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Introduction

The Fourth Conference on Machine Translation (WMT 2019) took place on Thursday, August 1 and
Friday, August 2, 2019 in Florence, Italy, immediately following the 57th Annual Meeting of the
Association for Computational Linguistics (ACL 2019).

This is the fourth time WMT has been held as a conference. The first time WMT was held as a conference
was at ACL 2016 in Berlin, Germany, the second time at EMNLP 2017 in Copenhagen, Denmark, and the
third time at EMNLP 2028 in Brussels, Belgium. Prior to being a conference, WMT was held 10 times
as a workshop. WMT was held for the first time at HLT-NAACL 2006 in New York City, USA. In the
following years the Workshop on Statistical Machine Translation was held at ACL 2007 in Prague, Czech
Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens, Greece, ACL 2010 in Uppsala,
Sweden, EMNLP 2011 in Edinburgh, Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia,
Bulgaria, ACL 2014 in Baltimore, USA, and EMNLP 2015 in Lisbon, Portugal.

The focus of our conference is to bring together researchers from the area of machine translation and
invite selected research papers to be presented at the conference.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 8 shared tasks. This consisted of four translation tasks: Machine Translation of News,
Biomedical Translation, Robust Machine Translation, and Similar Language Translation, two evaluation
tasks: Metrics and Quality Estimation, as well as the Automatic Post-Editing and Parallel Corpus
Filtering tasks.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. WMT 2019 has received 48 full research paper submissions (not counting withdrawn
submissions). In total, WMT 2019 featured 12 full research paper oral presentations and 102 shared task
poster presentations.

The invited talk was given by Marine Carpuat from the University of Maryland, College Park, USA. It
was titled “Semantic, Style & Other Data Divergences in Neural Machine Translation".

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Christof Monz, Matteo Negri,
Aurélie Névéol, Mariana Neves, Matt Post, Marco Turchi, and Karin Verspoor
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Linguistic Evaluation of German-English Machine Translation Using a Test Suite
Eleftherios Avramidis, Vivien Macketanz, Ursula Strohriegel and Hans Uszkoreit
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Abstract
We report the results of the WMT19 shared
task on Quality Estimation, i.e. the task of
predicting the quality of the output of machine
translation systems given just the source text
and the hypothesis translations. The task in-
cludes estimation at three granularity levels:
word, sentence and document. A novel ad-
dition is evaluating sentence-level QE against
human judgments: in other words, design-
ing MT metrics that do not need a reference
translation. This year we include three lan-
guage pairs, produced solely by neural ma-
chine translation systems. Participating teams
from eleven institutions submitted a variety of
systems to different task variants and language
pairs.

1 Introduction

This shared task builds on its previous seven edi-
tions to further examine automatic methods for es-
timating the quality of machine translation (MT)
output at run-time, without the use of reference
translations. It includes the (sub)tasks of word-
level, sentence-level and document-level estima-
tion. In addition to advancing the state of the art
at all prediction levels, our more specific goals in-
clude to investigate the following:

• The predictability of missing words in the
MT output. As in last year, our data include
this annotation.

• The predictability of source words that lead
to errors in the MT output, also as in last year.

• Quality prediction for documents based on
errors annotated at word-level with added
severity judgments. This is also like in last
year.

• The predictability of individual errors within
documents, which may depend on a larger

context. This is a novel task, building upon
the existing document-level quality estima-
tion.

• The reliability of quality estimation models
as a proxy for metrics that depend on a refer-
ence translation.

• The generalization ability of quality estima-
tion models to different MT systems instead
of a single ones

We present a simpler setup in comparison to last
edition, which featured more language pairs, sta-
tistical MT outputs alongside neural ones, and an
additional task for phrase-based QE. This simpli-
fication reflects a more realistic scenario, in which
NMT systems have mostly replaced SMT ones,
making phrase-level predictions harder.

We used both new data as well as some exist-
ing data from the previous edition of this shared
task. For word and sentence level, we reused the
English-German dataset from last year, but also
added a new English-Russian one. For document
level, we reused last year’s English-French data
for training and validation, but introduced a new
test set from the same corpus. For QE as a met-
ric we ran the evaluation jointly with the WMT19
metrics task, which meant applying the QE sys-
tems to news translation submissions and evaluat-
ing them against the human judgments collected
this year.

2 Tasks

This year we present three tasks: Task 1 for word-
level and sentence-level quality estimation, Task 2
for document-level, and Task 3 for quality estima-
tion as a metric. In contrast to previous editions, in
which there were data from statistical translation
systems, all datasets come from neural machine
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translation systems.1

2.1 Task 1

The aim of Task 1 is to estimate the amount of
human post-editing work required in a given sen-
tence. It is comprised of word-level and sentence-
level subtasks, both of which annotated as in last
year.

2.1.1 Word Level
At the word level, participants are required to pro-
duce a sequence of tags for both the source and
the translated sentences. For the source, tokens
correctly translated should be tagged as OK, and
the ones mistranslated or ignored as BAD. For the
translated sentence, there should be tags both for
words and gaps – we consider gaps between each
two words, plus one in the beginning and another
in the end of the sentence. Words correctly aligned
with the source are tagged as OK, and BAD oth-
erwise. If one or more words are missing in the
translation, the gap where they should have been
is tagged as BAD, and OK otherwise.

As in previous years, in order to obtain word
level labels, first both the machine translated
sentence and the source sentence are aligned
with the post-edited version. Machine trans-
lation and post-edited pairs are aligned us-
ing the TERCOM tool (https://github.
com/jhclark/tercom);2 source and post-
edited use the IBM Model 2 alignments from
fast align (Dyer et al., 2013).

Target word and gap labels Target tokens orig-
inating from insertion or substitution errors were
labeled as BAD (i.e., tokens absent in the post-
edit sentence), and all other tokens were labeled as
OK. Similarly to last year, we interleave these tar-
get word labels with gap labels: gaps were labeled
as BAD in the presence of one or more deletion
errors (i.e., a word from the source missing in the
translation) and OK otherwise.

Source word labels For each token in the post-
edited sentence deleted or substituted in the ma-
chine translated text, the corresponding aligned

1This is true for tasks 1 and 2, since task 3 is based on the
MT systems submitted to WMT19 News Translation, which
can potentially use any MT paradigm, including rule-based,
statistical, neural and hybrid approaches.

2For back-compatibility with last year’s datasets, when
computing word-level labels, we disabled shifts in TER-
COM; shifts were allowed for sentence-level label genera-
tion.

source tokens were labeled as BAD. In this way,
deletion errors also result in BAD tokens in the
source, related to the missing words. All other
words were labeled as OK.

Evaluation As in last year, systems are evalu-
ated primarily by F1-Mult, the product of the F1

scores for OK and BAD tags. There are sepa-
rate scores for source sentences and translated sen-
tences, with the latter having word and gap tags
interleaved. Systems are ranked according to their
performance on the source side.

Additionally, we compute the Matthews corre-
lation coefficient (MCC, Matthews 1975), a metric
for binary classification problems particularly use-
ful when classes are unbalanced. This is the case
in QE, in which OK tags are much more common
than BAD tags (see Table 2 for the statistics on this
year’s data). It is computed as follows:

S =
TP + FN

N

P =
TP + FP

N

MCC =
TP
N − SP√

SP (1− S)(1− P )
,

(1)

where TP , TN , FP and FN stand for, respec-
tively, true positives, true negatives, false positives
and false negatives; and N is the total number of
instances to be classified.

2.1.2 Sentence Level
At the sentence level, systems are expected to pro-
duce the Human Translation Error Rate (HTER),
which is the minimum ratio of edit operations
(word insertions, deletions and replacements)
needed to fix the translation to the number of its
tokens, capped at maximum 1.

In order to obtain the number of necessary op-
erations, we run TERCOM on the machine trans-
lated and post-edit sentences, with a slightly dif-
ferent parametrization (see footnote 2).

Evaluation Also as in last year, systems are pri-
marily evaluated by the Pearson correlation score
with the gold annotations. Mean absolute error
(MAE), rooted mean squared error (RMSE) and
Spearman correlation are also computed.

2.2 Task 2
The goal of Task 2 is to predict document-level
quality scores as well as fine-grained annotations,
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Gold annotation

Coup de sifflet Fox 40 CMG classique doigt

officiel Grip

System output

Coup de sifflet Fox 40 CMG classique doigt

officiel Grip

Figure 1: Example of fine-grained document annota-
tion. Spans in the same color belong to the same an-
notation. Error severity and type are not shown for
brevity.

identifying which words and passages are incor-
rect in the translation.

Each document contains zero or more errors,
annotated according to the MQM taxonomy3, and
may span one or more tokens, not necessarily con-
tiguous. Errors have a label specifying their type,
such as wrong word order, missing words, agree-
ment, etc. They provide additional information,
but do not need to be predicted by the systems.
Additionally, there are three severity levels for er-
rors: minor (if it is not misleading nor changes
meaning), major (if it changes meaning), and crit-
ical (if it changes meaning and carries any kind of
implication, possibly offensive).

Figure 1 shows an example of fine-grained error
annotations for a sentence, with the ground truth
and a possible system prediction. Note that there
is an annotation composed by two discontinuous
spans: a whitespace and the token Grip — in this
case, the annotation indicates wrong word order,
and Grip should have been at the whitespace posi-
tion.

The document-level scores, called MQM
scores, are determined from the error annotations
and their severity:

MQM = 1− nminor + 5nmajor + 10ncrit
n

. (2)

Notice that the MQM score can be negative de-
pending on the number and severity of errors; we
truncate it to 0 in that case. Also notice that, while
the MQM score can be obtained deterministically
from the fine-grained annotations, participants are

3Multidimensional Quality Metrics; see
http://www.qt21.eu/mqm-definition/
definition-2015-12-30.html for details.

Gold R System P

Coup de 0.57 Coup 1
classique 1 CMG classique 0.69

Grip 0 officiel 0

Mean Recall 0.52
Mean Precision 0.56
F1 0.54

Table 1: Scores for the example system output shown
in Figure 1. R stands for recall and P for precision, and
are computed based on character overlap.

allowed to produce answers for both subtasks in-
consistent with each other, if they believe their
systems to work better estimating a single score
for the whole document.

MQM Evaluation MQM scores are evaluated
in the same way as the document-level HTER
scores: primarily with Pearson correlation with
the gold values, and also with MAE, RMSE and
Spearman’s ρ.

Fine-grained Evaluation Fine-grained annota-
tions are evaluated as follows. For each error
annotation asi in the system output, we look for
the gold annotation agj with the highest overlap in
number of characters. The precision of asi is de-
fined by the ratio of the overlap size to the an-
notation length; or 0 if there was no overlapping
gold annotation. Conversely, we compute the re-
call of each gold annotation agj considering the
best matching annotation ask in the system output4,
or 0 if there was no overlapping annotation. The
document precision and recall are computed as the
average of all annotation precisions in the corre-
sponding system output and recalls in the gold out-
put; and therewith we compute the document F1.
The final score is the unweighted average of the
F1 for all documents. Table 1 shows the precision
and recall for each annotation in the example from
Figure 1.

2.3 Task 3

Task 3 on applying QE as a metric had several pur-
poses:

• To find out how well QE results correlate
4Notice that if a gold annotation ag

j has the highest over-
lap with a system annotation as

i , it does not necessarily mean
that as

i has the highest overlap with ag
j .
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with general human judgments of MT qual-
ity. This mainly means shifting the applica-
tion focus of quality estimation from profes-
sional translators (whose primary interest is
the expected number of post-edits to perform,
as estimated by the HTER score) to MT de-
velopers and general users.

• To test the generalization ability of QE ap-
proaches in a massive multi-system scenario,
instead of learning to estimate the quality of
just a single MT system

• To directly compare QE models to MT met-
rics and see how far one can get without a
reference translation, or in other words, how
much does one gain from having a reference
translation in terms of scoring MT outputs

As part of this task sentence-level QE systems
were applied to pairs of source segments and trans-
lation hypotheses submitted to the WMT19 news
translation shared task. System-level results were
also computed via averaging the sentence score
over the whole test set.

Submission was handled jointly with the
WMT19 metrics task. Two language pairs were
highlighted as the focus of this task: English-
Russian and English-German; however, the task
was not restricted to these, and other news transla-
tion task languages were also allowed.

Results of this task were evaluated in the same
way as MT metrics, using Kendall rank corre-
lation for sentence-level and Perason correlation
for system-level evaluations (see (Graham et al.,
2019) for precise details). The overall motiva-
tion was to measure how often QE results agree
or disagree with human judgments on the quality
of translations, and whether references are needed
at all to get a reliable estimate of it.

3 Datasets

3.1 Task 1

Two datasets were used in this task: an English-
German, the same as in last year with texts
from the IT domain; and a novel English-Russian
dataset with interface messages present in Mi-
crosoft applications. The same data are used for
both word-level and sentence-level evaluations.

Table 2 shows statistics for the data. Both lan-
guage pairs have nearly the same number of sen-
tences, but EN-DE has substantially longer ones.

The ratio of BAD tokens in the word-level annota-
tion is also similar in both datasets, as well as the
mean HTER, with a increased standard deviation
for EN-RU.

3.2 Task 2

There is only one dataset for this task. It is the
same one used in last year’s evaluation, but with a
new unseen test set and some minor changes in the
annotations; last year’s test set was made available
as an additional development set. The documents
are derived from the Amazon Product Reviews
English-French dataset, a selection of Sports and
Outdoors product titles and descriptions. The most
popular products (those with more reviews) were
chosen. This data poses interesting challenges for
machine translation: titles and descriptions are of-
ten short and not always a complete sentence. The
data was annotated for translation errors by the
Unbabel community of crowd-sourced annotators.

Table 3 shows some statistics of the dataset. We
see that the new test set has a mean MQM value
higher than last year, but actually closer to the
training data. On the other hand, the average num-
ber of annotations per document is smaller.

3.3 Task 3

Task 3 did not use a specially prepared dataset, as
evaluations were done via the human judgments
collected in the manual evaluation phase of the
news translation shared task.

Suggested training data included last years’
WMT translation system submissions and their
collected human judgments (years 2016–2018), as
well as any other additional resources including
HTER-annotated QE data, monolingual and par-
allel corpora.

4 Baselines

These are the baseline systems we used for each
subtask.

4.1 Word Level

For word-level quality estimation, we used the
NuQE (Martins et al., 2017) implementation pro-
vided in OpenKiwi (Kepler et al., 2019), which
achieved competitive results on the datasets of pre-
vious QE shared tasks. It reads sentence pairs with
lexical alignments, and takes as input the embed-
dings of words in the target sentence concatenated
with both their aligned counterparts in the source
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Split Pair Sentences Words BAD source BAD target HTER

Train
EN-DE 13,442 234,725 28,549 (12.16%) 37,040 (7.06%) 0.15 (±0.19)
EN-RU 15,089 148,551 15,599 (10.50%) 18,380 (6.15%) 0.13 (±0.24)

Dev
EN-DE 1,000 17,669 2,113 (11.96%) 2,654 (6.73%) 0.15 (±0.19)
EN-RU 1,000 9,710 1,055 (10.87%) 1,209 (6.17%) 0.13 (±0.23)

Test
EN-DE 1,023 17,649 2,415 (13.68%) 3,136 (8.04%) 0.17 (±0.19)
EN-RU 1,023 7,778 1,049 (13.49%) 1,165 (7.46%) 0.17 (±0.28)

Table 2: Statistics of the datasets used in Task 1. Number of sentences is always the same in source and target;
number of words refer to the source. Values shown for HTER are mean and standard deviation in parentheses.

Split Documents Sentences Words MQM Annotations

Train 1,000 6,003 158,393 29.47 (± 24.42) 23.17 (± 29.46)
Dev 200 1,301 33,959 19.29 (± 23.28) 28.11 (± 42.94)
Test 2018 268 1,640 46,564 18.11 (± 23.52) 27.74 (± 35.04)
Test 2019 180 949 26,279 26.60 (± 26.80) 19.24 (± 23.94)

Table 3: Statistics of the datasets used in Task 2. The column Annotations shows the average number of annotations
per document in the dataset. The values for MQM and Annotations are the mean with standard deviation in
parentheses

and neighboring words. It then applies linear lay-
ers and an RNN to the embedded vectors, out-
putting a softmax over OK and BAD tags.

4.2 Sentence Level
The sentence-level baseline is a linear regressor
trained on four features computed from word-level
tags. At training time, it computes the features
from the gold training data; at test time, it uses the
output produced by the word-level baseline. We
found this setup to work better than training the
regressor with the automatically generated output.
The features used are:

1. Number of BAD tags in the source;

2. number of BAD tags corresponding to words
in the translation;

3. number of BAD tags corresponding to gaps
in the translation;

4. number of tokens in the translation.

During training, we discarded all sentences with
an HTER of 0, and during testing, we always an-
swer 0 when there are no BAD tags in the in-
put. This avoids a bias towards lower scores in the
case of a high number of sentences with HTER 0,
which is the case in the EN-RU data.5

5While in principle sentences with no BAD tags should

4.3 Document Level

For the document-level task, we first cast the prob-
lem as word-level QE: tokens and gaps inside an
error annotation are given BAD tags, and all oth-
ers are given OK. Then, we train the same word-
level estimator as in the baseline for Task 1. At
test time, for the fine-grained subtask, we group
consecutive BAD tags produced by the word-level
baseline in a single error annotation and always
give it severity major (the most common in the
training data). As such, the baseline only produces
error annotations with a single error span.

For the MQM score, we consider the ratio of
bad tags to the document size:

MQM = 1− nbad
n

(3)

This simple baseline contrasts with last year,
which used QuEst++ (Specia et al., 2015), a QE
tool based on training an SVR on features ex-
tracted from the data. We found that the new base-
line performed better than QuEst++ on the devel-
opment data, and thus adopted it as the official
baseline.

have an HTER of 0, this is not always the case. When pre-
processing the shared task data, word-level tags were deter-
mined in a case-sensitive fashion, while sentence-level scores
were not. The same issue also happened last year, but unfor-
tunately we only noticed it after releasing the training data for
this edition.

5



4.4 QE as a Metric

The QE as a metric task included two baselines,
both unsupervised. One relied on pre-trained
vector representations and consisted of com-
puting cross-lingual sentence embeddings (using
LASER: Artetxe and Schwenk, 2018) for the
source segment and the hypothesis translation and
using their cosine similarity as the measure of sim-
ilarity between them. Pre-trained LASER models
were used and no other training or tuning was per-
formed.

The second baseline consisted of using bilin-
gually trained neural machine translation systems
to calculate the score of the hypothesis transla-
tion, when presented with the source segment as
input. Thus, instead of decoding and looking for
the best translation with the MT models, we com-
puted the probability of each subword in the hy-
pothesis translation and used these to compute the
overall log-probability of the hypothesis under the
respective MT model.

5 Participants

In total, there were eleven participants for all three
tasks, though not all participated in all of them.
Here we briefly describe their strategies and which
sub-tasks they participated in.

5.1 MIPT

MIPT only participated in the word-level EN-
DE task. They used a BiLSTM, BERT and a
baseline hand designed-feature extractor to gen-
erate word representations, followed by Condi-
tional Random Fields (CRF) to output token la-
bels. Their BiLISTM did not have any pre-
training, unlike BERT, and combined the source
and target vectors using a global attention mech-
anism. Their submitted runs combining the base-
line features with the BiLSTM and with BERT.

5.2 ETRI

ETRI participated in Task 1 only. They pretrained
bilingual BERT (Devlin et al., 2019) models (one
for EN-RU and another for EN-DE), and then fine-
tuned them to predict all the outputs for each lan-
guage pair, using different output weight matri-
ces for each subtask (predicting source tags, target
word tags, target gap tags, and the HTER score).
Training the same model for both subtasks effec-
tively enhanced the amount of training data.

5.3 CMU

CMU participated only in the sentence-level task.
Their setup is similar to ETRI’s, but they pretrain
a BiLSTM encoder to predict words in the target
conditioned on the source. Then, a regressor is fed
the concatenation of each encoded word vector in
the target with the embeddings of its neighbours
and a mismatch feature indicating the difference
between the prediction score of the target word
and the highest one in the vocabulary.

5.4 Unbabel

Unbabel participated in Tasks 1 and 2 for all lan-
guage pairs. Their submissions were built upon
the OpenKiwi framework: they combined linear,
neural, and predictor-estimator systems (Chollam-
patt and Ng, 2018) with new transfer learning ap-
proaches using BERT (Devlin et al., 2019) and
XLM (Lample and Conneau, 2019) pre-trained
models. They proposed new ensemble techniques
for word and sentence-level predictions. For Task
2, they combined a predictor-estimator for word-
level predictions with a simple technique for con-
verting word labels into document-level predic-
tions.

5.5 UTartu

UTartu participated in the sentence-level track of
task 1 and in task 3. They combined BERT (De-
vlin et al., 2019) and LASER (Artetxe and
Schwenk, 2018) embeddings to train a regression
neural network model. The output objective was
either HTER for task 1 or the direct assessment
human annotations from WMT 2016–2018. In
addition to pre-trained embeddings as input fea-
tures they also used a log-probability score ob-
tained from a neural MT system. Finally, their sys-
tems were pre-trained on synthetic data, obtained
by taking all of the WMT submissions from earlier
years and using chrF (Popović, 2015) as the syn-
thetic output. The approach is described in greater
detail in (Yankovskaya et al., 2019).

5.6 NJUNLP

NJUNLP participated only in the sentence-level
EN-DE task. In order to generate word repre-
sentation vectors in the QE context, they trained
transformer models to predict source words condi-
tioned on the target and target words conditioned
on the source. Then, they run a recurrent neural
network over these representations and a regressor
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on their averaged output vectors.

5.7 BOUN
BOUN turned in a late submission. For word-level
predictions, they used referential machine transla-
tion models (RTM), which search the training set
for instances close to test set examples, and try
to determine labels according to them. For sen-
tence level, they used different regressors trained
on features generated by their word-level model.
For document level, they treat the whole document
as a single sentence and apply the same setup.

5.8 USAAR-DFKI
USAAR-DFKI participated only in the sentence-
level EN-DE task, and used a CNN implementa-
tion of the predictor-estimator based quality esti-
mation model (Chollampatt and Ng, 2018). To
train the predictor, they used WMT 2016 IT do-
main translation task data, and to train the estima-
tor, the WMT 2019 sentence level QE task data.

5.9 DCU
DCU submitted two unsupervised metrics to task
3, both based on the IBM1 word alignment model.
The main idea is to align the source and hypothe-
sis using a model trained on a parallel corpus, and
then use the average alignment strength (average
word pair probabilities) as the metric. The vari-
eties and other details are described in (Popović
et al., 2011).

5.10 USFD
The two Sheffield submissions to the task 3 are
based on the BiRNN sentence-level QE model
from the deepQuest toolkit for neural-based QE
(Ive et al., 2018). The BiRNN model uses two
bi-directional recurrent neural networks (RNNs)
as encoders to learn the representation of a
¡source,translation¿ sentence pair. The two en-
coders are trained independently from each other,
before being combined as the weighted sum of the
two sentence representations, using an attention
mechanism.

The first variant of our submission, ’USFD’, is a
BiRNN model trained on Direct Assessment data
from WMT’18. In this setting, the DA score is
used as a sentence-level quality label. The sec-
ond variant, ’USFD-TL’, is a BiRNN model pre-
viously trained on submissions to the WMT News
task from 2011 to 2017, with sent-BLEU as a qual-
ity label. We only considered the best performing

submission, as well as one of the worst performing
one. The model is then adapted to the downstream
task of predicting DA score, using a transfer learn-
ing and fine-tuning approach.

5.11 NRC-CNRC

The submissions from NRC-CNRC (kiu Lo, 2019)
included two metrics submitted to task 3. They
constitute a unified automatic semantic machine
translation quality evaluation and estimation met-
ric for languages with different levels of available
resources. They use BERT (Devlin et al., 2019)
and semantic role-labelling as additional sources
of information.

6 Results

The results for Task 1 are shown in Tables 4,
5, 6 and 7. Systems are ranked according
to their F1 on the target side. The evalua-
tion scripts are available at https://github.
com/deep-spin/qe-evaluation.

We computed the statistical significance of the
results, and considered as winning systems the
ones which had significantly better scores than all
the rest with p < 0.05. For the word-level task, we
used randomization tests (Yeh, 2000) with Bonfer-
roni correction6 (Abdi, 2007); for Pearson corre-
lation scores used in the sentence-level and MQM
scoring tasks, we used William’s test7.

In the word-level task, there is a big gap be-
tween Unbabel’s winning submission and ETRI’s,
which in turn also had significantly better results
than MIPT and BOUN. Unfortunately, we can-
not do a direct comparison with last year’s results,
since i) we now evaluate a single score for target
words and gaps, which were evaluated separately
before, and ii) only two systems submitted results
for source words last year.

The newly proposed metric, MCC, is very well
correlated with the F1-Mult. If we ranked sys-
tems based on their (target) MCC, the only differ-
ence would be in the EN-RU task, in which BOUN
would be above the baseline. Since this metric was
conceived especially for unbalanced binary clas-
sification problems, it seems reasonable to use it
as the primary metric for the next editions of this
shared task.

6We adapted the implementation from
https://gist.github.com/varvara-l/
d66450db8da44b8584c02f4b6c79745c

7We used the implementation from https://github.
com/ygraham/nlp-williams
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Target Source

Model F1 MCC F1 MCC

† UNBABEL Ensemble 0.4752 0.4585 0.4455 0.4094
UNBABEL Stacked 0.4621 0.4387 0.4284 0.3846
ETRI BERT Multitask A 0.4061 0.3778 0.3946 0.3426
ETRI BERT Multitask B 0.4047 0.3774 0.396 0.3446
MIPT Neural CRF Transformer 0.3285 0.2896 0.2662 0.1811
MIPT Neural CRF RNN 0.3025 0.2601 0.26 0.1748
Baseline 0.2974 0.2541 0.2908 0.2126
BOUN RTM GLMd* 0.1846 0.1793 0.0957 0.0372

Table 4: Word-level results for EN-DE. † indicates the winning system.* indicates late submissions that were not
considered in the official ranking.

Target Source

Model F1 MCC F1 MCC

† UNBABEL Ensemble 2 0.478 0.4577 0.4541 0.4212
† UNBABEL Ensemble 0.4629 0.4412 0.4174 0.3729
† ETRI BERT Multitask A 0.4515 0.4294 0.4202 0.3732
ETRI BERT Multitask B 0.43 0.4082 0.4114 0.3644
Baseline 0.2412 0.2145 0.2647 0.1887
BOUN RTM GLMd* 0.1952 0.2271 0.0871 0.0698

Table 5: Word-level results for EN-RU. † indicates the winning systems. * indicates late submissions that were not
considered in the official ranking.

Model Pearson Spearman

† UNBABEL Ensemble 0.5718 0.6221
CMULTIMLT 0.5474 0.5947
NJUNLP BiQE BERT Ensemble 0.5433 0.5694
NJUNLP BiQE 0.5412 0.5665
ETRI 0.526 0.5745
Baseline 0.4001 0.4607
UTARTU LABE -0.319 -0.3768
UTARTU LABEL 0.2487 0.2531
USAAR-DFKI CNNQE 0.2013 0.2806
BOUN RTM1* 0.4734 0.5307
BOUN RTM2* 0.1799 0.2779

Table 6: Sentence-level results for EN-DE. † indicates the winning system. * indicates late submissions that were
not considered in the official ranking.
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Model Pearson Spearman

† UNBABEL Ensemble 2 0.5923 0.5388
† UNBABEL Ensemble 0.5889 0.5411
ETRI 0.5327 0.5222
CMULTIMLT 0.4575 0.4039
CMULTIMLT 2 0.4292 0.3628
UTARTU LABEL 0.4014 0.3364
Baseline 0.2601 0.2339
UTARTU LACLAS 0.0424 0.1735
BOUN RTM 1* 0.2817 0.2067
BOUN RTM 2* 0.2314 0.1082

Table 7: Sentence-level results for EN-RU. † indicates the winning system. * indicates late submissions that were
not considered in the official ranking.

