay (Biçici, 2019).
RTMs use parfwd for instance selection and ma-
chine translation performance prediction system
(MTPPS) (Biçici et al., 2013; Biçici and Way,
2015) for obtaining the features, which includes
additional features from word alignment. Figure 1
depicts RTMs and explains the model building
process.

Additionally, we included the sum, mean, stan-
dard deviation, minimum, and maximum of align-
ment word log probabilities as features in Task
1. In Task 2, we included word alignment dis-
placement features including the average of source
and target displacements relative to the length of
the source or target sentences respectively and ab-
solute displacement relative to the maximum of
source and target sentence lengths.

Instead of resource based discernment, we
treated en-de of Tasks 1 and 2 and ru-en as bilin-
gual tasks where significant parallel corpora are
available from WMT from previous years and the
rest as monolingual, using solely English side of
the corpora for deriving MTPP features. In accord,
we treat en-de and ru-en as parallel MTPP and the
rest as monolingual MTPP. RTM benefits from rel-
evant data selection to be used as interpretants in
both monolingual and bilingual settings. The re-
lated monolingual or bilingual datasets are used

during feature extraction for the machine learning
models of MT.

The machine learning models we use include
ridge regression (RR), kernel ridge regression,
support vector regression (SVR) (Boser et al.,
1992), gradient tree boosting, extremely random-
ized trees (Geurts et al., 2006), and multi-layer
perceptron (Bishop, 2006) as learning models in
combination with feature selection (FS) (Guyon
et al., 2002) and partial least squares (PLS) (Wold
et al., 1984) where most of these models can be
found in scikit-learn.2 We experiment with:

• including the statistics of the binary tags ob-
tained as features extracted from word-level
tag predictions for sentence-level prediction,

• using RR to estimate the noise level for SVR,
which obtains accuracy with 5% error com-
pared with estimates obtained with known
noise level (Cherkassky and Ma, 2004) and
set ε = σ/2.

We use Pearson’s correlation (r), mean ab-
solute error (MAE), root mean squared error
(RMSE), relative absolute error (RAE), relative
MAE (MAER), and mean RAE relative (MRAER)
as evaluation metrics (Biçici and Way, 2015). Our
best non-mix results are in Table 2 achieving 6th
rank at best among 15 models in general.

3 Mixture of Experts Models

We use prediction averaging (Biçici, 2018) to ob-
tain a combined prediction from various predic-
tion outputs better than the components, where the
performance on the training set is used to obtain

2http://scikit-learn.org/
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rP MAE RMSE
Ta

sk
1

en-de 0.2622 (11) 0.5156 (8) 0.6828 (10)
ru-en 0.6877 (8) 0.5138 (6) 0.6878 (7)
en-zh 0.2310 (13) 0.5616 (6) 0.7298 (6)
et-en 0.6067 (11) 0.5995 (8) 0.7284 (8)
ne-en 0.5436 (11) 0.5308 (9) 0.6828 (9)
si-en 0.5318 (10) 0.5003 (7) 0.6181 (7)
ro-en 0.6990 (11) 0.5237 (8) 0.6574 (8)

Ta
sk

2 en-de 0.2289 (15) 0.1669 (15) 0.2081 (15)
en-zh 0.3864 (15) 0.1585 (14) 0.1959 (15)

Table 2: RTM test results in sentence-level MTPP in
tasks 1 and 2 using the best non-mix result with (ranks).
rP is Pearson’s correlation.

weighted average of the top k predictions, ŷ with
evaluation metrics indexed by j ∈ J and weights
with w:

wj,i =
wj,i

1−wj,i

ŷ̂ŷyµk = 1
k

∑k
i=1 ŷ̂ŷyi MEAN

ŷ̂ŷy
j,wj

k
= 1∑k

i=1 wj,i

∑k
i=1wj,i ŷ̂ŷyi

ŷ̂ŷyk = 1
|J |
∑

j∈J ŷ̂ŷyj,wj
k

MIX
(1)

We assume independent predictions and use
pi/(1−pi) for weights where pi represents the ac-
curacy of the independent classifier i in a weighted
majority ensemble (Kuncheva and Rodrı́guez,
2014). We use the MIX prediction only when we
obtain better results on the training set. We select
the best model using r and mix the results using
r, RAE, MRAER, and MAER. We filter out those
results with higher than 0.875 relative evaluation
metric scores.

We also use generalized ensemble method
(GEM) as an alternative to MIX to combine using
weights and correlation of the errors, Ci,j , where
GEM achieves smaller error than the best com-
bined model (Perrone and Cooper, 1992):

ŷGEM =
∑L

i=1wiψi(x) = y +
∑L

i=1wiεi
Ci,j = E[εi, εj ] = (ψi(x)− y)T (ψi(x)− y)

wi =
∑L

j=1 Ci,j∑L
k=1

∑L
j=1 Ck,j

Model combination (Figure 2) selects top k
combined predictions and adds them to the set of
predictions where the next layer can use another
model combination step or just pick the best model
according to the results on the training set. We use
a two layer combination where the second layer is
a combination of all of the predictions obtained.
The last layer is an argmax.

Figure 2: Model combination.

Figure 3: Stacking use predictions as features.

We also use stacking (STACK) to build higher
level models using predictions from base predic-
tion models where they can also use the probabil-
ity associated with the predictions (Ting and Wit-
ten, 1999). The stacking models use the predic-
tions from predictors as features and additional se-
lected features and build second level predictors.
Stacking with m predictors is depicted in Figure 3
where predictions are used as features for the pre-
dictors in the next level. Martins et al. (2017) used
a hybrid stacking model to combine the word-level
predictions from 15 predictors using neural net-
works with different initializations together with
the previous features from a linear model. Our
stacking results also use top features from the data
similar to the pass through feature of the stacking
regressor of sklearn.3 For these features, we con-

3https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.
StackingRegressor.html
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rP trans GEM mix STACK

Ta
sk

1

en-de 0.2205 0.4244
en-zh 0.43 0.5426
et-en 0.5518 0.6245
ne-en 0.537 0.6182
si-en 0.4984 0.5907
ro-en 0.7025 0.7518
ru-en 0.7245 0.7734

Ta
sk

2 en-de 0.4023 0.5153
en-zh 0.4124 0.5193

Table 3: RTM train results in sentence-level MTPP in
tasks 1 and 2. rP is Pearson’s correlation.

rP MAE RMSE

Ta
sk

1

en-de 0.2804 (10) 0.5139 (8) 0.6762 (7)
ru-en 0.7009 (7) 0.4957 (5) 0.6776 (5)
en-zh 0.2310 (13) 0.5616 (6) 0.7298 (6)
et-en 0.6051 (11) 0.5998 (8) 0.7268 (8)
ne-en 0.6186 (9) 0.4990 (9) 0.6422 (8)
si-en 0.5493 (10) 0.4909 (6) 0.6055 (6)
ro-en 0.7367 (10) 0.4967 (7) 0.6167 (7)
multi 0.5063 (8) 0.5249 (5) 0.6628 (6)

Ta
sk

2 en-de 0.2631 (15) 0.1601 (14) 0.1983 (15)
en-zh 0.4029 (15) 0.1574 (14) 0.1933 (15)

Table 4: RTM test results in sentence-level MTPP in
tasks 1 and 2 using the best GEM mix + mix result.

sider at most the top 15% of the features selected
with feature selection.

RTM can achieve better results than the baseline
model in Task 1 in all tasks participated 4 where
the baseline is a neural predictor-estimator ap-
proach implemented in OpenKiwi (Kepler et al.).
Our training rP results are in Table 3. Our test set
results using GEM mix and MIX are in Table 4
where we obtain 5th rank among 11 submissions
in the multilingual subtask according to MAE. Of-
ficial evaluation metric is rP .

Before model combination, we further filter
prediction results from different machine learning
models based on the results on the training set to
decrease the number of models combined and im-
prove the results. A criteria that we use is MREAR
≥ 0.875 since MRAER computes the mean rela-
tive RAE score, which we want to be less than 1.
In general, the combined model is better than the

4Task1: https://competitions.codalab.
org/competitions/24447#results,Task2:
https://competitions.codalab.org/
competitions/24515#results

rP MAE RMSE

Ta
sk

1

en-de 0.2289 (15) 0.6319 (13) 0.7754 (13)
ru-en 0.6057 (8) 0.7526 (10) 0.9917 (10)
en-zh 0.1504 (15) 0.8043 (11) 1.0249 (11)
et-en 0.4014 (13) 1.1209 (13) 1.3892 (13)
ne-en 0.4856 (13) 0.5662 (10) 0.7688 (10)
si-en 0.3720 (14) 1.1118 (14) 1.2967 (14)
ro-en 0.5858 (15) 1.4448 (15) 1.7387 (15)

Ta
sk

2 en-de 0.2387 (18) 0.2305 (17) 0.2896 (18)
en-zh 0.2701 (20) 0.5008 (19) 0.5391 (20)

Table 5: RTM test results in sentence-level MTPP in
tasks 1 and 2 using stacking.

best model in the set and stacking achieves bet-
ter results than MIX on the training set. However,
stacking models significantly improve the results
on the training data but obtain decreased scores on
the test set (Table 5).

4 Conclusion

Referential translation machines pioneer a lan-
guage independent approach and remove the need
to access any task or domain specific information
or resource and can achieve top performance in au-
tomatic, accurate, and language independent pre-
diction of translation scores. We present RTM re-
sults with ensemble models and stacking.

Acknowledgments

The research reported here received financial
support from the Scientific and Technological
Research Council of Turkey (TÜBİTAK) and
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Ergun Biçici. 2018. RTM results for predicting transla-

tion performance. In Proc. of the Third Conf. on Ma-
chine Translation (WMT18), pages 765–769, Brus-
sels, Belgium.
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Abstract

This paper describes our system of the
sentence-level and word-level Quality Estima-
tion Shared Task of WMT20. Our system is
based on the QE Brain, and we simply enhance
it by injecting noise at the target side. And
to obtain the deep bi-directional information,
we use a masked language model at the target
side instead of two single directional decoders.
Meanwhile, we try to use the extra QE data
from the WMT17 and WMT19 to improve our
system’s performance. Finally, we ensemble
the features or the results from different mod-
els to get our best results. Our system finished
fifth in the end at sentence-level on both EN-
ZH and EN-DE language pairs.

1 Introduction

Quality Estimation (QE) is a task to predict the
quality of translations without relying on any ref-
erences. QE plays a critical role in machine trans-
lation to reduce human efforts, such as deciding
whether a translation is good enough for post-
editing and indicating what edits are needed. This
paper describes our system of the Shared Task on
Word and Sentence-Level (QE Tasks 2) at WMT20.
With the post-edited translations, all the quality
scores can be computed automatically by TER-
COM (Snover et al., 2006).

Traditional QE models (Kozlova et al., 2016) use
some time-consuming and expensive hand-craft
features to represent the translation pairs. With the
great success of deep neural networks in natural
language processing (NLP), some researches have
begun to apply automatic neural features to do QE
tasks (Chen et al., 2017; Shah et al., 2016). How-
ever, the rare QE data can’t fully release the power
of deep neural networks. To address this prob-
lem, researchers try to transfer bilingual knowledge

∗ Corresponding Author.

from parallel data to QE tasks (Fan et al., 2018).
These works usually follow a predictor-estimator
framework (Kim et al., 2017). This framework first
trains the predictor to predict each token of the
target sentence given the source and the context
of the target sentence on parallel data. Then, the
estimator is trained using the features of QE data
produced by the predictor.

However, existing predictor-estimator frame-
works cannot fully use the information from paral-
lel data because of the discrepancy of data quality
between the predictor and the estimator. The pre-
dictor is trained on parallel data, which are nearly
no errors in translations. While the translations in
QE data is generated by a real machine translation
system and may have some errors. When the es-
timator is training on the QE data, the predictor
needs to extract the features of translations with
some errors, which is quite different from the par-
allel data. Thus, the predictor can’t extract features
well.

To fix this problem, we present two different ap-
proaches in this paper. The first model masks some
tokens at the target side but still need to predict
every token correctly, and it enhances the ability
of the model to deal with translations with errors.
And to obtain the deep bi-directional information,
we use a masked language model at the target side
instead of two single directional decoders. Mean-
while, we try to use the extra QE data, which are
from the WMT17 and WMT19 to improve our
system’s performance. Finally, we ensemble the
features or the results from different models to get
our best results. Our system finished fifth in the end
at sentence-level on both EN-ZH and EN-DE lan-
guage pairs of the WMT20 QE shared tasks (Specia
et al., 2020).
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... ...

MASK MASK...BOS EOS

MASK MASK...BOS EOS

Target Backward

Target Forward

(a) QE Brain mask.

Target

MASK MASK...BOS EOS

(b) MTLM.

Figure 1: To save space, we do not show the source en-
coders of these models in the figure. (a) shows the QE
Brain mask system, and it simply enhances the original
QE Brain system by simply masking tokens at the tar-
get side. (b) uses a masked language model at the target
side to obtain deep bidirectional information.

2 Methods

As we all know, using different sub-models for
ensemble will have better results (Krogh and
Vedelsby, 1995). We ensemble different methods
in our system, some of them are existing methods,
and the others are proposed by us. Next, we will
describe these methods.

2.1 Existing Methods

2.1.1 QUETCH
QUETCH (Kreutzer et al., 2015) (QUality Es-
timation from scraTCH) is a multilayer percep-
tron model trained without auxiliary parallel data.
The embeddings of input passed through one lin-
ear layer with tanh activation functions and then
one output layer with softmax activation functions,
one linear layer with tanh activation functions,
one output layer with softmax activation functions.
QUETCH only outputs OK/BAD probabilities for
each word in the word-level task. Similar to (Mar-
tins et al., 2017), we estimate HTER with the frac-
tion of BAD labels for the sentence-level task.

2.1.2 NuQE

NuQE (Martins et al., 2016) (NeUral Quality
Estimation) can be seen as a stronger version
of QUETCH by using complex neural networks.
The architecture of NuQE consists of one embed-
dings layer, one linear layer, one bi-directional
GRU layer, two other linear layers. The input
and output of NuQE is the same as QUETCH.
We use QUETCH and NuQE as implemented in
OpenKiwi (Kepler et al., 2019) 1.

2.1.3 QE Brain

QE Brain (Fan et al., 2018) is based on the
predictor-estimator framework. The predictor
uses transformer neural networks and will be pre-
trained on the parallel corpus. The model con-
sists of encoder and bi-directional decoder to en-
code the source sentence X = {x1, x2, . . . , xn}
and predict each token in the target sentence Y =
{y1, y2, . . . , ym} with the help of hidden represen-
tations of the source sentence, respectively.

When training the Bi-LSTM (Graves and
Schmidhuber, 2005), which is used as the estima-
tor, the source sentence and translation are fed into
the predictor to extract features. Similar to com-
mon predictor-estimator methods, QE Brain uses
the hidden state of the final layer in the predic-
tor as model derived features. They also extract
the difference between the probability of gener-
ating the current token and the most likely token
as mismatching features. Finally, the estimator
concatenate model derived features and mismatch-
ing features to predict the word-level tags O and
sentence-level HTER q.

Our proposed models are based on the QE Brain.

2.2 Proposed Methods

2.2.1 Masked QE Brain

Researches used to transfer bilingual knowledge
from parallel data to QE tasks, however, the data
distribution between parallel data and QE data is
different. The translations in QE data are generated
by a real machine translation system, and there
will be some errors in these translations. While
the translations in parallel data generated by hu-
mans, and there are nearly no errors. It means, the
predictor trained on parallel data can not perform
well when it is feeding with translations with errors
because the contexts at the target side are different.

1https://unbabel.github.io/OpenKiwi.
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Pair Dataset Train Dev Test

EN-DE
WMT20 7,000 1,000 1,000
WMT19 13,442 - -
WMT17 23,000 - -

EN-ZH WMT20 7,000 1,000 1,000

Table 1: The statistics of QE dataset used in our system
for the WMT20 QE shared task.

Pair Train Dev
EN-DE 23,438,059 2,000
EN-ZH 7,460,939 2,000

Table 2: Parallel Dataset statistics used in our system.
We divide parallel data into a training set and develop-
ment set.

To partially alleviate this problem, we proposed the
masked QE Brain, as shown in Figure 1(a).

The motivation for our method is simple. We
want to enhance the predicting ability of the model
in the wrong contexts. To achieve this goal, when
training the predictor on parallel data, we mask
some tokens in the translation. And the predictor
needs to make the same prediction as they are feed-
ing with the complete pair. The other part is the
same as the original version of the QE Brain.

2.2.2 Masked Target Language Model

The QE Brain and Masked QE Brain use a bi-
directional decoder at the target side to obtain the
information from both sides. However, this archi-
tecture is just a shallow concatenation which can
not truly get the information from both sides (De-
vlin et al., 2018).

Thanks to the masked tokens in target sentences
of Masked QE Brain, we can easily use a masked
language model (Devlin et al., 2018) at the target
side instead. We call this model the Masked Target
Language Model (MTLM), and the format of the
input is just the same as Masked QE Brain, as
shown in Figure 1(b). They both input the source
sentence X, the masked target sentence Y′. And
the MTLM only need to predict the right tokens of
these masked ones at the target side while Masked
QE Brain needs to predict all the tokens.

3 Experiments

3.1 Dataset

3.1.1 Data statistics
QE Dataset The QE tasks of WMT20 contains
both EN-DE language pair and EN-ZH language
pair. They both have sentence-level and word-level
tasks. Meanwhile, the word-level task contains
the prediction for source tokens, target tokens, and
target taps. In our paper, we only report word-level
results on target tokens. In our work, we also use
the EN-DE QE dataset of WMT17 and WMT19 to
help train an ensemble model. The statistics of QE
datasets are shown in Table 1.

Parallel Dataset For the EN-DE language pair,
we use the data officially released by the organiz-
ers. And for the EN-ZH language pair, we use the
parallel data from the WMT18 EN-ZH translation
task. The statistics of parallel datasets are shown
in Table 2.

3.1.2 Preprocess
EN-DE We use BPE (Sennrich et al., 2015) to
segment both the English and German texts, and the
BPE step is set to 30,000. We learn the BPE code
jointly but build the two vocabularies separately.
The size of EN is 14,112; the size of DE is 23,458.

EN-ZH We also use BPE to segment English
texts here, and the setting is the same as those in
EN-DE. The final size is 34,466. For Chinese texts,
we keep all the sentences in the original QE dataset,
and then use jieba2 to segment other Chinese sen-
tences in the parallel dataset. We choose the top
40,000 tokens of the frequency as the vocabulary.

3.2 Settings

Metrics The metric of sentence-level QE is Pear-
son’s Correlation Coefficient. And the metrics of
word-level QE are F1-MULT (the products of both
positive and negative examples) and Matthews’s
Correlation Coefficient.

Hyper-parameters
• NuQE. The hidden size is [400, 200, 100, 50].
• QUETCH. The hidden size is [100, 50].
• QE Brain. The predictor contains one encoder

and two decoders of 6 layers with 512 hidden
units. The estimator is a Bi-LSTM, and its
hidden size is 512.

2https://github.com/fxsjy/jieba
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Pair Method Sent-level Dev
Word-level Dev

F1-MULT MCC

EN-DE

NuQE 30.75 37.63 27.41
QUETCH 31.27 37.19 27.78
QE Brain 48.70 34.68 28.74

QE Brain mask 53.34 35.15 30.17
MTLM 49.77 39.68 33.99

f-ensemble 59.91 - -
r-ensemble 59.76 - -
v-ensemble - 47.58 42.36

EN-ZH

NuQE 42.49 43.50 33.02
QUETCH 42.97 31.60 30.83
QE Brain 58.05 44.07 32.85

QE Brain mask 58.97 46.55 36.50
MTLM 60.89 51.31 43.33

f-ensemble 66.02 - -
r-ensemble 62.13 - -
v-ensemble - 51.81 45.33

Table 3: Results of WMT20. f-ensemble means we ensemble different methods by features, r-ensemble means we
ensemble different methods by their results and v-ensemble means different methods vote for an ensemble result.

• QE Brain mask. It is all the same as the QE
Brain.
• MTLM. The predictor contains one encoder

and one decoder of 6 layers with 512 hidden
units. And the estimator is the same as the QE
Brain.

3.3 Singe Model Results

Table 3 shows the single model results of our sys-
tem. Different models are using the same parallel
data and only using the QE dataset of WMT20.

The NuQE and QUETCH are only trained on
the QE dataset, while the other methods are also
trained on extra parallel datasets. We can see that
the performance of NuQE and QUETCH is far
from that of these models that have extra bilingual
knowledge.

Compare with the original QE Brain, our two
proposed models can have a big improvement.

3.4 Data Ensemble

We train to enhance our system by using other QE
datasets, mainly from WMT17 and WMT19. We
only try this on the EN-DE language pair. As we
can see in Table 4, if we use more QE data, the
performance can get a big improvement easily.

3.5 Model Ensemble

We also try to ensemble different methods and fi-
nally get the best result. For sentence-level, we try
two different ways. First, we use QE Brain, QE
Brain mask, and MTLM as a feature extractor. The
features from the three models will be combined
and then used to predict the hter scores. Second,
we simply collect the predictions of different meth-
ods on the training set, development set and test set.
The training predictions will be feed into a dense
layer and used to predict true hter score, develop-
ment predictions will be used to early stop. Finally,
we will use the trained dense layer to deal with the
test predictions.

For word-level, we simply use voting to ensem-
ble different models. The results are shown in
Table 3.

3.6 Final Results

Table 5 shows our final results of WMT20 on
the web pages. Our system does not contain pre-
dictions on target gaps on the word-level, so we
just combine the results on gaps from NuQE and
QUETCH and our results on target tokens to build
the final result.
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Method Dataset Sent-level Dev
Word-level Dev

F1-MULT MCC

QE Brain
WMT20 48.70 34.68 28.74
ensemble 53.44 39.04 35.04

QE Brain mask
WMT20 53.34 35.15 30.17
ensemble 54.87 40.05 35.25

MTLM
WMT20 49.77 39.68 33.99
ensemble 53.38 43.40 36.41

Table 4: Ensemble results of the WMT20 EN-DE language pair, we train the QE systems on the combination of
WMT20, WMT19, and WMT17 dataset.

Pair Sent-level Word-level
EN-DE 61.81 (5th) 45.11 (6th)
EN-ZH 64.23 (5th) 55.13 (6th)

Table 5: Final results and rank of WMT20 on the
web page, the sentence-level metric is Pearson’s Cor-
relation Coefficient, and the word-level metric is the
Matthews’s Correlation Coefficient.

4 Conclusion

This paper describes our system of the WMT20 QE
shared task. Our work mainly follows the QE Brain.
To bridge the gap between parallel data and QE
data, we use a simple way to bring noise into target
sentences of parallel data. And to achieve deep bi-
directional information, we use a masked language
model at the target side. Experiments show that
our two-step approaches achieve improvements.
Meanwhile, we try to train our models on more
QE data with the same language pair and ensemble
different methods through different ways to get our
final results.

References
Zhiming Chen, Yiming Tan, Chenlin Zhang, Qingyu

Xiang, and Mingwen Wang. 2017. Improving ma-
chine translation quality estimation with neural net-
work features. In Proceedings of the Second Confer-
ence on Machine Translation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers).

Kai Fan, Jiayi Wang, Bo Li, Fengming Zhou, Boxing
Chen, and Luo Si. 2018. ”bilingual expert” can find

translation errors. In Proceedings of the AAAI Con-
ference on Artificial Intelligence.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural
Netw, 18(5-6).
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Abstract

This paper presents our submission to the
WMT2020 Shared Task on Quality Estimation
(QE)1. We participate in Task 1 and Task
2 focusing on sentence-level prediction. We
explore (a) a black-box approach to QE based
on pre-trained representations; and (b) glass-
box approaches that leverage various indica-
tors that can be extracted from the neural MT
systems. In addition to training a feature-based
regression model using glass-box quality indi-
cators, we also test whether they can be used
to predict MT quality directly with no super-
vision. We assess our systems in a multi-
lingual setting and show that both types of
approaches generalise well across languages.
Our black-box QE models tied for the winning
submission in four out of seven language pairs
in Task 1, thus demonstrating very strong
performance. The glass-box approaches also
performed competitively, representing a light-
weight alternative to the neural-based models.

1 Introduction

Quality Estimation (QE) (Blatz et al., 2004; Specia
et al., 2009) is an important part of Machine Trans-
lation (MT) pipeline. It allows us to evaluate how
good a translation is without comparison to refer-
ence sentences. As part of the WMT20 Shared Task
on Quality Estimation, two sentence-level tasks
were proposed. In Task 1, participants are asked
to predict human judgements of MT quality gen-
erated following a methodology similar to Direct
Assessment (DA) (Graham et al., 2017). The goal
of Task 2 is to estimate the post-editing effort
required in order to correct the MT outputs and
measured using the HTER metric (Snover et al.,
2006).

1http://www.statmt.org/wmt20/
quality-estimation-task.html

∗
Equal contribution.

This year’s task is different from the previous
years in two important aspects: (i) the data includes
seven language pairs, which are very different both
typologically and in terms of translation quality;
and (ii) the participants were provided with neural
MT (NMT) models that were used for translation.
We take advantage of this set up to compare black-
box and glass-box approaches to QE. Furthermore,
we test both approaches in a multilingual setting.

The rest of this paper is organised as follows.
Section 2 describes the glass-box (2.1) and black-
box (2.2) QE methods that we explore in our sub-
missions. Section 3 describes the dataset used for
the WMT2020 Shared Task on Quality Estima-
tion. Section 4 provides our experimental settings,
whereas Section 5 presents the results. Conclusions
are given in Section 6.

2 Approach

Below we first describe our glass-box submissions
based on the quality indicators that can be obtained
as a by-product of decoding with an NMT system.
Second, we present our neural-based QE submis-
sions, which explore transfer learning with pre-
trained representations. In both cases, we describe
how QE is addressed as a multilingual task.

2.1 Glass-box

Glass-box approaches to QE are based on informa-
tion from the NMT system used to translate the
sentences, rather than looking at source and target
sentences as in black-box QE, or using external
resources. We rely on our previous work on glass-
box QE that explores NMT output distribution to
capture predictive uncertainty as a proxy to MT
quality. Specifically, we use three groups of unsu-
pervised quality indicators from Fomicheva et al.
(2020).
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Probability Features These features are based
on the output probability distribution from a deter-
ministic NMT system:

• Average word-level log-probability for the
translated sentence (TP);

• Variance of word-level log-probabilities
(Sent-Var); and

• Entropy of the softmax output distribution
(Softmax-Ent).

Dropout Features This group of features also
rely on output probability distribution but use un-
certainty quantification based on the Monte Carlo
dropout method to get more accurate QE results.
This method consists of performing several forward
passes through the network with parameters per-
turbed by dropout, collecting posterior probabilities
and using the resulting distribution to estimate pre-
dictive uncertainty (Gal and Ghahramani, 2016).

• Expectation (D-TP) and variance (D-Var)
over the NMT log-probability generated with
Monte Carlo dropout;

• A ratio of D-TP and D-Var as described in
Fomicheva et al. (2020) (D-Combo); and

• Lexical similarity between MT hypotheses
generated with Monte Carlo dropout (D-Lex-
Sim).

Attention Features We compute the entropy of
encoder-decoder attention weights for each target
token and then average token-level entropies to ob-
tain a sentence-level measure. Given that the NMT
systems used to generate the translations are based
on the Transformer architecture where attention is
computed at multiple layers and attention heads,
there are [Layers × Heads] of averaged entropies
for each sentence. Fomicheva et al. (2020) sum-
marise them by taking the average or minimum
value to obtain an unsupervised attention-based
metric. By contrast, here we use the averaged en-
tropies of attention weights coming from each head
and layer combination as features in our regression
model.

Algorithms We use the above groups of features
as input for Random Forest (Ho, 1995) and XG-
Boost (Chen and Guestrin, 2016) regression algo-
rithms. We also submitted the two best performing
indicators from Fomicheva et al. (2020) with no
supervision: D-TP and D-Lex-Sim.

Figure 1: Black-box QE model built on top of contex-
tualised representations (CR).

Multilinguality We hypothesise that system-
internal indicators described above are by and large
independent on the language pair, given that no
linguistic information is directly used. Therefore,
to build a multilingual QE system, i.e. a single
model that can be used to predict quality for mul-
tiple language pairs, we simply concatenate the
available data for all languages and use it for train-
ing our regression models. Note that we do not add
any language identification markers and the system
does not require them for making predictions. This
can be useful for multilingual translation systems
where the user does not need to identify the in-
put languages, and especially for zero-shot settings
where a given language pair may not have been
seen at training time.

2.2 Black-box

We explore a baseline neural QE model and a mul-
titask learning QE model, both of which are built
on top of pre-trained contextualised representations
(CR) such as BERT (Devlin et al., 2019) and XLM-
R (Conneau et al., 2020).

Baseline QE model (BASE) Given a source sen-
tence sX in language X and a target sentence sY

in language Y , we model the QE function f by
stacking a 2-layer multilayer perceptron (MLP) on
the vector representation of the [CLS] token from
a contextualised representations model (CR):

f(sX , sY ) =W2 ·ReLU(

W1 · Ecls(s
X , sY ) + b1

) + b2

(1)

where W2 ∈ R1×4h, b2 ∈ R, W1 ∈ R4h×h and
b1 ∈ R4h. Ecls is a function that extracts the vec-
tor representation of the [CLS] token after encod-
ing the concatenation of sX and sY with CR and
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ReLU is the Rectified Linear Unit activation func-
tion. Note that h is the output dimension of Ecls.
We explore two training strategies: The bilingual
(BL) strategy trains a QE model for every language
pair while the multilingual (ML) strategy trains a
single multilingual QE model for all language pairs,
where the training data is simply pooled together
without any language identifier. We note that this
multilingual model here corresponds to a pooled,
single-task learning approach.

Figure 2: Multi-task learning QE model (MTL) with a
shared BERT or XLM-R encoder.

Multi-task Learning QE Model (MTL) We ex-
plore multi-task learning to determine whether hav-
ing parameter sharing across languages is benefi-
cial, and to what degree having language-specific
predictors can boost performance. We experiment
with a multi-task approach where we concurrently
optimise multiple QE BASE models that share pa-
rameters across languages. We jointly train two
types of models: 1) language-specific (LS), which
share parameters through a shared encoder but
have different prediction layers; and 2) a language-
agnostic (LA) model which also shares parameters
for the prediction layer. We refer to these two mod-
els as MTL-LA and MTL-LS.

As seen in Figure 2, the MTL-LS submodels
and MTL-LA submodel share a common BERT or
XLM-R encoder, while each submodel has its own
dedicated language-specific MLP. At training time,
we iterate through the MTL-LS submodels in a
round-robin fashion and alternate between training
the MTL-LA submodel and training the chosen
MTL-LS submodel. At test time, we can evaluate
a test set with either the MTL-LA submodel or the

MTL-LS submodel trained on the same language
pair as the test set.

BiRNN We compared the above approaches to
the BiRNN model from deepQuest (Ive et al.,
2018). The BiRNN model uses an encoder-decoder
architecture: it encodes both source and translation
sentences independently using two bi-directional
Recurrent Neural Networks (RNNs). The two re-
sulting sentence representations are concatenated
afterwards as the weighted sum of their word vec-
tors, generated by an attention mechanism. For pre-
dictions at sentence-level, the weighted representa-
tion of the two input sentences is passed through a
dense layer with sigmoid activation to generate the
quality estimates. This is a light-weight variant of
the black-box approaches above that does not rely
on heavy pre-trained representations.

3 Data

This year two sentence-level QE tasks are avail-
able. For Task 1 the participants are expected
to predict DA-style human judgements (Graham
et al., 2015), whereas the goal of Task 2 is
to estimate the post-editing effort (HTER). The
data for Task 1 includes six language pairs:
Sinhala-English (Si-En), Nepalese-English (Ne-
En), Estonian-English (Et-En), Romanian-English
(Ro-En), English-German (En-De) and English-
Chinese (En-Zh), where source sentences were ex-
tracted from Wikipedia articles. For Task 2, only
English-Chinese and English-German are available.
We also experimented with an additional dataset
collected by IQT Labs in collaboration with the
University of Sheffield. This is an Russian-English
(Ru-En) dataset that contains a combination of Rus-
sian Reddit forums (75%) (using the Reddit API)
and Russian WikiQuotes (25%). All MT outputs
were generated by Transformer-based NMT sys-
tems (Vaswani et al., 2017). All datasets contain at
least three DA judgements per MT segment by pro-
fessional translators (0-100), with absolute quality
scores standardised according to each annotator’s
mean and standard deviation. HTER labels were
obtained by having professional translators fixing
any errors in the translations, followed by using the
TER2 tool.

For each language pair the organisers provided
training set (7000 sentences), development set
(1000 sentences) and a blind test set (1000 sen-

2http://www.cs.umd.edu/˜snover/tercom/
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tences).

4 Settings

Glass-box To train proposed models, we used
RandomForest from sklearn library4 and XG-
Boost from xgboost5 package. All input features
are extracted from the NMT systems provided by
the shared task’s organisers. The number of fea-
tures for Probability and Dropout groups
does not depend on the parameters of the NMT
systems and is equal to 3 and 4, respectively. The
number of Attention features depends on the
NMT system and is equal to the number of layers
× the number of attention heads. We computed
the sentence-level attention entropies in two ways:
with and without the EOS token. For this reason,
the total number of Attention features equals
[Layers × Heads × 2]. This number is 96 for En-
De/Zh and Et/Ro-En, and 192 for Si/Ne-En.

For our final experiments we combined the train-
ing (7000 sentences) and development (1000 sen-
tences) sets, set a grid for the hyperparameters of
our regression models and performed 5-fold cross-
validation to choose the best hyperparameters.

Black-box We optimised our neural models with
Adam (Kingma and Ba, 2015) and used the same
learning rate (1e−6) for all experiments. We trained
each model on an Nvidia V100 GPU for 20 epochs
with batch size of 8. Our final submission is an
ensemble that combines the outputs from differ-
ent variants of BASE and MTL QE models trained
with different objective functions (mean squared er-
ror loss and huber loss) and contextualised encoder
(BERT and XLM-R). We also included variants that
use token-level log-probabilities from the NMT
models as additional features. Each variant was
trained 5 times with different random seeds. We
used random forest (Breiman, 2001) to learn the en-
semble. We set n estimators to 500 and used
the default values in sklearn for other hyper-
parameters.

3Results for the glass-box systems presented are slightly
different from the official task results. The reason is that here
we only show the results for the regression model trained with
XGBoost, whereas both XGBoost and Random Forest models
were submitted to the task.

4https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.
RandomForestRegressor.html

5https://xgboost.readthedocs.io/en/
latest/python/index.html

5 Results

In this section, we present and analyse the results
for our submissions to Task 1. We provide a
general comparison of the glass-box and black-box
systems and also look at some specific aspects of
their performance.

5.1 Overall Results

Table 1 shows the results of our submissions to
Task 1. Besides Pearson correlation for each
language pair, column Avg shows the average cor-
relation across language pairs for each presented
model, which corresponds to “multilingual” sub-
task from the organisers.6 Note that although it
was not required for the multilingual task to have
a single QE system serving multiple languages,
we build such systems for our multilingual experi-
ments. The last column in Table 1 shows the num-
ber of parameters for each model. In the case of
glass-box systems this corresponds to the number
of features.7

The first group of systems in Table 1 corresponds
to the glass-box approach including the unsuper-
vised metrics and feature-based regression mod-
els (see Section 2.1).8 Feature-based systems in-
clude models trained on a single language pair
(Mono-LP), models based on multiple language
pairs (Multi-LP) and an ensemble based on mod-
els trained with different amounts of data (see dis-
cussion below). The next group of systems corre-
sponds to the black-box approach presented in Sec-
tion 2.2. Besides the models based on pre-trained
representations, we include BiRNN, a light-weight
neural-based QE model.

The last two rows in Table 1 show the results
of the baseline models prepared by the organisers
and the Top #1 model. The baseline system is a
neural predictor-estimator model trained with the
default parameters described in OpenKiwi (Kepler
et al., 2019). The predictor model was trained on
the parallel data used to train the NMT models.

6The multilingual sub-task did not include Ru-En and it
was not considered for the Avg column.

7As explained in Section 4, the number of features for
the glass-box regression models changes depending on the
language, as the corresponding NMT systems have different
number of layers and attention heads. Thus, we have 199
features for Si/Ne-En, and 103 features for the rest of the
language pairs.

8These experiments do not include Russian-English, as
the corresponding NMT system is an ensemble and it is not
evident how the glass-box features proposed by Fomicheva
et al. (2020) should be extracted in this case.

1013



Et-En Ro-En Si-En Ne-En En-De En-Zh Ru-En Avg # Params

Glass-box

Unsupervised
D-TP 0.64 0.69 0.46 0.56 0.26 0.32 – 0.49 –
D-Lex-Sim 0.61 0.67 0.51 0.60 0.17 0.31 – 0.48 –

Regression
Mono-LP 0.68 0.79 0.56 0.66 0.46 0.43 – 0.60 103/199
Multi-LP 0.68 0.79 – – 0.45 0.41 – 0.58 103/199
Ensemble 0.68 0.80 0.56 0.66 0.48 0.43 – 0.60 103/199

Black-box

BiRNN 0.33 0.50 0.39 0.35 0.10 0.18 – 0.31 13.3M
BERT

BASE-BL 0.67 0.83 0.50 0.68 0.39 0.44 0.65 0.59 180M
BASE-ML 0.70 0.85 0.53 0.69 0.42 0.45 0.65 0.61 180M
MTL-LA 0.69 0.85 0.51 0.68 0.47 0.44 0.66 0.61 197M
MTL-LS 0.69 0.84 0.51 0.69 0.47 0.45 0.65 0.61 197M

XLM-R
BASE-BL 0.78 0.89 0.64 0.78 0.44 0.48 0.76 0.67 564M
BASE-ML 0.80 0.89 0.67 0.78 0.50 0.49 0.78 0.69 564M
MTL-LA 0.80 0.89 0.68 0.80 0.50 0.48 0.78 0.69 594M
MTL-LS 0.81 0.89 0.66 0.80 0.51 0.49 0.77 0.69 594M
Ensemble (BL) 0.82 0.91 0.68 0.81 0.54 0.53 0.80 –
Ensemble (ML) 0.83 0.91 0.68 0.81 0.56 0.53 – 0.72 –
Baseline 0.48 0.69 0.37 0.39 0.15 0.19 – 0.38
Top #1 0.82 0.91 0.69 0.82 0.55 0.54 0.81 0.72

Table 1: Results for Task 1: Pearson correlation coefficients between human DA scores and predicted values
for WMT2020 test sets.3 Avg is the average Pearson correlation across language pairs. Baseline and Top #1
results are taken from http://www.statmt.org/wmt20/quality-estimation-task_results.html. Re-
sults that are not significantly different from the Top #1 submission are marked in bold. We submitted results from
ensemble (ML) to the multilingual subtask and results from ensemble (BL) to the per-language subtasks.

Below we summarize our observations:

General performance First, we observe that all
our submitted systems outperform the baseline. In
particular, the ensemble of models based on pre-
trained contextualised representations achieves a
very strong performance for some language pairs.
It is either the top system or perform on par with the
Top #1 submission, with no significant difference
for Et-En, Ro-En, Si-En and En-De.9

Black-box models We also note that our XLM-
R based models achieve a higher correlation with
human judgements than the models built on top of
BERT pre-trained representations, which can be
related to the fact that XLM-R is a more power-
ful model with a much higher number of parame-
ters. BiRNN, a light-weight neural-based QE sys-
tem that does not use language model pre-training,
shows lower correlation values, probably due to a
relatively small amount of data available for train-
ing.

Glass-box models We note that glass-box sys-
tems perform competitively compared to some of
the neural-based approaches. Interestingly, even

9Here and in what follows we use the Hotelling-Williams
test (Williams, 1959) to compute significance of the difference
between dependent correlations with p-value < 0.05.

the unsupervised submissions that rely only on
the information extracted from the NMT models
outperform the BiRNN and Predictor-Estimator
neural-based QE systems, thus highlighting the
benefit of this approach in a setting where a light-
weight model is required (thus disallowing the use
of BERT-style models fine-tuned on the QE task)
and the amount of available training data is small.
Regression-based models always improve on the
individual unsupervised features for all language
pairs (see Section 5.4 for discussion) and achieve
comparable results to the BERT-based black-box
systems.

5.2 Does model ensembling improve
performance?

Ensembling multiple models is known to boost per-
formance. We test whether this method improves
the results for our systems. To produce ensemble
for the glass-box approach, we computed an av-
erage of the predictions from the models trained
with different amounts of data (see Section 5.5). As
shown in Table 1, there is no difference between
ensemble and individual models. For the black-box
approach ensemble is produced by combining vari-
ous types of models as described in Section 4. The
ensemble of neural models provides a significant
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boost in performance at the cost of a very large
number of parameters.

5.3 Multilingual models
For some MT production scenarios it is more con-
venient to have one multilingual QE model instead
of having one model per language pair. We test
how well the QE systems discussed in this paper
perform in a multilingual setting. For the glass-box
approach, we concatenated all training and devel-
opment sets for En-De/Zh and Et/Ro-En together
and trained a single model using this data. We ex-
clude Si/Ne-En as we have a different number of
features for these language pairs (see Section 4).
Multilingual systems for the black-box approach
are described in Section 2.2.

As can be seen from Table 1, both the glass-box
and the black-box multilingual systems obtained
results comparable to the models trained for indi-
vidual language pairs. Thus, for the purposes of
QE task both glass-box features and multilingual
pre-trained representations generalise well across
languages.

5.4 How does each group of features affect
performance?

To investigate how each group of features affects
performance of the glass-box models, we trained
the models separately with different groups of
features and their combinations, and computed
Pearson correlation coefficients between predicted
scores and DA. For our experiments we have three
groups of features Dropout, Probability and
Attention, all combinations of two of them and
the combination of all three groups. We also show
the correlation for some of the individual features:
(i) translation probability (TP) as one of the sim-
plest things we can extract from an NMT system;
and (ii) two best performing unsupervised QE in-
dicators from Fomicheva et al. (2020): dropout
translation probability (D-TP) and dropout lexical
similarity (D-Lex-Sim) (see Section 2.1).

As can be seen from Table 2, the best results
among the individual groups of features are ob-
tained for either Dropout features (Et/Ro/Si/Ne-
En and En-Zh) or Attention features (En-
De/Zh). The combination of all three groups of
features and the combination of Dropout and
Attention showed the best results for all lan-
guage pairs.

Table 2 also shows the benefit of using supervi-
sion: combining features with XGBoost generally
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Figure 3: Pearson correlation coefficient between pre-
dicted values (glass-box models) of WMT2020 test sets
and DA.

leads to a better correlation than directly using the
best-performing individual QE indicators without
any training (‘Unsup’ rows).

5.5 How many sentences do we need to train
a QE system?

Here we investigate how the amount of available
training data affects the performance of our sys-
tems. For this purpose, we randomly selected 10%,
20% ... 100% of the data and trained our models.
We repeated data splitting and training of the mod-
els ten times; thus, we got 10 sets of predictions
for each amount of data, we computed Pearson
correlation coefficient between DA and predicted
scores and took an average of these 10 correlation
coefficients over each amount of data. As shown
in Figure 3, the performance across the different
amounts of training data with the glass-box models
is stable for all language pairs except for En-De.
Improvements over the best performing individual
feature for each language pair can be obtained even
with fairly small amounts of data.

Figure 4 shows the performance across different
amounts of data for the BASE-BL black-box mod-
els. In this case, we observe larger improvements
when more data is available for training. However,
quite surprisingly, relatively high performance is
achieved even with 5% and 10% of the data.

5.6 Task 2: HTER prediction

Besides experiments with DA labels, we used the
same approach to train models with HTER data for
En-De and En-Zh language pairs. Table 3 shows
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Et-En Ro-En Si-En Ne-En En-De En-Zh

Ty
pe

of
fe

at
ur

es

Attention 0.519 0.722 0.455 0.583 0.382 0.353
Dropout 0.669 0.751 0.548 0.638 0.206 0.352
Probability 0.525 0.670 0.508 0.568 0.189 0.329
Dropout+Probability 0.670 0.754 0.556 0.632 0.194 0.381
Attention+Probability 0.611 0.700 0.550 0.629 0.454 0.406
Attention+Dropout 0.679 0.791 0.554 0.659 0.452 0.429
All 0.678 0.793 0.556 0.657 0.464 0.427
Unsup:D-TP 0.642 0.693 0.460 0.558 0.259 0.321
Unsup:D-Lex-Sim 0.612 0.669 0.513 0.600 0.172 0.313
Unsup:TP 0.486 0.647 0.399 0.482 0.208 0.257

Table 2: Pearson correlation coefficients between human DA scores and predicted values for WMT2020 test sets.
The unsupervised results are taken from (Fomicheva et al., 2020). Results marked in bold are not significantly
outperformed by any other method.
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Figure 4: Pearson correlation coefficient between
predicted values (black-box BASE-BL models) of
WMT2020 dev sets and DA.

En-De En-Zh

Glass-box
Mono-LP 0.601 0.605
Ensemble 0.613 0.613
Baseline 0.392 0.506
Top #1 0.758 0.664

Table 3: Results for Task 2 (sentence-level):
Pearson correlation coefficient between HTER
and predicted values for WMT2020 test set.
The results of Baseline and the best models are
taken from http://www.statmt.org/wmt20/

quality-estimation-task_results.html.

Pearson correlation between the predictions and
HTER scores for glass-box systems.10 Interest-
ingly, the glass-box approach performs more com-
petitively when predicting HTER than when es-
timating DA scores, as the gap between our sub-
mission and the best performing system is smaller.
Thus, this type of judgements might be easier to
predict based on system-internal information from
NMT models.

6 Conclusions

We presented glass-box and black-box models sub-
mitted to the WMT2020 QE shared task. Black-
box models showed the results on a par with the
top submissions. Glass-box methods achieve from
moderate to strong linear correlation with human
judgments and can be used as a light-weight and
cost-effective alternative in a scenario where the
NMT model is available. Besides that, we con-
ducted experiments to test the performance of our
QE systems in a multilingual setting. We showed
that the performance of both approaches is com-
parable when training and predicting on the same
language pair, and when training a single model to
predict on multiple language pairs.
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Abstract

This paper describes the submissions of the
NiuTrans Team to the WMT 2020 Quality
Estimation Shared Task (Specia et al., 2020).
We participated in all tasks and all language
pairs. We explored the combination of transfer
learning, multi-task learning and model ensem-
ble. Results on multiple tasks show that deep
transformer machine translation models and
multilingual pretraining methods significantly
improve translation quality estimation perfor-
mance. Our system achieved remarkable re-
sults in multiple level tasks, e.g., our submis-
sions obtained the best results on all tracks in
the sentence-level Direct Assessment task1.

1 Introduction

Quality estimation (QE) evaluates the quality of
machine translation output without human refer-
ence translations (Blatz et al., 2004). It has a wide
range of applications in post-editing and quality
control for machine translation.

We participated in all tasks and language pairs
at the WMT 2020 QE shared task2, including
sentence-level Direct Assessment tasks, word
and sentence-level post-editing effort tasks, and
document-level QE tasks. We investigated trans-
fer learning and ensemble methods using recently
proposed multilingual pre-trained models (Devlin
et al., 2019; Conneau et al., 2020) as well as deep
transformer models (Wang et al., 2019a). Our main
contributions are as follows:

• We apply multi-phase pretraining (Gururan-
gan et al., 2020) methods under both high- and
low-resource settings to QE tasks.

1Our number of submissions exceeded the daily or total
limit.

2http://www.statmt.org/wmt20/
quality-estimation-task.html

• We incorporate deep transformer NMT mod-
els into QE models.

• We propose a simple strategy to convert
document-level tasks into word- and sentence-
level tasks.

• We explore effective ensemble methods for
both word- and sentence-level predictions.

Results on different level tasks show that our
methods are very competitive. Our submissions
achieved the best Pearson correlation on all lan-
guage pairs of the sentence-level Direct Assess-
ment task and the best results on English-Chinese
post-editing effort tasks.

We present methods for the sentence-level Di-
rect Assessment task in §2. Then in §3 and §4,
we describe our approaches to post-editing tasks
and document-level tasks, respectively. System en-
semble methods are discussed in §5. We show the
detail of our submissions and the results in §6. We
conclude and discuss future work in §7.

2 Sentence-level Direct Assessment Task

The sentence-level Direct Assessment task is a new
task where sentences are annotated with Direct
Assessment (DA) scores by professional transla-
tors rather than post-editing labels. DA scores for
each sentence are rated from 0 to 100, and partici-
pants are required to score sentences according to
z-standardized DA scores. The DA task consists of
seven tracks for different language pairs and one
multilingual track. Submissions were evaluated in
terms of Pearson’s correlation metric for the DA
prediction against human DA (z-standardized mean
DA score, i.e., z-mean).

2.1 Datasets and Resources
This task contains 7K sentences for training and 1K
sentences for development on each language pair,
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including sentence scores and word probabilities
from the NMT models. The organizer also pro-
vided parallel data used to train the NMT models
except for Russian-English, ranging from high re-
source (En-De, En-Zh), medium resource (Ro-En),
to low-resource (Et-En, Ne-En, Si-En).

In addition to the official data, we also used some
multilingual pre-trained models for fine-tuning, in-
cluding multilingual BERT3 (mBERT) and XLM-
RoBERTa4 (XLM-R).

2.2 Unsupervised Quality Estimation

Our baseline system was built upon unsupervised
quality estimation methods proposed by Fomicheva
et al. (2020), which use out-of-box NMT models
as sources of information for directly estimating
translation quality. We utilized the output sen-
tence probabilities from NMT models as indica-
tors for QE tasks. Given the input sequence x,
suppose the decoder generates an output sequence
y = y1, . . . , yT of length T, the probability of gen-
erating y is factorized as:

p(y|x, θ) =
T∏

t=1

p (yt|y<t,x, θ) (1)

where θ represents model parameters. The out-
put probability distribution p (yt | y<t,x, θ) is pro-
duced by the decoder over the softmax function.

We considered the sequence-level translation
probability normalized by length:

TP =
1

T

T∑

t=1

log p (yt|y<t,x, θ) (2)

And the probability generated from perturbed
parameters with dropout, we performed N times
inference and used the averaged output:

D-TP =
1

N

N∑

n=1

TPθ̂n (3)

2.3 Multi-phase Pretraining

Fine-tuning pre-trained language models have be-
come the foundation of today’s NLP (Devlin et al.,
2019; Conneau et al., 2020). Recent advances in
pre-trained multilingual language models lead to
state-of-the-art results on QE tasks (Kim et al.,

3https://huggingface.co/
bert-base-multilingual-cased

4https://github.com/facebookresearch/
XLM

2019; Kepler et al., 2019a). Similar to Gururan-
gan et al. (2020), we continued training multilin-
gual pre-trained models in both domain- and task-
adaptive manners.
Domain-adaptive pretraining uses a straightfor-
ward approach–we continue pretraining mBERT
and XLM-R on the parallel corpora provided by the
organizers, which is used to train the MT systems.
Unlike the training data labeled with DA scores,
the parallel data for different language pairs vary.
The corpus of pre-trained language models also
has the problem of data imbalance. In practice, we
increased the training frequency of low-resource
data.
Task-adaptive pretraining refers to pretraining
on the unlabeled training set for a given task. Com-
pared to domain-adaptive pretraining, it uses a far
smaller corpus, but the data is much more task-
relevant. We used the same models as the domain-
adaptive pretraining.

2.4 Fine-tuning

Similar to previous work (Kepler et al., 2019a;
Yankovskaya et al., 2019), we used models trained
with the above methods as feature extractors for
the sentence-level scoring tasks. We treated the
scoring task as a regression task. Following stan-
dard practice, we added a separator token between
source and target sentences and passed the pooled
representation from the encoder to a task-specific
feed-forward layer for classification. We used the
z-standardized mean DA score as the ground truth
and minimized the mean squared error during train-
ing.

3 Word and Sentence-Level Post-editing
Effort Task

This task consists of the word- and sentence-level
tracks to evaluate post-editing effort. The word-
level tasks predicts OK or BAD tags in both source
and target sequences. It evaluates the Matthews cor-
relation coefficient5 (MCC) for tags. The sentence-
level task predicts HTER scores, which is the ratio
between the number of edits needed and the ref-
erence translation length. It evaluates Pearson’s
correlation for the HTER prediction. There are
two language pairs in both the word- and sentence-
level tasks, including English-German (En-De) and
English-Chinese (En-Zh).

5https://en.wikipedia.org/wiki/
Matthews_correlation_coefficient
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3.1 Datasets and Resources

The labeled data consists of 7K sentences for train-
ing and 1K sentences for development for each
language pair. We used the additional parallel
data provided by the organizers to train predic-
tors, containing about 20M En-Zh sentence pairs
and 23M En-De sentence pairs after pre-processing
with the NiuTrans SMT toolkit (Xiao et al., 2012).
Pretrained language models include mBERT and
XLM-R, were also used for Task 2.

3.2 Predictor-Estimator Models

The predictor-estimator architecture and its vari-
ants (Kim et al., 2017; Kepler et al., 2019b) had
established state-of-the-art on WMT QE tasks. The
system consists of a word prediction module (pre-
dictor) trained from additional large-scale parallel
corpora and a quality estimation module (estimator)
trained from quality-annotated data.

For the sentence-level tasks and target-side word-
level tasks, we employed the official bi-RNN
predictor-estimator trained with OpenKiwi (Ke-
pler et al., 2019b) as the baseline. Similar to Wang
et al. (2019b), we used NMT models trained with
back-translation as predictors.

The original predictor and estimator use RNNs
to encode the source and predict tags or scores.
We also implemented two transformer-based pre-
dictors which replace the RNN with transformer
(Vaswani et al., 2017) or deep transformer archi-
tectures (Wang et al., 2019a; Li et al., 2019). We
compared different tokenizing strategies such as
word segmentation and byte pair encoding (BPE)
(Sennrich et al., 2016) for all language pairs.

3.3 Multi-task learning

The word- and sentence-level tasks are highly re-
lated to their annotations are commonly based on
the HTER measure. We used a linear summation
of sentence-level and target word-level objective
losses as follows:

L = Lmt.word + Lmt.gap + LHTER (4)

where the components denote the loss of target-
word, target-gap, and predictions for HTER score.

We also trained models using source sentence
and origin/post-edited MT output to predict the
source-side word level tags:

LSRC = Lsrc−mt + Lsrc−pe (5)

4 Document-Level QE Task

This task aims to predict document-level quality
scores as well as fine-grained annotations. Each
document is annotated for translation errors with
word span, severity, and error type6. Additionally,
there are document-level scores (MQM scores) gen-
erated from the error annotations using the method
proposed by Torrón and Koehn (2016). The anno-
tation task evaluates F1 scores on the gold anno-
tations. The scoring task evaluates the Pearson’s
correlation between the gold and predicted MQM
scores.

4.1 Datasets and Resources

We also used 35M WMT14 En-Fr parallel data to
train our predictors for the annotation task except
for the official 1,448 En-Fr documents. For the
scoring task, we used pre-trained language models,
including mBERT and XLM-R.

4.2 Document-level Annotating Task

Following Kepler et al. (2019a), we treated the
document-level annotation problem as a word-level
task, with each sentence processed separately. We
tokenized the training set and tagged each token
with an OK/BAD tag. Specifically, each token was
labeled as BAD if it contains any character in er-
ror spans. Besides token tags, we labeled a gap as
BAD if a span begins and ends exactly in its bor-
ders. Otherwise, it was labeled as OK. During the
test time, we mapped BAD tags to annotations in a
single scheme: (a) continuous labels were merged
into an error annotation; (b) individual labels were
directly converted to error annotations. We ignored
the severity information and always treated the er-
ror as the most frequent ’major’.

We adopt the predictor-estimator architecture for
this task. We implemented our predictors with deep
transformers with relative position representation.
The settings for model training are described in
(Hu et al., 2020). We also compared two tokeniza-
tion schemes, including word-level tokenization
and BPE. Similar to Task 2, we jointly trained our
models with target-side word-level and word gap
tasks.

4.3 Document-level Scoring Task

We treated the document-level scoring task as a
sentence-level task with a simple mapping scheme.

6http://www.qt21.eu/mqm-definition/
definition-2015-12-30.html
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We also ignored all critical and minor errors, and
thus the MQM score for each document is calcu-
lated by:

MQM = 100× (1− W × Countmajor
Countword

) (6)

where Countmajor and Countword are the count
of major errors and total words, respectively. W
denotes the weight of major errors, which is fixed
at 5 in our experiments.

Then we score each sentence according to the
number of errors it contains:

Scoresent = 100−W × Countmajor (7)

We applied the same fine-tuning strategies, as
mentioned in Sec 2, to this task. During the test
time, the count of errors was retrieved from the
predicted score of all sentences. A document score
is 0 if it has too many errors.

5 System Ensemble

In addition to training models for each task, we also
explored effective ensemble methods to combine
outputs for different level tasks.

5.1 Word-level ensemble
We used two approaches to ensemble word-level
predictions for Task 2 and Task 3.
Voting-Based Ensemble. Voting is the easiest
method to combine predictions from multiple mod-
els. We chose the label with the most votes for each
token as the output.
Averaging-Based Ensemble. Similar to Kepler
et al. (2019a), we used Powell’s conjugate direc-
tion method to optimize the task metric (MCC or
F1 score) and learn the weights of different systems
on the development set.

5.2 Sentence-level ensemble
We averaged the predicted scores from multiple
models associated with different weights. The
weights were also learned on the development set
using Powell’s method. We removed outliers from
the candidate pool to make the prediction more
stable.

6 Experiments and Results

6.1 Task 1
Below we describe our systems for Task 1.
Unsupervised baseline. As described in §2, our

Pair TP Score D-TP Score
En-De 0.249 0.273 (+10%)
En-Zh 0.330 0.348 (+5%)
Ro-En 0.648 0.693 (+7%)
Et-En 0.497 0.562 (+13%)
Ne-En 0.431 0.490 (+14%)
Si-En 0.423 0.469 (+11%)
Ru-En 0.518 0.535 (+3%)

Table 1: Pearson (r) correlation between unsupervised
methods and human DA judgements on the validation
data for sentence-level DA tasks. We mark improve-
ments of D-TP by percentage.

Pair mBERT XLM-R Ensemble
En-De 0.516 0.555 0.562
En-Zh 0.512 0.533 0.551
Ro-En 0.888 0.911 0.917
Et-En 0.809 0.820 0.833
Ne-En 0.816 0.821 0.830
Si-En 0.607 0.670 0.698
Ru-En 0.728 0.796 0.816
Multilingual - - 0.732

Table 2: Pearson (r) correlation between pretraining
methods and human DA judgements on the test data for
sentence-level DA tasks. We only present the results of
XLM-R-large for the second method.

baseline system leverages the output probabilities
from NMT models to assess the sentence score. We
performed 20 inference passes and set the dropout
rate as 0.3 for all language pairs.
Pretraining and fine-tuning. We experimented
with different pre-trained models for multi-phase
pretraining and fine-tuning. Specifically, we used
three model settings, including mBERT-base cased
(∼200M parameters), XLM-R-base (∼300M pa-
rameters), and XLM-R-large (∼600M parameters).
Systems for the first six language pairs in Table
2 were pre-trained on the parallel data while the
system for Ru-En was only trained on the task data.
We combined predictions on the first six language
pairs as the submission to the multilingual task.

As shown in Table 1, unsupervised QE indica-
tors obtained competitive results using sequence-
level probability from NMT models. Disturbing the
model parameters improves the performance of all
language pairs. We did not combine the predictions
from unsupervised methods into our submissions.

Table 2 lists the results of the system ensemble
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System Target Source
RNN-word 0.467 -
Transformer-word 0.511 -
Transformer-subword 0.542 0.292
Deep Transformer-subword 0.545 -
Ensemble 0.610 0.308

Table 3: Results of the English-Chinese post-editing
task. ‘word’ denotes the system uses word-level tok-
enization.

System Target Source
RNN-word 0.395 -
Transformer-word 0.413 -
Transformer-subword 0.451 0.285
Ensemble 0.500 0.347

Table 4: Results of the English-German post-editing
tasks.

with pretraining and fine-tuning. We combined pre-
dictions from 10 pre-trained models with three dif-
ferent settings: mBERT, XLM-R-base, and XLM-
R-large. We only report the results with the highest
Pearson (r) correlation on the test data. We observe
that larger models consistently outperformed small
ones for all language pairs. Besides, ensemble
methods significantly improved the performance
on the test set. It also shows that the quality estima-
tion of high-resource languages performs far worse
than low-resource languages.

6.2 Task 2

For En-Zh, we trained 5-10 single models for
each setting: token-based bi-RNNs (RNN-Token),
token-based transformer (Trans-Token), BPE-
based transformer (Trans-BPE), and BPE-based
deep transformer with 25 encoder layers (Deep
Trans). For En-De, we created three systems us-
ing the same architectures as En-Zh except for
the deep transformer. We applied the multi-task
learning strategies to the target-side word-level and
sentence-level tasks described as §3.

Table 3 shows the results on the English-Chinese
word-level task. Deep transformer and BPE tok-
enization bring the most gains to both the target-
side MCC. Results on the English-German task are
listed in Table 4. It shows that our ensemble meth-
ods are effective in boosting performance across
different tasks.

System F1 Score Pearson
Transformer-word 0.373 -
Transformer-subword 0.400 -
Deep Transformer 0.402 -
mBERT - 0.446
XLM-R - 0.489
Ensemble 0.418 0.494

Table 5: Results of the document-level tasks. The deep
transformer model contains 24 encoder layers and 6 de-
coder layers.

6.3 Task 3

Table 5 shows the results obtained by three dif-
ferent models and the ensemble on the annotation
task. BPE brings about 0.03 points improvements
of F1 scores on both the validation and test sets.
The system ensemble further pushes the score by
about 0.02. Table 5 also lists the results of the
scoring task. We report the results of two pretrain-
ing methods and their ensemble on the test data.
XLM-R outperformed the mBERT model by 0.04
points in the Pearson correlation, while the ensem-
ble brought a slight benefit.

7 Conclusion

This paper describes the submissions of the Niu-
Trans Team to the WMT 2020 QE task. We ex-
plored the combination of transfer learning, multi-
task learning, and model ensemble. Different level
tasks show that deep transformer NMT models
and multilingual pretraining methods significantly
boost QE models’ performance.

Although our system achieved impressive results
in all tasks and language pairs, there are still many
problems. For instance, the translation quality esti-
mation of low-resource languages performs much
better than that of high-resource. It raises the con-
cern of whether our model learns the evaluation
criteria instead of memorizing data, as suggested
in Sun et al. (2020). Besides, strong NMT models
help quality estimation, but can we use QE models
to improve NMT systems’ learning? We plan to
answer these questions in the future and promote
the joint improvement of QE and NMT models.
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Abstract

In this paper, we describe the Bering Lab’s
submission to the WMT 2020 Shared Task on
Quality Estimation (QE). For word-level and
sentence-level translation quality estimation,
we fine-tune XLM-RoBERTa, the state-of-the-
art cross-lingual language model, with a few
additional parameters. Model training consists
of two phases. We first pre-train our model on
a huge artificially generated QE dataset, and
then we fine-tune the model with a human-
labeled dataset. When evaluated on the WMT
2020 English-German QE test set, our systems
achieve the best result on the target-side of
word-level QE and the second best results on
the source-side of word-level QE and sentence-
level QE among all submissions.

1 Introduction

Machine translation quality estimation (QE) is the
task of estimating the quality of machine-translated
(MT) output given just the source text at various
granularity levels (word, sentence, and document)
(Fonseca et al., 2019). Word-level QE can be di-
vided into target-side and source-side tasks. On the
target-side, the goal is to predict whether each word
in the MT sentence is OK or BAD and whether there
are missing words between each word. The goal
on the source-side is to predict whether each word
in the source sentence is correctly translated or
not. On the other hand, sentence-level QE aims to
predict the Human Translation Error Rate (HTER)
(Snover et al., 2006) of the MT sentence, which
measures the required amount of human editing to
fix the MT sentence.

In this paper, we propose a cross-lingual lan-
guage model fine-tuning approach with a few addi-
tional parameters for word-level and sentence-level
QE. As a pre-trained cross-lingual language model,
we use XLM-RoBERTa (XLM-R) (Conneau et al.,
2019), which shows state-of-the-art performance

for a wide range of cross-lingual transfer tasks. In
addition, since labeling the QE dataset requires
a large amount of human labor, we generate and
utilize a huge artificial QE dataset to improve the
performance of our model. Our contributions are
summarized as follows.

• We propose an XLM-R-based neural net-
work architecture for the QE. Our model can
be jointly trained for both word-level and
sentence-level QE.

• We generate a huge artificial QE dataset based
on a parallel corpus with OpenNMT-py (Klein
et al., 2017) and the TER tool (Snover et al.,
2006).

• We train our model in two phases. First, we
train our model with a huge artificially gen-
erated dataset. Then, we fine-tune the model
with a human-labeled dataset.

In the experiment using the WMT 2020 English-
German word-level QE test set, we achieve an
MCC of 0.597 and 0.454 for the target-side and
source-side, respectively, showing the best and sec-
ond best performance among all submitted systems,
respectively. For the sentence-level QE test set, we
achieve a Pearson correlation of 0.723, which ranks
second among all submissions.

2 Methodology

We fine-tune XLM-R (Conneau et al., 2019) with
a few additional parameters for sentence-level and
word-level QE as described in Figure 1. We train
our model in two phases: 1) pre-training with a
huge artificial dataset and 2) fine-tuning with a
human-labeled dataset.

2.1 Input Representation
We follow the tokenization and input representa-
tion methods of XLM-R. A source sentence and
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Figure 1: The XLM-R-based neural network architecture for word-level and sentence-level QE.

the corresponding MT sentence are tokenized with
the same BPE model (Sennrich et al., 2016) that
is trained based on shared vocabulary through lan-
guages. The input of the XLM-R model is a con-
catenated sequence of source tokens and MT tokens
with special tokens (<s>, </s>) as follows:

<s> src1, ..., src|S| </s> </s> mt1,
..., mt|T | </s>

2.2 Sentence-level QE
For sentence-level QE, we use the final hidden vec-
tor h(0) ∈ RH of XML-R corresponding to the
first input token (<s>) as the pooled representation.
We use two linear layers with tanh activation to
predict sentence-level HTER as follows:

r =Wsh
(0) + b0 (1)

ysent = wT
s tanh(r) + b1 (2)

where Ws ∈ RH×H , ws ∈ RH , b0 ∈ RH and
b1 ∈ R1 are trainable parameters and H is the
dimension of hidden states.

The loss functionLsent is the mean squared error
between ysent and the true HTER ŷsent.

Lsent =MSE(ysent, ŷsent) (3)

2.3 Word-level QE
Word-level QE consists of two parts: the source-
side and target-side. On the source-side, we pre-
dict whether each token in the source sentence is
translated correctly or not. On the target-side, we

predict whether each token in the MT sentence is
OK or BAD, in addition to whether there are missing
words between each word.

Source-side QE For source-side QE, we use the
final hidden vector h(i) ∈ RH of XLM-R corre-
sponding to each token in the source sentence. We
introduce a linear layer and sigmoid activation to
predict the probability that each token is BAD as
follows:

P (i)
src = sigmoid(wT

o h
(i)), i ∈ (1, .., |S|) (4)

where wo ∈ RH is a trainable parameter and |S| is
the number of tokens in the source sentence.

The loss functionLsrc is the binary cross entropy
with an additional weight c for BAD examples as
follows:

Lsrc =
1

|S|

|S|∑

i=1

cŷ(i)
src logP (i)

src + (1− ŷ(i)
src) log(1− P (i)

src)

(5)

Target-side QE For the target-side QE, we use
the final hidden vector d(i) ∈ RH of XLM-R cor-
responding to each token in the MT sentence, in-
cluding the last </s> token. We introduce two
separate binary classification layers to predict the
probability that each token in MT sentence is BAD
as follows:

P
(i)
tgt word = sigmoid(wT

wd
(i)), i ∈ (1, .., |T |)

(6)
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and the probability that missing words exist before
each token as follows:

P
(i)
tgt gap = sigmoid(wT

g d
(i)), i ∈ (1, .., |T |+ 1)

(7)
where ww, wg ∈ RH are trainable parameters and
|T | is the number of tokens in the machine trans-
lated sentence.

The loss function for target-side QE Ltgt is the
sum of the binary cross entropy for word Ltgt word

and gap Ltgt gap that are defined in the same man-
ner as Eq. (5).

Ltgt = Ltgt word + Ltgt gap (8)

2.4 Pre-Training on Artificial Dataset
Building the Artificial Dataset Labeling data
for QE requires the triplets of source sentences,
machine-translated (MT) sentences, and human
post-edited (PE) sentences. Since huge costs are
required to achieve PE sentences, we use a paral-
lel corpus that includes only source sentences and
target sentences to build artificial triplets following
the ideas from Negri et al. (2018).

First, we split the parallel corpus into a training
set and test set. We train an NMT model with
the training set and use the test set to generate
artificial triplets. We generate MT sentences based
on the trained NMT model and we use the target
sentences of the parallel corpus as PE sentences.
We repeat this process with different data splits
to build huge artificial triplets. Finally, we use
the TER tool1 (Snover et al., 2006) to annotate
sentence-level HTER scores and word-level tags
for the MT sentences. We do not annotate source-
side word-level tags in this work as it additionally
requires word alignment between source sentences
and MT sentences.

Pre-training QE Model We first pre-train our
QE model with only the artificial dataset. In the pre-
training step, we jointly train sentence-level QE and
target-side word-level QE on a single model. The
loss function for the pre-training step Lpre train

is the sum of the loss for sentence-level QE and
target-side word-level QE.

Lpre train = Lsent + Ltgt (9)

Since our artificial dataset does not include source-
side word-level tags, we do not include the training
objective for source-side word-level QE in the pre-
training step.

1http://www.cs.umd.edu/˜snover/tercom/

2.5 Fine-Tuning on Human-Labeled Dataset
After the pre-training, we fine-tune the model
with only a human-labeled dataset. Unlike the
pre-training step, each QE model (sentence-level,
source-side and target-side of word-level) is trained
separately in the fine-tuning step.

For the sentence-level and target-side of word-
level QE models, all the parameters are initialized
with trained weights from the pre-training step.
However, since our pre-trained model does not
include source-side word-level QE, we randomly
initialize the weight of a source-side specific param-
eter (wo in Eq. (4)) and the rest of the parameters
are initialized with weights from the pre-trained
model.

