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Abstract
We introduce a purely monolingual approach
to filtering for parallel data from a noisy cor-
pus in a low-resource scenario. Our work
is inspired by Junczys-Dowmunt (2018), but
we relax the requirements to allow for cases
where no parallel data is available. Our pri-
mary contribution is a dual monolingual cross-
entropy delta criterion modified from Cynical
data selection (Axelrod, 2017), and is compet-
itive (within 1.8 BLEU) with the best bilingual
filtering method when used to train SMT sys-
tems. Our approach is featherweight, and runs
end-to-end on a standard laptop in three hours.

1 Introduction

The 2018 WMT shared task on parallel corpus fil-
tering (Koehn et al., 2018) required participants to
select subcorpora of 10M and 100M words from
an extremely noisy 1B word German-English par-
allel corpus from Paracrawl (Buck and Koehn,
2016). These subcorpora were then used to train
machine translation systems, and evaluated on
held-out test sets. The best submission (Junczys-
Dowmunt, 2018) comprised:

1. a filter based on language ID

2. a dual conditional cross-entropy filter to de-
termine whether the halves of a sentence pair
were of roughly equal translation probability

3. a cross-entropy difference filter to prioritize
in-domain sentence pairs

The 2019 WMT shared task on parallel corpus
filtering (Koehn et al., 2019) was set for low-
resource conditions, with the goal of translat-
ing Wikipedia texts both Sinhala-to-English and
Nepali-to-English (Guzmán et al., 2019).

We participated only in the Sinhala-English
track, basing our system on that of Junczys-
Dowmunt (2018) but extensively modified for the

2019 low-resource scenario. As compared to their
work, ours comprised: a minor upgrade of their
first element, a relaxation of the second, a mod-
ern replacement for the third, and an additional
length-based filter. The resulting entirely mono-
lingual pipeline to filter noisy parallel data proved
to be competitive with the other multilingual en-
tries when used to train downstream SMT systems.

2 Related Work

We now describe the Junczys-Dowmunt (2018)
system that was the inspiration for ours.

2.1 2018 Language ID Filter
The first feature used the langid Python mod-
ule to classify the language of each half of each
sentence pair to a language. Any sentence pair
where either half was classified as being in an in-
correct language was removed, and sentence pairs
with correctly-classified halves were kept.

2.2 2018 Dual Conditional Cross-Entropy
The dual conditional cross-entropy filtering
method rewards sentence pairs with minimal
symmetric translation disagreement. That is
the difference in average (per-word) conditional
cross-entropy of the sentence pair halves:

|HF→E(sE |sF )−HE→F (sF |sE)|

For a sentence pair (sE , sF ), the per-word con-
ditional cross-entropy HF→E(sE |sF ) of one half
of the sentence pair is computed by a transla-
tion model F → E, and the corresponding
HE→F (sF |sE) of the other half of the sentence
pair is computed by a translation model in the op-
posite direction. The two translation models are
trained in inverse directions on the same parallel
corpus, so they should be equally expressive.

However, the difference in translation scores
does not take into account whether the scores
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are good or not. A perfectly translated sentence
pair where the translation models agree perfectly
would have the same score as a poorly translated
sentence pair where the translation models also
agree. This same weakness is found in the cross-
entropy difference criterion (Moore and Lewis,
2010) on which the conditional cross-entropy dif-
ference is based. To force the better sentence pair
to have a lower feature score than the other pair,
Junczys-Dowmunt (2018) add a term consisting of
the average per-word conditional cross-entropy of
the two halves. Worse sentences have higher en-
tropy, so a score of 0 remains ideal. The equation
for the dual conditional cross-entropy is thus:

h(sE , sF ) =| H
F→E

(sE |sF )− H
E→F

(sF |sE)|

+
1

2

(
H

F→E
(sE |sF ) + H

E→F
(sF |sE)

)
(1)

The first term is the translation disagreement, and
the second term is the average entropy. The score
is exponentiated so that good sentence pairs have
a feature score of 1, and bad sentence pairs have a
score of 0:

f(sE , sF ) = e−h(sE ,sF )