Model F1

UNBABEL BERT 0.48
Baseline 0.38

Table 8: Document-level fine grained annotation re-
sults for EN-FR

Model Pearson

UNBABEL LINBERT 0.37
UNBABEL BERT 0.37
Baseline 0.35
BOUN RTM 1* 0.22
BOUN RTM 2* 0.05

Table 9: Document-level MQM results for EN-FR. †
indicates the winning system. * indicates late submis-
sions.

In the sentence-level task, Unbabel achieved
again the best scores, but with a tighter gap to the
other participants. For EN-RU, their second sub-
mission is statistically tied to ETRI’s first. Com-
paring to last year’s results in EN-DE, in which the
best system had a Pearson correlation of 0.51 and
the median was 0.38, we see a great improvement
overall. This is likely due to the more powerful
pre-trained models, such as BERT and ELMo, that
are common now.

In task 2 on document-level QE, Unbabel
achieved the best scores again. Unbabel was also
the only participant in the fine-grained annotation
subtask, but surpassed the baseline by a large mar-
gin. As for the MQM scoring, last year used a
different test set, making results not directly com-

parable, but the best system achieved a Pearson
correlation of 0.53. The test set this year is ar-
guably easier because its mean MQM is closer to
the training set (see Table 3).

Results for Task 3 on QE as a metric and are
presented in Tables 10–15. These include system-
level and segment-level evaluations; results for
all language pairs of WMT19 News Translation
are presented; full comparison between reference-
based and referenceless metrics can be found in
the metrics evaluation campaign (Graham et al.,
2019).

On system-level UNI/UNI+ (UTartu) and
YiSi-2/YiSi-2-srl (NRC-CNRC) show perfor-
mance very close to reference-based BLEU and
chrF, with the Pearson correlation even being
marginally better than BLEU in single cases. The
other metrics fall behind somewhat; the LASER
and LogProb baselines mostly fall behind the sub-
missions and reference-based metrics, especially
for translations into English.

Segment-level results are much less optimistic,
with most results into English being below 0.1
(practically no correlation) and 0.2 from En-
glish. A notable exception is YiSi-2/YiSi-2-srl
for English-German and German-Czech, where its
Kendall τ correlation is very close to sentBLEU,
but still behind chrF.

Overall we can conclude from task 3 that
reference-free metrics are not yet reliable enough
to completely replace reference-based metrics,
though some results show promise.

9



Model DE-EN FI-EN GU-EN KK-EN LT-EN RU-EN ZH-EN

LASER 0.247 - - - - 0.310 -
LogProb 0.474 - - - - 0.488 -
ibm1-morpheme 0.345 0.740 - - 0.487 - -
ibm1-pos4gram 0.339 - - - - - -
UNI 0.846 0.930 - - - 0.805 -
UNI+ 0.850 0.924 - - - 0.808 -
YiSi-2 0.796 0.642 0.566 0.324 0.442 0.339 0.940
YiSi-2 srl 0.804 - - - - - 0.947
BLEU 0.849 0.982 0.834 0.946 0.961 0.879 0.899
chrF 0.917 0.992 0.955 0.978 0.940 0.945 0.956

Table 10: Results of task 3: system-level Pearson correlations between the submitted metrics and human judgments
on all translation directions into English. LASER and LogProb are the baselines. The reference-based BLEU and
chrF metrics are provided for comparison.

Model EN-CS EN-DE EN-FI EN-GU EN-KK EN-LT EN-RU EN-ZH

LASER - 0.871 - - - - 0.823 -
LogProb - 0.569 - - - - 0.661 -
ibm1-morpheme 0.871 0.870 0.084 - - 0.810 - -
ibm1-pos4gram - 0.393 - - - - - -
UNI 0.028 0.841 0.907 - - - 0.919 -
UNI+ - - - - - - 0.918 -
USFD - 0.224 - - - - 0.857 -
USFD-TL - 0.091 - - - - 0.771 -
YiSi-2 0.324 0.924 0.696 0.314 0.339 0.055 0.766 0.097
YiSi-2 srl - 0.936 - - - - - 0.118
BLEU 0.897 0.921 0.969 0.737 0.852 0.989 0.986 0.901
chrF 0.990 0.979 0.986 0.841 0.972 0.981 0.943 0.880

Table 11: Results of task 3: system-level Pearson correlations between the submitted metrics and human judgments
on all translation directions from English. LASER and LogProb are the baselines. The reference-based BLEU and
chrF metrics are provided for comparison.

Model DE-EN FI-EN GU-EN KK-EN LT-EN RU-EN ZH-EN

LASER -0.024 - - - - 0.022 -
LogProb -0.096 - - - - -0.035 -
ibm1-morpheme -0.074 0.009 - - 0.069 - -
ibm1-pos4gram -0.153 - - - - - -
UNI 0.022 0.202 - - - 0.084 -
UNI+ 0.015 0.211 - - - 0.089 -
YiSi-2 0.068 0.126 -0.001 0.096 0.075 0.053 0.253
YiSi-2 srl 0.068 - - - - - 0.246
sentBLEU 0.056 0.233 0.188 0.377 0.262 0.125 0.323
chrF 0.122 0.286 0.256 0.389 0.301 0.180 0.371

Table 12: Results of task 3: segment-level Kendall τ correlations between the submitted metrics and human
judgments on all translation directions into English. LASER and LogProb are the baselines. The reference-based
sentBLEU and chrF metrics are provided for comparison.
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Model EN-CS EN-DE EN-FI EN-GU EN-KK EN-LT EN-RU EN-ZH

LASER - 0.147 - - - - -0.24 -
LogProb - -0.119 - - - - -0.158 -
ibm1-morpheme -0.135 -0.003 -0.005 - - -0.165 - -
ibm1-pos4gram - -0.123 - - - - - -
UNI 0.060 0.129 0.351 - - - 0.226 -
UNI+ - - - - - - 0.222 -
USFD - -0.029 - - - - 0.136 -
USFD-TL - -0.037 - - - - 0.191 -
YiSi-2 0.069 0.212 0.239 0.147 0.187 0.003 -0.155 0.044
YiSi-2 srl - 0.236 - - - - - 0.034
sentBLEU 0.367 0.248 0.396 0.465 0.392 0.334 0.469 0.270
chrF 0.455 0.326 0.514 0.534 0.479 0.446 0.539 0.301

Table 13: Results of task 3: segment-level Kendall τ correlations between the submitted metrics and human
judgments on all translation directions from English. LASER and LogProb are the baselines. The reference-based
sentBLEU and chrF metrics are provided for comparison.

Model DE-CS DE-FR FR-DE

ibm1-morpheme 0.355 0.509 0.625
ibm1-pos4gram - 0.085 0.478
YiSi-2 0.606 0.721 0.530
BLEU 0.941 0.891 0.864
chrF 0.974 0.931 0.864

Table 14: Results of task 3: system-level Pearson cor-
relations between the submitted metrics and human
judgments on all translation directions without English
involved. The LASER and LogProb baselines were
not computed for these language pairs. The reference-
based BLEU and chrF metrics are provided for com-
parison.

Model DE-CS DE-FR FR-DE

ibm1-morpheme 0.048 -0.013 -0.053
ibm1-pos4gram - -0.074 -0.097
YiSi-2 0.199 0.186 0.066
sentBLEU 0.203 0.235 0.179
chrF 0.326 0.284 0.275

Table 15: Results of task 3: segment-level Kendall τ
correlations between the submitted metrics and human
judgments on all translation directions without English
involved. The LASER and LogProb baselines were
not computed for these language pairs. The reference-
based sentBLEU and chrF metrics are provided for
comparison.

7 Conclusions

We presented our findings in this year’s shared
task on translation quality estimation. This year,
the main novelties were a new task that assesses
quality estimation as a metric (Task 3), a new sub-
task related to document-level quality estimation
(Task 2) where the goal is to predict error anno-
tations and their severities, and a new dataset for
English-Russian used in Task 1.

Following similar trends in other NLP tasks, a
common choice from the participants this year was
the usage of contextual and pre-trained embedding
models such as BERT and XLM along with trans-
fer learning, which includes the systems that ob-
tained the best results. In the future, we plan to
implement some strategies to reduce the gap for
participants to enter Task 2, as this year we only
had two participants. One possibility is to make
available pre-processed data or word-level predic-
tions, so that participants can focus more easily on
document-level details.
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Abstract

We present the results from the 5th round
of the WMT task on MT Automatic Post-
Editing. The task consists in automatically
correcting the output of a “black-box” ma-
chine translation system by learning from
human corrections. Keeping the same gen-
eral evaluation setting of the previous four
rounds, this year we focused on two lan-
guage pairs (English-German and English-
Russian) and on domain-specific data (In-
formation Technology). For both the lan-
guage directions, MT outputs were pro-
duced by neural systems unknown to par-
ticipants. Seven teams participated in the
English-German task, with a total of 18
submitted runs. The evaluation, which was
performed on the same test set used for
the 2018 round, shows further progress in
APE technology: 4 teams achieved bet-
ter results than last year’s winning sys-
tem, with improvements up to -0.78 TER
and +1.23 BLEU points over the baseline.
Two teams participated in the English-
Russian task submitting 2 runs each. On
this new language direction, characterized
by a higher quality of the original trans-
lations, the task proved to be particularly
challenging. Indeed, none of the sub-
mitted runs improved the very high re-
sults of the strong system used to produce
the initial translations (16.16 TER, 76.20
BLEU).

1 Introduction

MT Automatic Post-Editing (APE) is the task
of automatically correcting errors in a machine-
translated text. As pointed out by (Chatterjee et
al., 2015), from the application point of view the

task is motivated by its possible uses to:

• Improve MT output by exploiting informa-
tion unavailable to the decoder, or by per-
forming deeper text analysis that is too ex-
pensive at the decoding stage;

• Cope with systematic errors of an MT system
whose decoding process is not accessible;

• Provide professional translators with im-
proved MT output quality to reduce (human)
post-editing effort;

• Adapt the output of a general-purpose MT
system to the lexicon/style requested in a spe-
cific application domain.

In its 5th round, the APE shared task organized
within the WMT Conference on Machine Transla-
tion kept the same overall evaluation setting of the
previous four rounds. Specifically, the participat-
ing systems had to automatically correct the output
of an unknown “black box” MT system by learn-
ing from human revisions of translations produced
by the same system.

This year, the task focused on two language
pairs (English-German and English-Russian) and,
in continuity with the last three rounds, on data
coming from the Information Technology domain.
While in 2018 one of the proposed subtasks was
still focusing on the correction of phrase-based
MT output, this year only neural MT (NMT) out-
put has been considered. However, this year’s
campaign allows both for a fair assessment of the
progress in APE technology and for tests in more
challenging conditions. On one side, reusing the
same test English-German set used last year, the
evaluation framework allows us for a direct com-
parison with the last year’s outcomes at least on
one language. On the other side, dealing with a
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difficult language like Russian and only with high-
quality NMT output, also this round presented par-
ticipants with an increased level of difficulty with
respect to the past.

Seven teams participated in the English-
German task, submitting 18 runs in total. Two
teams participated in the English-Russian task,
submitting 2 runs each. Similar to last year, all
the teams developed their systems based on neu-
ral technology, which confirms to be the state-of-
the-art approach to APE. Only in one case, in-
deed, a participating team achieved its highest re-
sults (but with no improvement over the baseline)
with a phrase-based APE system. In most of the
cases, participants experimented with the Trans-
former architecture (Vaswani et al., 2017), either
directly or by adapting it to the task (see Sec-
tion 3). Another common trait of the submit-
ted systems is the reliance on the consolidated
multi-source approach (Zoph and Knight, 2016;
Libovický et al., 2016), which is able to exploit
information from both the MT output to be cor-
rected and the corresponding source sentence. The
third aspect common to all submissions is the ex-
ploitation of synthetic data, either those provided
together with the task data (Negri et al., 2018;
Junczys-Dowmunt and Grundkiewicz, 2016) or
similar, domain-specific resources created ad-hoc
by participants.

In the English-German task, the evaluation was
performed on the same test set used in 2018,
whose “gold” human post-edits were kept undis-
closed to participants for the sake of future com-
parisons. Evaluating on the same benchmark
allowed to observe further technology improve-
ments over the past. Last year, the largest gain
over the baseline (16.84 TER, 74.73 BLEU) was
-0.38 TER (16.46) and +0.8 BLEU (75.53). This
year, four teams achieved better results than last
year’s best submission. The top-ranked system
achieved 16.06 TER (-0.78 with respect to the
baseline) and 75.96 BLEU (+1.23). Most notice-
ably, the fact that the TER/BLEU differences be-
tween the top four primary submissions are not
statistically significant indicates that the observed
progress is not isolated.

The newly proposed English-Russian task rep-
resents a more challenging evaluation scenario,
mainly due to the higher quality of the NMT out-
put to be corrected. In this case, even the best
submission (16.59 TER, 75.27 TER) was unable

to beat the baseline (16.16 TER, 76.20 BLEU).
These results confirm one of the main findings of
previous rounds (Bojar et al., 2017; Chatterjee et
al., 2018a): improving high-quality MT output re-
mains the biggest challenge for APE. This moti-
vates further research on precise and conservative
solutions able to mimic human behaviour by per-
forming only the minimum amount of edit opera-
tions needed.

2 Task description

In continuity with all the previous rounds of the
APE task, participants were provided with train-
ing and development data consisting of (source,
target, human post-edit) triplets, and were asked
to return automatic post-edits for a test set of un-
seen (source, target) pairs.

2.1 Data
This year, the evaluation was performed on two
language pairs, English-German and English-
Russian. For both the subtasks, data were se-
lected from the Information Technology (IT) do-
main. As emerged from the previous evaluations,
the selected target domain is specific and repetitive
enough to allow supervised systems to learn from
the training set useful correction patterns that are
also re-applicable to the test set.

The released training and development sets con-
sist of (source, target, human post-edit) triplets in
which:

• The source (SRC) is a tokenized English sen-
tence;

• The target (TGT) is a tokenized Ger-
man/Russian translation of the source, which
was produced by a black-box system un-
known to participants. For both the lan-
guages, translations were obtained from neu-
ral MT systems:1 this implies that their over-
all quality is generally high, making the task
harder compared to previous rounds, which

1For English-German, the NMT system was trained with
generic and in-domain parallel training data using the atten-
tional encoder-decoder architecture (Bahdanau et al., 2014)
implemented in the Nematus toolkit (Sennrich et al., 2017).
We used byte-pair encoding (Sennrich et al., 2016) for vo-
cabulary reduction, mini-batches of 100, word embeddings
of 500 dimensions, and gated recurrent unit layers of 1,024
units. Optimization was done using Adam and by re-shuffling
the training set at each epoch. For English-Russian, the
NMT system used was the Microsoft Translator production
system, which was trained with both generic and in-domain
parallel training data.
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Number of instances
Training Development Test Additional Resources

English-German 13,442 1,000 1,023
eSCAPE-PBSMT: 7,258,533
eSCAPE-NMT: 7,258,533
Artificial: 4.5M

English-Russian 15,089 1,000 1,023 eSCAPE-NMT: 7.7 M
Table 1: Data statistics.

focused only (until 2017) or also (as in 2018)
on the correction of the output of phrase-
based systems.

• The human post-edit (PE) is a manually-
revised version of the target, which was pro-
duced by professional translators.

Test data consists of (source, target) pairs hav-
ing similar characteristics of those in the training
set. Human post-edits of the test target instances
are left apart to measure system performance.

For the English-German subtask, the same in-
domain data2 collected for last year’s round of the
task have been used. The training and develop-
ment set respectively contain 13,442 and 1,000
triplets, while the test set consists of 1,023 in-
stances. Participants were also provided with
two additional training resources, which were
widely used in last year’s round. One (called
“Artificial” in Table 1) is the corpus of 4.5 mil-
lion artificially-generated post-editing triplets de-
scribed in (Junczys-Dowmunt and Grundkiewicz,
2016). The other resource is the English-German
section of the eSCAPE corpus (Negri et al., 2018).
It comprises 14.5 million instances, which were
artificially generated both via phrase-based and
neural translation (7.25 millions each) of the same
source sentences.

For the English-Russian subtask, Microsoft
Office localization data have been used. This
material, which mainly consists of short seg-
ments (menu commands, short messages, etc.), is
shared with the English-Russian Quality Estima-
tion shared task.3 The training and development
set respectively contain 15,089 and 1,000 triplets,
while the test set comprises 1,023 instances. For
this language pair, the eSCAPE corpus has been
extended to provide participants with additional

2Released by the European Project QT21 (Specia et al.,
2017).

3http://www.statmt.org/wmt19/qe-task.
html

training material.4

Table 1 provides basic statistics about the data
of the two subtasks.

2.1.1 Complexity indicators: repetition rate
Table 2 provides a view of the data from a task dif-
ficulty standpoint. For each dataset released in the
five rounds of the APE task, it shows the repeti-
tion rate of SRC, TGT and PE elements, as well as
the TER (Snover et al., 2006) and the BLEU score
(Papineni et al., 2002) of the TGT elements (i.e.
the original target translations).

The repetition rate measures the repetitiveness
inside a text by looking at the rate of non-singleton
n-gram types (n=1...4) and combining them us-
ing the geometric mean. Larger values indicate a
higher text repetitiveness and, as discussed in (Bo-
jar et al., 2016; Bojar et al., 2017; Chatterjee et al.,
2018a), suggest a higher chance of learning from
the training set correction patterns that are appli-
cable also to the test set. In the previous rounds
of the task, we considered the large differences in
repetitiveness across the datasets as a possible ex-
planation for the variable gains over the baseline
obtained by participants. In this perspective, the
low system performance observed in the APE15
task and in the APE17 German-English subtask
was in part ascribed to the low repetition rate in
the data. In contrast, much higher repetition rates
in the data likely contributed to facilitate the prob-
lem in the APE16 task and in the APE17 English-
German subtask, in which most of the participants
achieved significant gains over the baseline. Al-
though in both the APE18 subtasks the repeti-
tion rate values were relatively high, evaluation
results shown that the influence of data repetitive-
ness on final APE performance is marginal. In-
deed, while in the last year’s PBSMT subtask the
improvements over the baseline were impressive (-

4This newly released artificial dataset and a short de-
scription of the methodology adopted for its creation
can be found at http://hltshare.fbk.eu/QT21/
eSCAPE.html.
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2015 2016 2017 2017 2018 2018 2019 2019
Language En-Es En-De En-De De-En En-De En-De En-De En-Ru
Domain News IT IT Medical IT IT IT IT
MT type PBSMT PBSMT PBSMT PBSMT PBSMT NMT NMT NMT
Repet. Rate SRC 2.905 6.616 7.216 5.225 7.139 7.111 7.111 18.25
Repet. Rate TGT 3.312 8.845 9.531 6.841 9.471 9.441 9.441 14.78
Repet. Rate PE 3.085 8.245 8.946 6.293 8.934 8.941 8.941 13.24
Baseline TER 23.84 24.76 24.48 15.55 24.24 16.84 16.84 16.16
Baseline BLEU n/a 62.11 62.49 79.54 62.99 74.73 74.73 76.20

Table 2: Basic information about the APE shared task data released since 2015: languages, domain, type of MT technology,
repetition rate and initial translation quality (TER/BLEU of TGT). Grey columns refer to data covering different language pairs
and domains with respect to this year’s evaluation round.

6.24 TER, +9.53 BLEU points), in the NMT sub-
task (whose data were reused this year) the quality
gains were considerably smaller (-0.38 TER and
+0.8 BLEU points). As discussed in Section 4.1,
also this year we observe a similar situation: espe-
cially for English-Russian, the high repetition rate
values reported in Table 2, which are the highest
ones across all the APE data released so far, are not
enough to determine quality improvements com-
parable to previous rounds. This suggests that,
although it used to play an important role when
dealing with lower quality MT output in the first
rounds of the APE task, text repetitiveness has less
influence on final performance compared to other
complexity indicators.

2.1.2 Complexity indicators: MT quality

Indeed, another important aspect that determines
the difficulty of APE is the initial quality of the
MT output to be corrected. This can be measured
by computing the TER (↓) and BLEU (↑) scores
(last two rows in Table 2) using the human post-
edits as reference.

As discussed in (Bojar et al., 2017; Chatterjee et
al., 2018a), numeric evidence of a higher quality
of the original translations can indicate a smaller
room for improvement for APE systems (having,
at the same time, less to learn during training and
less to correct at test stage). On one side, in-
deed, training on good (or near-perfect) automatic
translations can drastically reduce the number of
learned correction patterns. On the other side,
testing on similarly good translations can drasti-
cally reduce the number of corrections required
and the applicability of the learned patterns, thus
making the task more difficult. As observed in
the previous APE evaluation rounds, there is a
noticeable correlation between translation quality

and systems’ performance. In 2016 and 2017,
on English-German data featuring a similar level
of quality (24.76/24.48 TER, 62.11/62.49 BLEU),
the top systems achieved significant improvements
over the baseline (-3.24 TER and +5.54 BLEU
in 2016, -4.88 TER and +7.58 BLEU in 2017).
In 2017, on higher quality German-English data
(15.55 TER, 79.54 BLEU), the observed gains
were much smaller (-0.26 TER, +0.28 BLEU). In
2018, the correction of English-German transla-
tions produced by a phrase-based system (24.24
TER, 62.99 BLEU) yielded much larger gains
(up to -6.24 TER and +9.53 BLEU) compared
to the correction of higher-quality neural transla-
tions (16.84 TER, 74.73 BLEU), which resulted
in TER/BLEU variations of less than 1.00 point.
As discussed in Section 4, also this year’s results
confirm the strict correlation between the quality
of the initial translations and the actual potential
of APE.

2.1.3 Complexity indicators: TER
distribution

Further indications about the difficulty of the two
subtasks are provided by Figures 1 and 2, which
plot the TER distribution for the items in the two
test sets. As shown in Figure 1, the distribution
for English-German is quite skewed towards low
TER values, with almost 50% of the test test items
having a TER between 0 and 10 that indicates
their very high quality (in other terms, they re-
quire few edits). In particular, the proportion of
“perfect” test instances having TER=0 (i.e. items
that should not be modified by the APE systems)
is quite high (25.2% of the total).5 For these test

5This value is considerably lower than the proportion ob-
served in the challenging APE17 German-English test set
(45.0%) but still a considerably higher value compared to
“easier” test sets released for other rounds of the task.
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Figure 1: TER distribution in the English-German
test set

Figure 2: TER distribution in the English-Russian
test set

items, any correction made by the APE systems
will be treated as unnecessary and penalized by
automatic evaluation metrics. This problem calls
for conservative and precise systems able to prop-
erly fix errors only in the remaining test items,
leaving the “perfect” ones unmodified.

Data skewedness is exacerbated in the English-
Russian test set, in which 63.5% of the instances
have a TER between 0 and 10 (in particular, 61.4%
of them are perfect translations). Together with
the high BLEU score, this contributes to make the
English-Russian task considerably more difficult
compared to the English-German one (as well as
compared to most of the APE test sets released so
far).

As discussed in Section 4, also this year’s evalu-
ation results confirm the strict correlation between
the quality of the initial translations and the actual
potential of APE.

2.2 Evaluation metrics

System performance was evaluated both by means
of automatic metrics and manually. Automatic
metrics were used to compute the distance be-
tween automatic and human post-edits of the
machine-translated sentences present in the test
sets. To this aim, TER and BLEU (case-sensitive)
were respectively used as primary and secondary
evaluation metrics. Systems were ranked based on
the average TER calculated on the test set by using
the TERcom6 software: lower average TER scores
correspond to higher ranks. BLEU was com-
puted using the multi-bleu.perl package7 available

6http://www.cs.umd.edu/˜snover/tercom/
7https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/

in MOSES.
Manual evaluation was conducted via source-

based direct human assessment (Graham et al.,
2013; Cettolo et al., 2017; Bojar et al., 2018)
as implemented by Appraise (Federmann, 2012).
Details are discussed in Section 6.

2.3 Baseline

In continuity with the previous rounds, the official
baseline results were the TER and BLEU scores
calculated by comparing the raw MT output with
the human post-edits. In practice, the baseline
APE system is a “do-nothing” system that leaves
all the test targets unmodified. Baseline results,
the same shown in Table 2, are also reported in
Tables 4 and 5 for comparison with participants’
submissions.8

For each submitted run, the statistical signif-
icance of performance differences with respect
to the baseline was calculated with the bootstrap
test (Koehn, 2004).

3 Participants

Seven teams submitted a total of 18 runs for the
English-German subtask. Two of them partici-
pated also in the English-Russian subtask by sub-

generic/multi-bleu.perl
8In addition to the do-nothing baseline, in the first three

rounds of the task we also compared systems’ performance
with a re-implementation of the phrase-based approach firstly
proposed by Simard et al. (2007), which represented the com-
mon backbone of APE systems before the spread of neural
solutions. As shown in (Bojar et al., 2016; Bojar et al., 2017),
the steady progress of neural APE technology has made the
phrase-based solution not competitive with current methods
reducing the importance of having it as an additional term of
comparison. In 2018, we hence opted for considering only
one baseline.
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ID Participating team
ADAPT DCU ADAPT Centre & Dublin City University, Ireland (Shterionov et al., 2019)
FBK Fondazione Bruno Kessler, Italy (Tebbifakhr et al., 2019)
POSTECH Pohang University of Science and Technology, South Korea (Lee et al., 2019)
UDS Saarland University, Germany (Xu et al., 2019)
UNBABEL Unbabel, Portugal (Lopes et al., 2019)
USAAR DFKI Saarland University & German Research Center for Artificial Intelligence, Germany (Pal et al., 2019)
IC USFD Imperial College London & University of Sheffield, United Kingdom

Table 3: Participants in the WMT19 Automatic Post-Editing task.

mitting 2 runs each. Participants are listed in Ta-
ble 3, and a short description of their systems is
provided in the following.

ADAPT Centre & Dublin City University.
The ADAPT DCU team participated in both the
subtasks proposed this year. Their submissions
pursue two main objectives, namely: i) investi-
gating the effect of adding extra information in
the form of prefix tokens in a neural APE sys-
tem; and ii) assessing whether an SMT-based ap-
proach can be effective for post-editing NMT out-
put. The neural APE system exploits a multi-
source approach based on Marian-NMT.9 Train-
ing data were augmented with two types of extra
context tokens that identify partitions of the train-
ing set that may be relevant to guide system’s be-
haviour (i.e. to identify features in the dataset with
a very close relation to the editing patterns the
system is supposed to learn). Such partitions are
based on sentence length and topic information.
Hence, the prepended tokens respectively state the
data partition based on the number of source to-
kens and the topic induced via LDA clustering
(Blei et al., 2003). The statistical APE models,
which are based on Moses (Koehn et al., 2007),
were trained to explore the idea of interleaving
different MT technologies to improve NMT out-
put quality. All the models are built by taking
advantage of both the released training material
and the provided artificial data (Negri et al., 2018;
Junczys-Dowmunt and Grundkiewicz, 2016).

