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Abstract

In this paper we present an English–German
Automatic Post-Editing (APE) system called
transference, submitted to the APE Task orga-
nized at WMT 2019. Our transference model
is based on a multi-encoder transformer ar-
chitecture. Unlike previous approaches, it
(i) uses a transformer encoder block for src,
(ii) followed by a transformer decoder block,
but without masking, for self-attention on mt,
which effectively acts as second encoder com-
bining src→ mt, and (iii) feeds this represen-
tation into a final decoder block generating pe.
This model improves over the raw black-box
neural machine translation system by 0.9 and
1.0 absolute BLEU points on the WMT 2019
APE development and test set. Our submis-
sion ranked 3rd, however compared to the two
top systems, performance differences are not
statistically significant.

1 Introduction & Related Work

Automatic post-editing (APE) is a method that
aims to automatically correct errors made by ma-
chine translation (MT) systems before perform-
ing actual human post-editing (PE) (Knight and
Chander, 1994), thereby reducing the translators’
workload and increasing productivity (Pal et al.,
2016a; Parra Escartı́n and Arcedillo, 2015b,a; Pal
et al., 2016a). Recent advances in APE research
are directed towards neural APE based on neu-
ral MT where APE systems can be viewed as a
2nd-stage MT system, translating predictable er-
ror patterns in MT output to their corresponding
corrections. APE training data minimally involves
MT output (mt) and the human post-edited (pe)
version of mt, but additionally using the source
(src) has been shown to provide further bene-
fits (Bojar et al., 2015, 2016, 2017). Based on
the training process, APE systems can be catego-
rized as either single-source (mt → pe) or multi-

source ({src,mt} → pe) approaches. This in-
tegration of source-language information in APE
is intuitively useful in conveying context infor-
mation to improve APE performance. Neural
APE was first proposed by Pal et al. (2016b) and
Junczys-Dowmunt and Grundkiewicz (2016). A
multi-source neural APE system can be config-
ured either by using a single encoder that encodes
the concatenation of src and mt (Niehues et al.,
2016) or by using two separate encoders for src
and mt and passing the concatenation of both
encoders’ final states to the decoder (Libovický
et al., 2016). A small number of multi-source neu-
ral APE approaches were proposed in the WMT
2017 APE shared task. The two-encoder architec-
ture (Junczys-Dowmunt and Grundkiewicz, 2017;
Chatterjee et al., 2017; Varis and Bojar, 2017) of
multi-source models utilizes both the source text
(src) and the MT output (mt) to predict the post-
edited output (pe) in a single end-to-end neural ar-
chitecture.

In the WMT 2018 APE shared task, further
multi-source APE architectures based on the trans-
former model (Vaswani et al., 2017) have been
presented. The winning team for the NMT task
in WMT 2018 Tebbifakhr et al. (2018) employ
sequence-level loss functions in order to avoid ex-
posure bias during training and to be consistent
with the automatic evaluation metrics. (Pal et al.,
2018) proposed an APE model that uses two sep-
arate self-attention-based encoders to encode mt
and src, followed by a self-attended joint encoder
that attends over a combination of the two encoded
sequences and is used by the decoder for gener-
ating the post-edited sentence pe. Shin and Lee
(2018) propose that each encoder has its own self-
attention and feed-forward layer to process each
input separately. On the decoder side, they add
two additional multi-head attention layers, one for
src → mt and another for src → pe. There-
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after another multi-head attention between the out-
put of those attention layers helps the decoder to
capture common words in mt which should re-
main in pe. The WMT 2018 winner for the PB-
SMT task (Junczys-Dowmunt and Grundkiewicz,
2018) also presented transformer-based multi-
source APE called a dual-source transformer ar-
chitecture. They use two encoders and stack an ad-
ditional cross-attention component for src → pe
above the previous cross-attention for mt → pe.
Comparing Shin and Lee (2018)’s approach with
the winner system, there are only two differences
in the architecture: (i) the cross-attention order of
src → mt and src → pe in the decoder, and (ii)
the winner system additionally shares parameters
between two encoders.

In this work, we present a multi-source neural
APE architecture called transference1. Our model
contains (i) a source encoder (encsrc) which en-
codes src information, (ii) a second encoder
(encsrc→mt) which can also be viewed as a stan-
dard transformer decoding block, however, with-
out masking, and (iii) a decoder (decpe) which
captures the final representation from encsrc→mt

via cross-attention. We thus recombine the dif-
ferent blocks of the transformer architecture and
repurpose them for the APE task in a simple yet
effective way. The intuition behind our architec-
ture is to generate better representations via both
self- and cross-attention and to further facilitate
the learning capacity of the feed-forward layer in
the decoder block.

