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Abstract 

This paper describes POSTECH’s submis-

sion to the WMT 2019 shared task on Au-

tomatic Post-Editing (APE). In this paper, 

we propose a new multi-source APE mod-

el by extending Transformer. The main 

contributions of our study are that we 1) 

reconstruct the encoder to generate a joint 

representation of translation (mt) and its 

src context, in addition to the conventional 

src encoding and 2) suggest two types of 

multi-source attention layers to compute 

attention between two outputs of the en-

coder and the decoder state in the decoder. 

Furthermore, we train our model by apply-

ing various teacher-forcing ratios to alle-

viate exposure bias. Finally, we adopt the 

ensemble technique across variations of 

our model. Experiments on the WMT19 

English-German APE data set show im-

provements in terms of both TER and 

BLEU scores over the baseline. Our pri-

mary submission achieves -0.73 in TER 

and +1.49 in BLEU compared to the base-

line, and ranks second among all submit-

ted systems. 

1 Introduction  

Automatic Post-Editing (APE) is the task of au-

tomatically correcting errors in a given the ma-

chine translation (MT) output to generate a better 

translation (Chatterjee et al., 2018). Because APE 

can be regarded as a sequence-to-sequence prob-

lem, MT techniques have been previously applied 

to this task. Subsequently, it is only natural that 

neural APE has been proposed following the ap-

pearance of neural machine translation (NMT). 

Among the initial approaches to neural APE, a 

log-linear combination model (Junczys-Dowmunt 

and Grundkiewicz, 2016) that combines bilingual 
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and monolingual translations yielded the best re-

sults. Since then, In order to leverage information 

from both MT outputs (mt) and its corresponding 

source sentences (src), a multi-encoder model 

(Libovický et al., 2016) based on multi-source 

translation (Zoph and Knight, 2016) has become 

the prevalent approach (Bojar et al., 2017). Re-

cently, with the advent of Transformer (Vaswani 

et al., 2017), most of the participants in the 

WMT18 APE shared task proposed Transformer-

based multi-encoder APE models (Chatterjee et 

al., 2018). 

Previous multi-encoder APE models employ 

separate encoders for each input (src, mt), and 

combine their outputs in various ways: by 1) se-

quentially applying attention between the hidden 

state of the decoder and the two outputs (Junczys-

Dowmunt and Grundkiewicz, 2018; Shin and Lee, 

2018) or 2) simply concatenating them (Pal et al., 

2018; Tebbifakhr et al., 2018). However, these 

approaches seem to overlook one of the key dif-

ferences between general multi-source translation 

and APE. Because the errors mt may contain are 

dependent on the MT system, the encoding pro-

cess for mt should reflect its relationship with the 

source sentence. Furthermore, we believe that it 

would be helpful to incorporate information from 

the source sentence, which should ideally be er-

ror-free, in addition to the jointly encoded mt in 

generating post-edited sentence. 

From these points of view, we propose a multi-

source APE model by extending Transformer to 

contain a joint multi-source encoder and a decod-

er that involves a multi-source attention layer to 

combine the outputs of the encoder. Apart from 

that, we apply various teacher-forcing ratios at 

training time to alleviate exposure bias. Finally, 

we ensemble model variants for our submission. 

The remainder of the paper is organized as fol-

lows: Section 2 describes our model architecture. 
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Section 3 summarizes the experimental results, 

and Section 4 gives the conclusion.  

2 Model Description 

We adopt Transformer to the APE problem, which 

takes multiple inputs (src, mt) to generate a post-

edited sentence (pe). In the following subsections, 

we describe our modified encoder and decoder.  

2.1 Encoder 

The proposed encoder structure for multi-

source inputs, as shown in Figure 1, is an exten-

sion of what is introduced in Vaswani et al. (2017) 

developed considering single-source input. Simi-

lar to recent APE studies, our encoder receives 

two sources: src x = (𝑥1, … , 𝑥𝑇𝑥)  and mt y =

(𝑦1, … , 𝑦𝑇𝑦
) , where 𝑇𝑥  and 𝑇𝑦  denote their se-

quence lengths respectively, but produce the joint 

representation E𝑗𝑜𝑖𝑛𝑡 = (𝑒1
𝑗
, … , 𝑒𝑇𝑦

𝑗
), in addition to 

encoded src E𝑠𝑟𝑐 = (𝑒1
𝑠, … , 𝑒𝑇𝑥

𝑠 ).  