Fondazione Bruno Kessler. Also FBK partici-
pated in both the subtasks. Their submissions fo-
cus on mitigating the “over-correction” problem
in APE, that is the systems’ tendency to rephrase
and correct MT output that is already acceptable,
thus producing translations that will be penalized
by evaluation against human post-edits. Following
(Chatterjee et al., 2018b), the underlying idea is
that over-correction can be prevented by inform-

9https://marian-nmt.github.io/

ing the system about the predicted quality of the
MT output or, in other terms, the expected amount
of corrections needed. The proposed solution is
based on prepending a special token to the source
text and the MT output, so to indicate the re-
quired amount of post-editing. Three different to-
kens are used, namely “no post-edit” (no edits are
required), “light post-edit” (minimal edits are re-
quired), and “heavy post-edit” (a large number of
edits are required. At training time, the instances
are labelled based on the TER computed between
the MT output and its post-edited version, with the
boundary between light and heavy post-edit set to
TER=0.4 based on the findings reported in (Turchi
et al., 2013; Turchi et al., 2014). At test time, to-
kens are predicted with two approaches. One is
based on a classifier obtained by fine-tuning BERT
(Devlin et al., 2018) on the in-domain data. The
other approach exploits a retrieval-based method
similar to (Farajian et al., 2017): given a query
containing the source and the MT output to be
post-edited, it: i) retrieves similar triplets from the
training data, ii) ranks them based on the sentence
level BLEU score between the MT output and the
post-edit, and iii) creates the token based on the
TER computed between the MT output and the
post-edit of the most similar triplet. The back-
bone architecture is the multi-source extension of
Transformer (Vaswani et al., 2017) described in
(Tebbifakhr et al., 2018), which is trained both on
the task data and on the available artificial corpora.

Pohang University of Science and Technology.
POSTECH’s system (English-German subtask) is
a multi-source model that extends the Transformer
implementation of the OpenNMT-py (Klein et al.,
2017) library. It includes: i) a joint encoder that
is able to generate joint representations reflecting
the relationship between two input sources (SRC,
TGT) with optional future masking to mimic the
general decoding process of machine translation
systems, and ii) two types of multi-source atten-
tion layers in the decoder that computes the atten-
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tion between the decoder state and the two outputs
of the encoder. Therefore, four different model
variants were suggested in terms of the existence
of the encoder future mask and the type of the
multi-source attention layer in the decoder. The
eSCAPE corpus (Negri et al., 2018) was filtered
to contain similar statistics as the official training
dataset. During training, various teacher-forcing
ratios were adjusted to alleviate the exposure bias
problem. After training four variants with vari-
ous teacher-forcing ratios, the final submissions
were obtained from an ensemble of models. These
are: 1) the primary submission that ensembles the
variants with the two best TER scores in each ar-
chitecture, 2) the contrastive submission that en-
sembles the variants with the best TER scores in
each architecture, 3) the contrastive submission
that ensembles two variants from each architec-
ture, achieving the best TER and BLEU, respec-
tively.

Saarland University. UdS’s participation
(English-German subtask) is based on a multi-
source Transformer model for context-level
machine translation (Zhang et al., 2018) imple-
mented with the Neutron implementation (Xu
and Liu, 2019) for the Transformer translation
model (Vaswani et al., 2017). To improve the
robustness of the training, and inspired by (Cheng
et al., 2018), the APE task is jointly trained with
the de-noising encoder task, which adds noises
distribution directly to the post-editing results’
embedding as machine translation outputs and
tries to recover the original post-editing results.
Both Gaussian noise and uniform noise were tried
for the de-noising encoder task. The synthetic
eSCAPE corpus (Negri et al., 2018) was also used
for the training. Contrastive submissions were
generated with the best averaged models of 5
adjacent checkpoints of 2 kinds of noise, and the
primary submission is obtained with the ensemble
of 5 models (4 averaged models + 1 model saved
for every training epoch).

Unbabel. Following (Correia and Martins,
2019), Unbabel’s submission (English-German
subtask) adapts BERT (Devlin et al., 2018) to the
APE task with an encoder-decoder framework.
The system consists in a BERT encoder ini-
tialised with the pretrained model’s weights and
a BERT decoder initialised analogously, where
the multi-head context attention is initialised with

the self-attention weights. Additionally, source
embeddings, target embeddings and projection
layer (Press and Wolf, 2017) are shared, as well
as the self-attention weights of the encoder and
decoder. The system exploits BERT training
schedule with streams A and B: the encoder
receives as input both the source and the MT
output separated by the special symbol “[SEP]”,
assigning to the first “A” segment embeddings and
to the latter “B” segment embeddings. Regarding
the BERT decoder, they use just the post-edit
with “B” segment embeddings. In addition, as the
NMT system has a strong in-domain performance,
a conservativeness factor to avoid over-correction
is explored. Similarly to (Junczys-Dowmunt and
Grundkiewicz, 2016), a penalty is added during
beam decoding (logits or log probabilities) to
constrain the decoding to be as close as possible
to the input – both the source and the MT output
are considered, which allows to copy from the
source – in order to avoid over edition of the
MT segment. This penalty is tuned over the
development set. In addition to the shared task
in-domain data, system training exploits a variant
of the eSCAPE corpus built on a closer in-domain
parallel corpus (IT domain) provided by the
Quality Estimation shared task.

Saarland University & German Research Cen-
ter for Artificial Intelligence. USAAR DFKI’s
participation (English-German subtask) is based
on a multi-encoder adaptation of the Transformer
architecture. The system consists in: i) a Trans-
former encoder block for the source sentence, fol-
lowed by ii) a Transformer decoder block, but
without masking, for self-attention on the MT seg-
ment, which effectively acts as second encoder
combining source and MT output, and iii) feeds
this representation into a final decoder block gen-
erating the post-edit. The intuition behind the pro-
posed architecture is to generate better represen-
tations via both self- and cross- attention and to
further facilitate the learning capacity of the feed-
forward layer in the decoder block. Also in this
case, model training takes advantage of the eS-
CAPE synthetic data (Negri et al., 2018).

University of Sheffield & Imperial College Lon-
don. IC USFD’s submission (English-German
subtask) is based on the dual-source Trans-
former model (Junczys-Dowmunt and Grund-
kiewicz, 2018), which was re-implemented in the
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Tensor2Tensor (Vaswani et al., 2017) toolkit. The
model was enriched with a copying mechanism
that prevents unnecessary corrections. In addi-
tion to the main training data, the primary sub-
mission uses the EN-DE eSCAPE data (Negri et
al., 2018). The contrastive submission uses data
triplets where source and target are genuine data,
and MT is a modified target (200K). This modified
target mimics MT by simulating errors in the task
training data. Sentences where error simulation is
possible are selected from in-domain corpora (eS-
CAPE, as well as the in-domain data released with
the WMT18 Quality Estimation task).

4 Results

Participants’ results are shown in Tables 4
(English-German) and 5 (English-Russian). The
submitted runs are ranked based on the average
TER (case-sensitive) computed using human post-
edits of the MT segments as reference, which is the
APE task primary evaluation metric (“TER (pe)”).
The two tables also report the BLEU score com-
puted using human post-edits (“BLEU (pe)” col-
umn), which represents our secondary evaluation
metric. These results are discussed in Section 4.1.

Table 4 includes four additional columns, which
show the TER/BLEU scores computed using ex-
ternal references (“TER (ref)” and “BLEU (ref)”)
as well as the multi-reference TER/BLEU scores
computed using human post-edits and external ref-
erences (“TER (pe+ref)” and “BLEU (pe+ref)”).
In Section 4.2, these figures are respectively used
to discuss systems’ capability to reflect the post-
editing style of the training data and their tendency
to produce unnecessary corrections of acceptable
MT output. Since external references are available
only for German, this analysis was not feasible for
the English-Russian task.

4.1 Automatic metrics computed using
human post-edits

Different from the past, this year the primary
(“TER (pe)”) and secondary evaluation metric
(“BLEU (pe)”) produce slightly different rank-
ings.10 For English-German, system results are
quite close to each other, up to the point that i)
TER differences between the top eight submis-
sions are not statistically significant and ii) all the

10The correlation between the ranks obtained by the two
metrics is 0.97 for the English-German subtask and 0.7 for
the English-Russian subtask.

submissions with a TER score equal or lower than
the baseline are concentrated in a performance in-
terval of less than 0.8 TER points and less than 1.2
BLEU points. This compression can contribute
to explain the ranking differences, especially at
higher ranks where discriminating between strong
systems with almost identical performance is par-
ticularly difficult. However, for the sake of fu-
ture analysis or alternative views of this year’s out-
comes, it’s worth remarking that the 2nd, 3rd and
5th runs in terms of TER (all by the same team
–POSTECH) respectively represent the top three
submissions in terms of BLEU.

For English-Russian, the distance between the
top and the worst submissions is larger, but also in
this case the BLEU-based ranking is not identical
to the TER-based one. Though with a negligible
margin, the worst run in terms of TER would rank
2nd in terms of BLEU.

English-German subtask. In order to measure
the progress with respect to last year’s round of the
APE task, for this language pair the evaluation has
been performed with the same data used for the
NMT subtask in 2018. Last year, the majority of
the participants’ scores fell in a range of less than
one TER/BLEU point improvement over the do-
nothing baseline (16.84 TER, 74.73 BLEU), be-
ing 16.46 TER (-0.38) and 75.53 BLEU (+0.8)
the scores and the corresponding quality gains
achieved by the top submission. This year, eight
submissions achieved a TER reduction larger than
0.4 points and a BLEU increase of more than 0.9
points. The top submission, in particular, obtained
improvements up to -0.78 TER and +1.23 BLEU
points over the baseline. Although correcting the
output of a neural MT system still proves to be
quite hard, we take the fact that 4 teams achieved
better results than last year’s winning system as an
indicator of technology advancements.

English-Russian subtask. This subtask proved
to be more challenging compared to the English-
German subtask. Final results are indeed much
worse: none of the four runs submitted by the
two participating teams was able to beat the do-
nothing baseline (16.16 TER, 76.2 BLEU). Even
for the top submission (16.59 TER, 75.27 BLEU),
results’ difference with respect to the baseline is
statistically significant. One possible cause of the
higher difficulty of the English-Russian subtask is
the fact that dealing with a morphology-rich lan-
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TER BLEU TER BLEU TER BLEU
ID (pe) (pe) (ref) (ref) (pe+ref) (pe+ref)
UNBABEL Primary 16.06* 75.96 41.66 44.95 15.58 78.1
POSTECH Primary 16.11* 76.22 42.04 44.57 15.68 78.08
POSTECH Contrastive (var2Ens8) 16.13* 76.21 42.09 44.53 15.73 78.05
USAAR DFKI Primary 16.15* 75.75 41.84 44.65 15.69 77.84
POSTECH Contrastive (top1Ens4) 16.17* 76.15 42.09 44.52 15.74 78.01
UNBABEL Contrastive (2) 16.21* 75.7 41.59 45.08 15.72 77.98
UNBABEL Contrastive (1) 16.24* 75.7 41.62 45.01 15.76 77.97
FBK Primary 16.37* 75.71 42.18 44.39 15.90 77.54
FBK Contrastive 16.61† 75.28 42.12 44.49 16.1 77.43
UDS Primary 16.77† 75.03 42.64 43.78 16.34 76.83
IC USFD Contrastive 16.78† 74.88 42.45 44.01 16.31 76.82
UDS Contrastive (Gaus) 16.79† 75.03 42.55 44.0 16.33 76.87
UDS Contrastive (Uni) 16.80† 75.03 42.66 43.79 16.37 76.85
IC USFD Primary 16.84† 74.8† 42.58 43.86 16.41 76.68
Baseline 16.84 74.73 42.24 44.2 16.27 76.83
ADAPT DCU Contrastive (SMT) 17.07 74.3 42.40 44.14 16.54 76.36
ADAPT DCU Primary 17.29 74.29 42.41 44.09 16.81 76.51
USAAR DFKI Contrastive 17.31 73.97 42.45 43.71 16.87 76.06
ADAPT DCU Contrastive (LEN) 17.41 74.01 42.44 44.01 16.91 76.2

Table 4: Results for the WMT19 APE English-German subtask – average TER (↓), BLEU score (↑). The symbol “*” indicates
results differences between runs that are not statistically significant. The symbol “†” indicates a difference from the MT baseline
that is not statistically significant.

TER BLEU
ID (pe) (pe)
Baseline 16.16 76.2
ADAPT DCU Contrastive 16.59 75.27
ADAPT DCU Primary 18.31 72.9
FBK Primary 19.34 72.42
FBK Contrastive 19.48 72.91

Table 5: Results for the WMT19 APE English-Russian subtask – average TER (↓), BLEU score (↑).

guage like Russian is problematic not only for MT
but also from the APE standpoint. Under similar
data conditions (the training sets of the two sub-
tasks differ by ∼1,650 instances), the training set
of a morphology-rich language is likely to be more
sparse compared to other languages. The other
possible explanation lies in the higher quality of
the original translations (our second complexity
indicator discussed in Section 2.1.2), which re-
duces the room for improvement with APE and,
at the same time, increases the possibility to dam-
age MT output that is already correct. From the
MT quality point of view, according to the base-
line results shown in Table 2, the English-Russian
dataset used for this year’s campaign is the second
most difficult benchmark released in five rounds
of the APE task. Also the TER distribution of
the test set instances (our third complexity indica-

tor discussed in Section 2.1.3) indicates the higher
difficulty of the task, which is characterized by
the highest number of perfect translations across
the five rounds of the APE shared task (61.4%).
In terms of repetition rate, as observed in Sec-
tion 2.1.1, English-Russian data considerably dif-
fer from those released for the previous rounds of
the task. The much larger values shown in Table
2 are not surprising considering that this material
is drawn from Microsoft Office localization data
that mainly consist of short segments (e.g. menu
commands), which are likely produced based on
standardized guidelines. However, also this year
text repetitiveness seems to have a smaller influ-
ence on final performance compared to quality of
the initial translations. Besides all these elements,
the higher difficulty of the English-Russian sub-
task is also indirectly suggested by the low number
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of participants. Likely, poor results observed on
the development set during system development
(i.e. the difficulty to beat the do-nothing baseline)
discouraged other potential participants.

4.2 Automatic metrics computed using
external references

By learning from (SRC, TGT, PE) triplets, APE
systems’ goal is to perform a “monolingual trans-
lation” from raw MT output into its correct ver-
sion. In this translation process, the same sentence
can be corrected in many possible ways that make
the space of possible valid outputs potentially very
large. Ideally, from this space, APE systems
should select solutions that reflect as much as pos-
sible the post-editing style of the training data (in
real-use settings, this can be the style/lexicon of
specific users, companies, etc.). However, noth-
ing prevents to end up with outputs that partially
satisfy this constraint. In light of these consid-
erations, TER and BLEU scores computed using
human post-edits as reference represent a reliable
measure of quality but:

1. They provide us with partial information on
how systems’ output reflects the post-editing
style of the training data;

2. They are not informative at all about the
amount of valid corrections that are not
present in the human post-edits.

In order to shed light on these aspects, in previ-
ous rounds of the task, further analysis was per-
formed by taking advantage of reference trans-
lations. In continuity with the past, in Sections
4.2.1 and 4.2.2 we re-propose this analysis for the
English-German subtask, the only one for which
external references are available.

4.2.1 Output style
To gain further insights on point 1. (i.e. sys-
tem’s capability to learn the post-editing style of
the training data), the “TER (ref)” and “BLEU
(ref)” columns in Table 4 show the TER and
BLEU scores computed against independent refer-
ence translations. The rational behind their com-
putation is that differences in TER/BLEU(pe) and
TER/BLEU(ref) can be used as indicators of the
“direction” taken by the trained models (i.e. ei-
ther towards humans’ post-editing style or to-
wards a generic improvement of the MT output).

Since independent references are usually very dif-
ferent from conservative human post-edits of the
same TGT sentences, all the TER/BLEU scores
measured using independent references are ex-
pected to be worse. However, if our hypothe-
sis holds true, visible differences in the baseline
improvements measured with TER/BLEU(pe) and
TER/BLEU(ref) should indicate system’s ability
to model the post-editing style of the training
data. In particular, larger gains measured with
TER/BLEU(pe) will be associated to this desired
ability.

As can be seen in Table 4, systems’ results
on English-German show this tendency. Look-
ing at the improvements over the baseline, those
measured by computing TER and BLEU scores
against human post-edits (i.e. TER/BLEU(pe)) are
often larger than those computed against indepen-
dent references (i.e. TER/BLEU(ref)). In terms
of TER, this holds true for most of the submitted
runs, with the best system that shows a difference
of 0.2 TER points in the gains over the baseline
computed with TER(pe) (-0.78) and those com-
puted with TER(ref) (-0.58). On average, for the
runs achieving improvements over the baseline,
the difference in the gains over the baseline com-
puted with TER(pe) and TER(ref) is respectively
-0.41 and -0.08. In terms of BLEU, the differ-
ences are more visible. The best system improves
over the baseline by 1.23 points with BLEU(pe)
and 0.75 points with BLEU(ref), while the aver-
age difference in the gains over the baseline is 0.8
with BLEU(pe) and 0.2 with BLEU (ref). The
larger (0.32/0.6) average improvements over the
baseline observed with TER/BLEU computations
against human post-edits can be explained by sys-
tems’ tendency to reflect the post-editing style of
the training data.

4.2.2 Over-corrections
To shed light on point 2. (i.e. system’s ten-
dency to produce unnecessary corrections of ac-
ceptable MT output), the “TER (pe+ref)” and
“BLEU (pe+ref)” columns in Table 4 show the
multi-reference TER and BLEU scores com-
puted against post-edits and independent ref-
erences. The rational behind their computa-
tion is that differences in TER/BLEU(pe) and
TER/BLEU(pe+ref) can be used to analyze the
quality of the unnecessary corrections performed
by the systems (or, in other words, to study
the impact of systems’ tendency towards “over-
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correction”). APE corrections of a given MT out-
put can indeed be of different types, namely: i)
correct edits of a wrong passage, ii) wrong ed-
its of a wrong passage, iii) correct edits of a cor-
rect passage and iv) wrong edits of a correct pas-
sage. TER/BLEU scores computed against hu-
man post-edits work reasonably well in captur-
ing cases i)-ii) by matching APE systems’ out-
put with human post-edits: for wrong MT output
passages (i.e. those changed by the post-editor),
they inform us about the general quality of auto-
matic corrections (i.e. how close they are to the
post-editor’s actions). Cases iii)-iv), in contrast,
are more problematic since any change performed
by the system to a correct passage (i.e. those
that were not changed by the post-editor) will al-
ways be penalized by automatic comparisons with
human post-edits. Although discriminating be-
tween the two types of unnecessary corrections is
hard, we hypothesize that a comparison between
TER/BLEU(pe) and TER/BLEU(pe+ref) can be
used as a proxy to quantify those belonging to type
iii). In general, due to the possibility to match
more and longer n-grams in a multi-reference set-
ting, TER/BLEU(pe+ref) scores are expected to be
higher than TER/BLEU(pe) scores. However, if
our hypothesis holds true, visible differences in the
increase observed for the baseline and for the sys-
tems should indicate systems’ tendency to produce
acceptable over-corrections (type iii)). In particu-
lar, larger gains observed for the APE systems will
be associated to their over-correction tendency to-
wards potentially acceptable edits that should not
be penalized by automatic evaluation metrics.

As expected, Table 4 shows that, on English-
German data, multi-reference evaluation
against post edits and external references
(TER/BLEU(pe+ref)) yields better results
compared to single reference evaluation with
post-edits only (TER/BLEU(pe)). The variations
of the do-nothing baseline are -0.57 TER (from
16.84 to 16.27) and 2.1 BLEU (from 74.73 to
76.83) points. In contrast, systems’ scores vary by
-0.46 TER and +2.01 BLEU points on average.
In comparison with the larger variation observed
for the baseline, this indicates that, for most of the
submissions, the multi-reference evaluation does
not indicate a tendency to produce unnecessary
but acceptable corrections. On a positive note,
while last year this was true for all the systems,
this year four runs perform slightly better than

the baseline in terms of BLEU(pe+ref). Though
minimal, these differences suggest that a certain
amount of corrections made by the top systems
still represent acceptable modifications of the
original translations.

5 System/performance analysis

As a complement to global TER/BLEU scores,
also this year we performed a more fine-grained
analysis of the changes made by each system to
the test instances.

5.1 Macro indicators: modified, improved
and deteriorated sentences

Tables 6 and 7 show the number of modified, im-
proved and deteriorated sentences, respectively for
the English-German and the English-Russian sub-
tasks. It’s worth noting that, as in the previous
rounds and in both the settings, the number of sen-
tences modified by each system is higher than the
sum of the improved and the deteriorated ones.
This difference is represented by modified sen-
tences for which the corrections do not yield TER
variations. This grey area, for which quality im-
provement/degradation can not be automatically
assessed, contributes to motivate the human eval-
uation discussed in Section 6.

English-German subtask. As shown in table 6,
the amount of sentences modified by the partici-
pating systems varies considerably. With values
ranging from 4.01% to 39.1%, the average pro-
portion of modifications (23.53%) is lower com-
pared to last year (32.7%). Considering that about
25.2% (i.e. 257) of the test instances are to be con-
sidered as “perfect” (see Figure1), also this year
the reported numbers are, for most of the submis-
sions, far below the target percentage of modifi-
cations (74.8%). Overall, system’s aggressiveness
does not correlate with the final ranking: among
both the top ranked systems and those with lower
performance, large differences in the proportion of
modified sentences can be observed. Indeed, as
expected, what makes the difference is system’s
precision (i.e. the proportion of improved sen-
tences out of the total amount of modified test
items). Overall, the average precision is 45.92%,
which represents a significant increase from last
year’s value (34.3%). While in 2018 none of the
systems showed a precision higher than 50.0%,
this year seven runs are above this value. As a
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Systems Modified Improved Deteriorated
UNBABEL Primary 366 (35.78%) 187 (51.09%) 110 (30.05%)
POSTECH Primary 207 (20.23%) 127 (61.35%) 41 (19.81%)
POSTECH Contrastive (var2Ens8) 210 (20.53%) 125 (59.52%) 45 (21.43%)
USAAR DFKI Primary 301 (29.42%) 157 (52.16%) 83 (27.57%)
POSTECH Contrastive (top1Ens4) 213 (20.82%) 125 (58.69%) 47 (22.07%)
UNBABEL Contrastive (2) 400 (39.1%) 202 (50.50%) 121 (30.25%)
UNBABEL Contrastive (1) 393 (38.42%) 195 (49.62%) 117 (29.77%)
FBK Primary 200 (19.55%) 115 (57.50%) 50 (25.00%)
FBK Contrastive 363 (35.48%) 164 (45.18%) 131 (36.09%)
UDS Primary 96 (9.38%) 42 (43.75%) 36 (37.50%)
IC USFD Contrastive 41 (4.01%) 21 (51.22%) 16 (39.02%)
UDS Contrastive (Gaus) 125 (12.22%) 54 (43.20%) 51 (40.80%)
UDS Contrastive (Uni) 112 (10.95%) 49 (43.75%) 41 (36.61%)
IC USFD Primary 72 (7.04%) 29 (40.28%) 35 (48.61%)
ADAPT DCU Contrastive (SMT) 120 (11.73%) 29 (24.17%) 61 (50.83%)
ADAPT DCU Primary 368 (35.97%) 116 (31.52%) 169 (45.92%)
USAAR DFKI Contrastive 391 (38.22%) 135 (34.53%) 168 (42.97%)
ADAPT DCU Contrastive (LEN) 354 (34.60%) 101 (28.53%) 169 (47.74%)

Table 6: Number of test sentences modified, improved and deteriorated by each run submitted to the English-German subtask.

Systems Modified Improved Deteriorated
ADAPT DCU Contrastive 92 (8.99%) 17 (18.48%) 49 (53.26%)
ADAPT DCU Primary 245 (23.95%) 57 (23.27%) 130 (53.06%)
FBK Primary 147 (14.37%) 49 (33.33%) 67 (45.58%)
FBK Contrastive 26 (2.54%) 5 (19.23%) 18 (69.23%)

Table 7: Number of test sentences modified, improved and deteriorated by each run submitted to the English-Russian subtask.

consequence, the percentage of deteriorated sen-
tences out of the total amount of modified test
items shows a significant drop. On average, a
quality decrease is observed for 35.11% of the test
items, while last year the average was 47.85%.

English-Russian subtask. As shown in table 7,
also in this subtask the amount of sentences mod-
ified by the submitted systems varies considerably
and does not correlate with systems’ ranking. On
average, the proportion of modifications is 12.46%
(much less compared to the English-German sub-
task). With values ranging from 2.54% to 23.95%,
all the four runs are far from the expected value of
38.6% modifications (recall that 61.4% of the test
items are perfect translations). Systems’ precision
is also lower compared to the English-German
task. The average proportion of improved sen-
tences is 23.58%, while the deteriorated ones are
on average 55.28%, thus confirming the higher
difficulty of the English-Russian evaluation set-
ting.

Overall, the analysis confirms that correct-
ing high-quality translations still remains a hard

task, especially when dealing with higher-quality
English-Russian outputs. On one side, systems’
low precision is an evident limitation. On the other
side, one possible explanation is that the margins
of improvement to the input sentences are reduced
to types of errors (e.g. lexical choice) on which
APE systems are less reliable. The analysis pro-
posed in Section 5.2 aims to explore also this as-
pect.

5.2 Micro indicators: edit operations

In previous rounds of the APE task, the possi-
ble differences in the way systems corrected the
test set instances were analyzed by looking at
the distribution of the edit operations done by
each system (insertions, deletions, substitutions
and shifts). Such distribution was obtained by
computing the TER between the original MT out-
put and the output of each system taken as ref-
erence (only for the primary submissions). This
analysis has been performed also this year but it
turned out to be scarcely informative, as shown in
Figure 3.

24



(a) (b)
Figure 3: System behaviour (primary submissions) for English-German (a) and English-Russian (b) – TER(MT, APE)

For both the subtasks, the differences in sys-
tem’s behaviour are indeed barely visible, mainly
due to the fact that, in most of the cases, the
submitted neural APE models implement sim-
ilar solutions (multi-source, Transformer-based
models trained with the same in-domain and ar-
tificial corpora). All the submitted runs are
characterized by a large number of substitu-
tions (on average, 53.6% for English-German
and 59.7% for English-Russian), followed by the
deletions (22.6% for English-German and 26.4%
for English-Russian), the insertions (respectively
16.3% and 9.4%) and finally the shifts (7.4% and
4.5%). These results are in line with previous find-
ings. Also in 2018, for instance, the high fluency
of neural translations induced the trained models
to perform few reordering operations leaving lex-
ical choice as a main direction of improvement,
as suggested by the larger amount of substitutions
performed by all the systems.

6 Human evaluation

In order to complement the automatic evaluation
of APE submissions, a manual evaluation of the
primary systems submitted (seven for English-
German, five for English-Russian) was conducted.
Similarly to the manual evaluation carried out for
last year APE shared task, it was based on the
direct assessment (DA) approach (Graham et al.,
2013; Graham et al., 2017). In this Section, we
present the evaluation procedure as well as the re-
sults obtained.

6.1 Evaluation procedure

The manual evaluation carried out this year in-
volved 32 native German speakers with full pro-
fessional proficiency in English. All annotators

were paid consultants, sourced by a linguistic ser-
vice provider company. Each evaluator had expe-
rience with the evaluation task through previous
work using the same evaluation platform in order
to be familiar with the user interface and its func-
tionalities. A screenshot of the evaluation inter-
face is presented in Figure 4.

We measure post-editing quality using source-
based direct assessment (src-DA), as implemented
in Appraise (Federmann, 2012). Scores are col-
lected as x ∈ [0, 100], focusing on adequacy (and
not fluency, which previous WMT evaluation cam-
paigns have found to be highly correlated with ad-
equacy direct assessment results).

The original DA approach (Graham et al., 2013;
Graham et al., 2014) is reference-based and, thus,
needs to be adapted for use in our paraphrase as-
sessment and translation scoring scenarios. Of
course, this makes translation evaluation more dif-
ficult, as we require bilingual annotators. Src-DA
has previously been used, e.g., in (Cettolo et al.,
2017; Bojar et al., 2018).

Direct assessment initializes mental context for
annotators by asking a priming question. The user
interface shows two sentences:

- the source (src-DA, reference otherwise); and

- the candidate output.