2.6 Ensemble
For the sentence-level ensemble, we average the
HTER prediction of multiple models. For the word-
level, we use the majority voting ensemble.

3 Experiments

3.1 Experimental Setup
We evaluate our model with WMT 2020 English-
German QE dataset.2 For the sentence-level QE
evaluation, we use the Pearson correlation for
sentence-level HTER prediction. For the word-
level QE evaluation, we use the Matthews correla-
tion coefficient (MCC) for both the target-side and
source-side.

To generate an artificial dataset for pre-training
(§2.4), we use the English-German parallel cor-
pus provided by the shared task that consists of
23,440,059 pairs. We use 90% of the pairs to
train a Transformer-based (Vaswani et al., 2017)
NMT model with OpenNMT-py (Klein et al., 2017)
and the rest of the pairs are used to generate arti-
ficial triplets. As a result of running the process
five times with different data splits, we achieve
11,720,029 artificial triplets.

For the fine-tuning, we use only the official QE
dataset that consists of 7,000 triplets as a human-
labeled dataset.

3.2 Model Configuration
We use XLM-R-Large (Conneau et al., 2019) as
a pre-trained cross-lingual language model. For
pre-training with the artificial dataset, we use the
Adam optimizer (Kingma and Ba, 2014) with a

2http://www.statmt.org/wmt20/
quality-estimation-task.html
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Systems Pearson↑ Target-side MCC↑ Source-side MCC↑
Ours 0.715 0.591 0.464
-ensemble 0.712 0.586 0.457
-ensemble -pre-train 0.591 0.476 0.365
-ensemble -fine-tune 0.424 0.378 -

Table 1: Ablation analysis for sentence-level and word-level QE on the WMT 2020 English-German QE dev set.
Since our pre-training step does not include source-side word-level QE, we do not measure the source-side MCC
for the pre-trained only model.

Systems Pearson↑ MAE↓ RMSE↓
HW-TSC 0.758 0.099 0.133
Ours (Bering Lab) 0.723 0.107 0.140
NiuTrans 0.649 0.123 0.154
IST and Unbabel 0.633 0.137 0.178
NJUNLP 0.618 0.129 0.160
Baseline 0.392 0.150 0.190

Table 2: Top-5 and baseline systems from the official result for the sentence-level QE on the WMT 2020 English-
German QE shared task.

Systems Target-side MCC↑ Source-side MCC↑
Ours (Bering Lab) 0.597 0.454
HW-TSC 0.583 0.523
NiuTrans 0.500 0.347
NICT Kyoto 0.485 0.353
IST and Unbabel 0.465 0.349
Baseline 0.358 0.266

Table 3: Top-5 and baseline systems from the official result for the word-level QE on the WMT 2020 English-
German QE shared task.

learning rate of 5e-6, and a batch size of 8 for 2
epochs. Additionally, we use dropout (Hinton et al.,
2012) with a rate of 0.1 for the regularization. For
word-level QE, we use a weight of 3.0 on the BAD
class (c). For fine-tuning with the human-labeled
dataset, we follow the same hyperparameters as
the pre-training step but for 5 epochs with early
stopping. For the ensembling, we train five models
with different random seeds.

3.3 Experimental Result

Table 1 shows the result of ablation analysis for
sentence-level and word-level QE on the dev set.
We conduct an ablation analysis of three aspects: 1)
without an ensemble, 2) without pre-training with
artificially generated dataset, 3) without fine-tuning
with human-labeled dataset. When our model
is trained with only the human-labeled dataset,

Pearson correlation, target-side MCC and source-
side MCC drop by 0.12, 0.11, and 0.09, respec-
tively. This result demonstrates that pre-training
with the artificial dataset significantly improves per-
formance for both sentence-level and word-level
QE. When our model is trained with only the arti-
ficial dataset, Pearson correlation and target side
MCC drop by 0.29 and 0.21, respectively. This
result shows that fine-tuning with a human-labeled
dataset is essential for our performance.

Table 2 and 3 shows the official results for
sentence-level and word-level QE for the WMT
2020 QE shared task. For both sentence-level and
word-level QE, our systems significantly outper-
formed the official baseline systems (Kepler et al.,
2019). Moreover, we achieve the best result on
the target side of word-level QE among all sub-
mitted systems. We also achieve the second best
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results on the source side of word-level QE and
sentence-level QE.

4 Conclusion

This paper describes Bering Lab’s submissions to
the WMT 2020 QE shared task. We propose a two-
phase cross-lingual language model fine-tuning ap-
proach for word-level and sentence-level transla-
tion quality estimation. The experimental results
show that pre-training with an artificially gener-
ated dataset significantly improves performance for
both tasks. Overall, our submitted systems achieve
the best result on the target side of word-level QE
and the second best results on the source side of
word-level QE and the sentence-level QE among
all submissions.
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Mark Fishel, and Christian Federmann. 2019. Find-
ings of the wmt 2019 shared tasks on quality esti-
mation. In Proceedings of the Fourth Conference on
Machine Translation (Volume 3: Shared Task Papers,
Day 2), pages 1–10.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Fabio Kepler, Jonay Trénous, Marcos Treviso, Miguel
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Abstract
We present the joint contribution of IST and
Unbabel to the WMT 2020 Shared Task on
Quality Estimation. Our team participated on
all tracks (Direct Assessment, Post-Editing Ef-
fort, Document-Level), encompassing a total
of 14 submissions. Our submitted systems
were developed by extending the OpenKiwi
framework to a transformer-based predictor-
estimator architecture, and to cope with glass-
box, uncertainty-based features coming from
neural machine translation systems.

1 Introduction

Quality estimation (QE) is the task of evaluating a
translation system’s quality without access to refer-
ence translations (Blatz et al., 2004; Specia et al.,
2018). This paper describes the joint contribution
for Instituto Superior Técnico (IST) and Unbabel
to the WMT20 Quality Estimation shared task,
where systems were submitted to all three tasks:
1) sentence-level direct assessment; 2) word and
sentence-level post-editing effort; and 3) document-
level annotation and scoring.

Unbabel’s participation in previous editions of
the shared task (2016, 2017, 2019) used ensemble
of strong individual systems, with varying architec-
tures and hyper-parameters. While this strategy led
to very strong results, large system ensembles are
not a very practical solution, complicating model
deployment and requiring expensive computation
and memory usage. This year, in contrast, our fo-
cus was on simplicity: only single model systems
were submitted and, in a few cases, an additional
simple ensemble of the same model. Transfer learn-
ing on top of pretrained multilingual models was
also used for avoiding manual pretraining for each
language pair.

Last year’s winning submission (Kepler et al.,
2019a) combined strong individual systems built

on top of the OpenKiwi framework (Kepler et al.,
2019b) and pretrained Transformer models. We
consolidated those changes with support for newly
released pretrained models and packages and pub-
lished a new version 2.0 of the OpenKiwi frame-
work.1 We trained and submitted single model
systems in OpenKiwi for all tasks, beating all base-
lines by a large margin. Additionaly, we also used
OpenKiwi with small adaptations to handle specific
sources of information in Tasks 1 and 3.

Task 1, in particular, was introduced this year
with Direct Assessment scores as targets. Further,
it introduced the novelty of providing the trained
NMT models that were used for producing the
translations. Previously, only black-box QE was
considered in the WMT Shared Task, as it is one
of the main uses cases. With the availability of the
NMT models, new glass-box approaches can be
explored. Our best submitted systems drew inspi-
ration from (Fomicheva et al., 2020) to leverage
this information, improving in performance and
robustness over a black-box approach.

Our main contributions are:

• We release the second version of OpenKiwi
along with our submission, with a variety of
new features, including the ability to use pre-
trained Transformer-based Language Models;

• We show that transfer learning techniques still
perform well, by fine-tuning XLM-Roberta in
a Predictor-Estimator architecture;

• We incorporate features extracted from the
provided NMT models into our existing archi-
tectures and show that glass-box QE improves
upon black-box approaches.

1The new version will be publicly available at https:
//github.com/unbabel/openkiwi.
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2 Quality Estimation Tasks

This year’s shared task edition comprised three
tasks: 1) a newly introduced one for sentence-level
direct assessment; 2) one for word and sentence-
level post-editing effort; and 3) one for document-
level. Refer to the Findings paper (Specia et al.,
2020) for full descriptions.

Of noteworthy mention is that the NMT models
for Tasks 1 and 2 where provided along with the
data, which opened up the possibility of using glass-
box approaches.

3 Implemented Systems

To avoid the complexity of ensemble of several sys-
tems, all our submitted systems consisted of a sin-
gle model type. In addition to standard OpenKiwi
2.0 systems submitted to Tasks 1 and 2 (§3.1), we
implemented two types of extensions on top of
OpenKiwi, one for exploring glass-box approaches
for Tasks 1 and 2 (§3.2), and one for handling
document-level QE for Task 3 (§3.3).

3.1 Base OpenKiwi System
Given the success in doing transfer learning with
pretrained Language Models in last year’s shared
task edition, we published support for them as part
of the open source QE framework OpenKiwi in a
new 2.0 version. BERT, XLM, and XLM-Roberta
are currently supported via the Transformers2

Python package (Wolf et al., 2019), which means
different models can be easily used. For this year’s
shared task, we based all systems on this version of
OpenKiwi and used pretrained XLM-Roberta mod-
els (Conneau et al., 2020), either base or large
versions. We chose XLM-Roberta (called XLM-R
from here on) instead of XLM, used in last year’s
best individual model, due to its reported state-of-
the-art performance on downstream cross-lingual
tasks and based on preliminary experiments.

The architecture follows the overall pattern intro-
duced originally in the Predictor-Estimator model
(Kim et al., 2017), comprising a “Feature Extrac-
tor” module with a “Quality Estimator” module on
top. Figure 1 depicts this general architecture.

The Feature Extractor module consists of a pre-
trained XLM-R model and feature extraction meth-
ods on top, such that features for the target sen-
tence, the target tokens, and the source tokens are
returned separately. Source and target sentences

2https://github.com/huggingface/
transformers

XLM-R

SOURCETARGET

Q
U

A
LITY E

STIM
A

TO
R

FE
A

TU
R

E
 E

XT
R

A
C

TO
R

Feature Extraction Layers

Linear Layers

SCORE TAGS

Sentence Words

Figure 1: General architecture of the implemented
OpenKiwi-based systems.

are passed as inputs in the format <s> target
</s> <s> source </s>. Output features for
tokens in the target sentence are averaged and then
concatenated with the classifier token embedding
(first <s> in the input), and returned as sentence
features.3

For the Quality Estimator module we used linear
layers instead of a bi-LSTM (as used by Kim et al.
(2017)), since initial experiments showed similar
performance. Additional linear layers were stacked
on top for each output type: target words, target
gaps, source words, and sentence regression.

For the plain OpenKiwi submissions we used
the XLM-R base model and a Quality Estima-
tor block with two linear layers. Hyper-parameter
search was performed for each language pair and
task4 and submitted as a single model system to
Tasks 1 and 2, and used as basis for the submission
to Task 3. These systems will be referred to as
OPENKIWI-BASE through the rest of the paper.

3Even though XLM-R was not trained on the Next Sen-
tence Prediction objective (therefore not using the classifica-
tion token in its original pretraining), preliminary experiments
showed that concatenating inputs, average pooling, and using
the classification token resulted in better performance com-
pared to feeding source and target separately and extracting
sentence features with other strategies (only pooled target,
only the classifier token, classifier token + pooled source, and
others).

4Hyper-parameters that were searched are: learning rate,
dropout, number of warmup steps, and number of freeze steps.
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3.2 Glass-Box QE

3.2.1 Glass-Box Features
Recent work on MT confidence estimation
(Fomicheva et al., 2020) showed that useful infor-
mation coming from an MT system, obtained as a
by-product of translation, can be competitive with
supervised black-box QE models in terms of corre-
lation to human judgements of translation quality,
in settings where the labeled data is scarce. The
approach described in Fomicheva et al. (2020) re-
quires access to the MT system that produced the
translations (unlike the black-box regime). This
year’s new Task 1, and the fact it shares datasets
with Task 2, allowed us to explore this approach
on both tasks. In our work, we investigated how
to combine the richness of this extra information
coming from the provided Neural MT (NMT) sys-
tem with the strength of state-of-the-art approaches
to supervised QE.

To this end, we extract features (referred to as
glass-box features henceforth) using the output
probability distribution obtained from (i) a standard
deterministic NMT and (ii) using uncertainty quan-
tification. For (ii) we use Monte Carlo Dropout
(Gal and Ghahramani, 2015) as a way of circum-
venting the miscalibration problem of Deep Neural
Networks (Guo et al., 2017) and obtaining mea-
sures indicative of the model’s uncertainty.

We obtain 7 different features for each sentence
of each language-pair, the first 3 via (i) and the
last 4 via (ii) (full details are in Fomicheva et al.
(2020)):

• TP - sentence average of word translation
probability

• Softmax-Ent - sentence average of soft-
max output distribution entropy

• Sent-Std - sentence standard deviation of
word probabilities

• D-TP - average TP across N (N = 30)
stochastic forward-passes

• D-Var - variance of TP across N stochastic
forward-passes

• D-Combo - combination of D-TP and
D-Var defined by 1− D-TP/D-Var
• D-Lex-Sim - lexical similarity - measured

by METEOR score (Banerjee and Lavie, 2005)
- of MT output generated in different stochas-
tic passes.

Figure 2: Architecture of the “Quality Estimator” mod-
ule modified to include glass-box features.

Table 1 shows the correlation between each one
of these features and human DAs for every lan-
guage pair in Task 1. As expected, features ob-
tained using uncertainty quantification consistently
display higher correlations across all language-
pairs, D-TP being the most effective for high and
medium resource languages, and D-Lex-Sim for
low resource languages.

3.2.2 Glass-box + Black-box Model
Different configurations were attempted in order
to introduce the extracted glass-box features into
the OpenKiwi system. The best empirical perfor-
mance was observed with a simple method: we
reduced the dimension of the pooled sentence fea-
tures output from XLM-R by about five fold (onto
bottleneck size), creating a dimensional bot-
tleneck and forcing a more compact sentence rep-
resentation, and then concatenated the seven ex-
tracted glass-box features to this hidden state, fol-
lowed by an expansion back to a higher dimen-
sional state of hidden size. The result is used
as input feature for regression on the sentence score,
employing p progressively smaller feed-forward
layers (halving in size). A visualization of this
process can be seen in Figure 2.

The glass-box features were individually normal-
ized a priori, according to their mean and variance
in the training dataset, allowing for their integra-
tion in the network’s training in a scale-independent
way.

Systems were trained for all language pairs in
Tasks 1 and 2. XLM-R large was used instead
of base version. We ran experiments with and
without glass-box features. From here on we will
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Feature Language Pair
En-De En-Zh Ro-En Et-En Ne-En Si-En Ru-En

(i)
TP 0.0993 0.2808 0.5951 0.3992 0.3653 0.3658 0.3658
Softmax-Ent 0.0858 0.2919 0.5595 0.3546 0.4133 0.4077 0.3790
Sent-Std 0.0691 0.3252 0.5049 0.3985 0.3669 0.3912 0.3510

(ii)

D-TP 0.1078 0.3158 0.6404 0.4936 0.3905 0.3797 0.4441
D-Var 0.0782 0.1943 0.3550 0.2780 0.2336 0.2338 0.2329
D-Combo 0.0487 0.1259 0.2620 0.1335 0.2938 0.2244 0.2013
D-Lex-Sim 0.0994 0.2903 0.6210 0.3940 0.4751 0.4318 0.4092

Table 1: Pearson correlation (r) between the employed glass-box features and human DA’s for every language pair
in Task 1 (validation set) - best results are in bold.

call KIWI-GLASS-BOX the system as described
here, which was the one used for the official sub-
missions, but for comparison we will also refer to
KIWI-LARGE as the same system but without using
the glass-box features.

Hyper-parameter search was performed
over p, bottleneck size, hidden size,
warmup steps (number of warm up steps for
optimizer), freeze steps (number of steps for
which XLM-R’s weights are not updated) and lr
(learning rate). The exact values can be found in
Table 6 in Appendix A.

All submissions of KIWI-GLASS-BOX to Task
1 were created by simple linear ensembles, com-
bining 5 of the models obtained through hyper-
parameter search for each language pair. We used
the validation set predictions of these 5 models to
train a LASSO regression model. However since
we do not possess labels for the test set, these en-
sembles were trained using k-fold cross-validation
(k = 10) on the validation set.

3.3 Document-level QE
For Task 3 we submitted two systems, both of
which are based on the general OpenKiwi archi-
tecture described in Section 3.1. The two systems
differ only in the type of tags they predict, and
the subsequent post-processing that is applied to
these tags to obtain annotations and document-level
MQM (Multidimensional Quality Metrics) scores.
We submitted single systems that predict both tasks
of document-level annotation and scoring.

The first system, henceforth referred to as KIWI-
DOC, is OPENKIWI-BASE with additional data pro-
cessing to convert between word- and sentence-
level predictions, and document-level predictions.
The data approach is the exact same as Kepler et al.
(2019a). To obtain training data, annotations are
converted to binary word-level tags (OK and BAD
tags) and sentence-level MQM scores are computed

from the annotations pertaining to the sentence. Af-
ter training, document-level annotation predictions
are obtained by the following heuristic: contiguous
BAD tags in the word-level predictions are grouped
into a single annotation span and are given the
severity label major. Predicted document-level
MQM scores are obtained by averaging predicted
sentence-level MQM weighted by sentence-length
(regression) or by direct computation from
the predicted annotations using the MQM formula
(direct).

The second system, KIWI-DOC-IOB, is a new
contribution in which the task of annotating is ap-
proached as Named-entity recognition by using
severity tags in IOB (Inside-Outside-Beginning)
format.5 This richer tag scheme addresses two
types of information loss that occur in the approach
taken for KIWI-DOC: the severity information is
kept, and adjacent but disjoint annotations are not
collapsed into single annotations during predic-
tion.6 This approach has the advantage that the
predicted tag sequences can be converted to an-
notations directly by converting the token spans
into character spans and using the predicted la-
bel as severity. The architecture of KIWI-DOC-
IOB is identical to that of KIWI-DOC except that it
is trained with a linear chain CRF7 that enforces
correctness of the IOB tag-sequence at prediction
time8.

For both systems we trained a final linear re-
gression model that combines the two types of pre-

5The full label set is hence: B-minor, I-minor,
B-major, I-major, B-critical, I-critical, and
O.

6The two other types of information loss that were noted by
Kepler et al. (2019a) are left unaddressed: tags are still defined
at the token-level, and annotations consisting of multiple spans
are still split into individual annotations.

7Each edge score is a single learned parameter that is
independent of the input.

8During decoding, the edge scores corresponding to the
impossible transitions are set manually to −∞.
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dicted MQM scores (regression and direct)
with features derived from the tag-level predictions.
We use the following additional features (when
available9) computed over the document: the frac-
tion of predicted tags corresponding to an error
tag;10 and the mean, variance, minimum, and max-
imum of the probability of the BAD. For simplicity
we train the linear regression on the same train-
ing data as the systems. For each system, we per-
form search over all combinations of features, and
choose the subset that gives the highest Pearson
score on the validation set for that particular sys-
tem.

4 Experimental Results

4.1 Task 1: Sentence-Level Direct
Assessment

The results achieved over the validation set on all
language pairs for Task 1 are shown in Table 2.
We also include the best correlation achieved by
any glass-box feature (denoted by BEST GB FEA-
TURE), showing that indeed the proposed method
allows for this rich information to complement and
enhance the model’s training, resulting in a perfor-
mance increase when compared to model or GB-
feature independently.

High resource language pair models (En-De, En-
Zh, Ru-En benefit the most from the aid of NMT
internal information, in particular English-German,
where an increase of ≈ 4.5% occurs; this might
indicate the usefulness of incorporating nuanced
information when sentence scores have less vari-
ability.

Scored test set predictions submitted during the
development of this approach served as informative
feedback, revealing the drop from validation to test
performance to be smaller on KIWI-GLASS-BOX

models when compared to KIWI-LARGE models,
suggesting better generalization capabilities.

4.2 Task 2: Word and Sentence-Level
Post-editing Effort

We trained OPENKIWI-BASE and KIWI-GLASS-
BOX on all three subtasks at the same time: source
tags, target tags, and sentence HTER. The best
model was selected by the highest sum of the three
metrics on the validation set. We used a single run

9Because of the non-binary tags and CRF model the prob-
ability based features are not used for the KIWI-DOC-IOB
model (posterior marginals could be used for this).

10This correspond to the BAD tag for KIWI-DOC and all
tags different from O for KIWI-DOC-IOB.

Pair System Pearson
VAL TEST

En-De

(*)KIWI-GLASS-BOX-ENSEMBLE 0.5715 0.5230
KIWI-GLASS-BOX 0.5263 -
KIWI-LARGE 0.4794 -
OPENKIWI-BASE 0.3499 0.2670
BEST GB FEATURE 0.1078 -
Openkiwi 1.0 - 0.1455

En-Zh

(*)KIWI-GLASS-BOX-ENSEMBLE 0.5711 0.4940
KIWI-GLASS-BOX 0.5461 -
KIWI-LARGE 0.5258 -
OPENKIWI-BASE 0.4199 0.3460
BEST GB FEATURE 0.3252 -
OpenKiwi 1.0 - 0.1902

Ro-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.8968 0.8910
KIWI-GLASS-BOX 0.8841 -
KIWI-LARGE 0.8790 -
OPENKIWI-BASE 0.6672 0.7080
BEST GB FEATURE 0.6404 -
OpenKiwi 1.0 - 0.6845

Et-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.7697 0.7700
KIWI-GLASS-BOX 0.7611 -
KIWI-LARGE 0.7496 -
OPENKIWI-BASE 0.6728 0.6900
BEST GB FEATURE 0.4936 -
OpenKiwi 1.0 - 0.4770

Ne-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.7994 0.7920
KIWI-GLASS-BOX 0.7804 -
KIWI-LARGE 0.7711 -
OPENKIWI-BASE 0.6987 0.6040
BEST GB FEATURE 0.4751 -
OpenKiwi 1.0 - 0.3860

Si-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.6896 0.6390
KIWI-GLASS-BOX 0.6604 -
KIWI-LARGE 0.6521 -
OPENKIWI-BASE 0.5727 0.5650
BEST GB FEATURE 0.4318 -
OpenKiwi 1.0 - 0.3737

Ru-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.7391 0.7670
KIWI-GLASS-BOX 0.7137 -
KIWI-LARGE 0.6938 -
OPENKIWI-BASE - -
BEST GB FEATURE 0.4441 -
OpenKiwi 1.0 - 0.5479

Table 2: Task 1 results on the validation and test sets
for all language pairs in terms of Pearson’s r correla-
tion. Systems in bold were officially submitted. (*)
Lines with an asterisk use LASSO regression to tune
ensemble weights on the validation set, therefore their
numbers cannot be directly compared to the other mod-
els.

of each of the two models to simultaneously predict
the three outputs. The results can be seen in Table 3.
Using the glass-box features provided a significant
boost to the Pearson score, showing our strategy
for sentence-level DA estimation performed well
also when estimating sentence-level HTER.

Even though we only have a single model for all
subtasks, our models outperformed the baselines by
a large margin and performed very competitively
in the test leaderboard (to cite Findings paper).

4.3 Task 3: Document-Level QE
The results for the document-level scoring are
shown in Table 4. For both systems we observe
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Pair System Target MCC Source MCC Pearson
Val Test Val Test Val Test

En-De
KIWI-GLASS-BOX 0.460 0.465 0.357 0.349 0.618 0.633
OPENKIWI-BASE 0.445 0.432 0.330 0.324 0.561 0.531
(*)OpenKiwi 1.0 - 0.358 - 0.266 - 0.392

En-Zh
KIWI-GLASS-BOX 0.567 0.567 0.348 0.287 0.691 0.651
OPENKIWI-BASE 0.576 0.575 0.298 0.287 0.615 0.593
(*)OpenKiwi 1.0 - 0.509 - 0.270 - 0.506

Table 3: Task 2 word and sentence-level results on the validation and test sets. Results for OPENKIWI-BASE and
KIWI-GLASS-BOX were obtained from a single model trained by multi-tasking on the 3 different subtasks. (*)
Baseline results on the validation set were not made available by the organizers.

System Validation Test

KIWI-DOC-regression 0.5146 0.4127
KIWI-DOC-direct 0.3131 0.3156
KIWI-DOC-linear 0.5635 0.4014
KIWI-DOC-IOB-regression 0.5731 0.4746
KIWI-DOC-IOB-direct 0.5483 0.3363
KIWI-DOC-IOB-linear 0.6023 0.4493

Table 4: Results of document-level (task 3) submis-
sions for MQM scoring (Pearson). The results of
KIWI-DOC and KIWI-DOC-IOB are for the same single
model. For model selection during training we used
the summed validation set Pearson of direct and
regression to obtain a model that performs well in
both methods.

System Validation Test

KIWI-DOC 0.4934 0.4716
KIWI-DOC-IOB 0.4016 0.4147

Table 5: Results of document-level (task 3) submis-
sions for annotation (F1). For model selection during
training we used validation set MCC for KIWI-DOC
and validation set tagging F1 for KIWI-DOC-IOB.

a large drop in Pearson score from validation set
to test set, in the range of 0.1-0.2,11 which sug-
gests that there is a difference in data distribution
between the two sets. On the validation set, KIWI-
DOC and KIWI-DOC-IOB obtain comparable Pear-
son correlation, albeit for different MQM methods.
While both models perform comparably in the sen-
tence score prediction (regression), the KIWI-
DOC-IOB system clearly outperforms KIWI-DOC

on the MQM scores that are computed directly
from the predicted annotations (direct). The
improvements made by linear regression on the val-
idation set do not consistently translate to the test

11The only exception is KIWI-DOC-IOB-direct, which
performanced equally poorly on both.

set. This suggests that our method of search over
features for the linear regression is overly optimiz-
ing the performance to the validation data. It may
also reflect our choice to train the linear model on
system predictions on training data.

Table 5 shows the results for the annotation task.
The best results are obtained by KIWI-DOC. Sur-
prisingly, the strong scoring results of KIWI-DOC-
IOB with direct (derived from predicted anno-
tations) do not translate to good results on the an-
notation F1. The difference between the models
is caused by the different trade-off between pre-
cision and recall: KIWI-DOC-IOB produces less
annotations that are more precise, but KIWI-DOC

catches much more errors.12 The most likely cause
for this is the more complex tag-set and constrained
decoding of KIWI-DOC-IOB.

5 Conclusions

Our approach to this year’s edition of the QE shared
task was simplicity. Our submissions consisted
of either single models, or simple ensembles of
multiple runs of the same model. Moreover, we
used multi-task models in Task 2, where a system
was trained on all three possible outputs (target
and source word level and sentence level). We
implemented a new version of OpenKiwi and used
it as our baseline. It significantly outperformed the
official shared task baseline across the board, which
was based on the previous version of OpenKiwi.
Finally, we showed that having access to NMT
models enables using glass-box approaches to QE,
which in turn improves performance when used in

12On the validation set KIWI-DOC-IOB predicted 2555 an-
notations, whereas KIWI-DOC predicted 4028 (the gold set
has 5626 annotations). Extending the output message of the
annotation evaluation script allowed us to further validate this
hypothesis on the validation set: for KIWI-DOC-IOB preci-
sion/recall is 0.6287/0.3322; for KIWI-DOC precision/recall is
0.4549/0.6092.
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combination with a black-box QE system.
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A Hyper-parameters

Table 6 shows the hyperparameters used in Task 1.

Language
Pair

Hyper-parameters
hidden size bottleneck size lr warmup steps freeze steps

EN-DE 900 200 1.00E-05 6535 750
EN-ZH 700 300 7.00E-06 3280 4375
RO-EN 900 200 9.00E-06 2625 5687
ET-EN 500 200 7.00E-06 655 3935
NE-EN 900 200 1.20E-05 2625 3060
SI-EN 900 200 7.00E-06 5250 5250
RU-EN 700 200 1.70E-05 3800 6125

Table 6: Hyper-parameters of the best models trained for each language pair in Task 1. 70 trials were performed for
each search, using the OPTUNA framework (Akiba et al., 2019), and hyper-parameter values were sampled with
the TPE (Tree-structured Parzen Estimator) algorithm. The criterion for trial selection was r Pearson correlation
to validation set DA’s.
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Abstract

We introduce the TMUOU1 submission for the
WMT20 Quality Estimation Shared Task 1:
Sentence-Level Direct Assessment. Our sys-
tem is an ensemble model of four regression
models based on XLM-RoBERTa with lan-
guage tags. We ranked 4th in Pearson and 2nd
in MAE and RMSE on a multilingual track.

1 Introduction

Quality Estimation (QE) is a task of estimating
translation quality without reference sentences
(Gandrabur and Foster, 2003; Blatz et al., 2004;
Specia et al., 2018). Automatic evaluation metrics
based on reference sentences, such as BLEU (Pap-
ineni et al., 2002), have contributed to improving
translation quality on benchmark datasets. How-
ever, in situations where machine translation (MT)
is actually used, these metrics are sometimes un-
able to assess the translation quality owing to the
lack of reference sentences. The development of
QE methods that are well correlated with manual
evaluations enable users to decide whether to use
the translation results as is, post-edit the results, or
employ other machine translations.

At the Conference on Machine Translation
(WMT), there have been conducted several QE-
related competitions such as the QE task (Fonseca
et al., 2019) for estimating post-edit rate HTER
(Snover et al., 2006) and the QE as a Metric task
(Ma et al., 2019) for relative evaluations of trans-
lation quality. This year, the WMT QE task held a
new competition (Specia et al., 2020) on absolute
evaluations of translation quality. In task 1, sen-
tences are annotated with direct assessment (DA)
scores as in the metrics task (Bojar et al., 2017).

1Tokyo Metropolitan University and Osaka University

We have been working on the metrics task with
an approach that uses pre-trained sentence encoders
(Shimanaka et al., 2018, 2019). Shimanaka et al.
(2018) employed InferSent (Conneau et al., 2017),
Quick-Thought (Logeswaran and Lee, 2018), and
Universal Sentence Encoder (Cer et al., 2018) as
encoders, and achieved the highest performance in
all to-English language pairs of WMT18 metrics
shared task (Ma et al., 2018). Subsequently, Shi-
manaka et al. (2019) employed BERT (Devlin et al.,
2019) as an encoder to further improve the corre-
lation with manual evaluations. In this study, we
apply similar approaches to the QE task. However,
to support both source and target languages, we
employ XLM-RoBERTa2 (Conneau et al., 2020), a
pre-trained multilingual sentence encoder.

2 WMT20 QE Shared Task 1

In the WMT20 QE task 1 (Sentence-Level Direct
Assessment), participants predict translation qual-
ity at the sentence level from pairs of source and
MT output sentences. This task provides datasets
for seven language pairs and sets up a multilingual
track for a language-independent approach.

2.1 Datasets
Source sentences have been collected from
Wikipedia for six language pairs: English–
German (En-De), English–Chinese (Eh-Zh),
Romanian–English (Ro-En), Estonian–English (Et-
En), Nepalese–English (Ne-En), and Sinhala–
English(Si-En). In addition, a combination of
75% Reddit data and 25% Wikipedia data for the
Russian–English (Ru-En) language pair is provided.
Organizers trained state-of-the-art neural MT mod-
els on each dataset using the fairseq toolkit (Ott
et al., 2019) and generated MT output sentences.

2https://github.com/facebookresearch/XLM
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Source MT output QE score

Its ferocious winds defoliated nearly all
vegetation, splintering or uprooting thou-
sands of trees and decimating the is-
land’s lush rainforests.

Seine wilden Winde entblätterten fast die
gesamte Vegetation, zersplitterten oder en-
twurzelten Tausende von Bäumen und dez-
imierten die üppigen Regenwälder der Insel.

1.267

The Cubs tied it in the third on a triple by
Ben Zobrist to knock in Daniel Murphy.

Die Cubs band es in der dritten auf einem Triple
von Ben Zobrist in Daniel Murphy klopfen.

−3.760

Table 1: Examples of English-German dataset.

Three or more professional translators annotated
DA scores in the range of 0-100 points for each pair
of source and MT output sentences. These anno-
tations are following the FLORES setup (Guzmán
et al., 2019). The dataset consists of pairs of
source and MT output sentences, z-standardized
DA scores, and MT model score (log probabilities
for words). Table 1 shows examples of the dataset.
For each language pair, 7,000 training sets, 1,000
development sets, and 1,000 test sets are provided.

2.2 Baseline and Evaluation

The baseline system is a Predictor-Estimator model
(Kim et al., 2017) implemented in OpenKiwi3 (Ke-
pler et al., 2019). The predictor is trained on a
parallel corpus used to train the MT model, and
predicts each target token from source and target
contexts. And the estimator predicts the QE score
from features produced by the predictor.

Participants are evaluated by Pearson’s cor-
relation metric (Pearson), mean absolute error
(MAE), and root mean squared error (RMSE). A
z-standardized DA score is used as a gold label.

3 TMUOU System

Our system is an ensemble model of four regression
models based on XLM-RoBERTa (Conneau et al.,
2020) with language tags. We first explain each
base model in Section 3.1, and then introduce the
ensemble model in Section 3.2. Finally, Section
3.3 describes the implementation details.

3.1 Base Models

Recently, the fine-tuning approach for masked lan-
guage models (Devlin et al., 2019) has achieved
the highest performance for many language under-
standing tasks (Wang et al., 2019). The BERT-
based regression model (Shimanaka et al., 2019)

3https://github.com/Unbabel/OpenKiwi

also achieves high performance in the WMT met-
ric task that estimates the DA score of translation
quality (Bojar et al., 2017). We employ XLM-
RoBERTa (Conneau et al., 2020), a multilingual
masked language model, for this task to estimate
the DA score of translation quality from pairs of
source and MT output sentences.

E0 Model In this model, we fine-tune the XLM-
RoBERTa in the normal way. We input sentence
pairs into the model in the following format and use
the special token <s> at the beginning of the first
sentence to estimate the QE score: <s> source
</s> <s> MT output </s>.

E0+LangTag Model To make it clear to the
XLM-RoBERTa which language each sentence
is in, we add a special token (LangTag) for lan-
guage identification, such as <en>, at the begin-
ning of each sentence. We have expanded the to-
kenizer and vocabulary and added the following
eight LangTags: <en> <et> <de> <ne> <ro>
<ru> <si> <zh>. An example of input to the
model is as follows: <s> <en> source </s>
<s> <de> MT output </s>.

E0+AVG Model Averaged token vector is as
fruitful as the <s> vector at the beginning of the
first sentence (Reimers and Gurevych, 2019). We
concatenate the averaged token vector and the <s>
vector to get richer information from sentence
pairs.

E0+AVG+LangTag Model This model is a com-
bination of the above models. As shown in Figure 1,
we add LangTag at the beginning of each sentence
and concatenate the <s> vector with the averaged
token vector to estimate the QE score.

3.2 Ensemble Model

We ensemble four models described above to make
prediction stable. A Gradient Boosting Tree (Fried-
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Figure 1: Overview of the TMUOU system.

En-De En-Zh Ro-En Et-En Ne-En Si-En Ru-En Multilingual

E0 0.455 0.490 0.860 0.747 0.742 0.646 0.693 0.662
E0+LangTag 0.419 0.465 0.874 0.744 0.763 0.648 0.701 0.652
E0+AVG 0.461 0.440 0.873 0.738 0.751 0.658 0.689 0.659
E0+AVG+LangTag 0.410 0.465 0.885 0.764 0.769 0.646 0.699 0.663

Ensemble 0.485 0.506 0.897 0.783 0.801 0.691 0.726 0.698

Table 2: Pearson’s correlation on the development sets.

man, 2001) is trained using k-fold cross-validation
on the development set with the QE scores esti-
mated by each base model as the features. In addi-
tion to the QE scores estimated by each base model,
the features of the ensemble model also include the
sum of MT model scores for each output word and
a one-hot vector representing the language pair.

3.3 Implementation Details

We implemented all models based on the Hug-
ging Face (Wolf et al., 2019) XLM-RoBERTa-large
model.4 The hyper parameters are as follows: batch
size is 16, weight decay is 0.01, gradient clipping
norm is 5.0, dropout for the attention layers and
regression layer are 0.1, max epoch is 100. We use
early stopping by Pearson metric on the dev sets
with patience 5. We use Adam optimizer (Kingma
and Ba, 2015) with warm up. The learning rate for
the optimizer is 2e−5, and we gradually decrease
the learning rate by a linear scheduler.

For the ensemble model, we trained gradient
boosting regressor with least square loss imple-
mented in scikit-learn (Pedregosa et al., 2011) with
10 folds cross-validation. The hyper parameters are
as follows: the initial learning rate is 0.1, the num-
ber of estimators are 100, the subsample ratio is 1.0,
the criterion is mean squared error with improve-
ment score by Friedman, the minimum amount of
sample split is 2, max depth of the tree is 3.

4https://huggingface.co/xlm-roberta-large

MAE RMSE Pearson

Bergamot-LATTE 0.408 0.527 0.718
TMUOU 0.418 0.543 0.686
IST and Unbabel 0.433 0.569 0.673
TransQuest 0.480 0.596 0.722
NiuTrans 0.529 0.653 0.732
WL Research 0.538 0.683 0.546
IST and Unbabel 0.547 0.719 0.583
Baseline 0.788 0.999 0.376
Bergamot-LATTE 0.895 1.062 0.489
nc 0.918 1.141 0.462

Table 3: Official results in ascending order of MAE.

4 Results

Table 2 shows the Pearson’s correlation of each
model on the development sets. Although there
is no significant difference in the performance of
the base models, the E0+AVG+LangTag model
achieves higher performance in the majority of lan-
guage pairs. The ensemble model achieves the
highest performance in all language pairs. QE per-
formance of to-English language pairs tends to be
higher than that of from-English language pairs.

Table 3 presents the official results for a multi-
lingual track. Participants are listed in ascending
order of MAE. We submitted the ensemble model
and ranked 4th in Pearson and 2nd in MAE and
RMSE on a multilingual track.
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5 Conclusions

We describe the TMUOU submission for the
WMT20 Shared Task on Quality Estimation. Our
system is an ensemble model based on XLM-
RoBERTa, which takes into account averaged to-
ken vectors and language identifiers to improve
performance. In the official evaluation, we ranked
4th in Pearson and 2nd in MAE and RMSE on a
multilingual track.
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Abstract
This paper describes the NICT Kyoto sub-
mission for the WMT’20 Quality Estimation
(QE) shared task. We participated in Task
2: Word and Sentence-level Post-editing Effort,
which involved Wikipedia data and two trans-
lation directions, namely English-to-German
and English-to-Chinese. Our approach is
based on multi-task fine-tuned cross-lingual
language models (XLM), initially pre-trained
and further domain-adapted through interme-
diate training using the translation language
model (TLM) approach complemented with a
novel self-supervised learning task which aim
is to model errors inherent to machine transla-
tion outputs. Results obtained on both word
and sentence-level QE show that the proposed
intermediate training method is complemen-
tary to language model domain adaptation and
outperforms the fine-tuning only approach.

1 Introduction

This paper presents the NICT Kyoto submission
for the ninth edition of the quality estimation (QE)
shared task organized at the fifth conference for
machine translation (WMT’20). The goal of QE
is to estimate the quality of machine translation
(MT) output without using a translation reference.
The system developed for the task and described
in this paper is based on pre-trained cross-lingual
language models (XLM) (Conneau and Lample,
2019), domain and task-adapted through intermedi-
ate training (Phang et al., 2018) and fine-tuned in a
multi-task fashion for the sentence and word-level
QE objectives.

It was shown during the QE shared task at
WMT’19 (Fonseca et al., 2019) that pre-trained
language models (LM) fine-tuned for QE reach
state-of-the-art results at the levels of sentence
and word following the predictor–estimator archi-
tecture (Kim et al., 2017) or using a fully end-
to-end approach (Kepler et al., 2019; Kim et al.,

2019; Zhou et al., 2019). However, fine-tuning pre-
trained LMs is highly unstable when the dataset
used for fine-tuning is small (Devlin et al., 2019;
Zhang et al., 2020), which is usually the case for
QE, as annotated datasets are scarce and expensive
to produce, and WMT QE datasets are no excep-
tions (the shared task datasets are presented in Ta-
ble 3). This fine-tuning instability might be due
to neural network (NN) optimization difficulties or
lack of generalization. (Mosbach et al., 2020)

To reduce fine-tuning instability of pre-trained
LMs, Phang et al. (2018) introduced intermediate
training, using large scale labeled data relevant to
the target task in order to provide the pre-trained
model with a transition step towards the final task.
This approach is nonetheless limited by its reliance
on annotated data for supervised learning. In our
work, we propose a novel self-supervised interme-
diate training approach to adapt a pre-trained model
to QE which does not rely on labelled data. We
modify the popular masked LM objective to model
simultaneously deletions and insertions in transla-
tions, two error types commonly observed in MT
outputs.

Our approach is complementary to LM domain
adaptation and we propose to conduct both tasks,
i.e. domain and final task adaptation, jointly during
intermediate training and prior to fine-tuning. More
details about the intermediate training approach, in-
cluding masked LM modifications and the datasets
used, are presented in Section 2, followed by the
QE task fine-tuning and evaluation in Section 3.
Finally, a conclusion and future work are given in
Section 4.

2 Intermediate Training

We describe in this Section the intermediate train-
ing process applied to the pre-trained LM used in
our QE submission. This method could be applied
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Figure 1: Intermediate self-supervised learning task based on the translation language model training objective of
XLM with the addition of NULL tokens associated with randomly inserted MASK tokens.

to any pre-trained LM, but also when training a
masked LM from scratch.

2.1 Approach Description

The fine-tuning of pre-trained LM has been applied
to and has improved the performances of many
natural language processing tasks such as gram-
matical sentence classification, paraphrases detec-
tion or textual entailment to name a few popular
tasks. (Wang et al., 2018)

Some of the prevailing fine-tuned pretrained
models studied in the literature are BERT (De-
vlin et al., 2019) and XLM (Conneau and Lam-
ple, 2019), among others. At the core of these
approaches are similar LM techniques, using the
sequentiality of languages to learn probabilities
over sequences (X) of words (xi, i ∈ [0;n]) as
in p(X) =

∏n
i=1 p(xn|x1, ..., xn) (causal LM) or

randomly masking some input tokens and learn-
ing to retrieve them based on both left and right
contexts (masked LM). The masked LM approach
introduced in BERT was extended in XLM to learn
relations between translated sentences based on
bilingual parallel corpora, integrating a new train-
ing objective called translation LM (TLM).

The TLM is particularily suited for QE, as it
allows the model to learn bilingual context infor-
mation when predicting masked tokens. However,
fine-tuning pre-trained models was shown to be
unstable with small datasets (Devlin et al., 2019),
the reasons of this instability being studied recent
work (Zhang et al., 2020; Mosbach et al., 2020). A
proposed approach to reduce instability is to use a
second stage pre-training step, between the initial
LM training and the final task-oriented fine-tuning.
It is based on a large amount of labeled data for
a task related to the target objective. In addition
to providing a smooth transition between initial
pre-training and fine-tuning by coercing the model
towards the final training objective, the intermedi-

ate step allows for domain adaptation when there is
a domain mismatch between the datasets used for
each training step. (Phang et al., 2018)

As a variant to the intermediate training ap-
proach, which originally makes use of labeled data,
we propose a self-supervised intermediate step, al-
leviating the need for annotated data. We aim at
combining both the domain adaptation advantage
of continued training by using a dataset relevant
to the final task, and target objective adaptation by
modifying the masked LM approach used in the
TLM model. More precisely, in addition to pre-
dicting the vocabulary masked in the input parallel
sequences, we introduce fake masks for which a
null token has to be predicted. This method forces
the model to distinguish between missing words,
which often occure in translated sentences when
source words are not translated, and wrongly in-
troduced words, similar to mistranslations when
source words are wrongly translated. The proposed
intermediate self-supervised learning task is illus-
trated in Figure 1.

2.2 Datasets and Tools

The domain and task adapted LMs used for our
QE submissions are based on the pre-trained XLM
model made available as a checkpoint in the Hug-
gingFace Transformers library (Wolf et al., 2019),
including 15 languages and trained using masked
TLM.1. This model uses a sub-word vocabulary of
95k tokens shared between all languages, 1, 024 di-
mensions embeddings, learned language and posi-
tion embeddings, 12 transformer blocks including
16 heads self-attention layers and 4, 096 dimen-
sions feed-forward layers with Gaussian Error Lin-
ear Units (GELU) activation functions. The model
has a total of approx. 249M parameters. The train-

1Model called xlm-mlm-tlm-xnli15-1024 and avail-
able at https://github.com/huggingface/
transformers
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Source MT
Sentence Token Type Token Type

EN–DE
Train 7.8M 129.6M 2.2M 124.5M 4.0M
Valid. 8.0k 112.7k 34.9k 115.0k 37.2k

EN–ZH
Train 3.3M 61.0M 0.3M 102.0M 8.0k
Valid. 8.0k 113.0k 34.8k 0.3M 3.8k

Table 1: Number of sentences, source tokens, source
types, MT tokens and MT types in the training and val-
idation sets used for LM intermediate training. Tokens
and types denote words for English and German, and
characters for Chinese, including numbers and punctu-
ation marks.

ing objective is similar to the original TLM, except
for an additional token in the vocabulary corre-
sponding to the null token. We ran intermediate
training for English–German and English–Chinese
language pairs separately. The code used to con-
duct intermediate training was developed in-house
on top of the HuggingFace Transformers library
and written in PyTorch (Adam et al., 2017).

The datasets used for intermediate training are
detailed in Table 1. We relied on the parallel
data provided by the QE shared task organizers
for English–German and English– Chinese, after
selecting the most relevant sentence pairs based on
their coverage of the source and MT output vocabu-
lary extracted from the QE training, validation and
test data. Using the test source and corresponding
MT output is a limitation of the models presented
in this paper, as a commercial QE system based
on this method would require re-training when QE
scores have to be produced for unseen data. How-
ever, our data filtering approach is still reliable
without using the test set, as it is shown in Rubino
and Sumita (2020). To remove noisy parallel sen-
tences from the data used for intermediate training,
we only kept sentence pairs containing a minimum
of 3 tokens in the source and target sentences and
with at least 40% of their tokens longer than 4 char-
acters being in the QE vocabulary. In addition for
the English–German LMs, we used the WikiMatrix
corpus (Schwenk et al., 2019) made available by
the WMT organizers for the news translation task.2

2http://data.statmt.org/wmt20/
translation-task/WikiMatrix/

2.3 Training Procedure
Hyper-parameters specific to masked LMs, such as
the amount of masked tokens per sequence, or more
general to NNs, such as the optimizer learning-
rate, have to be set prior to training. While the
latter ones were suggested in previous work (De-
vlin et al., 2019; Conneau and Lample, 2019), we
define and propose some values for the former ones
in this paper. We trained a total of 8 masked LMs
with variations in hyper-parameters, keeping check-
points for each model based on the loss obtained
on the validation set and at the end of every epoch.
General and masked LM specific hyper-parameters
are described in the following subsections and a
summary of the trained masked LMs is presented
in Table 2.

Note that we followed a token sampling similar
to the one in XLM (Conneau and Lample, 2019),
i.e., a first hyper-parameter is dedicated to the per-
centage of tokens to randomly select from a text
sequence (noted sample in Table 2), a second hyper-
parameter (noted mask) is allocated to the percent-
age of initially selected tokens which are replaced
by a special mask token, a third hyper-parameter
(noted rand.) is assigned to the percentage of ini-
tially selected tokens which are not replaced by
mask but by tokens randomly sampled from the
vocabulary. Finally, we introduce a fourth hyper-
parameter, dedicated to the percentage of additional
mask tokens introduced in a text sequence and cor-
responding to the null token.

2.3.1 General Hyper-parameters
All our masked LMs trained for the QE task used
the AdamW optimizer (Loshchilov and Hutter,
2017) with the following parameters: β1 = 0.9,
β2 = 0.98, ε = 1e−8 and weight decay set at 1e−8.
The learning rate followed a linear schedule with a
warm-up period during the first 4k steps to reach a
maximum value of 5e−5 or 1e−4 depending on the
model (as detailed in Table 2), then decayed until
the model reached 100k steps. Depending on the
model, the batch size was set to 32 or 64 with gra-
dient accumulation set to 16 batches, respectively
simulating batch sizes of 512 and 1, 024 pairs of
source and target sequences.

2.3.2 Masked LM Hyper-parameters
We experimented with various percentages of to-
kens in pairs of text sequences to randomly sam-
ple initially, from 10% to 20%. From this selec-
tion rate, we made variations in how many were

1044



id sample mask rand. fake src tgt bsz lr

1 15 80 50 0 32 1e−4

2 15 25 95 0 32 1e−4

3 10 50 100 10 X X 64 5e−5

4 15 10 90 20 X X 32 1e−4

5 15 80 50 25 X X 64 5e−5

6 15 50 100 25 X 64 5e−5

7 15 50 100 25 X X 64 5e−5

8 20 50 100 20 X X 64 5e−5

Table 2: Masked LMs with different hyper-parameters
chosen for the intermediate training step. The model
identifier is denoted in the column id, sample indicates
the percentage of tokens randomly sampled from the
sentence pairs, mask denotes the percentage of sam-
pled tokens replaced by the mask token, rand. corre-
sponds to the percentage of tokens replaced by a ran-
domly sampled token from the vocabulary, fake is the
percentage of masked token corresponding to the null
token, src and trg indicate if fake masks are introduced
in the source or target sentences respectively, bsz is the
batch size and lr is the learning rate.

replaced by the token mask: from 10% to 80%.
From the remaining tokens initially sampled and
not masked, from 50% to 100% of them were re-
placed by another token sampled randomly from
the vocabulary. Finally, the remaining tokens ini-
tially sampled but not masked nor replaced were
left unchanged. The percentage of fake masks (cor-
responding to the null token) was varied from 0%
to 25%, additionally to the percentage of tokens
randomly sampled intially during the first step. We
also investigated the introduction of fake masks in
the source or target sequences only, and in both
source and target sequences.

3 QE Fine-tuning

The objective of fine-tuning masked LMs for QE
is to predict sentence-level human translation edit
rate (HTER) and word-level good and bad classes.3

Note that in our models, for the target sequence
word-level QE, we considered gaps between target
words (missing translations) as part of the target
sequence and did not use a loss nor a training ob-
jective specific to gaps.

3.1 Dataset

We used the training, validation and test sets re-
leased by the shared task organizers without any

3More details about the WMT’20 QE Task 2:
Word and Sentence-level Post-editing Effort are
available at http://www.statmt.org/wmt20/
quality-estimation-task.html

Source MT
Sentence Token Type Token Type

EN–DE
Train 7.0k 115.0k 25.4k 112.3k 28.1k
Valid. 1.0k 16.5k 6.4k 16.2k 6.7k
Test 1.0k 16.4k 6.4k 16.1k 6.5k

EN–ZH
Train 7.0k 115.6k 25.1k 214.6k 3.1k
Valid. 1.0k 16.3k 6.3k 30.5k 2.2k
Test 1.0k 16.8k 6.4k 30.1k 2.3k

Table 3: Number of sentences, source tokens, source
types, MT tokens and MT types in the training, valida-
tion and test sets for the WMT’20 QE Task 2: Word and
Sentence-level Post-editing Effort. Tokens and types
denote words for English and German, and characters
for Chinese, including numbers and punctuation marks.

additional annotated data. Details about the official
QE dataset are presented in Table 3.

3.2 Training Procedure

Our models presented in this paper were inspired
by the approach of (Kim et al., 2019), however, we
use XLM instead of BERT. We added two parallel
outputs on top of XLM composed of parametrised
linear layers. The first output layer corresponds to
the word-level QE task, takes as input the word-
level final hidden states given by XLM, and outputs
word-level probabilities for the two classes (OK
and BAD) using a softmax function. The second
output layer corresponds to the sentence-level QE
task, takes as input the final hidden state of the
first token in a sentence pair (noted <s> in Fig-
ure 1) given by XLM, and outputs a sequence-level
probability using a sigmoid function. To compute
the multi-task loss function, we first computed two
loss functions separately, namely cross-entropy and
mean squared error for the word-level and sentence-
level QE respectively, based on the network predic-
tions and the training gold labels. The two losses
were then summed without weights to compose the
final loss.

We chose the masked LMs to fine-tune based on
the validation (presented in Table 1) loss and at the
end of epoch 5 for English–German and epoch 10
for English–Chinese (the latter models were faster
to train due to the smaller LM intermediate training
data size). Thus, 2 checkpoints were kept for each
of the 8 models presented in Table 2. In order to
find good hyper-parameters to fine-tune the masked
LMs for QE and because the QE datasets are rel-
atively small, we conducted a grid-search among
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EN–DE EN–ZH
id r ↑ MAE↓ RMSE↓ r ↑ MAE↓ RMSE↓
0 0.221 0.159 0.198 0.461 0.155 0.193
0? 0.564 0.167 0.214 0.604 0.151 0.193
1 0.566 0.173 0.224 0.664 0.135 0.167
2 0.571 0.138 0.177 0.658 0.128 0.162
3 0.593 0.161 0.208 0.668 0.145 0.178
4 0.578 0.173 0.224 0.638 0.135 0.170
5 0.598 0.151 0.197 0.663 0.130 0.164
6 0.605 0.167 0.218 0.669 0.125 0.158
7 0.594 0.146 0.190 0.665 0.126 0.158
8 0.601 0.138 0.176 0.657 0.144 0.178

Table 4: Sentence-level predicted post-editing effort on
the official WMT’20 QE validation set. The id column
refers to the Model ID as presented in Table 2. The id
0 denotes the out-of-the-box XLM checkpoint without
domain or task adaptation through intermediate train-
ing and without QE fine-tuning. The id 0? denotes the
QE fine-tuned XLM checkpoint without domain or task
adaptation through intermediate training.

the following hyper-parameters: masked LM and
output layer learning rates, dropout rate, using or
not class weights for the softmax function, and fi-
nally the decay rate applied to the discriminative
fine-tuning approach (Howard and Ruder, 2018).
During hyper-parameter search and training of the
final models, the batch size was set to 64 sequence
pairs and the learning rate was warmed-up linearly
for 200 steps. The remaining hyper-parameters
were set to values identical to the ones presented in
Section 2.3.

3.3 Evaluation
We present in this Section the results obtained dur-
ing our experiments, first on the official valida-
tion set and then on the official test set, based on
the masked LMs presented in Table 2. For the
sentence-level post-editing effort prediction, the
official primary metric was the Pearson correlation
coefficient (r) and two supplementary metrics were
used: mean absolute error (MAE) and root mean
squared error (RMSE). For the word-level binary
classes prediction, the official primary metric was
the Matthews correlation coefficient (MCC) and
supplementary F-measures for the OK class and
for the BAD class were used. The word-level evalu-
ation was conducted on source and target sequences
separately. The results obtained on the sentence-
level task are presented in Table 4 and the results
obtained on the word-leve task are presented in Ta-
ble 5. For the latter, we present a single F-score
for both OK and BAD classes by multiplying in-
dividual F-scores (similarily to the F1 mult score

used during the WMT’19 QE task (Fonseca et al.,
2019)).

Results obtained at the sentence-level (Table 4)
show that both domain adaptation and fake-
masking are useful as an intermediate training task
prior to QE fine-tuning. The best results according
to Pearson’s r are reached by the model #6 for
the two language pairs. This model has an equal
amount of masked and randomly replaced tokens,
and fake masks are inserted in target sequences
only. The same model reaches the best results for
the EN–ZH language pair for all the metrics while
there is no best performing model on all metrics
for the EN–DE pair. When comparing the models
obtained with configurations #1 and #5, which
differ mainly on the introduction of fake masks for
the latter, best performances are reached by model
#5 as indicated by the three metrics, showing that
fake masking is helpful in predicting sentence-level
post-editing effort. However, the batch size and the
learning rate also differ for these two configura-
tions. A more consistant ablation study allowing
for a fair comparison between configurations with
and without fake masking is presented in Rubino
and Sumita (2020).

Experiments on the word-level results (Table 5)
show that introducing fake-masks is useful for the
EN–DE language pair on both source and target
text sequences, as the best performances according
to both metrics are reached by models #5, #7 and
#8. The introduction of fake masks in model #5,
compared to model #1 which does not have fake
masks, show that this method is helpful for this
language pair at predicting word-level quality esti-
mation. However, this is not the case on the source
side for EN–ZH, where model #1 reaches the best
results in terms of MCC and F1. This model does
not involve fake-masking but only domain adapta-
tion. On the target side, however, the best results
according to both metrics are reached by models in-
volving fake-masking, namly models #3, #6 and
#7 with 0.566 MCC and 0.604 F1.

Our final submission to the shared task was com-
posed of an ensemble of all the checkpoints for all
the models, i.e. 32 models per language pair and
QE task (8 pre-trained models, fine-tuning check-
points based on validation loss, primary metric
score and best epoch). We present in Table 6 and
Table 7 the official results obtained by our final
submission ensembles on the test set as reported
by the shared task organizers on the sentence-level
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EN–DE EN–ZH
Source Target Source Target

id MCC↑ F1 MCC↑ F1 MCC↑ F1 MCC↑ F1

0 0.207 0.314 0.351 0.387 0.192 0.344 0.511 0.536
0? 0.326 0.407 0.432 0.461 0.324 0.436 0.564 0.600
1 0.306 0.398 0.438 0.480 0.347 0.452 0.560 0.598
2 0.312 0.397 0.434 0.476 0.338 0.448 0.558 0.598
3 0.329 0.417 0.438 0.478 0.322 0.435 0.566 0.604
4 0.309 0.395 0.440 0.482 0.313 0.402 0.564 0.600
5 0.347 0.413 0.451 0.487 0.322 0.437 0.563 0.602
6 0.330 0.415 0.442 0.482 0.338 0.444 0.566 0.603
7 0.331 0.403 0.451 0.490 0.328 0.441 0.565 0.604
8 0.342 0.425 0.449 0.489 0.310 0.424 0.553 0.592

Table 5: Word-level predicted binary classes on the official WMT’20 QE validation set. The id column refers to
the Model ID as presented in Table 2. The id 0 denotes the out-of-the-box XLM checkpoint without domain or
task adaptation through intermediate training and without QE fine-tuning. The id 0? denotes the QE fine-tuned
XLM checkpoint without domain or task adaptation through intermediate training.

rank Pearson’s r ↑ MAE ↓ RMSE ↓
EN–DE

5 0.615 0.151 0.197

EN–ZH
3 0.643 0.129 0.161

Table 6: Official sentence-level WMT’20 QE Task 2
results on the test set as reported by the shared task
organizer. The column rank indicates the ranking of
our submission among other participants according to
the primary metric (Pearson’s r).

rank MCC↑ F1BAD ↑ F1OK ↑
Source EN–DE

3 0.353 0.537 0.806

Target EN–DE
3 0.485 0.568 0.916

Source EN–ZH
1 0.336 0.668 0.669

Target EN–ZH
2 0.582 0.704 0.878

Table 7: Official word-level WMT’20 QE Task 2 re-
sults on the test set as reported by the shared task or-
ganizer. The column rank indicates the ranking of our
submission among other participants according to the
primary metric (MCC).

and word-level tasks respectively.

4 Conclusion

We have presented in this paper the NICT Kyoto
submission for the WMT’20 QE shared task on
predicting post-editing effort at the sentence and
word-level. Our submissions consisted of ensem-
bles of several fine-tuned masked LMs, pre-trained
using the translation LM objective, domain and task
adapted in a self-supervised fashion using domain-
relevant data and a modified masking approach
during intermediate training.

This novel intermediate training objective allows
for a smooth transition from a pre-trained masked
LM towards the final QE task without requiring
annotated data. We have shown empirically that
both domain and task adaptation reach good results
compared to out-of-the-box pre-trained models and
compared to fine-tuning only. Our final submis-
sions were ranked among the top systems both at
the sentence and word-level for two language pairs.
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Abstract

This paper presents the team TransQuest’s
participation in Sentence-Level Direct
Assessment shared task in WMT 2020. We
introduce a simple QE framework based on
cross-lingual transformers, and we use it to
implement and evaluate two different neural
architectures. The proposed methods achieve
state-of-the-art results surpassing the results
obtained by OpenKiwi, the baseline used in
the shared task. We further fine tune the QE
framework by performing ensemble and data
augmentation. Our approach is the winning
solution in all of the language pairs according
to the WMT 2020 official results.

1 Introduction

The goal of quality estimation (QE) systems is
to determine the quality of a translation without
having access to a reference translation. This
makes it very useful in translation workflows
where it can be used to determine whether an
automatically translated sentence is good enough
to be used for a given purpose, or if it needs to
be shown to a human translator for translation
from scratch or postediting (Kepler et al., 2019).
Quality estimation can be done at different levels:
document level, sentence level and word level (Ive
et al., 2018). This paper presents TransQuest, a
sentence-level quality estimation framework which
is the winning solution in all the language pairs in
the WMT 2020 Sentence-Level Direct Assessment
shared task (Specia et al., 2020).

In the past, high preforming quality estimation
systems such as QuEst (Specia et al., 2013)
and QuEst++ (Specia et al., 2015) were heavily
dependent on linguistic processing and feature
engineering. These features were fed into
traditional machine-learning algorithms like
support vector regression and randomised decision
trees (Specia et al., 2013), which then determined

the quality of a translation. Even though, these
approaches provide good results, they are no longer
the state of the art, being replaced in recent years
by neural-based QE systems which usually rely on
little or no linguistic processing. For example the
best-performing system at the WMT 2017 shared
task on QE was POSTECH, which is purely
neural and does not rely on feature engineering at
all (Kim et al., 2017).

In order to achieve high results, approaches
such as POSTECH require extensive pre-training,
which means they depend on large parallel
data and are computationally intensive (Ive
et al., 2018). TransQuest, our QE framework
removes this dependency on large parallel data
by using crosslingual embeddings (Ranasinghe
et al., 2020) that are already fine-tuned to reflect
properties between languages (Ruder et al., 2019).
Ranasinghe et al. (2020) show that by using them,
TransQuest eases the burden of having complex
neural network architectures, which in turn entails
a reduction of the computational resources. That
paper also shows that TransQuest performs well in
transfer learning settings where it can be trained
on language pairs for which we have resources and
applied successfully on less resourced language
pairs.

The remainder of the paper is structured as
follows. The dataset used in the competition
is briefly discussed in Section 2. In Section 3
we present the TransQuest framework and the
methodology employed to train it. This is followed
by the evaluation results and their discussion in
Section 4. The paper finishes with conclusions and
ideas for future research directions.

2 Dataset

The dataset for the Sentence-Level Direct
Assessment shared task is composed of data
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extracted from Wikipedia for six language pairs,
consisting of high-resource languages English-
German (En-De) and English-Chinese (En-Zh),
medium-resource languages Romanian-English
(Ro-En) and Estonian-English (Et-En), and low-
resource languages Sinhala-English (Si-En) and
Nepalese-English (Ne-En), as well as a a Russian-
English (Ru-En) dataset which combines articles
from Wikipedia and Reddit (Specia et al., 2020).
Each language pair has 7,000 sentence pairs
in the training set, 1,000 sentence pairs in the
development set and another 1,000 sentence pairs
in the testing set. Each translation was rated
with a score between 0 and 100 according to
the perceived translation quality by at least three
translators (Fomicheva et al., 2020). The DA scores
were standardised using the z-score. The quality
estimation systems have to predict the mean DA
z-scores of the test sentence pairs (Specia et al.,
2020).

3 Methodology

This section presents the methodology used to
develop our quality estimation methods. Our
methodology is based on TransQuest our recently
introduced QE framework (Ranasinghe et al.,
2020). We first briefly describe the neural network
architectures TransQuest proposed, followed by the
training details. More details about the framework
can be found in (Ranasinghe et al., 2020).

3.1 Neural Network Architectures

The TransQuest framework that is used to
implement the two architectures described here
relies on the XLM-R transformer model (Conneau
et al., 2020) to derive the representations of the
input sentences (Ranasinghe et al., 2020). The
XLM-R transformer model takes a sequence of no
more than 512 tokens as input, and outputs the
representation of the sequence. The first token of
the sequence is always [CLS] which contains the
special embedding to represent the whole sequence,
followed by embeddings acquired for each word
in the sequence. As shown below, proposed neural
network architectures of TransQuest can utilise
both the embedding for the [CLS] token and the
embeddings generated for each word (Ranasinghe
et al., 2020). The output of the transformer (or
transformers for SiameseTransQuest described
below), is fed into a simple output layer which
is used to estimate the quality of translation. The

way the XLM-R transformer is used and the output
layer are different in the two instantiations of the
framework. We describe each of them below. The
fact that TransQuest does not rely on a complex
output layer makes training its architectures much
less computationally intensive than alternative
solutions. The TransQuest framework is open-
source, which means researchers can easily
propose alternative architectures to the ones
TransQuest presents (Ranasinghe et al., 2020).

Both neural network architectures presented
below use the pre-trained XLM-R models released
by HuggingFace’s model repository (Wolf et al.,
2019). There are two versions of the pre-trained
XLM-R models named XLM-R-base and XLM-
R-large. Both of these XLM-R models cover
104 languages (Conneau et al., 2020), potentially
making it very useful to estimate the translation
quality for a large number of language pairs.

TransQuest implements two different neural
network architectures (Ranasinghe et al., 2020)
to perform sentence-level translation quality
estimation as described below. The architectures
are presented in Figure 1.

1. MonoTransQuest (MTransQuest): The
first architecture proposed uses a single
XLM-R transformer model and is shown
in Figure 1a. The input of this model
is a concatenation of the original sentence
and its translation, separated by the [SEP]
token. TransQuest proposes three pooling
strategies for the output of the transformer
model: using the output of the [CLS] token
(CLS-strategy); computing the mean of all
output vectors of the input words (MEAN-
strategy); and computing a max-over-time of
the output vectors of the input words (MAX-
strategy) (Ranasinghe et al., 2020). The
output of the pooling strategy is used as the
input of a softmax layer that predicts the
quality score of the translation. TransQuest
used mean-squared-error loss as the objective
function (Ranasinghe et al., 2020). Similar
to Ranasinghe et al. (2020), the early
experiments we carried out demonstrated that
the CLS-strategy leads to better results than
the other two strategies for this architecture.
Therefore, we used the embedding of the
[CLS] token as the input of a softmax layer.

2. SiameseTransQuest (STransQuest): The
second approach proposed in TransQuest
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relies on the Siamese architecture depicted
in Figure 1b which has shown promising
results in monolingual semantic textual
similarity tasks (Reimers and Gurevych, 2019;
Ranasinghe et al., 2019). For this, we fed
the original text and the translation into
two separate XLM-R transformer models.
Similarly to the previous architecture, we
experimented with the same three pooling
strategies for the outputs of the transformer
models (Ranasinghe et al., 2020). TransQuest
then calculates the cosine similarity between
the two outputs of the pooling strategy.
TransQuest used mean-squared-error loss as
the objective function. Similar to Ranasinghe
et al. (2020) in the initial experiments
we carried out with this architecture the
MEAN-strategy showed better results than the
other two strategies. For this reason, we
used the MEAN-strategy for our experiments.
Therefore, cosine similarity is calculated
between the mean of all output vectors of the
input words produced by each transformer.

3.2 Training Details

We used the same set of configurations suggested
in Ranasinghe et al. (2020) for all the language
pairs evaluated in this paper in order to ensure
consistency between all the languages. This
also provides a good starting configuration for
researchers who intend to use TransQuest on a new
language pair. In both architectures, we used a
batch-size of eight, Adam optimiser with learning
rate 2e−5, and a linear learning rate warm-up over
10% of the training data. The models were trained
using only training data. Furthermore, they were
evaluated while training using an evaluation set
that had one fifth of the rows in training data. We
performed early stopping if the evaluation loss did
not improve over ten evaluation rounds. All of the
models were trained for three epochs. For some
of the experiments, we used an Nvidia Tesla K80
GPU, whilst for others we used an Nvidia Tesla
T4 GPU. This was purely based on the availability
of the hardware and it was not a methodological
decision.

3.3 Implementation Details

The TransQuest framework was implemented using
Python 3.7 and PyTorch 1.5.0. To integrate the
functionalities of the transformers we used the

version 3.0.0 of the HuggingFace’s Transformers
library. The implemented framework is available
on GitHub1.

4 Evaluation, Results and Discussion

This section presents the evaluation results of our
architectures and the fine tuning strategies that can
be used to improve the results. We first evaluate
the TransQuest framework with the default setting
(Section 4.1). Next we evaluate an ensemble setting
of TransQuest in Section 4.2. We finally assess the
performance of TransQuest with augmented data.
We conclude the section with a discussion of the
results.

The evaluation metric used was the Pearson
correlation (r) between the predictions and the
gold standard from the test set, which is the
most commonly used evaluation metric in WMT
quality estimation shared tasks (Specia et al., 2018;
Fonseca et al., 2019). We report the Pearson
correlation values that we obtained from CodaLab,
the hosting platform of the WMT 2020 QE shared
task. As a baseline we compare our results with the
performance of OpenKiwi as reported by the task
organisers (Specia et al., 2020).

4.1 TransQuest with Default settings

The first evaluation we carried out was for the
default configurations of the TransQuest framework
where we used the training set of each language
to build a quality estimation model using XLM-R-
large transformer model and we evaluated it on a
test set from the same language.

The results for each language with default
settings are shown in row I of Table 1. The
results indicate that both architectures proposed
in TransQuest outperform the baseline, OpenKiwi,
in all the language pairs. From the two
architectures, MTransQuest performs slightly
better than STransQuest.

As shown in Table 1, MTransQuest gained≈ 0.2-
0.3 Pearson correlation boost over OpenKiwi in all
the language pairs. Additionally, MTransQuest
achieves ≈ 0.4 Pearson correlation boost over
OpenKiwi in the low-resource language pair Ne-
En.

1TransQuest GitHub repository - https://github.
com/tharindudr/transQuest
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(a) MTransQuest architecture (b) STransQuest Architecture

Figure 1: Two architectures of the TransQuest framework.

