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Abstract

This paper describes the participation of
the MLLP research group of the Universi-
tat Politècnica de València in the WMT 2019
Similar Language Translation Shared Task.
We have submitted systems for the Portuguese
↔ Spanish language pair, in both directions.
They are based on the Transformer architec-
ture as well as on a novel architecture called
2D alternating RNN. Both systems have been
domain adapted through fine-tuning that has
been shown to be very effective.

1 Introduction

In this paper we describe the supervised Statisti-
cal Machine Translation (MT) systems developed
by the MLLP research group of the Universitat
Politècnica de València for the Related Languages
Translation Shared Task of the ACL 2019 Fourth
Conference on Machine Translation (WMT19).
For this task, we participated in both directions
of the Portuguese ↔ Spanish language pair us-
ing Neural Machine Translation (NMT) models.
This paper introduces a novel approach to trans-
lation modeling that is currently being developed.
We report results for this approach and compare
them with models based on the well-performing
Transformer (Vaswani et al., 2017) NMT architec-
ture. A domain adapted version of this latter sys-
tem achieves the best results out of all submitted
systems on both directions of the shared task.

The paper is organized as follows. Section 2
describes the architecture and settings of the novel
2D RNN model. Section 3 describes our baseline
systems and the results obtained. Section 4 reports
the results obtained by means of the fine-tuning
technique. Section 5 reports comparative results
with respect to the systems submitted by the other
competition participants. Section 6 outlines our
conclusions for this shared task.

2 2D Alternating RNN

In this section, we will describe the general archi-
tecture of the 2D alternating RNN model. The 2D
alternating RNN is a novel translation architecture
in development by the MLLP group. This archi-
tecture approaches the machine translation prob-
lem with a two-dimensional view, much in the
same manner as Kalchbrenner et al. (2015); Ba-
har et al. (2018) and Elbayad et al. (2018). This
view is based on the premise that translation is
fundamentally a two-dimensional problem, where
each word of the target sentence can be explained
in some way by all the words in the source sen-
tence. Two-dimensional translation models define
the distribution p(ei|fJ0 , e

i−1
0 ) by jointly encod-

ing the source sentence (fJ0 ) and the target history
(ei−1

0 ), whereas the usual translation models en-
code them separately, in separate components usu-
ally called “encoder” and “decoder”.

The proposed architecture is depicted in Figure
1. It defines a two-dimensional translation model
by leveraging already known recurrent cells, such
as LSTMs or GRU, without any further modifica-
tion.

As many other translation models, we have
a context vector which is projected to vocabu-
lary size and a softmax (σ) is applied to obtain
the probability distribution of the next word at
timestep i:

p(ei = x|fJ0 , ei−1
0 ) = σ(Wci)x (1)

To explain how this context vector is drawn
from a two-dimensional processing style, we need
to define a grid with two dimensions: one for the
source, and one for the target. From this point,
we will define a layer-like structure called block,
where each block of the model has such a grid as
the input, and another one as the output.
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Figure 1: The 2D alternating RNN architecture. White
grids on the top and bottom represent the input/output
of a block. Arrows in grey grids represent the RNNs,
while the arrows on the left depict how the layers are
interconnected. Arrows on the bottom and bottom right
indicate the source and target dimensions.

The first grid that serves as input to this two-
dimensional architecture has each cell s0ij contain-
ing the concatenation of the source embedding in
position j and the target embedding in position
i− 1:

s0ij =

[
fj
ei−1

]
(2)

Each block of the model has two recurrent cells:
one along the source dimension and another one
along the target dimension. They process each row
or column independently of one another. The hor-
izontal cell is bidirectional and receives the grid sl

as its input:

hlij =

[
RNNh1(h

l
i,j−1, s

l−1
ij )

RNNh2(h
l
i,j+1, s

l−1
ij )

]
(3)

The vertical cell receives the concatenation of
hl and sl:

klij = RNNk(k
l
i−1,j , [s

l−1
ij ;hlij ]) (4)

The output of the block is the concatenation of
the output of both cells:

slij =

[
hlij
klij

]
(5)

From the output of the last block, sL, we gener-
ate a context vector as follows:

ci = Attention([sLi0, . . . , s
L
iJ]) (6)

The Attention function extracts a single vec-
tor from a set of vectors leveraging an attention
mechanism. That is, it scores the vectors accord-
ing to a learned linear scoring function, which is
followed by a softmax to extract scores; and with
those scores it performs a weighted sum to obtain
a context vector.

3 Baseline systems

This section describes training corpora as well as
the baseline model architectures and configura-
tions adopted to train our NMT systems. As said in
Section 1, two different model architectures were
trained: the Transformer architecture (Vaswani
et al., 2017) and our proposed 2D alternating RNN
architecture. BLEU (Papineni et al., 2002) scores
were computed with the multi-bleu utility
from Moses (Koehn et al., 2007).

3.1 Corpus description and data preparation

The training data is made up of the JCR, Europarl,
news-commentary and wikititles corpora. Table 1
shows the number of sentences, number of words
and vocabulary size of each corpus. The provided
development data was split equally in two disjoint
sets, and one was used as development set and the
other as test set.