Annotators read the priming question and both
sentences and then assign a score x ∈ [0, 100] to
the candidate shown. The interpretation of this
score considers the context defined by the priming
question, effectively allowing us to use the same
annotation method to collect assessments wrt. the
different dimensions of quality as defined above.
Our priming questions are shown in Table 8.
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Figure 4: Screenshot of the direct assessment user interface.

Eval mode Priming question used

Post-editing How accurately does the above candidate text convey the original semantics of the source text?
adequacy Slider ranges from Not at all (left) to Perfectly (right).

Table 8: Priming question used for human evaluation of post-editing adequacy.

For adequacy, we ask annotators to assess se-
mantic similarity between source and candidate
text, labeled as “source text” and “candidate trans-
lation”, respectively. The annotation interface im-
plements a slider widget to encode perceived sim-
ilarity as a value x ∈ [0, 100]. Note that the ex-
act value is hidden from the human, and can only
be guessed based on the positioning of the slider.
Candidates are displayed in random order, pre-
venting bias.

For our human evaluation campaign, we
also include human post-editing output
(test.tok.pe) and unedited, neural ma-
chine translation output (test.tok.nmt).
We expect human post-editing to be of higher
quality than output from automatic post-editing
submissions, which in turn should outperform
unedited, neural machine translation output.

6.2 Human Evaluation results

English-German subtask. Score convergence
over time for English-German assessments is pre-
sented in Figure 5. This figure tracks average sys-
tem adequacy (as measured by Src-DA) over time,
as assessments come in from human annotators.
Note that we use the so-called alternate HIT lay-
out as named in the WMT18 findings paper, us-
ing an 88:12 split between actual assessments and
those reserved for quality control. All annotators
have proven reliable, passing qualification tests.

The results of Src-DA for the English-German
subtask are presented in Table 9. Our main find-
ings are as follows:

• Human post-editing outperforms all auot-
matic post-editing systems, the quality differ-
ence is significant;

• UNBABEL achieves best APE performance;

• USAAR DFKI comes in second;

• POSTECH comes in third;

• All but one APE systems outperform
unedited NMT output;

• Difference to the remaining APE system is
not statistically significant.

Human evaluation does only result in very
coarse result cluster. Thus, in order to order sub-
missions by their respective post-editing quality,
as perceived by human annotators, we also present
win-based results in Table 10.

English-Russian subtask. For 2019, we did not
run any human evaluation for the English-Russian
subtask, due to lack of participation. Instead, we
focused annotation efforts on English-German.
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Figure 5: Score convergence over time for English-German assessments.

# Systems Ave % Ave z

1 Human post-edit 90.39 0.154
2 UNBABEL 88.87 0.056

USAAR DFKI 88.45 0.027
POSTECH 88.11 -0.006
FBK 88.05 -0.014
ADAPT DCU 87.70 -0.037
UDS 87.54 -0.043
NMT output 87.35 -0.054
IC USFD 87.31 -0.059

Table 9: DA Human evaluation results for the English-
German subtask in terms of average raw DA (Ave %) and
average standardized scores (Ave z). Dashed lines between
systems indicate clusters according to Wilcoxon signed-rank
test at p-level p ≤ 0.05.

7 Conclusion

We presented the results from the fifth shared task
on Automatic Post-Editing. This year, we pro-
posed two subtasks in which the neural MT out-
put to be corrected was respectively generated by
an English-German system and by an English-
Russian system. Both the subtasks dealt with data
drawn from the information technology domain.
Seven teams participated in the English-German
task, with a total of 18 submitted runs, while
two teams participated in the English-Russian task
submitting two runs each. Except in one case

# Systems Wins Ave % Ave z

1 Human post-edit 8 90.39 0.154
2 UNBABEL 4 88.87 0.056
3 USAAR DFKI 3 88.45 0.027
4 POSTECH 1 88.11 -0.006
5 FBK 0 88.05 -0.014

ADAPT DCU 0 87.70 -0.037
UDS 0 87.54 -0.043
NMT output 0 87.35 -0.054
IC USFD 0 87.31 -0.059

Table 10: DA Human evaluation results for the English-
German subtask in terms of average raw DA (Ave %) and
average standardized scores (Ave z). Dashed lines between
systems indicate clusters according to number of wins.

(a contrastive run produced with a phrase-based
system), the submissions are based on neural ap-
proaches, which confirm to be the state-of-the-art
in APE. Most of them rely on multi-source mod-
els built upon the Transformer and trained by tak-
ing advantage of the synthetic corpora released as
additional training material.

For the English-German subtask the evaluation
was carried out on the same test set used last
year, whose human post-edits were not released
for the sake of future comparisons. The results on
these data, indicate further technology improve-
ments with respect to the 2018 round. This is
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shown by: i) the top result (-0.78 TER and +1.23
BLEU points over the baseline), which is signif-
icantly better than last year (-0.38 TER and +0.8
BLEU), and ii) the fact that four teams achieved
higher results than last year’s winning system.

The newly proposed English-Russian subtask
proved to be more challenging. None of the sub-
mitted runs was able to beat the baseline, whose
high TER (16.16) and BLEU (76.2) indicate a very
high quality of the initial translations. This is also
confirmed by the very skewed TER distribution of
the test set items. With more than 60.0% of the
translations with TER=0 (the highest value across
all the APE datasets released so far), the chance of
damaging a perfect MT output is extremely high.
Despite the high repetition rate of the English-
Russian data (also in this case, the highest across
all datasets), the difficulty of handling such a high
level of quality contributes to explain the lower re-
sults achieved by the two participating teams.

Overall, also this year the main open problem
remains to mitigate systems’ tendency towards
over-correction. In light of the steady progress
of NMT technology, handling increasingly better
translations calls for conservative and precise so-
lutions able to avoid the unnecessary modification
of correct MT output.
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Abstract

In the fourth edition of the WMT Biomedical
Translation task, we considered a total of six
languages, namely Chinese (zh), English (en),
French (fr), German (de), Portuguese (pt), and
Spanish (es). We performed an evaluation of
automatic translations for a total of 10 lan-
guage directions, namely, zh/en, en/zh, fr/en,
en/fr, de/en, en/de, pt/en, en/pt, es/en, and
en/es. We provided training data based on
MEDLINE abstracts for eight of the 10 lan-
guage pairs and test sets for all of them. In ad-
dition to that, we offered a new sub-task for the
translation of terms in biomedical terminolo-
gies for the en/es language direction. Higher
BLEU scores (close to 0.5) were obtained for
the es/en, en/es and en/pt test sets, as well as
for the terminology sub-task. After manual
validation of the primary runs, some submis-
∗ The author list is alphabetical and does not reflect the

respective author contributions. The task was coordinated by
Mariana Neves.

sions were judged to be better than the refer-
ence translations, for instance, for de/en, en/es
and es/en.

1 Introduction

Machine translation (MT) holds the promise to un-
lock access to textual content in a wide range of
languages. In the biomedical domain, the bulk
of the literature is available in English, which
provides two interesting applications for machine
translation: first, providing patients, scientists and
health professionals with access to the literature
in their native language and second, assisting sci-
entist and health professionals in writing reports
in English, when it is not their primary language.
Furthermore, important health information can be
found in the free text of electronic health records
and social media. As these sources are increas-
ingly available to patients and health profession-
als, MT can be leveraged to widen access beyond
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language barriers. Other situations in the health
care domain, such as emergency response commu-
nications, have expressed the need for translation
technologies to improve patient-provider commu-
nication (Turner et al., 2019). However, the recur-
ring conclusion of practical studies is that progress
is still needed. The goal of this shared task is to
bring machine translation of biomedical text to a
level of performance that can help with these med-
ical challenges.

In recent years, many parallel corpora in the
biomedical domain have been made available,
which are valuable resources for training and eval-
uating MT systems. Examples of such corpora
include Khresmoi (Dušek et al., 2017), Scielo
(Neves et al., 2016), Full-Text Scientific Articles
from Scielo (Soares et al., 2018a), MeSpEn (Vil-
legas et al., 2018), thesis and dissertations (Soares
et al., 2018b), and clinical trials (Neves, 2017).
These corpora cover a variety of language pairs
and document types, such as scientific articles,
clinical trials, and academic dissertations.

Many previous efforts have addressed MT for
the biomedical domain. Interesting previous work
includes a comparison of performance in biomed-
ical MT to Google Translate for English, French,
German, and Spanish (Wu et al., 2011). Pecina
et al. applied MT for the task of multilingual in-
formation retrieval in the medical domain (Pecina
et al., 2014). They compared various MT sys-
tems, including Moses, Google Translate, and
Bing Translate. Later, Pecina et al. utilized domain
adaptation of statistical MT for English, French
and Greek (Pecina et al., 2015). The field of MT
has experienced considerable improvements in the
performance of systems, and this is also the case
for biomedical MT. Our more recent shared tasks
show an increasing number of teams that relied
on neural machine translation (NMT) to tackle the
problem (Jimeno Yepes et al., 2017; Neves et al.,
2018).

We found some commonalities in the work
above. On the one hand, clinical vocabularies are
under development, as well as data sets based on
scientific publications. On the other hand, there
is little or no work on languages that do not have
typical Indo-European morphology, e.g. in the iso-
lating direction (no Chinese), and in the aggluti-
nating direction (no Hungarian, Turkish, Finnish,
Estonian). There is also little previous research in
MT for electronic health records (EHR).

The translation of technical texts requires con-
siderable specific knowledge, not only about lin-
guistic rules, but also about the subject of the text
that is being translated. The advantage of termi-
nology management can be seen in its important
role in the process of acquiring, storing and apply-
ing linguistic and subject-specific knowledge re-
lated to the production of the target text.

Terminologies can also be extremely useful in
data mining pipelines, where one might be inter-
ested in identifying specific terms or diseases, for
example. In addition, terminologies can be used
to improve the quality of machine translation and
help in the normalization of vocabulary use. Ter-
minological resources in the field of biomedicine
and clinic are of crucial importance for the de-
velopment of natural language processing systems
and language technologies in the field of health,
among them the semantic network called Unified
Medical Language System (UMLS). This resource
contains terminological subsets of a wide variety
of subject areas and specialties such as health sci-
ences, life sciences and pharmacology.

For instance, at present only 13% of the con-
cepts included in UMLS have entries for Spanish,
while the vast majority of concepts have an equiv-
alent in English. Therefore, one of the coverage
expansion strategies is based on the translation of
terms related to UMLS entries from English into
Spanish.

Over the past three years, the aim of the biomed-
ical task at WMT has been to focus the attention of
the community on health as a specialized domain
for the application of MT (Bojar et al., 2016; Ji-
meno Yepes et al., 2017; Neves et al., 2018). This
forum has provided a unique opportunity to re-
view existing parallel corpora in the biomedical
domain and to further develop resources in lan-
guage pairs such as English and Chinese, French,
Spanish, Portuguese (Névéol et al., 2018).

In this edition of the shared task, we contin-
ued this effort and we addressed five language
pairs in two translation directions, as follows: Chi-
nese/English (zh/en and en/zh), French/English
(fr/en and en/fr), German/English (de/en and
en/de), Portuguese/English (pt/en and en/pt), and
Spanish/English (es/en and en/es). Herein we de-
scribe the details of the fourth edition of the WMT
Biomedical Task which includes the following:

• construction of training data and the official
test sets, including statistics and an evalua-
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tion of the quality of the test sets (Section 2);

• a description of the three baselines that we
developed for comparison (Section 3);

• an overview of the participating teams and
their systems (Section 4);

• the results obtained by the submitted runs
based on our automatic evaluation (Sec-
tion 5);

• the results of the manual evaluation of se-
lected translations from each team (Sec-
tion 6);

• and a discussion of various topics, especially
the quality of the test sets and of the au-
tomatic translations submitted by the teams
(Section 7).

2 Training and Test Sets

We made training and test sets available to sup-
port participants in the development and evalu-
ation of their systems. We provided two types
of test set, scientific abstracts from Medline and
terms from biomedical terminologies. Both data
and test sets are available for download.1 Table 1
provides some basic characteristics of the training
and test sets, and we provide details of their con-
struction in this section.

2.1 Medline training and test sets

We provided training data based on Medline data
for eight of the language pairs that we addressed,
namely, fr/en, en/fr, de/en, en/de, pt/en, en/pt,
es/en, and en/es. We released test sets for all 10
language pairs, which are the official test sets used
for the shared task. The creation of the Medline
training and test sets was as follows.

Document retrieval. For the training data, we
downloaded the Medline database2 that included
the citations available until the end of 2018. For
the test sets, we downloaded the Medline update
files available for 2019 until the end of February.

1https://drive.google.
com/drive/u/0/folders/
1x4689LkvdJTyAxsB6tYu12MJzxgiyDZ_

2https://www.nlm.nih.gov/databases/
download/pubmed_medline.html

XML parsing. We parsed the Medline files us-
ing a Python XML library.3 Based on the meta-
data available, we selected the citations that con-
tained abstracts both in English and in at least one
of the foreign languages addressed in the shared
task, namely, Chinese (zh), French (fr), German
(de), Portuguese (pt), and Spanish (es).

Language detection. Even though the citations
in Medline include the language of the abstracts,
we found some mistakes in the data from last
year in which some abstracts were tagged with
the wrong language, e.g. Italian instead of Ger-
man. Therefore, we automatically detected the
language of the article using the Python langde-
tect library.4 For instance, when building the train-
ing data, we detected a total of 156 abstracts that
were identified with the wrong language. For the
training data, this was the data that was released
to the participants after removal of the abstracts in
the wrong language. When building the test sets,
we kept only 100 articles for each language pair,
i.e. 50 articles for each direction es/en and en/es.

Sentence splitting. For the test sets, we consid-
ered only the abstracts in the Medline citations and
segmented them into sentences, which is a neces-
sary step for automatic sentence alignment. For
all language pairs except for zh/en, we used the
syntok Python library5. For zh/en, we used Ling-
Pipe’s Medline-specific API6 to segment the En-
glish abstracts. Splitting the Chinese ones by the
language-specific period punctuation “。” (using
our own script) was sufficient.

Sentence alignment. For the test sets in all lan-
guage pairs except for zh/en, we automatically
aligned the sentences using the GMA tool.7 We re-
lied on the same configuration and stopword lists
used for the test sets in 2018 (Neves et al., 2018).
For zh/en, we used the Champollion tool8, also
relying on the same configurations and stopword
lists used in 2018.

Manual validation. We performed a manual
validation of the totality of the aligned sentences
in the test sets using the Quality Checking task in

3https://github.com/titipata/pubmed_
parser

4https://pypi.org/project/langdetect/
5https://github.com/fnl/syntok
6http://alias-i.com/lingpipe/demos/

tutorial/sentences/read-me.html
7https://nlp.cs.nyu.edu/GMA/
8http://champollion.sourceforge.net/
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Language pairs Medline training Medline test Terminology test
Documents Sentences Documents Sentences Terms

de/en 3,669 40,398 50 589 -
en/de 50 719 -
es/en 8,626 100,257 50 526 -
en/es 50 599 6,624
fr/en 6,540 75,049 50 486 -
en/fr 50 593 -
pt/en 4,185 49,918 50 491 -
en/pt 50 589 -
zh/en - - 50 283 -
en/zh 50 351 -

Table 1: Number of documents, sentences, and terms in the training and test sets.

the Appraise tool. We present statistics concern-
ing the quality of the test set alignments in Table 2.

For each test sets of each language pair, we re-
leased the abstracts in the source language and
kept the ones in the target language for the both the
automatic and manual evaluations, the so-called
“reference translations”. For instance, for the test
set for de/en, we released the abstracts in German
to the participants during the evaluation period and
kept the ones in English for the evaluation.

2.2 Terminology

For the terminology dataset, a total of 6624 terms
in English were manually translated to Spanish by
domain experts. The terms were extracted from
the scientific literature using the DNorm (Leaman
et al., 2013) Named Entity Recognition and medi-
cal glossaries.

3 Baselines

Baseline 1: Marian NMT
This represents a low-experience, minimal effort
submission based on current methods. We de-
velop “baseline1” using the tutorial written for the
MT Marathon 2018 Labs9 and the Marian NMT
framework (Junczys-Dowmunt et al., 2018).

As training data we used the UFAL medical cor-
pus (UFA), and as validation data we used Khres-
moi (Dušek et al., 2017). The Khresmoi data did
not overlap with the UFAL corpus, despite be-
ing mentioned as one of the sources. The UFAL
corpus was filtered to remove lower quality data.
Specifically, we removed the “Subtitles” subset, as
it is of lower quality than the rest, less medically
oriented (if at all), and contains dialogue rather

9https://marian-nmt.github.io/
examples/mtm2018-labs

than narrative. Two of the targeted languages, Por-
tuguese and Chinese, are not present in UFAL. For
Portuguese we therefore trained our model on the
Scielo corpus (Neves et al., 2016) and tested on
the Brazilian thesis corpus (Soares et al., 2018b).
For Chinese we used the United Nations Parallel
Corpus (Ziemski et al., 2016).

The data was preprocessed using standard tools
from the Moses toolkit (Koehn et al., 2007): to-
kenisation, cleaning of training data and truecas-
ing. Subword segmentation (Sennrich et al., 2015)
was then trained jointly over both source and tar-
get languages and applied using FastBPE.10 The
number of merge operations for BPE was set to
85000.

The models trained were shallow RNN encoder-
decoders.11 They were trained on a GTX 1080 Ti
with 8 GPUs. Validation using cross-entropy and
BLEU was performed every 10,000 updates, and
models were trained until there was no improve-
ment on either metric for 5 consecutive updates.
Training of a single model took approximately 2
days.
Discussion. Compared to the traditional domain
of news translation, biomedical MT poses addi-
tional challenges; biomedical texts contain a large
amount of specialised, in-domain vocabulary, and
in-domain training data is less readily available.

Baselines 2 and 3: OpenNMT
We also provide two additional baselines trained
using OpenNMT-py (Klein et al., 2017)12, one
with a small network size, and a second one with
a higher number of hidden units. The data used

10https://github.com/glample/fastBPE
111 encoder layer, 1 decoder layer, both with with GRU

cells, embedding dimension of 512, hidden state of dimen-
sion 1024, using layer normalization, implemented using
Marian NMT and trained using the Adam optimizer.

12http://opennmt.net/OpenNMT-py/
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Language OK Source>Target Target>Source Overlap No Align. Total

de/en 808 (67.8%) 69 (5.8%) 126 (10.6%) 42 (3.5%) 147 (12.3%) 1192
es/en 825 (78.6%) 33 (3.1%) 67 (6.4%) 28 (2.7%) 96 (9.1%) 1049
fr/en 857 (82.6%) 21 (2.0%) 64 (6.2%) 9 (0.9%) 87 (8.4%) 1038
pt/en 833 (78.9%) 31 (2.9%) 77 (7.3%) 7 (0.7%) 107 (10.1%) 1055
zh/en 469 (84.4%) 53 (9.5%) 12 (2.2%) 5 (0.9%) 17 (3.1%) 556

Table 2: Statistics (number of sentences and percentages) of the quality of the automatic alignment for the Medline
test sets. For each language pair, the total of sentences corresponds to the 100 documents that constitute the two
test sets (one for each language direction).

for training was the Medline abstracts corpora. We
trained these two baselines using the following pa-
rameters:

• 2-layer LSTM for both the encoder and de-
coder (300 and 500 hidden units)

• Vocabulary size: 32,000

• Training steps: 100,000

• Batch size: 64

• Optimization: SGD

• Dropout: 0.3

• Embedding size: 500

The models were trained on a PC with In-
tel Xeon E-2124 processor and NVIDIA GeForce
GTX 1060 GPU and are available for download.13

4 Teams and Systems

This year, the task attracted the participation of 11
teams from six countries (China, Germany, Japan,
Pakistan, Spain and United Kingdom) from two
continents. As opposed to previous years, no team
from the Americas participated in the task. We list
the teams and their affiliation (where available) in
Table 3. We received a total of 59 run submissions
as presented in Table 4.

System descriptions were solicited by email
from the participating teams in the form of a sys-
tem paper and a summary paragraph. Below we
provide a short description of the systems for
which a corresponding paper is available or for
which we received a description from the partic-
ipants. Two teams (‘peace’ and ‘Radiant’) did not
provide system descriptions.

Table 5 provides an overview of the methods,
implementations and training corpora used by the
participants. While two teams used the statisti-
cal machine translation toolkit Moses (MT-UOC-
UPF and UHH-DS), the most popular translation

1310.6084/m9.figshare.8094119

method relied on neural networks and the trans-
former architecture.

ARC (Wei et al., 2019). The ARC team’s sys-
tems were based on the Transformer-big archi-
tecture (Vaswani et al., 2017). The relied on
both general (news translation task, OPUS, UM,
Wikipedia) and in-domain (EMEA, UFAL, Med-
line) corpora. For en/zh, they also used in-house
training data. In order to improve the overall
training data quality, they filtered noisy and mis-
aligned data, and to improve vocabulary coverage
they trained their subword segmentation model on
the BERT multilingual vocabulary. They experi-
mented with over 20 different models with vari-
ous combinations of training data and settings and
chose the best ones when submitting their runs.

BCS (Soares and Krallinger, 2019). The
team’s systems were also based on the
Transformer-big architecture, which were trained
using the OpenNMT-py toolkit. They relied on
resources from both the general domain (books
corpus), as well as from the biomedical domain,
such as parallel terminologies from UMLS and
various corpora (Scielo, UFAL medical, EMEA,
theses and dissertations abstracts, and the Virtual
Health Library).

KU. The KU team’s systems were based on
the Transformer-big architecture, trained using
the Tensor2Tensor toolkit (Vaswani et al., 2018).
Training data was carefully cleaned to remove en-
coding errors, bad translations, etc. They did not
perform standard ensemble translation, but ob-
tained a small BLEU improvement by taking a
“majority vote” on the final translations for differ-
ent checkpoints.

MT-UOC-UPF. The MT-UOC-UPF team’s sys-
tems were deep RNN-based encoder-decoder
models with attention, trained using Marian (and
with layer normalisation, tied embeddings and
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Team ID Institution

ARC Huawei Technologies (China),
BSC Barcelona Supercomputing Center (Spain)
KU Kyoto University (Japan)

MT-UOC-UPF Universitat Oberta de Catalunya (Spain)
NRPU Fatima Jinnah Women University (Pakistan), Manchester Metropolitan University (UK)
OOM Beijing Atman Technology Co. Ltd. (China)
peace (unknown)

Radiant Harbin Institute of Technology (China)
Talp upc Universitat Politècnica de Catalunya (Spain)
UCAM University of Cambridge (UK)

UHH-DS University of Hamburg (Germany)

Table 3: List of the participating teams.

Teams de/en en/de en/es en/fr en/pt en/zh es/en fr/en pt/en zh/en Total

ARC M3 M3 M3 M3 M3 M3 18
BSC M1 M1 M1 M1 4
KU M1 M1 2

MT-UOC-UPF M1T1 M1 3
NRPU M1 M1 2
OOM M2 M2 4
peace M1 M1 2

Radiant M3 3
Talpc upc M3 M3 6

UCAM M3 M3 M3 M3 12
UHH-DS M3 3

Total 6 6 9 5 1 9 11 4 1 7 59

Table 4: Overview of the submissions from all teams and test sets. We identify submissions to the MEDLINE test
sets with an “M” and to the terminology test set with a “T”. The value next to the letter indicates the number of
runs for the corresponding test set, language pair, and team.

Teams MT method Package, library or system Training corpus

ARC NMT Transformer-big architecture general: news translation task, OPUS,
UM, Wikipedia; in-domain: EMEA,
MEDLINE, UFAL

BSC NMT Transformer-big, OpenNMT-py general: books corpus; in-domain:
EMEA, Scielo, UFAL, UMLS, theses
and dissertations abstracts, and the Vir-
tual Health Library

KU NMT Transformer-big architecture,
Tensor2Tensor toolkit

in-domain

MT-UOC-UPF SMT, NMT Moses, RNN-based Marian
NMT

in-domain

NRPU NMT OpenNMT-py, transfer learning general: News-Commentary; in-
domain: EMEA, MEDLINE, Scielo,
UFAL

OOM NMT Transformer architecture general and in-domain: MedRA
peace NA NA NA

Radiant NA NA NA
Talpc upc NMT Transformer architecture, Ba-

belNet dictionary
in-domain: MEDLINE

UCAM NMT Transformer-big architecture,
Tensor2Tensor toolkit, transfer
learning

general: news translation task; in-
domain: MEDLINE, Scielo, UFAL

UHH-DS SMT Moses in-domain: biomedical task 2018 cor-
pus

Table 5: Overview of the methods implemented by each team. We report the general translation method, specific
package, library or implementation used and training corpus used. The letters ”NA” are used when this information
was not available at the time of writing.
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residual connectors). The systems were trained
with several medical corpora and glossaries. For
the terminology translation task, they trained a
Moses system using the same corpus as for the
Marian NMT system. The translation table was
queried for the English terms and when they were
not found, they were translated using the NMT
system if all subwords in the term were known and
with the SMT Moses system if not.

NRPU (Noor-e-Hira et al., 2019). The NRPU
team applied transfer learning and selective data
training to build NMT systems. The goal of
their approach is to mine biomedical data from
general domain corpus and show its efficacy for
the biomedical domain. The books corpus was
used as the main out-of-domain corpus. News-
Commentary (NC) (Tiedemann, 2012) was used
as general domain corpus to perform informa-
tion retrieval for selective data selection. The
data selection procedure was performed as re-
ported in Abdul-Rauf et al. (2016). In-domain
MEDLINE titles were used as queries to retrieve
biomedical related sentences from the general do-
main NC corpus. They had a total of 627,576
queries for data selection. Top n (1<n<10) rel-
evant sentences were ranked against each query.
The data selection process was done on both
French and English.

OOM. Their system was based on the Trans-
former architecture trained on various parallel and
monolingual corpora from in-domain and out-of-
domain corpora. In the fine-tuning phase, the
models were first tuned with the in-domain data
and then fine-tuned with a curriculum learning
mechanism for several rounds. Several model in-
stances were ensembled to generate the transla-
tion candidates followed by a re-ranking model
to select the best one. In addition to the stan-
dard sentences used in the training, terminological
resources such as MedDRA were used as a con-
straint in the decoding phase to keep translation
accuracy and consistency of key words.

Talp upc (Pio Carrino et al., 2019). The
Talp upc team’s submission was based on a Trans-
former and on the BabelNet multilingual se-
mantic dictionary (Navigli and Ponzetto, 2012).
From the Medline training data, they extracted
a list of biomedical terms. They proposed bpe-
terms segmentation, which consists of segment-
ing sentences as a mixture of subwords and term

tokens in order to take into account domain-
specific terms. They experimented with three sys-
tems: (i) terminology-aware segmentation (run2
for es/en and run2 for en/es), (ii) terminology-
aware segmentation with a word-level domain
feature (run3 for es/en and run1 for en/es),
and (iii) terminology-aware segmentation, shared
source and target vocabularies and shared encoder-
decoder embedding weights (run1 for es/en and
run3 for en/es).

UCAM (Saunders et al., 2019). The UCAM
team relied on transfer learning and used the
Tensor2Tensor implementation of the Transformer
model. For each language pair, they used the same
training data in both directions. Regarding train-
ing data, for en/de and de/en, they reused gen-
eral domain models trained on the WMT19 news
data and biomedical data (UFAl and Medline). For
es/en and en/es, they trained on Scielo, UFAL,
and Medline. Their three runs use the following:
(i) the best single system trained on biomedical
data, (ii) a uniform ensemble of models on two
en/de and three es/en domains, and (iii) an ensem-
ble with Bayesian Interpolation.