In describing their approach, Junczys-Dowmunt
(2018) criticize the Moore and Lewis (2010)
cross-entropy difference method for “missing” an
adequacy component. This is misguided, as the
Moore-Lewis method was originally designed for
language modeling and was only later repurposed
for machine translation. In MT, the two halves
of a sentence pair might be fluent but not express
the same thing, and so the notion of adequacy is
used to describe how well the halves correspond in
meaning. In language modeling, there is no such
thing as a sentence pair, and there should not be
much doubt that a sentence rather adequately (and
tautologically) manages to express exactly that
which it does express. It would be more proper
to state that the omission of adequacy is a weak-
ness of the bilingual extension of Moore-Lewis to
machine translation by Axelrod et al. (2011).

2.3 2018 Moore-Lewis Filtering
The third and final feature in the best 2018 system
was a monolingual (English) cross-entropy differ-
ence (Moore and Lewis, 2010) score:

Hin(sE)−Hout(sE) (2)

The cross-entropies H were computed using
language models trained on 1M sentences of
WMT news data as in-domain, and 1M random
Paracrawl sentences as out-of-domain data. This
is an ideal setup for cross-entropy difference, as
Equation 2 fundamentally assumes that the two
corpora are as different as possible.

3 Cynical Data Selection

Both the relaxation of the dual conditional cross-
entropy filter and our replacement of the cross-
entropy difference filter are based on Cynical data
selection (Axelrod, 2017), described below. The
Moore-Lewis cross-entropy difference approach
fundamentally views the training data as being ei-
ther in-domain or out/general-domain. This stark
distinction is not realistic. Cynical data selection
relaxes that assumption, and starts with one corpus
of representative data (REPR), and one of avail-
able data (AVAIL). The representative data is ex-
actly that: representative of what we would like to
be translating. The available data is similarly the
data pool from which one can select a subcorpus.
No relationship is assumed between the represen-
tative and available corpora, nor between the do-
mains they cover.

The algorithm incrementally grows a corpus of
sentences, selecting from AVAIL, in order to bet-
ter model REPR. First, it estimates the perplex-
ity of a language model trained on the already-
selected data and evaluated on the REPR corpus.
Next, for each sentence still available, it estimates
the change in that perplexity (or entropy, ∆H)
that would result from adding it as a new sentence
to the LM training data and re-training the LM
(Sethy et al., 2006). The sentence with the lowest
cross-entropy delta is removed from AVAIL, added
to the selected pile, and the process repeats. Iden-
tifying the next single sentence to add is O(n2)
and not computationally practical, but it is efficient
to find the best word v in the vocabulary VREPR

to add once to the selected data. From there, it
is now practical to pick the best sentence still in
AVAIL that contains that word. The n + 1th itera-
tion, after selecting n sentences, is:

1. Find the single word v ∈ Vrepr that would
most lower the entropy (evaluated on REPR)
of a language model, trained on the n
already-selected sentences plus the one-word
sentence “v”.
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2. Find the single sentence s ∈ AVAIL con-
taining v that would (also) most lower the
entropy (evaluated on REPR) of a language
model trained on the n sentences plus s.

3. Remove s from AVAIL, update the language
model with the count c of all words in s, and
add s to the selected sentences.

The cross-entropy delta ∆H is the change in the
entropy of a language model, evaluated on a con-
stant test set, after adding a new entry to the lan-
guage model’s training corpus. This is straight-
forward to compute, as there is a entropic length
penalty for increasing the size of the training cor-
pus, and an entropy gain for adding new informa-
tion to the training set. This was first formulated
by Sethy et al. (2006) as “relative entropy”, and
clarified by Axelrod (2017) as:

∆H
n→n+1

= Hn+1 −Hn

∆H
n→n+1

= log
Wn + wn+1

Wn︸ ︷︷ ︸
Penalty

+
∑

v∈VREPR

CREPR(v)

WREPR
log

Cn(v)

Cn(v) + cn+1(v)︸ ︷︷ ︸
Gain

(3)

The penalty term depends on the length wn+1 of
the n + 1th line, and the size in words Wn of the
already-selected data. The gain term depends on
the empirical probability of each word v in the
REPR corpus, and then the count Cn of the word
so far in the n selected lines, and the count cn+1

of the word in the n + 1th line.

