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Abstract
For translation quality estimation at word and
sentence levels, this paper presents a novel
approach based on BERT that recently has
achieved impressive results on various natu-
ral language processing tasks. Our proposed
model is re-purposed BERT for the translation
quality estimation and uses multi-task learning
for the sentence-level task and word-level sub-
tasks (i.e., source word, target word, and tar-
get gap). Experimental results on Quality Es-
timation shared task of WMT19 show that our
systems show competitive results and provide
significant improvements over the baseline.

1 Introduction

Translation quality estimation (QE) has become an
important research topic in the field of machine
translation (MT), which is used to estimate qual-
ity scores and categories for a machine-translated
sentence without reference translations at various
levels (Specia et al., 2013).

Recent Predictor-Estimator architecture-based
approaches (Kim and Lee, 2016a,b; Kim et al.,
2017a,b, 2019; LI et al., 2018; Wang et al., 2018)
have significantly improved QE performance. The
Predictor-Estimator (Kim and Lee, 2016a,b; Kim
et al., 2017a,b, 2019) is based on a modified neu-
ral encoder architecture that consists of two subse-
quent neural models: 1) a word prediction model,
which predicts each target word given the source
sentence and the left and right context of the tar-
get word, and 2) a quality estimation model, which
estimates sentence-level scores and word-level la-
bels from features produced by the predictor. The
word prediction model is trained from additional
large-scale parallel data and the quality estimation
model is trained from small-scale QE data.

Recently, BERT (Devlin et al., 2018) has led to
impressive improvements on various natural lan-
guage processing tasks. BERT is a bidirectionally

trained language model from large-scale “mono-
lingual” data to learn the “monolingual” context
of a word based on all of its surroundings (left and
right of the word).

Both BERT that is based on the Transformer
architecture (Vaswani et al., 2017) and the word
prediction model in the Predictor-Estimator that is
based on the attention-based recurrent neural net-
work (RNN) encoder-decoder architecture (Bah-
danau et al., 2015; Cho et al., 2014) have some
common ground utilizing generative pretraining of
sentence encoder.

In this paper, we propose a “bilingual” BERT
using multi-task learning for translation quality
estimation (called the QE BERT). We describe
how we have applied BERT (Devlin et al., 2018)
to the QE task to make much improvements. In
addition, for recent QE task, which consists of
one sentence-level subtask to predict HTER scores
and three word-level subtasks to detect errors for
each source word, target (mt) word, and target
(mt) gap, we also have applied multi-task learning
(Kim et al., 2019, 2017b) to enhance the training
data from other QE subtasks1. The results of ex-
periments conducted on the WMT19 QE datasets
show that our proposed QE BERT using multi-task
learning provides significant improvements over
the baseline system.

2 QE BERT

In this section, we describe two training steps for
QE BERT: pre-training and fine-tuning. Figure
1 shows QE BERT architecture to predict HTER
scores in sentence-level subtask and to detect er-
rors in word-level source word, mt word, and mt
gap subtasks. The sentences are tokenized using

1Kim et al. (2019, 2017b) use multi-task learning to take
into account the training data of other QE subtasks as alter-
native route of handling the insufficiency of target training
data.
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(SRC) deleting this text is harmless . 

QE BERT

OK OK       OK      BAD    BAD OK

OK OK OK OK BAD OK OK OK

0.375

< MT Word Tags >

OK OK OK OK OK OK BAD  BAD BAD BAD OK 

< HTER >

< MT Gap Tags >

OK OK OK OK BAD  BAD OK 

OK        OK        OK       OK      BAD     BAD     BAD      OK

(MT) das Löschen dieses Texts ist unbemerkt .
(PE)  das Löschen dieses Texts verursacht keine Probleme .

< SRC Word Tags >

Figure 1: QE BERT architecture.

WordPiece tokenization.

2.1 Pre-training

The original BERT (Devlin et al., 2018) is focused
on “monolingual” natural language understanding
using generative pretraining of sentence encoder.
QE BERT, which is focused on “bilingual” natural
language understanding2, is pre-trained from par-
allel data to learn the bilingual context of a word
based on all of its left and right surroundings.

In pre-training, a default [SEP] token is used
to separate source sentence and target sentence of
parallel data. In addition, [GAP] tokens, which are
newly introduced in this paper for word-level tar-
get gap, are inserted between target words.

As a pre-training task of QE BERT, only the
masked LM task between parallel sentences is
conducted where 15% of the words are replaced
with a [MASK] token and then original values
of the masked words are predicted3. The pre-
training enables to make a large-scale parallel data
helpful to QE task. As an initial checkpoint of
pre-training, we used the released multilingual
model4.

2.2 Fine-tuning

QE BERT is fine-tuned from QE data with the
above pre-trained model for a target-specific QE

2In Lample and Conneau (2019), translation language
model (TLM) pretraining is used for cross-lingual under-
standing by concatenating parallel sentences.

3In Devlin et al. (2018), two pre-training tasks – masked
LM and next sentence prediction – are conducted simultane-
ously.