UHH-DS. The team submitted three runs for
the Spanish-English language pair. Their SMT
systems were developed using the Moses toolkit
(Koehn et al., 2007) and trained on the same data
as their submission from last year. Data selection
was used to sub-sample two general domain cor-
pora using a ratio of 50% sentences. Detailed de-
scriptions of the methods are presented in (Duma
and Menzel, 2016a) (run 1), (Duma and Menzel,
2016b) (run2) and (Duma and Menzel) (run 3).
The first two methods rely on Paragraph Vector
(Le and Mikolov, 2014) for sentence representa-
tion and scoring formulas based on the cosine sim-
ilarity, and the third method focuses on the relative
differences between term frequencies. All meth-
ods are unsupervised and produce fast results.

5 Automatic Evaluation

For each language pair, we compared the sub-
mitted translations to the reference translations.
BLEU scores were calculated using the MULTI-
EVAL tool and tokenization as provided in Moses.
For Chinese, character-level tokenization was used
via a minor modification to the tool. Although
an ideal tokenization would take into account that
Chinese words consist of a varying number of

37



characters, achieving such an ideal tokenization
requires a sophisticated dictionary (Chang et al.,
2008) – including biomedical terms – and is be-
yond the scope of this shared task. Further, using
character-level tokenization for BLEU purposes is
in accordance with current practice (Wang et al.,
2018; Xu and Carpuat, 2018).

Table 6 shows BLEU scores for all language
pairs when considering all sentences in our test
sets. Table 7 only considers the sentences that
have been manually classified as being correctly
aligned (cf. Section 2). As expected, certain
results improve considerably (by more than 10
BLEU points) when only considering the sen-
tences that are correctly aligned.

Most teams outperformed the three baselines,
except the NRPU team’s submissions for en/fr
and fr/en. Baseline1, trained using Marian NMT,
obtained results not far behind the best performing
team, while the two other baselines were not very
competitive. We rank the various runs according
to the results that they obtained followed by a
short discussion of the results with regard to the
methods that they used.

• de/en: baseline2,3 < baseline1 < UCAM,
ARC

• en/de: baseline2,3 < baseline1 < UCAM,
ARC

• es/en: baseline2,3 < baseline1 < UHH-DS
< MT-UOC-UPF < BSC, Talp upc runs2,3
< Talp upc run1 < UCAM

• en/es: baseline2,3 < baseline1 < MT-UOC-
UPF < Talp upc, BSC < UCAM

• en/fr: baseline2,3 < NRPU < baseline1, KU
< ARC runs2,3 < ARC run1

• fr/en: baseline2,3 < NRPU < baseline1 <
ARC

• pt/en: baseline2,3 < baseline1 < BSC

• en/pt: baseline2,3 < baseline1 < BSC

• zh/en: baseline1 < peace < KU < ARC <
OOM

• en/zh: Radiant < peace < ARC < OOM

de/en. All submitted runs from both ARC and
UCAM teams outperformed our three baselines.
The runs from ARC were slightly superior to those
from UCAM. Both teams used Transformer mod-
els but the ARC also used BERT multilingual
embeddings. We observed no significant differ-
ence between the submissions from team ARC but
runs based on the ensemble of models from team
UCAM (i.e. runs 2 and 3) obtained a higher score
than their single best systems.

en/de. Results were similar to those for en/de:
the runs from team ARC outperformed the runs
from team UCAM. Similarly, we observed no dif-
ference between the runs from team ARC and
slightly higher scores for the runs based on ensem-
ble systems from team UCAM.

es/en. All submitted runs outperformed our
baselines. The best performing systems from the
Talp upc, UCAM, and BSC teams were Trans-
former models, the one based on Marian NMT
from the MT-UOC-UPF team, an finally the SMT
Moses systems from UHH-DS. We did not ob-
serve significant differences between the various
runs from single teams, except for run1 from
Talp upc team (terminology-aware segmentation,
shared source and target vocabularies and shared
encoder-decoder embedding weights), which out-
performed their other two runs.

en/es. All submitted runs outperformed our
baselines. As opposed to results for en/es, the
Transformer system from the UCAM team slightly
outperformed the one developed by the Talp upc
team, which obtained a similar performance to the
OpenNMT system from the BSC team.

fr/en. Baselines 2 and 3 were outperformed by
all submitted runs, whereas baseline 1, which is
trained using Marian, was only outperformed by
team ARC, whose system uses the Transformer
model. We observed no significant difference be-
tween the three runs from the ARC team.

en/fr. Similar to fr/en, baselines 2 and 3 were
outperformed by all submitted runs, while base-
line 1 was similar to the run from the KU team,
which uses the Transformer model. All runs from
the ARC team outperformed our baseline 1. Run1
from the ARC performed significantly better than
the other two runs, although details about the dif-
ference between the runs do not seem to be avail-
able.
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pt/en. The run from the BSC team based on
OpenNMT performed slightly better than baseline
1. However, their performance was far superior to
baselines 2 and 3, which were also trained using
OpenNMT but only trained on the Medline train-
ing data.

en/pt. Results for en/pt from the BSC were al-
most 10 points higher than the ones for pt/en. The
run from the BSC team based on OpenNMT out-
perfomed with some difference the baseline based
on Marian NMT, maybe because of the many re-
sources that the team trained its system on. Fur-
ther, they were much superior to the baselines 2
and 3 also based on OpenNMT but only trained
on the Medline training data.

zh/en. All submitted runs outperformed the
only baseline that we prepared. The three
best-performing teams’s submissions were Trans-
former models. The system developed by the
OOM team slightly outperformed ARC’s submis-
sion. Little difference in the results for the runs for
the two teams was observed. A significant differ-
ence, however, was observed between results from
the ARC and OOM teams and the Transformer
system of the KU team.

en/zh. The Transformer-based system from
team OOM significantly outperformed the trans-
former systems of team ARC. The latter had a
similar performance to the runs for the other two
teams (Radiant and peace) for which we do not
know the details.

Table 8 presents the results of the automatic
evaluation of the terminology test set. The eval-
uation considered the accuracy of translation (on
lower-cased terms), rather than BLEU. The choice
of accuracy was due to the fact that the terms are
usually very short and having at least one different
word from the reference translation can lead to a
complete different meaning.

6 Manual Evaluation

For the Medline test sets, we performed manual
evaluation of the primary runs, as identified by the
participants, for all teams and language pairs. We
carried out pairwise comparisons of translations
taken either from a sample of the translations from
the selected primary runs or the reference transla-
tions. Specifically, sets of translation pairs, con-
sisting of either two automatic translations for a

given sentence (derived from submitted results), or
one automatic translation and the reference trans-
lation for a sentence, were prepared for evaluation.
Table 9 presents the primary runs that we consid-
ered from each team. We performed a total of 62
validations of pairwise datasets.

We relied on human validators who were na-
tive speakers of the target languages and who
were either members of the participating teams
or colleagues from the research community. We
also preferred to use validators who were familiar
enough with the source language so that the orig-
inal text could be consulted in case of questions
about the translations, and for most language pairs
this was the case.

We carried out the so-called 3-way ranking task
in our installation of the Appraise tool (Feder-
mann, 2010).14. For each pairwise dataset, we
checked a total of 100 randomly-chosen sentence
pairs. The validation consisted of reading the two
translation sentences (A and B) and choosing one
of the options listed below:

• A<B: the quality of translation B is higher
than translation A;

• A=B: both translations have similar quality;

• A>B: the quality of translation A was higher
than translation B;

• Flag error: the translations do not seem to
come from the same source sentence, prob-
ably due to errors in the corpus alignment.

Table 10 summarizes the manual evaluation for
the Medline test sets. We did not perform man-
ual evaluation for any of our baselines. We ranked
the runs and reference translations among them-
selves based on the number of times that one val-
idation was carried out by the evaluators. When
the superiority of a team (or reference translation)
over another team was not very clear, we decided
to put both of them together in a block without the
“lower than” sign (<) between them. However, in
these situations, the items are listed in ascending
order of possible superiority in relation to the oth-
ers. The various runs were ranked as listed below:

• de/en: reference, ARC, UCAM

• en/de: UCAM < ARC < reference
14https://github.com/cfedermann/

Appraise
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Teams Runs en/es

MT-UOC-UPF 1 47.55

Table 8: Accuracy results for the terminology test set.

• en/es: reference, MT-UOC-UPF < BSC,
Talp upc, UCAM

• en/fr: NRPU < KU < ARC, reference

• en/pt: reference, BSC

• en/zh: no possible ranking

• es/en: UHH-DS < MT-UOC-UPF < BSC,
UCAM < reference, Talp upc

• fr/en: NRPU < reference < ARC

• pt/en: BSC, reference

• zh/en: KU < ARC, peace < reference, OOM

The ranks for the manual validation were usu-
ally consistent with the ones that we obtained for
the automatic validation. We discuss differences
that we found in the discussion of the results for
each language pair below.

de/en. The reference translations and the runs
from teams ARC and UCAM were of similar qual-
ity and we did not observe huge differences be-
tween them. For this reason, we have grouped
them into a single block, ordering them accord-
ing to increasing performance. The UCAM team’s
submission was seen to be marginally better than
the reference translations (33 vs. 23). We did not
observe any differences in the respective order of
teams compared to that of the automatic evalua-
tion.

en/de. The reference translation was clearly su-
perior to the runs from the ARC and UCAM teams
(41 vs. 19, and 44 vs. 16, respectively). The
translations from the ARC submission were more
frequently judged better than the ones from the
UCAM team (37 vs. 16). While we found no sig-
nificant difference in the BLEU scores for teams
ARC and UCAM, the manual evaluation showed
that translations from team ARC were of superior
quality to those of team UCAM.

en/es. The runs from the MT-UOC-UPF and
BSC teams were judged as of similar quality to
the reference translations, while the ones from
Talp upc and UCAM were deemed superior to the
reference translations. The manual validation did
not indicate much difference between runs from
teams BSC, Talp upc and UCAM. The ranking
of the teams did not change significantly between
that of the automatic evaluation.

en/fr. The reference translations were clearly su-
perior to the runs from the KU and the NRPU
teams, however, they were found only marginally
superior to the ARC run. We therefore decided
to put the ARC runs and reference translations
in a single block. As for the comparison of the
ARC runs to the KU and NRPU runs, superiority
of ARC was higher when compared to the NRPU
team (82 vs. 2) than for team KU (42 vs. 21). In-
deed, the translations from the KU team were vali-
dated as far superior (73 vs. 9) to team NRPU. We
did not observe any differences in the ranking of
teams with respect to the automatic evaluation.

en/zh. We could not rank the runs from the vari-
ous teams because of inconsistencies when com-
paring results from the various pairwise valida-
tions. For instance, the translations from the OOM
team were judged better than the the reference
translations, and the latter better that the ones from
the ARC team. However, the translation from the
ARC team were considered better than the ones
from the OOM team. We also found differences in
the rankings found in the automatic validation. For
instance, the team that obtained the lowest BLEU
scores (peace), had their translation judged to be
as good as the ones from the Radiant and OOM
teams, two of the teams that obtained high BLEU
scores.

en/pt. The translations from the BSC team were
validated as slightly superior (29 vs. 25) to the ref-
erence translations. We therefore grouped both of
them in a single block.

es/en. The reference translations were judged as
of similar quality to the ones from the Talp upc
teams, followed by the translations from the BSC
and UCAM teams. The only difference to the
ranking from the automatic evaluation was that
the runs from the Talp upc were considered better
than those from the UCAM team while the latter
obtained a higher BLEU score.

42



Teams de/en en/de en/es en/fr en/pt en/zh es/en fr/en pt/en zh/en Total

ARC run3 run3 run3 run3 run3 run3 6
BSC run1 run1 run1 run1 4
KU run1 run1 2
MT-UOC-UPF run1 run1 2
NRPU run1 run1 2
OOM run2 run2 2
peace run1 run1 2
Radiant run3 1
Talpc upc run1 run2 2
UCAM run3 run3 run3 run3 4
UHH-DS run1 1
Total 2 2 4 3 1 4 5 2 1 4 28
Pairwise 3 3 10 6 1 10 15 3 1 10 62

Table 9: Overview of the primary runs that were considered for manual validation. The last columns shows the
number of runs that we validated for each team. The last rows in the tables show the total number of runs and of
pairwise combinations between runs and the reference translations.

fr/en. The reference translations were consis-
tently validated as superior to the one from team
NRPU’s submissions, whereas the ones from team
ARC were judged to be better than the reference
translations.

pt/en. The reference translations were validated
as slightly superior (29 vs. 24) to the ones from
team BSC. Therefore, we grouped both of them in
a single block.

zh/en. Only the translation from the OOM team,
the runs that obtained the highest BLEU scores,
were judged as of similar quality to the reference
translations. The only main difference compared
to the ranking from the automatic translation was
with regard to team peace’s submission, which ob-
tained the lowest BLEU score, but for which the
translations were ranked higher than the ones from
the KU team and of similar quality to the ARC
team according to the manual evaluation.

7 Discussion

In this section we discuss important topics related
to the shared task, such as a short analysis of best
performing methods, lack of sufficient resources
for some language pairs and the quality of the test
sets and the submitted translations.

7.1 Analysis of results and methods

Across all language pairs, the best performing runs
were those based on the Transformer architecture
trained on as much data as possible from the gen-
eral and biomedical domain (cf. the submissions
by the ARC, Talp upc, and UCAM teams). En-
sembled runs tended to perform well and gen-

erally outperformed using the single best system
(cf. OOM, Talp upc, and UCAM).

Differences in the amount of training data avail-
able across languages appeared to have a direct
impact on translation quality. The Scielo and
Medline corpora are larger for es/en and en/es
than for the other languages, which is reflected in
the BLEU scores. For example, results for team
UCAM were more than 10 points higher for es/en
and en/es than for de/en and en/de, results which
were mirrored for baseline 1.

Regarding zh/en and en/zh for which we do not
yet provide any training data, results were infe-
rior to the best-performing language pairs (es/en
and en/es), but still surprisingly good. However
the best-performing teams trained on additional
in-house data (cf. ARC’s submission), which was
not available to the community.

We compared results for this year’s shared task
in comparison to the previous year’s (Neves et al.,
2018). The addition of the Medline training data
this year resulted in an improvement for en/de
(from 24.30 to almost 28.00), but not for de/en.
Similarly, we observed no real improvement for
es/en and en/es, the highest BLEU scores for both
remained in the range of 43-45 points. However,
a considerably improvement occurred for en/fr,
whose scores increased from almost 25 to almost
40 points, and for fr/en from almost 27 to around
35 points. Finally, the scores for en/pt showed
an improvement from 43 to 49 points, while the
scores remained constant for pt/en on 46 points.

In the shared task that we organized last year
(Neves et al., 2018), for the first time certain
runs outperformed the reference translations in the
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Languages Runs (A vs. B) Total A>B A=B A<B

de/en
reference vs. ARC 94 31 30 33

reference vs. UCAM 93 23 37 33
ARC vs. UCAM 100 20 60 20

en/de
reference vs. ARC 92 41 32 19

reference vs. UCAM 92 44 32 16
ARC vs. UCAM 100 37 47 16

en/es

reference vs. BSC 100 10 78 12
reference vs. MT-UOC-UPF 100 25 49 26

reference vs. Talp upc 100 7 74 19
reference vs. UCAM 100 18 62 28

BSC vs. MT-UOC-UPF 100 26 59 15
BSC vs. Talp upc 100 9 80 11
BSC vs. UCAM 100 9 86 5

MT-UOC-UPF vs. Talp upc 98 6 77 15
MT-UOC-UPF vs. UCAM 100 6 75 19

Talp upc vs. UCAM 100 11 82 7

en/fr

reference vs. ARC 98 36 34 28
reference vs. KU 98 61 21 16

reference vs. NRPU 99 79 18 2
ARC vs. KU 100 42 37 21

ARC vs. NRPU 100 86 12 2
KU vs. NRPU 99 73 17 9

en/zh

reference vs. ARC 95 55 12 28
reference vs. OOM 100 28 28 44
reference vs. peace 93 50 18 25

reference vs. Radiant 99 24 14 61
ARC vs. OOM 96 52 7 37
ARC vs. peace 96 52 7 37

ARC vs. Radiant 93 45 6 42
OOM vs. peace 100 33 38 29

OOM vs. Radiant 100 68 16 16
peace vs. Radiant 98 43 7 48

en/pt reference vs. BSC 99 25 45 29

es/en

reference vs. BSC 98 40 30 28
reference vs. MT-UOC-UPF 90 36 36 10

reference vs. Talp upc 95 27 42 26
reference vs. UCAM 99 30 45 24

reference vs. UHH-DS 96 55 33 8
BSC vs. MT-UOC-UPF 97 32 39 26

BSC vs. Talp upc 100 19 43 38
BSC vs. UCAM 99 29 48 22

BSC vs. UHH-DS 100 55 29 16
MT-UOC-UPF vs. Talp upc 95 15 46 34
MT-UOC-UPF vs. UCAM 100 24 35 41

MT-UOC-UPF vs. UHH-DS 100 51 36 13
Talp upc vs. UCAM 100 33 42 25

Talp upc vs. UHH-DS 100 55 35 10
UCAM vs. UHH-DS 98 54 34 10

fr/en
reference vs. ARC 96 23 32 41

reference vs. NRPU 95 72 20 3
ARC vs. NRPU 99 80 19 0

pt/en reference vs. BSC 96 29 43 24

zh/en

reference vs. ARC 100 47 29 24
reference vs. KU 100 36 37 27

reference vs. OOM 100 12 43 12
reference vs. peace 100 33 32 25

ARC vs. KU 100 36 44 20
ARC vs. OOM 100 13 41 46
ARC vs. peace 100 31 38 31
KU vs. OOM 100 9 40 51
KU vs. peace 100 25 42 33

OOM vs. peace 100 49 45 6

Table 10: Results for the manual validation for the Medline test sets. Values are absolute numbers (not percent-
ages). They might not sum up to 100 due to the skipped sentences.
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Pair = >

de/en ARC, UCAM -
en/de - -
en/es MT-UOC-UPF BSC, Talp upc, UCAM
en/fr ARC -
en/pt BSC -
en/zh - -
es/en Talp upc -
fr/en - ARC
pt/en BSC -
zh/en OOM -

Table 11: List of teams with runs of a similar quality to
the reference translations or that outperformed them.

manual validation (e.g. for en/es) or were of simi-
lar quality (e.g. de/en). This year there were more
such cases (cf. Table 11), which confirms the im-
provements of the participating systems.

7.2 Quality of the test sets
To evaluate the quality of the MEDLINE test sets,
we performed an evaluation of the sentence align-
ment using Appraise to classify sentence pairs be-
tween ”OK”, “Target > Source”, “Source > Tar-
get” and ”No Alignment”. During this process,
we also noted any observation on the quality of
the reference translation. Of note for this dataset,
the reference translation is produced by the orig-
inal authors of the papers who are scientists with
likely no training in translation and whose writing
competence in the languages involved is unknown.
We can make the hypothesis that the authors have
acquired English as a second language while they
have native or near-native competence in the non
English language.

The quality of the alignment in the Medline test
sets varied from as low as around 68% (for de/en
and en/de) to as high as 84.4% (for zh/en and
en/zh). Therefore, the rate of misaligned sentences
did not vary much across the language pairs. Part
of this problem was due to incorrectly considering
the titles of the citations, when usually there is no
translation for these available in Medline.

Some of the segments assessed as correctly
aligned (”OK”) sometimes exhibited sentence seg-
mentation error that were similar in the two lan-
guages. For example, there were segments where
pairs of sentences were aligned, instead of being
split into two aligned segments.

Interestingly, except for zn/en and en/zh, we ob-
served an average of twice more sentences classi-
fied as “Target > Source” than as “Source > Tar-
get”. This might suggest that authors of the ar-

ticles might have added more information in the
English version of the article than in the version in
the foreign language.

During our manual validation of the test sets
(cf. Section 2), we identified the non-aligned sen-
tences with the specific label ‘No Alignment’.
However, almost 1/3 of these not aligned sen-
tences correspond to other issues: (a) misalign-
ment between titles to nothing or something else;
(b) misalignment of complete, different sentences
(even though these were rather rare); and (c) mis-
alignment of section+sentences wrongly aligned
to only the section name in the other language.
The latter was also sometimes classified as either
“Target > Source” or “Source > Target”. Regard-
ing these two labels, i.e., “Target > Source” and
“Source > Target”, these were often utilized for
the following situations: (a) section+sentence au-
tomatically aligned only to sentence (the opposite
of the above); (b) reference to an entity (e.g. a dis-
ease), while referred only to the pronoun (e.g. it)
in the other language; (c) mention of a particu-
lar information (e.g. a method or a time range) in
one language, while not in the other language; and
(d) the English version included notes in squared
brackets which were not part of the foreign sen-
tence.

We also identified problems in the reference
translation when performing the manual valida-
tion. Some issues were related to the sentence
splitting, for instance, p-values were often split, so
that “(p=0.5)” would be split on the “.”. In those
cases, the preceding sentence ended in “. . . (p=0.”
and the next sentence started with “5) . . . ”. Others
were related to the content of the reference trans-
lations themselves, including non-literal transla-
tions that alter the meaning of the original sen-
tence when out of context (Example 1), wrong
translations (as in Example 2) and even poor for-
matting and punctuation.

(1) Source: Toutes ces personnes, et en partic-
ulier dans le monde du sport amateur. . .
Ref: These athletes, especially, the ama-
teurs. . .
Correct: All of these people, especially in
the amateur sports world. . . 15

(2) Source: Les crises épileptiques sont
imprévisibles et peuvent se produire

15Relevant parts of the translation are indicated in bold.
The same holds for Example 2.
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n’importe où.
Ref: Epileptic seizures occur with unpre-
dictable frequency in unexpected place.
Correct: Epileptic seizures are unpredictable
and can occur anywhere.

A further problem identified was the presence of
very short sentences often formed of a single word
(e.g. titles or listed items such as “Conclusions”,
“Objective”, or “Clinical Case”), which are in gen-
eral correctly translated. Including such items for
evaluation could influence quality assessments, in-
flating the scores, since their translation is more
similar to terminology translation rather than sen-
tential translation.

7.3 Quality of the system translations

English (from Chinese). As the first year
receiving submissions addressing the Chinese
language, the overall quality of the transla-
tions was delightfully high. For an English
sentence to offer the same level of fluency,
the order of phrases is often different from
those in the source Chinese sentence. Many
of the submitted translations successfully cap-
tured this behavior, as in the example below.

在健康风险和生理及心理自我调节能力评
估讨论的背景下解读 HRV节律。
(Order of terms: health risk, physiological
and psychological self-regulation, interpreta-
tion, HRV rhythms.)
– Source

Interpretation of heart rate variability
rhythms in the context of health risk and phys-
iological and psychological self-regulatory
capacity assessment is discussed.
– Reference translation

HRV rhythms are interpreted in the context of
health risks and assessment of physiological
and psychological self-regulation.
– Translation

Errors that disrupt the meaning of the transla-
tions most are incorrectly translated biomedical
terms, presumably due to an inadequate Chinese
biomedical dictionary. For instance, 人智医
学 or anthroposophic healthcare was, based on
the literal meanings of the individual Chinese
characters making up the term, variably translated

as human intellectual healthcare, psychiatric care
and even humane healthcare. Other literal but
incorrect translations include horse’s syndrome
for 马方综合征 (Mafran’s syndrome) due to
the 马 character (a horse), and parasitic therapy
for 槲寄生疗法 (mistletoe therapy) due to 寄
生 (parasitic). In some cases, such terms, which
were presumably absent from the dictionary, were
entirely omitted in the translations.

Improvements to the translations could be made
in two areas. Firstly, singular and plural markings
could be made consistent within one translated
abstract. In Chinese, with very few exceptions,
nouns are not inflected to indicate plurality. Hence
where an earlier sentence in an abstract mentions,
for instance,两名患者 (two patients) and in a later
sentence only 患者, a correct English translation
should remain consistent with the plural patients,
not the singular patient. Secondly, non-biomedical
terms with connotations specific to scientific ab-
stracts could be more precisely translated. For in-
stance, beginning the final sentence in an abstract
with总之 would be better translated as in conclu-
sion than in general.

English (from French). The overall translation
quality was high for this language direction, and
it was often difficult to distinguish between the
MT output and the reference translation in terms
of quality, in some cases indicative of the good
quality of automatic translation, and in others of
the presence of problems in the reference transla-
tions themselves.

An aspect that could have contributed to a trans-
lation being considered better or worse was the
handling of complex noun phrases (e.g. case mon-
itoring versus a prepositional phrase complement
monitoring of cases). Whereas many prescrip-
tivists would prescribe the noun compound vari-
ant, these were actually often perceived to be more
natural and appropriate for academic or scientific
writing.

Noun compound PP complement
robust case monitoring robust monitoring of cases
stool culture results results of stool culture
treatment trajectories trajectories of treatments

Table 12: Examples of equally grammatical noun com-
pounds and prepositional phrase (PP) complements in
the fr/en manually evaluated data.

English (from German). The quality of the
translations from German to English was gen-
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erally good. German sentences, which have a
typically different structure and word order than
English sentences, were usually re-arranged with
conjunctions and subordinate clauses in proper
written English. In a few cases, the greater con-
text of the German corpus at hand appeared to in-
fluence the translation of the individual checked
sentences, as additional information, which was
not part of the original German sentence, was in-
tegrated into the English translation. For example:

Bei 3,6% war schon einmal eine
psychosomatische Reha durchgeführt
worden und dennoch vom Konsiliararzt
eine Wiederholungsreha als sinnvoll
erachtet. Patienten, die bereits einmal
in Reha waren sind kränker und haben
mehr Fähigkeits- und Teilhabeprob-
leme.
Von 35 Patienten, bei denen der Kon-
siliararzt die Neubeantragung einer
psychosomatischen Rehabilitation
empfahl, wurde bei 13 im Verlauf der
folgenden 6 Monate ein Antrag gestellt.
– Source

Patients who had already been in
inpatient rehabilitation in the past 5
years were more severely ill and had
more severe participation problems.
– Translation

As the appraiser was blinded to the source
of the translations, it was not possible to deter-
mine if such sentences were machine-translated or
human-translated.

Pro-forms were also successfully used in the
German to English translations, such as sie to
OCT, referring to optical coherence tomography,
and In den aufgearbeiteten Fällen to In our cases.
These two examples make sense and appear to
be correctly translated. However, other pro-forms
were not, such as German er to English he in-
stead of the gender-neutral pronoun it. German
pronouns present a challenge for automated trans-
lation, as all nouns in the German language are as-
signed a gender, whereas in English, only persons
are given gendered pronouns.

While most German words were correctly trans-
lated to their English equivalents, there were some
interesting cases, ranging from completely off-
topic to understandable yet odd equivalents. For

example, the German word Möpsen (English:
pugs) was incorrectly translated many times to
seagulls or cups. Konsiliararzt (English: consul-
tant) was translated to different terms but never
correctly: siliconist or silicone doctor. Interest-
ingly, the adverb konsiliarärztlich was correctly
interpreted to describe a recommendation from a
doctor in the English translation, but unfortunately
this doctor was translated to be a silicone doctor:

Bei 64% der Patienten mit chronischen
psychischen Erkrankungen war bislang
keine psychosomatische Reha erfolgt
und auch keine Indikation gegeben.
Bei 27% wurde bislang noch keine
Rehamaßnahme durchgeführt, wurde
jetzt aber konsiliarärztlich erstmals
empfohlen.
Bei 3,6% war schon einmal eine
psychosomatische Reha durchgeführt
worden und dennoch vom Konsiliararzt
eine Wiederholungsreha als sinnvoll
erachtet.
– Source

At 27%, no rehab has been performed
yet, but has now been recommended for
the first time by a silicone doctor.
– Translation

Improvements to automated translation could
be made if translations of medical or technical
words could be constrained to the context. When
describing the torso of the human body, Rumpf
was translated to the aviation term fuselage and
Säugezeit was literally translated to mammalian
period instead of suckling period. In peculiar
yet comprehensible translations, the German be-
fragte Person was translated to repliers instead of
respondents. The English translation of Leben-
squalität was mistaken as the phonetic quality
of live instead of quality of life. On a posi-
tive note, the German false friend evtl. was in-
deed correctly translated to the English word pos-
sible. Some abbreviations were not even trans-
lated at all (AÄ, OÄ, KP), yet the procedure Ze-
mentsakroplastie (ZSP) was correctly constructed
as Cement Sacroplasty (CSP) in English. Vitien
(English: cardiac defect), which is actually Latin,
was wrongly translated to vials or vii. Overall,
German scientific and medical terms and abbrevi-
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ations were occasionally difficult to translate cor-
rectly.