4 Sinhala-English Data

The 2019 iteration of the shared task focused ex-
clusively on filtering a noisy parallel corpus for
low-resource language pairs, and had consider-
ably less data than the 2018 German-English task.
Table 1 shows that only 645k lines of parallel
Sinhala-English were provided in total– less than
the small 1M German-English sentence pair sub-
sets used to train the dual NMT engines for the
scoring function of Junczys-Dowmunt (2018).

4.1 Data
The 2019 Si-En parallel data was drawn from con-
versations and technical manuals, unlike the wiki-
based evaluation data. Larger and more relevant,

Corpus Lines Tok (Si) Tok (En)
Open Subtitles 601,164 3.4M 3.6M
Ubuntu 45,617 175k 151k
Total 646,781 3.5M 3.7M

Table 1: Parallel Data for Sinhala-English

yet monolingual, corpora were provided from both
Wikipedia and Common Crawl, detailed in Ta-
ble 2.

Corpus Lines Tokens
Sinhala Wikipedia 156k 4.7M
English Wikipedia 67.8M 1.9B
Sinhala Common Crawl 5.2M 110M
English Common Crawl 380M 8.9B
English Subset Wikipedia 150k 5.5M
English Subset Common Crawl 6M 123M

Table 2: Corpus statistics for provided monolingual
data in Sinhala and English, and an English subset of
comparable size to the Sinhala data.

The provided monolingual English data was
several orders of magnitude larger than the Sinhala
data, which would have made it difficult to create
equally strong (or weak) monolingual models used
in this work. We therefore assembled a monolin-
gual English corpus comparable in size and con-
tent to the Sinhala one by randomly selecting 150k
lines from Wikipedia and 6M lines from Com-
mon Crawl. We used SentencePiece (Kudo and
Richardson, 2018), with model type=word, to
preprocess the Sinhala and English sides sepa-
rately, producing a fairly word-like vocabulary of
100k subwords for each language. Each Sentence-
Piece model was trained on 1M lines of monolin-
gual data: 150k Wiki + 850k Common Crawl.

5 Our Submission

We used the feature framework from Junczys-
Dowmunt (2018) as the basis for ours. For each
sentence pair (sSi, sEn) in the noisy corpus, we
computed a final score f(sSi, sEn) ∈ [0, 1] by
multiplying each of the individual feature scores
for the sentence pair:

f(sSi, sEn) =
∏
i

fi(sSi, sEn) (4)

The feature scores, and therefore the final score,
all had the same range of [0, 1]. For evaluation,
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the lines were sorted from highest to lowest over-
all score, and then selected in that order until
the number of selected English words reached the
evaluation threshold. Any feature score being 0 ef-
fectively removed that sentence pair from consid-
eration. The selected subsets were then submitted
for evaluation by the task organizers. The follow-
ing are the monolingual features we used to score
the noisy parallel data.

5.0 Length Ratio Feature
We added one feature as compared to Junczys-
Dowmunt (2018), based on the length ratio of the
two halves of the sentence pair, penalizing sen-
tence pairs with sides of disparate lengths. The
provided clean, parallel, training data in Table 1
is inconclusive regarding the expected Si-to-En
length ratio, as one of the parallel corpora had
more English tokens than Sinhala, and the other
had the reverse. The ratios were approximately
inverses, so we set the desired ratio to be 1 and
penalized sentence pair scores according to how
divergent the parallel segment’s length ratio was
from 1. A sentence pair with a length ratio within
two orders of magnitude, i.e. e−2 < si

en < e2,
or |ln( si

en)| < 2, received a feature score of 1,
or no penalty. The feature score was set to 0.5
if 2 < |ln( si

en)| < 3. For 3 < |ln( si
en)| the fea-

ture was 0.35. For pairs where both segments con-
tained fewer than six tokens, we applied less strict
penalties as ratios are more likely to vary with
shorter segment lengths. For such pairs, we as-
signed a score of 0.5 if the ratio is greater than 4
orders of magnitude, 0.75 if between 3 and 4, and
0.9 if within 2-3 factors. We also observed that
large numbers of non-parallel Paracrawl sentence
pairs contained mostly numbers on one side. Any
sentence pair where at least 15% of either half was
only numerals received a score of 0.