Low-resource Mid-resource High-resource

Method Si-En Ne-En Et-En Ro-En Ru-En En-De En-Zh

I MTransQuest 0.6525 0.7914 0.7748 0.8982 0.7734 0.4669 0.4779
STransQuest 0.5957 0.7081 0.6804 0.8501 0.7126 0.3992 0.4067

II MTransQuest-base 0.6412 0.7823 0.7651 0.8715 0.7593 0.4421 0.4593
STransQuest-base 0.5773 0.6853 0.6692 0.8321 0.6962 0.3832 0.3975

III MTransQuest ⊗ 0.6661 0.8023 0.7876 0.8988 0.7854 0.4862 0.4853
STransQuest ⊗ 0.6001 0.7132 0.6901 0.8629 0.7248 0.4096 0.4159

IV MTransQuest ⊗ - Aug 0.6849 0.8222 0.8240 0.9082 0.8082 0.5539 0.5373
STransQuest ⊗ - Aug 0.6241 0.7354 0.7239 0.8621 0.7458 0.4457 0.4658

V OpenKiwi 0.3737 0.3860 0.4770 0.6845 0.5479 0.1455 0.1902

Table 1: Pearson (r) correlation between TransQuest algorithm predictions and human DA judgments. Best results
for each language (any method) are marked in bold. Rows I, II, III and IV indicate the different settings of
TransQuest, explained in Sections 4.1-4.3. OpenKiwi baseline results are in Row V.

4.2 TransQuest with Ensemble

Transformers have been proven to provide
better results when experimented with ensemble
techniques (Xu et al., 2020). In order to improve
the results of TransQuest we too followed an
ensemble approach which consisted of two steps.
We conducted these steps for both architectures in
TransQuest.

1. We train TransQuest using the pre-trained
XLM-R-base transformer model instead of
the XLM-R-large transformer model in the
TransQuest default setting. We report the
results from the two architectures from this
step in row II of Table 1 as MTransQuest-base
and STransQuest-base.

2. We perform a weighted average ensemble for
the output of the default setting and the output
we obtained from step 1. We experimented
on weights 0.8:0.2, 0.6:0.4, 0.5:0.5 on the
output of the default setting and output from
the step 1 respectively. Since the results
we got from XLM-R-base transformer model
are slightly worse than the results we got
from default setting we did not consider the
weight combinations that gives higher weight
to XLM-R-base transformer model results.
We obtained best results when we used the
weights 0.8:0.2. We report the results from the
two architectures from this step in row III of
Table 1 as MTransQuest ⊗ and STransQuest
⊗.
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As shown in Table 1 both architectures in
TransQuest with ensemble setting gained ≈ 0.01-
0.02 Pearson correlation boost over the default
settings for all the language pairs.

4.3 TransQuest with Data Augmentation

All of the languages had 7,000 training instances
that we used in the above mentioned settings
in TransQuest. To experiment how TransQuest
performs with more data, we trained TransQuest
on a data augmented setting. Alongside the
training, development and testing datasets, the
shared task organisers also provided the parallel
sentences which were used to train the neural
machine translation system in each language. In the
data augmentation setting, we added the sentence
pairs from that neural machine translation system
training file to training dataset we used to train
TransQuest. In order to find the best setting
for the data augmentation we experimented with
adding 1000, 2000, 3000, up to 5000 sentence pairs
randomly. Since the ensemble setting performed
better than the default setting of TransQuest, we
conducted this data augmentation experiment on
the ensemble setting. We assumed that the sentence
pairs added from the neural machine translation
system training file have maximum translation
quality.

Up to 2000 sentence pairs the results continued
to get better. However, adding more than 2000
sentence pairs did not improve the results. We
did not experiment with adding any further than
5000 sentence pairs to the training set since the
timeline of the competition was tight. We were
also aware that adding more sentence pairs with
the maximum translation quality to the training file
will make it imbalance and affect the performance
of the machine learning models negatively. We
report the results from the two architectures from
this step in row IV of Table 1 as MTransQuest
⊗-Aug and STransQuest ⊗-Aug.

This setting provided the best results for both
architectures in TransQuest for all of the language
pairs. As shown in Table 1 both architectures
in TransQuest with the data augmentation setting
gained ≈ 0.01-0.09 Pearson correlation boost
over the default settings for all the language
pairs. Additionally, MTransQuest ⊗-Aug achieves
≈ 0.09 Pearson correlation boost over default
MTransQuest in the high-resource language pair
En-De.

4.4 Error analysis

In an attempt to better understand the performance
and limitations of TransQuest we carried out
an error analysis on the results obtained on
Romanian - English and Sinhala - English.
The choice of language pairs we analysed was
determined by the availability of native speakers
to perform this analysis. We focused on the
cases where the difference between the predicted
score and expected score was the greatest. This
included both cases where the predicted score was
underestimated and overestimated.

Analysis of the results does not reveal very
clear patterns. The largest number of errors
seem to be caused by the presence of named
entities in the source sentences. In some cases
these entities are mishandled during the translation.
The resulting sentences are usually syntactically
correct, but semantically odd. Typical examples
are RO: În urmă explorărilor Căpitanului James
Cook, Australia s, i Noua Zeelandă au devenit
t,inte ale colonialismului britanic. (As a result of
Captain James Cook’s explorations, Australia and
New Zealand have become the targets of British
colonialism.) - EN: Captain James Cook, Australia
and New Zealand have finally become the targets of
British colonialism. (expected: -1.2360, predicted:
0.2560) and RO: O altă problemă importantă
cu care trupele Antantei au fost obligate să se
confrunte a fost malaria. (Another important
problem that the Triple Entente troops had to face
was malaria.) - EN: Another important problem
that Antarctic troops had to face was malaria.
(expected: 0.2813, predicted: -0.9050). In the
opinion of the authors of this paper, it is debatable
whether the expected scores for these two pairs
should be so different. Both of them have obvious
problems and cannot be clearly understood without
reading the source. For this reason, we would
expect that both of them have low scores. Instances
like this also occur in the training data. As a
result of this, it may be that TransQuest learns
contradictory information, which in turn leads to
errors at the testing stage.

A large number of problems are caused by
incomplete source sentences or input sentences
with noise. For example the pair RO:
thumbright250pxDrapelul cu fâs, iile ı̂n pozit,ie
verticală (The flag with strips in upright position) -
EN: ghtghtness 250pxDrapel with strips in upright
position has an expected score of 0.0595, but
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our method predicts -0.9786. Given that only
ghtghtness 250pxDrapel is wrong in the translation,
the predicted score is far too low. In an attempt to
see how much this noise influences the result, we
run the system with the pair RO: Drapelul cu fâs, iile
ı̂n pozit,ie verticală - EN: Drapel with strips in
upright position. The prediction is 0.42132, which
is more in line with our expectations given that one
of the words is not translated.

Similar to Ro-En, in Si-En the majority of
problems seem to be caused by the presence
of named entities in the source sentences. For
an example in the English translation: But the
disguised Shiv will help them securely establish
the statue. (expected: 1.3618, predicted: -
0.008), the correct English translation would be
But the disguised Shividru will help them securely
establish the statue.. Only the named entity
Shividru is translated incorrectly, therefore the
annotators have annotated the translation with a
high quality. However TransQuest fails to identify
that. Similar scenarios can be found in English
translations Kamala Devi Chattopadhyay spoke
at this meeting, Dr. Ann. (expected:1.3177,
predicted:-0.2999) and The Warrior Falls are
stone’s, halting, heraldry and stonework rather
than cottages. The cathedral manor is navigable
places (expected:0.1677, predicted:-0.7587). It is
clear that the presence of the named entities seem
to confuse the algorithm we used, hence it needs to
handle named entities in a proper way.

5 Conclusion

In this paper we evaluated different settings
of TransQuest in sentence-level direct quality
assessment. We showed that ensemble results
with XLM-R-base and XLM-R-large with
data augmentation techniques can improve the
performance of TransQuest framework.

The official results of the competition show that
TransQuest won the first place in all the language
pairs in Sentence-Level Direct Assessment task.
TransQuest is the sole winner in En-Zh, Ne-En and
Ru-En language pairs and the multilingual track.
For the other language pairs (En-De, Ro-En, Et-En
and Si-En) it shares the first place with another
system, whose results are not statistically different
from ours. The full results of the shared task can
be seen in Specia et al. (2020).

In the future, we plan to experiment more
with the data augmentation settings. We are

interested in augmenting the training file with
semantically similar sentences to the test set rather
than augmenting with random sentence pairs as we
did in this paper. As shown in the error analysis
in Section 4.4 the future releases of the framework
need to handle named entities properly. We also
hope to implement TransQuest in document level
quality estimation too.
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Abstract

This paper presents our work in the WMT
2020 Word and Sentence-Level Post-editing
Effort Quality Estimation (QE) Shared Task.
Our system follows standard Predictor-
Estimator architecture, with a pre-trained
Transformer as the Predictor, and specific
classifiers and regressors as Estimators. We
integrate Bottleneck Adapter Layers in the
Predictor to improve the transfer learning
efficiency and prevent from over-fitting. At
the same time, we jointly train the word- and
sentence-level tasks with a unified model with
multitask learning. Pseudo-PE assisted QE
(PEAQE) is proposed, resulting in significant
improvements on the performance. Our
submissions achieve competitive result in
word/sentence-level sub-tasks for both of
En-De/Zh language pairs.

1 Introduction

Quality Estimation (QE) assesses the translation
quality of machine translation (MT) system output
when ground truth reference is not available (Spe-
cia et al., 2013, 2018). For the word-level QE task,
participants are required to tag tokens and gaps of
the translation output from an unknown MT sys-
tem with OK and BAD, as well as tokens in the
source with the same tags. The result is measured
by Matthews Correlation Coefficient (MCC). For
the sentence-level task, participants are required to
predict the Human Translation Error Rate (HTER)
scores of the machine translation outputs and the
result is evaluated in terms of the Pearson’s corre-
lation coefficient.

Our team participates in some of the sub-tasks
in two language pairs (En-De and En-Zh) (Specia
et al., 2020). With regard to the En-De track, at
word-level, our model achieves the MCC score
of 0.5828 on the target side, and 0.5234 on the
source side; at sentence-level, our model ranks the

first place with a Pearson R score of 0.7583. With
regard to the En-Zh track, we only submit the target
side of word-level sub-task, and achieves a MCC
score of 0.5872.

Our system is implemented with fairseq (Ott
et al., 2019) (for En-De track) and THUMT (Zhang
et al., 2017) (for En-Zh track). We extend the origi-
nal Transformer (Vaswani et al., 2017) model to fit
the QE task, and leverage transfer learning to fine-
tune the model with the task specific dataset (Dai
and Le, 2015; Howard and Ruder, 2018; Radford
et al., 2018). The contributions of our work are as
follows:

• We follow the Predictor-Estimator (Kim and
Lee, 2016; Kim et al., 2017; Wang et al., 2018;
Li et al., 2018; Kepler et al., 2019) architecture
and build a unified QE model based on the
standard Transformer MT model.

• Bottleneck Adapter Layers (Houlsby et al.,
2019; Yang et al., 2020) are integrated into
the model for efficient transfer learning.

• We propose the Pseudo-PE assisted QE
(PEAQE) method which effectively improve
the performance.

The architecture of our model is shown in Figure
1.

2 Task Description

A more detailed description of the word- and
sentence-level QE tasks is given in this section.

2.1 Word-Level
Word-level QE estimates the translation quality
by producing a sequence of tags for both source
and target. For target sentences, both tokens and
gaps are required to be tagged with OK or BAD,
while for source sentences, only tokens are tagged
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Figure 1: This figure shows the architecture of our
model, where SRC and Pseudo-PE are concatenated
as the encoder input, a copy of SRC and MT are con-
catenated as the decoder input. The output feature are
passed through four linear layers to make prediction for
four tasks.

with OK or BAD. This is usually modelled as a
sequential labelling problem. The tag of token in-
dicates whether the word is correctly translated or
not, while the tag of gap indicates whether one or
more words are missing here. The number of total
tags for each MT sentence is 2N + 1, where N is
the number of tokens in the sentence.

The evaluation metrics of the word-level task
is the Matthews Correlation Coefficient (MCC),
an appropriate measurement for unbalanced labels.
MCC is defined as follows:

S =
TP + FN

N

P =
TP + FP

N

MCC =
TP
N − SP√

SP (1− S)(1− P )
, (1)

where TP , TN , FP and FN represent for true
positives, true negatives, false positives and false
positives respectively; and N is the number of in-
stance (Fonseca et al., 2019).

2.2 Sentence-Level
The sentence-level QE predicts the Human Trans-
lation Error Rate (HTER) (Specia et al., 2018) of
given translation outputs. HTER is an edit-distance
measure, calculating the ratio between the num-
ber of edits (insertions/deletions/replacements) re-

Attributes En-De En-Zh

# Instance 7,000 7,000
# SRC Token 11,4980 115,585
# MT Token 112,342 120,015
% MT Token BAD 28.15 54.33
% MT Gap BAD 4.60 8.04
% SRC Token BAD 26.95 53.60
BLEU (MT, PE) 49.40 30.40
µ(HTER) 0.3181 0.6280
σ(HTER) 0.2017 0.2040

Table 1: The statistics of the training set for both lan-
guage pairs.

quired and the reference translation length, namely
HTER = (Insertions + Delations + Replacement) /
Reference Words. In the QE task, where references
are not available, HTER is roughly an estimation.
As HTER is a real value ranging from 0 to 1, it can
be modeled as a regression task. The evaluation
metrics of the sentence-level task is the Pearson
correlation coefficient.

3 Dataset

The dataset contains 7,000 sentences for the train-
ing set, 1,000 for the dev and 1,000 for the test.
Except from tags and HTER scores (labels), the
dataset also provides post-edit (PE) text, as the ref-
erence for generating QE labels. Note that this data
is also used in the Automatic Post Editing task in
WMT 2020. Detailed statistics of the dataset is
listed in Table 1, with some metrics of the source
(SRC) and translation (MT). The proportion of
BAD tags agains OK tags is imbalanced, especially
for Gap tags.

Apart from the brief descriptive statistics listed
in the table, our in-depth investigation on the pro-
vided dataset unveils some interesting findings:

• Different from the dataset in WMT 2019 QE
task (Fonseca et al., 2019), which is sampled
from IT domain, the dataset this year is col-
lected from Wikipedia. Therefore, mixing
data from previous years may not help to im-
prove this year’s performance.

• The BLEU score (Papineni et al., 2002) for
2020 dataset is significantly lower than that
of 2019, indicating much more operations are
required to edit the translation outputs into
the references. As a result, the distribution
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of labels for 2020 dataset is changed as well
when comparing with that of last year.

Unlike a standard translation task, where vari-
ous data augmentation techniques, such as back-
translation (Sennrich et al., 2016), are available,
QE task can hardly be improved with data augmen-
tation, as it requires unbiased and high-quality PEs
to generate tags and HTER scores. Meanwhile, the
change of dataset domain makes it impossible to en-
large the dataset by incorporating the dataset of last
year. Facing this challenging task, we propose the
PEAQE method, which will be further explained in
details in the following section.

4 Model

4.1 Unified QE Model

Our model follows the Predictor-Estimator (Kim
et al., 2017; Kepler et al., 2019) architecture. The
Predictor is considered as a feature extractor, which
can be a pre-trained language model (LM) or a
translation model. In our implementation, we use
the standard Transformer without the causal mask
as the Predictor, which is pre-trained with dataset
in news translation task of WMT 2019 En-De and
WMT 2020 En-Zh. The Estimator can be task spe-
cific classifiers which map the extracted features
into the target space, and can be modelled by sev-
eral fully connected layers. We use a unified QE
model to solve both word- and sentence-level tasks
by building three classifiers and a regressor to make
prediction on SRC tag, MT token tag, MT gap tag
and HTER score, respectively.

We define the encoder and decoder of the Trans-
former as functions f and g; SRC and MT text as
X and Y ; tags of SRC, MT token and MT gap as
Vx, Vy, Vg; and HTER score as Vh. The represen-
tation HX and HY are obtained by passing the X
and Y into the encoder and decoder respectively:

HX = f(X) (2)

HY = g(Y,HX). (3)

For a translation model, we usually append and
prepend the special token 〈s〉 to the SRC and TGT
text. Here we follow the same rule and thereby the
lengths of SRC and MT embeddings areM+1 and
N + 1 respectively. Meanwhile, we append and
prepend a special label 〈pad〉 to the original label
sequence during training, but loss of the padded
label is not computed. All predictions are obtained

by performing specific transformations φ· on the
hidden stats:

V̂x = φx(HX) (4)

V̂y = φy(HY ) (5)

V̂g = φg(HY ) (6)

V̂h = φh(hY,0). (7)

Note that the regressor φh only takes the embed-
ding of the MT’s first token to make predictions,
similar to the usage of [CLS] in BERT (Devlin
et al., 2018).

For all classification tasks, we use weighted
cross entropy as the loss function, and the weight
is calculated as follows: wi =

∑ |Ci|
|Ci| , which is

the inverse of the proportion of the instance with
class Ci. We use weighted cross entropy because
labels are highly imbalanced, and the loss should
be manipulated with the weight. For sentence-level
QE, we use mean squared error (MSE) as the loss
function, which is quite intuitive.

The model is trained under the multi-task learn-
ing framework by summing up the loss of all sub-
tasks with specific weights:

L =λh

√
(V̂h − Vh)2 (8)

−
∑

τ∈{x,y,g}
λτ logP (Vτ |X,Y ),

where {x, y, g} represents for classification tasks
and h represents for regression task, and λ is the
weight of loss for a specific task. Although the
multi-task setting could improve the overall perfor-
mance, the evaluation is performed separately, it
means we can train models that are optimized for
the specific task, which can be achieved by giving
larger weight to the loss of that task.

4.2 Bottleneck Adapter Layer
As mentioned in the previous section, the provided
training set is relatively small, make the model
to be easily over-fitted if all weights are updated.
Therefore, we decide to integrate the Bottleneck
Adapter Layers (BAL) (Houlsby et al., 2019) while
keeping parameters of original Transformer fixed
(Yang et al., 2020).

BAL can be easily implemented with two fully-
connected layers with a non-linear activation, and
is embedded into the Transformer with residual
connections after the self-attention layer and the
FFN layer, respectively.

1058



In the experiment, we find that the bottle with a
“thick” neck (”like FFN layers in the Transformer
with higher dimension in the middle part”) could
further improve the performance without seriously
sacrificing training efficiency. More specifically,
we tested three neck sizes, i.e. thin, same and thick.
The thin and same neck basically reaches 97%-
99% of performance compared with training the
full Transformer without using BAL, which yields
the same result with (Houlsby et al., 2019). By
increasing the parameter size of BALs, we find
that the performance also increases linearly, finally
reaching the pick of 104% of the baseline perfor-
mance with the neck to have 2 × hidden size.

4.3 Pseudo-PE Assisted QE
QE tags can be generated with post-edits (PEs)
or reference (REF) of MT. In this dataset, PE is
provided, and QE tags are generated accordingly, if
PE can be directly used to assist the model learning
QE tags, the training efficiency will be dramatically
increased. Inspired by the Pseudo-PE technique
proposed in the (Kepler et al., 2019), we hope to
fully leverage PE, for example, integrating them
as part of the network input. However, for the
test set, where PEs are not available, we must find
an alternative approach. So, we made following
assumption:

δ(MT,REF) ≈ δ(MT,PE) + δ(PE,REF), (9)

where δ is any distance measurement function. In
the equation, PE is regarded as an intermediate
node between MT and REF. Under such assump-
tion, if we could find any translation that is better
than MT, although not as good as PE, the transla-
tion can also be used as a substitute of PE, denoted
as PE’. we call this method as Pseudo-PE assisted
QE (PEAQE). Finding PE’ is relatively easy when
we could access unconstrained resources. Using an
APE system or a robust online translation system
to produce better translation outputs are two feasi-
ble approaches. After comparing the BLEU scores
of the training set between many online transla-
tion services and an APE system trained by us,
we decide to use Google Translate outputs as the
Pseudo-PE. The BLEU score for official MTs and
Google MTs in the dev set are 50.9/ 67.8 for En-De,
and 22.62/41.77 for En-Zh, indicating that Google
MT outputs, with a high quality, could be used as
Pseudo-PEs in the testing phase.

To leverage PEs, we simply concatenate them
with the SRCs and encoded them via an encoder.

We find that using the features of SRC text from the
encoder could not produce acceptable predictions.
Therefore, we decide to concatenate SRCs with
MTs again on the decoder side, and use the decoder
to extract features for both of them. More formally:

H[X;Z] = f([X;Z]) (10)

H[X;Y ] = g([X;Y ],H[X;Z]), (11)

where Z represents for official PEs (training) or
Pseudo-PEs (testing). Finally, the hidden state
H[X;Y ] is sliced with the max length of X , and
recover back to HX and HY , which are used as in
the original model. Official PE and Pseudo-PE can
be used respectively during training and testing to
assist the model to make better prediction.

5 Experiment

Our experiments of all sub-tasks for En-De and part
of sub-tasks for En-Zh trak are performed on the
WMT 2020 dataset. The model without Pseudo-PE
assistance is considered as the baseline.

5.1 Experimental Settings

Our models are implemented with fairseq (Ott
et al., 2019) and THUMT (Zhang et al., 2017).
The fairseq version mainly deals with En-De tasks
thanks to the pre-trained models trained in WMT
2019 news translation task. The En-Zh pre-trained
model is implemented with THUMT and is trained
in WMT 2020 news translation task by our team.
For the En-De model, input and output embeddings
are shared, therefore SRC and TGT text can be
conveniently concatenated. For the En-Zh model,
vocabulary is not shared, when creating the input
sequence, we firstly pass tokens of English (SRC)
and Chinese (MT and PE) with specific word em-
bedding layer respectively, and than, concatenate
the hidden states of them accordingly. The number
of parameters of the En-De and En-Zh models are
270M and 353M, respectively. The batch size used
for training is 32. We use Adam (Kingma and Ba,
2015) to optimize parameters with learning rate of
1e-4 without any scheduler. Note that when dealing
with labels of sub-tokens, for each token, we only
assign the first sub-token with the label and sub-
sequent sub-tokens are assigned with the dummy
pad labels, which keeps the distribution of labels
unchanged. Our QE models are trained on a Nvidia
Tesla V100 GPU, and converge within 5 epochs.
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Lang Model MCC-MT MCC-SRC Pearson-R

En-De (Dev)
Baseline 44.50 32.46 55.26
+ PEAQE 60.05 45.31 71.69
+ Ensemble (14) 64.70 51.17 73.33

En-De (Test) + Ensemble (14) 58.28 52.34 75.83

En-Zh (Dev)
Baseline 43.06 - -
+ PEAQE 57.90 - -
+ Ensemble (5) 59.28 - -

En-Zh (Test) + Ensemble (5) 58.72 - -

Table 2: The experimental results of our model, where the baseline model is introduced in section 4.1. The
evaluation results of the test set are from the official leader-board.

5.2 Experimental Results

Table 2 shows the experimental results on the dev
and test sets. The performance of the baseline
model is relatively poor. By leveraging PEAQE, the
model achieves much better performance, demon-
strating that integrating PE directly into the QE
model could effectively assist the prediction. With
PEs, the model can receive stronger supervision
signal and is actually learning the procedure done
by the tagging script, making the entire learning
process easier. However, we clearly understand that
the performance of PEAQE strongly depends on
the quality of Pesudo-PEs, which becomes another
problem that should be solved in the future.

Here is another interesting finding during our
experiment. Initially, we also performed experi-
ments with mBERT (Devlin et al., 2018) and XLM
(Conneau and Lample, 2019) but not producing
desirable results. The reason might be size of the
dataset. We find that performing transfer learning
with pre-trained NMT model on the limited size
QE dataset is more effective than other pre-trained
multilingual LMs. We consider that NMT models
are naturally fit for MT related tasks because of the
learned prior between bilingual text, which might
not be captured by multilingual LMs where text in
different languages are trained independently.

6 Conclusion

We present our works for WMT 2020 QE shared
task. The experimental results demonstrate that per-
forming transfer learning with a pre-trained NMT
model on the QE task is effective. Compared to
only using SRC and MT text, we propose PEAQE
which could significantly improve the performance
of the model. But generating reliable Pseudo-PEs

that are compatible with QE tasks remains a prob-
lem that would be investigated in our future works.
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tins, Mark Fishel, and Christian Federmann. 2019.
Findings of the WMT 2019 shared tasks on quality
estimation. In Proceedings of the Fourth Conference
on Machine Translation, WMT 2019, Florence, Italy,
August 1-2, 2019 - Volume 3: Shared Task Papers,
Day 2, pages 1–10.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
arXiv preprint arXiv:1902.00751.

Jeremy Howard and Sebastian Ruder. 2018. Univer-
sal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Fabio Kepler, Jonay Trénous, Marcos V. Treviso,
Miguel Vera, António Góis, M. Amin Farajian,
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Abstract

This paper presents Tencent’s submission to
the WMT20 Quality Estimation (QE) Shared
Task: Sentence-Level Post-editing Effort for
English-Chinese in Task 2. Our system en-
sembles two architectures, XLM-based and
Transformer-based Predictor-Estimator mod-
els. For the XLM-based Predictor-Estimator
architecture, the predictor produces two types
of contextualized token representations, i.e.,
masked XLM and non-masked XLM; the
LSTM-estimator and Transformer-estimator
employ two effective strategies, top-K and
multi-head attention, to enhance the sentence
feature representation. For Transformer-based
Predictor-Estimator architecture, we improve
a top-performing model by conducting three
modifications: using multi-decoding in ma-
chine translation module, creating a new
model by replacing the transformer-based pre-
dictor with XLM-based predictor, and finally
integrating two models by a weighted aver-
age. Our submission achieves a Pearson corre-
lation of 0.664, ranking first (tied) on English-
Chinese (Specia et al., 2020).

1 Introduction

The development of Machine Translation (MT) re-
quires efficient quality evaluation of the outputs.
The widely used MT metric BLEU (Papineni et al.,
2002) satisfies this demand. However, BLEU re-
quires human reference translations which costs
labor and time to generate. Quality Estimation
(QE) is an alternative to evaluate the quality of MT
outputs with no access to reference translations
(Fonseca et al., 2019; Yang et al., 2019).

We participate in the sentence-level task in Task
2 of the WMT20 QE Shared Task for English–
Chinese (Specia et al., 2020). The sentence-level
task aims to predict the Human-targeted Transla-
tion Edit Rate (HTER) (Snover et al., 2006) of the
MT output, which reflects the minimal amount of

edits that is needed to post-edit the MT output to
an acceptable one, thus denotes the overall quality
of the MT output.

The classical baseline model QuEst++ (Specia
et al., 2015) constructed rule-based features and
employed machine learning algorithm to predict
HTER scores. Recent neural networks applied
the newly-emerged predictor-estimator architec-
ture to QE tasks. Kim et al. (2017) proposed the
first predictor-estimator model to extract feature
vectors by incorporating large parallel data into a
bilingual RNN model, which is subsequently fed
into another bidirectional RNN model to predict
QE scores. Later on, Fan et al. (2019) replaced
the RNN-based predictor by a bidirectional Trans-
former and added 4-dimensional mis-matching fea-
tures; Wang et al. (2019) used a Transformer-DLCL
based predictor; and Kepler et al. (2019a) intro-
duced BERT and XLM pretrained predictors into
their system. Besides the improvements on model
architectures, choosing the top-performing models
using ensemble techniques further improves the
QE performance. For example, the submission us-
ing ensemble techniques achieved the best result
in the sentence-level QE sub-task in both WMT19
(Fonseca et al., 2019) and CCMT19 (Yang et al.,
2019).

We submit a predictor-estimator based QE sys-
tem, which extends the open-source OpenKiwi
framework1 (Kepler et al., 2019b) to take advan-
tage of recently proposed pre-trained models by
transfer learning technique. Our contributions are
as follow:

• We propose XLM-based Predictor-Estimator
architecture, which introduces the cross-
lingual language model (XLM) (Lample and
Conneau, 2019) to QE task via transfer learn-
ing technique. Instead of directly using target

1https://github.com/Unbabel/OpenKiwi
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word representations produced by XLM as
the predictor output, we propose non-masked
XLM representation and masked XLM repre-
sentation, and adopt further computation to
enhance the feature extraction ability.

• We implement LSTM-based estimator and
Transformer-based estimator, with two novel
strategies to enhance the sentence feature rep-
resentation, i.e. top-K strategy and multi-head
attention strategy.

• We reform Transformer-based Predictor-
Estimator (Fan et al., 2019) by using multi-
decoding during the machine translation mod-
ule. Besides, we create a new model by re-
placing the transformer-based predictor with
XLM-based predictor, and then integrate the
two models by weighted average.

• We ensemble several single-models by re-
gression algorithms to produce a single
sentence-level prediction, which outperforms
the commonly-used arithmetic average.

We next describe the models, experiments and
results in detail.

2 Models

Our models employ predictor-estimator architec-
ture and OpenKiwi framework. Overall, we imple-
ment two predictor-estimator architectures, namely
XLM-based Predictor-Estimator and Transformer-
based Predictor-Estimator, and ensemble multiple
systems to boost performance.

2.1 XLM-based Predictor-Estimator

XLM achieved state-of-the-art performances on
several NLP tasks (Lample and Conneau, 2019).
We extend XLM by transferring the language
model to QE task and proposing a novel XLM-
based Predictor-Estimator model.

2.1.1 Predictor

For predictor, we fine-tune XLM with both Masked
Language Modeling (MLM) task and Translation
Language Modeling (TLM) task using large-scale
parallel data following the XLM instructions.2

2https://github.com/facebookresearch/XLM

XLM representations Instead of using target
word representation produced by the fine-tuned
XLM as the predictor output as in Kepler et al.
(2019a), we propose non-masked XLM represen-
tation and masked XLM representation, and adopt
further computation to enhance the feature extrac-
tion ability. For non-masked XLM, all words are
fed into the XLM to predict each word’s represen-
tation, letting the word itself help to predict its
representation. For masked XLM, one target word
is masked one time so that the prediction of the
masked word leverages information only from the
surrounding words and the source context, without
any prior information from itself.

Let the length of the target sentence be N , the
masking process is repeated N times and then all
target word representations are generated. We con-
sider two aspects that influence word representa-
tion: the weight of each dimension in the word
representation and the language embeddings. For-
mula (1) describes the final word representation,
which is then fed into the estimator as input features
to predict HTER scores.

Repi = Ri · (Wi + Emblang) (1)

In formula (1), i refers to the i-th word in the
target sentence and Ri refers to the original repre-
sentation of the i-th word. Wi denotes the weights
of each dimension for the i-th word and Emblang
denotes the language embedding of the target sen-
tence. Repi is the final representation of the i-th
word.

2.1.2 Estimator
Estimator takes features produced by predictor as
the input to predict sentence-level scores of MT out-
puts. We implement a multi-layer LSTM-estimator
and a Transformer-estimator, both of which adopt
state-of-the-art strategies to optimize the sentence
features.

The last state or the the mean pooling of hidden
states are usually taken as the sentence representa-
tion. However, they both have weaknesses: the last
state losses certain information of the whole sen-
tence due to the information decay problem, while
the mean pooling distributes the same weights to
all hidden Actually, the contribution of each word
to the sentence features varies, which inspires us to
take the concept of weight into consideration. We
propose two strategies, top-K strategy and multi-
head attention strategy to optimize weights from
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Figure 1: Top-K strategy and Multi-head attention strategy illustration.

two different perspectives, as shown in Figure 1.

Top-K Strategy The hidden state of each word is
a vector, and each element of the vector represents
one feature dimension. The top-K strategy forms
sentence features by concatenating top K elements
of each of N feature dimension, creating a vector
of size K * N.

Multi-head Attention Strategy Different from
Top-K strategy, multi-head attention strategy con-
siders the impact of each word on the sentence
features via attention mechanism. For each head,
we obtain a vector which is a weighted sum of all
the word features. By repeating K times, the final
sentence feature is a vector with size K * N. We
demonstrate the computation process as in Formula
(2) and (3),

aki = softmax(hi ∗Wk), (2)

fsent = [
∑

i

a1i ∗ hi, . . . ,
∑

i

aki ∗ hi] (3)

where aki is attention results of each word (hi),
and fsent is the final sentence feature representa-
tion.

2.2 Transformer-based Predictor-Estimator

Transformer-based Predictor-Estimator architec-
ture has been proved effective by Fan et al.
(2019). Our predictor follows their bidirectional
transformer, which contains three modules: self-
attention for the source sentence, forward and back-
ward self-attention encoders for the target sentence,
and the re-constructor for the target sentence. We
include semantic features extracted by bidirectional
transformer and human-crafted mismatching fea-
tures in the model. Our Transformer-based model
has three main improvements:

• For transformer-based predictor, we use multi-
decoding during the machine translation mod-
ule.

• We create a XLM-based predictor, which sim-
ply replace the predictor part by XLM.

• We take the weighted average of the two mod-
els as the final sentence-level prediction as
shown in Formula (4). We set α to be 0.8 since
the transformer-based predictor contributes
more than the XLM-based predictor.

Score = α ∗ ScoreTransformer+

(1− α) ∗ ScoreXLM
(4)
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2.3 Ensemble

To boost performance, we ensemble several sys-
tems to produce a single sentence score prediction.
Model stacking (Wolpert, 1992; Breiman, 1996) is
an efficient ensemble method in which the predic-
tions, generated by using various single systems,
are used as inputs in a second-layer regression al-
gorithm. To avoid over-fitting, we use k-fold cross
validation with k = 5 (Martins et al., 2017).

We implement and compare several regression
algothrims, i.e., Powell’s method (Powell, 1964),
Quantile Regression, Support Vector Regression
(SVR), and Logistic Regression (LR) to optimize
the task on Pearson correlation.

3 Experiments and Results

We conducted three sets of experiments on the
WMT20 QE English-Chinese Sentence-level Task
in Task 2.

3.1 Dataset

The dataset consists of parallel data between En-
glish and Chinese, as well as QE triplets with
source texts, target translations and HTER scores.
The parallel data is used to train the predictor to
produce contextualized features. Specifically, we
sampled 45M English-Chinese parallel sentences
to train the XLM-based Predictor. For Transformer-
based Predictor, we combined the subset of 8.9M
parallel sentences in CCMT20 with a set of 15K
pseudo data constructed by augmenting the number
of entities within the sentences.

3.2 Experiments

3.2.1 Experiments with XLM-based
Predictor-Estimator

We experiment with non-masked (non-masked)
and masked XLM (masked) predictors. We also
try to concatenate feature vectors produced by two
predictors (Both) as the input of the next estima-
tor procedure. For every predictor, we conduct
experiments with LSTM-estimator (LSTM ) and
Transformer-estimator (TF ), each of which adopts
multi-head attention strategy (attn) or top-K strate-
gies (topK) to improve the sentence representa-
tion.

The results in Table 1 show that our QE systems
with XLM predictor achieve strong correlation with
HTER scores in general. The model with both pre-
dictors, LSTM-estimator and multi-head attention

Model Pearson
Both LSTM attn .6348
Both LSTM topK .6244
Both TF attn .6218
Both TF topK .6276
masked LSTM attn .6232
masked LSTM topK 6156
masked TF attn .6143
masked TF topK .6260
non-masked LSTM attn .6142
non-masked LSTM topK .6216
non-masked TF attn .6234
non-masked TF topK .6268

Table 1: Pearson correlations of single QE sys-
tems with XLM-based Predictor-Estimator on WMT20
English-Chinese development set for sentence-level
task.

strategy (Both LSTM attn) ranks top with a Pear-
son score of .6348.

3.2.2 Experiments with Transformer-based
Predictor-Estimator

We extend Transformer-based predictor-estimator
(Fan et al., 2019) with the following modifica-
tions: we use multi-decoding during Transformer-
based predictor, replace Transformer-based pre-
dictor with XLM-based predictor to form a new
model, and then integrate the two models into one
by weighted average with more weights on the
Transformer-based predictor.

Table 2 presents the key configurations and re-
sults in Transformer-based experiments. Among
the four models, Models 1–3 integrate XLM-
based estimators into the architecture and achieve
the highest Pearson correlations of .646–.647.
These integrated models vary in two configurations:
whether or not the XLM-estimator has been fine-
tuned and whether or not to include source informa-
tion. We conclude that XLM-based model helps im-
prove Transformer-based Predictor-Estimator per-
formance.

3.2.3 Experiments with ensemble methods
We conduct multiple single QE systems through
different model architectures or the same archi-
tecture with different parameters. Specifically,
we include predictions from 24 XLM-based and
5 Transformer-based Predictor-Estimator systems,
and stack them using 4 regressors: Powell’s, Quan-
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Transformer
XLM Estimator

Pearson
Included? Finetuning? Input

Model 1 4 4 4 source & target .646
Model 2 4 4 4 target only .647
Model 3 4 4 8 target only .647
Model 4 4 8 N/A N/A .633

Table 2: Pearson correlations of single QE systems with Transformer-based Predictor-Estimator on WMT20
English-Chinese development set for sentence-level task.

tile Regression, SVR and LR.
Results in Table 3 prove the effectiveness of

ensemble techniques, when compared to results
shown in Tables 1 and 2. We also conclude that
regression algorithms outperform simple averaging
(“Average” in Table 3), and among them, Logis-
tic Regression achieves the best Pearson score of
.6785.

Ensemble methods Pearson
Average .6521
Powell’s .6515
Quantile Regression .6699
Support Vector Regression .6735
Logistic Regression .6785

Table 3: Pearson correlations of ensemble QE sys-
tems on WMT20 English-Chinese development set for
sentence-level task.

4 Conclusion

We describe Tencent’s submission to the WMT20
Quality Estimation sentence-level task in task 2.
Our systems are based on predictor-estimator archi-
tecture and built upon OpenKiwi framework. We
implement two predictor-estimator architectures,
XLM-based Predictor-Estimator and Transformer-
based Predictor-Estimator. For XLM-based
Predictor-Estimator, we produces two kinds of
contextual token representation, masked and non-
masked representations. Both LSTM-estimator and
Transformer-estimator are conducted to predict the
MT output scores by using the features produced
from the predictors. Top-K strategy and multi-
head attention strategy are employed to enhance the
sentence feature representation. For Transformer-
based Predictor-Estimator, we integrate one model
based on XLM-based predictor to enhance the over-
all performance. Stacking ensemble is also proved
to be more effective than simple averaging integra-

tion.
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Vera, António Góis, M Amin Farajian, António V
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Fábio Kepler, Jonay Trénous, Marcos Treviso, Miguel
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Abstract

This paper describes our submission of the
WMT 2020 Shared Task on Sentence Level
Direct Assessment, Quality Estimation (QE).
In this study, we empirically reveal the
mismatching issue when directly adopting
BERTScore (Zhang et al., 2020) to QE. Specif-
ically, there exist lots of mismatching errors
between source sentence and translated candi-
date sentence with token pairwise similarity.
In response to this issue, we propose to expose
explicit cross lingual patterns, e.g. word align-
ments and generation score, to our proposed
zero-shot models. Experiments show that our
proposed QE model with explicit cross-lingual
patterns could alleviate the mismatching is-
sue, thereby improving the performance. En-
couragingly, our zero-shot QE method could
achieve comparable performance with super-
vised QE method, and even outperforms the
supervised counterpart on 2 out of 6 directions.
We expect our work could shed light on the
zero-shot QE model improvement.

1 Introduction

Translation quality estimation (QE) (Blatz et al.,
2004; Specia et al., 2018, 2020) aims to pre-
dict the quality of translation hypothesis without
golden-standard human references, setting it apart
from reference-based translation metrics. Existing
reference-based evaluation metrics, e.g. BLEU (Pa-
pineni et al., 2002), METEOR (Banerjee and Lavie,
2005), NIST (Doddington, 2002), ROUGE (Lin,
2004), TER (Snover et al., 2006), are commonly
used in language generation tasks including transla-
tion, summarization, and captioning but all heavily
rely on the quality of given references.

Recently, (Edunov et al., 2020) show that
reference-based automatic evaluation metrics, e.g.,
BLEU, are not always reliable because the human
translated references are translationese (Koppel and
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Figure 1: Example of mismatching error,
Russian→English. On the left, token “Назва” is
mismatched to “The” with the maximal probability
(within the red rectangle) only. On the right, guided
by our proposed cross-lingual patterns, “Назва” is
correctly matched to the token “named” with the
maximal probability (within the green rectangle.)

Ordan, 2011; Graham et al., 2019). Thus, an auto-
matic method with no access to any references, i.e.,
QE, is highly appreciated.

In this paper, we mainly focus on sentence level
QE metrics, where existing studies categorize it
into two classes: 1) supervised QE with human
assessment as supervision signal: a feature ex-
tractor stacked with an estimator (Yankovskaya
et al., 2019; Wang et al., 2016b; Fan et al., 2019);
2) unsupervised QE without human assessment,
which normally based on the pre-trained word
embeddings, for example, YISI (Lo, 2019) and
BERTScore (Zhang et al., 2020). Our work follows
the latter, where we adopt BERTScore (Zhang et al.,
2020) without extra fine-tuning. In particular, we
implement our approach upon the pre-trained multi-
lingual BERT (Devlin et al., 2019) and XLM (Con-
neau and Lample, 2019).

We first empirically reveal the mismatching is-
sue when directly adopting BERTScore (Zhang
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et al., 2020) to QE task. Specifically, there exist
lots of mismatching errors between source tokens
and translated candidate tokens when performing
greedy matching with pairwise similarity. Figure 1
shows an example of the mismatching error, where
the Russian token “Назва” is mismatched to the
English token “The” due to lacking of proper guid-
ance.

To alleviate this issue, we design two explicit
cross-lingual patterns to augment the BERTScore
as a QE metric:
• CROSS-LINGUAL ALIGNMENT MASKING:

we design an alignment masking strategy to
provide the pairwise similarity matrix with ex-
tra guidance. The alignment is derived from
GIZA++ (Och and Ney, 2003).
• CROSS-LINGUAL GENERATION SCORE: we

obtain the perplexity, dubbed ppl, of each
target side token by force decoding with a
pre-trained cross-lingual model, e.g. multilin-
gual BERT and XLM. This generation score
is weighted added on the similarity score.

2 Methods

2.1 BERTScore as Backbone

A pre-trained multilingual model generates con-
textual embeddings of both source sentence and
translated candidate sentence, such that this pair of
sentences in different language can be mapped to
the same continuous feature space. Given a source
sentence x = 〈x1, . . . , xk〉, the model generates a
sequence of vectors 〈x1, . . . ,xk〉 while the candi-
date ŷ = 〈ŷ1, . . . , ŷl〉 is mapped to 〈ŷ1, . . . , ŷl〉.
Different from the reference-based BERTScore,
where they compute the pairwise similarity be-
tween reference sentence and translated candidate
sentence, we calculate the pairwise similarity be-
tween the source and translated candidate with dot-
production, i.e., x>

i ŷj. We adopt greedy matching
to force each source token to be matched to the
most similar target token in the translated candidate
sentence. The QE function based on BERTScore
backbone therefore can be formulated as:

RBERT =
1

|x|
∑

xi∈x
max
ŷj∈ŷ

x>
i ŷj,

PBERT =
1

|ŷ|
∑

ŷj∈ŷ
max
xi∈x

x>
i ŷj,

FBERT = 2
PBERT ·RBERT

PBERT +RBERT
.

(1)

where RBERT, PBERT and FBERT are inherited
from Zhang et al. (2020), representing Recall rate,
Precision rate and F-score, respectively.

2.2 Alignment Masking Strategy

With aforementioned QE function, we can follow
Zhang et al. (2020) to obtain the distance between
the source sentence and translated candidate sen-
tence via directly adding up the maximum simi-
larity score of each token pair. However, because
there exist lots of mismatching errors (as shown
in Figure 1), above sentence-level similarity cal-
culation may be sub-optimal. Moreover, Zhang
et al. (2020)’s calculation is suitable for mono-
lingual scenario, which may be insensitive for
cross-lingual computation. Thus, we propose to
augment our QE metric with more cross-lingual
signals.

Inspired by Ding et al. (2020), where they show
it’s possible to augment cross-lingual modeling by
leveraging cross-lingual explicit knowledge. we
therefore employ word alignment knowledge from
external models, e.g., GIZA++1, as additional in-
formation.

Alignment masking Both BERT (Devlin et al.,
2019) and XLM (Conneau and Lample, 2019) uti-
lize BPE tokenization (Sennrich et al., 2016). It
should be noted that in this paper, by word align-
ment we mean alignment of BPE tokenized word
and subword units. Given a tokenized source sen-
tence x and candidate sentence ŷ, alignment (Och
and Ney, 2003) is defined as a subset of the Carte-
sian product of position, A ⊆ {(i, j) : i =
1, . . . , k; j = 1, . . . , l}. Alignment results repre-
sented byM is defined as:

M =

{
1 (i, j) ∈ A

0 ≤ a ≤ 1 otherwise
(2)

M is a penalty function over the similarity of un-
aligned tokens. It’s a mask like matrix to assign a
penalty weight a 2 to the similarity of unaligned to-
kens while keeping that of aligned ones unchanged,
as illustrated in Figure 2. Thus, greedy matching is
performed on a renewed similarity matrix, which
is defined as the average of x>

i ŷj and masked
x>
i ŷj by word alignment. For example, RBERT

1https://github.com/moses-smt/giza-pp
2In our preliminary studies, a = 0.8 picking from

{0.0, 0.2, 0.4, 0.8, 1.0} performs best, which then leaves as
the default setting in the following experiments.
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# Metrics en-de en-zh ro-en et-en ne-en si-en ru-en

1 Baseline (test) 0.146 0.190 0.685 0.477 0.386 0.374 0.548

2 BERT 0.120 0.167 0.650 0.306 0.475 - 0.354
3 BERT (align) 0.091 0.170 0.672 0.307 0.478 - 0.340
4 BERT (ppl) 0.068 0.187 0.671 0.321 0.468 - 0.311
5 BERT (align+ppl) 0.099 0.189 0.677 0.324 0.477 - 0.332

Table 1: Pearson correlations with sentence-level Direct Assessment (DA) scores. The results of supervised
baseline (Kepler et al., 2019), provided by the organizer, show it’s agreement with DA scores on the test set of
WMT20 QE. As DA scores on test set aren’t available at this point, we report our experiment results on valid set.

# Metrics en-de en-zh ro-en et-en ne-en si-en ru-en

1 BERT 0.143 0.131 0.389 0.217 0.318 - 0.259
2 BERT (align) 0.122 0.133 0.422 0.219 0.322 - 0.251
3 BERT (ppl) 0.105 0.145 0.416 0.225 0.315 - 0.240
4 BERT (align+ppl) 0.132 0.152 0.439 0.228 0.320 - 0.247

Table 2: Kendall correlations with sentence-level Direct Assessment (DA) scores.

a 1 a a

a a 1 a

1 1 a a

a a a 1

a a 1 a

×

Alignment mask

0.713 0.597 0.428 0.408

0.462 0.393 0.515 0.326

0.635 0.858 0.441 0.441

0.479 0.454 0.796 0.343

0.347 0.361 0.307 0.913

so
ur
ce

candidate

Cosine similarities

Figure 2: Word alignment as a mask matrix

is changed into:

RBERT(align) =
1

2|x|
∑

xi∈x
max
ŷj∈ŷ

(x>
i ŷj+M·x>

i ŷj)

(3)
which can be characterized as balancing our pro-
posed extra explicit cross-lingual patterns, i.e.,
word alignment.

2.3 Generation Score

In additional to token similarity score, we introduce
force-decoding perplexity of each target token as
a cross-lingual generation score. For better coor-
dination and considering our cross-lingual setting,
we use the same pre-trained cross-lingual model,
e.g. multilingual BERT, for both token embedding
extraction and masked language model (MLM) per-
plexity generation. This cross-lingual generation

score is added as:

FBERT(ppl) = (1−λ)∗FBERT+λ∗pplMLM (4)

where the λ can be seen as a variable that regulates
the interpolation ratio between FBERT and our pro-
posed pplMLM, making the generation score after
combination more wisely. The effect of λ will be
discussed in the experiments.

3 Experimental Results

3.1 Data

Main experiments were conducted on the WMT20
QE Shared Task, Sentence-level Direct Assessment
language pairs. The task contains 7 directions, in-
cluding:

• English→German (en-de)

• English→Chinese (en-zh)

• Romanian→English (ro-en)

• Estonian→English (et-en)

• Nepalese→English (ne-en)

• Sinhala→English (si-en)

• Russian→English (ru-en)

Each of them consists of 7K training data, 1K vali-
dation data and 1K test data.
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en-de

0

0.03

0.06

0.09

0.12

0 0.005 0.01 0.02 0.03

ro-en

0.59

0.613

0.635

0.658

0.68

0 0.005 0.01 0.02 0.03

et-en

0.26

0.278

0.295

0.313

0.33

0 0.005 0.01 0.02 0.03

ne-en

0

0.125

0.25

0.375

0.5

0 0.005 0.01 0.02 0.03

si-en

0

0.093

0.185

0.277

0.37

0 0.005 0.01 0.02 0.03

en-zh

0.15

0.16

0.17

0.18

0.19

0 0.005 0.01 0.02 0.03

ru-en

0

0.09

0.18

0.27

0.36

0 0.005 0.01 0.02 0.03

Figure 3: Pearson correlations with Direct Assessment
(DA) scores when λ ∈ [0, 0.03].

3.2 Setup

Based on our proposed QE metric in Section 2.1,
we conduct the validataion and main experiments
with two pre-trained cross-lingual model: bert-
base-multilingual-cased3 (12-layer, 768-hidden,
12-heads, trained on 104 languages) and xlm-
mlm-100-12804 (16-layer, 1280-hidden, 16-heads,
trained on 100 languages) for both contextual em-
bedding representation and generation score. The
9th layer of multilingual BERT and the 11th of
XLM are used to generate contextual embedding
representations. Furthermore, we obtain bidirec-
tional word alignment of all the training, validation
and test dataset with GIZA++. Notably, this work
is a zero-shot approach that doesn’t involve training
on Direct Assessment (DA) scores, which makes
our method suitable for real industry scenarios.

3.3 Ablation Study

In order to maximize the advantages of our pro-
posed method for zero-shot translation QE, we con-
ducted extensive ablation studies. We report the
results of ablation studies on the validation dataset.

Effect of λ We conduct ablation studies to em-
pirically decide the value of of λ in Equation 4
when introducing generation scores. We observe
positive effect of proper weighted additional gen-
eration score on en-zh, ro-en, et-en, ne-en, si-en.

3https://huggingface.co/
bert-base-multilingual-cased

4https://huggingface.co/
xlm-mlm-100-1280

mBERT XLM

en-de 0.120 0.056
en-zh 0.167 0.008
ro-en 0.650 0.568
et-en 0.306 0.254
ne-en 0.475 0.398
si-en - 0.362
ru-en 0.354 0.228

Table 3: This is a comparison between multilingual
BERT (“mBERT”) and XLM in terms of the Pearson
correlations with Direct Assessment (DA) scores. Mul-
tilingual BERT performs better than XLM.

As illustrated in Figure 3, considering the average
performance, we pick λ = 0.01 from [0, 0.03].

Effect of different pretrained models We also
investigated the effect to deploy our proposed fixed
cross-lingual patterns on different state-of-the-art
large scale pre-trained models, e.g., XLM (Con-
neau and Lample, 2019) (xlm-mlm-100-1280),
BERT (Zhang et al., 2020) (bert-base-multilingual-
cased). Table 3 lists a comparison of multilingual
BERT and XLM in terms of the Pearson correla-
tions with Direct Assessment (DA) scores. As seen,
multilingual BERT outperforms XLM on almost all
language pairs, excepting for si-en. One possible
reason is that multilingual BERT is not pre-trained
on Sinhala corpus while XLM does. In this end,
we generate our final submission with XLM in si-
en direction, and with multilingual BERT in other
directions.

3.4 Main Results

In the main experiments, we evaluate the agree-
ment of our approach with Direct Assessment (DA)
scores on validation dataset, as DA scores of the
test set are not available at this point. Baseline re-
sults, which are evaluated on test set though, are
also listed for general comparison.

As shown in Table 1, our method could achieve
improvements on 4 out of 6 directions, including
en-zh, ro-en, et-en and ne-en. Particularly, com-
bination of two strategies, i.e., CROSS-LINGUAL

ALIGNMENT and CROSS-LINGUAL GENERATION

SCORE, could achieve better performance on en-zh,
ro-en and et-en directions.

Besides Pearson correlations, we also calculated
Kendall correlations for all language pairs. As
seen in Table 2, the trends of Kendall correlations
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Ours Kepler et al. (2019)

en-de 0.111 0.146
en-zh 0.085 0.190
ro-en 0.650 0.685
et-en - -
ne-en 0.488 0.386
si-en 0.388 0.374
ru-en 0.400 0.548

Table 4: Comparison of our submission and supervised
baseline (Kepler et al., 2019) on WMT20 sentence-
level QE official test set, in terms of Pearson correla-
tions.

are same as Pearson correlations, validating the
effectiveness of our proposed methods.

3.5 Official Evaluations
The official automatic evaluation results of our sub-
missions for WMT 2020 are presented in Table 4.
We participated QE (Sentence-Level Direct Assess-
ment) in following language pairs: en-de, en-zh,
ro-en, ne-en, si-en, ru-en, except for et-en. From
the official evaluation results (Specia et al., 2020) in
terms of absolute Pearson Correlation, our submis-
sion achieves higher performance than supervised
baseline (Kepler et al., 2019) in ne-en and si-en
(As shown in Table 4).

Encouragingly, our proposed zero-shot QE met-
ric could achieve comparable performance with
supervised QE method, and even outperforms the
supervised counterpart on 2 out of 6 directions.

4 Related Work

MT evaluation Taking sentence-level evaluation
as an example, reference-based metrics describe to
which extend a candidate sentence is similar to a
reference one (Sellam et al., 2020). BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), NIST (Doddington, 2002), ROUGE (Lin,
2004) measure such similarity through n-gram
matching, which is restricted to the exact form of
sentences. TER (Snover et al., 2006) and CHAR-
ACTER (Wang et al., 2016b) use edit distance at
word or character level to indicate the distance
between candidate and reference. Different from
these metrics that are restricted to the exact form of
sentences, recent dominated neural model metrics
learn to evaluate with human assessment as supervi-
sion signal, such as BEER (Stanojević and Sima’an,
2014) and RUSE (Shimanaka et al., 2018), or oth-

ers as YiSi (Lo, 2019) and BERTScore (Zhang
et al., 2020) , evaluate with pre-trained word em-
bedding, without using human assessment.

Incorporating Explicit Knowledge Several ap-
proaches have incorporated pre-defined or learned
features into neural networks. Tai et al. (2015)
demonstrate that incorporating structured seman-
tic information could enhance the representations.
Sennrich and Haddow (2016) feed the encoder cell
combined embeddings of linguistic features includ-
ing lemmas, subword tags, etc. Ding et al. (2017)
leverage the domain knowledge to perform data se-
lection to improve the machine translation models.
Ding and Tao (2019) incorporate the structure pat-
terns of sentences, i.e., syntax, into the Transformer
network to enhance seq2seq modeling performance.
Raganato et al. (2020) utilize the pre-defined fixed
patterns to replace the attention weights and show
promising results. Inspired by above works, we
propose to augment zero-shot QE model with cross-
lingual patterns.

5 Conclusion and Future Work

In this work, we revealed a mismatching issue in
zero-shot QE modeling. To alleviate it, we intro-
duced two explicit cross-lingual patterns based on
BERTScore backbone. Extensive experiments in-
dicated that our proposed patterns, without fine-
tuning, the QE model can be improved marginally.
Notably, our zero-shot QE method outperforms su-
pervised QE model on 2 out of 6 directions, shed-
ding light on zero-shot QE researches.

In the future, we plan to explore more strate-
gies for incorporating various auxiliary informa-
tion and better in-domain fine-tuning (Gururangan
et al., 2020) or introduce an non-autoregressive
refiner (Wu et al., 2020) to address our revealed
mismatching issue. Also, it will be interesting to ap-
ply QE metrics on document-level machine transla-
tions with considering the dropped pronoun (Wang
et al., 2016a, 2018).
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Abstract

This paper describes the results of the sys-
tem that we used for the WMT20 very low re-
source (VLR) supervised MT shared task. For
our experiments, we use a byte-level version
of BPE, which requires a base vocabulary of
size 256 only. BPE based models are a kind
of sub-word models. Such models try to ad-
dress the Out of Vocabulary (OOV) word prob-
lem by performing word segmentation so that
segments correspond to morphological units.
They are also reported to work across different
languages, especially similar languages due to
their sub-word nature. Based on BLEU cased
score, our NLPRL systems ranked ninth for
HSB to GER and tenth in GER to HSB trans-
lation scenario.

1 Introduction

We report the results for our system that was
used for our participation in the WMT20 shared
task (Barrault et al., 2019) on very low resource
Machine Translation (MT). The MT systems were
built for the language pair Upper Sorbian (HSB)
and German (GER) in both translation directions.

The Sorbian languages are the West Slavic
branch of the Indo-European languages, which
have further categorized into two closely related
languages, Upper Sorbian and Lower Sorbian. The
categories of this language are recognized as a dif-
ferent and distinct language in the European Char-
ter for Regional or Minority languages (Dolowy-
Rybinska, 2011). Upper Sorbian is a minority lan-
guage of Germany that is spoken by 10, 000 to
15, 000 speakers (Elle, 2010), although this number
is continually declining (Dołowy-Rybińska, 2018).
To counter this, attempts are being made to increase
the number of Sorbian speakers through bilingual
educational scenarios and MT1.

1https://minorityrights.org/
minorities/sorbs/

Low resource MT was being attempted even be-
fore Neural Machine Translation (NMT) became
the state-of-the-art. Several methods are used
to improve the accuracy and quality of the low-
resource SMT systems by using comparable cor-
pora (Irvine and Callison-Burch, 2013; Babych
et al., 2007), pivot language (English or non-
English) technique (Ahmadnia et al., 2017; Paul
et al., 2013), and using related resource-rich lan-
guage (Nakov and Ng, 2012).

We use a byte-level version of Byte Pair En-
coding based model with a Transformer for our
experiments. The main motivation was to try out
this model for the shared task and see how it works
under a shared task setting.

2 Background

NMT is an end-to-end learning system (Bahdanau
et al., 2015), based on the data-driven approach of
machine translation, that requires a massive amount
of parallel data for training.

To overcome the lack of such data, several tech-
niques have been tried out which are based on
semi-supervised learning (Zheng et al. (2019)), un-
supervised learning (Sun et al. (2020)), data aug-
mentation (Siddhant et al. (2020)), transfer learn-
ing (Aji (2020)), meta-learning (Li et al. (2020)),
pivot-based (Kim et al. (2019)), and multilingual
machine translation (Dabre et al. (2020)).

A model-agnostic meta-learning algorithm (Finn
et al., 2017) for low-resource NMT exploits the
multilingual high-resource language tasks (Gu
et al., 2018b). Gu et al. (2018a) achieved signif-
icant improvement in performance by utilizing a
transfer-learning approach for extremely low re-
source languages.

Another proposed solution is to use word seg-
mentation units, e.g. characters (Chung et al.,
2016), mixed word/characters (Luong and Man-
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ning, 2016), or more intelligent sub-words (Sen-
nrich et al., 2016). It is claimed that an NMT
model using such an approach is capable of open-
vocabulary translation by encoding rare and un-
known words as sequences of sub-word units.

The purpose of our experiments was to try out
a supervised NMT system for the low resource
language like HSB to GER and vice-versa for the
WMT20 shared task.

3 System Description

The standard Transformer architecture proposed
by Vaswani et al. (2017) is used for this experi-
ment. This architecture is able to handle long-term
dependencies among input tokens, output tokens
and between input-output by multi-head attention
mechanism. Our method based on the model archi-
tecture of Wang et al. (2020), which had used the
Byte-level BPE (BBPE).

The BBPE encoding is deployed on the Byte Pair
Encoding (BPE) (Sennrich et al., 2016), which is
a subword algorithm to find a way to represent the
given entire text dataset with a small number of to-
kens. BPE tries to find a balance between character-
and word-level hybrid representations, enabling the
encoding of any rare words in the vocabulary with
appropriate subword tokens without introducing
any “unknown” tokens. These segmented byte se-
quences are encoded into variable-length tokens,
i.e., n-grams, which leads to the generation of the
BPE vocabulary with byte n-grams. Before being
fed to the Transformer model, the learned BBPE
passes through bidirectional GRU, which enables
to retain contextualization between byte represen-
tation of BPE.

4 Experimental Setup

We use the Fairseq2 (Ott et al., 2019) library to
train the Transformer with the same learning rate
as in the original paper.

4.1 Dataset and Preprocessing

Our models were trained on the data provided
by the Workshop on Machine Translation (WMT)
2020. The statistics about the training, validation
and test sets are 60000, 2000 and 2000, respec-
tively for both directional pairs (HSB - GER).

We obtained 1727916 and 1710293 tokens of the
GER and HSB, respectively, from the train set for

2https://github.com/pytorch/fairseq

preprocessing. The BPE vocabulary, Byte vocabu-
lary and Character vocabulary are 16384, 2048 and
4096, respectively, for generating binary dataset
by using fairseq-preprocess. The BBPE used as a
subword BPE tokenizer, where preprocessing was
performed using lowercasing only. This is benefi-
cial from the low resource point of view, but it loses
the case information for German, which could have
affected the results.

4.2 Training Details

We trained the Transformer model with Bi-GRU
embedding, in which contextualization using the
number of encoder and decoder layers are 2 with
the dropout value 0.3. We trained our model with a
batch size of 100, with the aid of Adam optimizer at
0.0005 learning rate. The learning rate has warmup
update by 4000 to label smoothed cross-entropy
loss function with label-smoothing value 0.1.

5 Results and Analysis

The BBPE based Transformer model was evalu-
ated on the blind test set at five different metrics
provided by the task organizer, namely BLEU (Pa-
pineni et al., 2002), BLEU-cased, TER (Snover
et al., 2006), BEER2.0 (Stanojević and Sima’an,
2014), and CharacTER (Wang et al., 2016).

The obtained metrics score for each pair to each
experiment is specified in Table 1. The prediction
of the test set was generated by performing the best
validation checkpoint. However, while comparing
the BLEU score of the valid set with the test set,
we obtained a difference of +3.21 for HSB→GER
and +0.15 for GER→HSB pairs.

Before submitting the predictions of the test set,
the BLEU scores of best and last checkpoints were
almost equal, as shown in Table 2. Moreover, the
vocabulary size plays a crucial role in data-driven
approaches of MTs as well. Hence, we have in-
creased the vocabulary size from 2048 to 4096 for
generating BBPE, which led to a small decrement
in the BLEU score. One possible reason for such
decrement is the small vocabulary size that gener-
ates generalized BBPE for low-resource language.

6 Conclusion and future work

We have report the results for a Transformer-based
MT system for the pair of HSB↔GER in very
low resource settings. The introduced MT system
works on Byte-level Byte Pair Encoding (BBPE),
which yields 48.4 and 46.5 on HSB→GER and
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Pair BLEU BLEU cased TER BEER2.0 CharacTER
HSB-GER 48.4 47.9 0.383 0.706 0.335
GER-HSB 46.5 45.9 0.389 0.696 0.323

Table 1: Obtained scores of different metrics on the test set, provided by the task organizers
Valid Test

Vocab Pair Checkpoint Checkpoint Checkpoint
(last) (best) (best)

2048
HSB-GER 45.92 45.19 48.4
GER-HSB 46.62 46.35 46.5

4096
HSB-GER 45.77 45.09 -
GER-HSB 46.96 46.24 -

Table 2: Effect on BLEU by increasing vocabulary size

GER→HSB, respectively, as the BLEU score on
the test set at the vocabulary size of 2048. When the
vocabulary size was increased from 2048 to 4096,
lower performance was obtained on the system on
either side of the pair on the validation set.
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Abstract
We present our submission to the very low
resource supervised machine translation task
at the Fifth Conference on Machine Transla-
tion. The goal of this task is to create a system
which translates between German and the low-
resource language Upper Sorbian. We use a
decoder-only transformer architecture and for-
mulate the translation task as language model-
ing. To address the low-resource aspect of the
problem, we pretrain over a similar language
parallel corpus. Then, we employ an interme-
diate back-translation step before fine-tuning.
Finally, we present an analysis of the system’s
performance.

1 Introduction

This work describes our system for translating in
both directions between German (DE) and the low-
resource language Upper Sorbian (HSB). German
is a widespread language with tens of millions of
speakers; Upper Sorbian is a West Slavic language
spoken in Germany, and it is recognized as an en-
dangered language by UNESCO (Moseley, 2010).

This system constitutes our submission to the
shared task on very-low-resource supervised ma-
chine translation at WMT20.1 The ultimate goal
of the task is to translate a blind test set from Up-
per Sorbian into German and vice versa. The task
is constrained, meaning that all data sets used for
training are selected from a set of corpora provided
by the organizers.

Our primary contribution is our application of a
decoder-only language-modeling architecture to a
low-resource translation task, which to our knowl-
edge is not well-investigated.

In Sections 2 and 3, we discuss related work and
our system itself. Sections 4, 5, and 6 describe our
architecture. Sections 7 and 8 contain our results
and analysis.

1http://www.statmt.org/wmt20

2 Related Work

Current approaches to machine translation include
neural networks based on encoder-decoder trans-
formers (Vaswani et al., 2017) and sequence-to-
sequence models using recurrent networks (Chen
et al., 2018). In both of these methods, the system
learns how to produce an intermediate represen-
tation of a text sequence as a basis for the output
translation. Language-neutral representations have
been explored more deeply in the context of mBert
(Libovickỳ et al., 2019).

In the case of low-resource languages, where
there is an absence of adequately sized parallel cor-
pora, recent techniques focus on transfer learning
(Zoph et al., 2016), relying on monolingual cor-
pora (Lample et al., 2018), enriching the input to
the system (Irvine and Callison-Burch, 2013), or
expanding it through back-translation (Sennrich
et al., 2016).

Techniques related to back-translation include
pseudo-labeling and self-labeling. Pseudo-labeling
uses partially accurate data for training (Ratner
et al., 2017) generated from knowledge bases,
heuristic functions and crowdsourcing. Self-
labeling is an area that lies between self-supervised
learning and pseudo-labeling (Caron et al., 2018;
Asano et al., 2020). The model is used to predict
labels for an unlabeled dataset and then is trained
on this dataset.

3 Overview

Our system uses a transformer architecture, though
instead of the traditional encoder-decoder layout,
we use a single decoder-only transformer as do Rad-
ford et al. (2018), formulating the translation task
as a language modeling task. This architecture was
suggested by Radford et al. (2019) and explored
concretely by Guo et al. (2019) for widely-used lan-
guages. Unlike previous approaches, in this method
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there is no intermediate representation of the input;
instead, the translation is predicted directly through
the attention mechanism.

Furthermore, in our submission, we rely on a
similar-language pretraining task with a shared vo-
cabulary, using Czech (CS) / English (EN) sen-
tence pairs, similarly to Kocmi and Bojar (2018)
and Nguyen and Chiang (2017).

Finally, we supplement these techniques with
traditional back-translation, using monolingual cor-
pora in the target languages.

4 Data Preprocessing

4.1 Datasets
In this work, we only use datasets that were made
available by WMT20:

• HSB/DE parallel corpus (60K pairs)

• Monolingual HSB data (600K sentences)

• Monolingual DE news data (600K sentence
subset)

• CS/EN parallel news corpus (60M pairs)

For the initial pretraining, we use CS/EN parallel
data. The unlabeled and labeled HSB/DE paral-
lel data are used for the back-translation and fine-
tuning steps.

In Section 8, we also show a comparison to a ref-
erence pretraining dataset: a CS/DE parallel corpus
(1.6M pairs).

4.2 Preprocessing Method
Figure 1 shows the preprocessing of the training
corpus. This method of preprocessing the corpus
allows us to use a single decoder-only transformer
and train it on a classical language modeling task.

HSB Sent. DE Sent.

</bos> HSB Sent. </tode> DE Sent. </eos>

</bos> DE Sent. </tohsb> HSB Sent. </eos>

A

B

Training Example (Corpus)

Training Example (Preprocessed)

Figure 1: Preprocessing of the training corpus. The
source and translation texts are concatenated with trans-
lation direction and beginning- and end-of-sequence to-
kens.

Since we use a CS/EN corpus on the initial pre-
training step and HSB/DE corpora on the remaining
steps, we create a joint byte-pair encoding which
is generated by combining all of the corpora.

5 Training Method

Figure 2 shows the training method. In total, our
method consists of five individual steps. These
include: a pretraining step, an intermediate step
made up of three sub-steps (a pre-fine-tuning step,
back-translation, back-translated training), and a
final fine-tuning step. The following subsections
describe these steps in detail.

All of these steps (except the back-translation
step, which is performed in inference mode) are
performed as translation tasks using parallel cor-
pora. The parallel corpora are either real or syn-
thetic (in the case of the corpora resulting from
back-translation).

Random Model 1
Pretraining

4 days
Model 2

Finetuning
4 hrs.

Cs/En
60M Pairs
1 Epoch

Hsb/De
60K Pairs
15 Epochs

Hsb/De
600K Pairs ea.

10 Epochs

Bulk Translation
30 mins.

Model 3

Intermediate
Training
8 hrs.

Final
Finetuning

4 hrs.

Hsb/De
60K Pairs
15 Epochs

Model State

Temp. Model

Real Dataset

Synth. Dataset

Figure 2: Training method: details are in Section 5.
The dataset includes: CS/EN parallel (60M), HSB/DE
parallel (60K), HSB/DE monolingal (600K each).

5.1 Initial Pretraining and Back-translation
We start by pretraining the model on a language
translation task using a large (60M pair) parallel
corpus consisting of Czech and English. As de-
scribed by Kocmi and Bojar (2018), large (10M
pair or above) parallel pretraining corpora provide
significant performance gains. This is reinforced
by our findings in Section 8.3.

Also, Czech and English are related to the the
target languages, which can provide an additional
performance benefit, according to Nguyen and Chi-
ang (2017).

Figure 2 shows the pretraining on a CS/EN trans-
lation dataset and the first round of fine-tuning on
the labeled data for the HSB/DE translation tasks.

In our method, we use the notion of Model states.
After the pretraining step, the model reaches the
Model 1 state as depicted in Figure 2. At this step,
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the model is fine-tuned and reaches the state Model
2. This state is used to back-translate the monolin-
gual HSB/DE data into parallel corpora.

5.2 Back-Translated Training and Final
Fine-Tuning

Output of the bulk translation is then saved and the
Model 2 state is discarded. The bulk translation
is used as a parallel corpus for the back-translated
training step beginning at the Model 1 state: it con-
sists of 600K pairs (per target language), whereby
one sentence in the pair is from the monolingual
corpus, and the other, parallel sentence is from the
bulk translation output.

After the back-translated training, the model en-
ters the Model 3 state: this is the final state be-
fore the last fine-tuning. The last step is training
the model in a supervised fashion on the labeled
dataset.

One should note that, at this point, the model has
not seen the labeled dataset yet. The state Model
2 was trained on the labeled dataset but it is only
used for the back-translation and discarded later.
The final step trains the model using the highest-
quality dataset: human-generated translations from
the source language to the target language.