In a handful of examples, the English transla-
tions appeared to be too colloquial for a written
scientific context. This includes phrases such as
so you always have to ask about it and but there
are no studies on that and using the verb got in-
stead of received. From the appraiser’s point of
view, the origin of these phrases - automatic trans-
lation or manually curated gold standard - is not
clear.

In a few cases, the English translations, de-
spite being grammatically correct, altered the in-
tended meaning of the original German sentence.
The compound word Teilhabebeeinträchtigungen
was wrongly translated to partial impairment in-
stead of participation impairment. In another ex-
ample, a long German sentence ending in Antrag
gestellt was incorrectly interpreted to mean re-
ceived an application. The same original text was
further mistakenly interpreted in another transla-
tion to imply that the actual rehabilitation had been
started, when in fact the German original indicated
that only an application for rehabilitation had been
initiated:

Patienten, die bereits einmal in Reha
waren sind kränker und haben mehr
Fähigkeits- und Teilhabeprobleme.
Von 35 Patienten, bei denen der Kon-
siliararzt die Neubeantragung einer
psychosomatischen Rehabilitation
empfahl, wurde bei 13 im Verlauf
der folgenden 6 Monate ein Antrag
gestellt.
SCHLUSSFOLGERUNG
– Source

Of 35 patients in whom the consul-
tant recommended the reapplication
of psychosomatic rehabilitation, 13
received an application during the
following 6 months.
– Translation A

In 13 out of 35 patients who got a
recommendation for a new psychoso-
matic rehabilitation, this rehabilitation
was initiated within 6 months after the
consult.
– Translation B

Of the 35 patients in whom the sil-
icone doctor recommended a new
application for psychosomatic rehabili-
tation, 13 were applied for during the
following 6 months.
– Translation C

In fact, Translation C was the most correct about
the 13 patients, except the error that Konsiliararzt
was translated as silicone doctor.

In a last example, the words nachhaltigen Effekt
were translated to two different possibilities: sus-
tainable effect (the fact that the effect is able to be
sustained) and sustained effect (an effect that held
continuously at a certain level). There is a subtle
difference in meaning of these two English terms,
whereas the German word (nachhaltigen) could
used to describe both situations. This complicates
a straight-forward translation because the correct
interpretation heavily depends on the whole con-
text of the matter:

Berufsgruppenbedingte Unterschiede
im klinischen Alltag und individueller
Karrierefortschritt üben einen Einfluss
auf Art, Umsetzung und Wahrnehmung
der Lehrtätigkeit aus. Hinweise auf
einen nachhaltigen Effekt ermutigen
zur Fortsetzung und Weiterentwick-
lung des TTT-Konzepts.
Er wurde in den letzten acht Jahren auf
ähnliche Symptome untersucht.
– Source

Indications of a sustained effect
encourage the continuation and further
development of the TTT concept.
– Translation A

Indications of a sustainable effect
encourage the continuation and further
development of the TTT concept.
– Translation B

From the appraiser’s point of view, it is not
possible to ascertain the author’s true meaning of
nachhaltigen from these short excerpts.

English (from Spanish). The translations into
English from Spanish were notably improved this
year , and judgments were much more subtle in
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many cases. There were still a few occurrences of
untranslated words appearing in the translations,
but far fewer than in previous years.

Lexical choice was often a differentiating fac-
tor between translations, e.g. accomplish several
goals was preferred to achieving various goals.

Grammar differences were also visible, in par-
ticular for complex noun phrases, e.g. creative al-
ternatives management vs. creative management
alternatives.

Some differences in the translations hinged on
treatment of acronyms; without further context
(i.e., the expansion of the acronym) or specific do-
main knowledge it was sometimes difficult to de-
cide which acronym should be preferred.

Reference translations were sometimes clearly
identifiable due to including information from
other parts of the text outside of the focus sen-
tence, leaving out some details in the original, or
completely rephrasing an idea; in general transla-
tions more faithful to the original sentence were
preferred, as long as the translation was basically
fine.

Sometimes neither translation being compared
was ideal, and assessment came down to a judg-
ment call. For instance, comparing the two trans-
lations A: In the double cerclage, surgery time
was shorter (average 38 minutes), and the range of
motion showed improvement since the first month.
and B: In the cerclage double, the time of surgery
was shorter (average 38 minutes), and the range of
motion demonstrated improvement from the first
month., A has the more accurate grammar for dou-
ble cerclage, but from the first month is more cor-
rectly expressed. In this case, B was picked be-
cause the error in the noun phrase is easier to com-
pensate for.

Another such example was the translation of
Existen desigualdades de género en la provisión
de cuidados informales a mayores dependientes
en Gipuzkoa, mostrando las mujeres un mayor
impacto en su salud y CVRS que los hombres.
as A: There are gender inequalities in the provi-
sion of informal care to dependent older adults in
Gipuzkoa, showing that women have a greater im-
pact on their health and HRQOL than men. and B:
Gender inequalities exist in the provision of infor-
mal care to elderly dependent in Gipuzkoa, show-
ing women a greater impact on their health and
HRQL than men.. Both translations are imperfect,
however A provides a better treatment of mayores

dependientes (the dependent elderly) than B – al-
though B is close, it requires a plural dependents.
However, showing that women is not a natural way
to express the relationship between the gender in-
equalities (desigualdades de género) in the first
half of the sentence and the impact of women in
the second half; a better translation would be indi-
cating that women or with women having. On bal-
ance, though, translation A is overall more read-
able than B.

Some differences were only in relation to spac-
ing, i.e. one translation included “patients,14%”
while the other had “patients, 14%”. This sug-
gests the use of character-level modeling in the
algorithms having occasional hiccups. One par-
ticularly problematic translation was Univariate
and multivariateanalyses were performed through
a Multilayer Perceptronnetwork and a logistic re-
gression model EmpiricalBayesian penalized type
LASSO Elastic net. On the flip side, these al-
gorithms were sometimes able to correct spacing
problems in the source text.

Chinese. The quality of translations from all
four participating systems was very high, and
the translations were generally fluent and accu-
rate. When comparing the translations from the
various systems, shorter sentences were typically
highly similar, differing only in certain formula-
tions. However, such differences could suffice to
distinguish one translation as better than another,
because a wording (e.g.新努力 new efforts) more
precisely captures the source (exactly new efforts)
than alternative wordings (新进展 new develop-
ments). For longer sentences, more noticeable dif-
ferences surfaced, particularly in different order-
ings of phrases. These orderings sometimes im-
pacted the fluency of the translation, but in gener-
ally were merely different but valid arrangements
of the same content.

In terms of serious errors, only in rare cases
were phrases completely dropped in the transla-
tions. As for incorrect translation of biomedi-
cal terms, they occurred far less frequently in the
en/zh direction than zh/en. One might hypothe-
size that the dictionary in the en/zh direction was
more complete. However, the fact that translating
into Chinese has the option of retaining the orig-
inal term in English is also a contributing factor,
which leads us to the next point.

Currently there is no consensus in how much
of a technical term in English should be preserved
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in the Chinese translation. Take Functional elec-
tronic stimulation (FES) in a source as an exam-
ple. Valid translations in Chinese include having
only the Chinese term (功能性电刺激); with the
acronym (功能性电刺激 (FES)); as well as with
full term plus acronym (功能性电刺激 (Func-
tional electronic stimulation, FES)). Gene names,
on the other hand, are uncontentiously retained in
English (e.g. AMP and CK2α in source, refer-
ence, and submitted translations alike).

German. Compared to last year again in general
translations were of very high quality. Only rarely
we found untranslated bits from the source lan-
guage, while automatic systems were mostly able
to differentiate between sequences that should be
translated or not (e.g. citations, links). The use
of capitalization was correct in almost all cases.
Therefore, the decision for a better translation was
mostly based on the correct translation of technical
terms, in general a more appropriate use of Ger-
man words or word order.

Mostly usage of technical terms was decisive:
grayscale ultrasound is Schwarz-Weiß-Ultraschall
instead of Graustufen-Ultraschall, or similarly
mandibular advancement device is a Unterkiefer-
protrusionsschiene instead of the rather word-
by-word but wrong translation mandibulären
Fortschrittsgerät. Other examples rather concern
the appropiate use of German words. For instance,
disease attenuation is rather a Abschwächung than
a Dämpfung of a disease. It seems that automatic
systems could not deal with more complex syntax
such as coordination as in tumor mass and symp-
tom reduction. Instead of Tumormassenreduktion
und Symptomlinderung, the automatic translations
did not identify the coordination structure and pro-
duces an incorrect (word-by-word) translation Tu-
mormasse und Symptomreduktion.

Similar to last year, cases when automatic sys-
tems were judged better than the reference, the ref-
erence contained additional information or missed
information while translation usually contained
the complete content of the source sentence.

We were not able to define clear patterns for
differences between the two automatic systems.
However, ARC seems to be more capable of pro-
viding proper German syntax (e.g. Steifigkeitss-
chwankungen for stiffness variation or Patienten
mit Bauchspeicheldrüsenkrebs for pancreatic can-
cer patients than UCAM. On the other hand, ARC
seems to have difficulty identifying acronyms at

the beginning of a sentence and did not keep them
all capitalized. ARC even provided a false trans-
lation for Sleep is ... unrefreshing as Schlaf ist ...
erfrischend instead of nicht erfrischend. UCAM
did not show the last two issues.

French. Although the quality of the transla-
tions was generally uneven, some systems offered
mostly fluent translations.

A number of errors were easily identified as un-
translated segments, or repeated words. However,
a category of serious errors occurred in otherwise
fluent sentences where missense or erroneous in-
formation was introduced. This is the case for ex-
ample when a significant piece of information is
omitted in the translation: We used inverse propor-
tional weighting translated by Nous avons utilisé
un facteur de pondération proportionnelle (omis-
sion de inverse) or when numbers are substituted:
data from adolescents aged 15-18 years translated
by données des adolescents âgés de 12 à 25 ans.
Arguably, in these cases, no translation would be
preferable to a translation error that could easily
go undetected.

One notable improvement over previous years
was the processing of acronyms, which were of-
ten directly expanded or translated with suitable
equivalents: for example, long-lasting insectici-
dal nets (LLINs) was translated by moustiquaires
imprégnées d’insecticide de longue durée (MILD)
or moustiquaires imprégnées à longue durée
d’action (MILDA). Further assessment should take
context beyond a single sentence into account, so
that the consistency of use of acronyms can be
evaluated over a document. It can also be noted
that in some cases, the context of a sentence is
not enough to make an assessment. For example,
the phrases Elle survient le plus souvent. . . ou Il
se développe le plus souvent. . . could be accept-
able translations for It occurs most frequently. . . ,
depending on the grammatical agreement between
Elle/Il and the translation of the antecedent.

Portuguese. As shown in the results for manual
validation (cf. table 6), the automatic translations
for Portuguese were of very good quality and of-
ten with similar or higher quality as the reference
translations. However, we still found some mis-
takes and issues. Similar to previous years, we still
find some acronyms, words or phrases (e.g. Leo
G. Reeder Award) that were not translated and
remained in the English format. We also found
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some small mistakes when referring to particular
values or parameters from the study, usually be-
tween parenthesis. For instance, the passage “88%
para T2-0,535 cm)” instead of the complete state-
ment “88% para RM ponderada em T2 (viés =
0,52 cm2; p = 0,735)”.

We identified few terms that were trans-
lated literally into Portuguese. For intance
the term “scrub nurses” was translated into
“enfermeiros esfregadores” instead of “enfer-
meiros/instrumentadores”. In many situations,
both sentences were correct but we identified as
better the sentences that utilized a more scientific
language, more appropriate for a publication, e.g.,
“nivel de escolaridade” instead of just “escolari-
dade”. In another of such cases, we chose the
term “longevos” as more appropriate than “mais
velhos” when referring to elderly people. We also
found errors due to nominal concordance with the
number, such “dividido” when related to plural
nouns, when it should have been “divididos”.

Some mistakes were very subtle, such as the
translation shown below which includes the verb
“apresentaram” twice in the same sentence. Fur-
ther, in the translated sentence, it is not clear
whether the first instance of the verb “apresen-
taram” (present) refers just to the second or both
subjects, while this information is clear in the ref-
erence translation, i.e. that it should refer just to
“casos”. However, this ambiguity is also present
in the original English sentence.

Tumors larger than 2cm and cases that
presented angiolymphatic invasion
had. . .
– Source

Tumores maiores do que 2cm e
casos com invasão angiolinfática apre-
sentaram. . .
– Reference translation

Tumores maiores que 2cm e casos que
apresentaram invasão angiolinfática
apresentaram. . .
– Translation

Another subtle mistake that we found relates to
the meaning of the sentence which changed in the
translation. In the first sentence below, the subject
of the sentence is unknown, while in the second

one it is clear that the elderly people are the ones
who provide the information.

Identificar e hierarquizar as dificul-
dades referidas no desempenho das
atividades de vida diária de idosos.
– Sentence 1

Identificar e hierarquizar as difi-
culdades relatadas pelos idosos na
realização das atividades de vida
diária.
– Sentence 2

Spanish. The overall quality of the Spanish
translations was uneven across all four systems
submitted to the challenge. BSC and Talp upc
MT systems had a very good performance when
compared to the reference translation, with being
BSC the best of the four. UCAM MT’s system had
a reasonable performance but MT-UOC-UPF was
the most irregular.

Sentence structure and word order have shown
very good results in all systems for short sentences
as shown in the following example.

Isotretinoin is still the best treatment
for severe nodulocystic acne.
– Source

la isotretinoı́na todavı́a es el mejor
tratamiento para el acné noduloquı́stico
severo.
– Reference translation

La isotretinoı́na sigue siendo el mejor
tratamiento para el acné noduloquı́stico
severo.
– Translation C

However this was not the case of all sentences,
some of which followed English word order, re-
sulting in grammatical correct but unnatural sen-
tences in the target language. Other frequent prob-
lems include the handling of acronyms (e.g. EDs)
and additional information included in the refer-
ence translation that was not present in the source,
as shown in the example below. (cf. N = 480)

Ten Eds will be randomly assigned to
the intervention group and 10 to the
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control group.
– Source

Se asignará de forma aleatoria 10
SU (N = 480) al grupo de intervención
y 10 SU (N = 480) al grupo de control.
– Reference translation

Diez EDs se asignarán aleatoria-
mente al grupo de intervención y 10 al
grupo de control.
– Translation D

Erroneous word order translation for technical
terms has been observed resulting in mistransla-
tion of the English source (e.g. FE-IV) sentence
as shown bellow.

Additionally, system A has translated fixed-
effects instrumental-variable as efectos fijos vari-
able instrumental, that not only is a mistranslation
of this technical term, but also changes the overall
meaning of the sentence.

Fixed-effects instrumental-variable
(FE-IV) pseudo-panel estimation from
three rounds of the Mexican National
Health and Nutrition Survey (2000,
2006 and 2012).
– Source

Estimación de pseudopanel de variables
instrumentales de efectos fijos (FE-IV)
en tres rondas de la Encuesta Nacional
de Salud y Nutrición de México (2000,
2006 y 2012).
– Reference translation

Los efectos fijos variable instru-
mental (FE-VI) se estimaron en tres
rondas de la Encuesta Nacional de
Salud y Nutrición de México (2000,
2006 y 2012).
– Translation A

Subject-verb agreement mistakes have been ob-
served in some MT translations, such as the one
that follows.

Each group will enroll 480 patients,
and the outcomes will be compared
between groups.

– Source

Cada grupo incluirán 480 pacientes y
los resultados serán comparados entre
grupos.
– Translation B

Other issues found, more common in longer
sentences, are missing information in the transla-
tion or wrongly parsed and separated terms, espe-
cially if the source sentence also suffers from the
same problem.

For the 5-year time horizon, the
incrementalcost per patient with
mirabegron 50 mg versustolterodine
was 195.52 and 157.42, from theN-
ational Health System (NHS) and
societal perspectivesrespectively, with a
gain of 0.0127 QALY withmirabegron.
– Source

Para el horizonte temporal de 5
años, el incremento por paciente con
mirabegron 50 mg versustolterodina fue
195,52 y 157,42 , del Sistema Nacional
de Salud (SNS) y de la perspectiva so-
cial respectivamente, con una ganancia
de 0,0127 AVAC con mirabegron.
– Translation D

8 Conclusions

We presented the 2019 edition of the WMT shared
task for biomedical machine translation. Partici-
pants were challenged to provide automatic trans-
lations for medical texts from the literature in ten
language pairs as well as for terminology content
from English to Spanish. We prepared three base-
line systems based on neural toolkits and received
59 runs from 11 teams. Overall, submissions were
received for all test sets that were offered. Some
of the results obtained by the participants could
outperform the scores from previous editions of
the shared task and some submissions were judged
better than the reference translations created by the
authors of the papers in the test set. We also iden-
tified some limitations of this shared task, such as
issues with the quality of the test sets that we plan
to improve in the next edition of the task. Other
planned improvements include manual evaluation
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of the submission based on direct assessment as
opposed to the current pairwise comparison of two
sentences.
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ong Lu. 2013. DNorm: disease name normaliza-
tion with pairwise learning to rank. Bioinformatics,
29(22):2909–2917.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artificial Intelligence, 193:217–
250.
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Abstract

Following the WMT 2018 Shared Task on Par-
allel Corpus Filtering (Koehn et al., 2018),
we posed the challenge of assigning sentence-
level quality scores for very noisy corpora of
sentence pairs crawled from the web, with
the goal of sub-selecting 2% and 10% of the
highest-quality data to be used to train ma-
chine translation systems. This year, the task
tackled the low resource condition of Nepali–
English and Sinhala–English. Eleven partici-
pants from companies, national research labs,
and universities participated in this task.

1 Introduction

Machine Translation (MT) has experienced signif-
icant advances in recent years thanks to improve-
ments in modeling, and in particular neural mod-
els (Bahdanau et al., 2015; Gehring et al., 2016;
Vaswani et al., 2017). Unfortunately, today’s neu-
ral machine translation models, perform poorly on
low-resource language pairs, for which clean, par-
allel training data is high-quality training data is
lacking, by definition (Koehn and Knowles, 2017).

Improving performance on low resource lan-
guage pairs is very impactful considering that
these languages are spoken by a large fraction of
the world population. This is a particular chal-
lenge for industrial machine translation systems
that need to support hundreds of languages in or-
der to provide adequate services to their multilin-
gual user base.

In face of the scarcity of clean parallel data,
learning to translate from any multilingual noisy
data such as web-crawls (e.g. from Wikipedia,
Paracrawl1) is an important option.

1http://www.paracrawl.eu/

Recently, there is an increased interest in the
filtering of noisy parallel corpora to increase the
amount of data that can be used to train trans-
lation systems (Koehn et al., 2018). While the
state-of-the-art methods that use NMT models
have proven effective in mining parallel sentences
(Junczys-Dowmunt, 2018) for high-resource lan-
guages, their effectiveness has not been tested in
low-resource languages. The implications of low
availability of training data for parallel-scoring
methods is not known yet.

The Shared Task on Parallel Corpus Filtering
at the Conference for Machine Translation (WMT
2019) was organized to promote research to learn-
ing from noisy data more viable for low-resource
languages. Compared to last year’s edition (Koehn
et al., 2018), we only provide about 50-60 million
word noisy parallel data, as opposed to 1 billion
words. We also provide only a few million words
of clean parallel data of varying quality, instead
of over 100 million words of high-quality paral-
lel data. Participants developed methods to filter
web-crawled Nepali–English and Sinhala–English
parallel corpora by assigning a quality score for
each sentence pair. These scores are used to fil-
ter the web crawled corpora down to fixed sizes
(1 million and 5 million English words), trained
statistical and neural machine translation systems
on these subsets, and measured their quality with
the BLEU score on a test set of multi-domain
Wikipedia content (Guzmán et al., 2019).

This paper gives an overview of the task,
presents the results for the participating systems
and provides analysis on additional subset sizes
and the average sentence length of sub-selected
data.
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2 Related Work

Although the idea of crawling the web indiscrimi-
nately for parallel data goes back to the 20th cen-
tury (Resnik, 1999), work in the academic com-
munity on extraction of parallel corpora from the
web has so far mostly focused on large stashes
of multilingual content in homogeneous form,
such as the Canadian Hansards, Europarl (Koehn,
2005), the United Nations (Rafalovitch and Dale,
2009; Ziemski et al., 2015), or European Patents
(Täger, 2011). A nice collection of the products of
these efforts is the OPUS web site2 (Tiedemann,
2012).

2.1 Parallel Corpus Acquisition

The Paracrawl project is currently engaged in a
large-scale effort to crawl text from the web. That
work is funded by the European Union via the
Connecting Europe Facility. The Paracrawl in-
frastructure was used to generate the noisy paral-
lel data for this shared task. In previous years, as
part of the Paracrawl effort, a shared task on doc-
ument alignment (Buck and Koehn, 2016) and a
shared task on parallel corpus filtering was orga-
nized (Koehn et al., 2018).

Acquiring parallel corpora from the web typi-
cally goes through the stages of identifying web
sites with parallel text, downloading the pages of
the web site, aligning document pairs, and align-
ing sentence pairs. A final stage of the process-
ing pipeline filters out non parallel sentence pairs.
These exist either because the original web site
did not have any actual parallel data (garbage in,
garbage out), only partial parallel data, or due to
failures of earlier processing steps.

2.2 Filtering Noisy Parallel Corpora

In 2016, a shared task on sentence pair filtering3

was organized, albeit in the context of cleaning
translation memories which tend to be cleaner than
the data at the end of a pipeline that starts with web
crawls.

There is a robust body of work on filtering out
noise in parallel data. For example: Taghipour
et al. (2011) use an outlier detection algorithm
to filter a parallel corpus; Xu and Koehn (2017)
generate synthetic noisy data (inadequate and non-
fluent translations) and use this data to train a clas-

2http://opus.nlpl.eu
3NLP4TM 2016: Shared task

http://rgcl.wlv.ac.uk/nlp4tm2016/shared-task/

sifier to identify good sentence pairs from a noisy
corpus; and Cui et al. (2013) use a graph-based
random walk algorithm and extract phrase pair
scores to weight the phrase translation probabili-
ties to bias towards more trustworthy ones.

Most of this work was done in the context of sta-
tistical machine translation, but more recent work
targets neural models. Carpuat et al. (2017) fo-
cus on identifying semantic differences in trans-
lation pairs using cross-lingual textual entailment
and additional length-based features, and demon-
strate that removing such sentences improves neu-
ral machine translation performance.

As Rarrick et al. (2011) point out, one type of
noise in parallel corpora extracted from the web
are translations that have been created by machine
translation. Venugopal et al. (2011) propose a
method to watermark the output of machine trans-
lation systems to aid this distinction, with a neg-
ligible loss of quality. Antonova and Misyurev
(2011) report that rule-based machine translation
output can be detected due to certain word choices,
and statistical machine translation output can be
detected due to lack of reordering. It is notable that
none of the participants in our shared task have
tried to detect machine translation.

There is a rich literature on data selection which
aims at sub-sampling parallel data relevant for a
task-specific machine translation system (Axelrod
et al., 2011). van der Wees et al. (2017) find that
the existing data selection methods developed for
statistical machine translation are less effective for
neural machine translation. This is different from
our goals of handling noise since those methods
tend to discard perfectly fine sentence pairs that
are just not relevant for the targeted domain. Our
task is focused on data quality that is relevant for
all domains.

2.3 Impact of Noise on Neural Machine
Translation

Belinkov and Bisk (2017) investigate the impact
of noise on neural machine translation. They focus
on creating systems that can translate the kinds of
orthographic errors (typos, misspellings, etc.) that
humans can comprehend. In contrast, Khayrallah
and Koehn (2018) examine noisy training data and
focus on types of noise occurring in web-crawled
corpora. They carried out a study about how noise
that occurs in crawled parallel text impacts statis-
tical and neural machine translation.
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Neural machine translation model training may
combine data selection and model training, taking
advantage of the increasing quality of the model to
better detect noisy data or to increasingly focus on
cleaner parts of the data (Wang et al., 2018; Kumar
et al., 2019).

2.4 Sentence Embeddings
Bouamor and Sajjad (2018) learned sentence em-
beddings for the source and target languages and
selected the nearest translation from a list of can-
didate sentences for a given source sentence using
a classifier. Guo et al. (2018) leveraged hard neg-
atives to correctly identify translation pairs.

Artetxe and Schwenk (2018) use multilingual
sentence embeddings to compute cosine similarity
between the source and the target sentence. They
further normalize the score by the average cosine
similarity of the nearest neighbors for the given
sentence pair. Their method has shown promis-
ing results in filtering WMT Paracrawl data and
has achieved state-of-the-art performance on the
BUCC corpus mining task.

2.5 Findings of the 2018 Shared Task
The WMT 2018 Shared Task on Parallel Corpus
Filtering (Koehn et al., 2018) attracted 18 submis-
sions in a high resource setup. Not surprisingly,
due to the large number of submissions, many
different approaches were explored for this task.
However, most participants used a system using
three components: (1) pre-filtering rules, (2) scor-
ing functions for sentence pairs, and (3) a classifier
that learned weights for feature functions.

Pre-filtering rules. Some of the training data
can be discarded based on simple deterministic fil-
tering rules. These may include rules may con-
sider sentence length, number of real words vs.
other tokens, matching names, numbers, dates,
email addresses, or URLs, too similar sentences
(copied content), and language identification (Pin-
nis, 2018; Lu et al., 2018; Ash et al., 2018).

Scoring functions. Sentence pairs that pass the
pre-filtering stage are assessed with scoring func-
tions which provide scores that hopefully corre-
late with quality of sentence pairs. Participants
used a variety of such scoring functions, including
language models, neural translation models and
lexical translation probabilities, e.g., IBM Model
1 scores. (Junczys-Dowmunt, 2018; Rossenbach
et al., 2018; Lo et al., 2018).

Learning weights for scoring functions. Given
a large number of scoring functions, simply av-
eraging their resulting scores may be inadequate.
Learning weights to optimize machine translation
system quality is computationally intractable due
to the high cost of training these systems to eval-
uate different weight settings. A few participants
used instead a classifier that learns how to distin-
guish between high-quality and low-quality sen-
tence pairs. High-quality sentence pairs are se-
lected from existing high-quality parallel corpora,
while low-quality sentence pairs are either synthe-
sized by scrambling high-quality sentence pairs or
by using the raw crawled data (Sánchez-Cartagena
et al., 2018).

Use of embeddings. While the participant’s
methods were dominated by non-neural compo-
nents, sometimes using neural machine transla-
tion outputs and scores, some participants used
word and sentence embeddings. Given cross-
lingual word embeddings, sentence match scores
based on the difference between the average of
the word embeddings (Paetzold, 2018), or, for
each word in the sentence, the closest match in
the corresponding sentence (Hangya and Fraser,
2018). Matching of word embeddings may also
be done monolingually, after machine translat-
ing the foreign sentence into English (Lo et al.,
2018). Cross-lingual word embeddings were ob-
tained using uses monolingual word embedding
spaces which were aligned with an unsupervised
method, or using pre-trained cross-lingual word
embeddings. Littell et al. (2018) used monolin-
gual sentence embedding spaces to discount out-
liers. Pham et al. (2018) use a neural model
that takes a sentence pair and predicts a matching
score.

Some participants made a distinction between
unsupervised methods that did not use existing
parallel corpora to train parts of the system, and
supervise methods that did. Unsupervised meth-
ods have the advantage that they can be readily
deployed for language pairs for which no seed par-
allel corpora exist.