5.1 Language ID Feature
As with the 2018 task, a considerable quantity of
the provided Paracrawl data was not in the correct
language. Following Junczys-Dowmunt (2018),
we classified the halves of the sentence pair using
the langid Python module and assigned 0 to any
sentence pair with an incorrectly-labeled half. If
the correct languages were selected, then the fea-
ture value was the product of the langid confi-
dence scores. Inspecting the filter output showed
that it was not strong enough. The langid clas-
sification had many false positives, as well as

source-side (Sinhala) sentences that were mixed
with a significant amount of English. The shared
task’s hard limit on the number of selectable words
made it important to minimize the amount of En-
glish on the Sinhala side. The languages have non-
overlapping writing scripts, so it was easy to de-
tect erroneous characters. We therefore multiplied
the lang id score by the proportion of characters
(excluding numerals and punctuation) in each sen-
tence that belong to the correct Unicode block,
resulting in an overall language ID feature that
slightly extends the original.

5.2 Dual Monolingual Cross-Entropy Deltas

Junczys-Dowmunt (2018) trained MT systems on
clean parallel data for the 2018 task, but used
only the translation probability of each to score
the Paracrawl data and not the translation output
itself. The motivation for training the dual NMT
systems on the same parallel corpus was to en-
sure that the models would have similar BLEU
scores and translation probabilities for the halves
of a truly parallel sentence pair.

We did not have enough good parallel data
for Sinhala and English, which ruled out train-
ing models on identical information. However,
perhaps the translation models themselves were
not inherently necessary as long as similar scores
could be obtained. Language models require less
training data than an MT engine to be reliable, and
can also output an average per-word probability
for a sentence– and we were provided with good
monolingual data. We set out to construct lan-
guage models with similar amounts of information
hoping they might have similar perplexities for
the halves of a parallel sentence pair, and differ-
ent perplexities for a non-parallel pair. The result
was a relaxation of the dual conditional translation
cross-entropy feature that only required monolin-
gual data, and used equal relative informativeness
instead of equal translation probability.

5.2.1 Setting Up Language Models
N-gram language models in different languages
are not comparable. Differences in morphology
can lead to significant differences in word counts,
data sparsity, and thus how well a fixed model ar-
chitecture can represent the language. Instead of
multilingual word embeddings using sparse data
(Artetxe and Schwenk, 2019), we simply used
SentencePiece to force the Sinhala and English
corpora to have the same size vocabulary (100k
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subwords). First, we hoped a standard lexicon size
would mitigate the effect of morphology differ-
ences affecting sentence length and word sparsity.
Secondly, we hoped it would encourage language
models trained on similar– but not parallel– En-
glish and Sinhala texts to have similar perplexities
over each half of a parallel test set.

This would mean the two LMs had similar es-
timates of how much information is in each half
of the parallel data. The two halves of the paral-
lel corpus presumably contain the same amount of
actual information, but two LMs would only come
up with the same estimate if they themselves con-
tained comparable amounts of information, even if
they did not the same information.

To test this, we trained 4-gram language mod-
els using KenLM (Heafield, 2011) on the Sin-
hala monolingual data and the restricted-size En-
glish data in Table 2, both unprocessed and af-
ter tokenizing with SentencePiece. The models
were evaluated on the provided parallel valid
and test sets. Table 3 shows that, indeed, forc-
ing English and Sinhala LMs to have identical vo-
cabulary sizes was enough to obtain nearly identi-
cal perplexities on the halves of a parallel corpus,
even though the language models were trained on
similar but not parallel data.

Corpus valid test
Sinhala, untok 1,759.8 1,565.9
English, untok 1,069.2 985.3
Sinhala, tok=SP 320.5 299.2
English, tok=SP 302.5 292.7

Table 3: Using SentencePiece to equalize LM perplex-
ities in different languages on the dev sets.