Joint representation. Unlike previous studies, 

which independently encode two input sources 

using separate encoding modules, we incorporate 

src context information into each hidden state of 

mt through the single encoding module, resulting 

in a joint representation of two sources. As shown 

with the dashed square in Figure 1, jointly repre-

sented hidden states are obtained from the residu-

al connection and multi-head attention that takes 

𝐻𝑠𝑟𝑐 ∈ ℝ𝑇𝑥×𝑑  as keys and values and 𝐻𝑚𝑡 ∈

ℝ𝑇𝑦×𝑑 as queries. Therefore, the joint representa-

tion of each level of the stack (𝑖 = 1,… , 𝑁) can be 

expressed with MultiHead(Q, K, V) and Lay-

erNorm described in Vaswani et al. (2017) as fol-

lows: 

 𝐻𝑗𝑜𝑖𝑛𝑡
𝑖 = LayerNorm(𝐻𝑚𝑡

𝑖 + 𝐶𝑠𝑟𝑐
𝑖 )   

where 

 𝐶𝑠𝑟𝑐
𝑖 = MultiHead(𝐻𝑚𝑡

𝑖 , 𝐻𝑠𝑟𝑐
𝑖 , 𝐻𝑠𝑟𝑐

𝑖 ) (1)  

Stack-level attention. When applying attention 

across source and target, the original Transformer 

only considers source hidden states retrieved from 

the final stack, whereas our encoder feeds into 

each attention layer the src embeddings from the 

same level, as can be seen in (1).  

Masking option. The self-attention layer that is 

the first attention layer of the mt encoding module 

optionally includes a future mask, which mimics 

the general decoding process of MT systems that 

depends only on previously generated words. We 

conduct experiments (§3.2) for two cases: with 

and without this option.  

2.2 Decoder 

Our decoder is an extension of Transformer de-

coder, in which the second multi-head attention 

layer that originally only refers to single-source 

 

Figure 2: The architecture of the decoder 
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Figure 1: The architecture of the proposed encoder 

– the dashed square indicates the joint hidden repre-

sentation of two sources 
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encoder states is replaced with a multi-source at-

tention layer. Figure 2 shows our decoder archi-

tecture including the multi-source attention layer 

that attends to both outputs of the encoder. Fur-

thermore, we construct two types of the multi-

source attention layer by utilizing different strate-

gies in combining attention over two encoder out-

put states.  

Multi-source parallel attention. Figure 3a illus-

trates the structure of parallel attention. The de-

coder's hidden state simultaneously attends to 

each output of the multi-source encoder, followed 

by residual connection, and the results are linearly 

combined by summing them at the end: 

 𝐻𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 𝐻1 + 𝐻2   

where 

 

𝐻1 = LayerNorm(𝐻𝑝𝑒 + 𝐶𝑗𝑜𝑖𝑛𝑡) 

𝐻2 = LayerNorm(𝐻𝑝𝑒 + 𝐶𝑠𝑟𝑐) 

𝐶𝐽𝑜𝑖𝑛𝑡 = MultiHead(𝐻𝑝𝑒 , 𝐸𝑗𝑜𝑖𝑛𝑡 , 𝐸𝑗𝑜𝑖𝑛𝑡) 

𝐶𝑠𝑟𝑐 = MultiHead(𝐻𝑝𝑒 , 𝐸𝑠𝑟𝑐 , 𝐸𝑠𝑟𝑐). 
 

 

Note that 𝐻𝑝𝑒 ∈ ℝ𝑇𝑧×𝑑
 denotes the hidden states 

for decoder input pe z = (𝑧1, … , 𝑧𝑇𝑧). 