6 Implementation

We follow the GPT2 paper (Radford et al., 2019)
for the model architecture, excepting hyperparame-
ters. An overview of the system hyperparameters
is shown in Table 1. We use layer normalization, a

Table 1: System Hyperparmeters

Hyperparameter Value
Layers 4

Embedding Size 768
Attention Heads 12

standard dropout rate of 10%, and a learning rate
of 5e-5 for all tasks. For the fine-tuning task, we
employ L2 regularization. We train separate mod-
els for each translation direction. The total size of
the model is 40M parameters.

Our choice of hyperparameters is based on a
modified grid search over the attention heads, learn-
ing rate, layer count, and embedding size.

We used a single Nvidia GTX 1080TI GPU dur-
ing training, and training times are shown in Figure
2. We argue that our method is time and resource
efficient, easy to reproduce, and powerful.

7 Evaluation

In this section, we provide details about our im-
plementation and the final results of the submitted
system on the shared task: translation between Ger-
man and Upper Sorbian.

7.1 Inference Versus Training

During the training tasks, we combine the source
text, the target text, and control tokens. To use the
resulting model to perform a translation of unfamil-
iar text, we use a slightly modified preprocessing
step: we concatenate only the source text with a
translation token. Since the model is trained to per-
form a classical language modeling task, it begins
predicting the next token probabilities of the tar-
get text. We then apply beam search (with a beam
width of five) to these tokens to arrive at the final
translation.

7.2 Results

Table 2 shows the official BLEU score of our
method on the blind test submission to WMT20.
Submissions to the shared task ranged from 38.5 to
61.1 BLEU for DE to HSB translations and from
40.5 to 60.0 for HSB to DE translations.

In this section, all BLEU scores other than the
blind test are calculated on the HSB/DE public test
set and reference translations provided by WMT20.

Table 2: Our submission’s results on the final blind test

Direction BLEU
HSB-DE 46.0
DE-HSB 46.7

Table 3 shows a sample translation. The model’s
word choice is a slight generalization of the Ger-
man reference, with correct grammar, spelling, and
capitalization.

8 Analysis

8.1 Performance Breakdown

In order to understand the contribution of each train-
ing step to the final result, we performed experi-
ments on different training sequences using the
public HSB/DE test set provided by WMT20. The
results of these experiments are reflected in Table
4. In the table, each step is cumulative and includes
the steps above it: e.g., the “back-translation” step
includes both fine-tuning and back-translation, but
not pretraining.
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Table 3: Sample Translation

Upper Sorbian Input
Otto Friedrich Bollnow mjenuje

je tohodla tež hospodarske počinki.
Model output

Otto Friedrich Bollnow nennt sie
deshalb auch wirtschaftliche Tugenden.

English Therefore, Otto Friedrich Bollnow
also names them economic virtues.

German Reference
Otto Friedrich Bollnow bezeichnet sie

daher auch als wirtschaftliche Tugenden.
English Therefore, Otto Friedrich Bollnow

also describes them as economic virtues.

Table 4: Breakdown of BLEU score as training tasks
are added: the results are cumulative

Step DE-HSB HSB-DE
Fine-tuning only 27.4 27.3
Back-translation 38.2 38.1

Pretraining 44.6 42.9
Blind test 46.7 46.0

We conclude from these experiments that the
most significant gains came from back-translation
(around 10 BLEU), followed by the pretraining
step (4-6 BLEU).

For reference, we reiterate the blind test results
in Table 2. The blind test results are different from
the pretraining step due to differences in the data
set.

8.2 Pretraining Task Selection

We considered using unsupervised learning as a
pretraining task; however, a comparison of unsu-
pervised pretraining in the target language with
translation-task pretraining using related languages
showed that the translation task had a greater im-
pact on the final model’s performance.

In this experiment, we compared the effect of
different pretraining tasks on the model’s trans-
lation performance. Recall that our architecture
formulates the translation task as a language mod-
eling task. Since the architecture acts as a language
model, it is also possible to pretrain the model,
without modification, on unsupervised text in the
target languages.

To compare the unsupervised language modeling
pretraining task with a translation pretraining task,
we pretrained one model with the full HSB/DE

unsupervised data set (600K sentences each, 10
epochs), a second model with a CS/DE parallel
corpus (1.6M pairs, 3 epochs), and a third model
with a subset of the CS/EN parallel corpus (60M
pairs, 0.17 epochs), and then fine-tuned each of
them using the supervised data set.

We compare these models to a baseline (fine-
tuned only) model in Table 5. From these results,
we conclude that the similar language translation
tasks are more effective pretraining tasks than un-
supervised language modeling in this context. The
two related-language pretraining tasks were com-
parable in performance, though we only used a
fraction of the CS/EN corpus due to its much larger
size.

Table 5: Target-task BLEU score after fine-tuning,
given pretraining tasks in various languages

Pretraining Type DE HSB
Task -HSB -DE
None - 27.4 27.3

Unsupervised HSB/DE 28.1 29.5
Translation CS/DE 31.7 31.4
Translation CS/EN 31.5 32.7

8.3 Pretraining Corpus Size

Finally, we examined the effect of the number of
pretraining epochs on the final BLEU score. As
shown in Table 6, roughly doubling the corpus size
led to an increase of nearly 1.0 BLEU in the final
model performance. This represents close to 20%
of the performance increase we attribute to our
pretraining task, which suggests that an even larger
corpus, or additional pretraining epochs, would
contribute further to model performance.

Table 6: Effect of 60M-pair pretraining corpus size (in
epochs) on final HSB->DE BLEU score

Epochs BLEU Score
0.42 41.4
1.00 42.3
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9 Conclusion

Since our model produces high-quality translations,
we have shown that a small decoder-only trans-
former, configured to perform classical language
modeling, is an effective translation system for low-
resource language pairs. Furthermore, we have
shown that a similar language translation pretrain-
ing task can contribute substantially to the qual-
ity of such translation systems. Finally, we have
provided an analysis of the model’s components
and their relative contribution to its ultimate perfor-
mance.

Further investigation would be needed to under-
stand our model’s relationship to other architec-
tures under the same data sets and pretraining tasks.
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Abstract

This paper describes the submission of LMU
Munich to the WMT 2020 unsupervised
shared task, in two language directions,
German↔Upper Sorbian. Our core unsuper-
vised neural machine translation (UNMT) sys-
tem follows the strategy of Chronopoulou et al.
(2020), using a monolingual pretrained lan-
guage generation model (on German) and fine-
tuning it on both German and Upper Sorbian,
before initializing a UNMT model, which is
trained with online backtranslation. Pseudo-
parallel data obtained from an unsupervised
statistical machine translation (USMT) system
is used to fine-tune the UNMT model. We also
apply BPE-Dropout to the low-resource (Up-
per Sorbian) data to obtain a more robust sys-
tem. We additionally experiment with resid-
ual adapters and find them useful in the Up-
per Sorbian→German direction. We explore
sampling during backtranslation and curricu-
lum learning to use SMT translations in a more
principled way. Finally, we ensemble our best-
performing systems and reach a BLEU score
of 32.4 on German→Upper Sorbian and 35.2
on Upper Sorbian→German.

1 Introduction

Neural machine translation achieves remarkable re-
sults (Bahdanau et al., 2015; Vaswani et al., 2017)
when large parallel training corpora are available.
However, such corpora are only available for a
limited number of languages. UNMT addresses
this issue by using monolingual data only (Artetxe
et al., 2018c; Lample et al., 2018). The perfor-
mance of UNMT models is further improved using
transfer learning from a pretrained cross-lingual
model (Lample and Conneau, 2019; Song et al.,
2019). However, pretraining also demands large
monolingual corpora for both languages. Without
abundant data, UNMT methods are often ineffective
(Guzmán et al., 2019). Therefore, effectively trans-

lating between a high-resource and a low-resource
language, in terms of monolingual data, which is
the target of this year’s unsupervised shared task,
is challenging.

We participate in the WMT 2020 unsuper-
vised machine translation shared task. The task
includes two directions: German→Upper Sor-
bian (De→Hsb) and Upper Sorbian→German
(Hsb→De). Our systems are constrained, using
only the provided Hsb monolingual data and De
NewsCrawl monolingual data released for WMT.
We pretrain a monolingual encoder-decoder model
on a language generation task with the Masked Se-
quence to Sequence model (MASS) (Song et al.,
2019) and fine-tune it on both languages of interest,
following Chronopoulou et al. (2020). We then
train it on UNMT, using online backtranslation. We
use our USMT system to backtranslate monolin-
gual data in both languages. This pseudo-parallel
corpus serves to fine-tune our UNMT model. Itera-
tive offline backtranslation is later leveraged, yield-
ing a performance boost. We use BPE-Dropout
(Provilkov et al., 2020) as a data augmentation
technique, sampling instead of greedy decoding
in online backtranslation, and curriculum learning
to best include the SMT pseudo-parallel data. We
also use residual adapters (Houlsby et al., 2019) to
translate to the low-resource language (Hsb).

Results Summary. The ensemble of our best-
performing systems yields the best performance
in terms of BLEU1 among the participants of the
unsupervised machine translation shared task. We
release the code and our best models2 in order to
facilitate reproduction of our work and experimen-
tation in this field. We note that we have built upon

1http://matrix.statmt.org/matrix/
systems_list/1920

2https://github.com/alexandra-chron/
umt-lmu-wmt2020
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Figure 1: Illustration of our system. We denote with green the systems that were ensembled for the De→Hsb direc-
tion and with maroon the systems that were ensembled for the Hsb→De direction. Right arrows indicate transfer
of weights. The numbers in gray correspond to the rows of Table 1. Online BT refers to the backtranslation
of sentences with the actual model and updating it with the generated pseudo-parallel data. Pseudo-SMT refers
to data obtained by backtranslating using the USMT baseline system while pseudo-NMT to our translations using
system 5. The components of our approach are explained in Section 2.

the MASS codebase3 for our experiments.

2 Model Description

Figure 1 presents all the different components of
our system and how they are connected to each
other. We train both an unsupervised SMT (#1) and
NMT (#2) model. The UNMT model is based on a
pretrained MASS model (#0), which is monolingual
(De). The model is later fine-tuned on both Hsb
and De. We additionally explore fine-tuning only
on Hsb using adapters. These models are used to
initialize an NMT model (#2, #4) which is trained
with online backtranslation. We additionally exper-
iment with sampling (#3) during backtranslation.
The USMT model is used to backtranslate Hsb and
De data. This synthetic bi-text is used to fine-tune
the baseline UNMT model (#5). We use the syn-
thetic bi-text also to fine-tune directly the adapter-
augmented MASS model, while employing online
backtranslation and sampling (#8). We experiment
with curriculum learning (#6) to estimate the op-
timal way to feed the model this pseudo-parallel
data. We also use our UNMT model to generate
backtranslations and fine-tune existing models (#7).
Further USMT-backtranslated data is used in #9.
Finally, some models are fine-tuned with mono-
lingual data which is oversampled and segmented

3https://github.com/microsoft/MASS

with BPE-Dropout (#10, #11). The details of these
components are outlined in the following.

2.1 Unsupervised SMT

First we describe the USMT system which we use to
generate pseudo-parallel data to fine-tune our NMT

system. We use monoses (Artetxe et al., 2018b),
which builds unsupervised bilingual word embed-
dings (BWEs) and integrates them to Moses (Koehn
et al., 2006), but apply some modifications to it.

As a first step, we build unsupervised BWEs
with fastText (Bojanowski et al., 2017) and VecMap
(Artetxe et al., 2018a) containing representations of
1-, 2- and 3-grams. Since the size of the available
monolingual Hsb data is low, mapping monolin-
gual embeddings to BWEs without any bilingual
signal fails, i.e., we find no meaningful translations
by manually investigating the most similar cross-
lingual pairs of a few words. Instead, we rely on
identical words occurring in both De and Hsb cor-
pora as the initial seed dictionary. The BWEs are
then converted to phrase-tables using cosine sim-
ilarity of words and a language model is trained
on the available monolingual data. The shared task
organizers released a validation set which we use to
tune the parameters of the system with MERT, in-
stead of running unsupervised tuning as described
in Artetxe et al. (2018b). Finally, we run 4 itera-
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tive refinement steps to further improve the system.
Other than the above, all steps and parameters are
unchanged.

We use this system in inference mode to back-
translate 7M De and 750K Hsb sentences. We
refer to this pseudo-parallel dataset as 7.7M SMT
pseudo-parallel. We also backtranslate 10M
more De sentences. This dataset is later used to
fine-tune one of our systems. We refer to it as 10M
Hsb-De SMT pseudo-parallel.

2.2 MASS

We initialize our UNMT systems with an encoder-
decoder Transformer (Vaswani et al., 2017), which
is pretrained using the MASS (Song et al., 2019)
objective. The model is pretrained by trying to
reconstruct a sentence fragment given the remain-
ing part of the sentence. The encoder takes a ran-
domly masked fragment as input, while the de-
coder tries to predict the masked fragment. MASS

is inspired by BERT (Devlin et al., 2019), but is
more suitable for machine translation, as it pre-
trains the encoder-decoder and the attention mech-
anism, whereas BERT is an encoder Transformer.
In order to pretrain the model, instead of training
MASS on both De and Hsb, we initially train it
on De. After this, we fine-tune it on both De and
Hsb, following RE-LM (Chronopoulou et al., 2020).
The intuition behind this is that, if we simultane-
ously train a cross-lingual model on unbalanced
data, where X is much larger than Y , the model
starts to overfit the low-resource side Y before be-
ing trained on all the high-resource language data
(X). This results in poor translations. We refer to
our pretrained model as FINE-TUNED MASS.

2.2.1 Vocabulary Extension for NMT
To fine-tune the pretrained De MASS model on
Hsb, we need to overcome the following issue: the
pretrained model uses BPE segmentation and vo-
cabulary based only on De. To this end, we again
follow RE-LM. We denote these BPE tokens as
BPEDe and the resulting vocabulary as VDe. We
aim to fine-tune the monolingual MASS model to
Hsb. Splitting Hsb with BPEDe would result in
heavy segmentation of Hsb words. To prevent this
from happening, we learn BPEs on the joint De and
Hsb corpus (BPEjoint). We then use BPEjoint to-
kens to split the Hsb data, resulting in a vocabulary
VHsb. This method increases the number of shared
tokens and enables cross-lingual transfer of the pre-
trained model. The final vocabulary is the union

of the VDe and VHsb vocabularies. We extend the
input and output embedding layer to account for
the new vocabulary items. The new parameters are
then learned during fine-tuning.

2.3 Adapters
Besides initializing our UNMT systems with FINE-
TUNED MASS, we also experiment with pretraining
MASS on De and fine-tuning only on Hsb. During
fine-tuning, we freeze the encoder and decoder
Transformer layers and add adapters (Houlsby
et al., 2019) to each of the Transformer layers.
Adapters can prevent catastrophic forgetting (Good-
fellow et al., 2013) and show promising results in
various tasks (Bapna and Firat, 2019; Artetxe et al.,
2020). We fine-tune only the output layer, the em-
beddings and the decoder’s attention to the encoder
as well as the lightweight adapter layers.

We investigate adapters as fine-tuning in this
way is considerably more computationally efficient.
We also experimented with freezing the decoder’s
attention to the encoder as well as adding an adapter
on top of it, but these architecture designs are worse
in terms of perplexity during MASS fine-tuning as
well as BLEU scores during UNMT.

We use the fine-tuned model to initialize an
encoder-decoder Transformer, augmented with
adapters. The adapter-augmented model is then
trained in an unsupervised way, using online back-
translation. All layers are trainable during unsu-
pervised NMT training. We refer to this model as
FINE-TUNED MASS + ADAPTERS.

2.4 Unsupervised NMT (online
backtranslation)

We initialize our UNMT models with FINE-TUNED

MASS. Following Song et al. (2019), we train
the systems in an unsupervised manner, using on-
line backtranslation (Sennrich et al., 2016a) of the
monolingual Hsb and De data, that were also used
for pretraining. As proposed in Song et al. (2019),
we do not use denoising auto-encoding (Vincent
et al., 2008). We use online backtranslation to gen-
erate pseudo bilingual data for training. We refer
to the resulting model as UNMT BASELINE.

2.5 Sampling
We experiment with sampling instead of greedy
decoding during online backtranslation. Edunov
et al. (2018) show that sampling is beneficial for
backtranslation compared to greedy decoding or
beam search for systems trained on larger amounts
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of parallel data. Although we do not use any paral-
lel data, we assumed that our initial UNMT baseline
is of reasonable quality and that sampling would be
beneficial. However, in order to provide a balance,
we randomly use either greedy decoding or sam-
pling during training. The frequency with which
sampling is used is a hyperparameter which we set
to 0.5. Sampling temperature is set to 0.95.

2.6 Curriculum learning

Considering the high improvements achieved by
including SMT backtranslated data, we conduct ex-
periments to determine a more meaningful way to
feed the data to the model using curriculum learn-
ing (Kocmi and Bojar, 2017; Platanios et al., 2019;
Zhang et al., 2019). We learn the curriculum us-
ing Bayesian Optimization (BO) for which we use
an open source implementation4. Similar work
has been proposed for transfer learning (Ruder and
Plank, 2017) and NMT (Wang et al., 2020). As we
already have a reasonably trained NMT model, we
use it to compute instance-level features for learn-
ing the curriculum. Each sentence pair from the
SMT backtranslated data is represented with two
features: the model scores for this pair in the origi-
nal (backtranslation→ monolingual sentence) and
reverse direction (monolingual→ backtranslation).

The weights that determine the importance of
these features are learned separately for De→Hsb
and Hsb→De, so that we have 4 features in total.
BO runs for 30 trials. The feature weights are con-
strained in the range [−1, 1]. Each trial runs 5.4K
NMT updates. The curriculum optimizes the sum of
Hsb→De and De→Hsb validation perplexity. For
the optimization trials, we only use the SMT back-
translated data as pseudo-parallel data and do not
use online backtranslation. Finally, based on the
feature weights and the features for each sentence,
we sort the pseudo-parallel data and fine-tune the
UNMT BASELINE with SMT backtranslations and
online backtranslation. It would be interesting to
study if a similar approach can be used to estimate
a more optimal loading of monolingual data during
MASS pretraining and UNMT.

2.7 Offline Iterative Backtranslation

We also experiment with creating synthetic train-
ing data using offline backtranslation with one of
our UNMT systems (#5 in Table 1). We translate
750K De sentences to Hsb and 750K Hsb sen-

4https://ax.dev/

tences to De. The resulting pseudo-parallel system
is denoted as 750K NMT pseudo-parallel
corpus and is used to fine-tune the same system.

2.8 BPE-Dropout

BPE segmentation is useful in machine translation,
as it efficiently addresses the open vocabulary prob-
lem. This approach keeps the most frequent words
intact and splits the rare ones into multiple tokens.
It builds a vocabulary of subwords and a merge ta-
ble, specifying which subwords have to be merged
and the priority of the merges. BPE segmenta-
tion always splits a word deterministically. Intro-
ducing stochasticity to the algorithm (Provilkov
et al., 2020), by simply removing a merge from
the merges with a pre-defined probability p, results
in significant BLEU improvements for various lan-
guages in low- and medium-resource datasets.

We use BPE-Dropout in the following way: we
oversample the Hsb monolingual data by a factor
of 10 and apply BPE-Dropout. In that way, we get
different segmentations of the same sentences and
feed this data to the model. We also oversample
the 750K SMT pseudo-parallel corpus in
the same manner, but only apply BPE-Dropout
to the Hsb side. These monolingual and pseudo-
parallel oversampled datasets are used to fine-tune
our models. These systems perform better than our
other single systems.

2.9 Ensembling

For the final models, we perform ensemble decod-
ing with the best training models obtained in our
experiments. We evaluate several combinations
of model ensembles. Based on BLEU scores on
the test set provided during development, we de-
cide on two separate ensembles for De→Hsb and
Hsb→De for the final submission.

3 Experiments

3.1 Data Pre-processing

In line with the rules of the WMT 2020 unsuper-
vised shared task5, we used 327M sentences from
WMT monolingual News Crawl6 dataset for Ger-
man, collected over the period of 2007 to 2019. We
also used the Upper Sorbian side of the provided
parallel data as well as all of the monolingual data,
a total amount of 756K sentences, provided by the

5http://www.statmt.org/wmt20/unsup_
and_very_low_res/

6http://data.statmt.org/news-crawl/de/
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# Methods De→Hsb Hsb→De

0 MASS 5.6 7.0
1 USMT 19.3 21.4
2 0© UNMT baseline (fine-tuned MASS) 24.4 27.1
3 2© UNMT baseline + sampling 25.4 27.4
4 0© UNMT baseline (fine-tuned MASS with adapters) 18.8 21.7

5 3© + online BT + pseudo-SMT + sampling 29.9 31.9
6 3© + online BT + pseudo-SMT + curriculum 30.0 32.5
6* 3© + online BT + pseudo-SMT + curriculum + sampling 30.2 32.8
7 5© + online BT + pseudo-NMT 29.8 33.2
8 0© + online BT + pseudo-SMT + sampling (with adapters) 29.0 32.3
9 7© + online BT + pseudo-SMT (Hsb-De) 30.0 32.7

Data oversampling with BPE-Dropout

10 5© + BPE-Dropout 30.7 33.4
11 7© + BPE-Dropout 31.8 34.0

12 Model Ensemble (8, 9, 10, 11) 32.4 35.2
13 Model Ensemble (6, 9, 11) 31.9 34.8

Table 1: BLEU scores of UMT for De-Hsb and Hsb-De systems. The systems with the underlined results were
ensembled and used in our primary submissions. #12 is our primary system submitted to the organizers in the
De→Hsb direction, while #13 is our primary system submitted in the Hsb→De direction. 6* was trained after the
shared task and is not used for the final submission.

organizers. We used the provided parallel data
for validation/testing (2K/2K sentences). We nor-
malized punctuation, tokenized and true-cased the
data using standard scripts from the Moses toolkit
(Koehn et al., 2006). We note that we tokenized
Hsb data using Czech as the language of tokeniza-
tion, since these two languages are very closely
related and there are no tokenization rules for Hsb
in Moses.

We used BPE (Sennrich et al., 2016b) segmenta-
tion for our neural system. Specifically, we learned
32K codes and computed the vocabulary using the
De data. We then also learned the same amount
of BPEs on the joint corpus (De, Hsb) and com-
puted the joint vocabulary. We extended the initial
vocabulary, adding to it unseen items. We used
this augmented vocabulary to fine-tune the MASS

model and run all the UNMT training experiments.

3.2 Data Post-processing

We fixed the quotes to be the same as in the source
sentences (German-style). We also applied a re-
caser using Moses (Koehn et al., 2006) to convert
the translations to mixed case.

3.3 Training

Unsupervised SMT. As mentioned before, we
used fastText (Bojanowski et al., 2017) to build 300
dimensional embeddings on the available monolin-
gual data. We build BWEs with VecMap (Artetxe
et al., 2018a) using identical words as the seed

dictionary and restricting the vocabulary to the
most frequent 200K, 400K and 400K 1-, 2- and
3-grams respectively. We used monoses (Artetxe
et al., 2018b) as the USMT pipeline but used the
available validation data for parameter tuning and
ran 4 iterative refinement steps.
MASS. We use a Transformer, which consists of
6-layer encoder and 6-layer decoder with 1024 em-
bedding/hidden size, 4096 feed-forward network
size and 8 attention heads. We pretrain MASS on
De monolingual data, using Adam (Kingma and
Ba, 2015) optimizer with inverse square root learn-
ing rate scheduling and a learning rate of 10−4. We
used a per-GPU batch size of 32. We trained the
model for approximately 2 weeks on 8 NVIDIA
GTX 1080 Ti 11 GB GPUs. The rest of the hyper-
parameters follows the original MASS paper. We
fine-tune MASS on both De and Hsb using the same
setup, but on 4 GPUs of the same type. Fine-tuning
was performed for 2 days.
Unsupervised NMT. For unsupervised NMT, we
further train the fine-tuned MASS using online
backtranslation. We use 4 GPUs to train each one
of our UNMT models. We report BLEU using
SacreBLEU (Post, 2018)7 on the provided test set.
Unsupervised NMT + Pseudo-parallel MT. We
train our UNMT systems using a pseudo-parallel su-
pervised translation loss, in addition to the online
backtranslation objective. We found out that aug-

7BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+ver-
sion.1.4.13

1088



menting UNMT systems with pseudo-parallel data
obtained by USMT leads to major improvements in
translation quality, as previous work has showed
(Artetxe et al., 2018b; Stojanovski et al., 2019).

4 Results

The results of our systems on the test set provided
during development are presented in Table 1. Our
USMT model (#1) performs competitively, but is
largely outperformed by the UNMT baseline (#2).
These results are interesting considering that both
systems are trained using small amounts of mono-
lingual Hsb data. We believe that the performance
of the UNMT model is largely due to the MASS

fine-tuning scheme which allowed us to obtain a
strong pretrained model for both languages. We
also observe (#3) that mixing greedy decoding and
sampling during backtranslation is beneficial com-
pared to always using greedy decoding (#2), espe-
cially for De→Hsbwhich improved by 1.0 BLEU.
However, it is likely that sampling is useful only
if the model is of reasonable quality. We note that
the adapter-augmented model (#4) is worse than
the UNMT baseline.

After these initial experiments, we use the USMT

model (#1) to backtranslate all Hsb monolingual
data and 7M De sentences. This pseudo-parallel
data is leveraged to fine-tune our UNMT models
alongside online backtranslation. This approach,
denoted as model #5, improves the UNMT baseline
(#3) by more than 5.5 BLEU for De→Hsb and
4.5 BLEU for Hsb→De. The curriculum learning
approach (#6) yields a small improvement of 0.6
BLEU for Hsb→De. Unfortunately, the curricu-
lum learning model ran without the use of sampling.
We later train the model with sampling (#6*) and
obtain slight improvements in both directions.

Using NMT backtranslations in an offline man-
ner (#7) provides for a large improvement in the
Hsb→De direction, obtaining 33.2 BLEU. Further
training our high scoring model #7 on USMT back-
translations, depicted as model #9, degrades per-
formance on Hsb→De. This might indicate that
USMT backtranslations alone are not very impor-
tant for high performance, but simply adding any
kind of pseudo-parallel data during training.

The adapter-augmented model with USMT back-
translations (#8) manages to close the gap to the
baseline model. Comparing #5 and #8, we can see
that the model with adapters is worse by 0.9 BLEU
on De→Hsb, but better by 0.4 on Hsb→De. Due

to time constraints, we train #4 and #8 in parallel
and #8 is not fine-tuned from #4. Overall, adapters
are a promising research direction as they lead to
faster MASS fine-tuning and comparable perfor-
mance.

We observe considerable improvements using
BPE-Dropout. As noted before, we oversample the
parallel and Hsb monolingual data and apply BPE-
Dropout only on Hsb. We use this data to fine-tune
some of our already trained models, specifically #5
and #7 which results in models #10 and #11, re-
spectively. This approach improves the Hsb→De
direction by up to 1.5 BLEU and up to 1.0 BLEU
for De→Hsb. System #11 proved to be our best
single system in both translation directions. We
hypothesize that using BPE-Dropout while simulta-
neously oversampling the data provides for a data
augmentation effect. In future work, it would be
interesting to decouple these two steps and measure
their effect separately.

Ensembling further boosts performance. En-
semble #12 is used for De→Hsb and #13 for
Hsb→De. We note that while computing ensem-
ble BLEU scores during development, we did not
fix the issue with German-style quotes. This re-
sulted in ensemble #13 obtaining better scores on
Hsb→De. We later fix the quotes issue and find
out that ensemble #12 is better on both translation
directions and is the best system overall.

5 Conclusion

In this paper, we present the LMU Munich sys-
tem for the WMT 2020 unsupervised shared task
for translation between German and Upper Sorbian.
Our system is a combination of an SMT and an NMT

model trained in an unsupervised way. The UNMT

model is trained by fine-tuning a MASS model, ac-
cording to the recently proposed RE-LM approach.
The experiments show that the MASS fine-tuning
technique is efficient even if little monolingual data
is available for one language and results in a strong
UNMT model. We also show that using pseudo-
parallel data from USMT and UNMT backtransla-
tions improves performance considerably. Further-
more, we show that oversampling the low-resource
Upper Sorbian and applying BPE-Dropout, which
can effectively be seen as data augmentation, re-
sults in further improvements. Adapters in MASS

fine-tuning provided for a balance between per-
formance and computational efficiency. Finally,
smaller but noticeable gains are obtained from us-
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ing curriculum learning and sampling during de-
coding in backtranslation.
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Abstract
This paper describes the UdS-DFKI submis-
sion to the shared task for unsupervised ma-
chine translation (MT) and very low-resource
supervised MT between German (de) and Up-
per Sorbian (hsb) at the Fifth Conference of
Machine Translation (WMT20). We submit
systems for both the supervised and unsuper-
vised tracks. Apart from various experimen-
tal approaches like bitext mining, model pre-
training, and iterative back-translation, we em-
ploy a factored machine translation approach
on a small BPE vocabulary.

1 Introduction

This paper describes the UdS-DFKI submission to
the unsupervised and very low resource supervised
tasks of WMT20 for German to Upper Sorbian
(de→hsb) and Upper Sorbian to German (hsb→de).
Our submitted systems are constrained for the very
low resource supervised and unconstrained for the
unsupervised task, in that we use Wikipedia dumps
as additional data.

Current machine translation systems that deal
with low-resource languages are based on unsuper-
vised neural machine translation, semi-supervised
methods and pre-trained models leveraging mono-
lingual data (Guzmán et al., 2019), and mul-
tilingual systems among others. In this work,
we explore different systems which include base-
line NMT, factored NMT (Sennrich and Haddow,
2016a), iterative backtranslation, self-supervised
NMT (SSNMT) (Ruiter et al., 2019) and pre-
training with XLM (Lample and Conneau, 2019)
using transformer-base models (Vaswani et al.,
2017) for the training of the systems.

This paper begins by presenting the data we used
for the tasks and the preprocessing pipeline (Sec-
tion 2). This is followed by an overview of the train-
ing setup (Section 3) and the methods we applied

∗* Equal contribution

(Section 4). Section 5 summarizes our findings,
followed by a discussion of the results in Section 6.
We conclude the paper and propose some possible
future work in Section 7.

2 Data

Unsupervised Task For Sorbian, we use the
given data from the Sorbian Institute (Inshsb), from
Witaj Sprachzentrum (Witajhsb), and web-scraped
data (Webhsb). Table 1 gives a summary of the
data we use in the unsupervised track. We use the
Europarl (EP monode, (Koehn, 2005)) and News
Commentary (NC monode, (Barrault et al., 2019))
datasets for the monolingual German data. Apart
from this, we also use Wikipedia Dumps1 for
both German and Upper Sorbian. We extract arti-
cles using Wikiextractor2, which are aligned using
Wikipedia langlinks3 to create a comparable corpus
for SSNMT extraction.

Supervised Task Apart from the provided par-
allel data, we use high-quality EUROPARL (EP,
(Koehn, 2005)) and medium-quality JW300 (Agić
and Vulić, 2019; Tiedemann, 2012) corpora for
de-cs-hsb. For parallel text mining with LASER
(Schwenk, 2018; Artetxe and Schwenk, 2019), we
use the combination of all the monolingual corpora
of German and Upper Sorbian from the unsuper-
vised section of Table 1, which is discussed in detail
later in Section 4.3.

Preprocessing Our preprocessing steps include
normalization, tokenization, deduplication, and
truecasing. We attach feature labels related to
the source language (<src>), target language
(<tgt>), and the data quality (<quality>), for

1https://dumps.wikimedia.org/ (March 2020)
2https://github.com/attardi/

wikiextractor
3https://www.mediawiki.org/wiki/API:

Langlinks
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every individual sentence. The quality of a sen-
tence depends on the corpus it is from and the
quality tags of <low>, <medium>, or <high>
are added to all sentences of the corpora according
to the quality labels assigned to the data provided
for the shared task: e.g. Inshsb is high quality Sor-
bian. A typical sentence from the corpus after our
preprocessing pipeline has the following format:

<src> <tgt> <quality> sentence

After factoring (4.2), we proceed to apply joint
byte-pair encoding (BPE) (Sennrich et al., 2016b)
on the corpora to finally get our preprocessed data
which we use for training all our NMT models.
Unless specified otherwise, we use a default of 5k
merge operations.

Corpus # Sentences # Tokens

Unsupervised
Inshsb 339k 5,044k
Witajhsb 222k 2,672k
Webhsb 134k 1,677k
EP monode 2,107k 55,557k
NC monode 422k 8,942k
Wikide 833k 36,531k
Wikihsb 76k 2,402k

Supervised
Bitextde 60k 1,002k
Bitexthsb 60k 737k
EPde 568k 13,098k
EPcs 568k 11,571k
JW300de 1,179k 20,888k
JW300cs 1,179k 19,144k

Dev & Test
Dev20de 2k 24k
Dev20hsb 2k 21k
DevTest20de 2k 24k
DevTest20hsb 2k 22k

Table 1: Statistics (in thousands) of different corpora
used for the unsupervised and supervised tasks.

3 Systems

MT Systems We train all our models using the
Transformer-base architecture in the OpenNMT-py
(Klein et al., 2017) framework extended for SS-
NMT4 (Ruiter et al., 2019). The setting for the

4https://github.com/ruitedk6/
comparableNMT

Transformer base is the same as in Vaswani et al.
(2017) with 6 encoder-decoder layers after hav-
ing explored other options of Transformer depth.
We set the dropout to 0.4 in all experiments. We
use adam (Kingma and Ba, 2014) for optimiza-
tion with β1 = 0.9 and β2 = 0.998. The learning
rate is varied from 0 to 2 with a warm update of
4000 and decayed using noam. Lower values of
learning rate were avoided due to slower training
and lower accuracy scores. We use a batch size
of 50. The Phrase-Based Statistical MT systems
(PBSMT) are standard Moses (Koehn et al., 2007)
systems trained without applying BPE to the data.

Initialization The NMT models are initialised
with cross-lingual word embeddings calculated
on the monolingual corpora using word2vec5

(Mikolov et al., 2013) (skip-gram) and unsuper-
vised VecMap6 (Artetxe et al., 2017).

Pre-trained Sentence Representations For
XLM (Lample and Conneau, 2019), we pre-train
and fine-tune the model using drop out of 0.1,
batch size of 32 with a joint BPE of 10k (10k
showed better results for XLM), learning rate of
0.0001, and a sequence length of 265 using 512
and 1024 embedding dimensions respectively.

Evaluation Metric We use BLEU7 (Papineni
et al., 2002) scores to evaluate the performance
of our trained models.

4 Techniques

4.1 Iterative Backtranslation

For the unsupervised task, we use an SSNMT sys-
tem as described in Ruiter et al. (2019) to extract
parallel sentences from the Wikipedia dumps. SS-
NMT jointly and iteratively extracts parallel data,
and learns the MT task on the extracted parallel
data. The resulting trained NMT model is our base
model (M0).

For iterative back-translation (Hoang et al.,
2018), we take a model Mi and use it to translate
the hsb monolingual data monohsb and EP monode
to generate monoide and EP monoihsb respectively.
Following Sennrich et al. (2016a), we use the gen-
erated data at iteration i on the source side with

5https://github.com/tmikolov/word2vec
6https://github.com/artetxem/vecmap
7We use the Moses multi-bleu script for eval-

uation. https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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the original data on the target to train a new model
Mi+1. This is done iteratively, in our case until
i = 5.

As the translation quality of M0 is very low, this
model is replaced by a PBSMT system which is
trained on the data that M0 has extracted, in order
to generate the back-translation to be used for M1.

Model BLEU
hsb→de de→hsb

M0 6.46 6.09
M1 8.53 8.31
M2 9.81 10.04
M3 10.47 13.51
M4 11.31 11.57
M5 9.13 13.61

Table 2: BLEU scores of iterative-backtranslation mod-
els per iteration, calculated on Dev20.

The resulting BLEU scores on Dev20 for each
of the iterations is shown in Table 2. The best per-
formance for hsb→de is achieved at i = 4 (11.31
BLEU) and for de→hsb at i = 5 (13.61 BLEU).
These constitute two of the models submitted to
the unsupervised task.

4.2 Factorization

Limited monolingual language analysis tools and
few linguistic analysis tools with acceptable per-
formance are available for low-resource (LowRes)
languages. In our experiments, we explore factored
machine translation (Garcı́a-Martı́nez et al., 2016;
Sennrich and Haddow, 2016b; Koehn and Knowles,
2017). This approach can play a significant role in
increasing grammatical coherence. Syntactic and
semantic information can be useful to generalize
neural models trained on parallel corpora.

We augment our parallel data to include fac-
tors like lemma (using Snowball Stemmer (Porter,
2001)) and PoS tags (using spaCy8 open source
library (Honnibal and Montani, 2017)) for German
words. The language-agnostic UDPipe trainable
pipeline (Straka et al., 2016) has been used for
lemmatization and PoS tagging for Sorbian words.
We follow an approach similar to Bandyopadhyay
(2019, 2020), where we factor the data at word-
level to include the root word (lemma) and the part

8https://github.com/explosion/spaCy

of speech (PoS) of each word along with the word
itself, each component separated with a pipe (|)
symbol.

word token | lemma | PoS

Byte-pair encoding is implemented after factor-
ization. After training the model, the test dataset
on the source side of the language pair is used to
obtain the output dataset on the target side of the
language pair. Once testing is done, the data is
again decoded using the trained BPE model before.

For the supervised task, we submit a German
to Upper Sorbian factorized model on the German
side of the parallel corpus which resulted in 40.9
and 40.3 cased BLEU score.

For the unsupervised task, Upper Sorbian to
German factorization on the best-performing SS-
NMT model improves the BLEU score by 0.1 to
9.0 on Test20 in comparison to the non-factorized
model.

The results of the factored models are reported
in Tables 3 (supervised) and 4 (unsupervised).

BPE de (fac.)→hsb hsb (fac.)→de

2k 31.01 37.09
5k 41.15 32.17

10k 35.67 38.23
20k 34.70 37.62

Table 3: Supervised Source Factored NMT systems
with BLEU scores on DevTest20.

System BLEU

de→hsb (fac.) 5.67
de (fac.)→hsb (fac.) 6.03

hsb→de (fac.) 7.24
hsb (fac.)→de (fac.) 7.49

Table 4: Unsupervised Factored NMT systems with
BLEU scores for 10k BPE on DevTest20.

4.3 Data Mining with LASER
We use LASER (Schwenk, 2018; Artetxe and
Schwenk, 2019) to filter and mine parallel sen-
tences from a list of monolingual corpora of both
German and Upper Sorbian. For German, we use
the Wikide, EP monode, and NCde corpora, while
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for the Upper Sorbian counterpart, we use the
monolingual corpora Inshsb, Witajhsb, Webhsb, and
Wikipedia dumps (Wikihsb) as mentioned in Table
1. We explore a range of LASER extraction thresh-
old values (1.03, 1.04, 1.05, 1.06, and 1.07) for this
process. Table 5 gives a summary of the number of
parallel sentences extracted from the monolingual
corpora combinations from both languages using
different threshold values. Using a lower threshold
value extracts a higher number of parallel sentences
but the quality gradually deteriorates as the thresh-
old value decreases. We train NMT models on
parallel sentences from each threshold and find that
1.04 gives comparatively better results than others.
We use the model M4 from iterative backtranslation
(Table 2) as the baseline and then add the extracted
sentences to check if the performance improves.
However, all the resulting BLEU scores using ad-
ditional LASER data are much lower than those
of the iterative backtranslation baseline models re-
ported in Table 2, indicating poor quality of the
LASER extractions.

Threshold # Sentences

1.03 18,979
1.04 9,609
1.05 5,200
1.06 2,806
1.07 1,646

Table 5: Number of parallel sentences mined using
LASER with different threshold values.

4.4 Pre-training with Cross-lingual
Language Model XLM

We explore the option of using pre-trained models
with different embedding sizes to improve the per-
formance of our system in the unsupervised task.
We collected the sentence pairs from Wikipedia
extracted with SSNMT. Also we collected back-
translations for the monolingual data provided for
the task using iterative backtranslation as explained
in Section 4.1. We then pre-train XLM for de-hsb
using all the monolingual data except Wikide and
Wikihsb. We then fine-tune the pre-trained model
for the supervised translation task using the parallel
data from M0 and back-translations taken from M4

and M5. Table 6 shows the resulting BLEU scores
for this task on Dev20 and DevTest20.

XLM Embedding Size BLEU
hsb→de de→hsb

Dev20
512 8.84 8.41
1024 8.91 8.15

DevTest20
512 7.58 7.29
1024 7.44 6.78

Table 6: BLEU scores of pre-training with XLM on
Dev20 and DevTest20.

5 Results

Tables 7 (submitted systems) and 8 (unfactored
baseline systems) show a summary of all BLEU

scores.

Model BLEU
Dev20 DevTest20 Test20

Unsupervised
de→hsb 13.6 9.9 10.3
hsb→de 11.3 8.1 8.9
hsb (fac.)→de 9.8 8.7 9.0

Supervised
de (fac.)→hsb 44.34 41.15 40.9

Table 7: BLEU scores for the submitted models on the
Dev20, DevTest20, and Test20 datasets.

Unsupervised Parallel data extracted with self-
supervised NMT on Wikipedia dumps data and
iterative back-translation on monohsb EP monode
were used to train the models. For the unsuper-
vised track, we submit three NMT models trained
in the directions from unfactored German to unfac-
tored Upper Sorbian (de→hsb), from unfactored
Upper Sorbian to unfactored German (hsb→de),
and from factored Upper Sorbian to unfactored
German (hsb(fac.)→de). The iterative backtrans-
lation model M5 (Table 2) for de→hsb obtains a
BLEU score of 9.0 on the WMT blind test data.
The hsb→de model (M4 in Table 2) achieves a
BLEU score of 8.9 while the same model with a
factored Upper Sorbian source slightly pushes the
BLEU score to 9.0.
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Supervised For the supervised task, we submit
a single de(fac.)→hsb NMT model (refer Table
3) where the German side is factored. The model
achieves a BLEU score of 40.9 on the WMT blind
test data.

6 Discussion

System BPE de→hsb hsb→de

PBSMT 36.93 37.65
2k 41.16 40.57

bilingual 5k 37.51 37.47
de-hsb 15k 37.68 36.79

30k 36.02 35.64
2k 28.20 30.98

multilingual 5k 34.05 36.07
de-cs-hsb 15k 32.98 36.61

30k 29.31 36.89

Table 8: Supervised NMT systems with BLEU scores
on DevTest20.

We experimented with different methods in this
shared task for both the supervised as well as un-
supervised tracks. The major challenge in this task
was the small amount of good quality training data
as Upper Sorbian is a very low resource language.
Parallel sentence extraction demands the availabil-
ity of good quality data. Schwenk (2018) and
Artetxe and Schwenk (2019) mention that the pre-
trained LASER model seems to generalize well for
minor languages and dialects including Sorbian9,
but Upper Sorbian itself is not among the languages
on which the model is actually trained. As a result,
LASER does not seem to give very good results
for Upper Sorbian. SSNMT (Ruiter et al., 2019)
however was able to learn better semantic represen-
tations and extracted quality sentence pairs from
Wikipedia articles.

The lack of sufficient data for training is also
one of the reasons why pre-trained language mod-
els using XLM did not give satisfactory results.
The second reason is the low quality of the back-
translations that were used for fine-tuning.

We have used factored machine translation
where we include the lemma and the PoS of each
word along with it in the corpora. Due to the lack
of a proper lemmatizer for Upper Sorbian, we used

9https://github.com/facebookresearch/
LASER#supported-languages

UDPipe (Straka et al., 2016) for Czech as it is an-
other language from the Slavic family. However,
there are obvious linguistic differences in both the
languages due to which a Czech morphological tool
will not work perfectly for Upper Sorbian. This
is also the reason why our de-cs-hsb multilingual
NMT systems (Table 8) did not achieve satisfac-
tory results. NMT models with factored source
sentences improved the performances of our mod-
els by a small margin.

We have observed that a smaller BPE vocabulary
is generally better for low-resource languages as
expected. Here we have chosen an optimal BPE
vocabulary size as choosing even smaller BPE size
values would result in almost character-level seg-
mentation. We also realise that the availability of
more quality data could have improved our systems
as we can first pre-train language models on good
quality monolingual text data using XLM and use
this as the initial model for iterative backtranslation
as in the SSNMT approach. We believe that this
will generate better results.

7 Conclusion and Future Work

This paper describes the UdS-DFKI submission
to the shared task of unsupervised and very low
resource supervised machine translation between
German and Upper Sorbian at WMT20. For all our
systems, we have used the standard Transformer-
base architecture. We have extracted parallel data
from Wikipedia dumps using SSNMT (Ruiter et al.,
2019), followed by iterative back-translation for
the unsupervised task. For the supervised track,
we have tried to factor morphological information
into our data to improve our results further. For
the constrained supervised task, we achieve 40.9
BLEU for de(fac.)→hsb. We obtain BLEU scores
of 10.3, 8.9, and 9.0 for the de→hsb, hsb→de, and
hsb(fac.)→de translation directions respectively in
the unsupervised track.

As discussed in Section 6, one approach for fu-
ture work is to combine XLM pre-training along
with SSNMT directly to improve system initial-
ization. It would be interesting to explore linguis-
tic and syntactic information from other closely-
related languages to further enhance the perfor-
mance of the multilingual models.
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Abstract

This paper describes the methods behind the
systems submitted by the University of Gronin-
gen for the WMT 2020 Unsupervised Machine
Translation task for German–Upper Sorbian.
We investigate the usefulness of data selection
in the unsupervised setting. We find that we
can perform data selection using a pretrained
model and show that the quality of a set of sen-
tences or documents can have a great impact
on the performance of the unsupervised neural
machine translation (UNMT) system trained
on it. Furthermore, we show that document-
level data selection should be preferred for
training the state-of-the-art UNMT model, the
XLM model, when possible. Finally, we show
that there is a trade-off between quality and
quantity of the data used to train UNMT sys-
tems.

1 Introduction

Unsupervised Neural Machine Translation
(UNMT) has recently become the dominant
paradigm for unsupervised MT, with the advent of
cross-lingual language model pretraining as used
in the XLM model (Conneau and Lample, 2019).
However, much of the existing research in UNMT
assumes that the amount of data available for one
language is roughly equivalent to the other. The
WMT 2020 Unsupervised Machine Translation
task is unique in that monolingual data is abundant
for one language (German), with hundreds of
millions of sentences available, and sparse for the
other (Upper Sorbian), which only has around 750
thousand sentences available. With a wealth of
data available on the German side, it is natural
to ask: how can we best use this data? Viewing
this under the lens of data selection, we break this
broad question down into 3 concrete sub-questions,
tailored for the unsupervised setting. They are as
follows:

• How can we determine the quality of training
data?

• What kinds of data selection are best for train-
ing an XLM model?

• Is quality or quantity more important when it
comes to training data for UNMT?

Section 2 describes the general setup pertain-
ing to every experiment, including datasets, data
processing steps, model architecture, and training
details. In Section 3, we detail our individual ex-
periments and their corresponding results. Finally,
in Section 4, we make our conclusions and discuss
paths for future work.

2 Setup

For Upper Sorbian, we use the 3 monolingual
datasets provided by the Sorbian Institute, the Witaj
Sprachzentrum, and the web data from CIS, LMU.
We also use the Upper Sorbian side of the parallel
corpus from train.hsb-de.hsb.gz. For Ger-
man, we use monolingual data from News Crawl
and Common Crawl. For validation and testing, we
use the data provided in devtest.tar.gz.

All data is tokenized and truecased using the
Moses toolkit (Koehn et al., 2007). For BPE seg-
mentation (Sennrich et al., 2016), we apply a joint
segmentation for both languages. This is done by
first taking a sample of the German data of the
same length as the Upper Sorbian data (around 750
thousand sentences). The BPE codes are learned
and applied using FastBPE.1 After BPE is applied,
we remove duplicate sentences while retaining the
order of the corpora.2

We used the XLM model (Conneau and Lample,
2019) using the default parameters, with the excep-

1https://github.com/glample/fastBPE
2For document-level filtering, we do not remove dupli-

cates.
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tion of allowing for sentences of max length 200
rather than 100.3 The language model pretraining
step includes only masked language modelling, and
training is limited to 24 hours. The NMT step is
also limited to 24 hours, with the additional stop-
ping criterion of no improvement on the DE→HSB
validation set for 10 epochs.4

3 Experiments

For all of our data selection experiments, we start
by training an initial model. Our initial model is
trained on 10 million German sentences and all of
the available Upper Sorbian sentences. The 10 mil-
lion German sentences include all of the data from
years 2007 and 2010, and the remaining sentences
are taken from 2014.5 Our initial model achieves
BLEU scores of 17.43 and 19.05 for DE→HSB
and HSB→DE respectively.

3.1 Data Selection

We apply two forms of data selection: sentence-
level and document-level. As we have an abun-
dance of German data (D) and limited Upper Sor-
bian data (H), we are only concerned with data
selection for German. To select from D, we first
must score our data in terms of its potential to im-
prove the performance of our NMT model. Draw-
ing inspiration from Moore and Lewis (2010), our
scoring function is as follows:

Score(s) =
LMH→D′(s)− LMD(s)

|s|

In this equation, s refers to any sentence in the
German data, |s| to its token length, LMX (s) to
the log probability of s using a language model
trained on dataset X , and H → D′ to the dataset
obtained by translating H into German using the
initial system. A high scoring sentence is thus a
sentence that has a high probability according to
the Upper Sorbian language model compared to
that of the German language model.6

3The max length increase was found to perform slightly
better in early testing.

4Both steps are limited to 24 hours as there was little to no
improvement observed beyond 24 hours in preliminary tests.

5We choose these years because we found that the frequen-
cies of “20XX” in the Upper Sorbian data peak at 2005, 2010,
and 2014, and 2007 is the earliest News Crawl data available.

6The intuition behind subtracting the score of the German
language model is that without it a sentence may have a high
score due to it containing frequent words in general (e.g. “the”)
rather than words that are particularly frequent in the Upper
Sorbian dataset (e.g. “Sorbia”).

Selection Type DE→HSB HSB→DE
Sentence - Low 5.21 5.91
Sentence - Random 16.98 18.45
Sentence - High 15.08 18.05
Document - Low 9.32 8.46
Document - Random 17.03 18.19
Document - High 17.60 19.23

Table 1: BLEU scores for XLM trained on data selected
with the lowest and highest sentence and document-
level scores, as well as randomly selected sentences and
documents.

The language model we use is KenLM (Heafield
et al., 2013). We use a trigram model, with all
other parameters being the default values. Since
we require a portion of the German dataset to train
the model, we choose N sentences randomly, with
N being equal to the number of sentences in H.7

These sentences are not included during the selec-
tion process.

For sentence-level selection, we simply order
each sentence based on score and select the sen-
tences with the highest scores. For document-level
selection, we score each document by averaging
its sentence-level scores, and select the documents
with the highest scores.

To answer our first research question, we show
that systems trained on the highest scoring sen-
tences and documents perform significantly better
than those trained on the lowest scoring sentences
and documents. For this experiment, we start with
10 million sentences from News Crawl 2015, and
score each sentence and document. We then train
models on the 2 million lowest and highest scoring
sentences, as well as the lowest and highest scor-
ing documents which total 2 million sentences in
length. The results are shown in Table 1.

The results show a drastic improvement from
using the lowest quality sentences to the highest ac-
cording to our scoring function. This applies both
at the sentence and document level. However only
document-level filtering outperforms random selec-
tion. We speculate that this is due to a potential
lack of variety in the sentence-level filtering, as it
may select sentences with substantial trigram over-
lap, due to their similarly high score. This would
be less of an issue on the document-level, since
there is a smaller likelihood for two documents to
have a high degree of overlap. A potential solution

7The choice of N follows Moore and Lewis (2010).
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to this lack of variety would be to select sentences
sequentially, enforcing a word overlap constraint.
This would limit the number of words a sentence
could share with previously selected sentences.

3.2 Document-level versus sentence-level

We see from Table 1 that document-level selec-
tion outperforms sentence-level selection. This
could be for 2 reasons: either the sentences se-
lected are higher quality on average or the lan-
guage model pretraining step for the XLM model
benefits more from documents than sentences. To
further explain the latter reason, the pretraining
step for XLM uses streams of text which can con-
tain multiple sentences, so sentences being in or-
der should be beneficial for training the language
model. To test this, we take the document-level
selected sentences and shuffle their order and train
a new model. With a shuffled dataset, we obtained
far lower BLEU scores of 12.84 and 16.73 for
DE→HSB and HSB→DE respectively. As these
BLEU scores are lower than even the scores ob-
tained via sentence-level selection, we can con-
clude that the XLM model greatly benefits from
sentences being in order for pretraining. However,
it does appear that sentence-level selection provides
higher quality sentences individually.

3.3 Quality versus quantity

With both selection methods, we can choose a
threshold to determine how many sentences we
should use for training our model. We start by se-
lecting roughly 93 million sentences from News
Crawl 2007-2019.8 We chose the first 10 mil-
lion sentences from each year, apart from 2008
and 2009, which only contain roughly 6.5 mil-
lion sentences each. The sentences are chosen
at the document-level. From the 93 million sen-
tences combined, we use document-level selection
to choose various amounts of data, varying from 1
million to 20 million sentences, and train models
on each. The results are shown in Table 2.

As we can see, selecting 5 million sentences
results in the highest BLEU scores. As data is
either added or removed, the performance drops by
around 1-2 BLEU. Given the nature of attention-
based neural models, it is somewhat surprising to
see that using more data is not helpful and in fact
potentially harmful. Whether this is a peculiarity

8We exclude years 2007, 10, and 14 as they are used for
training our initial model and thus may affect the selection.

Sentences (M) DE→HSB HSB→DE
1 16.01 17.14
2 15.20 16.61
5 17.18 19.32
10 16.78 18.65
20 16.09 17.75

Table 2: BLEU scores of models trained on varying
amounts of document-level selected data.

Sentences (M) DE→HSB HSB→DE
2 17.76 19.19
5 18.04 19.57

Table 3: BLEU scores of models trained using 5 mil-
lion sentences from News Crawl and various amounts
of sentences from Common Crawl.

of the German–Upper Sorbian data or not requires
further investigation.

3.4 Using Common Crawl data

As a portion of the Upper Sorbian data is crawled
from the web, we also perform data selection on
Common Crawl. Since document boundaries are
not available for Common Crawl, we can only use
sentence-level selection. 9 We tested using various
amounts of data in addition to the 5 million News
Crawl sentences and report results in Table 3.

As we can see the system with 5 million News
Crawl sentences and 5 million Common Crawl
sentences performed the best. While the improve-
ments are marginal, this may be due to a similar
phenomenon as in Table 2, where too much mono-
lingual data is not beneficial.

3.5 Iterative data selection

Since we saw improvements from one round of
data selection, it would stand to reason that using a
more accurate model to translate the Upper Sorbian
data to German would result in potentially better
data selection. As such, we use our model trained
on 5 million sentences selected from News Crawl
to translate the Upper Sorbian data into German,
and apply the same data selection process on the
roughly 93 million sentences as before.

The results on the second iteration are markedly
worse, with BLEU scores of 15.9 and 17.45, on
DE→HSB and HSB→DE, respectively, compared

9Our finding that randomly selected sentences indeed per-
form better was done post-hoc, which is why we use sentences
selected with the highest scores.
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to the original scores of 17.18 and 19.32. We sus-
pect that this is due to the same data being used for
training the NMT system and for selection, despite
the data being used to train the KenLM models
being different.10

This highlights a major downside of data selec-
tion using our methods: data cannot be used both
for training a selection model and for the selection
itself. The most likely reason for this is that the
model will give all sentences that appear in the
original training set higher scores, and documents
which include the same or similar sentences will
be chosen over documents that are more unique,
effectively leading to an overfitting problem. This
then raises a question of trade-off: is it better to use
worse quality data to train the initial model and to
then select from better quality data, or vice versa?
Our results seem to indicate the former, but further
research is required to get a definitive answer.

3.6 Further Analysis

To further analyze the data selected by the model,
we look at the frequencies of words that appear
in the selected data. We compare our document-
filtered data from Section 3.1 with the data from
the Upper Sorbian side for 10 word roots in Ta-
ble 4. These word roots are selected manually as
the correctly translated root is easy to verify (with
Wikipedia and Wiktionary), and the translations are
also one-to-one (ignoring the suffixes). We also se-
lect roots with varying frequency within the Upper
Sorbian dataset.

As we can see, the high-quality document-
filtered data has higher relative frequencies for the
first 7 out of 10 word roots, and the lower-quality
data has higher frequencies for the last 3. As the
words are in order of frequency within the Upper
Sorbian dataset, this indicates that the higher qual-
ity filtered data better represents the topics found
in the Upper Sorbian dataset. Roots such as Sorbia-
and Bautzen (a city where Sorbian is spoken) ap-
pear far more often in the higher quality data, de-
spite being relatively uncommon in the German
dataset. The last 3 words are relatively rare in
the Upper Sorbian data, so it makes sense that the
higher quality filtered data would have fewer oc-
currences of these words. Although most of the
examples are related to locations, we do see that

10We also saw similar performance drops when trying to
include the data from years 2007, 10, and 14 in our original
model trained on selected data, as these years were used to
train the initial system used for selection.

Domowin- (the root for Domowina, a non-profit or-
ganization) and Catholic- appear to show the same
trends.

We also looked at the relative frequencies of the
years 2000-2025 across our various models to see
the effect of our filtering methods in matching the
Upper Sorbian data according to year. We expect
that the filtered German data with the frequency
distribution most closely matching the frequency
distribution of the Upper Sorbian data will have the
strongest NMT performance. We show the results
in Figure 1.

Figure 1: Relative frequencies of the years 2000-2025
within the various datasets. The frequencies are relative
to the total number of sentences in that dataset.

Our initial model predictably has spikes in fre-
quency at 2007, 2010, and 2014 as we manually
chose data from these years to somewhat match the
frequency of the Upper Sorbian data. Meanwhile,
the 5 million document-level selected sentences
from News Crawl seems to more closely match the
frequencies in the Upper Sorbian data from 2000 to
2010, but has larger relative frequencies for years
2010 to 2020. We suspect that this is due to the lim-
itation of the data available for selection, as earlier
years have fewer sentences for the selection model
to choose. Finally, the model using 5 million News
Crawl and 5 million Common Crawl sentences has
a frequency graph that most closely matches the
graph of the Upper Sorbian data. The similarity of
the Upper Sorbian graph to the other graphs seems
to correlate with the resulting BLEU scores of the
NMT model.

4 Conclusion

In the UNMT setting where one has access to a
wealth of resources for one language, we investi-
gated the feasibility of data selection. We attempt
both document-level and sentence-level selection,
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Root Count Frequency %
EN DE HSB HSB DE Doc Low Doc High

Sorbia- Sorb- Serbsk- 66105 187 0 97.3
German- Deutsch- Němsk- 17070 445203 18 21.8
Bautzen Bautzen Budyšin 11015 212 8.5 50.5
Lusatia- Lausitz Łužic- 10170 633 2.8 51.8
Domowin- Domowin- Domowin- 7835 32 0 100
Saxon- Sachsen- Saksk- 5163 10861 14.4 24.8
Catholic- Kathol- Katolsk- 4530 8515 12.7 28.9
Asia- Asi- Azij- 735 12175 31.4 11.3
Africa- Afrik- Afrik- 512 9967 23.2 15.7
Iran- Iran- Iran- 199 26714 53.9 4.6

Table 4: Frequencies of word roots within the Upper Sorbian (HSB), and relative frequencies of low-quality
document-filtered (Doc Low) and high-quality document-filtered (Doc High) datasets. Relative frequency is based
on the total frequency of each root within the 10 million sentences that the sets are selected from (i.e. the DE count
column). Case is ignored when determining frequency.

finding that both methods are capable of distin-
guishing low quality data from high quality data,
with quality in this case defined as the efficacy
for training an XLM model. We found that while
document-level selection chooses poorer sentences
on average, the XLM model can leverage the inter-
sentence information to achieve better results than
when simply using the highest quality sentences.
We also found that there appears to be a point where
adding more monolingual data is not beneficial,
but rather potentially harmful, indicating a need
for data selection. Finally, we noted some poten-
tial drawbacks to using this form of data selection,
particularly that data cannot be used for both ini-
tial training of the NMT model and subsequent
selection. Future work could continue along many
avenues, such as the effectiveness of data selec-
tion on other language pairs, or even on the Upper
Sorbian side.
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Abstract

We present our systems for the WMT20 Very
Low Resource MT Task for translation be-
tween German and Upper Sorbian. For train-
ing our systems, we generate synthetic data
by both back- and forward-translation. Ad-
ditionally, we enrich the training data with
German-Czech translated from Czech to Up-
per Sorbian by an unsupervised statistical MT
system incorporating orthographically similar
word pairs and transliterations of OOV words.
Our best translation system between German
and Sorbian is based on transfer learning from
a Czech-German system and scores 12 to 13
BLEU higher than a baseline system built us-
ing the available parallel data only.

1 Introduction

In this paper, we describe systems for translation
between German and Upper Sorbian developed at
LMU Munich for the WMT20 shared task on very
low-resource supervised MT.

Upper Sorbian is a minority language spoken
by around 30,000 people in today’s German state
of Saxony. With such a small number of speak-
ers, machine translation and automatic processing
of Sorbian is an inherently low-resource problem
without any chance that the resources available for
Sorbian would ever approach the size of resources
for languages spoken by millions of people. On
the other hand, being a Western Slavic language
related to Czech and Polish, it is possible to take
advantage of relatively rich resources collected for
these two languages.

The German-Sorbian systems presented in this
paper are neural machine translation (NMT)
systems based on the Transformer architecture
(Vaswani et al., 2017). We experiment with vari-
ous data preparation and augmentation techniques:
back-translation (Sennrich et al., 2016b), finetun-
ing systems trained for translation between Czech

and German (Kocmi and Bojar, 2018), and data
augmentation by including German-Czech paral-
lel data with the Czech side translated to Upper
Sorbian by an unsupervised system that includes
an unsupervised transliteration model for guessing
how to translate out-of-vocabulary Czech words to
Upper Sorbian.

Our experiments show the importance of data
augmentation via stochastic pre-processing and
synthetic data generation. The best systems were
trained by transfer-learning from a Czech-German
system. However, compared to data augmentation,
transfer learning from Czech-German translation
only produces a minor improvement. Based on the
preliminary shared task results, the presented sys-
tems scored on the 4th place among 10 competing
teams in the shared task.

2 Related Work

Until recently, phrase-based approaches were be-
lieved to be more suitable for low-resource trans-
lation. Koehn and Knowles (2017) claimed that a
parallel dataset of at least 107 tokens is required for
NMT to outperform phrase-based MT. This view
was also supported by the results of Artetxe et al.
(2018b) and Lample et al. (2018), who showed that
phrase-based approaches work well for unsuper-
vised MT, at least in the early stages of the iterative
back-translation procedure.

Recently, Sennrich and Zhang (2019) revisited
the claims about data needs of supervised NMT
and showed that with recent innovations in neural
network and careful hyper-parameter tuning, NMT
models outperform their phrase-based counterparts
with training data as small as 100k tokens (15 times
smaller than the data provided for this shared task).

Standard techniques for low-resource machine
translation include data augmentation with rule-
based substitutions (Fadaee et al., 2017), by sam-
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Data # sent. # tok. # tok.
# sent.

Train
de

60k
822k 13.7

hsb 738k 12.3

Devel
de

2k
28k 13.8

hsb 25k 12.5

Devel test
de

2k
28k 13.9

hsb 25k 12.7

German-Czech de
2k

49k 24.5
newstest2019 cs 43k 22.0

German-Czech de
14.7M

234M 15.9
parallel cs 219M 14.8

Table 1: Statistics on the parallel data compared to
German-Czech News Test 2019 and parallel German-
Czech data (see Section 3.3).

pling synthetic noise (Wang et al., 2018; Provilkov
et al., 2020), or by iterative back-translation (Hoang
et al., 2018). Another class of approaches relies
on transfer learning from models trained for high-
resource language pairs of more or less similar
languages (Zoph et al., 2016; Nguyen and Chiang,
2017; Kocmi and Bojar, 2018).

3 Data

We used several types of data to train our systems.
The organizers provided authentic parallel data and
Sorbian monolingual data. We also use German
and Czech News Crawl data and Czech-German
parallel data available in Opus (Tiedemann, 2012).

3.1 Authentic Parallel Data

The organizers of the shared task provided a par-
allel corpus of 60k sentences, and validation and
development test data of 2k sentences each.

The basic statistics about the data are presented
in Table 1. Note that the sentences are on average
much shorter and therefore also likely to be struc-
turally simpler than in the type of sentences usually
used in the WMT test sets.

3.2 Monolingual Data

In total 696k monolingual Sorbian sentences were
provided by the organizers. We noticed that the
monolingual Sorbian data contain many OCR-
related errors originating from hyphenation. We
thus removed all sentences ending with a hyphen.
Additionally, we merged tokens ending with a hy-
phen with the adjacent one if such merging results

in a known Sorbian word. This filtered out 1.6k
sentences and did 12k token merges.

The monolingual Sorbian data were used for
training the unsupervised Czech-Sorbian trans-
lation system (see Section 4.1) and for back-
translation in Sorbian-German systems.

Besides, we use 60M German and 60M Czech
sentences from the NewsCrawl data provided as
monolingual data for WMT shared tasks (Barrault
et al., 2019). The monolingual data were used for
generating synthetic training data via back- and
forward-translation both for the German-Sorbian
and German-Czech systems. In addition, the Czech
monolingual data was used in the unsupervised
Czech-Sorbian translation system as well.

3.3 German-Czech Data

For transfer learning and the creation of synthetic
data, we also used German-Czech parallel data. We
downloaded all available parallel datasets from the
Opus project (Tiedemann, 2012), which gave us
20.8M parallel sentences, which we further filtered.

First, we filtered the parallel sentences by length.
We estimated the mean and the standard deviation
of the length ratio of German and Czech sentences
and kept only those sentence pairs whose length
ratio fitted into the interval of two times standard
deviation around the mean. Then, we applied a lan-
guage identifier from FastText (Grave et al., 2018)
and only kept sentence pairs identified as German-
Czech. The filtering lefts us with 14.7M parallel
sentences.

4 Synthetic data from Czech-German

Since Upper Sorbian is related to Czech, we gen-
erate additional synthetic parallel German-Sorbian
data by translating the Czech side of the German-
Czech parallel data. For this, we use an unsuper-
vised statistical MT system which includes mined
Czech-Sorbian transliteration word pairs for better
performance.

4.1 Unsupervised SMT

We follow the approach of Artetxe et al. (2018b) to
build an Unsupervised Statistical Machine Trans-
lation (SMT) system. In the following description,
we mainly focus on the steps that we changed com-
pared to the original system and keep the descrip-
tion of the other steps brief.

In the first step, we build 300-dimensional mono-
lingual n-gram embeddings for both Czech and Sor-
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bian using FastText skip-gram (Bojanowski et al.,
2017) on the above mentioned monolingual data.
We restrict the vocabulary to the most frequent
200k, 400k, and 400k 1-, 2- and 3-grams, respec-
tively. We map these embeddings to a shared bilin-
gual space using VecMap (Artetxe et al., 2018a). In
contrast to the original unsupervised SMT pipeline,
which builds bilingual word embeddings (BWEs)
without any cross-lingual signal, we use identical
words occurring in both languages as the seed lexi-
con for the mapping. We found that the available
small monolingual Sorbian corpus is not adequate
to build BWEs in a fully unsupervised way. The
corpora are tokenized and true-cased using Moses
tools (Koehn et al., 2007). We note that because
there are no available language rules for Sorbian,
we used Czech rules for tokenization, which is
reasonable because of the similarity of the two lan-
guages.

We build phrase tables for both translation direc-
tions. For each source n-gram, we take 100 candi-
dates with the closest embeddings based on cosine
similarity and additional 100 candidates with the
smallest edit distance. We calculate 5 scores for
each pair: phrase and lexical translation probabili-
ties and their inverse as in (Artetxe et al., 2018b),
and their normalized edit distance. For phrases,
the latter is calculated by pairing each source word
with the most similar target side word and taking
the average edit distance of each of these pairs
as the normalization constant. In addition to the
phrase tables, we train language models using the
monolingual corpora.

We use the validation set from the shared
task (with the German side machine-translated to
Czech) to tune the parameters with MERT instead
of tuning on synthetic data. Finally, we run 3 itera-
tive refinement steps.

4.2 Translating OOVs by Transliteration

Because of the small monolingual data, the Sorbian
vocabulary is relatively small. To improve on this
problem, we exploit the similarity of Upper Sorbian
and Czech by translating Czech out-of-vocabulary
(OOV) words to Upper Sorbian, using translitera-
tion. More precisely, we transliterate Czech words
from the German-Czech parallel data which were
not seen by the SMT system during training, assum-
ing that the translations of these words are missing
in the Sorbian vocabulary on the target side as well.
We extracted the training data for the transliteration

system using a preliminary transliteration mining
model, filtered the data using a preliminary translit-
eration model, and trained the final transliteration
model on the filtered data.

Transliteration mining. Our transliteration min-
ing is similar to the model by Sajjad et al. (2012).
It consists of a transliteration submodel and a noise
submodel.

The transliteration submodel is a unigram model
over transliteration units (TUs) which jointly gen-
erates a source and a target language string. The
English-German transliteration pair (Gorbatchev,
Gorbatschow) could be generated as the follow-
ing sequence of TUs: G:G o:o r:r b:b a:a t:t s: c:c
h:h e:o v:w. We use only 1-1, 0-1, and 1-0 TUs.
The probability p(a) of a sequence of TUs is the
product of the unigram probabilities p(ai):

p(a) = p(a1, ..., an) =
n∏

i=1

p(ai)

Probability ptrans(s, t) of a string pair is obtained
by summing over all possible alignments a:

ptrans(s, t) =
∑

a∈align(s,t)
p(a)

The noise submodel independently generates a
source string s and a target string t using two un-
igram models over the source and the target lan-
guage characters, respectively. The probability of
a string pair is the product of the two monolingual
string probabilities:

pnoise(s, t) = psrc(s) ptgt(t)

The monolingual probability of the source string
(and analogously the target string) is defined as a
product of letter unigram probabilities.

Sajjad et al. (2012) interpolate the noise model
and the target model as a linear combination.
Unfortunately, such a model also extracts near-
transliterations which differ from a true translit-
eration by e.g., an inflexional affix, such as (Gor-
batchev, Gorbatschows).