5.2.2 Parallel Scoring with Monolingual LMs
Wse used the “greedy cross-entropy delta” term
from Cynical data selection in a novel way: to
score each side of the Paracrawl data as a mem-
oryless stream of text. In this setup, we had
a language model trained on the monolingual
Wikipedia data, which is the REPR corpus, and
representative of the kind of data the organizers
will evaluate on. We compute the ∆H of adding
each sentence s in Paracrawl to the REPR corpus,
retraining a LM on REPR+s, and recomputing the
perplexity on REPR corpus. After computing all of
the ∆H scores for the Paracrawl data, cynical data
selection would normally extract the best one, in-

corporate it into the training set, and iterate. In-
stead, we modified the public implementation1 of
Cynical data selection to not update anything, and
the scoring is done in a single pass as done by
Sethy et al. (2006).

The difference between a LM perplexity and the
∆H score is that the LM quantifies the likelihood,
and the ∆H score quantifies informativeness. The
∆H score estimates, for a fixed REPR corpus: does
this next line contain any information at all about
REPR that we do not already know? A negative
score would indicate a estimated decrease in en-
tropy, so adding this line should improve a model
trained on the selected data.

We constructed monolingual Sinhala and En-
glish LMs with similar perplexities on a parallel
test set that resembled the task evaluation, so we
hoped that sentences with equal ∆H scores ac-
cording to these two models could be parallel. Or,
at least, that sentences with disparate ∆H scores
would be deemed not-parallel, and filtered out.

One could simply replace the translation system
conditional cross-entropies in Equation 1 with the
cross-entropies from the two comparable language
models just described. However, that would only
characterize the fluency, without any sense of the
content. It is not clear whether identical perplexi-
ties or identical ∆H scores is a better indicator of
“these sentences are parallel”: being equally likely
and being equally informative are each positive in-
dicators. The goal of the shared task was to as-
semble the parallel corpus that produced the best
downstream MT system for Wikipedia test; prior-
itizing informative sentences seemed more impor-
tant here than prioritizing likely ones. Our version
of Equation 1 thus used Equation 3’s ∆H scores,
dual monolingual cross-entropy deltas, for each
sentence pair (sSi, sEn), instead of dual bilingual
conditional cross-entropies:

|∆HEn(sEn|REPREn)−∆HSi(sSi|REPRSi)|

+
1

2

(
∆HEn(sEn|REPREn) + ∆HSi(sSi|REPRSi)

)
(5)

This was exponentiated to be in the range of [0, 1].

5.3 Dual Monolingual Cynical Data Selection
The final feature from (Junczys-Dowmunt, 2018)
was a monolingual Moore-Lewis score, intended
to bias the filtering towards in-domain news data.

1github.com/amittai/cynical



252

However, the Moore-Lewis method for data selec-
tion has some notable flaws, as described in Ax-
elrod (2017). The biggest is that it has no sense
of sufficiency: while it is not helpful to see an
identical sentence pair 10,000 times, the Moore-
Lewis criterion will assign the same score to all
copies. Cynical data selection selects sentences
only if they contribute new information to the set
of sentences already selected, and has previously
been shown to help domain adaptation in SMT
(Santamarı́a and Axelrod, 2017) and NMT (Zhang
et al., 2019), and a variation of it was used for the
2018 corpus filtering task (Erdmann and Gwinnup,
2018). As a side effect, Cynical selection elim-
inates the need for explicit vocabulary coverage
features that were used in the previous shared task
(Lo et al., 2018; Azpeitia et al., 2018).

For each language, we used Cynical data se-
lection to rank the sentences in the noisy cor-
pus. We set the Paracrawl data to be the Avail-
able set, and the clean monolingual Wikipedia
data to be the Representative set. This selects the
subset of Paracrawl that best models monolingual
Wikipedia. The re-ranked Paracrawl corpus was
then scored by converting the Cynical ranking to
a percentage and subtracted from 1. Thus the sen-
tence selected as number 15,000 out of 3M would
have a score of 1 − 15k

3M , and 1 would be the best
score and 0 the worst. The ranking score for a sen-
tence pair was the product of the monolingual rank
scores for each half.

6 Results and Discussion

Our submission was entirely monolingual, and
used parallel data only to sanity-check the lan-
guage models trained in Section 5.2.1. Further-
more, all of the preprocessing, language model-
ing, data selection, and feature computation in this
work was run on a laptop. As such, we had no
expectations for whether our method would be ef-
fective compared against bilingual or multilingual
methods trained for days on GPU machines.