The rest of the paper is organized as follows.
In 2, we describe the transference architecture; 3
describes our experimental setup; 4 reports the re-
sults of our approach against the baseline; and fi-
nally, 5 concludes the paper with directions for fu-
ture work.

2 Transference Model for APE

We propose a multi-source transformer model
called transference (Figure 1), which takes advan-
tage of both the encodings of src and mt and at-
tends over a combination of both sequences while
generating the post-edited sentence. The sec-
ond encoder, encsrc→mt, is identical to the trans-
former’s decoder block but uses no masking in the
self-attention layer, thus having one self-attention

1Our implementation is available at https://
github.com/santanupal1980/Transference.
git

Figure 1: The transference model architecture for APE
({src,mt}tr → pe).

layer and an additional cross-attention layer for
src → mt. Here, the encsrc encoder and the
decpe decoder are equivalent to the original trans-
former for neural MT (Vaswani et al., 2017). Put
differently, our multi-source APE implementation
extends Vaswani et al. (2017) by introducing an
additional encoding block by which src and mt
communicate with the decoder.

3 Experiments

We compare our approach against the raw MT out-
put provided by the 1st-stage MT system. We
evaluate the systems using BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006).

3.1 Data
For our experiments, we use the English–German
WMT 2019 (Chatterjee et al., 2018) neural APE
data. All released APE datasets consist of
English–German triplets containing source En-
glish text (src) from the IT domain, the corre-
sponding German translations (mt) from a 1st-
stage NMT system, and the corresponding human-
post-edited version (pe). Table 1 presents the
statistics of the released data. As this released
APE dataset is small in size (see Table 1), the
synthetic eScape APE corpus (Negri et al., 2018),
consisting of more than 7M triples, is available as
an additional resource. All datasets, except for the
eScape corpus, do not require any preprocessing
in terms of encoding, tokenization or alignment.

For cleaning the noisy eScape dataset contain-
ing many unrelated language words (e.g. Chinese),
we perform the following two steps: (i) we use the
cleaning process described in Pal et al. (2015), and
(ii) we execute the Moses (Koehn et al., 2007) cor-
pus cleaning scripts with minimum and maximum
number of tokens set to 1 and 100, respectively.

https://github.com/santanupal1980/Transference.git
https://github.com/santanupal1980/Transference.git
https://github.com/santanupal1980/Transference.git
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Corpus
Sentences

Overall Cleaning
Train 13,442 -
Dev 1,000 -
Test 1,023 -
eScape 7.2M 6.5M

Table 1: Statistics of the WMT 2019 English-German
APE Shared Task Dataset.

(iii) After cleaning, we perform punctuation nor-
malization, and then use the Moses tokenizer to
tokenize the eScape corpus with ‘no-escape’ op-
tion. Finally, we apply true-casing.

3.2 Experiment Setup
We split the released data (13.4K) into two sets;
we use the first 12K for training and the remain-
ing 1.4K as validation data. The development set
(Dev) released by WMT20192 is used as test data
for our experiment. We build two models transfer-
ence4M and transferenceALL using slightly differ-
ent training procedures.

For transference4M, we first train on a train-
ing set called eScape4M combined with the first
12k of the provided NMT training data. This eS-
cape4M data is prepared using in-domain (for our
case the 12K training data) bilingual cross-entropy
difference for data selection as described in Axel-
rod et al. (2011). The difference in cross-entropy
is computed based on two language models (LM):
a domain-specific LM is estimated from the in-
domain (12K) PE corpus (lmi) and the out-domain
LM (lmo) is estimated from the eScape corpus.
We rank the eScape corpus by assigning a score to
each of the individual sentences which is the sum
of the three cross-entropy (H) differences. For a
jth sentence pair srcj–mtj–pej , the score is cal-
culated based on Equation 1.

score = |Hsrc(srcj , lmi)−Hsrc(srcj , lmo)|
+ |Hmt(mtj , lmi)−Hmt(mtj , lmo)|

+ |Hpe(pej , lmi)−Hpe(pej , lmo)| (1)

For transferenceALL, we initially train on the
complete eScape dataset (eScapeAll) combined
with the first 12k of the training data. The eS-
capeAll data is sorted based on their in-domain
similarities as described in Equation 1.

2It is to be noted that, the released development set and
test set are same as in WMT2018.

Both models are then fine-tuned towards the
real data, by training again solely on the first 12k
segments of the provided data. For both models,
we perform checkpoint averaging using the 8 best
checkpoints. We report the results on the develop-
ment set provided by WMT2019, which we use as
a test set.