Corpus Sent.(K) Words(M) Vocab.(K)
Es Pt Es Pt

JCR 1650 42 40 264 264
Europarl 1812 53 52 177 156
news 48 1 1 49 47
wikititles 621 1 1 292 295
dev 1.5 0 0 6 6
test 1.5 0 0 6 6
Total 4131 98 96 623 604

Table 1: Statistics of the data sets used to train the
Spanish↔ Portuguese MT systems.

The data was processed using the standard
Moses pipeline (Koehn et al., 2007), specifically,
punctuation normalization, tokenization and true-
casing. Then, we applied 32K BPE (Sennrich
et al., 2016b) operations, learned jointly over the
source and target languages. We included in the
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vocabulary only those tokens occurring at least 10
times in the training data.

3.2 Transformer baseline models
For the Transformer (Vaswani et al., 2017) mod-
els, we used the “Base” configuration (512 model
size, 2048 feed-forward size), trained on one GPU.
The batch size was 4000 tokens, and we carried
out gradient accumulation by temporarily stor-
ing gradients and updating the weights every 4
batches. This setup allowed us to train mod-
els using an effective batch size of 16000 tokens.
We used dropout (Srivastava et al., 2014) with
0.1 probability of dropping, and label smoothing
(Szegedy et al., 2016) where we distribute 0.1 of
the probability among the target vocabulary. We
stored a checkpoint every 10000 updates, and for
inference we used the average of the last 8 check-
points.

We used the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98. The learning
rate was updated following an inverse square-root
schedule, with an initial learning rate of 5 · 10−4

and 4000 warm-up updates.
The models were built using the fairseq toolkit

(Ott et al., 2019).

3.3 2D alternating RNN baseline model
For the 2D alternating RNN models, we used GRU
as the recurrent cell, 256 for the embedding size
and 128 as the number of units of each layer of
the block. The model consisted of a single block.
The batch size was 20 sentences, with a maximum
length of 75 subword units.

We used the Adam optimizer with β1 = 0.9,
β2 = 0.98. The learning rate was initialized at
10−3 and kept constant, but halved after 3 check-
points without improving the development per-
plexity. A checkpoint was saved every 5000 up-
dates. The model was built using our own toolkit.
Due to time constraints, the 2D alternating model
was only trained for the Portuguese→ Spanish di-
rection.

3.4 Results
Table 2 shows the evaluation results for
the Portuguese→Spanish systems, and Ta-
ble 3 shows the evaluation results for our
Spanish→Portuguese Transformer system. For
the Portuguese → Spanish direction, the Trans-
former model obtains 57.4 BLEU in the test set,
and 51.9 in the hidden test set of the competition.

BLEU
System test test-hidden
Transformer 57.4 51.9
2D altern. RNN 55.1 49.7

Table 2: Baseline BLEU scores on the Portuguese →
Spanish task.

BLEU
System test test-hidden
Transformer 51.2 45.5

Table 3: Baseline BLEU scores on the Spanish→ Por-
tuguese task.

The 2D alternating model achieves 55.1 and 49.7
BLEU, respectively. These results show how,
even though it is in early stages of development,
the 2D alternating RNN model is able to obtain
competitive results for this task that are not very
far from those obtained by the state-of-the-art
Transformer architectures. It is worth noting
that this has been achieved with a model that has
significantly fewer parameters (14.9M) than its
Transformer counterpart (60.2M).

4 Fine-tuning

NMT models perform best when trained with data
from the domain of the test data. However, most
available parallel corpora belong to institutional
documents or internet-crawled content domains,
so it is common to find situations where there is
a domain mismatch between train and test data. In
such cases, small amounts of in-domain data can
be used to improve system performance by carry-
ing out an additional training step, often referred
to as the fine-tuning step, using the in-domain data
after the main training finishes. This technique has
been used to adapt models trained with general do-
main corpora to specific domains with only small
amounts of in-domain data (Luong and Manning,
2015; Sennrich et al., 2016a).

In order to empirically test if this is one of such
cases, we have trained two language models, one
using only the presumably out-of-domain data (the
train corpora from Table 1), and one using only the
in-domain development data. The models were 4-
gram language models trained using the SRI Lan-
guage Modelling Toolkit (Stolcke et al., 2011). We
then computed the perplexity of the test set using
these two language models. The model that was
trained with the out-of-domain data obtains a per-
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BLEU
System test test-hidden
Transformer 57.4 51.9
+ fine-tuned 72.4 66.6
2D altern. RNN 55.1 49.7
+ fine-tuned 64.0 -

Table 4: Comparative BLEU scores of the Transformer
and 2D alternating RNN models on the Portuguese→
Spanish task.

BLEU
System test test-hidden
Transformer 51.3 45.5
+ fine-tuned 70.7 64.7

Table 5: Comparative BLEU scores of the Transformer
model on the Spanish→ Portuguese task.

plexity of 298.0, whereas the model that used the
in-domain data obtains a perplexity of 81.9. This
result shows that there is in a fact a domain mis-
match between the train and test data, which sup-
ports the idea of carrying out fine-tuning.