Instead, we combine the two submodels by con-
catenation. Our model produces a word pair by
(i) generating two word prefixes1 sp and tp using
the noise model, (ii) generating two middle parts
sm and tm using the transliteration model, and

1Here, the terms prefix and suffix are not used in a linguistic
sense.
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(iii) generating two suffixes ss and ts using the
noise model. The intuition is that if the most prob-
able way to generate a pair does not use prefixes
or suffixes, it is a transliteration. Here the non-
transliteration pair (Gorbatchev, Gorbatschows
might be most probably obtained by generating
two empty strings as prefixes with the noise sub-
model, the TU sequence G:G o:o r:r b:b a:a t:t s:
c:c h:h e:o v:w with the transliteration submodel,
and an empty suffix and the suffix s with the noise
model.

The probability is defined as follows:

p(sp, sm, ss, tp, tm, ts) =

pnoise(s
p, tp)ptrans(s

m, tm)pnoise(s
s, ts)

The total probability of a word pair is obtained
by summing over all possible splits:

p(s, t) =
∑

sp,sm,ss,tp,tm,ts

∈split(s,t)

p(sp, sm, ss, tp, tm, ts)

The parameters of the transliteration submodel
are trained using the EM algorithm on the list of
transliteration candidates. The parameters of the
monolingual models are estimated directly from
the data and kept fixed during training. After the
EM training, we compute for each candidate pair,
the most probable split of the two words into pre-
fix/middle/suffix, and the most probable alignment
of the two middle parts using the Viterbi algorithm.
If all prefixes and suffixes are empty, the candidate
pair is extracted as a probable transliteration.

We run the transliteration mining on lower-cased
data and consider all possible word pairs with a
reasonable edit distance. The mining process re-
turns the extracted transliteration candidates and
their most probable TU sequence, respectively.

Transliteration filtering. The mining process
only relies on the unigram probabilities, which is
often suboptimal. Therefore, we add a filtering
step that scores each transliteration pair using an
n-gram transliteration model and eliminates pairs
with a low score.

We train a Kneser-Ney-smoothed trigram
transliteration model on the TU sequences of the
transliterations extracted using the transliteration
mining model.

For each extracted transliteration pair, we com-
pute negative log probabilities:

• L1 of the corresponding TU sequence;

Unsupervised SMT 12.0
+ edit distance 13.3
+ transliteration 13.8

Table 2: BLEU scores of the Czech-Sorbian system
with gradually added techniques measured on the Up-
per Sorbian-German test set where the German side has
been machine-translated to Czech.

• L2 of the best source-to-target transliteration;
and

• L3 of the best target-to-source transliteration.

We filter out a word pair if L2−L1+L3−L1 > 10.
Note that all three probabilities are joint probabili-
ties and that the same transliteration model can be
used in both directions.

Transliteration Generation. We train the final
transliteration model on the TU sequences of the
filtered transliteration pairs and use the model to
generate Sorbian transliterations for Czech OOV
words. We lowercase the Czech words before
transliteration and transfer the casing from the orig-
inal Czech words to their Sorbian transliterations.

Using the model, we generate transliterations for
Czech words not seen by the unsupervised SMT
system during training, i.e., we take all the words
from the Czech side of the parallel data which are
not present in the used Czech monolingual corpus.
To add these word pairs to the SMT system, we
consider them as a parallel corpus and concatenate
it to the synthetic parallel data created in the itera-
tive refinement steps and also update the language
models. We run two additional refinement steps on
top of the three mentioned in 4.1. Finally, we create
the synthetic German-Sorbian data by translating
the Czech side of the German-Czech data and feed
it to our final NMT system, as described below.

Table 2 shows the translation quality of the unsu-
pervised SMT system. The basic setup relies only
on BWEs to build the initial phrase tables. Next,
we add edit distance information, and finally, we
use the mined transliteration pairs as well. How-
ever, note that the BLEU scores are very approxi-
mate because the source side of the test is machine-
translated.

5 Experimental Setup

For the translation between German and Sorbian,
we experimented with NMT models based on
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data

System

Monolingual
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6
init. by de�cs

de�hsb

csde hsb

Figure 1: Overview of datasets and systems that were used to generate synthetic data. Solid arrows denote training
a system, dashed gray arrows denote using the model for data generation. Synthetic datasets have dashed boxes.

Transformers (Vaswani et al., 2017). We followed
known best practices for architecture and optimiza-
tion choices. In our experiments, we mostly focus
on data engineering.

5.1 Model Architecture and Optimization

We use the Transformer architecture (Vaswani
et al., 2017) as implemented in Marian (Junczys-
Dowmunt et al., 2018). For the initial experiments,
we used the Base architecture (6 layers, hidden
state of size 512, 8 attention heads, feed-forward
layer 1024), and Big for the later experiments (12
layers, hidden state 1024, 16 attention heads, feed-
forward layer 4096). We follow the default stan-
dard learning rate schedule proposed by Vaswani
et al. (2017) with learning rate 3 · 10−4. We use
16k warm-up steps for the Base architecture and
32k warm-up steps for the Big architecture.

The Base architecture is used for the initial sys-
tems which generate synthetic data via backward-
and forward-translation. We use the Big architec-
ture for the rest of the systems.

5.2 Training Data Preparation

An overview of the data generation and system
training steps is provided in Figure 1.

We use a common BPE-based vocabulary (Sen-
nrich et al., 2016c) for all systems which allows us
to better ensemble our systems. Instead of proper
tokenization, we use the pre-tokenization heuristic
from SentencePiece (Kudo and Richardson, 2018)
as implemented in YouTokenToMe.2 The BPE vo-
cabulary consists of 16k merges and was fit using
the authentic parallel training data only.

2https://github.com/VKCOM/YouTokenToMe

We apply BPE-dropout (Provilkov et al., 2020)
of 0.1 on both the source and the target side of the
data. We oversample the monolingual data 1000
times and with different segmentations (Model
2). We hypothesize that in the very low-resource
setup, the BPE dropout serves more as a data-
augmentation technique than as regularization.

Due to hardware limitations, we limit the data
mixes for training the Big architectures to 180M
parallel sentences. One third of the data mix con-
sists of oversampled authentic parallel data. In one
set of experiments (Models 3, 4), the rest of the data
consists of synthetic data: an equal number of sam-
ples of forward- and back-translation (which means
that the monolingual Sorbian data is oversampled
approximately 80×). In another set of experiments
(Model 5), we additionally sample data from the
machine-translated Czech-German data set where
the Czech part has been automatically translated to
Upper Sorbian. Following Caswell et al. (2019),
we tag the synthetic data, having a separate tag for
each of the synthetic data types.

Further, we experiment with finetuning models
originally trained for translation between Czech
and German. The data for the parent models is pre-
pared using the same protocol as for Model 4. Fol-
lowing Kocmi and Bojar (2018), we train the parent
model until convergence and continue training with
the German-Sorbian data. Based on preliminary
results, we use the data mix for Model 4 for the
German-to-Sorbian translation direction and the
data mix for Model 5 for translating from Sorbian
into German.
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Model hsb→de de→hsb

1 Transformer Base, parallel only 43.4 .695 45.6 .702

2 (1) + BPE dropout 50.9 .745 51.7 .747

3 (2) + back- and forward-translation 51.6 .766 52.4 .765

4 Transformer Big, same data as (3) 53.0 .766 55.3 .765

5 (4) + synthetic data from cs-de 54.2 .766 54.9 .766

6 (4/5) initialized by cs�de 55.4 .772 55.9 .775

7 Ensemble 4× (4/5) 55.0 .772 55.9 .773

8 Ensemble 3× (6) 55.6 .773 56.2 .776

9 Ensemble 4× (4/5) and 3× (6) 56.0 .777 56.9 .769

10 (4/5) trained right-to-left 53.7 .765 55.1 .769

11 (9) + right-to-left rescoring 56.0 .778 57.0 .779

Table 3: BLEU scores and chrF scores (in small font) on development test data for Sorbian-to-German (hsb→de)
and German-to-Sorbian (de→hsb) translations.

5.3 Model Ensembling

Following Sennrich et al. (2016a), we also experi-
ment with ensembling several systems and combin-
ing systems trained in the left-to-right and right-to-
left direction.

We trained four models from random initializa-
tion and three models by transferring from Czech-
German translation. Note that the transferred mod-
els were initialized by the same model and only
differed in the order of the training data.

Further, we trained two models in the right-to-
left direction, starting from random initialization.

6 Results

The quantitative results in terms of BLEU score
(Papineni et al., 2002) and ChrF (Popović, 2017)
score are presented in Table 3. The results were
measured using SacreBLEU.3

The Base architecture trained using the parallel
data only (Model 1) reaches a surprisingly high
BLEU score, which is probably due to the qual-
ity of the manually curated training data, domain
closeness of the train and test data, and relatively
simple sentences both in the train and test sets.

The data augmentation using BPE-dropout
(Model 2) seems to have a substantial effect on
the translation quality, improving the translation by
6–7 BLEU points. This is a much larger effect than
Provilkov et al. (2020) reported. However, they
also observed a larger positive effect on smaller
datasets. Unlike Sennrich and Zhang (2019), we

3https://github.com/mjpost/sacrebleu

did not find any benefits of using a small BPE-
based vocabulary or tuning learning rate. However,
the positive effect of the small vocabulary might be
partially emulated by the BPE dropout.

Adding the back- and forward-translated data in
the training data improved the translation quality
only slightly (Model 3). A large positive effect can
be achieved by switching to the Big architecture
(Model 4). Adding the synthetic data generated
from Czech-German parallel data improve only the
Sorbian-to-German translation direction (Model 5),
presumably because the quality of the synthetic
Sorbian side of the corpus is too low to be used as
a target side.

Transfer learning from German-Czech models
further improves the translation quality by approxi-
mately 1 BLEU point. These are thus the best sin-
gle models we have developed and our contrastive
submission to the shared task.

Additional improvements were reached by
model ensembling. Ensembling both the model
trained from random initialization and transfer
learning models improves the translation by approx.
1 BLEU point. Ensembling these two model types
together further improves the translation quality by
around half BLEU point.

The model generating the translation right-to-
left reach translation quality that is comparable to
the left-to-right models. However, rescoring of the
n-best lists generated by left-to-right ensembles
by the right-to-left models improves the translation
quality only negligibly. The rescored ensemble was
our primary submission to the shared task.
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7 Conclusions

We presented NMT systems for translation between
German and Upper Sorbian. Due to the domain
closeness and relative simplicity of the test data, we
were able to achieve BLEU scores over 50 using
the parallel data only. The crucial component was
the use of BPE-dropout for both the source and
target side.

Further translation quality improvements were
achieved by generating synthetic training data by
back- and forward-translation. Additionally, we
generated synthetic data by machine-translating
the Czech side of a parallel German-Czech corpus.
For that, we built an unsupervised SMT system that
additionally utilizes an unsupervised transliteration
system for the translation of OOV tokens.

Our best single system is based on transfer
learning, i.e., initializing the model by a Czech-
German system, reaching 1–2 higher BLEU scores
compared to systems based on Sorbian and Ger-
man data only. Further minor improvements were
achieved by model ensembling and right-to-left
rescoring.
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Abstract

We describe the National Research Council
of Canada (NRC) neural machine translation
systems for the German–Upper Sorbian super-
vised track of the 2020 shared task on Unsu-
pervised MT and Very Low Resource Super-
vised MT. Our models are ensembles of Trans-
former models, built using combinations of
BPE-dropout, lexical modifications, and back-
translation.

1 Introduction

We describe the National Research Council of
Canada (NRC) neural machine translation systems
for the shared task on Unsupervised MT and Very
Low Resource Supervised MT. We participated
in the supervised track of the low resource task,
building Upper Sorbian–German neural machine
translation (NMT) systems in both translation direc-
tions. Upper Sorbian is a minority language spoken
in Germany. We built baseline systems (standard
Transformer (Vaswani et al., 2017) with a byte-pair
encoding vocabulary (BPE; Sennrich et al., 2016b))
trained on all available parallel data (60,000 lines),
which resulted in unusually high BLEU scores for
a language pair with such limited data.

In order to improve upon this baseline, we used
transfer learning with modifications to the training
lexicon. We did this in two ways: by experiment-
ing with the application of BPE-dropout (Provilkov
et al., 2020) to the transfer learning setting (Sec-
tion 2.3), and by modifying Czech data used for
training parent systems with word and character
replacements in order to make it more “Upper
Sorbian-like” (Section 2.4).

Our final systems were ensembles of systems
built using transfer learning and these two ap-
proaches to lexicon modification, along with it-
erative backtranslation.

2 Approaches

2.1 General System Notes

In both translation directions, our final systems con-
sist of ensembles of multiple systems, built using
transfer learning (Section 2.2), BPE-Dropout (Sec-
tion 2.3), alternative preprocessing of Czech data
(Section 2.4), and backtranslation (Section 2.5).
We describe these approaches and related work in
the following sections, providing implementation
details for reproducibility in Sections 3, 4 and 5.

2.2 Transfer Learning

Zoph et al. (2016) proposed a transfer learning
approach for neural machine translation, using lan-
guage pairs with larger amounts of data to pre-train
a parent system, followed by finetuning a child sys-
tem on the language pair of interest. Nguyen and
Chiang (2017) expand on that, showing improved
performance using BPE and shared vocabularies
between the parent and child. We follow this ap-
proach: we build disjoint source and target BPE
models and vocabularies, with one vocabulary for
German (DE) and one for the combination of Czech
(CS) and Upper Sorbian (HSB); see Section 4.

We chose to use Czech–German data as the par-
ent language pair due to the task suggestions, rela-
tive abundance of data, and the close relationship
between Czech and Upper Sorbian (cf. Lin et al.,
2019; Kocmi and Bojar, 2018). While Czech and
Upper Sorbian cognates are often not identical at
the character level (Table 1), there is a high level of
character-level overlap; trying to take advantage of
that overlap without assuming complete character-
level identity is a motivation for the explorations
in subsequent sections (Section 2.3, Section 2.4).
Another relatively high-resource language related
to Upper Sorbian is Polish, but while the Czech
and Upper Sorbian orthographies are fairly simi-
lar, mostly using the same characters for the same
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sounds (with a few notable exceptions), Polish or-
thography is more distinct. This, combined with
the lack of a direct Polish–German parallel dataset
in the constrained condition, led us to choose Czech
as our transfer language for these experiments.

Czech Upper Sorbian
analyzovat analyzować

donesl donjesł
externı́ch eksternych

hospodářská hospodarsce
kreativnı́ kreatiwne

okres wokrjes
potom potym
projekt projekt

sémantická semantisku
velkým wulkim

Table 1: A sample of probable Czech–Upper Sorbian
cognates and shared loanwords, mined from the Czech–
German and German–Upper Sorbian parallel corpora
and filtered by Levenshtein distance.

Other work on transfer learning for low-resource
machine translation includes multilingual seed
models (Neubig and Hu, 2018), dynamically
adding to the vocabulary when adding languages
(Lakew et al., 2018), and using a hierarchical archi-
tecture to use multiple language pairs (Luo et al.,
2019).

2.3 BPE-Dropout
We apply the recently-proposed approach of per-
forming BPE-dropout (Provilkov et al., 2020),
which takes an existing BPE model and randomly
drops some merges at each merge step when ap-
plying the model to text. The goal of this, beside
leading to more robust subword representations
in general, is to produce subword representations
that are more likely to overlap between the pre-
training (Czech–German) and finetuning (Upper
Sorbian–German) stages. We hypothesized that, in
the same way that BPE-Dropout leads to robust-
ness against accidental spelling errors and variant
spellings (Provilkov et al., 2020), it could likewise
lead to robustness to the kind of spelling variations
we see between two related languages.

For example, consider the putative Czech–Upper
Sorbian cognates and shared loanwords presented
in Table 1. Sometimes a fixed BPE segmenta-
tion happens to separate shared characters into
shared subwords (e.g. CS analy@@ z@@ ovat
vs. HSB analy@@ z@@ ować), such that the

presence of the former during pre-training can ini-
tialize at least some of the subwords that the model
will later see in Upper Sorbian. However, other
times the character-level differences lead to seg-
mentations where no subwords are shared (e.g.
CS hospodář@@ ská vs. HSB hospodar@@
sce or potom vs. HSB po@@ tym). Consider-
ing a wider variety of segmentations would, we
hypothesized, mean that Upper Sorbian subwords
would have more chance of being initialized during
Czech pre-training (see Appendix C).

Rather than modifying the NMT system itself to
reapply BPE-dropout during training, we treated
BPE-dropout as a preprocessing step. Additionally,
we experimented with BPE-dropout in the context
of transfer learning, examining the effects of us-
ing source-side, both-sides, or no dropout in both
parent and child systems.

2.4 Pseudo-Sorbian
For the Upper Sorbian–German direction, we also
experimented with two techniques for modifying
the Czech–German parallel data so that the Czech
side is more like Upper Sorbian. In particular, we
concentrated on modification methods that require
neither large amounts of data, nor in-depth knowl-
edge of the historical relationships between the
languages, since both of these are often lacking for
the lower-resourced language.

We considered two variations of this idea:

• word-level modification, in which some fre-
quent Czech words (e.g. prepositions) are
replaced by likely Upper Sorbian equivalents,
and

• character-level modification, where we at-
tempt to convert Czech words at the character
level to forms that may more closely resemble
Upper Sorbian words.

Note that in neither case do we know what
particular conversions are correct; we ourselves
do not know enough about historical Western
Slavic to predict the actual Upper Sorbian cog-
nates of Czech words. Rather, we took inspiration
from stochastic segmentation methods like BPE-
Dropout (Provilkov et al., 2020) and SentencePiece
(Kudo and Richardson, 2018): when we have an
idea of the possible solutions to the segmentation
problem but do not know which one is the correct
one, we can sample randomly from the possible
segmentations as a sort of regularization, with the
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goal of discouraging the model from relying too
heavily on a single segmentation scheme and giv-
ing it some exposure to a variety of possible seg-
mentations. Whereas BPE-dropout and Sentence-
Piece focus on possible segmentations of the word,
our pseudo-Sorbian experiments focus on possi-
ble word- and character-level replacements. The
goal was to discourage the parent Czech–German
model from relying too heavily on regularities in
Czech (e.g. the presence of particular frequent
words, the presence of particular Czech character
n-grams) and perhaps also gain some prior expo-
sure to Upper Sorbian words and characters that
will occur in the genuine Upper Sorbian data; we
can also think of this as a form of low-resource
data augmentation (Fadaee et al., 2017; Wang et al.,
2018). See Appendix C for an analysis of increased
subword overlap between pseudo-Sorbian and test
data, as compared to BPE-dropout and the baseline
approach.

2.4.1 Word-level pseudo-Sorbian
To generate the word-level pseudo-Sorbian, we ran
fast align (Dyer et al., 2013) on the Czech–
German and German–Upper Sorbian parallel cor-
pora, and took the product of the resulting word cor-
respondences, to generate candidate Czech-Upper
Sorbian word correspondences. As this process pro-
duces many unlikely correspondences, particularly
for words that occur only a few times in the cor-
pora, we filtered this list so that any Czech–German
word correspondence that occurred fewer than 500
times in the aligned corpus was ineligible, and like-
wise any German–Upper Sorbian correspondence
that occurred fewer than 50 times. We then used
these correspondences to randomly replace 10% of
eligible Czech words in the Czech-German corpus
with one of their putative equivalents in Upper Sor-
bian. The result is a language that is mostly still
Czech, but in which some high-frequency words
(especially prepositions) are Upper Sorbian.

2.4.2 Character-level pseudo-Sorbian
To generate the character-level pseudo-Sorbian, we
began with the same list of putative Czech-Upper
Sorbian word correspondences, calculated the Lev-
enshtein distances (normalized by length) between
them, and filtered out pairs that exceeded 0.5 dis-
tance. This gave a list of words that were likely
cognates, from which we hand-selected a develop-
ment set of about 200; a sample of these is seen in
Table 1. Using this set to identify character-level

correspondences (e.g. CS v to HSB w, CS d to
HSB dź before front vowels, etc.), we wrote a pro-
gram to randomly replace the appropriate Czech
character sequences with possible correspondences
in Upper Sorbian. Again, as Czech-Upper Sorbian
correspondences are not entirely predictable (CS
e might happen to correspond, in a particular cog-
nate, to HSB e or ej or i or a or o, etc.), we
cannot expect that any given result is correct Upper
Sorbian. Rather, we can think of this process as
attempting to train a system that can respond to in-
puts from a variety of possible (but not necessarily
actual) Western Slavic languages, rather than just a
system that can respond to precisely-spelled Czech
and only Czech.

2.4.3 Combined pseudo-Sorbian

In initial testing, we determined that a combina-
tion of word-level and character-level modification
performed best; we ran each process on the Czech–
German corpus separately, then concatenated the
resulting corpora and trained a parent model on it.
Due to time constraints we did not run the full set
of ablation experiments. Subsequent finetuning on
genuine Upper Sorbian–German data proceeded as
normal, without any modification.

For all pseudo-Sorbian systems, we used the
BPE vocabulary trained on the original Czech and
Upper Sorbian data, rather than the modified data,
so that systems trained on pseudo-Sorbian data
could still be ensembled with systems trained only
on the original data (Section 2.6).

2.5 Backtranslation

We used backtranslation (Sennrich et al., 2016a) to
incorporate monolingual German and Upper Sor-
bian data into training. We backtranslated all Up-
per Sorbian monolingual data (after filtering as
described in Section 3). We backtranslated the Ger-
man monolingual news-commentary data and 1.2M
randomly sampled lines of 2019 German news.

We experiment with iterative backtranslation:
backtranslating data using systems without back-
translation, and then using the new systems built
using the backtranslated text to perform a second
iteration of backtranslation (Hoang et al., 2018;
Niu et al., 2018; Zhang et al., 2018). Like Caswell
et al. (2019), we use source-side tags at the start of
backtranslated sentences to indicate to the models
which sentences are the product of backtranslation.
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2.6 Ensembling

Our final systems are ensembles of several sys-
tems. Because all systems used the same vocabu-
lary sets and same model sizes, we could decode
using Sockeye’s (Hieber et al., 2018) default en-
sembling mechanism.

3 Data

We used all provided parallel German–Upper Sor-
bian data and all monolingual Upper Sorbian data
(after filtering), along with German–Czech parallel
data from Open Subtitles (Lison and Tiedemann,
2016),1 DGT (Tiedemann, 2012; Steinberger et al.,
2012), JW300 (Agić and Vulić, 2019), Europarl
v10 (Koehn, 2005), News-Commentary v15, and
WMT-News2 for building the BPE vocabularies.
The monolingual Upper Sorbian Web and Witaj
datasets3 were filtered to remove lines containing
characters that had not been observed in the Upper
Sorbian parallel data or in the Czech data; this re-
moved sentences that contained text in other scripts
and other languages. The Czech–German data was
used for training parent models, while monolingual
German and Upper Sorbian were used (along with
parallel German–Upper Sorbian data) for training
child models. A table of data sizes and how they
were used is shown in Appendix A.

4 Preprocessing

We build BPE vocabularies of size 2k, 5k, 10k, 15k,
and 20k using subword-nmt4 (Sennrich et al.,
2016b). After building the vocabulary, we add a
set of 25 generic tags, plus a special backtransla-
tion tag “<BT>”, which we use in future experi-
ments for indicating when training data has been
backtranslated (Caswell et al., 2019). We also add
all Moses and Sockeye special tags (ampersand,
<unk> etc.) to a glossary file used for applying
BPE, which prevents them from being segmented.

Because there is so much more Czech data than
Upper Sorbian data, we duplicate the in-domain
parallel hsb-de data and the monolingual HSB data
25 times when training BPE in order to make sure
that HSB data is adequately represented (and not

1http://www.opensubtitles.com
2http://www.statmt.org/wmt20/

translation-task.html
3http://www.statmt.org/wmt20/unsup_

and_very_low_res/
4https://github.com/rsennrich/

subword-nmt

Child Dropout
None Source Both

Parent Dropout
None 54.6 54.5 54.3
Source 55.0 55.5 54.2
Both 54.9 55.5 55.0

Table 2: Comparison of BPE-dropout use in both par-
ent and child systems for 10k vocabulary DE-HSB
translation (measured on devel test set), without back-
translation. All parent systems were trained on the
German-Czech data, while child systems trained on the
parallel DE-HSB data. None involves no BPE-dropout,
source applies BPE-dropout to the source side only, and
both applies it to both the source and the target.

overwhelmed by Czech data) in training the en-
coding. After training BPE, we extract (and fix
for the remainder of our experiments) a single DE
vocabulary and a single HSB-CS vocabulary, cov-
ering all the relevant data used to train BPE for that
language pair.

We ran BPE-dropout with a rate of 0.1 over the
training data 5 times using the same BPE merge
operations, vocabularies and glossaries as before,
concatenating these variants to form an extended
training set.

5 Software and Systems

We used Sockeye’s (Hieber et al., 2018) imple-
mentation of Transformer (Vaswani et al., 2017)
with 6 layers, 8 attention heads, network size of
512 units, and feedforward size of 2048 units. We
have changed the default gradient clipping type to
absolute, used the whole validation set during vali-
dation, an initial learning rate of 0.0001, batches of
∼8192 tokens/words, maximum sentence length of
200 tokens, optimizing for BLEU. Parent systems
used checkpoint intervals of 2500 and 4000. Child
system checkpoint intervals varied from 65 to 4000
to balance frequent checkpointing with efficiency.
Decoding was performed with beam size 5.

6 Results and Discussion

6.1 BPE-Dropout in Transfer Learning

Provilkov et al. (2020) examine BPE-dropout when
building translation systems for individual lan-
guage pairs. Here we apply it in a transfer learn-
ing setting, raising the question of whether BPE-
dropout should be applied to the parent system, the
child system, or both, as well as the question of
using source-side BPE-dropout or both source- and
target-side BPE-dropout.
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Our results for this are somewhat mixed, owing
in part to the relatively small BLEU gains produced
by BPE-dropout (as compared to backtranslation).
In Table 2 we show BLEU scores for German–
Upper Sorbian translation with a 10k vocabulary
and no backtranslation. The most promising sys-
tems in that experiment are those with source-side
BPE-dropout in the child system, with either both
side or source-side dropout in the parent. In the
20k vocabulary DE-HSB setting with second itera-
tion backtranslation, we saw a similar effect, with
source BPE-dropout for both parent and child hav-
ing a BLEU score of 58.4 on devel test, +1.1 above
the second-best system (no BPE-dropout in parent
or child). Results in the other translation direc-
tion were more ambiguous, leaving room for future
analysis of BPE-dropout in the transfer learning
setting.

As a result of these experiments, many of the sys-
tems we used in our final ensembles were trained
with source-side BPE-dropout, though when it ap-
peared promising we also ensembled with systems
without BPE-dropout.

6.2 Iterative Backtranslation

We performed two rounds of backtranslation of Up-
per Sorbian monolingual data and German mono-
lingual data described in Section 2.5. The first
round (BT1) used our strongest system without
backtranslation, while the second round (BT2) used
our strongest system including backtranslated data
from the first round. We ran experiments sweeping
BPE vocabulary sizes and backtranslated corpora;
for German news we experimented 300k and 600k
subsets as well as the full 1.2M line random subs-
election. In all experiments the 60k sentence-pair
parallel HSB-DE corpus was replicated a number
of times to approximately match the included back-
translated data in number of lines.

The second round of backtranslation of the Up-
per Sorbian monolingual data improved the BLEU
score by 0.7 BLEU points for the best configura-
tion, with the vocabulary size of the best configu-
ration increasing to 20k from 15k. However, the
second round of backtranslation of the German
monolingual data did not improve the subsequent
HSB-DE systems, instead showing a drop of 0.1
BLEU points; our final system (Section 6.5) uses
a mix of systems trained using BT1 and BT2. For
full details of the systems used for backtranslation,
see Appendix B.

System DE-HSB HSB-DE
Baseline 44.2 44.1
Base. + BPE-Dr. 44.4 44.7
Base. + BT2 54.9 54.7
Base. + BT2 + BPE-Dr. 56.1 55.0
Child 54.7 53.4
Child + BPE-Dr. 55.5 54.1
Child + BT2 57.7 56.5
Child + BT2 + BPE-Dr. 58.4 56.8
Final Submitted Systems 59.4 58.9

Table 3: Ablation experiments showing performance of
baseline systems, BPE-dropout, backtranslation, trans-
fer learning, and their combination. All systems shown
here do not use pseudo-Sorbian. DE-HSB systems here
have a 20k vocabulary, while HSB-DE have a 10k vo-
cabulary. BLEU score is reported on devel test set.
The final line shows the submitted primary systems and
their performance on devel test.

Generating multiple translation for backtransla-
tion (i.e. multiple source sentences for each authen-
tic target sentence) is known to improve transla-
tion quality (Imamura et al., 2018; Imamura and
Sumita, 2018); all of the systems we have described
here used a single backtranslation per target sen-
tence. After the submission of our final systems,
we experimented with backtranslation using n-best
translations of the monolingual text. In both di-
rections, we found that building student systems
using the 10-best backtranslation list generated
with sampling from the softmax’s top-10 vocab-
ulary (rather than taking the max), but without
BPE-dropout, produced improvements of around
0.2-0.8 BLEU.5 The resulting systems had com-
parable BLEU scores to the systems trained with
single variant backtranslation and BPE-dropout;
we leave as future work an examination of the re-
sult of combining multiple backtranslations with
BPE-dropout.

6.3 Ablation

Here we first discuss the impact of our non-pseudo-
Sorbian approaches: BPE-dropout, backtransla-
tion, and transfer learning, showing how each con-
tributed to the final systems used for ensembling.

Table 3 shows ablation experiments for DE-HSB
(20k vocabulary) and HSB-DE (10k vocabulary).6

In the first four lines, we consider training a sys-
tem without transfer learning, starting from a base-

5Authentic bitext was upsampled to keep the ratio identical
to our prior experiments.

6Smaller vocabulary sizes perform better on the baseline
experiments, but the trends remain the same, so we show
results for our final vocabulary sizes.
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line built using only the parallel Upper Sorbian–
German data. Despite the small data size, and per-
haps due to the close match between training and
test data, this baseline has high BLEU scores on the
devel test set: 44.2 (DE-HSB) and 44.1 (HSB-DE).
Adding BPE-dropout to this setting (with 5 runs
of the algorithm) results in a modest improvement
(+0.2 BLEU for DE-HSB and +0.6 BLEU for DE-
HSB). If we instead add backtranslated data (trans-
lated in our second iteration of backtranslation), we
see a much larger jump of +10.7 and +10.6 BLEU
respectively over the baselines; note that this also
represents a huge increase in available data for
training. Combining the two approaches adds an
additional +1.2 and 0.3 BLEU, respectively.

In fact, these systems outperform both a parent-
child baseline and a parent-child system with BPE-
dropout, highlighting the importance of incorpo-
rating additional target-side monolingual data in
the low-resource setting. Once we combine back-
translation we see a moderate improvement over
the child systems with BPE-dropout (+2.6 and
+2.4 BLEU, respectively). Again, combining BPE-
dropout and backtranslation still produces more
improvement, as does eventual ensembling.

Due to time constraints, we did not run a full
ablation study of word, character and combined
pseudo-Sorbian. Our initial results (run with an
earlier version of character pseudo-Sorbian, and
a differently extracted BPE vocabulary) found for
the HSB-DE direction that word pseudo-Sorbian
slightly outperformed (on the order of 0.5 BLEU)
character pseudo-Sorbian for 10k vocabulary, but
was comparable for 2k and 5k vocabulary sizes;
these results are given in Appendix C. The combi-
nation of the two had slightly higher scores across
those three vocabulary sizes (ranging from +0.1
to +0.6 BLEU) than either of the two individual
approaches, so we used the combination for the
remaining experiments.

6.4 Final German–Upper Sorbian System

System BLEU
1. Child + BT2 57.7
2. Child + Src. BPE-Dr. + BT2 58.4
3. Pseudo-Sorbian + Child + BT2 57.8
4. Pseudo. + Child + Src. BPE-Dr. + BT2 58.2
Ensemble 59.4

Table 4: Primary German–Upper Sorbian ensemble
submission BLEU score on devel test, with scores of
each of its individual component systems. The system
numbers correspond to the list in Section 6.4.

Our final German–Upper Sorbian system is an
ensemble of four systems, with vocabulary size
of 20k merges. All child models ensembled were
trained on second iteration backtranslated mono-
lingual HSB data (all available, filtered) and 12
replications of the de–hsb parallel text, with back-
translation tags.

1. Child without BPE-dropout, de–cs parent
without BPE-dropout.

2. Child with source side BPE-dropout, de–cs
parent with source side BPE-dropout

3. Child without BPE-dropout, pseudo-hsb–de
parent without BPE-dropout.

4. Child with source side BPE-dropout, pseudo-
hsb–de parent with source side BPE-dropout

The system scores on devel test are shown in
Table 4. The best scoring individual systems
were transfer learning systems with source-side
BPE-dropout, with the one using pseudo-Sorbian
falling slightly behind the non-pseudo-Sorbian by
0.2 BLEU points. Without BPE-dropout, the best
pseudo-Sorbian system shown here outperforms
its corresponding non-pseudo-Sorbian system by
approximately 0.1 BLEU. On the test set, this sys-
tem had scores of (as computed by the Matrix sub-
mission) 57.3 BLEU-cased, TER (Snover et al.,
2006) of 0.3, BEER 2.0 (Stanojević and Sima’an,
2014) of 0.754, and CharacTER (Wang et al., 2016)
of 0.255. This was 3.4 BLEU-cased behind the
best-scoring system (SJTU-NICT), but within 0.6
BLEU of the second- and third-highest scoring
systems (University of Helsinki); it was also tied
with the third-highest scoring system (University
of Helsinki) in terms of CharactTER.

6.5 Final Upper Sorbian–German System

System BLEU
1. Child + BPE-Dr. + BT1 57.2
2. Child + BT2 57.1
3. Pseudo. + Child + BT1 57.2
4. Pseudo. + Child + BPE-dr. + BT1 57.1
5. Pseudo. + Child + BT2 57.1
Ensemble 58.9

Table 5: Primary Upper Sorbian–German ensemble
submission BLEU score on devel test, with scores of
each of its individual component systems. The num-
bers correspond to the list in Section 6.5.

The final Upper Sorbian–German system is an
ensemble of systems with a BPE vocabulary of 10k
merges.
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1. Child with source side BPE-dropout, 20 times
hsb–de data, 1.2M lines of first iteration back-
translated news data; cs–de parent with source
side BPE-dropout

2. Child without BPE-dropout, 25 times hsb–de
data, news commentary (NC) and 1.2M lines
of news second iteration backtranslated;7 cs-
de parent without BPE-dropout

3. Child without BPE-dropout, 25 times hsb–de
data, NC and 1.2M lines of news first iteration
backtranslated; pseudo-hsb–de parent without
BPE-dropout

4. Child with source side BPE-dropout, 25 times
hsb–de data, NC and 1.2M lines of news first
iteration backtranslated; pseudo-hsb–de par-
ent with source side BPE-dropout

5. Child without BPE-dropout, 20 times hsb–de
data and 1.2M lines of second iteration back-
translated news data; pseudo-hsb–de parent
without BPE-dropout

Table 5 shows that the five systems combined
were very comparable in BLEU scores (57.1 and
57.2), but their ensembled BLEU score showed an
improvement of ≥1.7 BLEU over each individual
score. The final ensemble had a BLEU-cased score
of 58.9 on the test data (calculated by the Matrix
submission systems), a TER of 0.29, a BEER 2.0
of 0.579, and a CharacTER score of 0.268. This
represented a -0.7 BLEU-cased difference off of
the best system (University of Helsinki), but only a
-0.001 CharactTER difference.

6.6 Discussion
We experimented with a variety of ensembles, and
found that our strongest ensembles were those
that included both the pseudo-Sorbian systems and
those built without pseudo-Sorbian. In initial exper-
iments with Upper Sorbian-German systems, with
vocabulary size 5k, we found that adding pseudo-
Sorbian systems to ensembles produced improve-
ments even if the pseudo-Sorbian system did not
have quite as high of a BLEU score as the sys-
tems built without it. For example, combining the
top three systems without pseudo-Sorbian (BLEU
scores of 57.3, 57.2, and 57.0, respectively) or the
top two of those systems resulted in ensemble sys-
tem BLEU scores of 57.9. Replacing the third-
best system with a pseudo-Sorbian system with a

7This version of the second iteration backtranslation differs
slightly from that used in the remainder of the experiments,
in that UNKs (tokens representing unknown words) were not
filtered out.

BLEU score of 56.6 resulted in an improved ensem-
ble BLEU score of 58.5. Diverse ensembles (e.g.,
different architectures or runs) are known to out-
perform less diverse ensembles (e.g., ensembles of
checkpoints) for neural machine translation (Fara-
jian et al., 2016; Denkowski and Neubig, 2017;
Liu et al., 2018). While diversity of models for
ensembling is usually discussed in terms of model
architecture or seeding of multiple runs, we could
argue that the use of lexically modified training
data could constitute another form of model diver-
sity, contributing to a stronger ensembled model.

For baseline systems trained only on the paral-
lel data, smaller vocabulary sizes performed best,
as expected (given only 60,000 lines of text, large
vocabulary sizes may contain many tokens that
are only observed a small number of times). As
we added transfer learning, backtranslation, and
eventually ensembling, the best systems were those
with slightly larger vocabulary sizes. In the Up-
per Sorbian–German translation direction, some
of our best performing systems that did not use
pseudo-Sorbian were found with a 5k vocabulary
size, while 10k was generally better for the pseudo-
Sorbian systems. We tried ensembles with both
5k and 10k that included pseudo-Sorbian and non-
pseudo-Sorbian systems, and found the best results
with 10k.

7 Conclusions

In this work, we demonstrated that transfer learn-
ing, BPE-dropout, and backtranslation all pro-
vide improvements for this low-resource setting.
Our experiments on lexical modifications, build-
ing pseudo-Sorbian text for training parent mod-
els, performed approximately on-par with standard
transfer learning approaches, and could be trivially
combined with BPE-dropout. While the lexical
modification approach did not outperform the stan-
dard transfer learning setup, we found that it still
improved ensembles, possibly due to the increase
in system diversity.
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A Data

Table 6 shows the data sizes, including the size
after filtering for the monolingual Upper Sorbian
data, as well as how each dataset was used for BPE
training and vocabulary extraction, parent training,
and/or child training.

B Backtranslation Details

The configurations used to backtranslate the first
round were:

• For monolingual Upper Sorbian, the HSB–DE
child system with 5k vocabulary size and both
source and target side BPE-dropout for both
the HSB–DE system and its CS–DE parent
(53.4 BLEU on devel test)

• For monolingual German, the DE–HSB child
with 10k vocabulary size and both source and
target side BPE-dropout for both the DE–HSB
system and its DE–CS parent (55.0 BLEU on
devel test).

The following configurations were used to back-
translate the second round:

• For monolingual Upper Sorbian, the HSB–
DE child system with 5k vocabulary size and
source side BPE-dropout for both the HSB–
DE system and its CS–DE parent; 25 times
hsb–de data, DE news commentary and 1.2M
lines of DE news backtranslated (57.25 BLEU
on devel test)

• For monolingual German, the DE–HSB sys-
tem with 15k vocabulary size and source side
BPE-dropout for both the DE–HSB system
and its DE–CS parent; 12 times hsb–de data,
HSB Sorbian Institute, Witaj, and Web data
backtranslated (57.7 BLEU on devel test).

After the second round of backtranslation, the
top configurations were:

• For HSB–DE, the 5k vocabulary size child
with source side BPE-dropout for both the
HSB–DE system and its CS–DE parent; 20
times hsb–de data, 1.2M lines of (second
round) backtranslated DE news (57.15 BLEU
on devel test)

• For monolingual German, the 20k vocabulary
size child with source side BPE-dropout for

both the DE–HSB system and its DE–CS par-
ent; 12 times hsb–de data, backtranslated (sec-
ond round) HSB Sorbian Institute, Witaj, and
Web data (58.4 BLEU on devel test).

We note that the second round of backtranslat-
ing the German monolingual news data into Upper
Sorbian did not improve the BLEU score for the
subsequent HSB–DE systems, with the best con-
figuration dropping by 0.1 BLEU points. However,
the second round of backtranslation of the Upper
Sorbian monolingual data did improve the BLEU
score by 0.7 BLEU points for the best configura-
tion, with the vocabulary size of the best configura-
tion increasing to 20k from 15k.

C Pseudo-Sorbian Comparisons and
Analysis

Table 7 presents the results of our pseudo-Sorbian
comparison discussed in Sections 2.4 and 6.3; as
mentioned; we find that both word- and character-
level modifications are similar at small vocabulary
sizes, but that word-level modification outperforms
at a higher vocabulary size. However, at all vocab-
ulary sizes a combination of the two improves over
either approach on its own.

It should be noted again that these preliminary
results are not directly comparable to other results
in this paper (having trained on a smaller corpus,
lacking the JW300 documents) and are also not
technically constrained (as the word list used to cre-
ate the character-level replacement was from bilin-
gual dictionaries, not the constrained corpora). In
our submitted systems, we created a new character-
level system using only the constrained corpora.

As pseudo-Sorbian lexical modification creates a
new training corpus, this raises questions of how to
appropriately create BPE vocabularies, in particular
when the character-level version is used. In word-
level pseudo-Sorbian, the resulting corpus still only
consists of words found in the original Czech and
Upper Sorbian corpora, although the resulting n-
gram frequencies will differ somewhat because of
some Czech words being replaced by Upper Sor-
bian ones. Character-level pseudo-Sorbian, how-
ever, can create words and character-level n-grams
that do not appear in the original corpus at all.8

8In future work, it would probably be beneficial to guide
the output of the modification with a character-level language
model trained on target-language data, to better avoid the
generation of n-grams that are unlikely or unattested in the
target language.
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Data Lines BPE/Voc. Parent Child
train.hsb-de.{de,hsb} 60,000 Y ×25 N Y
sorbian institute monolingual.hsb 339,822 Y ×25 N Y
web monolingual filtered.hsb 131,047 Y ×25 N Y
witaj monolingual filtered.hsb 220,564 Y ×25 N Y
OpenSubtitles.cs-de.{de,cs} 16,378,674 Y Y N
DGT.cs-de.{de,cs} 4,853,298 Y Y N
JW300.{de,cs} 1,155,056 Y Y N
Europarl.cs-de.{de,cs} 568,572 Y Y N
News-Commentary.cs-de.{de,cs} 185,127 Y Y N
WMT-News.cs-de.{de,cs} 20,567 Y Y N
news.2019.de.shuffled.deduped.de 57,622,797 N N Y
news-commentary-v15.dedup.de 233,111 N N Y

Table 6: Data and how it was used, whether for BPE training and vocabulary extraction, parent model training, or
child model training. Note that the monolingual German news.2019 data was subsampled, and the number of lines
shown represents the full set from which the subsample was drawn.

Pseudo-Sorbian BPE 2k BPE 5k BPE 10k
Word-level 51.8 52.6 52.6
Character-level 51.9 52.6 52.1
Both 52.4 52.7 52.8

Table 7: Comparison of approaches to create Pseudo-
Sorbian corpora for pre-training, by word-level or
character-level replacement of Czech text, at different
vocabulary sizes. All scores represent BLEU scores on
dev-test, in the HSB–DE direction.

The systems in Table 7 use system-specific BPE;
that is, the BPE operations and vocabulary are con-
structed for each specific {pseudo-Sorbian, Upper
Sorbian} training corpus. However, in the final sub-
mitted systems, we used a fixed vocabulary from
the original {Czech, Upper Sorbian} corpus, which
made it possible to ensemble pseudo-Sorbian sys-
tems with our other systems, giving us better results
than either type of system alone. We do not know
what effect (negative or positive) this may have on
the quality of the pseudo-Sorbian-trained systems
(since they would be using a BPE vocabulary for
a different set of “languages”, and thus may be
over-segmented).9 This raises a number of ques-
tions about appropriate choices of BPE models,
which increases the complexity of ablation studies
beyond what we are able to address in the scope of
this paper.

Setting aside the complications of various BPE

9Using our final BPE segmentation does result in a slightly
higher number of segmentations per token than a BPE model
trained directly on the pseudo-Sorbian (combined version)
data.

training schemes, we return to the BPE seg-
mentations used in our final systems to analyze
whether pseudo-Sorbian and BPE-dropout do in-
deed achieve their goals of producing more overlap
between the pseudo-Sorbian or Czech training data
and the Upper Sorbian data. We consider the de-
vel test portion of the Upper Sorbian data. With
a 10k BPE vocabulary, that test set contains 4540
unique subword types. 62.6% of those types (2840)
are observed in the baseline Czech parent model
training data, and 52.9% of the training tokens are
in that set. After applying BPE-dropout to the
Czech parent training data, the percentage of ob-
served types increases slightly, to 63.4% (2878),
with 58.9% of the training tokens in that set. With
the pseudo-Sorbian combined system, however, we
see a much bigger increase in type overlap: 89.0%
of the Upper Sorbian devel test types (4041) were
observed at least once in the pseudo-Sorbian par-
ent data, making up 70.9% of the training tokens.
Increased coverage of Upper Sorbian devel test
subword tokens during parent training means that
embeddings for those subword tokens will be up-
dated during parent model training, hopefully in
a way that improves their warm start in the Upper
Sorbian student training.10

10While we could imagine that in some situations, they
might end up with inappropriate representations, we expect
those to be improved when the tokens are observed in student
model training.
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Abstract

This paper presents a description of CUNI sys-
tems submitted to the WMT20 task on unsu-
pervised and very low-resource supervised ma-
chine translation between German and Upper
Sorbian. We experimented with training on
synthetic data and pre-training on a related
language pair. In the fully unsupervised sce-
nario, we achieved 25.5 and 23.7 BLEU trans-
lating from and into Upper Sorbian, respec-
tively. Our low-resource systems relied on
transfer learning from German–Czech parallel
data and achieved 57.4 BLEU and 56.1 BLEU,
which is an improvement of 10 BLEU points
over the baseline trained only on the available
small German–Upper Sorbian parallel corpus.

1 Introduction

An extensive area of the machine translation (MT)
research focuses on training translation systems
without large parallel data resources (Artetxe et al.,
2018b,a, 2019; Lample et al., 2018a,b). The
WMT20 translation competition presents a sepa-
rate task on unsupervised and very low-resource
supervised MT.

The organizers prepared a shared task to explore
machine translation on a real-life example of a low-
resource language pair of German (de) and Up-
per Sorbian (hsb). There are around 60k authen-
tic parallel sentences available for this language
pair which is not sufficient to train a high-quality
MT system in a standard supervised way, and calls
for unsupervised pre-training (Conneau and Lam-
ple, 2019), data augmentation by synthetically pro-
duced sentences (Sennrich et al., 2016a) or transfer
learning from different language pairs (Zoph et al.,
2016a; Kocmi and Bojar, 2018).

The WMT20 shared task is divided into two
tracks. In the unsupervised track, the participants
are only allowed to use monolingual German and
Upper Sorbian corpora to train their systems; the

low-resource track permits the usage of auxiliary
parallel corpora in other languages as well as a
small parallel corpus in German–Upper Sorbian.

We participate in both tracks in both translation
directions. Section 2 describes our participation
in the unsupervised track and section 3 describes
our systems from the low-resource track. Section 4
introduces transfer learning via Czech (cs) into
our low-resource system. We conclude the paper
in section 5.

2 Unsupervised MT

Unsupervised machine translation is the task of
learning to translate without any parallel data re-
sources at training time. Both neural and phrase-
based systems were proposed to solve the task
(Lample et al., 2018b). In this work, we train
several neural systems and compare the effects of
different training approaches.

2.1 Methodology
The key concepts of unsupervised NMT include
a shared encoder, shared vocabulary and model
initialization (pre-training). The training relies
only on monolingual corpora and switches between
de-noising, where the model learns to reconstruct
corrupted sentences, and online back-translation,
where the model first translates a batch of sentences
and immediately trains itself on the generated sen-
tence pairs, using the standard cross-entropy MT
objective (Artetxe et al., 2018b; Lample et al.,
2018a).

We use a 6-layer Transformer architecture for
our unsupervised NMT models following the ap-
proach by Conneau and Lample (2019). Both the
encoder and the decoder are shared across lan-
guages.

We first pre-train the encoder and the decoder
separately on the task of cross-lingual masked
language modelling (XLM) using monolingual
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Figure 1: An overview of selected CUNI systems. Corpora are illustrated in gray boxes, system names in black
boxes. Systems are trained with indicated training objectives: cross-lingual masked language modeling (XLM), de-
noising (DN), online back-translation (BT), and standard machine translation objective (MT). Monolingual training
sets DE mono and HSB mono were available for both WMT20 task tracks, the parallel training set HSB↔DE auth
was only allowed in the low-resource supervised track.

data only (Conneau and Lample, 2019). Sub-
sequently, the initialized MT system (CUNI-
Monolingual) is trained using de-noising and on-
line back-translation. We then use this system to
translate our entire monolingual corpus and train
a new system (CUNI-Synthetic-I) from scratch on
the two newly generated synthetic parallel corpora
DE-HSB synth1 and HSB-DE synth1. Finally, we
use the new system to generate DE-HSB synth2
and HSB-DE synth2, and repeat the training to eval-
uate the effect of another back-translation round
(CUNI-Synthetic-II).

All unsupervised systems are trained using the
same BPE subword vocabulary (Sennrich et al.,
2016b) with 61k items generated using fastBPE.1

An overview of the systems and their training
stages is given in fig. 1.

2.2 Data

Our de training data comes from News Crawl;
the hsb data was provided for WMT20 by the
Sorbian Institute and the Witaj Sprachzentrum.2

Most of the hsb data was of high quality but we
fed the web-scraped corpus (web monolingual.hsb)
through a language identification tool fastText3

to identify proper hsb sentences. All de data was
also cleaned using this tool.

The final monolingual training corpora have

1https://github.com/glample/fastBPE
2http://www.statmt.org/wmt20/unsup_

and_very_low_res/
3https://github.com/facebookresearch/

fastText/

22.5M sentences (DE mono) and 0.6M sentences
(HSB mono). Synthetic parallel corpora are gener-
ated from the monolingual data sets by coupling
the sentences with their translation counterparts as
described in section 2.1.

The parallel development (dev) and testing (dev
test) data sets of 2k sentence pairs provided by
WMT20 organizers are used for parameter tuning
and model selection. The final evaluation is run on
the blind test set newstest2020.

2.3 Results

The resulting scores measured on the blind new-
stest2020 are listed in table 1 and table 2. The trans-
lation quality metrics BLEU (Papineni et al., 2002),
TER (Snover et al., 2006), BEER (Stanojević and
Sima’an, 2014) and CharacTER (Wang et al., 2016)
provide consistent results. The best quality is
reached when using synthetic corpora from the sec-
ond back-translation iteration, although the second
round adds only a slight improvement. A similar
observation is made by Hoang et al. (2018) who
show that the second round of back-translation does
not enhance the system performance as much as
the first round. Additionally, the third round does
not produce any significant gains.

When training on synthetic parallel corpora, it is
still beneficial to perform back-translation on-the-
fly (Artetxe et al., 2018b) whereby new training
instances of increasing quality are generated in ev-
ery training step. This method adds 1 - 2 BLEU
points to the final score as compared to training
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newstest2020 dev test set
System Name BLEU BLEU-cased TER BEER 2.0 CharacTER BLEU

a
CUNI-Monolingual 23.7 23.4 0.606 0.530 0.559 23.4
CUNI-Synthetic-I 23.4 23.2 0.617 0.531 0.575 22.2

CUNI-Synthetic-II* 23.7 23.4 0.618 0.530 0.563 23.7

b

CUNI-Supervised-Baseline 43.7 43.2 0.439 0.670 0.382 38.7
CUNI-Auth-w\o-BT 51.6 51.2 0.362 0.710 0.332 48.3
CUNI-Auth-w\-BT 54.3 53.9 0.337 0.726 0.310 52.1
CUNI-Synth+Auth* 53.8 53.4 0.343 0.721 0.315 50.5

Table 1: Translation quality of the unsupervised (a) and low-resource supervised (b) hsb → de systems on
newstest2020 and the unofficial test set. The asterisk * indicates systems submitted into WMT20.

newstest2020 dev test set
System Name BLEU BLEU-cased TER BEER 2.0 CharacTER BLEU

a
CUNI-Monolingual 21.7 21.2 0.670 0.497 0.557 20.4
CUNI-Synthetic-I 24.9 24.5 0.599 0.535 0.521 25.1

CUNI-Synthetic-II* 25.5 25.0 0.592 0.540 0.516 25.3

b

CUNI-Supervised-Baseline 40.8 40.3 0.452 0.655 0.373 38.3
CUNI-Auth-w\o-BT 47.5 47.1 0.390 0.689 0.336 47.1
CUNI-Auth-w\-BT 52.3 51.8 0.350 0.718 0.301 52.4
CUNI-Synth+Auth* 50.6 50.1 0.368 0.703 0.326 50.4

Table 2: Translation quality of the unsupervised (a) and low-resource supervised (b) de → hsb systems on
newstest2020 and the unofficial test set. The asterisk * indicates systems submitted into WMT20.

only on sentence pairs from the two synthetic cor-
pora so we use it in all our unsupervised systems.

We used the XLM4 toolkit for running the experi-
ments. Language model pre-training took 4 days
on 4 GPUs5. The translation models were trained
on 1 GPU6 with 8-step gradient accumulation to
reach an effective batch size of 8 × 3400 tokens.
We used the Adam (Kingma and Ba, 2015) opti-
mizer with inverse square root decay (β1 = 0.9,
β2 = 0.98, lr = 0.0001) and greedy decoding.

3 Very Low-Resource Supervised MT

3.1 Methodology

Our systems introduced in this section have the
same model architecture as described in section 2,
but now we allow the usage of authentic parallel
data. We pre-train a bilingual XLM model and fine-
tune with either only authentic parallel data (CUNI-
Auth-w\o-BT) or both parallel and monolingual
data, using a combination of standard MT train-
ing and online back-translation (CUNI-Auth-w\-
BT). Finally, we utilize the trained model CUNI-
Synthetic-II from section 2 and fine-tune it on the
authentic parallel corpus, again using standard su-
pervised training as well as online back-translation

4https://github.com/facebookresearch/
XLM

5GeForce GTX 1080, 11GB of RAM
6Quadro P5000, 16GB of RAM

(CUNI-Synth+Authentic).
All systems are trained with the same BPE sub-

word vocabulary of 61k items.

3.2 Data

In addition to the data described in section 2.2, we
used the authentic parallel corpus of 60k sentence
pairs provided by Witaj Sprachzentrum mostly
from the legal and general domain.

3.3 Results

The resulting scores are listed in the second part
of table 1 and table 2. We compare system per-
formance against a supervised baseline which is
a vanilla NMT model trained only on the small
parallel train set of 60k sentences, without any pre-
training or data augmentation.

Our best system gains 11.5 BLEU over this
baseline, utilizing the larger monolingual corpora
for XLM pre-training and online back-translation.
Fine-tuning one of the trained unsupervised sys-
tems on parallel data leads to a lower gain of ∼10
BLEU points over the baseline.

The translation models were trained on 1 GPU7

with 8-step gradient accumulation to reach an effec-
tive batch size of 8 × 1600 tokens. Other training
details are equivalent to section 2.1.

7GeForce GTX 1080 Ti, 11GB of RAM
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System Name BLEU BLEU-cased TER BEER 2.0 CharacTER

Helsinki-NLP 60.0 59.6 0.286 0.761 0.267
NRC-CNRC 59.2 58.9 0.290 0.759 0.268
SJTU-NICT 58.9 58.5 0.296 0.754 0.274

CUNI-Transfer 57.4 56.9 0.307 0.746 0.285
Bilingual only 47.8 47.4 0.394 0.695 0.356

Table 3: Translation quality of hsb→ de systems on newstest2020.

System Name BLEU BLEU-cased TER BEER 2.0 CharacTER

SJTU-NICT 61.1 60.7 0.283 0.759 0.250
Helsinki-NLP 58.4 57.9 0.297 0.755 0.255
NRC-CNRC 57.7 57.3 0.300 0.754 0.255

CUNI-Transfer 56.1 55.5 0.315 0.743 0.265
Bilingual only 46.8 46.4 0.389 0.692 0.335

Table 4: Translation quality of de→ hsb systems on newstest2020.

4 Very Low-Resource Supervised MT
with Transfer Learning

One of the main approaches to improving perfor-
mance under low-resource conditions is transfer-
ring knowledge from different high-resource lan-
guage pairs (Zoph et al., 2016b; Kocmi and Bojar,
2018). This section describes the unmodified strat-
egy for transfer learning as presented by Kocmi
and Bojar (2018), using German–Czech as the par-
ent language pair. Since we do not modify the
approach nor tune hyperparameters of the NMT
model, we consider our system a transfer learn-
ing baseline for low-resource supervised machine
translation.

4.1 Methodology

Kocmi and Bojar (2018) proposed an approach
to fine-tune a low-resource language pair (called
“child”) from a pre-trained high-resource language
pair (called “parent”) model. The method has only
one restriction and that is a shared subword vo-
cabulary generated from the corpora of both the
child and the parent. The training procedure is as
follows: first train an NMT model on the parent
parallel corpus until it converges, then replace the
training data with the child corpus.

We use the Tensor2Tensor framework (Vaswani
et al., 2018) for our transfer learning baseline and
model parameters “Transformer-big” as described
in (Vaswani et al., 2018). Our shared vocabulary
has 32k wordpiece tokens. We use the Adafactor
(Shazeer and Stern, 2018) optimizer and a reverse
square root decay with 16 000 warm-up steps. For
the inference, we use beam search of size 8 and
alpha 0.8.

4.2 Data

In addition to the data described in section 3.2, we
used the cs-de parallel corpora available at the
OPUS8 website: OpenSubtitles, MultiParaCrawl,
Europarl, EUBookshop, DGT, EMEA and JRC.
The cs-de corpus has 21.4M sentence pairs after
cleaning with the fastText language identifica-
tion tool.

4.3 Results

We compare the results of our transfer learning
baseline called CUNI-Transfer with three top per-
forming systems of WMT20. These systems use
state-of-the-art techniques such as BPE-dropout,
ensembling of models, cross-lingual language mod-
elling, filtering of training data and hyperparameter
tuning. Additionally, we also include results for a
system we trained without any modifications solely
on bilingual parallel data (Bilingual only).9

The results in table 4 show that training solely
on German–Upper Sorbian parallel data leads to a
performance of 47.8 BLEU for de→hsb and 46.7
BLEU for hsb→de. When using transfer learn-
ing with a Czech–German parent, the performance
increases by roughly 10 BLEU points to 57.4 and
56.1 BLEU. As demonstrated by the winning sys-
tem, the performance can be further boosted using
additional techniques and approaches to 60.0 and
61.1 BLEU. This shows that transfer learning plays
an important role in the low-resource scenario.

8http://opus.nlpl.eu/
9The model Bilingual only is trained on the same data as

CUNI-Supervised-Baseline but uses a different architecture
and decoding parameters.
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5 Conclusion

We participated in the unsupervised and low-
resource supervised translation task of WMT20.

In the fully unsupervised scenario, the best
scores of 25.5 (hsb→de) and 23.7 (de→hsb)
were achieved using cross-lingual language model
pre-training (XLM) and training on synthetic data
produced by NMT models from earlier two itera-
tions. We submitted this system under the name
CUNI-Synthetic-II.

In the low-resource supervised scenario, the best
scores of 57.4 (hsb→de) and 56.1 (de→hsb)
were achieved by pre-training on a large German–
Czech parallel corpus and fine-tuning on the avail-
able German–Upper Sorbian parallel corpus. We
submitted this system under the name CUNI-
Transfer.

We showed that transfer learning plays an impor-
tant role in the low-resource scenario, bringing an
improvement of ∼10 BLEU points over a vanilla
supervised MT model trained on the small paral-
lel data only. Additional techniques used by other
competing teams yield further improvements of up
to 4 BLEU over our transfer learning baseline.
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Abstract

This paper describes the joint participation of
University of Helsinki and Aalto University
to two shared tasks of WMT 2020: the news
translation between Inuktitut and English and
the low-resource translation between German
and Upper Sorbian. For both tasks, our ef-
forts concentrate on efficient use of monolin-
gual and related bilingual corpora with sched-
uled multi-task learning as well as an opti-
mized subword segmentation with sampling.

Our submission obtained the highest score for
Upper Sorbian→ German and was ranked sec-
ond for German → Upper Sorbian according
to BLEU scores. For English–Inuktitut, we
reached ranks 8 and 10 out of 11 according to
BLEU scores.

1 Introduction

Our work is motivated by Grönroos et al. (2020),
who provide a detailed study of different transfer
learning and regularization approaches for low-
resource machine translation. They focus on an
asymmetric-resource scenario in which the target
language is underresourced, but related to a higher-
resource language that can be used in a multilingual
setting. For example, in the English-to-Estonian
task, Estonian is assumed to be a low-resource lan-
guage (LRL) which is complemented by a second
higher-resource target language (HRL), Finnish.
Among the WMT 2020 shared tasks, the German
→ Upper Sorbian low-resource translation task
exactly corresponds to this setup, with Czech being
a high-resource language closely related to Up-
per Sorbian. We adapt the approach proposed by
Grönroos et al. (2020) also to three slightly differ-
ent scenarios: in the Upper Sorbian→ German
task, the low-resource language is on the source
side, but can be complemented with Czech in the
same way; for the English → Inuktitut task, no
related high-resource language is available; and for

Inuktitut→ English, the low-resource language
is on the source side and no high-resource language
is available.

Grönroos et al. (2020) recommend the combina-
tion of the following techniques to reach optimal
translation performance in their examined setup:

Scheduled multi-task learning The learning pro-
cess is split in two phases. The first phase
only sees data from the source and the HRL,
whereas LRL data is only added in the second
phase.

Backtranslation The addition of synthetic data
has become a staple of neural machine transla-
tion. They recommend marking synthetic data
and controlling its weight in the task sched-
uler.

Subword regularization Following Kudo (2018),
each time a word is used during training, a
new segmentation into subwords is sampled
from the probabilistic segmentation model.

Monolingual tasks In order to benefit from more
easily available monolingual data and to make
the model more robust to noise, they propose
to include denoising sequence autoencoder
tasks. A first variant applies small changes to
the input side of the corpus (e.g. word dele-
tions, substitutions and reorderings). A sec-
ond variant, called taboo sampling, relies on
the subword regularization idea and generates
two maximally different segmentations of the
source and target text. For English–Inuktitut,1

we extend this idea to a transliteration task
between romanized and syllabic Inuktitut.

Subword regularization and taboo sampling re-
quire the subword segmentation to be based on

1We use dashes to refer to language pairs independently of
translation direction.
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Parallel Monolingual

Corpus EN→IU IU→EN EN IU IU Translit.

NH train 771 382 771 382 771 382
Wikititles 455 455 455
NH unaligned (EN) 319 045
NH unaligned (IU) 356 005 356 005
NewsCommentary 557 628
NewsCrawl 2019 2 000 000 1 000 000
NewsDiscuss 2019 2 000 000 1 000 000
CommonCrawl 80 244 80 244

Total 1 208 086 5 648 510 2 000 000 436 249 771 837

Table 1: Training corpora sizes (number of lines) for the English–Inuktitut systems. Numbers in italics designate
synthetic datasets whose source side is produced by backtranslation.

a probabilistic model. While subword regulariza-
tion has been introduced in conjunction with Sen-
tencePiece, Grönroos et al. (2020) show that the
EM+Prune variant of Morfessor (Grönroos et al.,
2020) outperforms SentencePiece.

The paper is structured as follows. In Section 2,
we present the datasets, their sizes and their usage
in our submission. Section 3 reports additional
experiments with different approaches to word seg-
mentation. Section 4 provides more details about
our multi-task approach and the underlying NMT
architecture. Section 5 summarizes the results.

2 Data

Both the Inuktitut–English and Upper Sorbian–
German tasks can be qualified as low-resource set-
tings, with less than 800K (deduplicated) parallel
training instances for the former and 60K for the
latter. For both tasks, we follow the constrained
setting, which limits the allowed data to those made
available on the WMT website. In this section, we
present the parallel and monolingual resources that
we used for our systems.

2.1 Inuktitut–English
Training data The training resources for the
Inuktitut–English tasks are summarized in Table 1.
Two allowed parallel resources are provided, the
training part of the Nunavut Hansard (NH) cor-
pus (Joanis et al., 2020) and the small WikiTitles
corpus. Since the NH training corpus contained
a significant proportion of duplicates and prelimi-
nary experiments suggested a slight adverse effect
of duplicates, we removed them with the OpusFil-
ter tools (Aulamo et al., 2020). We also cleaned the

WikiTitles corpus, removing Inuktitut entries not in
syllabic script and identical entries. The Inuktitut
side of both training corpora was also used to cre-
ate a parallel corpus for the romanized↔ syllabic
transliteration task. The romanized version was
converted from the syllabic one using the uniconv
+ iconv pipeline proposed by the corpus providers.

The NH corpus contains a large amount of un-
aligned data, which we used as additional monolin-
gual corpora. We removed all sentences that were
already covered by one of the parallel NH datasets.
The English and Inuktitut parts were processed sep-
arately. Both parts were backtranslated to the other
language using baseline models trained on the par-
allel corpora, and filters were applied to both sides
of the parallel datasets (see below). The Inuktitut
unaligned data was used both as a monolingual
dataset and as a synthetic parallel dataset for the
EN→IU task, whereas the English unaligned data
was only used as a synthetic parallel dataset for the
IU→EN task (see Table 1).

Among the wealth of monolingual English data
provided by WMT, we selected the NewsCommen-
tary corpus and the 2019 sections of NewsCrawl
and NewsDiscuss. We produced Inuktitut back-
translations for NewsCommentary and for 2M sen-
tences each (after filtering) of the NewsCrawl and
NewsDiscuss corpora. Of the latter two corpora,
we held out distinct sets of 1M sentences each for
monolingual tasks.

In terms of monolingual Inuktitut data, besides
the unaligned NH data, the organizers only pro-
vided a CommonCrawl dump. This corpus was
again backtranslated to English and filtered. The
resulting corpus was used both as a monolingual
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Parallel Monolingual

Corpus DE→HSB HSB→DE DE↔CS HSB→CS DE HSB CS

Training 60 000 60 000
Europarl 560 608 567 422 568 573
JW300 1 114 024 1 140 474 1 161 656
NewsComm. 184 341 185 132
Tatoeba 4 425 4 431 4 448
Sorb. Inst. 334 643 334 643
Sorb. Web 94 980 94 980
Witaj 218 249 218 249
NewsComm. (mono) 389 199 389 199 184 341
NewsCrawl 2018 11 529 295 11 529 295 6 723 691
NewsCrawl 2019 9 041 245 9 041 245 9 508 788

Total 707 872 22 698 796 1 896 668 1 919 809 20 959 739 647 872 16 416 820

Table 2: Training corpora sizes (number of lines) for the German–Sorbian systems. Numbers in italics designate
synthetic datasets whose source side is produced by backtranslation.

dataset and as a synthetic parallel dataset for the
EN→IU task.

Validation data We used the NH dev partition
as primary validation set, and the devtest, test and
NewsDev2020 as secondary validation sets.

Preprocessing All datasets were processed with
a translation-direction-specific pipeline. Inuktitut
spelling and apostrophe normalization scripts were
applied both on source and target sides. The Moses
punctuation normalization script was applied only
to the English target sides of the parallel corpora.
No further preprocessing or tokenization was ap-
plied.

Filtering The monolingual and backtranslated
parallel corpora were filtered with OpusFilter
(Aulamo et al., 2020). The main purpose of this
step was to remove too short (i.e., less than 1 word
or less than 5 characters on either side) and too long
sentences (i.e., more than 300 words or 3000 char-
acters on either side). Furthermore, since crawled
input data could be noisy and backtranslation could
produce suboptimal results for certain sentences,
we applied an additional language model filter
based on 5-gram language models trained on the
NH training part. Sentences with an average char-
acter cross-entropy higher than 30 on either side
were removed.

2.2 Upper Sorbian–German

Training data The training data for the Upper
Sorbian–German tasks are summarized in Table 2.

The organizers provide a parallel German–Sorbian
corpus of 60k sentence pairs that we use without
further filtering or processing. Moreover, we use
four sources of parallel German–Czech data for
both directions: the Europarl and JW300 corpora
provided on OPUS, as suggested by the organiz-
ers, and additionally the Tatoeba and NewsCom-
mentary corpora, which are also available through
OPUS (Tiedemann, 2012). The German side of
three datasets2 is backtranslated to Upper Sorbian
using a baseline system. The Czech side of the four
datasets is backtranslated to Upper Sorbian using
an unsupervised character-level translation system
(see below). Length filters are applied to all data
from external resources (see below).

The organizers provide three monolingual Sor-
bian corpora: Sorbian Institute, a Sorbian Web
Crawl, and Witaj. All corpora are backtranslated to
German using a baseline system and filtered.

As monolingual German and Czech resources,
we selected the NewsCommentary corpus and the
2018 and 2019 sections of NewsCrawl. These
datasets were again filtered. The German datasets
were backtranslated to Sorbian.

Validation data We use the dev partition as pri-
mary validation data and the devtest partition as sec-
ondary validation data (2000 sentence pairs each).3

2The full (i.e., unaligned) German version of NewsCom-
mentary is also backtranslated, see below.

3The validation and test data for Sorbian consist of fairly
short and syntactically simple sentences, which explains why
even baseline systems such as those reported in Table 4 obtain
BLEU scores around 50.
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EN→IU BLEU IU→EN BLEU

Segmentation model and parameters Dev Devtest Test Dev Devtest Test

0 BPE, raw data, 2k+2k/5k+5k separate, no sampling 24.2 17.9 19.3 41.4 31.4 35.0

1 SentencePiece, raw data, 20k+20k separate, no sampling 23.1 16.9 18.4 36.8 27.2 30.9
2 SentencePiece, raw data, 5k+5k separate, no sampling 24.3 18.0 19.3 40.7 30.9 34.3
3 SentencePiece, raw data, 10k joint, no sampling 24.1 18.0 19.5 40.8 30.8 34.3

4 SentencePiece, dedup data, 10k joint, no sampling 24.2 17.7 19.0 40.7 30.8 34.4
5 SentencePiece, dedup data, 10k joint, with sampling 24.0 17.8 19.2 40.6 30.7 34.4
6 Morfessor, dedup data, 10k joint, no sampling 24.1 17.6 19.0 40.5 30.2 33.9
7 Morfessor, dedup data, 10k joint, with sampling 24.4 18.1 19.3 40.5 30.5 34.2

Table 3: Segmentation model experiments for English–Inuktitut. The baseline model (0) was trained using a
Sockeye Transformer with default settings, whereas models 1–7 were trained using OpenNMT-py Transformers
with default settings. The segmentation models were trained on the raw or deduplicated versions of the NH training
corpus.