To handle out-of-vocabulary words and to re-
duce the vocabulary size, instead of considering
words, we consider subword units (Sennrich et al.,
2016) by using byte-pair encoding (BPE). In the
preprocessing step, instead of learning an explicit
mapping between BPEs in the src, mt and pe,
we define BPE tokens by jointly processing all
triplets. Thus, src, mt and pe derive a single BPE
vocabulary. Since mt and pe belong to the same
language (DE) and src is a close language (EN),
they naturally share a good fraction of BPE tokens,
which reduces the vocabulary size.

3.3 Hyper-parameter Setup

We follow a similar hyper-parameter setup
for all reported systems. All encoders (for
{src,mt}tr → pe), and the decoder, are com-
posed of a stack of Nsrc = Nmt = Npe = 6 iden-
tical layers followed by layer normalization. We
set all dropout values in the network to 0.1. During
training, we employ label smoothing with value εls
= 0.1. The learning rate is varied throughout the
training process, and increasing for the first train-
ing stepswarmupsteps = 8000 and afterwards de-
creasing as described in (Vaswani et al., 2017). All
remaining hyper-parameters are set analogously to
those of the transformer’s base model.

At training time, the batch size is set to 25K to-
kens, with a maximum sentence length of 256 sub-
words, and a vocabulary size of 28K. After each
epoch, the training data is shuffled. During decod-
ing, we perform beam search with a beam size of
4. We use shared embeddings between mt and pe
in all our experiments.

4 Results

The results of our two models, transference4M
and transferenceALL, in comparison to the base-
line raw MT are presented in Table 2 and 3. Ta-
ble 2 reports results on the WMT2019 develop-
ment set (Dev), Table 3 on the WMT2019 test set
(Test).
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Exp
No.

Models
Dev

BLEU ↑ TER ↓
Baseline

1 raw MT 76.76 15.08
No fine-tuning

2 transference4M (CONTRASTIVE) 77.11 (+0.35) 14.94 (-0.14)
3 transferenceALL 77.25 (+0.49) 14.87 (-0.21)

Fine tune with 12K
4 transference4M 77.22 (+0.46) 14.89 (-0.19)
5 transferenceALL 77.39 (+0.63) 14.71 (-0.37)

Average 8 checkpoints on fine tuned models
6 transference4M 77.27 (+0.51) 14.88 (-0.20)
7 transferenceALL (PRIMARY) 77.67 (+0.91) 14.52 (-0.56)

Table 2: Evaluation results on the WMT APE 2019 development set for the EN-DE NMT task.

Exp
No.

Models
Test

BLEU ↑ TER ↓
Baseline

1 raw MT 74.73 16.84
Submission

2 transference4M (CONTRASTIVE) 73.97 (-0.76) 17.31 (+0.47)
3 transferenceALL (PRIMARY) 75.75 (+1.02) 16.15 (-0.69)

Table 3: Evaluation results on the WMT APE 2019 test set for the EN-DE NMT task.

4.1 Baselines

The raw MT output in Table 2 and Table 3 is a
strong black-box NMT system (i.e., 1st-stage MT)
on Dev and Test respectively. We report its perfor-
mance observed with respect to the ground truth
(pe), i.e., the post-edited version of mt. The orig-
inal MT system scores 76.76 BLEU points and
15.08 TER on Dev as well as 74.73 BLEU points
and 16.84 TER on Test.

4.2 Transference Transformer for APE

Table 2 shows the results of our transference ar-
chitecture on the Dev set, where our two experi-
mental setups transference4M (Exp 2) and trans-
ferenceALL (Exp 3) improve the performance over
the baseline system. Compared to transference4M
(Exp 2), our transferenceALL (Exp 3) performs
better in terms of both BLEU and TER on the Dev
set. Moreover, fine-tuning our transference mod-
els (Exp 4 and 5 in Table 2) yields further perfor-
mance gains. Additionally averaging the 8 best
checkpoints of our fine-tuned version models (Exp
6 and 7) provides further improvements. All mod-
els except transference4M (CONTRASTIVE, our
contrastive submission in WMT2019 APE task)

yield statistically significant results (p < 0.001)
over the raw MT baseline. transferenceALL (PRI-
MARY, our primary submission in WMT2019
APE task) (Exp 7) also provides statistically sig-
nificant improvement over transference4M (Exp
6). For these and all following significance tests
we employ the method by Clark et al. (2011)3.
Table 2 shows that our APE architecture trans-
ferenceALL (PRIMARY) (Exp 7) significantly im-
proves over the already very good NMT system by
about +0.91 BLEU and -0.56 TER.