4“BERT-Base Multilingual Cased” model, released in
https://github.com/google-research/bert.

task.
Similar to the pre-training step, a [SEP] token

is used to separate source sentence and machine
translation sentence of QE data. [GAP] tokens are
inserted between words of the machine translation
sentence.

2.2.1 Word-level QE
To compute a word-level QE, the final hidden state
(ht) corresponds to each token embedding is used
as follows:

P = softmax(W• ht) (1)

where P is the label probabilities and W is the
weight matrix used for word-level fine-tuning. Be-
cause word-level QE task consists of source word,
mt word, and mt gap subtasks, three different types
of weight matrix are used for each task: Wsrc.word,
Wmt.word, and Wmt.gap.

Because each word of sentences could be tok-
enized to several tokens, we primarily compute the
token-level labels as follows:

QEtoken =

{
OK , if argmax(P ) = 1

BAD, if argmax(P ) = 0.
(2)

And then, we compute word-level labels from the
token-level labels. In training, if a word is labeled
as ‘BAD’, all of tokens in the word boundary have
‘BAD’ labels. In inference, if any token in the
word boundary is labeled as ‘BAD’, the output of
the word-level QE has a ‘BAD’ label.

2.2.2 Sentence-level QE
To compute a sentence-level QE, the final hidden
state (hs) corresponds to the [CLS] token embed-
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ding, which is a fixed-dimensional pooled repre-
sentation of the input sequence, is used as follows:

QEsent = sigmoid(Ws hs) (3)

where Ws is the weight matrix used for sentence-
level fine-tuning.

2.2.3 Multi-task learning
The QE subtasks at word and sentence levels are
highly related because their quality annotations
are commonly based on the HTER measure. Qual-
ity annotated data of other QE subtasks could be
helpful in training a QE model specific to a target
QE task (Kim et al., 2019). To take into account
the training data of other QE subtasks as a route of
supplementation of target training data, we apply
multi-task learning (Kim et al., 2019, 2017b).

For multi-task learning of word-level QE, we
use a linear summation of word-level objective
losses as follows:

LWORD = Lsrc.word + Lmt.word + Lmt.gap

where most QE BERT components are common
across word-level source word, mt word, and
mt gap subtasks except for the output matrices
Wsrc.word, Wmt.word, and Wmt.gap.

Kim et al. (2019) showed that it is helpful to
use word-level training examples for training a
sentence-level QE model. For multi-task learn-
ing of sentence-level QE, we combine sentence-
level objective loss and word-level objective losses
by simply performing a linear summation of the
losses for each task as follows:
LSENT = Lhter+Lsrc.word+Lmt.word+Lmt.gap

where most QE BERT components are common
across sentence-level and word-level tasks except
for the output matrices of each task.

3 Experimentation

3.1 Experimental settings
The proposed learning methods were evaluated
on the WMT19 QE Shared Task5 of word-level
and sentence-level English-Russian and English-
German.

We used parallel data provided for the WMT19
news machine translation task6 to pre-train QE
BERT. The English-Russian parallel data set con-
sisted of the ParaCrawl corpus, Common Crawl
corpus, News Commentary corpus, and Yandex

5http://www.statmt.org/wmt19/qe-task.html
6http://www.statmt.org/wmt19/translation-

task.html

Corpus. The English-German parallel data set
consisted of the Europarl corpus, ParaCrawl cor-
pus, Common Crawl corpus, News Commentary
corpus, and Document-split Rapid corpus.

In pre-training, we used the default hyperpa-
rameter setting of the released multilingual model.
In fine-turing, a sequence length of 512 was used
to cover the length of QE data.

To make ensembles, we combined five instances
having different hyperparameter weight for ‘BAD’
label (i.e., 1:10, 1:15, 1:20, 1:25, and 1:30). For
word-level ensemble results, we voted the pre-
dicted labels from each instance. For sentence-
level ensemble results, we averaged the predicted
HTER scores from each instance.

3.2 Comparison of learning methods

Tables 1 and 2 show the experimental results ob-
tained from the QE BERT using the different
learning methods for the WMT19 word-level and
sentence-level QE tasks. For both language pairs,
using multi-task learning consistently improves
the scores.

We made ensembles by combining five in-
stances of QE BERT models. The word-level re-
sults of ensemble A are based on mixtures of the
best performance systems on each subtasks (i.e.,
source word, mt word, and mt gap tasks). On
the other hand, the word-level results of ensemble
B are based on an all-in-one system using a uni-
fied criterion7 with same model parameters for all
word-level subtasks.

Finally, Tables 3 and 4 show the results obtained
in the WMT19 test set for our submitted systems
and official baseline systems.