For the training phases using exclusively German
and Czech data, we use the aligned WMT-News
corpus (20 549 sentence pairs), made available on
OPUS, as validation set.

Filtering A simple length filter was applied to all
corpora sourced from OPUS: sentence pairs where
at least one side is empty or longer than 300 words
were removed. The same filter was also applied to
parallel corpora obtained by backtranslation, which
explains the slightly diverging numbers for identi-
cal corpora in Table 2.

The Sorbian web crawl was filtered by a 5-gram
language model trained on the remaining origi-
nal Sorbian data. Sentences with a cross-entropy
higher than 50 were removed.

All corpus filtering tasks were implemented with
OpusFilter (Aulamo et al., 2020). No other prepro-
cessing or tokenization was applied.

Czech–Sorbian backtranslation The task orga-
nizers do not provide any Czech–Sorbian parallel
corpora that could be used to train a baseline sys-
tem for producing backtranslations. We therefore
resort to unsupervised machine translation. Since
Czech and Sorbian are closely related, we extract
word n-grams from monolingual corpora and match
them using string similarity and frequency crite-
ria.4 This results in a list of 620k distinct bigram
pairs and 230k distinct trigram pairs. They are
weighted by frequency to constitute a training cor-
pus for a character-level Czech-to-Sorbian trans-
lation system. The translation system is based on

4We use Europarl, NewsCommentary, Taoeba and WMT-
News as Czech monolingual corpora, and Training, Sorbian
Institute and Witaj as Sorbian monolingual corpora.

bi-directional RNNs with two encoder and two de-
coder layers. In order to produce backtranslations,
the Czech input sentences are chunked into over-
lapping trigram sequences, translated to Sorbian
and merged back again.

3 Segmentation models

NMT models should ideally be able to represent
the entire vocabulary of their source and target lan-
guages. The simplest solution however, in which
word forms are represented as atomic vocabulary
items, leads to sparse statistics, issues with out-of-
vocabulary words, and heavy computational costs
due to large vocabularies. Moreover, such word-
level modeling does not allow the productive re-
combination of morphemes and is thus unsuitable
for morphologically rich languages such as Inuk-
titut or Sorbian. In recent years, a consensus has
emerged that NMT vocabularies should consist of
subwords of variable size. Various unsupervised
word segmentation algorithms have been proposed,
among which byte-pair encoding (BPE) (Sennrich
et al., 2016), SentencePiece (Kudo and Richardson,
2018), and several variants of Morfessor (Ataman
et al., 2017; Banerjee and Bhattacharyya, 2018;
Grönroos et al., 2018, 2020).

Besides the actual word segmentation algorithm,
various parameters influence the quality of the re-
sulting translation system:

• Separate word segmentation models for each
language or one joint vocabulary for all lan-
guages. The joint approach scales better to
multilingual models, and enables consistent
segmentation of named entities and cognate
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Segmentation model Translation model DE→HSB BLEU HSB→DE BLEU

Algorithm Training data (tokens) Training data (lines) Dev Devtest Dev Devtest

1 SentencePiece 0.6M HSB + 0.7M DE 60k 56.93 49.76 57.11 48.74
2 Morfessor 0.6M HSB + 0.7M DE 60k 53.42 46.93 53.93 45.79

3 SentencePiece 8.4M HSB + 8.9M DE 60k 57.39 51.00 57.69 49.91
4 Morfessor 8.4M HSB + 8.9M DE 60k 55.34 48.99 55.51 47.61

5 SentencePiece 8.4M HSB + 8.9M DE + 8.4M CS 60k 57.82 51.30 58.45 49.86
6 Morfessor 8.4M HSB + 8.9M DE + 8.4M CS 60k 56.27 49.76 56.68 48.81

7 SentencePiece 8.4M HSB + 8.9M DE + 8.4M CS 708k / 1931k 61.90 55.06 62.41 53.78
8 Morfessor 8.4M HSB + 8.9M DE + 8.4M CS 708k / 1931k 61.56 55.04 62.16 53.83

Table 4: Segmentation model experiments for German–Upper Sorbian. All segmentation models are joint models
with 20 000 units, but trained on variable amounts of data. All translation models are OpenNMT-py Transformers
with default settings with active subword sampling, trained either without (1–6) or with (7–8) additional backtrans-
lations.

words across languages, assuming they are
written in the same script.

• The chosen vocabulary size and the amount
of training data from which the segmenta-
tion model is learned. Denkowski and Neu-
big (2017) recommend a vocabulary size of
32k units, trained jointly on all languages, for
normal-sized datasets. In contrast, Ding et al.
(2019) obtain the best results with small vo-
cabularies of only 500 units in low-resource
scenarios. Optimal vocabulary size varies
thus depending on the size of the parallel and
monolingual data.

• If the segmentation algorithm is based on a
probabilistic model (such as SentencePiece or
Morfessor), it can be used to sample differ-
ent segmentations for any given word. This
technique is known as subword regularization
(Kudo, 2018) and has been shown to improve
the robustness of translation models.

Grönroos et al. (2020) tested various segmenta-
tion model configurations on a multilingual transla-
tion task and obtained best results with Morfessor
EM+Prune, followed by SentencePiece and BPE.
Furthermore, when trained on the same amount
of data and using subword regularization, the vo-
cabulary size (tested between 5K and 20K entries)
turned out to be irrelevant for both SentencePiece
and Morfessor EM+Prune.

We carried out some additional experiments with
the English–Inuktitut task, which differs from their
setup in the sense that the languages use different
scripts and there is no third language involved. Ta-
ble 3 compares different parameter settings with the

baseline results provided by the organizers (Joanis
et al., 2020). A first set of experiments shows that
the vocabulary size does matter when not using sub-
word sampling (1 vs 2), but that separate and joint
segmentation models perform equivalently (2 vs 3).
SentencePiece does not perform better than BPE
(2 vs 0), although different preprocessing choices
may be responsible for the generally lower results
obtained in the IU→EN direction. The second set
of experiments shows that Morfessor EM+Prune
lags slightly behind SentencePiece when not using
sampling (6 vs 4), but that sampling has a more
beneficial effect to Morfessor EM+Prune than to
SentencePiece (7 vs 6, 5 vs 4).

For German–Upper Sorbian, the setup differs
from Grönroos et al. (2020) with respect to the
amount of available training data. We therefore ran
additional experiments to measure the impact of
both the training data used for the segmentation
model and the training data used for the transla-
tion model. Table 4 summarizes our findings. All
experiments are based on joint word segmentation
models with a total of 20K vocabulary items.

When training both the segmentation model and
the translation model on the provided parallel data
(experiments 1 and 2), SentencePiece performs
much better than Morfessor EM+Prune. The ad-
dition of monolingual training data for the seg-
mentation model (experiments 3 and 4) helps both
segmentation algorithms about equally well (+ 1–2
BLEU). In contrast, the further addition of Czech
data for the segmentation model (experiments 5
and 6) benefits Morfessor more than Sentence-
Piece on average.5 Finally, augmenting the trans-

5The additional monolingual Sorbian data comes from the
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EN→IU BLEU IU→EN BLEU

Training data Weighting Monoling. tasks NH Dev Newsdev NH Dev Newsdev

1 EN↔IU + BT — — 24.13 15.72 41.07 32.86
2 EN↔IU + BT X Noise + Translit. *25.15 *15.95 41.89 33.47
3 EN↔IU + BT X Noise + Taboo 25.28 16.15 *41.67 *33.49

Table 5: Inuktitut translation experiments. Systems marked with * were used for the final primary submissions.

lation model training data with backtranslations
obviously increases the overall translation scores,
but also brings Morfessor EM+Prune on par with
SentencePiece.

We were thus not able to reproduce the sub-
stantial gains in translation quality with Morfes-
sor EM+Prune observed by Grönroos et al. (2020).
Rather, we found that SentencePiece was generally
more robust to different data conditions and se-
tups. Nevertheless, Morfessor EM+Prune remains
competitive with its default parameters if subword
sampling is enabled and the training data are care-
fully chosen. For the final Inuktitut models, we
decided to used configuration 7 from Table 3, since
it allowed us to use monolingual tasks relying on
subword sampling. For the final Sorbian models,
we used configuration 8 from Table 4.

4 Translation models

All our models are based on the Transformer archi-
tecture and use, by and large, the same hyperparam-
eters as Grönroos et al. (2020). The Transformer
contains 8 encoder and 8 decoder layers with 16
attention heads each. The hidden layer size is 1024,
the filter size 4096. The minibatch varies between
7200 and 9200 tokens, depending on the task, and
gradients are accumulated over 4 minibatches. All
models were trained for 200 000 steps, which corre-
sponded to 5–7 days training time on a single V100
GPU. The best savepoint was selected on the basis
of development set accuracy; this measure turned
out to be more stable than development set BLEU
score.

We use the dynamicdata branch of the
OpenNMT-py toolkit (Klein et al., 2017) for our
experiments.6 This branch provides the neces-

Witaj and Sorbian Institute corpora. We added an equivalent
amount of German data from NewsCommentary and WMT-
News. The Czech data also stems from NewsCommentary
and WMT-News and is complemented by a subset of Czech
Europarl.

6https://github.com/Waino/OpenNMT-py
The functionality of the dynamicdata branch is included by

sary adaptations for the techniques introduced by
Grönroos et al. (2020): scheduled multi-task learn-
ing requires the ability to adjust the task mix during
training, whereas subword regularization and the
denoising sentence autoencoder task require sam-
pling fresh noise for each minibatch.

The experiments presented in Tables 3 and 4 al-
ready confirmed the positive impact of subword
regularization and backtranslation. Row 1 of Ta-
bles 5 and 6 provide baseline results with these two
techniques. Backtranslated training instances are
marked with a special token.

Scheduled multi-task learning As row 2 in
Table 6 shows, the mere inclusion of a
German↔Czech task with language labels but
without any task scheduling already increases
BLEU scores by 1.5 points. However, simple trans-
fer learning setups such as this are prone to catas-
trophic forgetting, especially in low-resource set-
tings such as ours.

Kiperwasser and Ballesteros (2018) propose a
general strategy called scheduled multi-task learn-
ing, in which different tasks are mixed according
to a task-mix schedule. Grönroos et al. (2020) pro-
pose a partwise constant task-mix schedule with
an arbitrary number of steps, any of which can be
mixing multiple tasks. This flexibility is useful
when training with a large number of heteroge-
neous tasks: multiple language pairs with different
amounts of data, data from different domains (over-
sampling the in-domain data), natural vs synthetic
(e.g. back-translated) data, and auxiliary tasks (e.g.
autoencoder).

A training schedule with two phases (row 3 in
Table 6) further increases scores slightly. Details
of the schedule and the task weights are given in
Table 7.

default in the upcoming release v2.0 of OpenNMT-py, albeit
in a different implementation.
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DE→HSB BLEU HSB→DE BLEU

Training data Weight./Schedul. Monoling. tasks Dev Devtest Dev Devtest

1 DE↔HSB + BT — — 61.56 55.04 62.16 53.83
2 DE↔CS + DE↔HSB + BT — — 63.15 56.71
3 DE↔CS + DE↔HSB + BT X — *63.93 *56.82 64.48 56.27
4 DE↔CS + DE↔HSB + BT X Noise 63.84 56.45 *64.88 *56.76
5 DE↔CS + DE↔HSB + BT X Taboo 63.61 57.11 64.72 56.96

Table 6: Sorbian translation experiments. Systems marked with * were used for the final primary submissions.

4.1 Monolingual tasks

Denoising sequence autoencoder task. In the
denoising autoencoder (Vincent et al., 2008; Hill
et al., 2016) clean text is corrupted by sampling
from a noise model, and fed in as a pseudo-source.
The target is a reconstruction of the clean input.
The goal of the autoencoder tasks is to use mono-
lingual data to strengthen target language modeling
in the decoder and source language understand-
ing in the encoder. In addition, the autoencoder
task acts as regularization. Noise has been used
as a regularizer in many NLP techniques, includ-
ing dropout (Srivastava et al., 2014), label smooth-
ing (Szegedy et al., 2016), SwitchOut (Wang et al.,
2018), and subword regularization (Kudo, 2018).
Sampling fresh noise for each minibatch is impor-
tant, especially in low-resource conditions where
the small data set is reused for many epochs. The
denoising sequence autoencoder has previously
been applied to language model pretraining in
BART (Lewis et al., 2019).

Typical noise models for denoising sequence au-
toencoder apply small changes to the input side of
the corpus: local reordering (Lample et al., 2018),
deletions (Iyyer et al., 2015), insertions (Vaibhav
et al., 2019), substitutions (Wang et al., 2018), and
masking (Devlin et al., 2019). Of these, our method
applies local reordering and token deletion.

Taboo sampling segmentation task. Grönroos
et al. (2020) propose taboo sampling, a noise model
extending the subword regularization idea specifi-
cally for monolingual data. It takes in monolingual
text and generates two maximally different segmen-
tations, e.g. dys + functional on the source side and
dysfunction + al on the target side. During taboo
sampling, all multi-character subwords used in the
first segmentation have their probability temporar-
ily set to zero, to ensure that they are not used in
the second segmentation.

Transliteration task. As an alternative to taboo
sampling, we take advantage of the fact that Inukti-
tut can be written in two different scripts, roman-
ized and syllabic. Since the segmentation model
is trained only on syllabic Inuktitut (and the oc-
casional romanized proper name occurring on the
English side of the NH corpus), we assume that
the same word will be segmented very differently
in the two scripts, leading to a similar effect as
taboo sampling. We include a romanized→syllabic
transliteration task in the EN→IU model, and a
syllabic→romanized task in the IU→EN model.

Experiments 2–3 in Table 5 as well as experi-
ments 4–5 in Table 6 explore different combina-
tions of monolingual tasks. For Inuktitut, the addi-
tion of monolingual tasks increases BLEU scores
markedly, but there is no clear winner between the
transliteration and taboo tasks. For Sorbian, the
monolingual tasks only help when translating to-
wards German, but not when translating towards
Sorbian. One reason for this somewhat surprising
finding could be that the Sorbian monolingual data
is identical with the Sorbian target of the backtrans-
lations, so that no additional data is added with the
monolingual tasks.

5 Submissions and results

For the best-performing configurations, we trained
two models each, one (“basic”) with the hyperpa-
rameters listed above, and an alternative one with
relative position distance clipping at 4 (see Shaw
et al., 2018). However, this setting did not yield
any consistent accuracy gains or losses.

For the Inuktitut task, we submitted single sys-
tems of settings 2 and 3 for both directions. For
EN→IU, the alternative model of setting 2 obtained
the best scores on the test set (10.1 BLEU / 0.301
chrF), whereas for IU→EN, the basic model of
setting 3 obtained the best scores on the test set
(23.0 BLEU / 0.455 chrF). Among the 11 primary
submissions in both translation directions, our sub-

1135



EN→IU IU→EN DE→HSB HSB→DE

Training steps 0–200k 0–200k Training steps 0–60k 60–200k 0–60k 60–200k

Bilingual 45% 45% Bilingual DE↔CS 90% 50% 85% 25%
Backtranslation 40% 40% Bilingual DE↔HSB 20% 30%
Noise EN 5% 5% Backtr. DE↔HSB 20% 30%
Noise IU 5% 5% Backtr. HSB→CS 5% 5%
Taboo IU / Translit. rom.→syll. 5% Noise / Taboo DE 5% 5% 5%
Taboo EN / Translit. syll.→rom. 5% Noise / Taboo CS 5% 5%

Noise / Taboo HSB 10% 5%

Table 7: Task schedules for the Inuktitut (left) and Sorbian (right) experiments.

mission obtained rank 8 for EN→IU and rank 10
for IU→EN in terms of (inofficial) BLEU scores.
It will be instructive to examine the manual evalu-
ation results and the other system descriptions to
identify the reasons behind these rather disappoint-
ing results.

For the Sorbian task, we submitted ensembles
of the basic and alternative models. Setting 3 turned
out to be the best choice for DE→HSB (57.9 BLEU
/ second rank), and setting 4 for HSB→DE (59.6
BLEU / first rank). For both directions, ensembling
has raised the BLEU scores by 0.6. Our submis-
sions would obtain first rank in both directions if
only single systems were considered.

6 Conclusion

In this work, we tested various methods for low-
resource machine translation proposed by Grönroos
et al. (2020) on the English–Inuktitut and German–
Upper Sorbian tasks in WMT 2020. In particular,
we investigated several subword segmentation ap-
proaches and the inclusion of monolingual tasks.

In terms of subword segmentation, we were
not able to reproduce the reported gains for the
Morfessor EM+Prune method over SentencePiece.
We obtained comparable results with both methods
though. We also found that increasing the size of
segmentation model training data was useful, and
that Morfessor EM+Prune was more sensitive to
training data size than SentencePiece. Furthermore,
we obtained slight improvements from subword
sampling, confirming earlier results.

During the development phase, we also found
curious interactions between the subword vocab-
ulary size and different NMT toolkits. We were
able to reproduce the organizer-provided Inuktitut
baselines with both small and large vocabularies us-
ing the Sockeye toolkit, but obtained significantly
lower scores with OpenNMT-py and large vocab-
ularies, even after harmonizing the training hyper-

parameters between toolkits. With small subword
vocabularies, OpenNMT-py became competitive
again.

The inclusion of monolingual tasks yielded
clear improvements for the Inuktitut experiments.
The noise model had the most positive effect,
whereas the transliteration and taboo sampling
tasks showed minor effects. In contrast, the ef-
fect of the monolingual tasks on the Sorbian ex-
periments was more subtle. The two-phase train-
ing schedule introduced by Grönroos et al. (2020)
proved useful in the Sorbian experiments.
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Abstract

We describe NITS-CNLP’s submission to
WMT 2020 unsupervised machine translation
shared task for German language (de) to Up-
per Sorbian (hsb) in a constrained setting i.e,
using only the data provided by the organiz-
ers. We train our unsupervised model using
monolingual data from both the languages by
jointly pre-training the encoder and decoder
and fine-tune using backtranslation loss. The
final model uses the source side (de) monolin-
gual data and the target side (hsb) synthetic
data as a pseudo-parallel data to train a pseudo-
supervised system which is tuned using the
provided development set(dev set).

1 Introduction

This paper provides the system description of the
unsupervised neural machine translation system for
German to Upper Sorbian submitted by the Center
for Natural Language Processing of National Insti-
tute of Technology, Silchar, India (NITS-CNLP)
in the WMT 2020 shared task for Unsupervised
and Very Low Resource machine translation for
German and Upper-Sorbian language pair. Specif-
ically, we made our primary submission for the
unsupervised task in de→ hsb direction. We use
the data provided by the organisers only i.e, in a
constrained manner. Our unsupervised neural ma-
chine translation (UNMT) system first pre-trains a
transformer (Vaswani et al., 2017) based encoder
and decoder model using masked sequence to se-
quence (MASS) pre-training (Song et al., 2019)
and fine-tune using the back-translation (Sennrich
et al., 2016a) loss. The final model trained using
MASS objective is then used to translate the source
side (Mde) monolingual data into a synthetic target
side data (M

′
hsb)and then train a pseudo-supervised

model using {Mde,M
′
hsb} from scratch.

The remaining of the paper is arranged in fol-
lowing manner: Section 2 gives a brief background
of an unsupervised MT. Section 3 describes the

data preprocessing. In Section 4, we describe our
UNMT system. The results and analysis are shown
in Section 5. Finally, Section 6 concludes the paper.

2 Background

NMT (Kalchbrenner and Blunsom, 2013; Cho
et al., 2014; Bahdanau et al., 2014) has become
the de-facto MT system in recent times achiev-
ing near human level translation quality for many
language pair however at the cost of millions of
bi-text data. Unfortunately, bi-text data for many
languages is scarce or non-existent. Unsupervised
MT (Lample et al., 2018a; Artetxe et al., 2018b)
is one of the techniques to handle the bi-text un-
availability by exploiting monolingual data (Sen-
nrich et al., 2016a). Primitive unsupervised MT
first maps the monolingual data into a common
cross-lingual shared vector embedding space (Con-
neau et al., 2017; Artetxe et al., 2017) and infer
a bilingual dictionary from this shared space us-
ing adversarial training (Lample et al., 2018a) or
through self learning (Artetxe et al., 2018b) and fur-
ther improve the model through a combination of
de-noising auto-encoder and iterative or on-the-fly
back-translation. Subsequently, this principle has
been applied in SMT (Lample et al., 2018b; Artetxe
et al., 2018a) or a combination of NMT and SMT
(Marie and Fujita, 2018; Ren et al., 2019) to further
improve the unsupervised MT. However, in this
work, we follow a newer approach of cross-lingual
language model pretraining (Lample and Conneau,
2019; Song et al., 2019) which has shown to be a
stronger initialization for unsupervised MT than
the cross-lingual shared vector embedding space.

3 Data and Preprocessing

This section is further divided into two subsections
briefing the data description and the preprocessing
steps used.
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Corpus Sentences

mono
de (News Crawl) 5 M
hsb 756.3 K

dev/test
de 2 K
hsb 2 K

Table 1: Statistics of the monolingual and the dev/test
set.

3.1 Data Description

We use a randomly sampled 5M monolingual cor-
pus for German side from News Crawl1 dataset,
while we use all the available monolingual data2

and the parallel side3 of Upper Sorbian4 as the com-
bined monolingual data for the same and summing
up 756,271 number of sentences. For tuning and
evaluation5, we use the provided devtest6 data with
2000 sentences for both the dev and test files as
shown in Table 1.

3.2 Preprocessing

We use Moses(Koehn et al., 2007) toolkit for pre-
processing the data. The corpus underwent removal
of non-printing characters and tokenization. For
the Upper Sorbian, we used Czech(cs) language
code for tokenization as Upper Sorbian(hsb) lan-
guage code is unavailable in Moses toolkit7 and
considering the relatedness of these languages8.

The above preprocessing is used by MASS pre-
train and MASS finetune models while the pseudo-
supervised model uses the raw data and learns a
Sentencepiece BPE. The details are described in
Section 4.2.

4 UNMT System

Our UNMT system is a pipeline of encoder-
decoder pretraining and fine-tuning using MASS
(Song et al., 2019) and using the synthetic data

1http://data.statmt.org/news-crawl/
de/

2http://www.statmt.org/wmt20/unsup_
and_very_low_res/

3http://www.statmt.org/wmt20/unsup_
and_very_low_res/train.hsb-de.hsb.gz

4The parallel side of Upper Sorbian is allowed for Unsu-
pervised task.

5We use newstest2020 test set for the submission.
6http://www.statmt.org/wmt20/unsup_

and_very_low_res/devtest.tar.gz
7https://github.com/moses-smt/

mosesdecoder
8Both Czech and Upper Sorbian belongs to Western

Slavic language branch.

--mass steps ’de,hsb’
--encoder only false
--emb dim 1024 --n layers 6
--n heads 8 --dropout 0.1
--attention dropout 0.1
--gelu activation true
--tokens per batch 3000
--optimizer adam inverse sqrt,

beta1=0.9,beta2=0.98,lr=0.0001
--word mass 0.5 --min len 5

Table 2: MASS pretraining parameters

generated (M
′
hsb) from the source monolingual

data (Mde) to train a forward model from scratch.
This section is further divided into two subsections,
first describing the MASS pretraining and fine-
tuning and second, the transformer based forward
(
−→
f ) pseudo-supervised model using the pseudo-

parallel ({Mde,M
′
hsb}) data by inducing Lample

et al. (2018a) style noise (word drop, word shuffle
and word blank) upon the input data.

4.1 MASS Pretrain and Finetune
We use the MASS toolkit9 to pretrain a cross-lingual
language model using the masked sequence to se-
quence objective. Initially, the corpus are seg-
mented into subword units using BPE(Sennrich
et al., 2016b). A joint BPE is learnt over the mono-
lingual data of both the languages (German and
Upper Sorbian) and the vocabulary is limited to
60,000 shared vocabulary tokens.
MASS Pretraining: The BPE tokenized mono-
lingual data is used to pretrain the encoder and
decoder jointly by the cross lingual MASS objec-
tive and the training is done for 100 epochs. The
parameters for the MASS pretraining is shown in
Table 2.
MASS Fine-tuning: The pretrained model is capa-
ble to generate translations but it is merely a copy
task. So, in order to make the model more robust,
it is further fine-tuned using the loss objective of
back-translation. The fine-tuning is halted after the
10th epoch before being converged due to resource
limitation. The parameters for fine-tuning is listed
in Table 3.

4.2 Pseudo-Supervised NMT
We follow Marie et al. (2019) style of using the
pseudo-parallel data generated from a previous

9https://github.com/microsoft/MASS
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--bt steps ’de-hsb-de,hsb-de-hsb’
--encoder only false
--emb dim 1024 --n layers 6
--n heads 8 --dropout 0.1
--attention dropout 0.1
--gelu activation true
--tokens per batch 2000
--optimizer adam inverse sqrt,
beta1=0.9,beta2=0.98,lr=0.0001

--eval bleu true

Table 3: MASS finetuning parameters

model to train a forward pseudo-supervised model.
In our case, we first generate a synthetic data
(M

′
hsb) from the source monolingual data (Mde)

using beam search decoding with a beam size of
10 from the MASS fine tuned model. Unlike Marie
et al. (2019) where back translation was applied,
we use forward translation from the source side
monolingual (He et al., 2020) data to generate syn-
thetic data. The synthetic data is detokenized, and
we learn a joint subword BPE from the raw Mde

and M
′
hsb using Sentencepiece (Kudo and Richard-

son, 2018) and limit the shared vocabulary to 10 K
units.
Noisy Pseudo-Supervised NMT: We add per-
turbations or noise, specifically we apply word
dropout, word shuffle and word blank to our syn-
thetic data. This kind of perturbation is found to
be effective for overcoming the local minima by
enforcing local smoothness (He et al., 2020; Shen
et al., 2019). We train our pseudo-supervised NMT
in a pseudo self-training approach by leveraging
the source side monolingual data. This self-training
is partial in the sense that we only use the pseudo-
parallel data which lacks any sort of real labelled
data for a single iteration.

The pseudo-supervised NMT is trained from
scratch using Fairseq (Ott et al., 2019) toolkit10 i.e,
we do not use the previous models weights rather
we apply random weight initialization for our new
model. The model is trained for 300 K update steps.
We follow Guzmán et al. (2019) style transformer
architecture of 5 encoder and decoder layers, 512
embedding dimension, the feed-forward hidden di-
mension is 2048 with 4 multi-head attentions11.
The rest of the parameters are listed in Table 4. We

10https://github.com/pytorch/fairseq
11We have used 4 attention heads instead of 8 as in Guzmán

et al. (2019)

--encoder-normalize-before
--decoder-normalize-before
--dropout 0.3 --relu-dropout 0.3
--attention-dropout 0.3
--label-smoothing 0.2
--criterion label smoothed

cross entropy
--weight-decay 0.0001
--lr-scheduler inverse sqrt
--min-lr 1e-9 --max-tokens 4000
--warmup-updates 4000
--warmup-init-lr 1e-7
--optimizer adam --lr 0.0005
--adam-betas ’(0.9, 0.98)’
--share-all-embeddings

Table 4: Pseudo-supervised NMT training parameters

make our primary submission of the test source
generated using a beam search decoding with beam
size of 5 and a length penalty of 1.2.

5 Result

The official automatic evaluation uses the the fol-
lowing metrics: BLEU (Papineni et al., 2002),
TER (Snover et al., 2006), BEER (Stanojević and
Sima’an, 2014), and CharactTER (Wang et al.,
2016). Our primary submission (NITS-CNLP), the
pseudo-supervised NMT achieves a cased BLEU
of 15.4 and 15.8 as the uncased BLEU score on
the newstest2020 blind-test data. The scores are
reported in Table 5. We also present the sample
input-output of our primary system (NITS-CNLP)
from two randomly selected test sentences from the
matrix12 in Table 6. We also report the Sacrebleu
score of our various settings with the released test
set (non blind test) in Table 7.

6 Conclusion

We report here the system description for our sub-
mission to the WMT 2020 shared task of Unsuper-
vised MT for German-Upper Sorbian language pair.
We submit our pipelined architecture of masked
sequence to sequence pretraining along with fine-
tuning and a pseudo-supervised model in German
to Upper Sorbian direction. We observe that the
performance of an unsupervised model improves
significantly over the base MASS pretraining and

12http://matrix.statmt.org/matrix/
output/1920?run_id=7785
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System BLEU BLEU-cased TER BEER 2.0 CharactTER

NITS-CNLP 15.8 15.4 0.668 0.489 0.604

Table 5: BLEU, BLEU-cased, TER, BEER 2.0 and CharactTER scores of our final primary system NITS-CNLP
for the German→ Upper Sorbian language using blindtest (newstest2020).

Source-1 Möchten Sie erfahren, wie sich bei uns die Unterrichtsräume mit Leben füllen?
Reference-1 Chceće wědźeć, kak so pola nas wučbne rumnosće ze žiwjenjom pjelnja?
NITS-CNLP Časće zhonić, kak so pola nas wučbnych rumow z žiwami čuje?

Source-2 Rächt euch nicht selbst, sondern gebt Raum dem Zorn Gottes.
Reference-2 Njewjećće so sami, ale dajće městno Božemu hněwu.
NITS-CNLP Njech wam sam, ale pomha rumnosć Božeje słužby.

Table 6: Sample input-output excerpted from the matrix primary submission of NITS-CNLP.

System BLEU

MASS-PT 2.3
MASS-FT 8.1
PSNMT 14.5

Table 7: BLEU, scores of our three systems using the
released test set: MASS-pretrain (MASS-PT), MASS-
finetune (MASS-FT) and Pseudo Supervised NMT
(PSNMT) for German→ Upper Sorbian language.

finetuning after using the synthetic data to train a
pseudo-supervised model using a very naive way
of self-training i.e, we have just used a single itera-
tion of our forward training. Synthetic data is the
de-facto for any modern semi-supervised MT sys-
tem and in this experiment we show that synthetic
data in an unsupervised MT is effective and also
emphasised the importance of a pseudo-supervised
MT model as a refinement step to an unsupervised
MT.
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Word translation without parallel data. arXiv
preprint arXiv:1710.04087.

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan
Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’Aurelio Ranzato. 2019. The
FLORES evaluation datasets for low-resource ma-
chine translation: Nepali–English and Sinhala–
English. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6098–6111, Hong Kong, China. Association for
Computational Linguistics.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020. Revisiting self-training for neural
sequence generation. In Proceedings of ICLR.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1700–1709, Seattle,
Washington, USA. Association for Computational
Linguistics.

1142



Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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Abstract

In this paper, we describe our systems sub-
mitted to the very low resource supervised
translation task at WMT20. We participate in
both translation directions for Upper Sorbian-
German language pair. Our primary sub-
mission is a subword-level Transformer-based
neural machine translation model trained on
original training bitext. We also conduct
several experiments with backtranslation us-
ing limited monolingual data in our post-
submission work and include our results for
the same. In one such experiment, we ob-
serve jumps of up to 2.6 BLEU points over the
primary system by pretraining on a synthetic,
backtranslated corpus followed by fine-tuning
on the original parallel training data.

1 Introduction

This paper describes our submissions to the shared
task on Very Low Resource Supervised Machine
Translation at WMT 2020. The task involved
a single language pair: Upper Sorbian-German.
We submit supervised neural machine translation
(NMT) systems for both translation directions, Up-
per Sorbian→German and German→Upper Sor-
bian.

NMT models (Sutskever et al., 2014; Bahdanau
et al., 2015; Cho et al., 2014a) have achieved state-
of-the-art performance on benchmark datasets for
multiple language pairs. A big advantage of such
systems over phrase-based statistical machine trans-
lation (PBSMT) (Koehn et al., 2003) models is that
they can be trained end-to-end. The bulk of the
development, however, has been limited to a hand-
ful of high-resource language pairs. The primary
reason is that training a well-performing NMT sys-
tem requires a large amount of parallel training
data, which means a lot of equivalent investment
in terms of resources. Koehn and Knowles (2017)
show that when compared to PBSMT approaches,
NMT models need more training data to achieve

the same level of performance.1 One of the most
popular ways to increase the amount of parallel
training data for supervised training is backtrans-
lation (Sennrich et al., 2016a). We utilize this ap-
proach to improve upon the performance of our
baseline models.

All of our systems follow the Transformer archi-
tecture (Vaswani et al., 2017). Our primary system
is a supervised NMT model trained on the original
training bitext. We also report our results on experi-
ments with backtranslation, which were completed
post the shared task and hence not a part of our
primary submissions. We use the backtranslated
data in two distinct ways - as a standalone parallel
corpus, and to create a combined parallel corpus
by mixing in a 1:1 ratio with the provided training
data. We also report the performance of fine-tuned
models originally trained only on the backtrans-
lated data. In the following sections, we begin by
briefly describing the Transformer architecture and
backtranslation. We then discuss our experimental
setup as well as our experiments with backtransla-
tion. We conclude with a discussion of our results
and possible future work.

2 Related Work

The Transformer model is the dominant archi-
tecture within current NMT models due to its
superior performance on several language pairs.
While still a sequence-to-sequence (Sutskever et al.,
2014) model composed of an encoder and a de-
coder, Transformer models are highly paralleliz-
able thanks to being composed purely of feed-
forward and self-attention layers rather than re-
current layers (Hochreiter and Schmidhuber, 1997;
Cho et al., 2014b). The reader is encouraged to read
the original paper (Vaswani et al., 2017) to gain a
deeper understanding of the model. We adopt the
Transformer base architecture available under the

1As measured by BLEU score (Papineni et al., 2002).
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fairseq2 (Ott et al., 2019) library for all our models.
However, NMT models are known to be data-

hungry (Koehn and Knowles, 2017); their perfor-
mance improves sharply with the availability of
more parallel training data. Except for a few lan-
guage pairs (e.g. English-German), most have lit-
tle to no such data available. On the other hand,
a far greater number of languages have a decent
amount of monolingual data available online (e.g.
Wikipedia).

To address this issue of lack of parallel data, Sen-
nrich et al. (2016a) introduced the concept of back-
translation. It involves creating a synthetic parallel
corpus by translating sentences from the target-side
monolingual data to the source language and mak-
ing corresponding pairs. A baseline target→source
model (PBSMT or NMT), trained with limited data,
is generally used for this purpose. It enables the
use of large corpora of monolingual data for sev-
eral languages, the size of which is typically orders
of magnitude larger than any corresponding bitext
available. What is notable is that only the source-
side data is synthetic in such a scenario and the
target-side still corresponds to original monolin-
gual data.

Some studies (Poncelas et al., 2018; Popel, 2018)
have investigated the effects of varying the amount
of backtranslated data as a proportion of the to-
tal training corpus, including training only on the
synthetic dataset as a standalone corpus. We fol-
low some of the related experiments conducted by
Kocmi and Bojar (2019) on Gujarati-English (an-
other low-resource pair) with a few exceptions. Be-
sides, we also report performance when pretraining
solely on the synthetic corpus following by fine-
tuning on either original or mixed data. While
not quite the same, one could think of this ap-
proach as having some similarities with transfer
learning (Zoph et al., 2016) as well as domain adap-
tation (Luong and Manning, 2015; Freitag and Al-
Onaizan, 2016) for machine translation. There has
also been work on using sampling (Edunov et al.,
2018) for generating backtranslations, but we stick
to using beam search in this work.

3 Experimental Setup

3.1 Dataset
We used the complete parallel training corpus for
our primary systems. In addition, we also made
use of monolingual data from each language for

2https://github.com/pytorch/fairseq

two purposes - learning Byte Pair Encodings (BPE)
(Sennrich et al., 2016b) and backtranslation. For
Upper Sorbian (hsb), we used the monolingual cor-
pora provided by the Sorbian Institute and by the
Witaj Sprachzentrum. To control the quality of the
backtranslated data, we chose not to use the data
scraped from the web. For the German (de) side,
we made use of the News Crawl3 2009 dataset, as
it is large enough to satisfy the requirements for
our experiments.

3.2 Data Preprocessing

Source No. of sentences
hsb-de, bitext 58,389
hsb, monolingual 540,994
de, monolingual 2,000,000

Table 1: Processed training data.

Moses toolkit (Koehn et al., 2007) was used for
tokenization and punctuation normalization for all
data. Before doing any additional preprocessing,
we learned separate truecaser models using the
toolkit. For this purpose, we took first 500K sen-
tences from each of the monolingual corpora and
aggregated them with the corresponding portion
from the training bitext. After tokenizing and true-
casing, we joined the parallel training corpus with
the same monolingual data. We learned joint BPE4

with 32K merge operations over this corpus and
applied them to the parallel training data to get
vocabularies for each language. Additionally, we
used the clean-corpus-n.perl script within
Moses to filter out sentences from the parallel cor-
pus with more than 250 subwords as well as sen-
tence length ratio over 1.5 in either direction. Final
corpus statistics are presented in Table 1.

3.3 Training

Our primary system is a Transformer base model,
trained on the parallel training corpus for both trans-
lation directions till 60 epochs. We keep most of the
hyperparameters to their default values in fairseq.
More precisely, we chose Adam (Kingma and Ba,
2015) as the optimizer and Adam betas were set to
0.9 and 0.98, respectively. The maximum number
of tokens in each batch was set to 4096. Learn-
ing rate was set to 0.0005, with an inverse squared

3http://data.statmt.org/news-crawl/de/
4https://github.com/glample/fastBPE
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root decay schedule and 4000 steps of warmup up-
dates. Label smoothing was set to 0.1 and dropout
to 0.3. Label-smoothed cross-entropy was used as
the training criterion.

We trained all our models for a fixed number
of epochs, determined separately for each system,
and chose the last checkpoint for reporting BLEU
(Papineni et al., 2002) scores on the test sets.

All training was done using a single NVIDIA
P100 GPU. Due to the small amount of parallel
training data, each epoch of training took about 90
seconds on average for the primary system.

4 Additional Backtranslation
Experiments

In this section, we report our post-submission
work on using monolingual data for backtransla-
tion. We took the raw monolingual data that we
describe in Section 3.1 and backtranslated with
our primary submission models for the respective
translation directions, i.e., hsb→de for Upper Sor-
bian data and de→hsb for German data. We used
fairseq-generate function with a beam size
of 5 for this purpose. Once again, we limited the
number of subwords in each sentence to 250. Fi-
nally, we took all sentence pairs for backtranslated
Upper Sorbian corpus and the first two million
sentence pairs for the German corpus. Table 1 in-
dicates the size of the backtranslated corpora by
original language. For further experiments, we
name the datasets as follows:

• auth: Processed original training data.

• synth: Backtranslated de→hsb and hsb→de
corpora.

• mixed: Augmented training data obtained by
mixing auth with a portion of synth in 1:1
ratio, providing a total of 116,778 sentence
pairs.

We define the following systems for making use
of the backtranslated data. Note that the first system
only differs from the primary system in the number
of training epochs completed.

• auth-from-scratch: This system has the same
settings as the primary system. It was trained
on the auth corpus till 80 epochs (as opposed
to 60 for primary).

• mixed-from-scratch: We trained models on
mixed data from scratch for 40 epochs.5

• synth-from-scratch: Models were trained only
on the synth datasets. To adjust for the differ-
ence in the size of the respective backtrans-
lated corpora, we trained hsb→de system for
10 epochs and de→hsb system for 30 epochs.

• synth-auth-finetune: We took the models
trained via the previous system and fine-tuned
them on auth data for 20 epochs in each trans-
lation direction.

• synth-mixed-finetune: Same as the last model,
except that fine-tuning was done on mixed
data.

Fine-tuning was carried out by loading
pretrained checkpoints and adding extra
training flags in reset-optimizer and
reset-lr-scheduler.

5 Results

The systems were evaluated on the blind test set
(newstest2020) using automated metrics; no hu-
man evaluation was done. Table 2 shows cased
BLEU scores for various systems. Our primary
systems achieved a BLEU score of 47.6 for Upper
Sorbian→German and 45.2 for German→Upper
Sorbian translation. We achieved an improvement
of 0.3 and 0.4 BLEU points, respectively, by train-
ing further till 80 epochs in each direction. We
also evaluated a third system, synth-auth-finetune,
as described in Section 4, which provided a jump
of 2.6 points in BLEU score over the primary
system for Upper Sorbian→German and 2.5 for
German→Upper Sorbian.

In addition to evaluating on blind test sets, we
also report BLEU scores on the development test
set in the same table. Two outcomes are worth
highlighting:

• Model trained only on synth data for
German→Upper Sorbian translation matched
the performance of a similar model trained on
the authentic bitext.

• Best results were obtained by fine-tuning a
model trained on synth data with either auth
or mixed.

5We trained further till 60 epochs, but observed no im-
provement in BLEU scores.
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System Dataset Epochs newstest2020 devtest
hsb→de

Primary* auth 60 47.6 -
auth-from-scratch auth 80 47.9 45.6
mixed-from-scratch mixed 40 - 45.7
synth-from-scratch synth 10 - 38.0
synth-auth-finetune +auth 20 50.2 49.6
synth-mixed-finetune +mixed 20 - 48.3

de→hsb
Primary auth 60 45.2 -
auth-from-scratch auth 80 45.6 46.4
mixed-from-scratch mixed 40 - 47.4
synth-from-scratch synth 30 - 46.5
synth-auth-finetune +auth 20 47.7 49.0
synth-mixed-finetune +mixed 20 - 49.6

Table 2: BLEU scores for the blind test set (newstest2020) and the development test set. Bold values in a column
indicate the best scores among the evaluated systems. + Additional fine-tuning for models trained with backtrans-
lated corpora. * Only the primary systems were evaluated before deadline.

The second result is notable since the regime
of pretraining followed by fine-tuning improves
the BLEU scores by up to 4 points on this test
set when compared to training only on the origi-
nal bitext. Moreover, while the model trained on
synth was not able to match the performance of that
trained on auth for Upper Sorbian→German, it still
provides the same benefits as German→Upper Sor-
bian model when fine-tuned further. Looking at
the small improvements achieved by using only the
mixed corpus for training, increasing its size by
combining upsampled auth data with more synth
data might lead to even further jumps in the BLEU
scores.

6 Conclusion

In this paper, we described our Transformer model
for supervised machine translation for Upper
Sorbian-German language pair. We take note of
relatively high BLEU scores achieved by our pri-
mary systems (and those of other participants) on
this low-resource language pair, which could relate
to the high quality of the training corpus. We also
report results and takeaways from several experi-
ments with backtranslated data completed post the
shared task. A key result is matching the perfor-
mance of a system trained on the original bitext
with one trained on a limited amount of synthetic,
backtranslated data. Domain mismatch and a dif-
ference in the quality of monolingual corpus might
have prevented the system from achieving a similar

result in the other direction. We notice big improve-
ments in performance over the primary systems by
following a “pretraining then fine-tuning” regime.

An interesting future work would be to mea-
sure the applicability of this approach to other low-
resource language pairs. Additional systems could
be added as well. For instance, models trained on
mixed data and fine-tuned on auth data might pro-
vide a meaningful comparison. Prior work (Ding
et al., 2019) has shown that the number of BPE
merge operations has a significant effect on the per-
formance of NMT systems. This work was pointed
out during the review process and should be an
avenue for further improvement of the model per-
formance.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28–39, Vancouver. Association for
Computational Linguistics.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings
of the 2003 Human Language Technology Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 127–133.

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In Proceedings of the In-
ternational Workshop on Spoken Language Transla-
tion.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

A Poncelas, D Shterionov, A Way, GM de Buy Wen-
niger, and P Passban. 2018. Investigating backtrans-
lation in neural machine translation. arXiv preprint
arXiv:1804.06189.

Martin Popel. 2018. Machine translation using syntac-
tic analysis. Univerzita Karlova.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 3104–3112. Curran Associates, Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008. Curran As-
sociates, Inc.

1148



Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1568–1575, Austin,
Texas. Association for Computational Linguistics.

1149



Proceedings of the 5th Conference on Machine Translation (WMT), pages 1150–1159
Online, November 19–20, 2020. c©2020 Association for Computational Linguistics

On the Same Page? Comparing Inter-Annotator Agreement in Sentence
and Document Level Human Machine Translation Evaluation

Sheila Castilho
School of Computing

Adapt Centre
Dublin City University

sheila.castilho@adaptcentre.ie

Abstract

Document-level evaluation of machine transla-
tion has raised interest in the community es-
pecially since responses to the claims of “hu-
man parity” (Toral et al., 2018; Läubli et al.,
2018) with document-level human evaluations
have been published. Yet, little is known
about best practices regarding human evalua-
tion of machine translation at the document-
level. This paper presents a comparison of
the differences in inter-annotator agreement
between quality assessments using sentence
and document-level set-ups. We report results
of the agreement between professional transla-
tors for fluency and adequacy scales, error an-
notation, and pair-wise ranking, along with the
effort needed to perform the different tasks. To
best of our knowledge, this is the first study of
its kind.

1 Introduction

Increasing efforts have been made in order to add
discourse into neural machine translation (NMT)
systems. However, the results reported for those
attempts are somehow limited as the evaluation
is still mostly performed at the sentence level, us-
ing single references, which are not able to recog-
nise the improvements of those systems. The state-
of-the-art automatic evaluation metrics have been
shown to underestimate the quality of NMT sys-
tems (Shterionov et al., 2018), and the suitability
of these metrics for document-level systems has
also been criticised (Smith, 2017). For that reason,
document-level human evaluation of machine trans-
lation (MT) has raised interest in the community
recently as it enables the assessment of suprasen-
tential context.

In a survey with native speakers, Castilho et al.
(2020) tested the context span for the translation of
300 sentences in three different domains, namely
reviews, subtitles, and literature. Over 33% of the

sentences tested were found to require more con-
text than the sentence itself to be translated, and
from those, 23% required more than two previ-
ous sentences to be properly translated. Ambigu-
ity, terminology, and gender agreement were the
most common issues found to hinder translation.
Moreover, differences in issues and context span
were found between domains. This shows that
document-level evaluation enables the assessment
of textual cohesion and coherence types of errors
which are impossible at times to recognise at sen-
tence level.

Recent attempts to assess quality at the
document-level were described in Toral et al.
(2018) and Läubli et al. (2018) who independently
reassessed the bold claims of MT ‘achieving human
parity’ and found that the lack of extra-sentential
context has a great effect on quality assessment,
and pointed to a failure of the current best prac-
tices in MT evaluation. Toral et al. (2018) used
consecutive single sentences to rank translations
by two MT systems and a human reference. They
found that the evaluators were able to better assess
the translations when provided with more context,
and moreover, inter-annotator agreement (IAA) be-
tween professional translators was higher than that
between non-experts. However, this methodology
does not discriminate sentence vs document-level
set up as single sentences are shown consecutively.

Läubli et al. (2018) used pairwise rankings of
fluency and adequacy to evaluate the quality of MT
vs human translation (HT) for document-level texts.
The methodology consists of translators choosing
the ’best’ translation in terms of i) adequacy and
ii) fluency, that is, instead of choosing on a scale
on how fluent or adequate the translations are, the
raters just choose the ‘best’ one. Although not
reporting IAA in the main paper, the authors re-
port some IAA scores in the appendix of that work,
showing that for fluency, document-level set up has
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higher IAA than for sentence set-up, but the oppo-
site for adequacy. However, while this evaluation
methodology seems appropriate when comparing
different translations, it would not be feasible when
evaluating a single MT system.

After these two papers were published, for the
first time the WMT19 attempted a document-level
human evaluation for the news domain. In that year,
the direct-assessment (DA) task asked crowdwork-
ers to give a score (0-100) regarding the accuracy of
the translated sentence, where only one MT output
is shown each time (no comparison with other MT
system). However, conventional Kappa cannot be
using with DA to measure IAA, and so consistency
is measured instead, where raters have to pass some
quality control criteria (Barrault et al., 2019).

In light of this, a comparison of IAA between
quality assessments on sentence and document-
level set-ups is needed in order to determine which
set-up results in most reliable evaluation. This
study presents a small-scale comparison on the dif-
ferences in IAA between these two methodologies.
To the best of our knowledge, this is the first paper
to compare IAA for sentence vs document-level set-
ups using the state-of-the-art MT evaluation met-
rics, namely fluency and adequacy scales,1 error
mark-up and pairwise ranking, along with reporting
effort indicators.

We provide a detailed description of the experi-
mental methodology in Section 2. Following, we
report results in Section 3 on the agreement be-
tween professional translators for fluency and ade-
quacy scales, error annotation, and pair-wise rank-
ing (in 3.1), along with the effort needed to perform
the different tasks (in 3.2). We discuss our results
and draw conclusions in Section 4, and point out
directions for future work.

2 Methodology

Five professional English (EN) to Brazilian Por-
tuguese (PT-BR) translators were hired to perform
the evaluation in terms of (1) fluency, adequacy,
and error mark-up using the PET tool (Aziz et al.,
2012); and (2) pairwise ranking using Google
spreadsheet. The choice of PET was due to the
fact that the tool is a free toolkit, easy to use, with
its UI resembling translation tools, and it is able
to handle different evaluations while logging time

1It is important to notice that Läubli et al. (2018) used pair-
wise ranking of fluency and adequacy instead of the standard
Likert scale.

Test Set 1 Test Set 2
Av. Sentence Length (WPD) 316 344
Av. Sentence Length (WPS) 20 21
Av. Sentence Count (SPD) 15 15
Total Words 10135 11019
Total Sentences 500 500
Total Docs 32 32

Table 1: Statistics for the test sets used, where average
sentence length is calculated as words per document -
WPD - (scenario B), words per sentence - WPS - (sce-
nario A), and average sentence count is calculated as
sentence per document - SPD.

Test Set 1 Test Set 2
Source Translation Source Translation

Flesch 47.9 57 50 55
TTR 0. 26 0.27 0.25 0.27

Table 2: Type-token Ratio (TTR) and Flesch Reading
Ease Scores for both source and translated sides of Test
Sets.

spent on tasks.
The evaluation was carried out in two scenarios:

(A) evaluation at the sentence level, showing ran-
domised sentences, one at a time, one score per
sentence, and (B) evaluation at a document level,
showing randomised documents, one document at
a time, one score per document. After each sce-
nario was complete, translators answered a post-
task questionnaire about the evaluation and their
perceived effort.

Corpus - We used the English corpora from
WMT newstest2019, which has an average docu-
ment length of 17 sentences (minimum 4 sentences,
maximum 30 sentences). In total, 64 full docu-
ments were selected (32 per scenario) with 1000
sentences (500 per scenario). We made sure that
both scenarios are comparable in terms of sentence
and document length, as well as in terms of read-
ability and lexical variation. Results on statistics
of both data sets in Table 1, along with results for
Type-Token Ratio and Flesch Reading Ease Scores
in Table 2 (for both source and translated versions),
show that, in fact, both test sets and translations are
comparable. This suggests that any variation on
the assessments is unlikely to be because the two
test sets are overly distinctive.

The corpus was then translated from EN into PT-
BR with Google Translate (for adequacy, fluency,
and error mark-up) and also with DeepL for the
ranking pairwise comparison.2

2The online translators were used between 20-26 February
2020.
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Translators - Five professional translators took
part in the evaluation.3 Their professional experi-
ence ranges from 6 to 14 years, and three of them
have had previous experience with translation eval-
uation. A warm-up task with 20 sentences was
set up so translators could get acquainted with the
tasks, guidelines and tools, as well as clarify any
doubts about the task. Each translator evaluated
1000 sentences, 500 in each scenario and Test Set.
Table 3 shows the distribution of the task for each
translator. No time limit was stipulated for the
translators to finish the task, but they were asked
to keep track of the time needed to complete the
tasks.

Translators T1,T5 T2 T3 T4
Test Set 1 (1-500 sent.) S1 S2 D1 D2

Test Set 2 (501-1000 sent.) D2 D1 S2 S1

Table 3: Distribution of tasks where S is sentence level
and D is document level scenarios, and 1 and 2 is the
order of the tasks.

Post-task Questionnaire - The post-task ques-
tionnaire consisted of 10 statements for each sce-
nario, assessed on a scale from 1 to 6, where 1
is a negative answer (strongly disagree/very dif-
ficult/very tiring) and 6 is an affirmative answer
(strongly agree/very easy/not tiring at all). The
statements were the following:

1. I was *always* able to understand the mean-
ing of the source [sentence/texts]

2. I was *always* able to understand the mean-
ing of the translated [single sentence/full
texts]

3. I was *always* able to recognise all the
problems with the translation of [single sen-
tence/full texts]

4. I would have preferred to evaluate [full
texts/single sentences] than [single sen-
tence/full texts]

5. I would have preferred to evaluate pair of sen-
tences than [single sentence/full texts]

6. I would have preferred to evaluate full para-
graphs than [single sentence/full texts]

7. I was satisfied with the evaluation I provided
for the [single sentence/full texts] job

3At the time of submission of the paper, we had reported
scores from 4 translators (T1, T2, T3 and T4). For the final
submission we decided to add a 5th translator to be compared
with T1&T2 in order to get a further understanding of issues
observed with T1. Therefore, we keep the presentation of
the scores between T1&T2 and, following, we present Fleiss
Kappa scores with T1&T2&T5 as additional results.

8. Spotting errors in the each translated [single
sentence/full texts] was (difficulty level)

9. Assessing the translation quality on a [single
sentence/full texts] level was (difficulty level)

10. Assessing the translation quality on a [single
sentence/full level] was (fatigue):

3 Results

3.1 Inter-annotator agreement (IAA)

We compute IAA with Cohen’s Kappa (Cohen,
1960) both weighted (W) and non-weighted (NW)
as the most common statistics for IAA,

k =
P (A)− P (E)

1− P (E)

where P (A) represents the proportion of times that
the annotators agree, and P (E) the proportion of
times that the annotators are expected to agree by
chance. While NW Kappa does not take into ac-
count the degree of agreement, W Kappa uses a
predefined table of weights to measure the degree
of disagreement between the two raters, the higher
the disagreement the higher the weight. It is impor-
tant to notice that in this case, W Kappa can only
be calculated for adequacy and fluency as they are
assessed using a Likert scale.

In addition to that, we also compute Inter-rater
reliability (IRR) as the level of agreement between
raters (percentage of matches), and Pearson correla-
tion (r) between T1&T2 and T3&T4 (see Table 3).
The comparison of the scenarios (sentence vs docu-
ment) is calculated between the Test Sets (Test Set
1 & Test Set 2). We calculate IAA for all the tasks,
namely adequacy, fluency, error and ranking. It is
important to note that Fleiss Kappa is computed
when analysing T1&T2&T5.

Due to the exploratory nature of this research,
along with the small number of participants which
is known to hinder the effectiveness of statistical
analysis, we interpret the results gathered with
these evaluations from a qualitative perspective.

3.1.1 Adequacy
Adequacy was assessed for each single sentence
and full document (one score per document). Trans-
lators answered the question “How much of the
meaning expressed in the source appears in the
translation?” on a Likert scale from 1-4.4 Table 4
shows the IAA scores for adequacy.

41. None of it, 2. Little of it, 3. Most of it, 4. All of it
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Adequacy SENTENCE DOCUMENT
Test Set 1 T1&T2 T3&T4

Kappa NW 0.13 0.01
W 0.27 0.23

Pearson 0.5 0.64
p-value 0 0
IRR 47% 44%
Test Set 2 T3&T4 T1&T2

Kappa NW 0.34 -0.06
W 0.27 -0.12

Pearson 0.53 -0.37
p-value 0 0.03
IRR 63% 25%

Table 4: IAA for adequacy assessments for single sen-
tences and full texts scenarios.

When looking at Test Set 1 (upper part of the
table), we note that both W and NW Kappa show
a higher score for single-sentence scenario. Inter-
estingly, the difference between IAA scores for
sentence and document for Test Set 2 (lower part)
is very discrepant with IAA scores for document
level reaching negative levels. This trend is sup-
ported by the negative correlation and the low IRR
percentages. Since we have demonstrated that both
test sets are comparable, we believe that translators
T1 and T2 indeed disagreed on adequacy scores for
the document scenario more than they did for the
sentence scenario.

When adding T5 to the adequacy assessment,
we see a decline in Kappa for both sentence-level
and document-level scenarios, where k=0.04 and
k=-0.12 respectively (Table 5) in contrast to k0.13
and k-0.06 (see Table 4). Conversely, we note an in-
crease in IRR for both sentence and document-level
scenarios, where IRR is 67% and 42% respectively
(in contrast to 47% and 25%). These results draw
near the results from T3&T4. Nevertheless, we
note that IAA is higher when evaluations are per-
formed in the sentence-level scenario.

Adequacy SENTENCE DOCUMENT
Test Set 1 T1&T2&T5 T3&T4
Kappa 0.04 0.01
IRR 67% 44%
Test Set 2 T3&T4 T1&T2&T5
Kappa 0.34 -0.12
IRR 63% 42%

Table 5: IAA for adequacy assessments for single sen-
tences and full texts scenarios including T5.

3.1.2 Fluency
Fluency was also assessed for each single sen-
tences and full documents (one score per docu-

ment). Translators answered the question “How
fluent was the translation?” on a Likert scale from
1-4.5 Table 6 shows the IAA scores for fluency.

Fluency SENTENCE DOCUMENT
Test Set 1 T1&T2 T3&T4

Kappa NW 0.09 0.41
W 0.06 0.25

Pearson 0.1 0.73
p-value 0.02 0
IRR 53% 56%
Test Set 2 T3&T4 T1&T2

Kappa NW 0.27 0.05
W 0.34 -0.02

Pearson 0.42 -0.11
p-value 0 0.53
IRR 57% 47%

Table 6: IAA for fluency assessments for single sen-
tences and full texts scenarios.

When looking at Test Set 1, we note that IAA
is higher in the document-level scenario for both
W and NW Kappa when compared to the single-
sentence scenario. This is confirmed by the linear
relation expressed by Pearson. This might sug-
gest that fluency is easier to assess with full texts
rather than with non-contextual sentences. How-
ever, the same is not true when looking at Test Set
2, where W Kappa even reaches negative scores
in the document-level set-up. Once again, we see
that the IAA differences are bigger for T1&T2 who
assessed Test Set 1 in the sentence-level scenario
and Test Set 2 in the document-level scenario (see
more discussion on this in Section 4), which is
again confirmed by the negative correlation.

Fluency SENTENCE DOCUMENT
Test Set 1 T1&T2&T5 T3&T4
Kappa 0.88 0.41
IRR 63% 56%
Test Set 2 T3&T4 T1&T2&T5
Kappa 0.27 -0.12
IRR 57% 50%

Table 7: IAA for fluency assessment for single sen-
tences and full texts scenarios including T5.

When adding T5 to the fluency assessment, we
see a large increase in IAA for sentence-level sce-
nario where k=0.88 and IRR=63% (Table 7) in con-
trast to k=0.09 and IRR=53% (Table 6). However,
we note that apart from a slight increase in IRR
for the document-level scenario (50% compare to
47%), Kappa shows a decrease reaching a nega-
tive value k=-0.12. With these new results, both

51. No fluency, 2. Little fluency, 3. Near native, 4. Native
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Kappa and IRR are higher when evaluations are per-
formed in the sentence-level scenario. However, by
looking at the translator pair T3&T4, we can see
that these two translators still agreed more when
judging the document-level scenario (k=0.41) than
when judging the sentence-level scenario (k=0.27).

3.1.3 Error
Error annotation was performed after translators
assessed fluency and adequacy. Translators were
asked to select from a drop-down menu which er-
rors they found in the MT output. Because we
are only interested in the agreement level between
translators (as opposed to finding out the quality of
the MT system), we decided to use a simple taxon-
omy that consisted of four error categories: Mis-
translation, Untranslated, Word Form, and Word
order. Translators could also select “No errors” in
case the sentence/document did not contain any er-
ror. Each sentence or document could be annotated
with more than one error category, but unfortu-
nately because PET does not allow for word-level
tagging, each error category could be assigned only
once. Therefore, a segment or document could be
tagged as containing all the errors, some of the
errors, as well as no errors (no issues), but if the
translator found that the segment contained two
mistranslation errors, for example, the mistrans-
lation category would be assigned only once to
that segment. Yet again, we believe this set-up is
enough to measure agreement levels.

Error mark-up results were divided into binary,
when raters agree whether there was an error (any
type) or no errors in the sentence/document,6 and
type, when raters agree on the exact error type
found in the sentence/document. Table 8 shows the
results for IAA for the error mark-up task.

The error annotation task shows higher IAA and
IRR in document-level scenario for Test Set 1,
however, the low Pearson correlation score does
not indicate a strong linear relation. For Test
Set 2, we see that sentence-level scenario shows
higher Kappa for error type and higher IRR, con-
firmed with a positive correlation. It is important
to note that Kappa for the binary classification in
the document-level scenario is 1 (marked as n/a)
as translators agreed that (almost) all documents
contained at least one error. However, Kappa pe-
nalises it as all the ratings fall into a single category.

6Intuitively, one might expect that at least one error will
be found in a full document and so IAA will be high for
document-level set-up in the binary category.

Error SENTENCE DOCUMENT
Test Set 1 T1&T2 T3&T4

Kappa binary 0.28 n/a
type 0.22 0.31

Pearson 0.21 0.08
p-value 0 0.49

IRR binary 60% 100%
type 50% 53%

Test Set 2 T3&T4 T1&T2

Kappa binary 0.49 n/a
type 0.38 0.20

Pearson 0.7 0.08
p-value 0 0.49

IRR binary 76% 90%
type 56% 33%

Table 8: IAA for error mark-up for single sentences and
full text scenarios.

For this reason, we decided to also compute F-score
for absolute error (disagreement) in the binary cat-
egory (see Table 9).

ERROR SENTENCE DOCUMENT
Test Set 1 T1&T2 T3&T4
F-SCORE 60.4 100
Test Set 2 T3&T4 T1&T2
F-SCORE 76.6 93.75

Table 9: F-score for binary error mark-up evalaution.

F-scores show that indeed, binary classification
is higher for the document-level scenario since we
expect the full text to contain at least one error type.
However, it is interesting to note that the document-
level scenario for Test Set 2 presents only a 93.75
score and 90% (Table 8) since T1 and T2 disagreed
in one document.

Error SENTENCE DOCUMENT
Test Set 1 T1&T2&T5 T3&T4

Kappa binary 0.16 n/a
type 0.02 0.31

IRR binary 60% 100%
type 56% 53%

Test Set 2 T3&T4 T1&T2&T5

Kappa binary 0.49 -0.07
type 0.38 -0.02

IRR binary 76% 88%
type 56% 50%

Table 10: IAA for error mark-up for single sentences
and full text scenarios including T5.

By adding scores from T5 (Table 10), we note
that IAA scores for Test Set 1 do not differ much,
and document-level scenario shows higher Kappa
and IRR as discussed previously. For Test Set 2,
IAA scores decrease for Kappa, both for binary and
error type categories. Interestingly, IRR scores for
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Ranking SENTENCE DOCUMENT
Test Set 1 T1&T2 T3&T4
Kappa 0.36 0.22
Pearson 0.41 0.36
p-value 0 0.04
IRR 59% 56%
Test Set 2 T3&T4 T1&T2
Kappa 0.29 0.19
Pearson 0.41 0.42
p-value 0 0.01
IRR 53% 47%

Table 11: IAA for Pair-wise ranking evaluation.

the binary category also slightly decreases. This
is a bit surprising as we were expecting translators
to assign at least one error type to full texts. The
results with T5 indicate that, annotating error at a
document-level is difficult as translators cannot tag
exactly what the problematic parts are.

3.1.4 Ranking
Pairwise ranking was performed between transla-
tion from Google translate and DeepL. The sys-
tems’ outputs (single sentences in scenario A,
and full documents in scenario B) were randomly
mixed so translators would see different outputs.
Translators were asked to rate their preferred trans-
lation, and ties were allowed. Table 11 shows the
IAA for the ranking task.

In Test Set 1, the ranking evaluation shows
higher IAA for sentence-level scenario when com-
pared to the document-level. Test Set 2 shows
document-level scenario with lower agreement as
seen in previous trend.

When adding scores from T5, we can see in
Table 12 that IRR scores do not change. A 0.1
point decrease in Kappa scores can be observed for
Test Set 1 for the sentence-level scenario (k0.36 to
k0.26), and a slight decrease in Kappa scores for
the document-level scenario fro test Set 2 (k0.19 to
k0.14).

Rank SENTENCE DOCUMENT
Test Set 1 T1&T2&T5 T3&T4
Kappa 0.26 0.22
IRR 59% 56%
Test Set 2 T3&T4 T1&T2&T5
Kappa 0.29 0.14
IRR 53% 47%

Table 12: IAA for ranking assessment for single sen-
tences and full texts scenarios including T5.

Interestingly, when looking at the output of both
systems, Google seem to prefer to drop gender
markers more than DeepL, which might make the
sentence less adequate in terms of specifying who
is speaking but the sentence can still be very fluent.

1) Source: Her decision to pull out left everyone involved
absolutely stunned.
DeepL: A decisão dela de se retirar deixou todos os
envolvidos absolutamente atordoados.
Google: Sua decisão de sair deixou todos os envolvidos
absolutamente atordoados.

2) Source: To recover it is a duty.”

DeepL: Recuperá-lo é um dever”.

Google: Recuperar (x) é um dever.”

This might suggest that translators’ personal
preferences play a role in document-level evalu-
ation as well. For instance, translators might prefer
adequacy over fluency, as in example 1, or in the
case when there is not enough context in the source
to specify the gender or solve ambiguity, transla-
tors might prefer the drop of the gender marker (as
in example 2).

3.2 Effort
The effort spent on assessing the two scenarios was
calculated in two ways: i) time translators spend
assessing the sentences and full texts, and ii) self-
report of effort required to perform the tasks via a
post-task questionnaire.

Time - The time spent on evaluating Adequacy,
Fluency and error mark-up could be drawn directly
from PET logs. Unfortunately, it was not possible
to count time for the ranking task because the pair-
wise comparison was performed in Google Spread-
sheet, and so no automatic log could be drawn. Al-
though they were asked to keep track of their time
while ranking the MT output, translators recorded
this inconsistently. Therefore, we decide to use
only the times logged in PET.

When performing the evaluation in PET, trans-
lators first had the chance to see the source and
MT side by side in the post-editing window7 and
then to assess the MT output in another window.
Therefore, PET logs two different times: one spent
in the PE window, and one spent in the assessment
window. Intuitively, one would believe that the
translators would read the sentences/texts in the
PE window and use the evaluation window only to

7It is worth noticing that the option of performing PE was
disabled, so no time for any changes was counted.
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Transl. Reading Assessing Total

T1 Sent. *09:29:33 *14:16:57 *23:46:30
Doc 02:51:38 03:14:53 06:06:31

T2 Sent. 02:45:44 08:18:51 11:04:35
Doc 03:25:39 02:08:26 05:34:05

T3 Sent. 05:42:25 03:07:27 08:49:52
Doc 02:36:11 00:24:20 03:00:31

T4 Sent. 03:53:21 02:05:25 05:58:46
Doc 02:41:15 01:13:46 03:55:01

T5 Sent. 00:35:22 05:43:11 6:18:33
Doc 00:11:43 01:29:46 1:41:29

Table 13: Time spent on performing fluency, adequacy
and error mark-up assessments in PET tool. (Note that
T1 *times are compromised.)

give the scores. However, it is possible that some
translators might have taken some time to read the
source and MT in the assessment window.8 More-
over, T1 reported that for the document-level sce-
nario, they sometimes took a screenshot of the PE
window “when the text was too long” and used it
while evaluating the text in the assessment window
(since the full text is not completely displayed in
the PET assessment window).

For that reason, we decided to show both reading
time (time spent on the PE window) and assessment
time (time spent on the assessment window), and
the total spent time. Table 13 shows the times spent
for the task.

Unfortunately, T1 reported difficulties in carry-
ing out the evaluation (due to COVID-19) and self-
reported he was distracted while doing it, leaving
the tool running mid-evaluation. For this reason,
even when discarding obvious outlier times, there
is a great discrepancy in the amount of time for T1
compared to the other translators: while translators
had an average of 7-9 hours to complete the tasks,
T1 took 23 hours to complete the task. Conse-
quently, we decided to repeat T1’s evaluation with
T5 in order to see if patterns could be drawn from
time spent on tasks.

Intuitively, one would expect translators to spend
longer reading time for the document-level scenario
compared to the sentence-level one, since full texts
are longer. Furthermore, one would expect the
assessing time to be longer for the sentence-level
scenario since each sentence requires one assess-
ment (500 assessments for 500 sentences), while in
the document-level scenario, each text is assessed
just once (32 assessments for 500 sentences). How-
ever, while T2 and T3 show longer reading time

8PET displays the MT and Source at the top of the assess-
ment window.

for document-level scenario, T1, T4 and T5 show
lower reading time for that scenario.

Even though results for time do not seem to be a
strong indicator of effort due to the PET’s user in-
terface limitation, it is interesting to note that while
some translators do spend more time reading, some
spend more time assessing. This might indicate
that having the text available during the assessment
of fluency/adequacy is essential for translators.

Post-Task Questionnaire - Translators an-
swered the post-task questionnaire (see full
statements in Section 2) after they finished all
tasks in both scenarios. Table 14 show the
average results for each statement (including T5’s
responses).

Statements Sent. Docs
1- understand source 5 5.4
2- understand translation 4.2 3.8
3- recognise problems 5.2 4.8
4- prefer (docs/single sent.) 4 4.6
than (single sent./docs)
5- prefer pair of sentences than... 3.8 5
6- prefer full paragraphs than... 3.6 4.2
7- satisfied with evaluation 4.8 5
8- Spotting errors was
(very easy - very difficult) 5.2 4.4
9- Assessing was
(very easy - very difficult) 4.6 4.2
10- Assessing was
(very tiring- not tiring) 3.2 1.8

Table 14: Post-questionnaire results (average). Scale
range from 1 to 6 where 1 is strongly disagree/very dif-
ficult/very tiring and 6 is strongly agree/very easy/not
tiring at all.

We observe a few interesting results for state-
ments 1 and 2, where translators seem to be able
to understand the meaning of the source better in
the document-level scenario, but the meaning of
the translation better in the sentence-level scenario.
More interestingly, the average for statement 3 is
slightly lower for document-level which might sug-
gest that translators were less able to recognise all
problems with the translation in the document-level
scenario, likely due to the number of sentences.

Translators seem to prefer to judge single-
sentences than full documents (statement 4), and,
would rather evaluate sentence pairs (statement 5)
or paragraphs (statement 6) than full documents.