We tried to predict results using NMT systems
after the submission deadline, thanks to the scripts,
code, and standard settings provided by the orga-
nizers, but all of our system BLEU scores (Pap-
ineni et al., 2002) were under 0.20 and worse than
a random baseline. While the evaluation campaign
cutoff was set to be 1M or 5M English words, the
Sinhala sides of our filtered corpus contained only
740k and 3.6M words respectively. Our length ra-

tio feature was overly complicated and not aggres-
sive enough; the Si→En NMT systems tended to
stutter to produce English sentences of appropriate
length. Discarding anything with a length differ-
ence > 20% would probably have been better.

The official evaluation results were a pleasant
surprise. Table 4 shows the top and bottom scores
for each evaluation category, providing context for
our submission. We were in the bottom third of
the SMT systems, yet within 1.8 BLEU of the best
system at 1M, and 1.3 BLEU of the best system at
5M. This is rather competitive for a gratuitously-
monolingual approach to a bilingual task!

Our submitted system, like roughly 30% of the
submissions, was not suitable for filtering data for
a low-resource NMT pipeline. However, the NMT
systems trained on 1M words were several BLEU
points better than systems trained on 5M words, so
training an NMT system on small amounts of data
is unpredictable. Better feature engineering would
certainly help.

1M 1M 5M 5M
System SMT NMT SMT NMT
Rank 1 4.27 6.39 4.94 4.44
DiDi 2.53 0.19 3.70 0.20
Rank 10 0.92 0.03 2.73 0.10

Table 4: Bleu scores on test for systems trained on
subsets with 1M and 5M English words of the noisy
Paracrawl data.

7 Conclusion

We presented a purely monolingual method, based
on cynical data selection (Axelrod, 2017), for fil-
tering noisy parallel data. Our approach is a relax-
ation of the dual conditional cross-entropy method
of Junczys-Dowmunt (2018), that does require any
parallel data. As secondary contributions, we have
used Cynical data selection in a streaming scenario
for the first time, and used relative informativeness
to judge the relationship between the halves of a
sentence pair. While our method does not outper-
form most parallel approaches, it is competitive,
and more suitable for scenarios with little or no
parallel data. Furthermore, our work is also un-
demanding of computational resources, as it ran
end-to-end on a single laptop in a couple hours,
and should integrate well into a feature ensemble
for real-world deployment.



253

References
Mikel Artetxe and Holger Schwenk. 2019. Margin-

based Parallel Corpus Mining with Multilingual
Sentence Embeddings. ACL (Association for Com-
putational Linguistics).

Amittai Axelrod. 2017. Cynical Selection of Language
Model Training Data. arXiv [cs.CL].

Amittai Axelrod, Xiaodong He, and Jianfeng Gao.
2011. Domain Adaptation Via Pseudo In-Domain
Data Selection. EMNLP (Empirical Methods in Nat-
ural Language Processing).

Andoni Azpeitia, Thierry Etchegoyhen, and Eva
Martı́nez garcia. 2018. STACC, OOV Density and
N-gram Saturation: Vicomtech’s Participation in the
WMT 2018 Shared Task on Parallel Corpus Filter-
ing. WMT Conference on Statistical Machine Trans-
lation.

Christian Buck and Philipp Koehn. 2016. Findings
of the WMT 2016 Bilingual Document Alignment
Shared Task. WMT Conference on Statistical Ma-
chine Translation.

Grant Erdmann and Jeremy Gwinnup. 2018. Coverage
and Cynicism: The AFRL Submission to the WMT
2018 Parallel Corpus Filtering Task. WMT Confer-
ence on Statistical Machine Translation.

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan
Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’Aurelio Ranzato. 2019. Two
New Evaluation Datasets for Low-Resource Ma-
chine Translation: Nepali-English and Sinhala-
English. arXiv [cs.CL].

Kenneth Heafield. 2011. KenLM : Faster and Smaller
Language Model Queries. WMT (Workshop on Sta-
tistical Machine Translation).