4 Conclusion

In this paper, we explored an adaptation of BERT
for translation quality estimation. Because the
quality estimation task consists of one sentence-
level subtask to predict HTER scores and three
word-level subtasks to detect errors for each
source word, target word, and target gap, we also
applied multi-task learning to enhance the train-
ing data from other subtasks. The results of
experiments conducted on WMT19 quality esti-
mation datasets strongly confirmed that our pro-
posed bilingual BERT using multi-task learning

7The averaged performance on source word, mt word, and
mt gap tasks is used as the unified criterion to select model
parameters of the all-in-one system.
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Word level Source Word MT (All)
( F1-Mult ↑ F1-BAD ↑ F1-OK ↑ ) ( F1-Mult ↑ F1-BAD ↑ F1-OK ↑ )

<English-Russian>
QE-BERT Word 0.3344 0.3663 0.9128 0.3895 0.4051 0.9617
QE-BERT Multitask-Word 0.3513 0.3780 0.9294 0.3943 0.4076 0.9673
QE-BERT Multitask-Word Ensemble A∗ 0.3600 0.3861 0.9326 0.4128 0.4275 0.9657
QE-BERT Multitask-Word Ensemble B∗ 0.3452 0.3700 0.9331 0.3934 0.4071 0.9665

<English-German>
QE-BERT Word 0.3755 0.4113 0.9130 0.4028 0.4198 0.9595
QE-BERT Multitask-Word 0.3918 0.4288 0.9138 0.4074 0.4258 0.9567
QE-BERT Multitask-Word Ensemble A∗ 0.4044 0.4391 0.9210 0.4318 0.4501 0.9593
QE-BERT Multitask-Word Ensemble B∗ 0.3916 0.4262 0.9189 0.4288 0.4466 0.9602

Word level MT Word MT Gap
( F1-Mult ↑ F1-BAD ↑ F1-OK ↑ ) ( F1-Mult ↑ F1-BAD ↑ F1-OK ↑ )

<English-Russian>
QE-BERT Word 0.4215 0.4561 0.9240 0.1609 0.1631 0.9863
QE-BERT Multitask-Word 0.4313 0.4616 0.9344 0.1734 0.1758 0.9866
QE-BERT Multitask-Word Ensemble A∗ 0.4354 0.4642 0.9381 0.1791 0.1812 0.9884
QE-BERT Multitask-Word Ensemble B∗ 0.4180 0.4446 0.9403 0.1710 0.1730 0.9882

<English-German>
QE-BERT Word 0.4307 0.4640 0.9283 0.2729 0.2765 0.9871
QE-BERT Multitask-Word 0.4365 0.4724 0.9241 0.2936 0.2983 0.9840
QE-BERT Multitask-Word Ensemble A∗ 0.4429 0.4766 0.9293 0.3060 0.3107 0.9849
QE-BERT Multitask-Word Ensemble B∗ 0.4443 0.4767 0.9320 0.2884 0.2930 0.9845

∗ Our submissions at the WMT19 QE task

Table 1: Results of the QE BERT model on the development set of the WMT19 word-level QE task.

Sentence level Pearson’s r ↑ Spearman’s ρ ↑ MAE ↓ RMSE ↓
<English-Russian>
QE-BERT Sent 0.4683 0.4524 0.1151 0.2072
QE-BERT Multitask-Sent-Word 0.4948 0.4908 0.1106 0.2056
QE-BERT Multitask-Sent-Word Ensemble∗ 0.5229 0.5102 0.1080 0.2016

<English-German>
QE-BERT Sent 0.4849 0.5401 0.1072 0.1698
QE-BERT Multitask-Sent-Word 0.5199 0.5859 0.1026 0.1670
QE-BERT Multitask-Sent-Word Ensemble∗ 0.5450 0.6229 0.0978 0.1665

∗ Our submissions at the WMT19 QE task

Table 2: Results of the QE BERT model on the development set of the WMT19 sentence-level QE task.

Word level Source Word
F1-Mult ↑

MT (All)
F1-Mult ↑

<English-Russian>
Baseline 0.2647 0.2412
QE-BERT Multitask-Word Ensemble A∗ 0.4202 0.4515
QE-BERT Multitask-Word Ensemble B∗ 0.4114 0.4300

<English-German>
Baseline 0.2908 0.2974
QE-BERT Multitask-Word Ensemble A∗ 0.3946 0.4061
QE-BERT Multitask-Word Ensemble B∗ 0.3960 0.4047

∗ Our submissions at the WMT19 QE task

Table 3: Results of the QE BERT model on the test set of the WMT19 word-level QE task.

Sentence level Pearson’s r ↑ Spearman’s ρ ↑
<English-Russian>
Baseline 0.2601 0.2339
QE-BERT Multitask-Sent-Word Ensemble∗ 0.5327 0.5222

<English-German>
Baseline 0.4001 0.4607
QE-BERT Multitask-Sent-Word Ensemble∗ 0.5260 0.5745

∗ Our submissions at the WMT19 QE task

Table 4: Results of the QE BERT model on the test set of the WMT19 sentence-level QE task.
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achieved significant improvements. Given this
promising approach, we believe that BERT-based
quality estimation models can be further advanced
with more investigation.
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