Nevertheless, results for statements 8 indicate
that translators found easier to spot errors in the full
texts (which contradicts the results for statement
3). Previous work on evaluation of NMT systems
(when compared to SMT) found translators find
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NMT errors more difficult to identify due to its
high fluency (Castilho et al., 2017) (at a sentence-
level). This could be a good indication that, due
to good levels of fluency in NMT systems, indeed
the exhibition of full texts is more helpful for the
assessment in general.

Finally, translators found the document-level sce-
nario to be slightly easier to assess (statement 9) but
much more tiring than assessing single sentences
(statement 10).

4 Discussion

This paper attempts to shed light on the differences
in IAA between sentence and document-level eval-
uation scenarios. The experiments performed with
five professional translators have tested the state-
of-the-art metrics commonly used to assess MT
quality with humans, namely the assessment of flu-
ency, adequacy, error mark-up and pairwise ranking
(Castilho et al., 2018).

We note that when evaluating adequacy (Table
4) the scenario where single sentences are assessed
show higher IAA for both test sets, and moreover,
IAA for Test Set 2 presents the lowest IAA for the
document-level scenario for all the metrics. Regard-
ing fluency assessment (Table 6), document-level
scenario for Test Set 1 has higher IAA but Test Set
2 the opposite is seen for Test Set 2.

In addition to scores per test sets, it is interesting
also to look at the IAA scores by translator pairs.
We observe that there is a large difference between
T1&T2 who evaluated Test Set 1 in the sentence-
level scenario, and Test Set 2 in document-level
scenario, against T3&T4 who evaluated the oppo-
site. T1 and T2 tend to disagree more in both Test
Sets for both fluency and adequacy assessments,
while T3&T4 have closer IAA scores and higher
Pearson correlation. The addition of T5’s assess-
ments, reported in terms of Fleiss kappa, indicate
that for the majority of the case, IAA is indeed
higher when evaluation is performed at a sentence
level.

Figure 1 shows examples of disagreement be-
tween translators. In example (1), T1 assessed
the text as containing “little” of the meaning of
the source, T2 considered it to contain “all of it”,
and T5 assessed it as containing “most of it” (ade-
quacy). T1 comments that “many mistranslations
of golf/sport terms impaired meaning” and “some
unstranslated terms found (‘team USA’, ‘singles’)”,
while T2 thinks that the text contains “minor issues,

but the meaning isn’t lost”, and T5 says “the mean-
ing is compromised by the word-by-word transla-
tion”. While both T1&T2 agree that the text is
“near native” regarding fluency, T5 assess it as hav-
ing “little fluency”, mentioning that fluency is also
“compromised by the literal translation of some
terms”.

For T3&T4, the disagreement in the document-
level (example (2)) is not as strong. While T3
assesses it as containing “most of the meaning”, T4
thinks that it contains “little of it” because “there
are a couple of plays on words in the source text,
a big part of the translation is lost”. However both
agreed that regarding fluency, example (2) has “lit-
tle fluency”.

We speculate that the disagreements at the
document-level scenario, especially for the ade-
quacy evaluation, might be connected to the fact
that because the texts are made up of “very good”,
“reasonably” and “poorly” translated sentences
which, together, make the text understandable to
a certain level, it is harder for translators to be
consistent when assigning one single score for
a full text. We estimate the percentages of ade-
quacy scores for the document-level scenario as
follows: T1&T2&T5 show 0% for score 1 (none
of it), 7.29% for score 2, 61.46% for score 3, and
31.25% for score 4 (most of it); while T3&T4 show
4.69% for score 1, 17.19% for score 2, 64.06% for
score 3, and 14.06% for score 4. These results show
that a great number of scores fall into the middle
category which makes it difficult for a consistent
evaluation on a document-level scenario. Conse-
quently, this type of problem will be persistent
when evaluating at a document-level MT systems
that operates at the sentence level, because a doc-
ument translated with sentence-level NMT is still
a sequence of translated sentences rather than an
entire document translation.

We observe that disagreements in the sentence-
level are more often related to ambiguity and lack
of context. In example (3), while T1 commented
that the translation “failed to use football terminol-
ogy” and assessed it as containing “none of the
meaning”, T4 and T5 assessed it as containing “all
of the meaning”. We speculate that T4 and T5 were
unaware that the sentence was about football due to
the lack of context, and did not penalise mistrans-
lations such as ‘fired’ which is better translated as
‘chutar’ (to kick) and ‘box’ which should be trans-
lated as ‘pequena área’. T5 even mentioned that
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Figure 1: Examples of disagreement between translators.

they had problems with the word “Hazard” because
eve thought “it seems to be a noun as it starts with
a capital letter, I could not assess whether “Haz-
ard” is a proper noun or just a noun, due to lack of
context”.

Example (4) is another example of lack of con-
text, since the pronoun “It” is impossible to identify
in the sentence. While T3 decides to rely only on
the context given and assess adequacy as “all of
it” and fluency as “native”, T4 assesses the sen-
tence as containing “little of the meaning” and “lit-
tle fluency”. According to T4, “the context was
not enough to translate the pronoun ‘it’”. This is
consistent with findings in Castilho et al. (2020)
where authors found that over 33% of the surveyed
sentences required more context than the sentence
itself to be translated. Indeed, with the context of
previous sentences it is possible to identify that “it”
relates to “a radical plan” and therefore the addi-
tion of “O plano veria” (the plan would see) in the
translation would make it more adequate:
(+2) Jeremy Corbyn’s Labour Party is to consider a radical
plan which will see Britons working a four day week - but

getting paid for five.

(+1) The party reportedly wants company bosses to pass

on savings made through the artificial intelligence (AI)

revolution to workers by giving them an extra day off.

(S) It would see employees enjoy a three-day weekend - but

still take home the same pay.

Interestingly, T1, T2 and T5 who assessed this
sentence in context in the document-level scenario
agreed that the text was “near native” and contained
“most” and “all” of the meaning. This might be
another indication that fluency is better assessed at
a document level.

Regarding error mark-up assessment (Table 8),
even though for Test Set 1 the document-level sce-
nario has higher IAA than the sentence-level sce-

nario, we note that when looking at translator
pairs, the document-level scenarios has lower IAA
scores for both test sets. Looking at T3&T4 both
translators agree more on the error types found in
the sentence-level than on the document-level sce-
nario.

Finally regarding effort, unfortunately the
logged time in PET tool was not decisive, even
witht he addition of T5’s assessments (due to dis-
crepant results by T1 (Table 13)). Nevertheless,
we believe that the results reported here show how
difficult it is to run human evaluations, especially
unsupervised ones. Additionally, the lack of proper
tool able to handle different MT evaluation method-
ologies makes the assessment even more complex.
We consider that time log gathered in PET can still
be useful to draw specifications to develop a MT
evaluation tool able to handle different methodolo-
gies. With respect to translators’ self-assessment of
their effort, the results from the post-task question-
naire showed that while translators prefer to see full
texts than single sentences, they would rather see
sentence pairs and paragraphs than having to assess
full documents. This is not surprising since evalu-
ating at a sentence-level is is what translators are
used to already. Furthermore, they find assessing a
full document more tiring than the alternative.

5 Conclusions and Future Work

The present work attempts to shed light at the differ-
ences in IAA when evaluating MT at the sentence
and document levels with a small scale compar-
ison. The main key findings of this comparison
is that, a document-level evaluation methodology
where translators assign one score per text leads
to lower levels of IAA for adequacy, ranking, and
error mark-up (when compared to methodologies
where translators assign one score per sentence),
but it might be useful for fluency assessments. This
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is consistent with (Läubli et al., 2018) findings on
IAA for pairwise comparison, and previous work
on NMT evaluation, where fluency proved to be
harder to assess (than adequacy) in sentence-level
scenarios.

Nevertheless, we also speculate that as Google
Translate seems to operate on a sentence-level, a
document-level evaluation of adequacy is penalised
since a document can be constituted of sentences
with different levels of quality. Moreover, we con-
sider whether multiple scores per document (sen-
tence pairs, paragraphs, and word-level error tag-
ging) will yield higher levels of IAA when com-
pared to the randomised sentence-level set-up for
both sentence and document-levels MT systems.

Human-evaluation of MT in document-level set-
ups is in its infancy, and therefore, it is essential
to test which methodologies will be best suited
for different tasks and domains. Future work will
use more translators and different methodologies,
as expressed in the post-task questionnaire and
discussed above, with more specific guidelines
for context-span issues found in previous works,
and the development of test-sets, as well as using
document-level MT systems’ outputs.
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Abstract
The ability of machine translation (MT) mod-
els to correctly place markup is crucial to gen-
erating high-quality translations of formatted
input. This paper compares two commonly
used methods of representing markup tags and
tests the ability of MT models to learn tag
placement via training data augmentation. We
study the interactions of tag representation,
data augmentation size, tag complexity, and
language pair to show the drawbacks and ben-
efits of each method. We construct and release
new test sets containing tagged data for three
language pairs of varying difficulty.

1 Introduction

The quality of machine translation (MT) has dras-
tically improved in recent years, making MT tech-
nology more widely used than ever before in ap-
plications ranging from financial services (Nun-
ziatini, 2019) to fashion, social media, and other
user-generated content (Kosmaczewska and Train,
2019; Birch et al., 2019; Michel and Neubig, 2018),
among other tasks.

A large amount of content requiring translation
is not isolated plain text. Rather, it originates in the
context of structured documents, using document
format specifications such as HTML, Microsoft
Word, PDF, etc.

Currently, the translation industry addresses the
translation of structured documents by dividing
the task between a translation management system
(TMS) and an underlying MT system (e.g. Fed-
erico et al. (2014)). Figure 1 shows a schematic
of the process. The TMS parses, manipulates, and
validates the higher-level document structure. It is
responsible for finding the translatable portions of
the input document, performing sentence segmen-
tation on the content, sending it to an underlying
MT system for translation, and placing the result
back into the document structure. For example, the

TMS may pass over material contained in HTML
<script>...</script> tags, while sending
to MT the contents of <p>...</p> tags and the
string values of <img alt="..."/> attributes.

Properly transferring formatting tags within the
translatable content (bold, italic, hyperlink, super-
script, etc.) remains the responsibility of the MT
process rather than the TMS. The correct preserva-
tion and transfer of inline markup from source to
target thus forms a crucial component of the overall
quality of the MT system. An accurate placement
within the segment of inline markup provides a
more readable and usable document in its raw MT
form, in addition to saving human time and effort
if post-editing is used.

Despite the key role of the MT system in pro-
cessing structured documents — both in terms of
TMS expectations and in lowering translation costs
— the setup of translation in the context of struc-
ture is rarely addressed in the standard MT eval-
uation benchmarks. They typically focus on the
pure-content, string-based tasks (Joanis et al., 2013;
Müller, 2017).

In this paper, we study the question of how in-
line markup should be represented in and processed
by the MT system in order to result in the highest
placement accuracy. Given the deep semantic rep-
resentations and generalization abilities provided
by modern neural MT systems, we design a series
of experiments to test their capabilities specifically
on the problem of markup transfer within the trans-
lation process. The paper makes the following
contributions:

(1) We propose a technique to augment any paral-
lel corpus with inline tags, addressing the scarcity
of high-quality parallel data containing markup
tags (Section 3). We show that the method results
in highly accurate tag placement and can improve
the accuracy of tag placement of MT models when
used to augment the training data.
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TMS

<html>
 <body>
  <script>
   document.getElementById("demo").inner =
   "Hello JavaScript!";
  </script>
  <p>This is my <i>improved</i>
  demo page!</p>
  <img alt="Under Construction" src="constr.png"/>
 </body>
</html>

<html>
 <body>
  <script>
   document.getElementById("demo").inner =
   "Hello JavaScript!";
  </script>
  <p>Ceci est ma page de démonstration
  <i>améliorée</i> !</p>
  <img alt="En construction" src="constr.png"/>
 </body>
</html>

Ceci est ma page de démonstration 
<g id="1">améliorée</g> !

En construction

MTThis is my <g id="1">
improved</g> demo page!

Under Construction

Figure 1: Translation of a structured document. A translation management system (TMS) is responsible for
higher-level document structure, while the machine translation (MT) system transfers inline markup.

(2) We provide a comprehensive evaluation of
several tag-handling methods (Section 4). We
test the ability of neural networks to jointly learn
to translate content and transfer tags from auto-
matically generated tagged data. Within this ap-
proach, we experiment with two ways of represent-
ing tags and compare these with a baseline detag-
and-project method, on language pairs of varying
data sizes and difficulty (English–French, English–
German, and English–Hungarian).

(3) Finally, testing of tag placement accuracy
poses difficulties in terms of both data-set avail-
ability and quality metrics. For this reason, we as-
semble new test sets of natively tagged structured
documents for the three targeted language pairs.
We enhance these test sets by adding synthetically
generated tagged data according to human-quality
glossary entries (Section 5), and we release these
test sets in order to facilitate further research on
the topic. Evaluation is carried out according to
standard automatic metrics, automatic detection of
obvious tagging errors, and human assessments of
tag placement accuracy (Section 6).

2 Related Work

Various works have addressed the inline markup
problem in the context of statistical MT systems.
Joanis et al. (2013) extensively summarize many
such methods. Their “two-stream” approach is
quite similar to our detag-and-project baseline, re-
lying on phrase and word alignments and care-
fully designed tag transfer rules to re-insert inline
markup into the translated content. Though the

accuracy of this approach is tested in a small hu-
man evaluation, it is explicitly not compared to any
other method of tag representation.

Müller (2017) addresses the same question, com-
paring five different varieties of detag-and-project
and mask-based approaches. The work concludes
that the detag-and-project approach of Joanis et al.
(2013) performs the best in complicated tagging
scenarios, while masking can be a strong approach
in simplistic cases.

Moving to neural MT, Hashimoto et al. (2019)
experiment with “raw” tags that are left unmodi-
fied in the input. The authors test a constrained
beam search that restricts the decoder to outputting
all and only the tags actually present in the source
while maintaining XML well-formedness. They
also introduce a pointer mechanism (See et al.,
2017) to promote copy-through of tags and other
non-translatable content. These restrictions are
shown to improve output, but no other tag repre-
sentation aside from raw tags is tested.

We thus position our work as spanning and uni-
fying elements of these previous studies, directly
comparing the major tag representation methods
with a minimum of other modeling changes in a
state-of-the-art neural MT setting. Additionally
we introduce a data augmentation technique that
removes the dependence on pre-existing tagged
training data assumed by the approaches proposed
by e.g. Hashimoto et al. (2019).

In this context, we also note complementary
work on the implicit learning of structure by
sequence-to-sequence models. Target-side struc-
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ture expressed as content, without special annota-
tions, has been used in string-to-tree syntax-based
MT by Nădejde et al. (2017) and Aharoni and Gold-
berg (2017); the latter group notes that well-formed
parse trees are generated 99.5% of the time. The
masking method of passing abstracted information
between input and output has been applied in MT to
non-translatables such as numbers, URLs, named
entities, etc. (Crego et al., 2016; Post et al., 2019).
It has been shown to improve automatic metric
scores, with the masks correctly appearing in the
MT output a very high percentage of the time (Mu-
rakami et al., 2019; Bérard et al., 2019). Source fac-
tors, or additional input streams provided in lock-
step with the content to translate (Sennrich and
Haddow, 2016), are one mechanism for signaling
structural information in the input while leaving it
accessible to the model. It has been used to aug-
ment an MT system with terminology constraints
(Dinu et al., 2019), and the same mechanism could
be in principle applied to tags as well.

Training data augmentation is a popular way to
increase model learning and robustness for specific
phenomena. Of particular interest is the finding by
Karpukhin et al. (2019) showing that a “balanced
diet” of training data synthetically augmented with
spelling errors improved model performance on nat-
ural errors, without harming performance on clean
text. Our notion regarding synthetically injected
and naturally occurring tags is similar.

3 Data Augmentation via Tag Injection

The vast majority of data available for MT research
appears as plain text only.1 While tagged training
corpora, when available, will inevitably be limited
in size, domains covered, and language availability,
we propose as an alternative a general technique
for injecting markup tags of controlled complexity
into any parallel corpus with high accuracy.

Although not always adhering to the strict syn-
tax of a well-defined markup language, most inline
tags follow the XML standard and create a hierar-
chical structure within a segment by introducing
either paired tags (opening and closing) or self-
closing unary tags. This structure is expected to be
preserved by the translation, with paired tags sur-
rounding corresponding text fragments. In Figure
1, the italicized fragment improved transfers to ital-

1A recent exception is the 17-language XML-tagged par-
allel corpus described by Hashimoto et al. (2019), released
publicly in July 2020 concurrently with our work.

icized améliorée. We propose a method to identify
such corresponding fragments in the source and
target sides of parallel data and to automatically
inject tags based on them.

3.1 Tag Injection

We identify corresponding fragments using the hy-
pothesis that, if the out-of-context translation of a
sentence fragment is found in the target sentence,
then those text fragments are aligned. More for-
mally, assume source segment s and target seg-
ment t are each decomposed in three substrings
(s, t) = (a b c, x y z), where b and y are not empty.
We hypothesize that if an MT model translates b
into y in isolation, then b and y are correspond-
ing fragments and we can inject the following tag
structure:

a <t>b</t> c
x <t>y</t> z

In our implementation, the search over candidate
n-grams b proceeds in random order, subject to a
parameter controlling the maximum span. Our pre-
liminary experiments showed that natively tagged
text is not always well-formed. For this reason
we introduce a “pair damage fraction” parameter,
which sets the probability that one half of the in-
jected tag pair will be skipped. This produces the
patterns a <t>b c or a b</t> c, with analogous
results on the target side. We also incorporate a
fixed probability that the tag will be injected as
self-closing rather than a pair, i.e. as a <t/>b c or
a b<t/> c. Finally, we allow for the injection of
multiple tags into the same parallel segment via a
parameter that specifies the maximum number of
tag pairs to insert per segment.

This method can be adapted to any markup
schema choice. For the experiments described in
this paper, we choose XLIFF, a translation industry
standard that uses a reduced vocabulary of tag and
attribute names as an abstraction over an original
document’s markup language. We inject four tags
in accordance with the XLIFF 1.2 specification:2

<g>...</g> for a paired tag, <x/> for a self-
closing tag, <bx/> for a tag that opens without
closing, and <ex/> for a tag that closes without
opening. In all cases we include a numerical id at-
tribute, with the value starting at 1 for the leftmost
tag injected in each source segment and increment-
ing by one for each successive tag in left-to-right

2http://docs.oasis-open.org/xliff/v1.
2/cs02/xliff-core.html#Specs_Elem_Inline
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Language Tags Cor Inc Imp Unc
EN–DE 532 484 22 8 18

501 17 7 7
501 17 4 10

EN–FR 560 504 29 7 20
504 31 5 20
508 38 3 11

EN–HU 540 438 47 49 6
497 32 6 5
463 20 47 10

Table 1: Human evaluation of tag injection accuracy,
with the count of tags judged as Correct, Incorrect,
Impossible, or Unclear by each of three annotators.

source order.
Tag injection may fail in specific instances for

several reasons, such as inability to find a (b, y)
pair, or matched phrases overlapping with each
other and blocking intended injections. We do not
explicitly remove or attempt to repair any of these
cases, using them instead as additional sources of
variety and noise in the final tag-injected corpus.

3.2 Injection Evaluation

We test our hypothesis that the proposed proce-
dure leads to accurate data by performing a hu-
man evaluation on the accuracy of tag placement.
This experiment is carried out on a random selec-
tion of 200 sentence pairs from our training data
in each of three language pairs used in our sub-
sequent experiments: English–German (EN–DE),
English–French (EN–FR), and English–Hungarian
(EN–HU). (See Section 5.1 for details on the train-
ing data itself.)

We ask bilingual speakers in the relevant lan-
guages to judge whether each individual tag is cor-
rectly placed in the output, incorrectly placed (and
a proper location for it can be identified), impos-
sible to place (because no correct location exists
given the target content), or too unclear to evaluate
(e.g. because a placement decision depends on the
semantics of the tag). Each set of sentences is inde-
pendently evaluated by three different people who
are not aware of how the tagged data was created.

The results of the evaluation (Table 1) show that
the tag injection is accurate: using all the judge-
ments combined, tags are correctly placed in 93.1%
of cases in EN–DE, 90.2% in EN–FR, and 86.3%
in EN–HU. The rates of actually wrongly placed
tags are 3.5%, 5.8%, and 6.1%, respectively, with
the remaining tags being judged as impossible to
place or as unclear.

Pairwise inter-annotator agreement varies:

judges clearly disagree (correct vs. incorrect) no
more than 2.3% of the time in EN–DE and EN–
FR, though up to 5.9% in EN–HU. Because of the
large class imbalance, we also examine Fleiss’s
κ metric with all three annotators. The overall κ
scores are 0.69 for EN–DE and 0.72 for EN–FR,
but only 0.39 for EN–HU. In Hungarian, a larger
number of tags are judged as correctly placed by
one annotator but impossible to place by another,
underscoring the difficulty of markup transfer be-
tween morphologically and grammatically distant
languages.

4 Tag Representations

4.1 Baseline: Detag/Project
Our baseline setup does not model inline tags in
any way. Instead, all markup is removed from the
run-time input and reinserted into the MT output by
a post-processing step. Reinsertion is carried out
via tag projection: it uses the position of a tag in the
input, a subword-level alignment model between
source and target, and a set of projection heuristics
to determine the analogous position of the tag in
the MT output.

The necessary alignment model is built from the
MT system’s own training data. We use BPE (Sen-
nrich et al., 2016) for subword creation and FastAl-
ign (Dyer et al., 2013) for training the alignment
model. At run time, we force-align the detagged
BPE-level MT input to the BPE-level MT output,
then convert the source-side subword indexes back
to their token-level equivalents.3 This provides
a mapping between input tokens and output BPE
pieces. A tag or tag pair is transferred from input
to output according to this map and several hard-
coded rules. Let si and ti represent the ith source
token or target BPE piece, respectively, in a seg-
ment of length I and J , and let A(si) = {j} be the
set of target indexes j of alignments induced for si.
Then the most important projection rules are:

• A tag pair <x>...</x> spanning sa...sb en-
compasses alignments ` =

⋃b
i=aA(si) and is

projected to span tmin(`)...tmax(`).

• A self-closing tag <x/> appearing before sa
follows alignments ` = A(sa) and is pro-
jected to appear before tmin(`).

3An alternative is building and applying the alignment
model on tokens instead of BPE pieces. As a practical concern,
we prefer the BPE level for ease in handling non-whitespace
languages and for its substantially smaller model size.
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Original <bx id="1"/>As regards <g id="2">exports</g> of <g id="3">radioactive
waste</g> from the Community to third countries, six Member States issued
a total of 13 authorisations, representing 35 shipments.

Masked XLF BX,1 As regards XLF OPENG,1 exports XLF CLOSEG,1 of XLF OPENG,2
radioactive waste XLF CLOSEG,2 from the Community to third countries ,
six Member States issued a total of 13 authoris@@ ations , representing 35
shipments .

Raw <bx id="1"/> As regards <g id="2"> exports </g> of <g id="@@ 3"> radioactive
waste </g> from the Community to third countries , six Member States issued
a total of 13 authoris@@ ations , representing 35 shipments .

Figure 2: Example of inline markup tag representation when it is included in the MT input, either by masking or
in raw form.

• A tag pair with zero span or a self-closing
tag appearing before s0 is projected to appear
before t0. The same appearing after sI is pro-
jected to appear after tJ .

Additional heuristics specify behavior for cases
when the relevant alignment set is empty, when
the nesting of the input tags is malformed, when
an unpaired tag <x> or </x> appears without its
other half, etc.

4.2 Masked and Raw Representations
We compare the above approach to two alternatives
where some representation of inline markup is pro-
vided to the MT system. Tags are either masked to
generic placeholder tokens or else left raw in the
input. Figure 2 gives an example of each.

Aside from reducing vocabulary, masking pro-
tects the original content from subword splits and
mutilations during the MT process. In our imple-
mentation, if a mask is present in the source but
fails to appear in the MT output, we forcibly add
it back at the end of the output; spuriously gener-
ated masks are likewise removed. We use a differ-
ent placeholder name for each of the five XLIFF
tag names present in our data; this treats <g> and
</g> independently. We also include a sequence
number in the mask token, so that the original con-
tent can be matched with the correct placeholder
in the target side. Similar to the XLIFF id pa-
rameter, these sequence numbers start with 1 in
each sentence pair and increase left to right in the
source sentence. Unlike in XLIFF, our placeholder
sequence numbers are incremented individually for
each of the five placeholder names.

Our other alternative approach leaves the XLIFF
tags raw in the input, trusting the MT system to
learn their correct formatting as well as placement.

Both the masking and the raw approach rely on
tags appearing often enough in the training data —

not only for the MT system to learn their transfer
and placement, but also to be recognized as tokens
as part of the system’s subword vocabulary. Since
the masks are single tokens, adding self-translating
examples as additional parallel data and exempt-
ing the mask tokens from BPE application is suffi-
cient. For the raw approach, we include the same
number of self-translation examples to boost the
frequency count of XLIFF tag tokens above the
minimum BPE frequency cutoff. As Figure 2 il-
lustrates, however, this does not necessarily ensure
that all possible tag tokens appear often enough
in the training data to be recombined by BPE into
full tokens: lower-numbered tags still occur more
frequently than higher-numbered examples.

5 Experimental Setup

5.1 Training Data

Our training data is sourced from the Conference
on Machine Translation (WMT) series of shared
tasks. Since our focus is on inline tag handling
rather than corpus filtering or new state-of-the-art
translation quality, in some cases we have ignored
especially large or noisy data sets.

For EN–DE, we begin with the training data
released by the WMT 2020 news task, ignoring the
Common Crawl and Paracrawl corpora and heavily
filtering WikiMatrix. Our EN–FR training data
comes from the 2014 news translation task; we use
only Europarl, News Commentary, and UN Docs.
For EN–HU, we use the single available training
corpus from the 2009 translation task.4 Our final
training data comprises 5.7 million lines for EN–
DE, 14.5 million lines for EN–FR, and 1.5 million

4Data available from http://www.statmt.org/
wmt20/translation-task.html (EN–DE), http:
//www.statmt.org/wmt14/translation-task.
html (EN–FR), and http://www.statmt.org/
wmt09/translation-task.html (EN–HU).
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lines for EN–HU. See Appendix A for the exact
enumeration of component corpora, line counts,
and a description of our filtering process.

On top of this baseline data, we experiment with
various amounts of tag-injected data augmentation.
We sample 1%, 2%, 5%, 10%, or 15% of the base-
line training data and inject XLIFF tags into it as
described in Section 3. We attempt to inject up to
two pairs of tags per segment, with a max span of
six tokens, pair damage fraction of 0.10, and self-
closing fraction of 0.27. Candidate n-grams for tag
injection are identified by looking for equivalent
translations with the publicly available version of
Amazon Translate as of April 2020. Lines that com-
pletely fail tag injection are discarded, not counted
as part of the goal percentage, and replaced with
successful lines. Each successive augmentation
percentage is a strict superset of the ones before
it: e.g. all the data present in the 2% corpus is also
present in the 5%, 10%, and 15% settings.

5.2 Tagged Dev and Test Sets

Although we believe the tag injection technique
achieves sufficiently high accuracy to be used in
training data, we prefer our development and test
sets to represent — as much as possible — nat-
urally occurring tags in the source and human-
quality placements for them in the target. This
section describes the test sets created. They are
also publicly available at https://github.com/
amazon-research/mt-markup-tags.

EUR-Lex EUR-Lex5 is the European Union’s
online repository of legal documents, which are
provided synchronously in several structured for-
mats and in the union’s 24 official languages.
We select a cohesive block of documents in
Microsoft Word format, from CELEX numbers
52019DC0601 through 52019DC0680, to serve as
the base of our dev and test sets. Each document
is available as monolingual downloads in English,
German, French, or Hungarian; several process-
ing steps are needed to create a sentence-aligned
tagged parallel corpus.

For a set of four monolingual documents, we first
extract each one from Word to XLIFF format us-
ing the open-source Okapi Tikal document filter.6

Aside from performing automatic paragraph and

5https://eur-lex.europa.eu/homepage.
html

6https://okapiframework.org/wiki/index.
php/Tikal

sentence segmentation according to pre-defined
rules, the Okapi filter also converts the inline Mi-
crosoft markup to XLIFF 1.2 tags. We then check
the extracted XLIFF documents for parallelism at
several levels. Any document set that does not
contain the same number of paragraphs across all
four languages is entirely rejected. Any paragraph
that does not have the same number of sentences
across languages is skipped; any sentence that does
not have the same set of XLIFF tags across all
languages is likewise skipped. The surviving sen-
tences form a four-way parallel corpus with inline
markup tags. Each successfully extracted docu-
ment is then assigned to either the dev or the test
set. Sets assembled in this way are finally dedupli-
cated to unique sentence pairs. The EUR-Lex dev
set contains 1888 lines; the test set 1450.

We find, surprisingly, that a significant number
of otherwise parallel segments do not contain the
same inline tags across all languages. One side
effect of enforcing this restriction is that the tags
that are indeed parallel are biased towards trivial
cases, such as an opening tag at the beginning of the
sentence and a closing tag at the end. Only 11% of
the sentences extracted above contain line-medial
tags, and only 4% contain more than two tags per
line. We mitigate this problem via the construction
of two additional sets.

EUR-Lex mono We return to the unfiltered
monolingual English documents assigned to the
EUR-Lex test set. Without parallelism restrictions,
this collection forms a much more diverse test set:
after deduplication, 26% of lines contain medial
tags and 13% hold more than two tags. While we
are unable to use this for MT evaluation metrics
that require a reference, we employ this 2525-line
test set for other types of automatic and human
evaluation.

Glossary We use additional EUR-Lex doc-
uments (CELEX numbers 52019DC0520 to
52019DC0599) to construct dev and test sets with
synthetically introduced tags. In contrast to tag
injection, however, the markup is inserted using
human-curated translation glossaries. We extract
and filter each set of monolingual Word documents
as before, with the additional step of removing all
the inline tags to obtain plain text. Given four-way
parallel segments, we then search within each line
for a synchronous occurrence of entries from our
glossaries for EN–DE, EN–FR, and EN–HU. If

1165



found, the terms are surrounded by a pair of iden-
tical XLIFF <g>...</g> tags in each language.
The synchronous glossary restriction reduces heav-
ily the amount of successfully extracted and tagged
sentences. On the other hand, it provides in prac-
tice 100% examples with line-medial tags, as well
as an improved 22% of lines containing more than
two tags. The final sizes are 286 lines for dev and
289 for test.

The complete dev set for our MT systems is a
concatenation of three different sources. First is
the official WMT dev set that corresponds to the
training data: newstest2018 for EN–DE, newstest-
2013 for EN–FR, and newsdev2009 for EN–HU.
To this we add the EUR-Lex and glossary dev sets
described above. Tags are removed from these sets
when they are used in the baseline system, which
is not trained on any tagged data. Test sets are kept
separated by data source. In addition to tagged and
detagged versions of the EUR-Lex and glossary
test sets described above, we include the EUR-Lex
mono test set and the WMT official test sets: news-
test2019 for EN–DE, newstest2014 for EN–FR,
and newstest2009 for EN–HU. See Appendix A for
the complete itemization of dev and test sets.

5.3 MT Systems

All our experiments are carried out using the Sock-
eye neural MT toolkit (Hieber et al., 2017). We
use the Transformer architecture (Vaswani et al.,
2017), with a hidden layer size of 512, an encoder
of 20 layers, and a decoder of 2 layers: Hieber et al.
(2020) report improved WMT results for such a
configuration. For training, we set the batch size
to 8192 tokens and the checkpoint interval to 2000
batches. Optimization is carried out with Sockeye’s
implementation of the Adam algorithm (Kingma
and Ba, 2014). The learning rate, from an initial
value of 0.0002, is multiplied by a factor of 0.9
every time eight training checkpoints pass without
any improvement in dev-set perplexity. Training
is stopped when there is no improvement after 32
checkpoints. Following convergence, the parame-
ters from the eight best checkpoints are averaged.

We present a total of 33 experimental configura-
tions: the detag-and-project baseline, plus the cross
product of {1, 2, 5, 10, 15}% tag-injected data aug-
mentation with {masked, raw} tag representation,
for each of our three language pairs.

6 Results

6.1 Evaluation Metrics

Depending on the test set, we use a variety of eval-
uation metrics to judge performance.

We compute case-sensitive BLEU scores ac-
cording to the SacreBLEU implementation (Post,
2018).7 We distinguish untagged BLEU scores
computed on test sets with no source-side tags (or
for which the source-side tags have been removed)
from tagged BLEU scores, where the tags are tok-
enized and treated as content by the built-in Sacre-
BLEU tokenizer. Evaluation occurs only after any
masked placeholders have been converted back to
literal output. For each system, we also compute
statistical significance relative to the baseline using
stratified approximate randomization (Yeh, 2000).

Tagged test sets are also evaluated according
to specifically designed “flagrant failure” metrics,
whose goal is to detect obviously erroneous tag
placement in MT output. Automatic evaluation of
tag placement becomes difficult as the MT output
diverges from a tagged reference translation’s word
choice, sentence structure, etc. Still, certain errors
can be reliably detected regardless of language or
context. We define flagrant-failure metrics to count
occurrences of dropped, added, or mutilated tags,
along with tags that become improperly nested rel-
ative to the source. In XLIFF, we distinguish a
change of index — from e.g. <g id="2"> to <g
id="4"> — as its own type of failure, rather than
as independent drop and add mistakes.

Finally, we conduct a full human evaluation of
tag placement accuracy, similar to the one intro-
duced in Section 3.2. Due to the large amount of
data involved, in this case we collect judgements
from only a single annotator. Each tag is evaluated
independently for whether its placement in the tar-
get is correct, incorrect, impossible given the MT
output, missing, duplicated, or unclear.

6.2 Evaluation of Untagged Input

Our first concern is to ensure that augmenting the
training data with tag-injected content does not
harm translation of untagged inputs. We validate
this claim on untagged versions of our WMT, EUR-
Lex, and glossary test sets, comparing the BLEU
scores of the tag-augmented systems with the score
of the baseline, which was trained without tags.

7BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+-
version.1.4.3

1166



Lang System Set ∆BLEU p
EN–FR Raw 10% WMT –0.4 0.02
EN–HU Mask 15% WMT –0.3 0.03
EN–HU Mask 5% WMT –0.3 0.04
EN–HU Raw 10% WMT –0.3 0.05

Table 2: Experimental conditions with the most signif-
icant untagged BLEU differences relative to the base-
line. Tag representation has no consistent effect on
translation quality of untagged content.

As hoped, we observe no clear pattern of degra-
dation by tag representation, augmentation percent-
age, or language pair. Out of the 90 experimental
cases, only four reach statistical difference with the
corresponding baseline at p < 0.05. These scat-
tered instances are shown in Table 2. See Appendix
B for the full results.

6.3 Automatic Evaluation of Tag Placement

We have two proxy metrics at our disposal for
automatically evaluating tag placement accuracy:
tagged BLEU scores and flagrant-failure counts.

The previous section indicated that training-data
augmentation did not have a strong effect on trans-
lation quality of content. We now turn to tagged
BLEU scores to see if they provide any signal as
to the translation quality of markup. As shown in
Table 3, we observe a small positive improvement
for the masking approach: statistical difference in
17 of 30 cases, and +0.79 BLEU on average when
compared to the detag-and-project baseline. This
effect is strongest for French and for 15% aug-
mentation. At 15% masked augmentation, four
of six results achieve statistical significance, and
the average improvement is 1.00 BLEU. The best
results for raw XLIFF systems appear scattered:
the highest BLEU gains at 10% augmentation, the
most consistent at 2%, and statistical significance
achieved at least once everywhere except at 5%
augmentation and in EN–DE.

We cross-check these conclusions by examin-
ing the flagrant failure rates. This analysis shows
an extreme variability by test set. No configura-
tion reaches more than a 3.0% failure rate on the
EUR-Lex test set or 5.2% on the glossary test set.
However, the increased diversity of tag indexes and
tag patterns in the EUR-Lex mono test set provides
for a much higher rate: up to 24.7% in the worst
case. The full count of flagrant failures on the mono
test set is displayed in Table 4.

By hard-coded design, the detag-and-project ap-
proach is not capable of changing, dropping, mu-

<g id="2">
Raw 1% 183,475 74,055
Raw 15% 2,606,016 1,098,275

<g id="@@ 3">
Raw 1% 183,475 3,150 1,300
Raw 15% 2,606,016 2,550 1,300

Figure 3: Training-data token frequencies for the BPE
pieces involved in EN–FR translation of two tags. In-
dexes above 2 are seldom seen.

tilating, or adding tags — they are placed with-
out modification as a post-process after translation.
We find that this technique also does not commit
any flagrant errors of tag nesting on our test sets.
Similar hard-coded limits affect the masking ap-
proach; the one instance of a dropped tag that we
recorded is due to a tokenization error. Masking
does, however, commit a certain number of nest-
ing mistakes.8 The raw-tag approach is susceptible
to all kinds of flagrant failures. We note that, sur-
prisingly, the number of errors tends to increase
as more tagged examples are added to the training
data in German and French, while Hungarian (with
much smaller training data) does not show a clear
pattern in any direction.

Increased errors in German are primarily due to
more tags being generated with incorrect id pa-
rameters. Recall that our settings for tag injection
(Section 5.1) introduce no more than two tag pairs
into any sentence pair, resulting in a maximum id
value of 2. The only examples of indexes beyond 2
in the training data come from the addition of tag
self-translations (Section 4), which we include for
indexes up to 20. These higher indexes never oc-
cur in the context of any content, and their relative
prominence in the training data decreases as more
tag-injected data is added, so the MT system may
become less and less sure how to “translate” them
in practice. The failures for German confirm this
pattern. At 1% augmentation, all 30 tags with their
IDs incorrectly changed have values beyond 2, but
the MT system produces a different value beyond
2 in five cases. At 15% augmentation, the system
does not propose a value beyond 2 in any of the
206 failure cases.

Arguably, the increased training focus on low-

8This count would include tags natively dropped by the MT
system but re-added to the end of the output by rule. Masked
systems produce on average 3% more line-final tags than raw
systems, but essentially the same number as the baseline.
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Detag/ Masked Raw
Language Set Project 1% 2% 5% 10% 15% 1% 2% 5% 10% 15%
EN–DE EUR-Lex 70.0 0.1 0.2 0.4 0.1 0.3 –0.2 0.2 0.2 –0.1 0.2

Glossary 60.2 1.1 0.6 1.2 0.8 0.8 1.0 0.6 1.0 0.8 0.8
EN–FR EUR-Lex 65.9 1.0 0.1 0.9 0.1 1.2 0.5 0.5 0.3 0.9 –0.5

Glossary 61.7 0.9 0.9 0.9 1.0 1.7 1.1 0.6 0.7 0.7 0.2
EN–HU EUR-Lex 61.4 0.2 0.3 0.2 0.4 0.6 –0.5 0.0 –0.1 –0.2 –0.1

Glossary 53.5 1.2 1.6 1.4 1.8 1.5 –0.3 0.3 0.6 1.8 1.3

Table 3: BLEU scores on tagged test sets, shown as differences from the baseline (detag-and-project) system’s per-
formance on the same test set. Results in grey are statistically significant at p < 0.05. The masked representation
tends to produce the best results.

Masked Raw
Language Failure DP 1% 2% 5% 10% 15% 1% 2% 5% 10% 15%
EN–DE Changed ID 0 0 0 0 0 0 30 66 177 226 206

Dropped 0 0 0 0 0 0 92 105 128 162 131
Mutilated 0 0 0 0 0 0 17 3 85 91 129
Badly Nested 0 12 14 14 15 10 26 25 33 28 31
Added 0 0 0 0 0 0 22 11 14 10 6
Total 0 12 14 14 15 10 187 210 437 517 503

EN–FR Changed ID 0 0 0 0 0 0 5 112 325 349 95
Dropped 0 0 0 0 0 0 34 81 82 115 423
Mutilated 0 0 0 0 0 0 1 59 232 249 257
Badly Nested 0 9 16 9 20 16 10 16 16 28 162
Added 0 0 0 0 0 0 10 21 17 18 36
Total 0 9 16 9 20 16 60 289 672 759 973

EN–HU Changed ID 0 0 0 0 0 0 337 357 319 358 306
Dropped 0 0 1 1 0 1 265 243 257 221 272
Mutilated 0 0 0 0 0 0 24 19 57 4 45
Badly Nested 0 26 10 8 16 17 39 28 35 37 33
Added 0 0 0 0 0 0 37 44 43 28 18
Total 0 26 11 9 16 18 702 691 711 648 674

Table 4: Flagrant failure counts on the EUR-Lex mono tagged test set. (“DP” = detag and project.) Tag translation
failures increase rapidly as the training data is augmented with more raw tags.

index tags should be equally true of the mask-based
systems. A key difference is illustrated by the
rise in mutilated tags for French. Masked tags
are always expressed as single tokens; if the self-
translated examples are enough to induce a copy-
through behavior for them, the behavior can be
correctly applied in any content segment regardless
of context. However, raw tags are expressed as at
least two and sometimes more tokens (cf. Figure 2),
which turn out to have wildly different frequencies
in the training data as augmentation increases.

Figure 3 illustrates the BPE pieces involved in
translating the raw tags <g id="2"> and <g
id="3"> from English to French, along with the
observed frequencies of those tokens in the train-
ing data. For a low-index tag, the tokens are quite
common and, moreover, have relatively balanced
counts: the opening token is seen roughly 2.4 times
as often as the closing token no matter the data aug-
mentation percentage. The situation is markedly

different for a higher-index tag. In this case, in-
creasing amounts of tag injection heavily shift vo-
cabulary mass toward the opening token: it already
appears 58 times more frequently than the tail at 1%
augmentation, a ratio that grows to 1022 at 15%.

This extreme imbalance may be responsible for
the 15% model’s tag mutilation behavior. On our
mono test set, this model never produces the first to-
ken of a tag without the tail, nor does it mutilate any
tags for indexes up to 2. All the mutilation failures
are caused by producing the tail alone for higher
indexes, e.g. id="3"> — exactly corresponding
to the string of low-frequency tokens where a copy-
through behavior can be easily learned.

6.4 Human Evaluation of Tag Placement

We conduct a human evaluation of tag placement
accuracy in order to get a more complete picture
of errors than afforded by tagged BLEU scores and
flagrant-failure counts. Since it is impractical to
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(a) Lines with indexes 1 and 2 only
Lang System Good Bad Residual
EN–DE detag/project 97.3% 2.7% 0.0%

masked (15%) 98.6% 1.4% 0.0%
raw (1%) 98.4% 1.6% 0.0%

EN–FR detag/project 92.9% 4.0% 3.1%
masked (15%) 97.0% 0.5% 2.5%
raw (1%) 96.1% 1.4% 2.5%

EN–HU detag/project 93.8% 4.9% 1.3%
masked (15%) 96.9% 2.5% 0.9%
raw (10%) 96.1% 3.0% 0.9%

(b) Lines with indexes 3 and above
Lang System Good Bad Residual
EN–DE detag/project 87.3% 12.7% 0.0%

masked (15%) 84.2% 15.8% 0.0%
raw (1%) 83.6% 16.0% 0.4%

EN–FR detag/project 77.7% 9.8% 12.5%
masked (15%) 78.7% 9.0% 12.3%
raw (1%) 80.8% 6.2% 12.9%

EN–HU detag/project 77.9% 19.3% 2.7%
masked (15%) 70.9% 19.5% 9.6%
raw (10%) 33.0% 63.8% 3.2%

Table 5: Summarized human evaluation of tag place-
ment accuracy.

collect judgements on full test sets for all 33 ex-
periments, we restrict this study to subsets of both.
In terms of systems, we evaluate the detag-and-
project baseline, the 15% masked augmentation,
and either the 1% raw (EN–DE, EN–FR) or 10%
raw (EN–HU) augmentation. For data, we use the
entire glossary test set (289 lines), all the lines in
the EUR-Lex monolingual test set containing tag
indexes 3 and above (283 lines), and an equal num-
ber of randomly sampled lines from the same test
set containing indexes 1 and 2 only.

In summarizing the results, we collapse the eight
annotation types into three categories. “Good” tags
are those placed correctly in the output, including
if they were correctly deleted or duplicated. “Bad”
tags are incorrectly placed, incorrectly dropped or
duplicated, hallucinated, or mutilated in the output.
“Residual” tags are those judged as impossible or
unclear to place. Given the marked difference in
flagrant failures observed for tag indexes 1 and 2
versus 3 and beyond, we report human judgements
separately by whether the input included indexes
beyond 2 or not. These summarized results appear
in Table 5.

Placement for low-index tags present in the aug-
mented training data is learned quite well: in all lan-
guage pairs, the masked and raw-tag systems out-
perform the detag-and-project baseline. Humans
also find the annotation of inputs with few tags

to be a straightforward task, as very few tags are
marked as awkward to place.

Results are less clear-cut on high-index tags that
appear in training only as self-translated examples.
Word-alignment-based projection works best in
EN–DE and EN–HU. Translating raw tags does
well in EN–DE and EN–FR but is unusable in EN–
HU. The masking approach performs consistently
in second place. Especially in French, the human
task of judging placement accuracy has become no-
tably harder, an effect that could also significantly
affect the good/bad results of any method.

7 Conclusion

We have performed a comprehensive evaluation of
several tag representation methods and proposed a
data-augmentation technique that allows MT mod-
els to jointly learn content translation and inline tag
placement.

Results show that representing tags as masks, to-
gether with data augmentation, leads to equivalent
or improved performance over a detag-and-project
approach: placement accuracy is higher for tags
frequent in the training data, while it may vary for
tags never observed in context. In practice, it may
be preferable to rely on the MT model’s ability to
learn mask placement — even with some variabil-
ity in accuracy — than to implement, debug, and
maintain the baseline’s more complicated projec-
tion rules and the required alignment model.

Raw tags, on the other hand, fail our general-
ization tests. Though placement accuracy is again
baseline-beating for commonly observed tags, raw
models seem unable to copy rare tags into the out-
put without a significant number of mutilations,
deletions, and duplications: an unacceptable result
for the goal of obtaining well-structured output.

Several changes to our setup may improve the
transfer of raw tags. Injecting XLIFF tags with
a wider variety of id values is needed to expose
the model to them in context instead of merely
in self-translation. Explicitly identifying tag to-
kens via input factors (Dinu et al., 2019), or con-
straining/promoting the output of complete tags
(Hashimoto et al., 2019), would also be helpful for
reducing the rate of malformed output.
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A Train, Dev, and Test Corpora

Table 6 gives a more detailed account of our train-
ing resources, showing the amount of material
sourced from each standard WMT corpora we use.
Following Figure 2 of Schwenk et al. (2019), we re-
duce the EN–DE WikiMatrix corpus to only those
lines with a margin threshold of 1.05 or higher and
where the WMT-provided language detection reg-
istered English on the source and German on the
target. This is in addition to ignoring Common
Crawl and Paracrawl entirely. For EN–FR, we dis-
card the Common Crawl and Giga-FrEn corpora.

Clean-up on the training data is limited to re-
moving lines where the source and/or target side
is blank, removing lines whose source side is con-
tained in one of our dev or test sets, tokenization,
byte-pair encoding (Sennrich et al., 2016) using
32,000 operations, and length-based filtering. In
this final step, we remove sentence pairs of more
than 95 tokens on either side, containing tokens
with more than 100 characters, or where the length
ratio between source and target is too unbalanced.

Language Corpus Lines
EN–DE Europarl 1,828,521

News Commentary 371,225
Rapid 1,631,639
WikiMatrix (filtered) 916,242
WikiTitles 1,382,687
Total 6,130,314
After filtering 5,746,433

EN–FR Europarl 2,007,723
News Commentary 183,251
UN Docs 12,886,831
Total 15,077,805
After filtering 14,467,303

EN–HU Hung-Train 1,517,584
Total 1,517,584
After filtering 1,465,919

Table 6: Line counts of baseline training data.
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Language Set Source Lines
EN–DE Dev WMT (nt2018) 2,998

EUR-Lex 1,888
Glossary 286

Test WMT (nt2019) 1,997
EUR-Lex 1,450
EUR-Lex mono 2,525
Glossary 289

EN–FR Dev WMT (nt2013) 3,000
EUR-Lex 1,888
Glossary 286

Test WMT (nt2014) 3,003
EUR-Lex 1,450
EUR-Lex mono 2,525
Glossary 289

EN–HU Dev WMT (nd2009) 2,051
EUR-Lex 1,888
Glossary 286

Test WMT (nt2009) 3,027
EUR-Lex 1,450
EUR-Lex mono 2,525
Glossary 289

Table 7: Line counts of the dev and test sets.

Table 7 shows the sizes of our final dev and test
sets, including WMT “newsdev” (nd) and “news-
test” (nt) releases.

B Additional Results

Table 8 (on the next page) shows complete results
on translating untagged test sets, to ensure that
adding masked or raw tags to our training data
does not adversely affect the translation of plain
content. BLEU scores are computed according to
SacreBLEU (Post, 2018), while statistical signif-
icance uses 1000 trials of stratified approximate
randomization (Yeh, 2000). The small glossary test
set shows the highest BLEU variance, but only once
to statistical significance. Meanwhile, the few sig-
nificant differences are scattered across language
pairs, test sets, tag representations, and augmenta-
tion percentages.
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Masked Raw
Language Set Baseline 1% 2% 5% 10% 15% 1% 2% 5% 10% 15%
EN–DE WMT 38.6 0.1 0.3 0.3 –0.1 0.0 0.1 0.2 0.1 –0.2 –0.3

EUR-Lex 44.4 –0.5 –0.1 0.6 –0.3 –0.4 –0.9 0.5 0.3 0.1 0.1
Glossary 39.9 0.6 –0.2 0.0 1.0 1.0 0.5 –0.5 0.2 0.0 0.5

EN–FR WMT 37.5 –0.2 –0.1 –0.1 –0.1 0.2 0.0 –0.2 –0.1 –0.4 0.0
EUR-Lex 43.0 –0.1 –0.3 0.4 –0.1 0.5 0.5 –0.1 0.0 0.5 –0.3
Glossary 45.7 0.3 –0.2 0.1 0.3 0.9 0.7 0.7 0.3 0.7 –0.2

EN–HU WMT 12.9 0.0 –0.1 –0.3 0.1 –0.3 0.0 0.0 –0.3 –0.3 0.0
EUR-Lex 27.6 –0.4 –0.3 –0.5 –0.2 0.3 –0.2 0.1 –0.6 –0.1 0.0
Glossary 27.4 –0.2 –0.3 –1.0 0.4 –0.7 –0.8 –0.4 –0.6 1.1 –0.1

Table 8: BLEU scores on untagged test sets, shown as differences from the baseline system’s performance on
the same test set. Cells in light grey are statistically significant at p < 0.10; dark grey indicates p < 0.05. Tag
representation has no consistent effect on translation quality of untagged content.
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Abstract
This paper describes the development of a new
benchmark for machine translation that pro-
vides training and test data for thousands of
language pairs covering over 500 languages
and tools for creating state-of-the-art transla-
tion models from that collection. The main
goal is to trigger the development of open
translation tools and models with a much
broader coverage of the World’s languages.
Using the package it is possible to work on
realistic low-resource scenarios avoiding arti-
ficially reduced setups that are common when
demonstrating zero-shot or few-shot learning.
For the first time, this package provides a
comprehensive collection of diverse data sets
in hundreds of languages with systematic lan-
guage and script annotation and data splits to
extend the narrow coverage of existing bench-
marks. Together with the data release, we also
provide a growing number of pre-trained base-
line models for individual language pairs and
selected language groups.

1 Introduction

The Tatoeba translation challenge includes shuffled
training data taken from OPUS,1 an open collec-
tion of parallel corpora (Tiedemann, 2012), and
test data from Tatoeba,2 a crowd-sourced collec-
tion of user-provided translations in a large number
of languages. All data sets are labeled with ISO-
639-3 language codes using macro-languages in
case when available. Naturally, training data do not
include sentences from Tatoeba and neither from
the popular WMT testsets to allow a fair compari-
son to other models that have been evaluated using
those data sets.

Here, we propose an open challenge and the idea
is to encourage people to develop machine transla-
tion in real-world cases for many languages. The

1http://opus.nlpl.eu/
2https://tatoeba.org/

most important point is to get away from artificial
setups that only simulate low-resource scenarios or
zero-shot translations. A lot of research is tested
with multi-parallel data sets and high resource lan-
guages using data sets such as WIT3 (Cettolo et al.,
2012) or Europarl (Koehn, 2005) simply reducing
or taking away one language pair for arguing about
the capabilities of learning translation with little or
without explicit training data for the language pair
in question (see, e.g., Firat et al. (2016a,b); Ha et al.
(2016); Lakew et al. (2018)). Such a setup is, how-
ever, not realistic and most probably over-estimates
the ability of transfer learning making claims that
do not necessarily carry over towards real-world
tasks.

In the set we provide here we, instead, include
all available data from the collection without re-
moving anything. In this way, the data refers to a
diverse and skewed collection, which reflects the
real situation we need to work with and many low-
resource languages are only represented by noisy
or very unrelated training data. Zero-shot scenar-
ios are only tested if no data is available in any
of the sub-corpora. More details about the data
compilation and releases will be given below.

Tatoeba is, admittedly, a rather easy test set in
general but it includes a wide variety of languages
and makes it easy to get started with rather en-
couraging results even for lesser resourced lan-
guages. The release also includes medium and
high resource settings and allows a wide range of
experiments with all supported language pairs in-
cluding studies of transfer learning and pivot-based
methods.

2 Data releases

The current release includes over 500GB of com-
pressed data for 2,961 language pairs covering 555
languages. The data sets are released per language
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pair with the following structure, using deu-eng as
an example (see Figure 1).

data/deu-eng/
data/deu-eng/train.src.gz
data/deu-eng/train.trg.gz
data/deu-eng/train.id.gz
data/deu-eng/dev.id
data/deu-eng/dev.src
data/deu-eng/dev.trg
data/deu-eng/test.src
data/deu-eng/test.trg
data/deu-eng/test.id

Figure 1: Released data packages: training data, devel-
opment data and test data. Language labels are stored
in ID files that also contain the name of the source cor-
pus for the training data sets.

Files with the extension .src refer to sentences
in the source language (deu in this case) and files
with extension .trg contain sentences in the tar-
get language (eng here). File with extension .id
include the ISO-639-3 language labels with possi-
bly extensions about the orthographic script (more
information below). In the .id file for the train-
ing data there are also labels for the OPUS corpus
the sentences come from. We include the entire
collection available from OPUS with data from
the following corpora: ada83, Bianet, bible-uedin,
Books, CAPES, DGT, DOGC, ECB, EhuHac,
EiTB-ParCC, Elhuyar, EMEA, EUbookshop, EU-
const, Europarl, Finlex, fiskmo, giga-fren, Glob-
alVoices, GNOME, hrenWaC, infopankki, JRC-
Acquis, JW300, KDE4, KDEdoc, komi, MBS,
memat, MontenegrinSubs, MultiParaCrawl, Mul-
tiUN, News-Commentary, OfisPublik, OpenOffice,
OpenSubtitles, ParaCrawl, PHP, QED, RF, sard-
ware, SciELO, SETIMES, SPC, Tanzil, TED2013,
TedTalks, TEP, TildeMODEL, Ubuntu, UN, UNPC,
wikimedia, Wikipedia, WikiSource, XhosaNavy.

The data sets are compiled from the pre-aligned
bitexts but further cleaned in various ways. First of
all, we remove non-printable characters and strings
that violate Unicode encoding principles using reg-
ular expressions and a recoding trick using the
forced encoding mode of recode (v3.7), a popu-
lar character conversion tool.3 Furthermore, we
also de-escape special characters (like ’&’ encoded
as ’&amp;’) that may appear in some of the corpora.
For that, we apply the tools from Moses (Koehn
et al., 2007). Finally, we also apply automatic
language identification to remove additional noise

3https://github.com/pinard/Recode

from the data. We use the compact language detect
library (CLD2) through its Python bindings4 and
a Python library for converting between different
ISO-639 standards.5 CLD2 supports 172 languages
and we use the options for ”best effort” and apply
the assumed language from the original data as the
”hint language code”. For unsupported languages,
we remove all examples that are detected to be En-
glish as this is a common problem in some corpora
where English texts appear in various places (e.g.
untranslated text in localization data of community
efforts). In all cases, we only rely on the detected
language if it is flagged as reliable by the software.

All corpus data and sub-languages are merged
and shuffled using terashuf6 that is capable to
efficiently shuffle large data sets. But we keep
track of the original data set and provide labels
to recognize the origin. In this way, it is pos-
sible to restrict training to specific subsets of
the data to improve domain match or to reduce
noise. The entire procedure of compiling the
Tatoeba Challenge data sets is available from
the project repository at https://github.com/

Helsinki-NLP/Tatoeba-Challenge.
The largest data set (English-French) contains

over 180 million aligned sentence pairs and 173
language pairs are covered by over 10 million sen-
tence pairs in our collection. Altogether, there are
almost bilingual 3,000 data sets and we plan reg-
ular updates to improve the coverage. Below, we
give some more details about the language labels,
test sets and monolingual data sets that we include
in the package as well.

2.1 Language labels and scripts
We label all data sets with standardized language
codes using three-letter codes from ISO-639-3. The
labels are converted from the original OPUS lan-
guage IDs (which roughly follow ISO-639-1 codes
but also include various non-standard IDs) and in-
formation about the writing system (or script) is
automatically assigned using Unicode regular ex-
pressions and counting letters from specific script
character properties. For the scripts we use four-
letter codes from ISO-15924 and attach them to
the three-letter language codes defined in ISO-639-
3. Only the most frequently present script in a
string is shown. Mixed content may appear but is
not marked specifically. Note that the code Zyyy

4https://pypi.org/project/pycld2/
5https://pypi.org/project/iso-639/
6https://github.com/alexandres/terashuf
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refers to common characters that cannot be used
to distinguish scripts. The information about the
script is not added if there is only one script in that
language and no other scripts are detected in any
of the strings. If there is a default script among
several alternatives then this particular script is not
shown either. Note that the assignment is done fully
automatically and no corrections have been made.
Three example label sets are given below using the
macro-languages Chinese (zho), Serbo-Croatian
(hbs) and Japanese (jpn) that can use character from
different scripts:

Chinese: cjy Hans, cjy Hant, cmn, cmn Bopo, cmn Hans,
cmn Hant, cmn Latn, gan, lzh, lzh Bopo, lzh Hang,
lzh Hani, lzh Hans, lzh Hira, lzh Kana, lzh Yiii,
nan Hani, nan Latn, wuu, wuu Bopo, wuu Hang,
wuu Hani, wuu Hira, yue Hans, yue Hant, yue Latn

Japanese: jpn, jpn Hani, jpn Hira, jpn Kana, jpn Latn

Serbo-Croatian: bos Latn, hrv, srp Cyrl, srp Latn

This demonstrates that a data set may include
examples from various sub-languages if they exist
(e.g. Bosnian, Croatian and Serbian in the Serbo-
Croatian case) or language IDs with script exten-
sions that show the dominating script in the cor-
responding string (e.g. Cyrl for Cyrillic or Latn
for Latin script). Those labels can be used to sepa-
rate the data sets, to test sub-languages or specific
scripts only or to remove some noise (like the ex-
amples that are tagged with the Latin script (Latn)
in the Japanese data set. Note that script detection
can also fail in which the corresponding code is
missing or potentially wrong. For example, the de-
tection of traditional (Hant) och simplified Chinese
(Hans) can be ambiguous and encoding noise can
have an effect on the detection.

We also release the tools that we developed for
converting and standardizing OPUS IDs and also
the tools that detect scripts and variants of writing
systems. The package is available from github7

and can be installed from CPAN.8

2.2 Multiple reference translations
Test and development data are taken from a shuf-
fled version of Tatoeba. All translation alternatives
are included in the data set to obtain the best cov-
erage of languages in the collection. Development
and test sets are disjoint in the sense that they do
not include identical source-target language sen-
tence pairs. However, there can be identical source

7https://github.com/Helsinki-NLP/LanguageCodes
8https://metacpan.org/pod/ISO::639::3 and

https://metacpan.org/pod/ISO::639::5

sentences or identical target sentences in both sets,
which are not linked to the same translations. Sim-
ilarly, there can be identical source or target sen-
tences in one of the sets, for example the test set,
with different translations. In Figure 2, you can see
examples from the Esperanto-Ladino test set.

epo lad Latn
u vi estas en Berlino? Estash en Berlin?
u vi estas en Berlino? Vos estash en Berlin?
u vi estas en Berlino? Vozotras estash en Berlin?
La hundo estas nigra. El perro es preto.
La hundo nigras. El perro es preto.

Figure 2: Examples of test sentences with multiple ref-
erence translations taken from the Esperanto-Ladino
test set.

The test data could have been organized as multi-
reference data sets but this would require to provide
different sets in both translation directions. Remov-
ing alternative translations is also not a good op-
tion as this would take away a lot of relevant data.
Hence, we decided to provide the data sets as they
are, which implicitly creates multi-reference test
sets but with the wrong normalization.

2.3 Monolingual data
In addition to the parallel data sets we also provide
monolingual data that can be used for unsupervised
methods or data augmentation approaches such as
back-translation. For that purpose, we extract pub-
lic data from Wikimedia including source from
Wikpedia, Wikibooks, Wikinews, Wikiquote and
Wikisource. We extract sentences from data dumps
provided in JSON format9 and process them with
jq,10 a lightweight JSON processing tool. We ap-
ply the same cleaning steps as we do for the OPUS
bitexts including language identification and con-
vert language IDs to ISO-639-3 as before. Sentence
boundaries are detected using UDPipe (Straka et al.,
2016) with models trained on universal dependency
treebanks v 2.4 and the Moses sentence splitter with
language-specific non-breaking prefixes if avail-
able. We preserve document boundaries and do
not shuffle the data to enable experiments with
discourse-aware models. The data sets are released
along with the rest of the Tatoeba challenge data.

3 The translation challenge

The main challenge is to develop translation mod-
els and to test them with the given test data from

9https://dumps.wikimedia.org/other/cirrussearch/current
10https://stedolan.github.io/jq/
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Tatoeba. The focus is on low-resource languages
and to push their coverage and translation qual-
ity. Resources for high-resource are also provided
and can be used as well for translation modeling
of those languages and for knowledge transfer to
less resourced languages. Note that not all lan-
guage pairs have sufficient data sets for test, de-
velopment (dev) and training (train) data. Hence,
we divided the Tatoeba challenge data into vari-
ous subsets based on the size of the training data
available.

high-resource settings: 298 language pairs with
training data of at least one million training
examples (aligned sentence pairs), we fur-
ther split into language pairs with more than
10 million training examples (173 language
pairs) and other language pairs with data sets
below the size of 10 million examples

medium-sized resource settings: 97 language
pairs with more than 100,000 and less than 1
million training examples

low-resource settings: 87 language pairs with
less than 100,000 training examples, we fur-
ther distinguish between language pairs with
more than 10,000 training examples (63) and
language pairs below 10,000 training exam-
ples (24)

zero-shot translation: language pairs with no
training data (40 in the current data set)

For all those 522 selected language pairs, the
data set provides at least 200 sentences per test
set. 101 of them involves English as one of the lan-
guages. 288 test sets contain more than 1,000 sen-
tence pairs of which only 68 include English. Note,
that everything below 1,000 sentences is probably
not very reliable as a proper test set but we decided
to release smaller test sets as an initial benchmark
to trigger further development even for extremely
under-resourced language pairs. We also decided
to use very low thresholds for the division into low-
resource languages. Having 10,000 training exam-
ples or less is very realistic for many real-world
examples and we want to encourage the work on
such cases in particular.

The maximum size of test sets in our collection
is 10,000 sentence pairs, which is available for 76
language pairs. The test size is reduced to 5,000 if
there is less than 20,000 sentence pairs in Tatoeba

(19 data sets). The remaining sentences are re-
leased as disjoint validation data. For 48 Tatoeba
language pairs with less than 10,000 sentence pairs,
we keep 2,500 for the test set and the rest for vali-
dation and for 78 Tateoba language pairs with less
than 5,000 sentence pairs we keep 1,000 for valida-
tion and the rest for testing. Finally, for language
pairs with less than 2,000 sentences in Tatoeba we
skip validation data and use everything for test pur-
poses.

Test and validation data are strictly disjoint and
none of the examples from Tatoeba are explicitly
included in the training data. However, as it is
common in realistic cases, there is a natural chance
for a certain overlap between those data sets. Fig-
ure 3 plots the percentage of sentence pairs in test
and validation sets that can also be found in the
corresponding training data we release. The aver-
age proportion is rather low around 5.5% for both
with a median percentage of 2.3% and 2.9% for
test and validation data, respectively. There is one
clear outlier with a very high proportion of over
55% overlap and that is Danish–English for some
reason that is not entirely clear to us. Otherwise,
the values are well below that ratio.

4 The data challenge

The most important ingredient for improved trans-
lation quality is data. It is not only about training
data but very much also about appropriate test data
that can help to push the development of transfer
models and other ideas of handling low-resource
settings. Therefore, another challenge we want to
open here is the increase of the coverage of test
sets for low-resource languages. Our strategy is to
organize the extension of the benchmarks directly
through the Tatoeba initiative. Users who would
like to contribute to further MT benchmark devel-
opment are asked to register for the open service
provided by Tatoeba and to upload new translations
in the languages of interest. From our side, we will
continuously update our challenge data set to in-
clude the latest data releases coming from Tatoeba
including new language pairs and extended data
sets for existing language pairs. We will make sure
that the new test sets do not overlap with any re-
leased development data from previous revisions
to enable fair comparisons of old models with new
benchmarks. The extended test and validation data
sets will be released as new packages and old re-
visions will be kept for replicability of existing
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Figure 3: Overlap between test and validation (dev) data and the training data: Proportion of sentence pairs that
exist in the training data for all data sets above 1,000 sentence pairs.

scores.
In order to provide information about language

pairs in need, we provide a list of data sets with
less than 1,000 examples per language pair. In
the current release, this refers to 2,375 language
pairs. 2,141 language pairs have less than 200
translation units and are, therefore, not included
in the released benchmark test set. Furthermore,
we also provide a list of languages for which we
release training data coupled with English but no
test data is available from Tatoeba. Currently, this
relates to 246 languages.

We encourage users to especially contribute
translations for those data sets in order to improve
the language coverage even further. We hope to
trigger a grass-root development that can signifi-
cantly boost the availability of development and
test sets as one of the crucial elements for pushing
NMT development in the corresponding languages.

Finally, we also encourage to incorporate other
test sets besides of the Tatoeba data. Currently, we
also test with WMT news test sets for the language
pairs that are covered by the released development
and test sets over the years of the news translation
campaign. Contributions and links can be provided
through the repository management interface at
github.

5 How to participate

The goal of the data release is to enable a straight-
forward setup for machine translation development.
Everyone interested is free to use the data for their
own development. A leader board for individual
language pairs will be maintained. Furthermore,
we also intend to make models available that are
listed in the challenge. This does not only sup-
port replicability but also provides a new unique
resource of pre-trained models that can be inte-

grated in real-world applications or can be used
in further research, unrelated downstream tasks or
as a starting point for subsequent fine-tuning and
domain adaptation. A large number of models is
already available from our side providing baselines
for a large portion of the data set. More details will
be provided below.

For participation, there are certain rules that ap-
ply:

• Do not use any development or test data for
training (dev can be used for validation during
training as an early stopping criterion).

• Only use the provided training data for train-
ing models with comparable results in con-
strained settings. Any combination of lan-
guage pairs is fine or backtranslation of sen-
tences included in training data for any lan-
guage pair is allowed, too. That means that
additional data sets, parallel or monolingual,
are not allowed for official models to be com-
pared with others.

• Unconstrained models may also be trained
and can be reported as a separate category. Us-
ing pre-trained language or translation models
fall into the unconstrained category. Make
sure that the pre-trained model does not in-
clude Tatoeba data that we reserve for testing.

• We encourage to release models openly to
ensure replicability and re-use of pre-trained
models. If you want to enter the official leader
board you have to make your model available
including instructions on how to use them.

6 Baseline Models

Along with the data, we also release baseline
models that we train with state-of-the-art trans-
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former models (Vaswani et al., 2017) using Marian-
NMT,11 a stable production-ready NMT toolbox
with efficient training and decoding capabilities
(Junczys-Dowmunt et al., 2018). We apply a com-
mon setup with 6 self-attentive layers in both, the
encoder and decoder network using 8 attention
heads in each layer. The hyper-parameters follow
the general recommendations given in the docu-
mentation of the software.12 The training proce-
dures follow the strategy implemented in OPUS-
MT (Tiedemann and Thottingal, 2020) and detailed
instructions are available from github.13

We train a selection of models on v100 GPUs
with early-stopping after 10 iterations of drop-
ping validation perplexities. We use SentencePiece
(Kudo and Richardson, 2018) for the segmentation
into subword units and apply a shared vocabulary
of a maximum of 65,000 items. Language label
tokens in the spirit of Johnson et al. (2017) are used
in case of multiple language variants or scripts in
the target language. Models for over 400 language
pairs are currently available and we refer the reader
to the website with the latest results. For illustra-
tion, we provide some example scores below in
Table 1 using automatic evaluation based on chrF2
and BLEU computed using sacrebleu (Post, 2018).
The actual translations are also available for each
model and the distribution comes along with the
logfiles from the training process and all necessary
data files such as the SentencePiece models and
vocabularies.

language pair chrF2 BLEU
aze-eng 0.490 31.9
bel-eng 0.268 10.0
cat-eng 0.668 50.2
eng-epo 0.577 35.6
eng-glg 0.593 37.8
eng-hye 0.404 16.6
eng-ilo 0.569 30.8
eng-run 0.436 10.4

Table 1: Translations scores from baseline models
trained for a selection of medium-size language pairs
(according to our classification) tested on the provided
Tatoeba benchmark. We show here models that include
English and score above 10 BLEU.