We applied this to both translation directions,
using the first part of the development data as in-
domain training data, and the second part as a new
dev set. One checkpoint was stored after every
fine-tuning epoch, and we monitored model per-
formance on the new dev set in order to stop fine-
tuning once the BLEU results started decreasing.
For the Transformer models, we used the same
learning rate as when training stopped, while for
the 2D alternating models we used 10−3.

Tables 4 and 5 compare the BLEU scores
achieved by the fine-tuned systems with that
of the baseline non fine-tuned ones on the
Portuguese→Spanish and Spanish→Portuguese
tasks, respectively.

Table 4 shows that for this particular task, fine-
tuning is a key step for achieving very substantial
performance gains: in the Portuguese→Spanish
task, we obtained a 15.0 BLEU improvement in
the test set and a 14.7 BLEU improvement in the
hidden test set for the Transformer model. The 2D
alternating RNN obtained a 8.9 BLEU improve-
ment thanks to fine-tuning. This also applies to
the Spanish→Portuguese task, shown in Table 5:
we obtained a 19.4 BLEU improvement in the test
set, and a 19.2 BLEU improvement in the hidden
test set after applying fine-tuning.

In order to understand the impact and behaviour
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Figure 2: BLEU scores as a function of the number of
fine-tuning epochs on the Transformer and 2D alternat-
ing RNN models for the Portuguese→Spanish task.
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Figure 3: BLEU scores as a function of the number of
fine-tuning epochs on the Transformer model for the
Spanish→Portuguese task.

of the fine-tuning process, we have analyzed the
model’s performance as a function of the number
of fine-tuning epochs. Figure 2 shows the im-
pact of the fine-tuning step for the Transformer
and 2D alternating RNN models on the Portuguese
→ Spanish task, while Figure 3 shows the results
of the fine-tuning step applied to the Transformer
model on the Spanish→ Portuguese task. In both
language pairs, the first epochs are the most bene-
ficial for system performance, and additional fine-
tuning epochs bring diminishing returns until the
BLEU curve flattens.

5 Comparative results

We now move on to the results for the primary
submissions of all participants in the Shared Task.
We chose to send our fine-tuned Transfomer sys-
tems as primary submissions to both tasks after re-
viewing the results on the provided test set (Sec-
tion 4). The submission was made with the check-
point that achieved the best performance on the
fine-tuning dev data. Table 6 shows the results
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Team BLEU TER
MLLP 66.6 19.7
NICT 59.9 25.3
U. Helsinki 58.4 25.3
Kyoto U. 56.9 26.9
BSC 54.8 29.8
UBC-NLP 52.3 32.9

Table 6: Primary submission results of the Portuguese
→ Spanish shared task in the hidden test set.

Team BLEU TER
MLLP 64.7 20.8
UPC-TALP 62.1 23.0
NICT 53.3 29.1
U. Helsinki 52.0 29.4
UBC-NLP 46.1 36.0
BSC 44.0 37.5

Table 7: Primary submission results of the Spanish→
Portuguese shared task in the hidden test set.

of the Portuguese→Spanish task, while Table 7
shows the results of the Spanish→Portuguese task;
both in BLEU and TER (Snover et al., 2006).

In both tasks, our system outperformed all
other participants by a significant margin. In the
Portuguese→Spanish task, our submission outper-
forms the next best system by 6.7 BLEU and 5.6
TER. In a similar manner, our submission to the
Spanish→ Portuguese task improves the results of
the second-best submission by 2.6 BLEU and 2.2
TER points. We attribute our success to the do-
main adaptation carried out by means of the fine-
tuning technique. We have been able to apply this
technique by using part of the competition’s devel-
opment data as in-domain training data.

6 Conclusions

We have taken on the similar language task with
the same approaches that we found useful for other
kinds of translation tasks. NMT models, specifi-
cally the Transformer architecture, fare well in this
task without making any specific adaptation to the
similar-language setting. In fact, we achieved the
best results among the participants using a general
domain-adaptation approach.

For this particular task, the use of in-
domain data to carry out fine-tuning has al-
lowed us to obtain remarkable results that signif-
icantly outperform the next best systems in both
Portuguese→Spanish and Spanish→Portuguese.

We believe these results are explained by the do-
main difference between training and test data, and
are unrelated to the similarity between Spanish
and Portuguese.

We have introduced the 2D alternating RNN
model, a novel NMT architecture, that has been
tested in the Portuguese→Spanish task. With
small embedding and hidden unit sizes and a shal-
low architecture, we achieved similar performance
to the Transformer model, although the difference
between them increases after applying fine-tuning.

In terms of future work, we plan to fully de-
velop the 2D alternating RNN model in order to
support larger embedding and hidden unit sizes as
well as deeper architectures using more regular-
ization. All these improvements should allow us
to increase the already good results achieved by
this model.
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