Multi-source sequential attention. As shown in 

Figure 3b, two outputs of the encoder are sequen-

tially combined with the decoder’s hidden state: 

𝐸𝑗𝑜𝑖𝑛𝑡  and the decoder’s hidden state are first 

assigned to multi-head attention and residual con-

nection layers, then the same operation is per-

formed between the result and 𝐸𝑠𝑟𝑐.  

 𝐻𝑠𝑒𝑞 = LayerNorm(𝐻′ + 𝐶𝑠𝑟𝑐)    

where 

 

𝐻′ = LayerNorm(𝐻𝑝𝑒 + 𝐶𝑗𝑜𝑖𝑛𝑡) 

𝐶𝑠𝑟𝑐 = MultiHead(𝐻′, 𝐸𝑠𝑟𝑐 , 𝐸𝑠𝑟𝑐) 

𝐶𝑗𝑜𝑖𝑛𝑡 = MultiHead(𝐻𝑝𝑒 , 𝐸𝑗𝑜𝑖𝑛𝑡 , 𝐸𝑗𝑜𝑖𝑛𝑡). 
 

 

This approach is structurally equivalent to 

Junczys-Dowmunt and Grundkiewicz (2018), 

except that the encoder states being passed on are 

different. 

3 Experiments 

3.1 Dataset 

We used the WMT19 official English-German 

APE dataset (Chatterjee et al., 2018) which con-

sists of a training and development set. In addition, 

we adopted the eSCAPE NMT dataset (Negri et 

al., 2018) as additional training data. We extracted 

sentence triplets from the eSCAPE-NMT dataset 

according to the following criteria, to which the 

official training dataset mostly adheres. Selected 

triplets have no more than 70 words in each sen-

tence, a TER less than or equal to 75, and a recip-

rocal length ratio within the monolingual pair (mt, 

pe) less than 1.4. Table 1 summarizes the statistic 

of the datasets. 

3.2 Training Details 

Settings. We modified the OpenNMT-py (Klein 

et al., 2017) implementation of Transformer to 

build our models. Most hyperparameters such as 

the dimensionality of hidden states, optimizer set-

tings, dropout ratio, etc. were copied from the 

“base model” described in Vaswani et al. (2017). 

We adjusted the warm-up learning steps and batch 

size per triplets to 18k and ~25k, respectively. For 

data preprocessing, we employed subword encod-

ing (Kudo, 2018) with 32k shared vocabulary. 

 
(a) 

 
(b) 

Figure 3: Illustrations of the multi-source attention 

layer. (a) and (b) refer to the linear and sequential 

combinations, respectively. 
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Dataset Triplets TER 

official training set 13,442 14.89  

official development set 1,000 15.08  

eSCAPE-NMT 7,258,533 60.54  

eSCAPE-NMT-filtered 4,303,876 39.65  

Table 1: Dataset statistics – number of sentence tri-

plets (src, mt, pe) and TER score. 
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Two-step training. We separated the training 

process into two steps: the first phase for training 

a generic model, and the second phase to fine-

tune the model. For the first phase, we trained the 

model with a union dataset that is the concatena-

tion of eSCAPE-NMT-filtered, and the upsam-

pled official training set by copying 20 times. Af-

ter reaching the convergence point in the first 

phase, we fine-tuned the model by running the 

second phase using only the official training set.  

Model variations. In our experiment, we con-

structed four types of models in terms of the ex-

istence of the encoder future mask and the type of 

the multi-source attention layer in the decoder as 

follows:  

 Parallel w/ masking where the model 

involves the multi-source parallel atten-

tion layer with the encoder mask. 

 Parallel w/o masking in which the en-

coder mask is excluded from Parallel w/ 

masking.  

 Sequential w/ masking where the mod-

el involves the multi-source sequential 

attention layer with the encoder mask. 

 Sequential w/o masking in which the 

encoder mask is excluded from Seq. w/ 

masking. 