Table 3 presents the results of our submis-
sions on the Test set in the WMT 2019 EN-
DE APE task. We submitted transference4M
(CONTRASTIVE) system – a weak model hav-
ing performance close to the baseline, (i) to check
whether in-domain data provides any gain in per-
formance on the Test set or not, (ii) to create
another baseline trained on in-domain data, by
which we could analyze our PRIMARY trans-
ference model’s capability of transfer learning.
So far, we could not find an explanation why
our CONTRASTIVE system behaves completely
different on the Test set compared to the Dev

3https://github.com/jhclark/multeval

https://github.com/jhclark/multeval
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set. However, our primary submission transfer-
enceALL (PRIMARY) shows similar performance
on the WMT2019 Test set as on the Dev set.
Overall our transferenceALL (PRIMARY) sub-
mission achieves statistically significant +1.02 ab-
solute BLEU point and -0.69 absolute in TER im-
provements in performance over the baseline on
the Test set.

4.3 Discussion

It is important to note that raw MT provides a
strong baseline. Our proposed transference model
(transferenceALL) shows statistically significant
improvements in terms of BLEU and TER com-
pared to this baseline even before fine-tuning, and
further improvements after fine-tuning. Finally,
after averaging the 8 best checkpoints, our trans-
ferenceALL model also shows consistent improve-
ments in comparison to the baseline and other ex-
perimental setups.

Table 4 shows the performance of our transfer-
enceALL model compared to the winner system of
WMT 2018 (wmt18Best) for the NMT task (Tebb-
ifakhr et al., 2018) on Dev and Test data. The
primary submission of wmt18Best scores 14.78 in
TER and 77.74 in BLEU on the Dev set and 16.46
in TER and 75.53 in BLEU on the Test set. In
comparison to wmt18Best, our transferenceALL
model achieves better scores in TER on both the
Dev and Test set, however, in terms of BLEU the
score acquired by our transferenceALL model is
slightly worse for the Dev set, while some im-
provements were achieved on the Test data. In
comparison to the wmt2019Best system, which
achieved 16.06 in TER and 75.95 in BLEU ac-
cording to the official released results4, we do
not used BERT (Devlin et al., 2018) in our sys-
tem. Even thoughwmt2019Best integrated BERT,
there is no statistical significant performance dif-
ference to our primary submission. Moreover, our
system does not perform ensembling of multiple
models, as the 2nd best system in WMT 2019,
which achieves 16.11 in TER and 76.22 in BLEU.

We believe the reasons for the effectiveness of
our approach to be as follows. (1) Our encsrc→mt

contains two attention mechanisms: one is self-
attention and another is cross-attention. The self-
attention layer is not masked here; therefore, the
cross-attention layer in encsrc→mt is informed by
both previous and future time-steps from the self-

4http://www.statmt.org/wmt19/ape-task.html

attended representation of mt (encmt) and addi-
tionally from encsrc. As a result, each state rep-
resentation of encsrc→mt is learned from the con-
text of src and mt. This might produce better rep-
resentations for decpe which can access the com-
bined context. In contrast, in wmt18Best, the
decpe accesses the concatenated encoded repre-
sentations from src and mt encoder jointly. (2)
Since pe is a post-edited version of mt, sharing
the same language, mt and pe are quite simi-
lar compared to src. Therefore, attending over a
fine-tuned representation from mt along with src,
which is what we have done in this work, might be
a reason for the better results compared to those
achieved by attending over concatenated encoded
information from src and mt directly.

5 Conclusions and Future Work

In this paper, we presented our submissions to the
APE shared task at WMT 2019. We extend the
transformer-based architecture to a multi-encoder
transformer-based model that extends the standard
transformer blocks in a simple and effective way
for the APE task. Our model makes use of two
separate encoders to encode src and mt; the sec-
ond encoder additionally attends over a combina-
tion of both sequences to prepare the representa-
tion for the decoder to generate the post-edited
translation. The proposed model outperforms the
best-performing system of WMT 2018 on the Test
data. Our primary submission ranked 3rd, how-
ever compared to other two top systems, the per-
formance differences are not statistically signifi-
cant.

Taking a departure from traditional transformer-
based encoders, which perform self-attention only,
our second encoder also performs cross-attention
to produce representations for the decoder based
on both src and mt. Our proposed multi-encoder
transformer-based architecture is also generic and
can be used for any multi-modal (or multi-source)
task, e.g., multi-modal translation, multi-modal
summarization.
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