3 Low-Resource Corpus Filtering Task

The shared task tackled the problem of filtering
parallel corpora. Given a noisy parallel corpus
(crawled from the web), participants developed
methods to filter it to a smaller size of high quality
sentence pairs.
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Specifically, we provided a very noisy 50-
60 million word (English token count) Nepali–
English and Sinhala–English corpora crawled
from the web using the Paracrawl processing
pipeline (see Section 4.4 for details). We asked
participants to generate sentence-level quality
scores that allow selecting subsets of sentence
pairs that amount to (a) 1 million words, and (b) 5
million words, counted on the English side. These
values were chosen as an approximation to the
conditions on the WMT 2018 task. The result-
ing subsets were scored by building a statistical
phrase-based machine translation system (Koehn
et al., 2007) and a neural machine translation sys-
tem (Ott et al., 2019) trained on this data, and
then measuring their BLEU score on the flores
Wikipedia test sets (Guzmán et al., 2019).

Participants in the shared task submitted a file
with quality scores, one per line, corresponding
to the sentence pairs. Scores are only required to
have the property that higher scores indicate bet-
ter quality. The scores were uploaded to a Google
Drive folder which remains publicly accessible.4

For development purposes, we released config-
uration files and scripts that mirror the official test-
ing procedure with a development test set. The de-
velopment pack consists of:

• A script to subsample corpora based on qual-
ity scores.
• A Moses configuration file to train and test a

statistical machine translation system.
• fairseq scripts to train and test a neural ma-

chine translation system.
• The flores-dev set of Wikipedia transla-

tions as development set.
• The flores-devtest set of Wikipedia

translations as development test set.

The web site for the shared task5 provided de-
tailed instructions on how to use these tools to
replicate the official testing environment.

4 Data

We provided three types of data for this shared
task: (1) clean parallel and monolingual data, in-
cluding related language data in Hindi, to train
models that aid with the filtering task, (2) the noisy

4https://bit.ly/2IoOXOr
5http://www.statmt.org/wmt19/

parallel-corpus-filtering.html

Corpus Sentence English
Pairs Words

Bible (two translations) 61,645 1,507,905
Global Voices 2,892 75,197
Penn Tree Bank 4,199 88,758
GNOME/KDE/Ubuntu 494,994 2,018,631
Nepali Dictionary 9,916 25,058

Table 1: Provided clean parallel data for Nepali.

parallel data crawled from the web which partici-
pants have to score for filtering, and (3) develop-
ment and test sets that are used to evaluate transla-
tion systems trained on filtered data.

4.1 Clean Parallel Data

The main distinction between this year’s version
of the parallel corpus filtering task and last year’s
version is the amount of provided clean paral-
lel data. For both Nepali–English and Sinhala–
English, only few parallel corpora are available
and these are of questionable relevance due to their
peculiar domains.

For Nepali (see Table 1 for detailed statis-
tics), the largest data sets are the Bible which we
provided with two English translations and the
GNOME/KDE/Ubuntu localization data collected
by OPUS6 (Tiedemann, 2012). The type of text
found in these corpora are quite different from
language found on the Internet. The data sets
with more conventional language, a partial trans-
lation of the Penn Tree Bank by the Language Re-
source Association (GSK) of Japan and Interna-
tional Development Research Center (IDRC) of
Canada, through PAN Localization project7 and
the citizen journalist news sites Global Voices8,
are much smaller (less than 100,000 words each).
We also provide a Nepali–English bilingual dictio-
nary with 9,916 entries (Pavlick et al., 2014).

For Sinhala (see Table 2 for detailed statistics),
we only provide two data sources: a fairly large
corpus of volunteer translation of subtitles and the
GNOME/KDE/Ubuntu localization data collected
by OPUS. The Open Subtitles corpus is of mixed
quality and most of the language is casual.

6http://opus.nlpl.eu/
7http://www.PANL10n.net/
8https://globalvoices.org/
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Corpus Sentence English
Pairs Words

Open Subtitles 601,164 3,594,769
GNOME/KDE/Ubuntu 45,617 150,513

Table 2: Provided clean parallel data for Sinhala.

Corpus Sentences Words
Wikipedia
Sinhala 155,946 4,695,602
Nepali 92,296 2,804,439
English 67,796,935 1,985,175,324
CommonCrawl
Sinhala 5,178,491 110,270,445
Nepali 3,562,373 102,988,609
English 380,409,891 8,894,266,960

Table 3: Provided clean monolingual data.

4.2 Clean Monolingual Data
Monolingual data is always available in much
larger quantities, and we provided data from two
sources: Wikipedia and CommonCrawl. Both
contain language that is similar to what is expected
in the noisy web data to be filtered.

We filtered the data to eliminate overlap with
the development and test sets. See Table 3 for de-
tailed statistics.

4.3 Related Language Data
Nepali uses the same Devanagari script as Hindi
and the languages are closely related. Neural
machine translation models for low-resource lan-
guage pairs have particularly benefited from train-
ing data in other language pairs, so parallel Hindi–
English data and monolingual Hindi data may be
beneficial to train models for our shared task.

As shown in Table 4, we provide a relatively
large 20 million word parallel corpus and almost 2
billion words of monolingual Hindi. This data was
created from a variety of public domain sources
and corpora developed at the Center for Indian
Language Technology, IIT Bombay (Kunchukut-
tan et al., 2018).

4.4 Noisy Parallel Data
The noisy parallel corpora from Paracrawl are the
outcome of a processing pipeline that aimed at
high recall at the cost of precision, so they are very
noisy. They exhibit noise of all kinds: wrong lan-
guage in source and target, sentence pairs that are

Corpus Sentences Words
Hindi–English 1,492,827 20,667,240
Hindi 67,796,935 1,985,175,324

Table 4: Hindi corpora released as related language
data from the IIT Bombay English-Hindi Corpus.

Sentence English
Pairs Words

Nepali 2,235,512 58,537,167
Sinhala 3,357,018 60,999,374

Table 5: Noisy parallel data to be filtered (de-
duplicated raw output Paracrawl pipeline).

not translations of each other, bad language (inco-
herent mix of words and non-words), incomplete
or bad translations, etc.

We used the processing pipeline of the
Paracrawl project to create the data, using the
clean parallel data to train underlying models such
as the dictionary used by Hunalign (Varga et al.,
2007) and a statistical translation model used by
the document aligner. One modification was nec-
essary to run the pipeline for Nepali due to the
end-of-sentence symbol of the script that was pre-
viously not recognized by the sentence splitter.

The provided parallel corpus is the raw output
of the crawling pipeline, with sentence pairs de-
duplicated but otherwise no further filtering per-
formed. See Table 5 for statistics of the corpus
and Table 6 for some example sentences.

4.5 Development and Test Sets

For test and development purposes, we use
the flores Wikipedia data-sets for Nepali–
English and Sinhala–English (Guzmán et al.,
2019). These sets are multi-domain, that is they
were sampled from Wikipedia documents with a
diverse set of topics. In Table 7 we present the
statistics of these sets.

The official scoring of machine translation sys-
tems generated from the subsampled data sources
is done on the test set.

5 Evaluation Protocol

The testing setup mirrors the development envi-
ronment that we provided to the participants.
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Nepali→English

Source previous आधारभूत कुराहरू तपाईंल ेहाउस सुधार गनर् के गनर् सकेन

Target previous Basic Things You Could Do To Improve Your House

Source यो िभिडयो Batesville मा एक चेला अब सम्मेलन हो, सुश्री . कृपया िभिडयो र अिडयो गुणस्तर क्षमा

Target This video is from a Disciple Now conference in Batesville, MS. Please forgive the video and audio quality

Sinhala→English

Source Paintballing, හා තව% ෙබාෙහ(!

Target Paintballing, and many more!

Source ස*ප% මu. /ටuව » ස*ප% » ගැස3 ප% ර අංක 2061/10 – 2018 මා89 05 වැ: ස;දා – 2018.03.05

Target Home » Resources » Gazette NO. 2061/10 – MONDAY, MARCH 05, 2018

Table 6: Examples of good sentence pairs from the noisy corpus for Nepali–English and Sinhala–English.

Nepali Sinhala
Sentence Pairs English Words Sentence Pairs English Words

dev 2,559 46,274 2,898 53,479
dev test 2,835 51,458 2,766 50,985
test 2,924 54,062 2,905 52,851

Table 7: Statistics for the flores test sets used to evaluate the machine translation systems trained on the subsam-
pled data sets. Word counts are obtained with wc on tokenized text.

5.1 Participants

We received submissions from 11 different orga-
nizations. See Table 8 for the complete list of par-
ticipants. The participant’s organizations are quite
diverse, with 4 participants from the United States,
2 participants from Spain, and 1 participant each
from Canada, Sweden, India, and Finland. 5 of the
participants are universities, 4 are companies, and
2 are national research organizations. There was
little overlap between this year’s shared task and
last year’s high-resource shared task. Only AFRL,
NRC, and Webinterpret participated also last year.

Each participant submitted up to 4 different sets
of scores, typically a primary and contrastive sub-
mission, resulting in a total of 21 different submis-
sions for Nepali and 23 different submissions for
Sinhala that we scored.

5.2 Methods used by Participants

Almost all submissions used basic filtering rules
as a first filtering step. These rules typically in-
volve language identification and length consid-

erations to remove too long or length-wise mis-
matched sentence pairs. Some also remove sen-
tence pairs where a specific number occurred on
one side but not the other. For some submissions
this removed over 80% of the data (Kurfalı and
Östling, 2019; Soares and Costa-jussà, 2019).

A novel method that was central to the best-
performing submission was the use of cross-
lingual sentence embeddings that were directly
trained from parallel sentence pairs (Chaudhary
et al., 2019). Other submissions used monolin-
gual word embeddings. These were first trained
monolingually for each language from monolin-
gual data. The resulting embedding spaces were
mapped either in an unsupervised fashion (Soares
and Costa-jussà, 2019) or based on a dictionary
learned from the parallel data (Kurfalı and Östling,
2019). Bernier-Colborne and Lo (2019) use both
monolingually trained word embeddings aligned
in an unsupervised fashion and bilingually trained
word embeddings.

Another approach is to first train a translation

61



Acronym Participant and System Description Citation
AFRL Air Force Research Lab, USA (Erdmann and Gwinnup, 2019)
DiDi DiDi, USA (Axelrod, 2019)
Facebook Facebook, USA (Chaudhary et al., 2019)
Helsinki University of Helsinki, Finland (Vázquez et al., 2019)
IITP Indian Institute of Technology Patna, India (Sen et al., 2019)
Webinterpret WebInterpret Inc., USA (González-Rubio, 2019)
NRC National Research Council, Canada (Bernier-Colborne and Lo, 2019)
Stockholm Stockholm University, Sweden (Kurfalı and Östling, 2019)
SUNY Buffalo State University of New York, USA (System description not submitted)
Sciling Sciling S.L., Spain (Parcheta et al., 2019)
TALP-UPC TALP, Universitat Politècnica de Catalunya, Spain (Soares and Costa-jussà, 2019)

Table 8: Participants in the shared task.

system on the clean data, then use it to translate
the non-English side into English and use mono-
lingual matching methods to compare it against
the English side of the parallel corpus. Different
matching metrics were used: METEOR (Erdmann
and Gwinnup, 2019), Levenshtein distance (Sen
et al., 2019), or BLEU (Parcheta et al., 2019),

Several submissions considered vocabulary
coverage in their methods, preferring to add sen-
tence pairs to the limited set that increase the num-
ber of words and n-grams covered (Erdmann and
Gwinnup, 2019; Bernier-Colborne and Lo, 2019;
González-Rubio, 2019).

One of the best-performing methods under last
year’s high resource setting was dual conditional
cross-entropy, i.e. building neural machine trans-
lation models on the clean data and considering
the translation scores from forced translation of
the parallel corpus. One submission used this
method Chaudhary et al. (2019), while others
applied the same idea to monolingual language
model scores (Axelrod, 2019; Parcheta et al.,
2019).

Several other scoring functions were used,
to name a few: cross-lingual language models
(Bernier-Colborne and Lo, 2019), monolingual
language models (Vázquez et al., 2019), IBM
Model 1 word translation scores (González-Rubio,
2019), and the existing off-the-shelf tools like Zip-
porah and Bicleaner (Chaudhary et al., 2019).

Some submissions combined multiple scoring
functions with ensemble methods which may be
optimize to distinguish between clean parallel data
and synthetic noise data (Chaudhary et al., 2019;
Bernier-Colborne and Lo, 2019; Vázquez et al.,
2019).

AFRL Erdmann and Gwinnup (2019) use a cov-
erage metric and quality metric. The cover-
age metric discourages the addition of sen-
tence pairs that have vocabulary already in-
cluded in the selected set. The quality metric
is based on comparing the machine transla-
tion of the foreign sentence with the English
sentence using the METEOR machine trans-
lation metric.

DiDi Axelrod (2019) uses dual cross-entropy
based on monolingual language models to
find sentence pairs where each side has sim-
ilar probability. They also employ so-called
cynical data selection that prefers to select a
representative subset. Additional simple fea-
tures are length ratio and using character set-
based language identification.

Facebook Chaudhary et al. (2019) use an ensem-
ble of methods: matching of cross-lingual
sentence embeddings (their best feature),
dual cross entropy based on neural translation
model scores, and the open source tools Zip-
porah and Bicleaner.

IITP Sen et al. (2019) build a statistical machine
translation systems on the clean parallel data,
translate each non-English sentence of the
parallel corpus and use scores based on the
Levenshtein distance between the machine
translation and the English sentence in the
parallel corpus. They also use filtering rules
based on language identification and sentence
length that filter out more than 70% of the
data.
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NRC Bernier-Colborne and Lo (2019) first em-
ploy filtering rules based on language ID,
length ratio, mismatched numbers, and near-
duplicates. They use the cross-lingual se-
mantic evaluation metric Yisi-2 that relies on
cross-lingual word embeddings and a Trans-
former model based on cross-lingual lan-
guage model pre-training (XLM) that is op-
timized to distinguish between clean parallel
data and synthetic noisy parallel data. Final
scores are re-ranked to increase coverage.

Sciling Parcheta et al. (2019) build machine trans-
lation models on the clean data , including the
use of the Hindi–English corpus (removing
some sentence pairs based on cross-entropy
language model scores), translate the non-
English side of the noisy data and measure
the similarity of the machine translation and
the given English sentence with the BLEU
score. They also use filtering rules for sen-
tence length, or much overlap between source
and target sentence, and language identifica-
tion.

Stockholm Kurfalı and Östling (2019) first use
filtering rules based on excessive amount of
numbers or too few actual words (vs. non-
word tokens), sentence length, wrong script,
and too long words. This removes over 80%
of the data. They build monolingual word
embeddings using FastText and learn a pro-
jection between the spaces based on word
translations distilled from word alignments of
the parallel data. Sentence similarity is com-
puted based on the cosine between each En-
glish word’s word vector and the best match-
ing projected word vectors in the other lan-
guage.

TALP-UPC Soares and Costa-jussà (2019) em-
ploy an unsupervised approach (ignoring the
clean parallel data). They train monolin-
gual word embeddings using FastText and
align them in unsupervised fashion. Sen-
tence pairs are scored based on Word Mover’s
Distance. They also use basic filtering rules
based on sentence length, language identifi-
cation, and number mismatches which alto-
gether removes over 80% of the data.

Helsinki Vázquez et al. (2019) first clean the
provided clean parallel data by employing a

number of filtering rules based on sentence
length, sentences with long words (over 40
characters), sentences with XML or HTML
tags, and sentences in the wrong script (Latin,
Devanagari, or Sinhala). This removes about
20% of the data which is then word aligned to
obtain bilingual dictionaries. In addition to a
word alignment score, the noisy training data
is filtered with several scoring functions: lan-
guage models, language identification, ratio
of characters in the correct script, punctua-
tion, number matching, and length mismatch.

Webinterpret González-Rubio (2019) first apply
filtering rules based on language identifica-
tion and sentence length. Coverage ranking
incrementally adds sentence pairs to increase
vocabulary and n-gram coverage. Adequacy
ranking considers IBM Model 1 word trans-
lation scores.

5.3 Subset Selection

We provided to the participants a file containing
one sentence pair per line (see Section 4.4) each
for the two languages. A submission to the shared
task consists of a file with the same number of
lines, with one score per line corresponding to the
quality of the corresponding sentence pair.

To evaluate a submitted score file, we selected
subsets of a predefined size, defined by the number
of English words (1M or 5M).

Selecting a subset of sentence pairs is done by
finding a threshold score, so that the sentence pairs
that will be included in the subset have a quality
score at and above this threshold. In some cases, a
submission assigned this threshold score to a large
number of sentence pairs. Including all of them
would yield too large a subset, excluding them
yields too small a subset. Hence, we randomly
included some of the sentence pairs with the exact
threshold score to get the desired size in this case.

5.4 Evaluation System Training

Given a selected subset of a given size for a system
submission, we built statistical (SMT) and neu-
ral machine translation (NMT) systems to evaluate
the quality of the selected sentence pairs.

SMT For statistical machine translation, we
used Moses (Koehn et al., 2007) with fairly ba-
sic settings, such as Good-Turing smoothing of
phrase table probabilities, maximum phrase length
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--arch transformer
--share-all-embeddings
--encoder-layers 5
--decoder-layers 5
--encoder-embed-dim 512
--decoder-embed-dim 512
--encoder-ffn-embed-dim 2048
--decoder-ffn-embed-dim 2048
--encoder-attention-heads 2
--decoder-attention-heads 2
--encoder-normalize-before
--decoder-normalize-before
--dropout 0.4
--attention-dropout 0.2
--relu-dropout 0.2
--weight-decay 0.0001
--label-smoothing 0.2
--criterion label smoothed cross entropy
--optimizer adam
--adam-betas ’(0.9, 0.98)’
--clip-norm 0
--lr-scheduler inverse sqrt
--warmup-update 4000
--warmup-init-lr 1e-7
--lr 1e-3 --min-lr 1e-9
--max-tokens 4000
--update-freq 4
--max-epoch 100
--save-interval 10

Figure 1: The baseline flores model settings9 for the
NMT training with fairseq

of 5, maximum sentence length of 80, lexical-
ized reordering (hier-mslr-bidirectional-fe), fast-
align for word alignment with grow-diag-final-and
symmetrization, tuning with batch-MIRA, no op-
eration sequence model, 5-gram language model
trained on the English side of the subset with no
additional data, and decoder beam size of 5,000
hypotheses.

NMT For neural machine translation, we used
fairseq (Ott et al., 2019) transformer model with
the parameter settings shown in Figure 1. Prepro-
cessing was done with sentence piece for a 5000
subword vocabulary on tokenized text using the
Moses tokenizer (but no truecasing was used). De-
coding was done with beam size 5 and length nor-
malization 1.2. Training a system for the 1 million,
and 5 million subsets took about 3, and 13 hours,
respectively, on a single GTX 1080ti GPU. Scores
on the test sets were computed with Sacrebleu
(Post, 2018). We report case-insensitive scores.

9https://github.com/facebookresearch/
flores#train-a-baseline-transformer-model

6 Results

In this section we present the final results of the
shared task evaluation. We added an additional
condition at 2 million English words, to better ob-
serve tendencies.

6.1 Core Results

The official results are reported in Table 9 (Nepali)
and Table 10 (Sinhala). The tables contains the
BLEU scores for

• development test set and final test set
• statistical and neural machine translation
• 1, 2, and 5 million word subsets.

The official scoring is for the 1 million and 5
million word data settings on the final test set. In
the table, we highlight cells for the best scores for
each of these settings, as well as scores that are
close to it. Results for the unofficial 2 million
word baseline are shown without highlighting.

For both language pairs, the best scores are
achieved for the 1 million word data condition
for the neural machine translation model (6.9 for
Nepali and 6.4 for Sinhala). This is not the case for
all submissions. The better performance for neural
systems than for statistical systems with this lit-
tle data is contrary to earlier findings (Koehn and
Knowles, 2017), indicating that recent progress,
such as the Transformer model (Vaswani et al.,
2017), have addressed this challenge to some de-
gree. However, for some submissions, such as
AFRL 50k, SMT scores are higher than NMT
scores (4.0 vs. 2.7 for Nepali, 3.8 vs. 3.0 for Sin-
hala for AFRL 50k).

Scores between the submissions differ more for
neural machine translation systems than for statis-
tical machine translation systems. For instance,
for the Nepali 1 million word data condition, the
difference between the best and the second best
participant’s submission is 0.2 for SMT but 1.4 for
NMT. For the Nepali 5 million word data condi-
tion, almost all systems have BLEU scores around
4 for SMT, but NMT scores range from 0.2 to 3.4.
This confirms earlier findings (cite noise) that sta-
tistical machine translation is more robust towards
noise. So better quality for neural machine trans-
lation under low resource conditions requires good
noise filtering methods.

For statistical machine translation, the bigger
and noisier 5 million subsets yield better BLEU
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Nepali 1 million 2 million 5 million
SMT NMT SMT NMT SMT NMT

Submission test devt test devt test devt test devt test devt test devt
AFRL 50k 4.0 3.8 2.7 2.5 4.2 3.8 3.6 3.6 4.5 4.4 3.4 3.2
AFRL 150k 1.5 3.6 2.3 2.4 4.1 4.0 2.0 2.0 4.7 4.4 2.7 2.5
Facebook main 4.2 4.0 6.8 6.9 4.6 4.3 5.9 6.3 4.6 4.1 2.8 2.9
Facebook contrastive 4.2 4.0 6.9 6.6 4.6 4.3 5.9 6.1 4.6 4.0 2.5 2.4
Helsinki 3.2 3.1 0.9 0.9 3.9 3.5 1.4 1.5 4.3 4.0 1.1 1.1
Helsinki contrastive 1.3 1.2 0.1 0.1 2.0 1.6 0.1 0.1 3.8 3.8 0.9 0.8
IITP 3.8 3.6 5.5 5.9 4.4 4.0 3.3 3.6 4.3 4.0 1.3 1.2
IITP geom 3.9 3.6 5.3 5.6 4.3 4.1 3.6 3.9 4.3 4.0 1.3 1.2
NRC ensemble 4.1 3.7 4.6 4.5 4.5 4.2 3.3 3.4 4.3 4.2 1.1 1.2
NRC xlm 3.9 3.5 4.0 3.8 4.3 3.9 3.2 3.1 4.5 4.2 1.4 1.4
NRC yisi-2-sup 3.5 3.3 3.1 3.1 3.9 3.9 1.5 1.4 4.1 4.0 1.3 1.4
NRC yisi-2-unsup 4.0 3.5 3.7 3.8 4.2 4.2 2.4 2.3 4.1 4.4 1.0 1.0
Stockholm 4.0 3.4 4.2 4.2 4.0 3.6 3.2 3.1 3.8 3.5 1.2 1.2
Stockholm ngram 2.8 2.7 0.3 0.3 3.1 2.7 0.6 0.6 3.6 3.5 0.6 0.6
SUNY Buffalo 1.8 1.4 0.1 0.1 3.0 2.7 0.1 0.1 4.1 4.0 0.8 0.8
Sciling 2.9 2.5 3.5 3.6 3.4 3.2 5.1 5.5 4.1 3.9 3.3 3.2
TALP-UPC primary 0.5 0.5 0.0 0.0 1.2 1.1 0.1 0.1 3.1 3.0 0.2 0.2
TALP-UPC secondary 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.4 0.5 0.2 0.1
Webinterpret primary 3.4 3.2 3.1 2.8 3.9 3.8 2.4 2.5 3.3 3.0 2.6 2.5
Webinterpret cov 2.9 2.9 0.5 0.3 3.7 3.5 1.6 1.7 4.2 4.1 2.4 2.3
Webinterpret prob 3.5 3.4 3.6 3.0 4.0 3.7 2.2 2.2 4.2 4.1 2.4 2.3

Table 9: Results for Nepali: BLEU scores are reported for systems trained on 1, 2, and 5 million word subsets of
the data, subsampled based on the quality scores provided by the participants.

Sinhala 1 million 2 million 5 million
SMT NMT SMT NMT SMT NMT

System test devt test devt test devt test devt test devt test devt
AFRL 50k 3.8 4.4 3.0 3.5 3.9 4.6 4.2 5.0 4.5 5.2 4.4 4.9
AFRL 150k 4.1 4.7 3.6 4.1 4.2 4.9 4.5 5.2 4.6 5.4 4.4 4.7
DiDi 1.3 1.6 0.2 0.2 1.8 2.2 0.1 0.1 3.1 3.7 0.1 0.1
DiDi lmdiff 1.2 1.3 0.1 0.1 1.8 1.7 0.1 0.1 2.8 3.1 0.1 0.1
DiDi lratio 2.5 2.8 0.2 0.1 3.2 3.5 0.2 0.2 3.7 4.2 0.2 0.3
Facebook main 4.3 5.0 6.4 7.2 4.8 5.2 6.5 7.3 4.9 5.7 4.0 5.0
Facebook contrastive 4.3 4.8 6.2 6.8 4.5 5.2 6.1 6.7 4.7 5.5 3.8 4.1
Helsinki 3.3 3.4 1.1 1.4 3.5 4.1 1.1 1.2 4.2 4.7 0.7 0.8
Helsinki contrastive 2.3 2.4 0.3 0.2 3.2 3.8 0.5 0.4 4.0 4.6 0.6 0.7
IITP 3.1 3.6 3.2 3.7 4.0 4.6 5.3 6.5 4.4 5.1 3.9 4.5
IITP geom 3.0 3.5 3.0 3.4 4.0 4.6 5.4 6.2 4.4 5.2 4.3 5.1
NRC ensemble 4.2 4.7 4.1 4.6 4.3 4.8 2.8 3.2 4.5 5.1 1.4 1.5
NRC xlm 3.8 4.0 1.6 2.0 4.1 4.5 1.5 1.8 4.4 5.0 0.9 1.2
NRC yisi-2-sup 3.9 4.7 5.0 5.9 4.2 5.4 4.6 5.2 4.4 5.2 1.6 1.9
NRC yisi-2-unsup 3.1 3.9 2.4 2.9 3.8 4.4 1.8 2.3 4.3 4.9 0.7 0.9
Stockholm 3.8 4.3 2.9 3.2 4.1 4.6 2.2 2.4 4.0 4.8 0.5 0.5
Stockholm ngram 3.3 4.0 2.2 2.5 3.5 4.1 1.7 1.8 3.6 4.3 0.4 0.4
Sciling 2.4 2.5 2.5 2.6 3.0 3.0 3.5 3.7 3.8 4.1 3.4 3.8
TALP-UPC primary 0.9 0.9 0.0 0.0 1.4 1.5 0.1 0.1 2.7 3.0 0.1 0.1
TALP-UPC sec. 0.3 0.2 0.1 0.0 0.2 0.2 0.0 0.0 0.8 0.7 0.2 0.2
Webinterpret primary 3.7 4.2 2.1 2.3 3.8 4.6 2.0 2.6 4.1 4.8 1.7 1.9
Webinterpret cov 2.6 3.0 0.1 0.1 3.6 4.0 0.2 0.2 4.0 4.5 1.2 1.4
Webinterpret prob 3.9 4.6 2.9 3.5 4.2 5.0 4.1 4.7 4.1 4.7 1.4 1.6

Table 10: Results for Sinhala: BLEU scores are reported for systems trained on 1, 2, and 5 million word subsets
of the data, subsampled based on the quality scores provided by the participants.
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scores than the smaller and cleaner 1 million sub-
sets, for almost all submissions. However, for neu-
ral machine translation the opposite is true.