Teacher-forcing ratio. During training, because 

the decoder takes as input the target shifted to the 

right, the ground-truth words are passed to the 

decoder. However, at inference time, the decoder 

consumes only previously produced output words, 

causing exposure bias. To overcome this problem, 

we have empirically adjusted the teacher-forcing 

ratio in the second phase of training, so that 

teacher-forcing is applied stochastically in such a 

way that given a ratio 𝛼, the greedy decoding 

output of the previous step is fed into the next 

input with a probability of 1 − 𝛼. 

Ensemble. To leverage all variants in different 

architectures and teacher-forcing ratios, we com-

bined them using an ensemble approach accord-

ing to the following three criteria: 

 Ens_set_1: top-N candidates among all 

variants in terms of TER.  

 Ens_set_2: top-N candidates for variants 

in each architecture, in terms of TER. 

 Ens_set_3: two candidates for variants in 

each architecture, achieving the best 

TER and BLEU scores, respectively. 

3.3 Results  

We trained a generic model for each of the four 

model variations mentioned in §3.2. Then, we 

fine-tuned those models using various teacher-

forcing ratios. For evaluation, we used TER 

(Snover et al., 2006) and BLEU (Papineni et al., 

2002) scores on the WMT official development 

dataset. Table 2 shows the scores of the generic 

and fine-tuned models according to their architec-

tures and teacher-forcing ratios. The result shows 

that adjusting teacher-forcing ratio helps improve 

the post-editing performance of the models. 

Table 3 gives the results of the ensemble mod-

els. The ensemble models had slightly worse TER 

scores (+0.02 ~ +0.13) than the best TER score in 

the fine-tuned variants, but better BLEU scores 

(+0.09 ~ +0.27) than the best BLEU score. We 

Teacher-

forcing 

Ratios 

 
Architecture 

 

Parallel 

w/ masking  

Parallel 

 w/o masking  

Sequential 

 w/ masking  

Sequential 

w/o masking 

  TER BLEU   TER BLEU   TER BLEU   TER BLEU 

w/o tuning 
 

15.06  77.18  
 

15.03  77.29  
 

14.89  77.38  
 

15.10  77.19  

1.00  
 

15.02  77.25  
 

14.95  77.41  
 

14.83  77.54  
 

14.75  77.68  

0.95  
 

15.07  77.24  
 

14.94  77.24  
 

14.83  77.41  
 

14.53  77.36  

0.90  
 

14.75  77.54  
 

14.94  77.26  
 

14.79  77.40  
 

14.99  77.26  

0.85  
 

14.86  77.37  
 

14.95  77.30  
 

14.73  77.50  
 

14.76  77.56  

0.80    14.98  77.06    14.93  77.15    14.83  77.44    15.34  76.79  

Table 2: Results of training variants – the columns correspond to their architectures and the rows correspond to 

their teacher-forcing ratios. The bold values indicate the best result in the metrics for each architecture. “w/o 

tuning" refer to generic model. 
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selected the three best ensemble models for sub-

mission, expecting to reap the benefits from lev-

eraging different architectures in the decoding 

process. The names and types for submission are 

noted in Table 3.  

Submission results. The results of primary and 

contrastive submission on the official test set are 

reported in Table 4. Our primary submission 

achieves improvements of -0.73 in TER and 

+1.49 in BLEU compared to the baseline, and 

shows better results than the state-of-the-art of the 

last round with -0.35 in TER and +0.69 in BLEU. 

While our primary system ranks second out of 18 

systems submitted this year, it shows the highest 

BLEU score. 

4 Conclusion 

In this paper, we present POSTECH's submissions 

to the WMT19 APE shared task. We propose a 

new Transformer-based APE model comprising a 

joint multi-source encoder and a decoder with two 

types of multi-source attention layers. The pro-

posed encoder generates a joint representation for 

MT output with optional masking, in addition to 

the encoded source sentence. The proposed de-

coder employs two types of multi-source attention 

layers according to the post-editing strategy. We 

refine the eSCAPE-NMT dataset and apply two-

step training with various teacher-forcing ratios. 

Finally, our ensemble models showed improve-

ments in terms of both TER and BLEU, and out-

perform not only the baseline but also the best 

model from the previous round of the task.  
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