11https://marian-nmt.github.io
12https://github.com/marian-nmt/marian-

examples/tree/master/transformer
13https://github.com/Helsinki-NLP/OPUS-MT-

train/blob/master/doc/TatoebaChallenge.md

7 Multilingual Models

One of the most interesting questions is the ability
of multilingual models to push the performance
of low-resource machine translation. The Tatoeba
translation challenge provides a perfect testbed for
systematic studies on the effect of transfer learning
across various subsets of language pairs. We al-
ready started various experiments with a number of
multilingual translation models that we evaluate on
the given benchmarks. In our current work, we fo-
cus on models that include languages in established
groups and for that we facilitate the ISO-639-5 stan-
dard. This standard defines a hierarchy of language
groups and we map our data sets accordingly to
start new models that cover those sets. As an ex-
ample, we look at the task of Belorussian-English
translation that has been included in the previous
section as well. Table 2 summarizes the results of
our current models sorted by chrF2 scores.

model chr-F2 BLEU
sla-eng/opus4m 0.610 42.7
sla-eng/opus2m 0.609 42.5
sla-eng/opus1m 0.599 41.7
ine-eng/opus2m 0.597 42.2
ine-eng/opus4m 0.597 41.7
ine-eng/opus1m 0.588 41.0
zle-eng/opus4m 0.573 38.7
zle-eng/opus2m 0.569 38.3
mul-eng/opus1m 0.550 37.0
mul-eng/opus2m 0.549 36.8
zle-eng/opus1m 0.543 35.4
ine-ine/opus1m 0.512 31.8
bel-eng/opus 0.268 10.0

Table 2: Translation results of the Belorussian-English
test set using various multilingual translation models
compared to the baseline bilingual model (shown at the
bottom). opusXm refers to sampled data sets that in-
clude X million sentences per language pair.

The models focus on different levels of related-
ness of the languages and range from East Slavic
Languages (zle), Slavic languages (sla) to the lan-
guage family of Indo-European languages (ine) and
the set that contains all languages (mul). Each
model is trained on sampled data set in order to
balance between different languages. The smallest
training sets are based on data that are sampled to
include a maximum of one million sentence per lan-
guage pair (opus1m). We use both, down-sampling
and up-sampling. The latter is done by simply
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multiplying the existing data until the threshold
is reached. We also set a threshold of 50 for the
maximum of repeating the same data in order to
avoid over-representing small noisy data. The one-
million models are trained first and form the basis
of larger models. We continue training with data
sets sampled to two million before increasing to
four million sentence pairs.

The Table shows some interesting patterns. First
of all, we can clearly see a big push in performance
when adding related languages to the training data.
This is certainly expected especially in the case
of Belorussian that is closely related to higher-
resource-languages such as Russian and Ukrainian.
Interesting is that the East Slavic language group
is not the best performing model even though it in-
cludes those two related languages. The additional
information from other Slavic languages pushes
the performance beyond their level quite signifi-
cantly. Certainly, those models will see more data
and this may cause the difference. The ’sla-eng’
model covers 13 source languages whereas ’zle’
only 5. Also interesting to see is that the Indo-
European language model fairs quite well despite
the enormous language coverage that this model
has to cope with. On the other hand, the big ’mul’
translation model does not manage to create the
same performance and the limits of the standard
model with such a massive setup become apparent.
Training those models becomes also extremely ex-
pensive and slow and we did not manage to start
the 4-million-sentence model.

Currently, we look into the various models we
train and many other interesting patterns can be
seen. We will leave a careful analyses to future
work and also encourage the community to explore
this field further using the given collection and
benchmark. Updates about models and scores will
be published on the website and we would also
encourage more qualitative studies that we were
not able to do yet.

8 Zero-shot and few-shot translation

Finally, we have a quick look at zero-shot and few-
shot translation tasks. Table 3 shows results for
Awadhi-English translation, one of the test sets for
which no training data is available. Awadhi is an
Eastern Hindi language in the Indo-Iranian branch
of the Indo-European language family.14

14We use ISO639-3 and ISO639-5 standards for names and
codes of languages and language groups.

model chr-F2 BLEU
ine-eng/opus1m 0.285 10.0
mul-eng/opus1m 0.257 9.4
inc-eng/opus1m 0.217 6.8
iir-eng/opus1m 0.214 7.9
ine-ine/opus1m 0.201 2.4
tatoeba-zero/opus 0.042 0.1

Table 3: Translation results of the Awadhi-English test
set using multilingual translation models.

The table shows that a naive approach of throw-
ing all languages that are part of zero-shot language
pairs into one global multilingual model (tatoeba-
zero) does not work well. This is probably not very
surprising. Another interesting observation is that a
symmetric multilingual model with Indo-European
languages on both sides (ine-ine) also underper-
forms compared to other multilingual models that
only translate into English. Once again, the Indo-
European-language-family to English model per-
forms quite well. Note that the performance purely
comes from overlaps with related languages as no
Awadhi language data is available during training.
The performance is still very poor and needs to be
taken with a grain of salt. They demonstrate, how-
ever, the challenges one faces with realistic cases
of zero-shot translation.

In Table 4, we illustrate another case that could
be described as a realistic few-shot translation task.
Our collection comes with 3,613 training examples
for the translation between English and Faroese.
The table shows our current results in this task us-
ing multilingual models that translate from English
to language groups including the Scandinavian lan-
guage in question.

model chr-F2 BLEU
eng-gem/opus 0.318 9.4
gem-gem/opus 0.312 7.0
eng-gmq/opus 0.311 7.0
eng-ine/opus 0.281 6.3
eng-mul/opus 0.280 5.7
ine-ine/opus 0.276 5.9
tatoeba-zero/opus 0.042 0.1

Table 4: Translation results of the English-Faroese test
set with different multilingual NMT models.

Again, we can see that the naive tatoeba-zero
model is the worst. The symmetric Indo-European
model performs better but the English-Germanic

1180



model gives the best performance, which is still
very low and not satisfactory for real-world appli-
cations. Once again, the example demonstrates the
challenge that is posed by extremely low-resource
scenarios and we hope that the data set we provide
will trigger additional fascinating studies on a large
variety of interesting cases.

9 Comparison to the WMT news task

Finally, we also include a quick comparison to the
WMT news translation task, see Table 5. Note
that we did not perform any optimization for that
task, did not use any in-domain back-translations
and did not run fine-tuning in the news domain.
We only give results for English–German (in both
directions) for the 2019 test data to give an impres-
sion about the released baseline models.

English – German
model BLEU chr-F2
eng-deu 42.4 0.664
eng-gmw 35.9 0.616
eng-gem 35.0 0.613
eng-ine 26.6 0.554
eng-mul 21.0 0.512
WMT best 44.9 –

German – English
model BLEU chr-F2
deu-eng 40.5 0.645
gmw-eng 36.6 0.615
gem-eng 37.2 0.618
ine-eng 31.7 0.571
mul-eng 27.0 0.529
WMT best 42.8 –

Table 5: Translation results of baseline models on
English–German news translation from WMT 2019
using bilingual and multilingual Tatoeba baseline
models. The BLEU scores are also compared
to the best score that is currently available from
http://matrix.statmt.org/matrix – retrieved on October
4, 2020.

The results demonstrate that the models can
achieve high quality even on a domain they are
not optimized for. The best scores in the German–
English case are close to the top performing model
registered for this task even though the comparison
is not fair for various reasons. The purpose is any-
way not to provide state-of-the-art models for the
news translation task but baseline models for the
Tatoeba case and in future work we will also ex-

plore the use of our models as the basis for systems
that can be developed for other benchmarks and
applications. In the example we can also see that
multilingual models significantly lag behind bilin-
gual ones in high-resource cases. Each increase of
the language coverage (except for the move from
West Germanic languages (gmw) to Germanic lan-
guages (gem) in the German–English case) leads
to a drop in performance but note that those mul-
tilingual models are not fine-tuned for translating
from and to German.

10 Conclusions

This paper presents a new comprehensive data set
and benchmark for machine translation that covers
roughly 3,000 language pairs and over 500 lan-
guages and language variants. We provide training
and test data that can be used to explore realis-
tic low-resource scenarios and zero-shot machine
translation. The data set is carefully annotated with
standardized language labels including variations
in scripts and with information about the original
source. We also release baseline models and re-
sults and encourage the community to contribute to
the data set and machine translation development.
All tools for data preparation and training bilingual
as well as multilingual translation models are pro-
vided as open source packages on github. We are
looking forward to new models, extended test sets
and a better coverage of the World’s languages.
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Abstract

Automatic evaluation comparing candidate
translations to human-generated paraphrases
of reference translations has recently been pro-
posed by Freitag et al. (2020). When used in
place of original references, the paraphrased
versions produce metric scores that correlate
better with human judgment. This effect holds
for a variety of different automatic metrics,
and tends to favor natural formulations over
more literal (translationese) ones. In this pa-
per we compare the results of performing end-
to-end system development using standard and
paraphrased references. With state-of-the-art
English-German NMT components, we show
that tuning to paraphrased references produces
a system that is significantly better accord-
ing to human judgment, but 5 BLEU points
worse when tested on standard references. Our
work confirms the finding that paraphrased ref-
erences yield metric scores that correlate better
with human judgment, and demonstrates for
the first time that using these scores for system
development can lead to significant improve-
ments.

1 Introduction

Machine Translation (MT) has shown impressive
progress in recent years. Neural architectures (Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017) have greatly contributed to this im-
provement, especially for languages with abundant
training data (Bojar et al., 2016, 2018; Barrault
et al., 2019). This progress creates novel challenges
for the evaluation of machine translation, both for
human (Toral, 2020; Läubli et al., 2020) and auto-
mated evaluation protocols (Lo, 2019; Zhang et al.,
2019).

Both types of evaluation play an important role
in machine translation (Koehn, 2010). While hu-
man evaluations provide a gold standard evaluation,
they involve a fair amount of careful and hence

expensive work by human assessors. Cost there-
fore limits the scale of their application. On the
other hand, automated evaluations are much less
expensive. They typically only involve human la-
bor when collecting human reference translations
and can hence be run at scale to compare a wide
range of systems or validate design decisions. The
value of automatic evaluations therefore resides
in their capacity to be used as a proxy for human
evaluations for large scale comparisons and system
development.

The recent progress in MT has raised concerns
about whether automated evaluation methodolo-
gies reliably reflect human ratings in high accuracy
ranges. In particular, it has been observed that the
best systems according to humans might fare less
well with automated metrics (Barrault et al., 2019).
Most metrics such as BLEU (Papineni et al., 2002)
and TER (Snover et al., 2006) measure overlap
between a system output and a human reference
translation. More refined ways to compute such
overlap have consequently been proposed (Baner-
jee and Lavie, 2005; Lo, 2019; Zhang et al., 2019).

Orthogonal to the work of building improved
metrics, Freitag et al. (2020) hypothesized that hu-
man references are also an important factor in the
reliability of automated evaluations. In particu-
lar, they observed that standard references exhibit
simple, monotonic language due to human ‘transla-
tionese‘ effects. These standard references might
favor systems which excel at reproducing these
effects, independent of the underlying translation
quality. They showed that better correlation be-
tween human and automated evaluations could be
obtained when replacing standard references with
paraphrased references, even when still using sur-
face overlap metrics such as BLEU (Papineni et al.,
2002). The novel references, collected by asking
linguists to paraphrase standard references, were
shown to steer evaluation away from rewarding
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translation artifacts. This improves the assessment
of alternative, but equally good translations.

Our work builds on the success of paraphrased
translations for evaluating existing systems, and
asks if different design choices could have been
made when designing a system with such an evalu-
ation protocol in mind. This examination has sev-
eral potential benefits: it can help identify choices
which improve BLEU on standard references but
have limited impact on final human evaluations;
or those that result in better translations for the
human reader, but worse in terms of standard ref-
erence BLEU. Conversely, it might turn out that
paraphrased references are not robust enough to
support system development due to the presence
of ‘metric honeypots’: settings that produce poor
translations, but which are nevertheless assigned
high BLEU scores.

To address these points, we revisit the major de-
sign choices of the best English→German system
from WMT2019 (Ng et al., 2019) step-by-step, and
measure their impact on standard reference BLEU
as well as on paraphrased BLEU. This allows us
to measure the extent to which steps such as data
cleaning, back-translation, fine-tuning, ensemble
decoding and reranking benefit standard reference
BLEU more than paraphrase BLEU. Revisiting
these development choices with the two metrics re-
sults in two systems with quite different behaviors.
We conduct a human evaluation for adequacy and
fluency to assess the overall impact of designing a
system using paraphrased BLEU.

Our main findings show that optimizing for
paraphrased BLEU is advantageous for human
evaluation when compared to an identical system
optimized for standard BLEU. The system op-
timized for paraphrased BLEU significantly im-
proves WMT newstest19 adequacy ratings (4.72
vs 4.27 on a six-point scale) and fluency ratings
(63.8% vs 27.2% on side-by-side preference) de-
spite scoring 5 BLEU points lower on standard
references.

2 Related Work

Collecting human paraphrases of existing refer-
ences has recently been shown to be useful for sys-
tem evaluation (Freitag et al., 2020). Our work con-
siders applying the same methodology for system
tuning. There is some earlier work relying on auto-
mated paraphrases for system tuning, especially for
Statistical Machine Translation (SMT). Madnani

et al. (2007) introduced an automatic paraphrasing
technique based on English-to-English translation
of full sentences using a statistical MT system, and
showed that this permitted reliable system tuning
using half as much data. Similar automatic para-
phrasing has also been used to augment training
data, e.g. (Marton et al., 2009), but relying on stan-
dard references for evaluation. In contrast to human
paraphrases, the quality of current machine gener-
ated paraphrases degrades significantly as overlap
with the input decreases (Mallinson et al., 2017;
Roy and Grangier, 2019). This makes their use dif-
ficult for evaluation since (Freitag et al., 2020) sug-
gests that substantial paraphrasing – ‘paraphrase as
much as possible‘ – is necessary for evaluation.

Our work can be seen as replacing the regular
BLEU metric with a new paraphrase BLEU met-
ric for system tuning. Different alternative auto-
matic evaluation metric have also been considered
for system tuning (He and Way, 2010; Servan and
Schwenk, 2011) with Minimum Error Rate Train-
ing, MERT (Och, 2003). This work showed some
specific cases where Translation Error Rate (TER)
was superior to BLEU.

Our work is also related to the bias that
the human translation process introduces in the
references, including source language artifacts—
Translationese (Koppel and Ordan, 2011)—as well
as source-independent artifacts—Translation Uni-
versals (Mauranen and Kujamäki, 2004). The pro-
fessional translation community studies both sys-
tematic biases inherent to translated texts (Baker,
1993; Selinker, 1972), as well as biases resulting
specifically from interference from the source text
(Toury, 1995). For MT, Freitag et al. (2019) point
at Translationese as a source of mismatch between
BLEU and human evaluation, raising concerns that
overlap-based metrics might reward hypotheses
with translationese language more than hypotheses
using more natural language. The impact of Trans-
lationese on human evaluation of MT has recently
received attention as well (Toral et al., 2018; Zhang
and Toral, 2019; Graham et al., 2019). More gener-
ally, the question of bias to a specific reference has
also been raised, in the case of monolingual manual
evaluation (Fomicheva and Specia, 2016; Ma et al.,
2017). Different from the impact of Translationese
on evaluation, the impact of Translationese in the
training data has also been studied (Kurokawa et al.,
2009; Lembersky et al., 2012a; Bogoychev and
Sennrich, 2019; Riley et al., 2020).
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Finally, our work is also related to studies mea-
suring the importance of the test data quality, look-
ing specifically at the test set translation direction.
For SMT evaluation, Lembersky et al. (2012b) and
Stymne (2017) explored how the translation direc-
tion affects translation results. Holmqvist et al.
(2009) noted that the original language of the test
sentences influences the BLEU score of transla-
tions. They showed that the BLEU scores for target-
original sentences are on average higher than sen-
tences that have their original source in a different
language. Recently, a similar study was conducted
for neural MT (Bogoychev and Sennrich, 2019).

3 Experimental Setup

We first describe data and models, then present our
human evaluation protocol.

3.1 Data

We ran all experiments on the WMT 2019
English→German news translation task (Barrault
et al., 2019). The task provides ∼38M parallel
sentences. As German monolingual data, we con-
catenate all News Crawl data from 2007 to 2018,
comprising ∼264M sentences after removing du-
plicates.

In addition to the training data, we use new-
stest2018 for development and newstest2019 for
evaluation only. There is an important difference
between these two test sets. Newstest2018 was
created from monolingual news data from both En-
glish and German online sources. Half of the data
consists of English text translated into German,
while the other half consists of German text trans-
lated into English. This results in a joint test set of
2,998 sentences. Newstest2019, on the other hand,
consists only of 1,997 sentences translated from
English into German (see Figure 1). To provide
a joint test set similar to newstest2018, we took
newstest2019 from the reverse translation direction
German→English, swapped source and target, and
concatenated it with the original test sets. This re-
sults in a new joint newstest2019 test set of 3,997
sentences.

In addition to reporting overall BLEU scores on
the different test sets, we also report results on the
two subsets (based on the original language) of
each newstest20XX, which we call the orig-en and
the orig-de halves of the test set.

Freitag et al. (2020) provided an alternative
reference translation for the orig-en half of new-

(a) Forward-translated, i.e.
source original

(b) Backward-translated, i.e.
target original

Figure 1: Sentences in a test set are either natu-
ral in the source and forward-translated into the tar-
get language, or vice-versa. If a test set consists of
both kinds of sentences, we call it a joint test set.
WMT English→German newstest2018 is a joint test
set with half of the sentences being forward-translated.
WMT English→German newstest2019 is a forward-
translated test set.

stest2019. For both standard and alternative refer-
ences, they provided an additional paraphrased ‘as
much as possible‘ version (four different references
in all). In order to enable our parameter tuning ex-
periments, we created a paraphrased version of
the reference for the orig-en half of newstest2018
(1,500 sentences) following the instructions from
Freitag et al. (2020). We will release this new para-
phrased reference, newstest2018.orig-en.p, as part
of our work.

3.2 Models
For our translation models, we adopt the
transformer implementation from Lingvo (Shen
et al., 2019), using the transformer-big model
size (Vaswani et al., 2017). We use a vocabulary of
32k subword units and exponentially moving aver-
aging of checkpoints (EMA decay) with the weight
decrease parameter set to α = 0.999 (Buduma and
Locascio, 2017). We used a batch size of around
32k sentences in all our experiments.

We report BLEU (Papineni et al., 2002) in ad-
dition to human evaluation. All BLEU scores are
calculated with sacreBLEU (Post, 2018)1.

3.3 Human Evaluation
To collect human rankings, we ran side-by-side
evaluation for overall quality and fluency. We hired
20 linguists and divided them equally between the
two evaluations. Each evaluation included 1,000
items with each item being rated exactly once. We
acquired only a single rating per sentence from the
professional linguists as we found that they were

1BLEU+case.mixed+lang.ende+numrefs.1+smooth.exp+
SET+tok.13a+version.1.4.12 SET ∈{wmt18, wmt19,
wmt19/google/ar, wmt19/google/arp, wmt19/google/wmtp}
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more reliable than crowd workers (Toral, 2020).
We evaluated the orig-en sentences correspond-
ing to the official WMT-19 English→German test
set (Barrault et al., 2019). Results in this natu-
ral translation direction are more meaningful as
pointed out by Zhang and Toral (2019), who show
that translating a ‘translationese‘ source is simpler
and should not be used for human evaluation.
Our human evaluation followed the protocol:

• Fluency: We present two translations of the
same source sentence to professional linguists
without showing the actual source sentence.
We then ask the rater wether they prefer one
of the outputs or rate them equally based on
fluency.

• Overall Quality: We present two translations
along with the source and ask the raters to
evaluate each translation on a 6-point scale. A
score of 6 will be assigned to translations with
‘perfect meaning and grammar‘, while a score
of 0 will be assigned to ‘nonsense/ no meaning
preserved‘ translations. The average over all
ratings yields the system’s final quality score.

4 Experimental Results

This section first presents our main result compar-
ing the same system tuned with BLEU on stan-
dard versus paraphrased references. We then break
down how system design choices impact each met-
ric differently. Throughout, we refer to scores com-
puted with standard references as BLEU, and those
computed with paraphrased references as BLEUP.

4.1 Overall Performance

We compare the performance of a system optimized
on newstest2018 with standard references (opt-on-
BLEU) with one optimized on newstest2018.orig-
en with paraphrased references (opt-on-BLEUP).
Both systems were developed using only new-
stest2018 data, keeping newstest2019 as a blind
test set. Table 1 summarizes the results on new-
stest2019. Details of how these two systems were
developed and how they differ are given in Sec-
tion 4.2.

The opt-on-BLEU system outperforms opt-on-
BLEUP by 5.2 BLEU points. Normally this would
lead us to discard opt-on-BLEUP. However, the
BLEUP scores tell a different story: opt-on-BLEUP
outperforms by 0.3 points, a potentially large im-
provement given the smaller natural range of this

metric. Under a significance test with random ap-
proximation (Riezler and Maxwell III, 2005), both
the BLEU and BLEUP differences are significant at
p<5e-18.

opt-on-BLEU opt-on-BLEUP
BLEU 45.0 39.8

BLEUP 13.4 13.7

human quality 4.27 4.72

human fluency 27.2% 63.8%

Table 1: BLEU scores and human ratings for
WMT newstest2019 English→German (original En-
glish sources). We optimized the system to per-
form best on either newstest2018 with standard refer-
ence translations (opt-on-BLEU) or newstest2018.orig-
en with paraphrased reference translations (opt-on-
BLEUP). BLEU differences are significant according to
random approximation (Riezler and Maxwell III, 2005)
with p<5e-18. Human score differences are significant
according to a Wilcoxon rank-sum test with p<5e-18.

Freitag et al. (2020) showed that BLEU scores
calculated on paraphrased references have higher
correlation with human judgment than those calcu-
lated on standard references. To verify their find-
ings, we ran a human evaluation for the two dif-
ferent outputs on 1,000 sentences randomly drawn
from newstest2019 (orig-en), as described above.
As shown in Table 1, opt-on-BLEUP is consistently
evaluated as better for both quality and fluency. To
measure the significance between the two ratings,
we ran a Wilcoxon rank sum test on the human
ratings and found that both improvements are sig-
nificant with p<e-18.

This experiment demonstrates that we can actu-
ally tune our MT system on paraphrased references
to yield higher translation quality when compared
to a typical system tuned on standard BLEU. Inter-
estingly, the BLEU score for the better system is
much lower, supporting our contention that BLEU

rewards spurious translation features (e.g. mono-
tonicity and common translations) that are filtered
out by BLEUP.

4.2 Analysing Performance

We now describe the individual model decisions
that went into the two final systems of Section 4.1.
To build a classical system optimized on BLEU with
standard references, we replicate the WMT 2019
winning submission (Ng et al., 2019) and examine
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the effect of each of its major design decisions.2

In particular, we are looking into the effect of data
cleaning, back-translation, fine tuning, ensembling
and noisy channel reranking. We examine the im-
pact of each method on BLEU and BLEUP. For our
experiments, we used newstest2018 as our devel-
opment set and newstest2019 as our held-out test
set. All model decisions (checkpoint, variants) are
solely made on newstest2018.

Experimental results are presented in Table 2.
As described in Section 3.1, we report 4 differ-
ent BLEU scores for newstest2018 (dev) and new-
stest2019 (test). In addition to reporting BLEU

score on the joint or the orig-de/orig-en halves of
the test sets, we also report BLEU scores that are
calculated on paraphrased references (BLEUP).

4.2.1 Data Cleaning
For data cleaning, we used CDS (Wang et al., 2018).
We trained a CDS model for English→German
taking news-commentary as the in-domain/clean
data set. We scored all parallel sentences with our
trained CDS model and kept the 70% highest scor-
ing sentences. Our experimental results suggest
that data cleaning is useful for all four types of
test sets and consistently improves over a baseline
system that is trained on raw parallel data. We con-
clude that data cleaning is useful for all systems
independently of which test set it will be optimized
for.

4.2.2 Back-Translation
We trained a strong German→English model on
the same parallel data (with flipped source/target)
and used that model to (back-)translate (BT) all
deduped German monolingual sentences from
NewsCrawl 2007-2018 into English. We filtered
sentences with a source-target ratio lower than 0.5
or higher than 1.5. We further run language identi-
fication and filtered out all backtranslations going
into the wrong language. We then oversample our
bitext data to match the size of the backtranslation
data and train a NMT model on the concatenation
of both datasets.

As previously reported by (Freitag et al., 2019;
Bogoychev and Sennrich, 2019), the original lan-
guage of the sentences within a test is crucial and
can lead to very different conclusions, in particu-
lar for back-translation systems. This difference
is visible when looking at the BLEU scores on the

2Our replication achieves 45.0 BLEU on newstest19, com-
petitive with the reference system at 42.7 BLEU.

standard references. While the BLEU score on orig-
de does improve by 7.5 points, the BLEU score
drops by 2.9 points on the orig-en half. Due to
the big gain on the orig-de half, BT also improves
the BLEU score on the joint set. The paraphrased
references were designed to overcome these kinds
of mismatches and they show a gain of 0.5 BLEU
points. We can conclude that back-translation helps
improve BLEU and BLEUP and we include BT for
systems that are optimized for both standard or
paraphrased BLEU scores.

4.2.3 Fine-Tuning
Similar to (Ng et al., 2019), we fine-tuned our back-
translated model on a concatenation of previous
WMT testsets (newstest{2013,2015,2016,2017})
and the clean in-domain news-commentary corpus.
In total, we fine-tuned the model on 330k sentences.
We kept all model parameters the same (batch size,
learning rate) and continued training on the fine-
tuned data for one epoch. The BLEU scores on the
standard references suggest a small improvement
of 0.3 BLEU on the joint test set. Interestingly, the
improvement is visible on the orig-en half by 0.7
points while the BLEU scores on orig-de actually
drop by 1.7 points. Nevertheless, BLEUP does
improve by 0.5 points, suggesting that fine-tuning
is especially helpful when measuring scores with
paraphrased references. Despite the small gain on
standard references, we include fine-tuning in both
our optimized systems.

4.2.4 Ensemble
Combining different predictions is a standard ap-
proach in MT to boost BLEU scores. We run en-
semble decoding with 4 previously built models.
In addition to using the 3 models described in Sec-
tion 4.2.1, 4.2.2, and 4.2.3, we build a second fine-
tuned model with the same approach, but different
initialization.

Although ensemble decoding improves the per-
formance on our standard references by up to 1.9
BLEU points, the quality is rated as lower by 0.3
BLEU points on the paraphrased references. We
suspect that using an ensemble for decoding favors
common, average language by promoting target
spans where all systems agree. Paraphrase transla-
tions actually downweight the importance of this
language, which seems important for agreeing with
human judgments (Freitag et al., 2020). This pro-
motion of average language and monotonic transla-
tion may explain the effectiveness of ensembling
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newstest2018 (dev) newstest2019 (test)
joint orig-de orig-en orig-en.p joint orig-de orig-en orig-en.p

(1) bitext 46.0 38.8 50.6 12.8 38.5 34.9 40.9 12.1
(2) + CDS 46.1 39.4 50.5 13.4 39.6 35.6 42.3 12.6
(3) + BT 47.2 45.3 47.7 13.6 40.9 43.1 39.4 13.1
(4) + Fine tuning 47.7 43.6 49.2 13.8 41.2 41.3 41.1 13.6
(5) + Ensemble of 4 49.8 45.4 52.1 13.7 43.1 42.1 43.6 13.3
+ reranking of (5) (opt on BLEU) 50.7 44.8 53.9 13.8 43.4 41.2 45.0 13.4
+ reranking of (4) (opt on BLEUP) 47.1 45.9 47.1 14.7 41.6 44.0 39.8 13.7

Table 2: BLEU scores for WMT 2019 English→German. The joint sets combine orig-en and orig-de subsets.
The orig-en.p sets use paraphrased references instead of standard references. Our experiments compared new-
stest2018.joint and newstest2018.orig-en.p for system tuning. The standard newstest2018 and newstest2019 sets
are newstest2018.joint and newstest2019.orig-en, respectively.

only for standard reference BLEU. Similar to the
WMT 2019 winning submission, we include the
ensemble approach in our system that is optimized
on the joint BLEU scores. However, we do not
include it in our system optimized on BLEUP.

4.3 Reranking
Finally, we extend the noisy-channel approach
(Yee et al., 2019) which consists of re-ranking the
top-50 beam search output of either the ensemble
model (when tuned for BLEU) or the fine-tuned
model (when tuned for BLEUP). Instead of using
4 features—forward probability, backward proba-
bility, language model and word penalty—we use
11 forward probabilities, 10 backward probabili-
ties and 2 language model scores. Different to (Ng
et al., 2019), we did not pick the re-ranking weights
through random search, but used MERT (Och,
2003) for efficient tuning.

The 11 different forward translation scores come
from different English→German NMT models that
are replicas of the previous described models (Sec-
tion 4.2.1, 4.2.2, and 4.2.3). The 10 backward
translation scores come from the same approaches,
but trained in the reverse direction. These 21 NMT
model scores are combined with 2 language model
(LM) scores. The first LM is trained on the Ger-
man monolingual NewsCrawl data, while the sec-
ond LM is trained on forward-translated English
NewsCrawl data. The first LM should assign high
scores to genuine German text, while the second
LM should assign high scores to translationese Ger-
man originating from English.

We first reranked the 50-best list generated by
the ensemble model with MERT on newstest2018.
Similar to the original WMT 2019 submission, the

BLEU scores on the joint and orig-en set increase.
This reranked output corresponds to our opt-on-
BLEU model. Next, we reranked the 50-best list
generated by the fine-tuned model with MERT on
newstest2018.orig-en with paraphrased references.
This led to further small increases in BLEUP, and
corresponds to our opt-on-BLEUP model.

In summary, optimizing on BLEUP leads us to
keep back-translation, even though evaluation with
standard English-original references would have
us drop it, and also leads us to drop the ensem-
bling step. Rescoring using MERT weights learned
with BLEU or BLEUP further separates the systems
according to these metrics.

5 Analysis

This section confirms the results from the previous
section with additional references for newstest2019
and illustrates the behaviour of our systems on in-
dividual sentences.

5.1 Alternative Reference Translations

Freitag et al. (2020) released an additional standard
reference translation (AR) and two ‘paraphrase as-
much-as-possible‘ reference translations for new-
stest2019 (WMT.p and AR.p). We used WMT.p in
all our above experiments; here we report BLEU

scores for all four available reference translations
in table 3. The BLEU improvements between the
two standard reference translations agree perfectly.
Similarly, the BLEUP improvements between the
two paraphrased references also coincide. This in-
dicates that by optimizing on BLEU or BLEUP we
have not somehow overfit to a specific set of refer-
ence translations or their paraphrases, but instead
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have molded our model to better match a style of
reference translation.

5.2 Translation Examples

This section presents translation examples from
our two differently optimized systems in Table 4.
The first 3 examples show sentences where opt-on-
BLEUP has higher translation quality than opt-on-
BLEU. One observation of (Freitag et al., 2020)
was that BLEU scores calculated on standard refer-
ences prefer monotonic translations. This is visi-
ble in our first translation example, where opt-on-
BLEU incorrectly translates the saying Tomorrow’s
a different beast into Morgen ist ein anderes Biest,
using an inappropriately monotonic strategy. On
the other hand, the opt-on-BLEUP system captures
the meaning of the source sentence and generates a
valid translation.

Another drawback of standard reference BLEU

is the preference for literal translation. This is
visible in our second example where the word cap
is translated into Kappe and tip into kippen. Both
are valid word-by-word translations, but do not
make much sense in this context. The third example
is another example of the monotonic translation
style of a regular tuned system. The opt-on-BLEU

translation is an incorrect word-by-word translation.
The opt-on-BLEUP system is able to introduce a
German natural sentence structure and generate a
flawless translation.

The last translation example is a loss for the
paraphrased-tuned system and demonstrates that
sometimes a more literal translation can be better.
Even though the word run can be translated into
Ansturm, it is not appropriate in this context and
the simpler translation Lauf is correct.

5.3 Matched n-grams

The BLEU scores calculated on the two different
references yield different conclusions. BLEU on
standard references evaluated opt-on-BLEU higher
by more than 5 BLEU points. BLEUP came to
a different conclusion and gave a higher score to
opt-on-BLEUP. In this section, we look at the n-
grams that contributed most to these different out-
comes. Those that contribute most to the difference
in BLEU across the two systems are:

• Er sagte, dass (He said that)

• , sagte er der (, he said the)

• stellte fest, dass (noted that)

These are all generic, high-frequency n-grams.
They are crucial for attaining high BLEU scores,
and tend to appear in translations that employ the
same structure as the source sentence. In contrast,
the n-grams that contribute most to the difference
in BLEUP are:

• Menschen ums Leben kamen (humans
died)

• Grossbritanien keine Steuern zahlen
(Great Britain pay no tax)

• von BBC Scottland (from BBC Scottland)

These are much less frequent sequences with more
semantic content.

6 Conclusions

Prior work has shown that BLEU measured on para-
phrased references (BLEUP) has better correlation
with human evaluation than BLEU measured on
regular references (BLEU) for the comparison of
existing systems (Freitag et al., 2019). Motivated
by this finding, we collected a development set of
paraphrased references and assessed BLEUP for
system development. This allowed us to evaluate if
the design choices of a modern neural MT system
impact BLEU and BLEUP differently, including
tuning a re-ranking noisy channel model to these
metrics. Our experiments followed the setup from
the winning newstest19 English→Germam entry
at WMT19 (Ng et al., 2019).

For design choices, we observe that BLEUP
seems to emphasize the importance of back-
translation even when test sets are source original.
On the other end, BLEUP seems to de-emphasize
the importance of ensembles, as the reliable pre-
diction of common language by ensembles is less
rewarded by this metric.

Our tuning experiments led to positive results.
In human evaluation, the system tuned on BLEUP
showed significant improvements in terms of ade-
quacy and even greater gains in terms of fluency
compared to the system tuned on BLEU. Exam-
ple translations indicate that the model tuned on
BLEUP produces noticeably less literal translations.
Our experiments also highlight a disconnect be-
tween regular BLEU and human evaluation: the
system tuned on BLEUP degrades standard BLEU

scores by over 5 points, while faring significantly
better in human evaluation. Paraphrased automatic
evaluation therefore seems to be a promising proxy
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newstest2019
WMT AR WMT.p AR.p

(orig-en) (orig-en) (orig-en.p) (orig-en.p)
(1) bitext 40.9 32.2 12.1 12.0
(2) + CDS 42.3 34.2 12.6 12.3
(3) + BT 39.4 33.6 13.1 13.0
(4) + Fine tuning 41.1 35.5 13.6 13.4
(5) + Ensemble of 4 43.6 36.0 13.3 13.0
+ reranking of (5) (opt-on-BLEU) 45.0 36.7 13.4 13.1
+ reranking of (4) (opt-on-BLEUP) 39.8 34.4 13.7 13.5

Table 3: BLEU scores for English→German newstest2019 for the additional references from (Freitag et al., 2020).

source Tomorrow’s a different beast.
opt on BLEU Morgen ist ein anderes Biest.

opt on BLEUP Morgen ist alles anders.
source You have to tip your cap.

opt on BLEU Sie müssen Ihre Kappe kippen.
opt on BLEUP Man muss den Hut ziehen.

source He averaged 5.6 points and 2.6 rebounds a game last season.
opt on BLEU Er durchschnittlich 5,6 Punkte und 2,6 Rebounds ein Spiel in der vergangenen Saison.

opt on BLEUP In der vergangenen Saison erzielte er im Schnitt 5,6 Punkte und 2,6 Rebounds pro Spiel.
source Thirty-two percent supported such a run.

opt on BLEU 32 Prozent unterstützten einen solchen Lauf.
opt on BLEUP 32 Prozent sprachen sich für einen solchen Ansturm aus.

Table 4: Example output for English→German for systems optimized on standard BLEU or BLEUP. Translations
for opt-on-BLEU tend to be more literal, and adhere closely to the source sentence structure.

for human evaluation when making design choices
for MT systems.

This research opens the question of whether
these results can be confirmed over a wide range of
language pairs. We also hope to achieve further im-
provements by refining the paraphrased evaluation
protocol.
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Abstract
Users of machine translation (MT) may want
to ensure the use of specific lexical terminolo-
gies. While there exist techniques for incor-
porating terminology constraints during infer-
ence for MT, current APE approaches can-
not ensure that they will appear in the final
translation. In this paper, we present both
autoregressive and non-autoregressive models
for lexically constrained APE, demonstrating
that our approach enables preservation of 95%
of the terminologies and also improves trans-
lation quality on English-German benchmarks.
Even when applied to lexically constrained
MT output, our approach is able to improve
preservation of the terminologies. However,
we show that our models do not learn to copy
constraints systematically and suggest a sim-
ple data augmentation technique that leads to
improved performance and robustness.

1 Introduction

Automatic post-editing (APE) aims to improve the
quality of the output of an arbitrary machine trans-
lation (MT) system by pruning systematic errors
and adapting to a domain-specific style and vocab-
ulary (Simard et al., 2007; Chatterjee et al., 2018).
Although previous work has shown the usefulness
of APE to prune errors by focusing on improving
the translation error rate (TER), few have studied
the effect of incorporating lexical constraints.

There are several use cases where such a sys-
tem would be beneficial. For example, content
providers meticulously curate lists of terminolo-
gies for their domains that indicate preferred trans-
lations for technical terms. Lexically constrained
APE would also be useful for cross-lingual infor-
mation retrieval. When displaying snippets from
retrieved documents, the query term should appear
in the translation output (if it does in the source) as
it can make relevance clear to the end user. Here,
the query serves as the term.

While recent approaches allow inference time
adaptation of NMT systems using these terminolo-
gies (Dinu et al., 2019; Post and Vilar, 2018), post-
editing translations with a generic APE system may
lead to dropped terms. A constraint-aware APE sys-
tem would allow to fix systematic translation errors,
while keeping the terminologies intact.

Inspired by Dinu et al. (2019), we consider a
range of representations which augment input se-
quences with constraint tokens and factors for use
in an autoregressive Transformer (AT) APE model.
Using this approach, the constraints are explicitly
represented in the encoder input sequence, and the
model learns to prefer translations that contain the
supplied terminologies during decoding. We also
explore the use of the Levenshtein Transformer
(LevT) (Gu et al., 2019), a non-autoregressive
Transformer (NAT) model. The LevT model ap-
plies neatly to the APE task since the decoder can
be initialized with an incomplete sequence to be
refined. Additionally, multiple corrections can be
made simultaneously, yielding a decoding speedup
over autoregressive models.

We then show that constrained APE improves
translation quality and terminology preservation
on top of both unconstrained and constrained MT.
While both constrained and unconstrained APE
models perform similarly on reducing systemic er-
rors in the MT output, they differ in their ability to
preserve terminology constraints. When applying
unconstrained APE on top of constrained MT, we
find a 12.6% relative drop of supplied terminology
constraints as compared to a fully constrained MT
to APE pipeline.

We experiment extensively with variations of
both AT and LevT models, testing on both PBMT
and NMT English to German WMT APE tasks
(Chatterjee et al., 2018). Under all scenarios, the
model performs post-editing while satisfying ter-
minology constraints when supplied.
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Our evaluation of both constrained AT and NAT
models on PBMT and NMT APE benchmarks
shows that both models correctly translate more
than 95% of terminology constraints, with the NAT
model achieving the highest coverage of terminolo-
gies at the expense of post-editing quality.

Finally, using constraints constructed with syn-
onyms and antonyms, we show that our models do
not learn to copy constraints systematically, and
introduce a simple data augmentation strategy to
improve the preservation of unusual constraints.

To summarize, our contributions are as follows:

1. We propose the terminology constrained APE
task and evaluate several AT and LevT model
variants for incorporating lexical constraints.

2. We empirically show that constrained APE is
necessary to preserve terminology constraints
in a MT to APE pipeline.

3. We analyze the robustness of the constraint
translation behavior and suggest a simple data
augmentation technique that both improves
translation quality and increases the number
of correctly translated terms.

2 Related Work

2.1 MT with Terminology Constraints

Integrating terminology constraints into translation
can be divided into two approaches: constrained
decoding and input sequence modification.

Constrained decoding modifies the decoding pro-
cess to enforce the generation of the specified termi-
nologies. This includes methods that modify beam
search, such as grid beam search (Hokamp and Liu,
2017) and dynamic beam allocations (Post and Vi-
lar, 2018). While these approaches are effective
in including terminologies, they come with an in-
crease in inference time due to the added overhead
in the search algorithm.

The LevT (Gu et al., 2019), which uses a non-
autoregressive decoding procedure, can initialize
its decoder with a partial or incomplete output se-
quence. By initializing the decoder output with ter-
minology constraints, Susanto et al. (2020) train a
LevT model to perform constrained decoding. Un-
like constrained search methods in autoregressive
models, this initialization technique does not add
any significant overhead to the decoding process.
When modified to disallow deletion of terms and
insertion between consecutive terminology tokens,

LevT is able to retain all terminologies without
affecting the performance and speed.

Alternatively, Dinu et al. (2019) propose modi-
fying the encoder input sequence to represent ter-
minology constraints. During training, the model
learns to identify constraints in the input sequence,
and translate them appropriately during decoding.
This approach has the benefit of not adding addi-
tional overhead during inference.

2.2 Automatic Post-Editing

The APE task has gone through many iterations,
since it was originally proposed by Simard et al.
(2007). Initially, the task was to improve an un-
known phrase-based machine transition (PBMT)
system. An additional task to fix errors of an NMT
system was introduced at WMT 2018 (Chatterjee
et al., 2018).

For the APE tasks, the use of the multi-source
variant of the neural encoder-decoder model is
the most popular approach (Bojar et al., 2017),
with the Multi-source Transformer (MST) instanti-
ation (Junczys-Dowmunt and Grundkiewicz, 2018)
achieving state-of-the-art results in 2018. Based
on the AT model (Vaswani et al., 2017), the MST
model consists of two Transformer encoders and
a single decoder. The source sentence and the MT
system output are fed separately to the two en-
coders, where the outputs are concatenated and
then fed into the decoder to perform post-editing.

Recent work has explored alternative architec-
tures for APE. The winner of 2019 APE tasks
(Lopes et al., 2019), for example, uses a BERT-
based encoder and decoder. Gu et al. (2019) both
introduce the LevT model and demonstrate its util-
ity on an APE task.

3 Constrained APE

The task of APE is to correct systematic errors in
an MT system output. An APE model takes as
input two sequences: the source language sentence
to be translated and the translation of this sentence
into the target language by an MT system. The
intended output is a corrected version of the MT
system’s initial translation (Simard et al., 2007).

Constrained APE allows for the specification of
terminology constraints: a translation for one or
more phrases in the source language input may be
pre-specified as additional input. The constrained
APE model must use the supplied terminology con-
straints when performing the APE task.
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Source (x) The Gradient tool also provides most of the same features as the Gradient panel .

Append (x+) The0 Gradient0 tool0 also0 provides0 most0 of0 the0 same0 features1 Funktionen2

as0 the0 Gradient0 panel0 .0
Replace (x−) The0 Gradient0 tool0 also0 provides0 most0 of0 the0 same0 Funktionen2 as0 the0

Gradient0 panel0 .0

MT (γ) Das3 Verlaufswerkzeug3 bietet3 außerdem3 die3 meisten3 der3 gleichen3 Merkmale3
wie3 das3 Verlaufsbedienfeld3 .3

Post-Edit (y) Das Verlaufswerkzeug bietet fast dieselben Funktionen wie das Verlaufsbedienfeld .

Figure 1: An example of the inputs and output for the constrained APE task. Source is the source sentence. Post-
Edit is the corrected MT sentence. We show the Append and Replace method to incorporate terminologies on the
source side. Factors indicated for each word as source word (0), source constraint (1), target constraint (2), and
MT word (3). The terminology pair for this example is (features, Funktionen).

Formally, let x = [x1, . . . , xm] and γ =
[γ1, . . . , γn] be the source language sentence and
the initial MT translation respectively. The to-
kens xi and γi are drawn from the source and tar-
get language vocabularies S and T respectively.
The target post-edited sentence is a sequence y =
[y1, . . . , yo], with tokens yi also drawn from T .

We are also given a series of t translation con-
straints, C =

{(
x̌(1), y̌(1),

)
, . . . ,

(
x̌(t), y̌(t),

)}
,

where each constraint
(
x̌(i), y̌(i)

)
∈ S∗×T ∗ is a tu-

ple of source language phrase, x̌(i) = [x̌1, . . . , x̌j ] ,
and its desired translation, y̌(i) = [y̌1, . . . , y̌k], into
the target language.

The goal of the constrained APE task is to learn
a mapping of x,γ, and C to the target post-edited
translation y. Crucially, when a source side con-
straint x̌(i) matches a sub-sequence in x, it is re-
quired that the sub-sequence be translated as y̌(i).
See Figure 1 for an example.

4 Models

While there are existing models to address the APE
task, and the lexical constrained MT task, it is not
clear how to represent lexical constraints for APE
models which, unlike MT models, take two se-
quences as input. We propose several techniques
to incorporate constraints as additional inputs to
the APE encoder by combining the input sequence
modification used in constrained MT (Dinu et al.,
2019) with the MST method of (Tebbifakhr et al.,
2018). For decoding, we experiment with both the
AT and the LevT decoders. The LevT decoder can
additionally take advantage of different decoder
initialization strategies for constrained decoding.

We first briefly show how we encode terminol-
ogy constraints in the input sequence, before de-

Model Input Init.

MST x,γ –
MST Append x+,γ –
MST Replace x−,γ –

LevT x γ
LevT Append x+ γ
LevT Replace x− γ

MS LevT x,γ y̌1, . . . , y̌(t)

Figure 2: Setup for the models by the input and initial-
ization at inference.

scribing how they are incorporated into the MST
and LevT APE models specifically.

4.1 Encoding Lexical Constraints for APE in
the Input Sequence

In the APE setting, the input to the model is the
source language sentence x and its initial MT trans-
lation γ. We also need to represent in x the transla-
tion constraints C.

For clarity, we describe the case of represent-
ing a single translation constraint (x̌, y̌) where
x̌ = [x̌1, . . . , x̌j ] is a source language constraint
and y̌ = [y̌1, . . . , y̌k] is its target language transla-
tion. Our approach trivially generalizes to multiple
constraints. We represent the constraint (x̌, y̌) in x
in one of two ways. Either by appending the target
language constraint y̌ after the occurrence of x̌ in
the input sequence, or by replacing occurrences of
x̌ in x with y̌.

For example, if we had the constraint, (x̌, y̌) =
([x̌1, x̌2] , [y̌1]) and the source input x =
[x1, x2, x3, x4], with [x̌1, x̌2] = [x2, x3], we would
obtain the following input sequences for the append
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and replace methods:

• (Append) x+ = [x1, x2, x3, y̌1, x4]

• (Replace) x− = [x1, y̌1, x4] .

To further differentiate the constraint terms from
other tokens in the source sentence, a “source fac-
tor” is associated with each input token. The source
factor is equal to 1 or 2 to indicate a source or target
side terminology constraint, while 0 indicates an
unconstrained source token. For the above exam-
ples, we would obtain the following source factors:

• (Append) s+ = [0, 1, 1, 2, 0]

• (Replace) s− = [0, 2, 0] .

The source input sequence and source factor se-
quence are separately embedded and concatenated
before they are fed into the encoder. See Figure 1
for examples of the append and replace methods
applied to a source sentence.

We now describe how we use these modified in-
put sequences in the MST and LevT models. See
Figure 2 for an overview of the the proposed mod-
els and their configuration.

4.2 Multi-source Transformer
The input to an APE model is a pair of sequences,
the source sentence and the MT output to be post-
edited. To accommodate these two sequences, we
use the MST model of Tebbifakhr et al. (2018),
which uses a separate Transformer to encode each
sequence. The outputs of each encoder are concate-
nated and attended to by the decoder.

We augment the encoder for the source sentence
with the append and replace methods. Figure 1
shows an example of the inputs for the append
and replace methods, x+ and x− respectively. To
account for the additional input of MT, γ, for the
source factors, we use 3 for each token in γ. For
Byte-Pair Encoding (BPE) (Sennrich et al., 2016),
the corresponding source factor token is applied for
all subword units.

We train three variants based on MST: an un-
constrained version as the baseline (MST), and
two constrained versions using the append (MST
Append) and replace (MST Replace) methods as
described in subsection 4.1.

4.3 Levenshtein Transformer
The LevT follows the Transformer encoder-
decoder architecture. However, instead of a regular

Transformer decoder, the model uses three consec-
utive layers to simulate the edit operations. The
first layer predicts whether each token should be
deleted or kept. The second layer predicts how
many placeholder tokens to insert between every
two consecutive tokens. The final layer then pre-
dicts the actual target token for each placeholder.

One benefit of using the LevT is its ability to
initialize the decoding process with an arbitrary se-
quence. The first iteration of the decoding process
is typically initialized with y0 = [<s>,</s>], but
it is possible to initialize it with MT (i.e. γ) and
allow it to be subsequently refined.

Since LevT retains the single encoder and de-
coder structure, the changes to incorporate lexical
constraints are straightforward; we apply the ap-
pend and replace methods to the encoder input.

We also try augmenting the LevT similarly to the
MST. Here, we have two encoders for the source,
x, and MT, γ, respectively. During inference, we
initialize the decoding string with target-side con-
straint terms, y̌, similar to the constrained decoding
setup in Susanto et al. (2020).

For multiple constraints, we sort the target side
terms y̌(i) by the order of the occurrence of x̌(i)

in the source x. When source and target word or-
der diverge, we hope that the model will learn to
reorder constraints correctly, but leave experimen-
tation with constraint ordering for future work.

We train four variants of the LevT model. An
unconstrained baseline model (LevT), and two con-
strained variants, with the same architecture as
the base LevT, that incorporate constraints in the
source using the append (x+) (LevT Append) and
replace (x−) (LevT Replace) methods described
in subsection 4.1. The decoder initialization for
these models is the MT sentence, γ, that needs to
be edited. The final variant has a multi-source en-
coder, where x and γ are fed into separate encoders.
The decoder in this case is initialized with the target
sequence of the terminology constraint(s).

5 Data

5.1 APE Datasets

We use two standard English-to-German APE
benchmark datasets, WMT18 PBMT (Chatterjee
et al., 2018) and WMT19 NMT (Chatterjee et al.,
2019). Both datasets are in the IT domain. Each
example from these datasets consists of three se-
quences: (1) the source sentence x, (2) its MT
output γ, and (3) its post-edited target y.
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Dataset
# of Triplets

Term% TER BLEU
Train Valid Test

PBMT
artificial 4M 4,390,180 1,000 - - - -

artificial 500K 526,368 - - - - -
WMT’18 APE 24,000 2,000 2,000 88.83 24.57 62.39

NMT
eSCAPE NMT 4,999,102 1,000 - - - -
WMT’19 APE 13,442 1,000 1,023 89.52 16.92 74.60

Table 1: Statistics for data used. Term%, TER, and BLEU are provided for do-nothing case of test set.

Since the official collections are relatively small,
we augment them with large synthetic datasets
for pretraining: artificial (Junczys-Dowmunt and
Grundkiewicz, 2016) and eSCAPE (Negri et al.,
2018). The artificial dataset is generated using
round-trip translation of two PBMT systems. It
is already cleaned and tokenized. The eSCAPE
dataset, containing 7,258,533 triplets, is created
using NMT generated output from various parallel
corpora. The data for eSCAPE is noisy, and we
follow Lee et al. (2019)’s procedure to filter the
dataset, which results in around 5 million triplets.
We then tokenize the filtered data using Moses
(Koehn et al., 2007).1 For pretraining on the syn-
thetic corpora, we set aside 1,000 randomly sam-
pled triplets as our validation set. Table 1 sum-
marizes the statistics of both the evaluation and
pretraining datasets.

For both tasks, we use the same preprocessing
steps. After tokenization, we truecase the data
using Moses. We then use BPE with 32,000 merge
operations on the joined vocabulary of source and
target language.

5.2 Terminology Dataset
We create terminology sets for each APE dataset us-
ing Wiktionary.2 We follow the procedure of Dinu
et al. (2019), finding term translation pairs (x̌, y̌)
in Wiktionary such that x̌ is present in the source
sentence x and y̌ is present in the post-edited target
sentence y. We ignore stop words that appear on
the source and target side. To include more morpho-
logical variations, we include matches on stemmed
versions of x̌ and y̌ using Snowball stemming.3

We recover the unstemmed words from the pairs
to be included in the terminology dataset. In order

1www.statmt.org/moses/
2We use the latest dump as of 06/18/2020
3www.nltk.org/_modules/nltk/stem/

snowball.html

for the model to perform the APE task well when
no constraints are supplied, we keep only 25% of
matched terminology constraints (i.e. we remove
75% of constraints at random).

We split the terminology dataset into training and
test sets so that terminology constraints provided
at test time are not seen during training. We only
use the training set for the training corpora of APE
datasets, and use the test sets of the terminology on
the validation and test set of the APE datasets. See
Table 2 for statistics of terminology coverage on
the training, validation, and test splits.

With the given MT system, we can evaluate on
terminology percentage for the do-nothing case,
which is shown in Table 1. The original MT model
already achieves a high term percentage of around
90% for PBMT and NMT tasks.

6 Experiments

We use the FAIRSEQ toolkit (Ott et al., 2019) for
implementing the MST and extending the LevT.4

We evaluate the models on translation error rate
(TER) (Snover et al., 2006) and BLEU (Papineni
et al., 2002) using the official evaluation script5 for
analyzing the post-editing performance. We also
compute the percentage of target language term
constraints present in the output (Term %) to mea-
sure the performance of the constrained models.

6.1 Constrained MT-to-APE Cascades

In our first experiment, we attempt to demonstrate
the utility of constrained APE when applied to con-
strained MT. That is, we have some terminology
constraints that we want to preserve throughout
the application of MT and subsequent APE. We

4Our code is publicly available at https://github.
com/zerocstaker/constrained_ape.

5www.dropbox.com/s/5jw5maariwey080/
Evaluation_Script.tar.gz?dl=0
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Dataset
# of Triplets with Term. Avg # of Term.

Train Valid Test Train Valid Test

PBMT
artificial 4M 1,605,075 345 - 1.25 1.25 -

artificial 500K 207,225 - - 1.27 - -
WMT’18 APE 6,037 834 528 1.15 1.24 1.34

NMT
escape NMT 1,768,587 335 - 1.28 1.30 -

WMT’19 APE 3,450 262 408 1.16 1.14 1.25

Table 2: The number of training/validation/test instances that have at least one terminology constraint and the
average number of terminology constraints for those instances.

conjecture that unconstrained APE applied on top
of constrained MT will potentially discard or re-
translate previously translated constraints.

We experiment with all possible pipelines of MT
to APE, i.e. the product of {MT,Const. MT} ×
{No APE,APE,Const. APE} with six total
pipelines possible.

MT Models To obtain MT models for this ex-
periment we train both a constrained and uncon-
strained AT MT model using the default FAIRSEQ

Transformer hyperparameters and use the embed-
ding size of 16 for the source factor embedding. We
follow the settings of Dinu et al. (2019), training an
unconstrained transformer and a constrained model
with append method to perform English-to-German
translation using the Europarl and News Commen-
tary data, and using the WMT 2013/2017 test set
as validation and test set respectively. The prepro-
cessing steps follows that of the APE datasets.

For the constrained MT model we used the ap-
pend input modification method to make the model
constraint aware. Terminology constraints are gen-
erated according to the method described in sub-
section 5.2. Dinu et al. (2019) also released their
Wiktionary terminology set (Wikt975)6 and we also
show evaluation results using this terminology col-
lection. We report BLEU and terminology cover-
age (Term %) for our MT models on the WMT
2017 test set in Table 3.

APE Models We use the MST and the append
method as the unconstrained APE and constrained
APE respectively. We evaluate the MT to APE
pipelines using the WMT’19 APE test set, replac-
ing the provided MT in the triplet with the outputs
from our unconstrained or constrained MT models.

6https://github.com/mtresearcher/
terminology_dataset

Our Term. Wikt 975

MT Term% BLEU Term% BLEU

AT 71.70 23.76 74.78 24.00
AT App. 93.62 24.62 93.07 24.14

Table 3: Translation result of vanilla and lexically con-
strained translation.

We train the APE models using the eSCAPE cor-
pus, where 1,000 triplets are used as validation set.
We use the default FAIRSEQ Transformer hyper-
parameters. For the constrained APE, we use the
embedding size of 16 for the source factor tokens.

6.2 Benchmark APE Tasks

The APE models are trained in two step fashion.
First, a general APE system is trained using a syn-
thetic dataset until convergence. Then the model
is refined on the official dataset. For the PBMT
task, we follow the training procedure of Gu et al.
(2019). The model is pretrained on the artificial 4M
dataset, and fine-tuned on the joined dataset of the
500K artificial dataset and the 10 times up-sampled
official PBMT data. For the NMT task, we pretrain
on eSCAPE and fine-tune on the official NMT data.

We use the default Transformer parameters for
the MST variants, with an embedding size of 16 for
source factors of the constrained APE models. For
the LevT models, we follow the same setup and
hyper-parameters as described in Gu et al. (2019).

We compare our models to the do-nothing case,
where the output of the MT, γ, is treated as the pre-
dicted post-edited sentence ŷ. The unconstrained
variant also serve as a basis for comparing the per-
formance of the constrainted APE models. We also
compare our models to the winning system for the
tasks, MS UEdin (Junczys-Dowmunt and Grund-
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Pipeline Term%↑ TER↓ BLEU↑
MT 45.33 70.78 15.28

cMT 86.33 70.24 15.47
MT → APE 55.35 59.56 22.87

cMT → APE 77.22 59.78 23.03
MT → cAPE 80.18 58.70 23.95

cMT → cAPE 88.38 59.77 23.08

Table 4: Result of different combinations of MT and
APE systems. Constrained MT and APE are indicated
cMT and cAPE respectively.

kiewicz, 2018) for PBMT 2018 and Unbabel BERT
Lopes et al. (2019) for NMT 2019.

7 Results and Discussions

7.1 Constrained MT-to-APE Cascade

Table 4 shows the result of the various combina-
tions of MT and APE systems. Since the MT sys-
tem is trained on news/parliamentary proceedings
and not on the IT domain of the APE data, the
translation quality is relatively low. Nevertheless,
the constrained MT can include almost twice as
many terminologies as the original model. Both
APE systems improve the quality of the MT out-
puts, with constrained APE performing slightly
better. However, constrained APE excels at includ-
ing terminologies, as it consistently increases the
terminology percentage from the previous MT out-
put. When supplied with a constrained MT, the
vanilla APE actually decreases the percentage of
correct terminologies by 9% (86.33% to 77.22%),
whereas the constrained APE model can increase it
by 2% (86.33% to 88.38%).

7.2 Benchmark APE on PBMT Output

Table 5 shows the results on the PBMT task. All
MST variants improve from the do-nothing case,
where the output is unchanged, i.e.γ = ŷ. Using
either the append or replace methods shows simi-
lar improvements in Term%, increasing about 7%
points absolutely over the do nothing case. The
terminology aware MST models also see small
decreases in TER and small increases in BLEU
relative to the unconstrained MST model. These
results are encouraging as it shows that introducing
terminology constraints does not interfere with the
APE system’s ability to fix systematic errors.

We were unable to reproduce the result by Gu
et al. (2019); we see only small improvements with

Models Term%↑ TER↓ BLEU↑
Do-nothing 88.48 24.25 62.99
MS UEdin 88.70 18.01 72.52

MST 90.11 19.34 70.44
MST Append 95.54 18.97 70.63
MST Replace 95.43 19.17 70.34

LevT 90.76 24.21 63.47
LevT App. 90.98 23.88 64.97
LevT Rep. 91.41 23.94 64.96
MS LevT 97.50 20.39 68.57

Table 5: Results for PBMT 2018.

models Term%↑ TER↓ BLEU↑
Do-nothing 90.22 16.84 74.73
Unbabel BERT 89.98 16.06 75.96

MST 90.66 16.46 75.61
MST Append 94.08 16.62 75.16
MST Replace 94.08 16.56 75.39

LevT 90.41 17.28 74.17
LevT App. 91.59 17.32 74.25
LevT Rep. 90.61 17.14 74.46
MS LevT 98.04 17.71 73.64

Table 6: Results for NMT 2019.

the LevT models relative to the do-nothing case.
Additionally, the append and replace variants yield
only small increases in Term% but are around 4-5%
points behind the equivalent MST model. The MS
LevT, however, achieves the highest terminology
percentage of all models, while slightly underper-
forming the MST models on TER and BLEU.

None of our proposed models beat the SOTA
baseline for this task on TER or BLEU, but our
best model on TER, MST Append, is less than 1
percentage point worse in TER. At the same time,
MST Append successfully translates 6.8% more
terminology constraints than the SOTA baseline.

7.3 Benchmark APE on NMT Output

Table 6 shows the result of the NMT task. This is a
more difficult post editing task as the machine trans-
lated text from NMT systems is of a higher quality
than PBMT systems, and the official training cor-
pus is smaller than that of PBMT APE (Chatterjee
et al., 2018). As further evidence of the difficulty
of this task, the winning system of the WMT2019
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Original

Source (x) increasing the magnification can also make reshaping easier and more accurate .
MT (γ) durch das Vergrößern der Vergrößerung können Sie außerdem das Umformen von Formen

und präziser steuern .
Post-Edit (y) durch das Vergrößern der Vergrößerung können Sie außerdem das Umformen von Formen

präziser steuern .
MST Append Durch das Vergrößern der Vergrößerung können Sie außerdem das Umformen von Formen

erleichtern und präziser steuern .
MS LevT Durch die zunehmende Vergrößerung können Sie außerdem das Umformen von Formen und

präziser steuern .

Synonym

Post-Edit (y) durch das Vergrößern der Magnifizierung können Sie außerdem das Umformen von Formen
präziser steuern .

MST Append durch das Vergrößern der Magnifizierung können Sie außerdem das Umformen von Formen
vereinfachen und präziser steuern .

MS LevT eine Erhöhung der Magnifizierung kann außerdem das Umformen von Formen und präziser
erleichtern .

Antonym

Post-Edit (y) durch das Vergrößern der Verkleinerung können Sie außerdem das Umformen von Formen
präziser steuern .

MST Append durch das Vergrößern der Vergrößerung können Sie außerdem das Umformen von Formen
vereinfachen und präziser steuern .

MS LevT durch die zunehmende Verkleinerung können Sie außerdem das Umformen von Formen und
präziser steuern .

Figure 3: Example of the outputs by the MST Append and MS LevT when a synonym and an antonym is supplied
in place of the original terminology pair (magnification - Vergrößerung). The synonym Magnifizierung (magnifi-
cation) and antonym Verkleinerung (diminishment) is used.

Source (x) if you use the Image Processor , you can save the files directly to JPEG format in the size that you want
them .

Post-Edit (y) wenn Sie den Bildprozessor verwenden , können Sie die Dateien direkt im JPEG-Format in der gewünschten
Größe speichern

Synonym wenn Sie den Bildprozessor verwenden , können Sie die Dateien direkt im JPEG-Format in der gewünschten
Größe sichern

Antonym wenn Sie den Bildprozessor verwenden , können Sie die Dateien direkt im JPEG-Format in der gewünschten
Größe löschen

Figure 4: Example of data augmentation. The original term pair is (save, speichern). We replace the target
terminology speichern with the synonym sichern (to store for future use) or the antonym löschen (to delete).

APE shared task is able to achieve a mere 0.78
point decrease in TER.

The two terminology-aware MST models (ap-
pend and replace) are able to improve Term% over
the baseline, at the cost of a slight increase in TER
and decrease in BLEU, but both are better than
doing nothing. The LevT and its variants perform
worse than doing nothing in terms of TER and
BLEU, but has a small gain in Term%. The MS
LevT again achieves the highest Term% but does
worse than the do-nothing case on TER and BLEU.

8 Analyzing Constraint Translation
Behavior

Terminology constrained APE aims to add some
degree of user control over the APE process with-
out destabilizing the general post-editing behavior
of the decoder. However, the imposition of rare
or unusual terminology constraints will necessar-

ily be in conflict with the decoder language model,
which will give higher probabilities to terminology
translations found frequently in the training data.

In practice, a user may specify a terminology
constraint that is not well represented in the train-
ing distribution. For example, a user may want a
product description translated using location spe-
cific brand names or marketing copy. Ideally, a
terminology constrained model would reliably pro-
duce these terms and use them appropriately even
if they do not rank highly by the decoder.

Additionally, it is desirable that the addition
of terminology constraints does not lead to large
changes in the model’s output. Since terminology
constraints are only bound to a word or phrase, the
model should only need to make minimal changes
between the unconstrained and constrained output.
Large changes in output may make it harder for a
user to anticipate the effects of a constraint which
may make constrained APE less useful in practice.
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WMT’19 APE Augmentation

Term%↑ TER↓ BLEU↑ Term%↑ TER↓ BLEU↑
Do-nothing 90.22 16.84 74.73 1.66 24.77 62.56
MST Append 94.08 16.62 75.16 7.47 24.92 61.80
MST Append + pretrain 94.08 16.46 75.25 18.67 23.70 64.38
MST Append + pretrain + ft 93.85 16.29 75.38 43.15 21.85 67.41

MS LevT 98.04 17.71 73.64 43.57 33.07 54.33
MS LevT + pretrain 99.09 17.18 74.22 52.70 29.79 60.24
MS LevT + pretrain + ft 98.41 17.00 74.66 63.07 29.66 60.47

Table 7: Results with data augmentation for the official APE data, as well on the augmented dataset consisting of
synonyms and antonyms generated from Wiktionary. The size of the additional data for test set is 236.

Synonym Antonyms

Term%↑ TER↓ BLEU↑ Term%↑ TER↓ BLEU↑
MST Append 7.33 1.31 97.80 8.88 1.06 98.01
MST Append + pretrain 16.75 2.81 94.19 28.88 3.81 92.94
MST Append + pretrain + ft 38.74 5.48 88.86 66.66 6.46 87.50

MS LevT 41.36 19.57 70.60 57.77 17.56 74.25
MS LevT + pretrain 47.12 18.33 72.27 82.22 13.28 79.42
MS LevT + pretrain + ft 43.97 18.25 73.25 77.78 11.99 80.41

Table 8: Structural change from the output of constrained models using the correct terminology. We split the
dataset by synonyms and anotnyms, consisting of 191 and 45 samples respectively.

We refer to this behavior as systematic copy-
ing, i.e. the model should behave in a transparent
and stable way, enforcing terminology constraints
even when they strongly disagree with the decoder
language model, while only making minimally nec-
essary changes in the output to do so.

By harvesting terminology constraints from the
training data, we run the risk that the model simply
learns to draw some translation hints from the sup-
plied terminology constraints, but does not actually
learn this systematic copying behavior. That is, it
never truly sees an out-of-sample constraint that
is extremely unlikely from the perspective of the
decoder language model.

To test whether our proposed models indeed
learn this systematic copying behavior we perform
a qualitative experiment, comparing model outputs
when supplying different constraints for a source
word, by varying whether the target language con-
straint was (a) the original target language con-
straint specified in the test set, (b) a target language
synonym of the original constraint term, (c) a target
language antonym of the original constraint term,
or (d) a totally random term in the target language.

While antonym and random term constraints
might not seem to correspond to realistic use cases,
they let us to examine the effects of specifying a
constraint where the source and target language
terms are extremely semantically divergent. Addi-
tionally, they simulate scenarios where translations
for names vary dramatically by region. For exam-
ple, the cleaning product called “Mr. Clean” in the
U.S. is called “Meister Proper” in Germany.

As can be seen in Figure 3, our qualitative explo-
ration reveals that synonym, antonym, and random
terminology constraints are frequently not included
in the output. For example the MST model fails to
generate the antonym Verkleinerung. This suggests
that target side constraints that are unseen during
training may be ignored by the model, and that
the models are not learning to systematically copy
arbitrary constraints.

8.1 Data Augmentation Experiment

The results of our qualitative exploration suggests
that the model would benefit from seeing more
semantically divergent terminology constraints dur-
ing training. To that end, we propose a data aug-
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mentation experiment to increase the robustness
of the APE models. We create novel training in-
stances by replacing the target language term con-
straint with either a synonym or antonym (using
Wiktionary), as well as replacing it’s occurrence
in the post-edited target translation. This results
in 837,127 additional samples for eSCAPE corpus,
and 2587 additional samples for official NMT data.
See Figure 4 for examples.

We then train MST append and MS LevT with
the augmented pretraining corpus. We experiment
with using augmented data only for pretraining
(pretrain) and for the fine-tuning process (ft). The
result can be seen in Table 7.

Interestingly, on the WMT19 test set, the data
augmentation helps with TER and BLEU while
having only a slight effect on Term%. For the
LevT, data augmentation helps all metrics.

Since the WMT19 APE test data contains few
unusual constraints, the effect of the augmented
data is relatively small. When we create antonym
and synonyms examples from the WMT19 APE
test data, we see fairly positive trends, with pretrain-
ing and fine-tuning yielding additive reductions in
TER and gains in BLEU. This suggests that the
augmentation method has a positive effect on the
systematic copying behavior of the model.

8.2 Post-Edit Stability

To quantify the stability of the APE models, we
compare the constrained APE output when given
a target side synonym or antonym to the output
of that same model under the original test set con-
straint using TER and BLEU. Under this setting,
higher BLEU and lower TER indicate that the
model makes minimal changes when inserting a
semantically divergent constraint. We also report
Term% to show how often the terminology was
correctly translated given the input. We refer to a
model with high Term% and BLEU but low TER
as a stable model. Results of this experiment are
shown in Table 8.

There are several takeaways from this experi-
ment. First, the LevT TER scores are higher on
average than the MST model suggesting that the
LevT model is less stable, producing different trans-
lations for each target side constraint change.

Second, as sensitivity to constraints increases
(i.e. Term% goes up), TER generally goes up, im-
plying that models make more structural changes
to the overall output in order to accommodate con-

straints. Future work on refinement tasks like APE
may benefit from including an explicit objective
function to encourage output stability.

Finally, synonyms are harder to translate than
antonyms (i.e. Synonym Term% is lower than
Antonym Term% for all models/training config-
urations). This may be because the original target
side constraints are better represented in the de-
coder language model and are likely have higher
probability than a synonym when either could be
plausibly used in the same context. Antonyms may
be less likely and therefore easier to override the
preferences of decoder.

9 Conclusion and Future Work

This work introduces the terminology constrained
APE task and several MST and LevT model vari-
ants for incorporating lexical constraints during
post-editing. Furthermore, we show that con-
strained APE is necessary for preserving lexical
constraints in a MT to APE pipeline. Evaluations
on standard APE benchmarks show that terminol-
ogy constraints are satisfied while improving the
original MT quality. Finally, we show that the
constrained APE models do not learn a robust sys-
tematic copying behavior, and propose a data aug-
mentation method to help mitigate this issue. In
future work, we hope to explore ways of modifying
model architecture or training algorithms to further
improve the systematic copying behavior.
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Stanchev, Peter, 928
Stanovsky, Gabriel, 357
Stewart, Craig, 911
Stewart, Darlene, 156, 1112
Stojanovski, Dario, 1084
Stokowiec, Wojciech, 326



Strohriegel, Ursula, 346
Sumita, Eiichiro, 218
Sun, Shiliang, 293, 797, 1056
Sun, Shuo, 1010
Suzuki, Jun, 145
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