Marcin Junczys-Dowmunt. 2018. Dual Conditional
Cross-Entropy Filtering of Noisy Parallel Corpora.
WMT Conference on Statistical Machine Transla-
tion.

Philipp Koehn, Francisco Guzmán, Vishrav Chaud-
hary, and Juan Pino. 2019. Findings of the WMT
2019 Shared Task on Parallel Corpus Filtering for
Low-Resource Conditions. WMT Conference on
Statistical Machine Translation.

Philipp Koehn, Huda Khayrallah, Kenneth Heafield,
and Mikel Forcada. 2018. Findings of the WMT
2018 Shared Task on Parallel Corpus Filtering.
WMT Conference on Statistical Machine Transla-
tion.

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A Simple and Language Independent Sub-
word Tokenizer and Detokenizer for Neural Text
Processing. EMNLP (Empirical Methods in Natu-
ral Language Processing) System Demonstrations.

Chi-kiu Lo, Michel Simard, Darlene Stewart, Samuel
Larkin, Cyril Goutte, and Patrick Littell. 2018.
Accurate Semantic Textual Similarity for Clean-
ing Noisy Parallel Corpora using Semantic Ma-
chine Translation Evaluation Metric: The NRC Su-
pervised Submissions to the Parallel Corpus Filter-
ing task. WMT Conference on Statistical Machine
Translation.

Robert C Moore and William D Lewis. 2010. Intel-
ligent Selection of Language Model Training Data.
ACL (Association for Computational Linguistics).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. ACL (Associa-
tion for Computational Linguistics).

Lucı́a Santamarı́a and Amittai Axelrod. 2017. Data
Selection with Cluster-Based Language Difference
Models and Cynical Selection. IWSLT (Interna-
tional Workshop on Spoken Language Translation).

Abhinav Sethy, Panayiotis G. Georgiou, and Shrikanth
Narayanan. 2006. Text Data Acquisition for
Domain-Specific Language Models. EMNLP (Em-
pirical Methods in Natural Language Processing).

Xuan Zhang, Pamela Shapiro, Gaurav Kumar, Paul
McNamee, Marine Carpuat, and Kevin Duh. 2019.
Curriculum Learning for Domain Adaptation in
Neural Machine Translation. NAACL (North Ameri-
can Association for Computational Linguistics).

http://arxiv.org/abs/1811.01136
http://arxiv.org/abs/1811.01136
http://arxiv.org/abs/1811.01136
http://arxiv.org/abs/1709.02279
http://arxiv.org/abs/1709.02279
http://aclweb.org/anthology/D/D11/D11-1033.pdf
http://aclweb.org/anthology/D/D11/D11-1033.pdf
http://www.aclweb.org/anthology/W18-64101
http://www.aclweb.org/anthology/W18-64101
http://www.aclweb.org/anthology/W18-64101
http://www.aclweb.org/anthology/W18-64101
https://doi.org/10.1504/ijceell.2004.004579
https://doi.org/10.1504/ijceell.2004.004579
https://doi.org/10.1504/ijceell.2004.004579
http://www.aclweb.org/anthology/W18-64103
http://www.aclweb.org/anthology/W18-64103
http://www.aclweb.org/anthology/W18-64103
http://arxiv.org/abs/1902.01382
http://arxiv.org/abs/1902.01382
http://arxiv.org/abs/1902.01382
http://arxiv.org/abs/1902.01382
http://kheafield.com/professional/avenue/kenlm.pdf
http://kheafield.com/professional/avenue/kenlm.pdf
http://arxiv.org/abs/1809.00197
http://arxiv.org/abs/1809.00197
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://www.aclweb.org/anthology/W18-64109
http://www.aclweb.org/anthology/W18-64109
http://www.aclweb.org/anthology/W18-64109
http://www.aclweb.org/anthology/W18-64109
http://www.aclweb.org/anthology/W18-64109
http://dl.acm.org/citation.cfm?id=1858883 http://www.aclweb.org/anthology/P/P10/P10-2041.pdf
http://dl.acm.org/citation.cfm?id=1858883 http://www.aclweb.org/anthology/P/P10/P10-2041.pdf
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1905.05816
http://arxiv.org/abs/1905.05816