This is a pretty striking piece of evidence that
the adage of more data is better data of the sta-
tistical world of yesteryears is no longer true in
todays neural age. The best submission’s NMT
score drops from 6.9 to 2.5 BLEU for Nepali and
from 6.4 to 4.0 BLEU for Sinhala between the 1
million and the 5 million conditions. More data
may be quite harmful, if it is of lesser quality. Al-
ternatively, more research is needed into making
neural machine translation models robust to noise
in training.

6.2 Additional Subset Sizes

Since we were interested in the shape of the
curve of how different corpus sizes impact ma-
chine translation performance, we selected addi-
tional subset sizes. Specifically, in addition to the
1, 2 and 5 million word corpora, we also selected
subset 0.5, 0.7, 1.5, and 3 million words.

See Figure 2 for results for neural machine
translation systems (also broken down by each in-
dividual test set) and Figure 3 for statistical ma-
chine translation systems. We only computed re-
sults for 7 systems due to the computational cost
involved.

The additional data points refine the observation
for the three original subset sizes. For neural ma-
chine translation, submissions have different op-
timal subset sizes, ranging from 0.7 million to 3
million words.

For Nepali, most of the submissions show peak
translation quality with 1 million words, although
Stockholm’s submission peaks at 700,000, Scil-
ing’s and AFRL’s submission at 3 million. For
most submission translation quality deteriorates
several BLEU points off their peak.

For Sinhala, the picture is similar. Most of the
submission show peaks at 2 million words, indi-
cating that there is more useful data for this data
condition. Peaks range from 1 million for Stock-
holm’s submission to 3 million for Sciling’s sub-
mission. The curves are somewhat shallower than
for Nepali.

The curves for statistical machine translation
look very different. All submissions tend to im-
prove with additional data, outperforming neural
machine translation at 5 million, and showing no
sign of stopping there. This demonstrates that sta-

Nepali 1 million 5 million
Submission Sent. W/S Sent. W/S
AFRL 50k 51932 19.3 241513 20.7
AFRL 150k 50422 19.8 236966 21.1
Facebook main 36331 27.5 115673 43.2
Facebook contr. 36397 27.5 115771 43.2
Helsinki 48020 20.8 253834 19.7
Helsinki contr. 50801 19.7 251983 19.8
IITP 56868 17.6 200725 24.9
IITP geom 53821 18.6 185978 26.9
NRC ensemble 31675 31.6 154622 32.3
NRC xlm 28348 35.3 191203 26.2
NRC yisi-2-sup 42922 23.3 161022 31.1
NRC yisi-2-unsup 40951 24.4 148072 33.8
Sciling 85253 11.7 314196 15.9
Stockholm 46529 21.5 272605 18.3
Stockholm ngram 141732 7.1 419335 11.9
SUNY Buffalo 93063 10.7 300627 16.6
TALP-UPC 75423 13.3 246875 20.3
TALP-UPC sec. 84978 11.8 375387 13.3
Webinterpret 34873 28.7 400441 12.5
Webinterpret cov 29575 33.8 400441 12.5
Webinterpret prob 52271 19.1 400441 12.5

Table 11: Number of sentences and the corresponding
average sentence length (counting English words) for
Nepali.

tistical machine translation is more robust to noise.
Compared to last year’s high resource version

of the shared task, the peak data selection sizes are
smaller. Best translation quality is achieved with
about 2–6% of the full set, compared to 10% or
more for German–English. This is likely due to
the fact that the raw data is noisier, but may be also
attributed to the difficulty of devising good quality
metrics with little evidence of good translations.

6.3 Average Sentence Length

Given the quality scores, subsets are selected by
including the highest ranked sentence pairs until
the total number of English words in these sen-
tences reaches the specified size. So, if a quality
scores prefers shorter sentences, more sentences
are selected. It is not clear in general, all things be-
ing otherwise equal, if shorter or longer sentences
are better for training machine translation systems.

What choices did the participants make in their
quality scores? Table 11 and Table 12 show the
number of sentences and the corresponding aver-
age number of words per sentence for the official
subsets for all submissions.

The numbers show that the submissions have
quite different preferences with regard to sentence
length. Even among the best submissions for
Nepali, to give two examples, the Facebook main
submission in the 5 million data condition includes
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Figure 2: Additional subsets, neural machine translation. The charts plot BLEU scores against the size of the
subselected corpus (in millions of English words). Different submissions have very different optima, ranging from
1 to 3 million words. The optimal subset size is lower for Nepali (mostly around 1 million) than for Sinhala (mostly
around 2 million). Only the 7 best submissions are shown.
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Figure 3: Additional subsets, statistical machine translation. The charts plot BLEU scores against the size
of the subselected corpus (in millions of English words). All submissions tend to improve with additional data,
outperforming neural machine translation at 5 million. This demonstrates that statistical machine translation is
more robust to noise.
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Sinhala 1 million 5 million
Submission Sent. W/S Sent. W/S
AFRL 50k 61,605 16.2 292,912 17.1
AFRL 150k 59,593 16.8 276,633 18.1
DiDi 24,324 41.1 134,769 37.1
DiDi lratio 26,191 38.2 143,744 34.8
DiDi lmdiff 25,974 38.5 170,848 29.3
Facebook main 55,829 17.9 159,924 31.3
Facebook contr. 43,895 22.8 159,723 31.3
Helsinki 87,547 11.4 341,489 14.6
Helsinki contr. 78,579 12.7 345,108 14.5
IITP 70,114 14.3 264,271 18.9
IITP geom 67,888 14.7 249,275 20.1
NRC ensemble 30,533 32.8 172,643 29.0
NRC xlm 24,961 40.1 195,332 25.6
NRC yisi-2-sup 55,757 17.9 192,017 26.0
NRC yisi-2-unsup 60,594 16.5 215,421 23.2
Sciling 120,399 8.3 332,120 15.1
Stockholm 55,293 18.1 250,767 19.9
Stockholm ngram 46,529 21.5 444,106 11.3
TALP-UPC 89,785 11.1 2896,74 17.3
TALP-UPC sec. 114,990 8.7 437,636 11.4
Webinterpret 35,684 28.0 328,620 15.2
Webinterpret cov 29,678 33.7 318,360 15.7
Webinterpret prob 64,115 15.6 345,536 14.5

Table 12: Number of sentences and the corresponding
average sentence length (counting English words) for
Sinhala.

sentences with an average number of 43.2 words
per sentence, while AFRL’s 50k submission aver-
ages at just 20.7.

For other data conditions, differences are not
that extreme but do spread out mainly in the range
of under 20 to over 30 words per sentence. There
is no clear pattern in the preference for shorter and
longer sentence lengths for the 1 million and 5 mil-
lion word subset — for most submissions these
two numbers are quite similar. There are outliers,
however, such as Facebook’s Nepali submission
(average length 27.5 vs. 43.2) and Webinterpret’s
Nepali submission (28.7 vs. 12.5).

6.4 Diversity of Submissions

The different submissions subselect different sen-
tences, but how different are they?

Table 13–16 give detailed statistics about how
many sentence pairs the subsets of any two sub-
missions for the two languages and two data con-
ditions have in common.

There is no clear trend. For Nepali, there is
more overlap in the 1 million word data condi-
tion than the 5 million word data condition. For
Sinhala, the opposite is the case. Among the best-
performing submissions, roughly half of the sub-
selected sentence pairs are the same. But what
submissions are similar may change drastically

between the data conditions.

7 Conclusion

We report on the findings of the WMT 2019
Shared Task on Parallel Corpus Filtering. Eleven
participants used a variety of methods that gave
quite different results, as measured by translation
quality, optimal subset sizes, suitability for SMT
and NMT, sentence length, etc. We hope that this
task provides a benchmark for future research and
improvements on this task.
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AFRL 50k 51932 2.4% 92.0% 34.0% 34.0% 12.6% 2.5% 36.8% 36.5% 27.5% 23.0% 34.8% 34.4% 36.2% 26.5% 19.0% 4.7% 3.2% 0.5% 20.1% 6.1% 27.8%
AFRL 150k 50422 2.8% 94.8% 34.3% 34.3% 12.4% 2.3% 36.6% 36.3% 27.9% 23.6% 34.9% 34.6% 35.4% 26.2% 18.3% 4.6% 3.0% 0.5% 20.3% 6.3% 27.6%
Facebook main 36331 0.0% 48.6% 47.6% 99.9% 21.5% 3.9% 63.8% 63.6% 59.2% 52.3% 64.7% 62.5% 29.5% 56.0% 31.5% 3.6% 2.9% 0.3% 45.0% 14.8% 53.4%
Facebook contr. 36397 0.0% 48.5% 47.5% 99.7% 21.5% 3.9% 63.8% 63.5% 59.1% 52.2% 64.6% 62.4% 29.5% 55.9% 31.6% 3.6% 2.9% 0.3% 44.9% 14.8% 53.4%
Helsinki 48020 15.0% 13.7% 13.0% 16.3% 16.3% 27.2% 17.6% 17.0% 16.6% 14.5% 13.9% 12.5% 11.3% 23.8% 26.7% 26.5% 19.5% 0.7% 17.5% 13.4% 19.8%
Helsinki contr. 50801 40.4% 2.6% 2.3% 2.8% 2.8% 25.7% 3.2% 2.9% 1.6% 1.7% 1.5% 1.5% 2.3% 9.1% 10.0% 13.6% 30.8% 0.6% 2.7% 4.5% 3.2%
IITP 56868 2.5% 33.6% 32.5% 40.8% 40.8% 14.9% 2.9% 93.7% 35.8% 30.3% 45.6% 44.8% 27.2% 35.1% 22.7% 4.5% 3.5% 0.4% 32.4% 10.7% 53.2%
IITP geom 53821 0.2% 35.2% 34.0% 42.9% 43.0% 15.2% 2.7% 99.0% 37.5% 31.9% 47.9% 46.8% 27.8% 36.4% 23.1% 4.3% 3.2% 0.4% 33.9% 11.0% 54.7%
NRC ensemble 31675 3.7% 45.1% 44.5% 67.9% 67.9% 25.1% 2.6% 64.2% 63.8% 73.8% 74.8% 71.2% 21.2% 56.7% 29.8% 7.5% 1.3% 0.1% 54.4% 22.0% 58.9%
NRC xlm 28348 7.0% 42.1% 41.9% 67.0% 67.0% 24.5% 3.1% 60.9% 60.6% 82.4% 69.3% 67.8% 15.9% 55.7% 27.8% 8.0% 0.7% 0.0% 56.0% 25.5% 55.8%
NRC yisi-2-sup 42922 9.1% 42.1% 41.0% 54.8% 54.8% 15.5% 1.8% 60.5% 60.1% 55.2% 45.8% 73.6% 24.2% 42.9% 26.8% 3.2% 2.9% 0.1% 39.1% 13.0% 49.2%
NRC yisi-2-unsup 40951 7.2% 43.6% 42.7% 55.4% 55.5% 14.7% 1.8% 62.2% 61.5% 55.0% 47.0% 77.1% 24.2% 41.5% 22.9% 2.8% 2.7% 0.1% 39.6% 13.6% 49.5%
Sciling 85253 52.4% 22.1% 20.9% 12.6% 12.6% 6.4% 1.4% 18.1% 17.5% 7.9% 5.3% 12.2% 11.6% 11.0% 15.2% 4.3% 3.9% 1.1% 5.4% 1.1% 12.7%
Stockholm 46529 16.4% 29.6% 28.4% 43.7% 43.7% 24.6% 9.9% 42.9% 42.1% 38.6% 34.0% 39.6% 36.5% 20.1% 38.2% 10.0% 6.9% 0.2% 32.7% 13.1% 38.8%
Stockholm ngram 141732 55.5% 7.0% 6.5% 8.1% 8.1% 9.1% 3.6% 9.1% 8.8% 6.7% 5.6% 8.1% 6.6% 9.2% 12.6% 19.2% 6.7% 1.1% 5.2% 1.2% 8.7%
SUNY Buffalo 93063 44.9% 2.6% 2.5% 1.4% 1.4% 13.7% 7.4% 2.8% 2.5% 2.6% 2.4% 1.5% 1.2% 3.9% 5.0% 29.3% 9.0% 2.1% 4.9% 7.2% 5.0%
TALP-UPC 75423 52.9% 2.2% 2.0% 1.4% 1.4% 12.4% 20.8% 2.6% 2.3% 0.6% 0.2% 1.6% 1.5% 4.4% 4.2% 12.6% 11.1% 1.9% 0.4% 0.5% 2.0%
TALP-UPC sec. 84978 93.9% 0.3% 0.3% 0.1% 0.1% 0.4% 0.4% 0.3% 0.3% 0.0% 0.0% 0.1% 0.1% 1.1% 0.1% 1.8% 2.3% 1.7% 0.0% 0.0% 0.1%
Webinterpret 34873 0.0% 29.9% 29.3% 46.8% 46.8% 24.1% 4.0% 52.9% 52.3% 49.5% 45.5% 48.2% 46.4% 13.2% 43.6% 21.2% 13.2% 0.9% 0.0% 54.0% 82.0%
Webinterpret cov 29575 18.0% 10.8% 10.8% 18.2% 18.2% 21.7% 7.7% 20.5% 20.1% 23.6% 24.5% 18.8% 18.8% 3.2% 20.6% 5.5% 22.5% 1.3% 0.0% 63.7% 42.6%
Webinterpret prob 52271 11.1% 27.6% 26.6% 37.1% 37.2% 18.2% 3.1% 57.9% 56.3% 35.7% 30.2% 40.4% 38.8% 20.7% 34.5% 23.6% 9.0% 3.0% 0.2% 54.7% 24.1%

Table 13: Overlap for Nepali, 1 million word data condition. For each submission, a row in the table lists the
total number of sentence pairs, the ratio of unique sentence pairs that are in included in no other submission, and
the ratio of sentence pairs shared with each of the other submissions.
Submissions from different participants share up to 67.9% of sentence pairs (NRC ensemble and Facebook main).
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AFRL 50k 241513 1.7% - 86.4% 32.6% 32.6% 34.5% 30.4% 39.4% 38.8% 30.6% 30.9% 31.0% 31.9% 61.5% 25.7% 26.0% 29.6% 26.7% 12.8% 38.9% 38.9% 38.9%
AFRL 150k 236966 1.9% 88.0% - 31.1% 31.2% 36.1% 32.4% 38.8% 37.7% 30.8% 31.2% 31.4% 32.4% 60.8% 25.2% 25.9% 29.5% 25.7% 11.7% 38.5% 38.5% 38.5%
Facebook main 115673 0.0% 68.0% 63.8% - 99.9% 42.5% 34.4% 44.6% 44.8% 43.9% 43.8% 40.0% 44.1% 54.3% 32.5% 28.9% 34.5% 30.0% 9.0% 40.5% 40.5% 40.5%
Facebook contr. 115771 0.0% 68.0% 63.8% 99.9% - 42.5% 34.4% 44.6% 44.8% 43.9% 43.8% 40.0% 44.1% 54.3% 32.5% 28.9% 34.5% 30.0% 9.0% 40.5% 40.5% 40.5%
Helsinki 253834 0.1% 32.8% 33.7% 19.4% 19.4% - 86.6% 34.5% 32.5% 32.4% 39.1% 28.5% 26.9% 36.7% 52.2% 64.4% 50.6% 50.0% 27.6% 36.5% 36.5% 36.5%
Helsinki contr. 251983 0.5% 29.2% 30.5% 15.8% 15.8% 87.3% - 32.1% 30.1% 28.5% 35.1% 26.3% 24.4% 33.3% 50.6% 62.7% 45.8% 51.0% 27.8% 31.0% 31.0% 31.0%
IITP 200725 0.6% 47.4% 45.8% 25.7% 25.7% 43.6% 40.4% - 89.5% 44.9% 45.7% 44.2% 42.6% 41.5% 45.9% 41.0% 46.6% 35.1% 10.6% 52.1% 52.1% 52.1%
IITP geom 185978 0.1% 50.4% 48.1% 27.9% 27.9% 44.4% 40.8% 96.6% - 47.0% 47.4% 46.9% 45.5% 42.4% 45.1% 39.3% 45.0% 33.9% 9.5% 51.8% 51.8% 51.8%
NRC ensemble 154622 0.3% 47.8% 47.3% 32.9% 32.9% 53.2% 46.4% 58.3% 56.6% - 85.1% 64.9% 62.8% 40.7% 47.6% 43.2% 55.6% 37.5% 8.5% 44.9% 44.9% 44.9%
NRC xlm 191203 1.6% 39.1% 38.7% 26.5% 26.5% 51.9% 46.2% 48.0% 46.1% 68.8% - 48.5% 47.7% 36.4% 46.1% 53.0% 51.2% 36.4% 12.1% 42.2% 42.2% 42.2%
NRC yisi-2-sup 161022 4.6% 46.5% 46.1% 28.7% 28.8% 44.9% 41.1% 55.1% 54.2% 62.4% 57.6% - 69.4% 37.4% 38.9% 36.0% 40.2% 30.0% 5.9% 36.8% 36.8% 36.8%
NRC yisi-2-unsup 148072 2.7% 52.0% 51.9% 34.5% 34.5% 46.0% 41.6% 57.7% 57.1% 65.5% 61.6% 75.5% - 40.0% 36.3% 30.4% 43.1% 30.1% 5.6% 38.7% 38.7% 38.7%
Sciling 314196 21.1% 47.2% 45.9% 20.0% 20.0% 29.6% 26.7% 26.5% 25.1% 20.0% 22.1% 19.2% 18.9% - 28.2% 30.8% 25.3% 25.5% 15.3% 34.2% 34.2% 34.2%
Stockholm 272605 1.0% 22.8% 21.9% 13.8% 13.8% 48.6% 46.7% 33.8% 30.8% 27.0% 32.4% 23.0% 19.7% 32.5% - 87.1% 49.5% 43.3% 23.4% 35.4% 35.4% 35.4%
Stockholm ngram 419335 17.3% 15.0% 14.6% 8.0% 8.0% 39.0% 37.7% 19.6% 17.4% 15.9% 24.2% 13.8% 10.7% 23.0% 56.6% - 41.0% 29.3% 19.4% 26.0% 26.0% 26.0%
SUNY Buffalo 300627 11.9% 23.8% 23.3% 13.3% 13.3% 42.7% 38.4% 31.1% 27.9% 28.6% 32.6% 21.5% 21.2% 26.5% 44.8% 57.2% - 31.3% 19.9% 36.2% 36.2% 36.2%
TALP-UPC 246875 3.7% 26.1% 24.7% 14.1% 14.1% 51.4% 52.1% 28.5% 25.5% 23.5% 28.2% 19.5% 18.1% 32.5% 47.8% 49.8% 38.1% - 39.8% 30.6% 30.6% 30.6%
TALP-UPC sec. 375387 53.2% 8.2% 7.4% 2.8% 2.8% 18.7% 18.6% 5.7% 4.7% 3.5% 6.2% 2.5% 2.2% 12.8% 17.0% 21.7% 15.9% 26.2% - 14.8% 14.8% 14.8%
Webinterpret 400441 0.0% 23.4% 22.8% 11.7% 11.7% 23.1% 19.5% 26.1% 24.1% 17.3% 20.2% 14.8% 14.3% 26.8% 24.1% 27.2% 27.2% 18.9% 13.9% - 100.0% 100.0%
Webinterpret cov 400441 0.0% 23.4% 22.8% 11.7% 11.7% 23.1% 19.5% 26.1% 24.1% 17.3% 20.2% 14.8% 14.3% 26.8% 24.1% 27.2% 27.2% 18.9% 13.9% 100.0% - 100.0%
Webinterpret prob 400441 0.0% 23.4% 22.8% 11.7% 11.7% 23.1% 19.5% 26.1% 24.1% 17.3% 20.2% 14.8% 14.3% 26.8% 24.1% 27.2% 27.2% 18.9% 13.9% 100.0% 100.0% -

Table 14: Overlap for Nepali, 5 million word data condition. For each submission, a row in the table lists the
total number of sentence pairs, the ratio of unique sentence pairs that are in included in no other submission, and
the ratio of sentence pairs shared with each of the other submissions.
There is much less overlap for this data condition, compared to the 1 million word subset. The NRC/Facebook
overlap dropped to 32.9% (from 67.9%), NRC’s submissions now have more in common with other submissions.
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AFRL 50k 61605 7.6% - 81.3% 3.2% 6.0% 2.3% 36.2% 31.7% 16.0% 5.1% 51.0% 49.6% 15.6% 10.6% 30.8% 24.5% 45.2% 16.6% 15.5% 4.8% 1.4% 11.1% 4.2% 29.8%
AFRL 150k 59593 2.3% 84.0% - 3.7% 7.1% 2.8% 40.7% 34.6% 18.0% 6.1% 50.4% 48.8% 18.1% 12.6% 34.2% 27.1% 44.5% 19.2% 18.1% 5.3% 1.4% 12.7% 4.9% 32.9%
DiDi 24324 35.4% 8.2% 9.1% - 36.2% 26.5% 5.1% 4.1% 10.2% 9.5% 1.2% 1.1% 10.4% 10.8% 3.7% 1.4% 2.5% 7.0% 7.2% 3.5% 0.2% 7.9% 11.6% 4.3%
DiDi lratio 26191 15.9% 14.1% 16.1% 33.6% - 18.3% 16.9% 14.2% 25.5% 12.6% 6.3% 6.0% 22.8% 21.6% 11.8% 5.5% 6.5% 19.4% 19.7% 4.5% 0.4% 21.5% 23.7% 14.6%
DiDi lmdiff 25974 43.5% 5.6% 6.5% 24.8% 18.4% - 4.6% 3.3% 9.7% 8.9% 0.9% 0.8% 10.3% 9.3% 4.1% 2.1% 2.4% 6.9% 7.4% 3.2% 0.2% 8.5% 10.7% 5.2%
Facebook main 55829 2.1% 40.0% 43.5% 2.2% 7.9% 2.2% - 59.5% 30.8% 11.9% 40.7% 39.3% 29.0% 18.7% 47.7% 34.3% 40.3% 37.0% 29.9% 7.3% 1.3% 22.1% 7.0% 48.4%
Facebook contr. 43895 4.4% 44.5% 47.0% 2.3% 8.5% 2.0% 75.7% - 25.5% 9.0% 45.3% 44.0% 31.7% 22.1% 50.5% 37.9% 38.2% 32.4% 26.5% 6.3% 1.2% 24.2% 9.1% 42.4%
Helsinki 87547 22.5% 11.3% 12.3% 2.8% 7.6% 2.9% 19.7% 12.8% - 37.7% 8.6% 8.0% 11.2% 7.0% 12.4% 8.2% 21.3% 21.9% 19.0% 20.7% 2.4% 8.9% 4.8% 16.7%
Helsinki contr. 78579 36.9% 4.0% 4.7% 3.0% 4.2% 3.0% 8.5% 5.0% 42.0% - 2.9% 2.7% 5.5% 3.6% 5.3% 3.0% 10.0% 13.6% 12.3% 21.9% 2.2% 4.7% 2.3% 7.7%
IITP 70114 1.1% 44.8% 42.8% 0.4% 2.3% 0.3% 32.4% 28.4% 10.7% 3.3% - 94.6% 11.1% 7.2% 29.6% 25.0% 45.6% 13.4% 10.9% 3.3% 0.9% 9.8% 3.1% 34.1%
IITP geom 67888 0.6% 45.0% 42.8% 0.4% 2.3% 0.3% 32.3% 28.5% 10.4% 3.2% 97.7% - 11.1% 7.2% 29.1% 24.4% 45.4% 13.1% 10.6% 3.2% 0.9% 9.9% 3.1% 34.5%
NRC ensemble 30533 3.4% 31.5% 35.3% 8.3% 19.5% 8.8% 53.1% 45.5% 32.1% 14.0% 25.6% 24.7% - 58.2% 52.5% 30.8% 17.0% 39.1% 35.7% 1.5% 0.1% 38.8% 19.6% 42.0%
NRC xlm 24961 10.0% 26.1% 30.2% 10.5% 22.6% 9.7% 41.9% 38.8% 24.4% 11.4% 20.1% 19.6% 71.2% - 39.6% 22.9% 8.4% 32.2% 29.8% 0.5% 0.0% 38.2% 24.9% 32.7%
NRC yisi-2-sup 55757 8.1% 34.0% 36.6% 1.6% 5.5% 1.9% 47.7% 39.8% 19.5% 7.5% 37.3% 35.5% 28.7% 17.7% - 61.7% 34.0% 24.3% 21.0% 6.2% 0.7% 19.0% 7.2% 34.2%
NRC yisi-2-unsup 60594 21.3% 24.9% 26.6% 0.6% 2.4% 0.9% 31.6% 27.5% 11.9% 3.9% 29.0% 27.4% 15.5% 9.4% 56.7% - 32.1% 13.3% 11.5% 7.1% 1.0% 12.5% 5.4% 24.8%
Sciling 120399 37.0% 23.1% 22.0% 0.5% 1.4% 0.5% 18.7% 13.9% 15.5% 6.5% 26.5% 25.6% 4.3% 1.7% 15.7% 16.2% - 12.4% 8.6% 8.1% 1.8% 2.9% 0.5% 16.4%
Stockholm 55293 15.6% 18.4% 20.7% 3.1% 9.2% 3.2% 37.4% 25.7% 34.7% 19.3% 16.9% 16.0% 21.6% 14.5% 24.6% 14.6% 26.9% - 43.8% 12.3% 1.2% 17.1% 7.2% 29.8%
Stockholm ngram 46529 12.5% 20.5% 23.2% 3.8% 11.1% 4.2% 35.9% 25.0% 35.7% 20.8% 16.5% 15.5% 23.5% 16.0% 25.1% 14.9% 22.3% 52.0% - 12.7% 1.8% 17.3% 8.6% 27.3%
TALP-UPC 89785 50.0% 3.3% 3.5% 0.9% 1.3% 0.9% 4.5% 3.1% 20.2% 19.2% 2.6% 2.4% 0.5% 0.1% 3.9% 4.8% 10.8% 7.6% 6.6% - 9.1% 0.4% 0.6% 2.9%
TALP-UPC sec. 114990 90.6% 0.8% 0.7% 0.0% 0.1% 0.0% 0.6% 0.5% 1.8% 1.5% 0.5% 0.5% 0.0% 0.0% 0.3% 0.5% 1.9% 0.6% 0.7% 7.1% - 0.0% 0.0% 0.3%
Webinterpret 35684 5.1% 19.1% 21.1% 5.4% 15.8% 6.2% 34.6% 29.7% 21.8% 10.4% 19.3% 18.7% 33.2% 26.7% 29.6% 21.3% 9.9% 26.5% 22.6% 1.1% 0.1% - 44.1% 64.1%
Webinterpret cov 29678 24.7% 8.8% 9.9% 9.5% 21.0% 9.4% 13.1% 13.5% 14.1% 6.0% 7.4% 7.1% 20.1% 20.9% 13.4% 11.0% 2.1% 13.4% 13.5% 1.8% 0.1% 53.1% - 22.8%
Webinterpret prob 64115 11.8% 28.7% 30.6% 1.6% 6.0% 2.1% 42.2% 29.1% 22.8% 9.4% 37.2% 36.6% 20.0% 12.7% 29.7% 23.4% 30.8% 25.7% 19.8% 4.0% 0.6% 35.7% 10.6% -

Table 15: Overlap for Sinhala, 1 million word data condition. For each submission, a row in the table lists the
total number of sentence pairs, the ratio of unique sentence pairs that are in included in no other submission, and
the ratio of sentence pairs shared with each of the other submissions.
There is less overlap between submissions, compared to Nepali. The submissions share almost always below half
of the sentence pairs.
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AFRL 50k 292912 0.8% 90.9% 8.4% 12.1% 10.8% 38.0% 41.1% 33.0% 33.0% 58.7% 55.6% 28.1% 26.5% 35.1% 35.1% 58.5% 24.0% 26.5% 20.7% 13.2% 44.3% 37.4% 44.9%
AFRL 150k 276633 0.2% 96.2% 10.6% 14.1% 11.7% 39.1% 42.0% 33.2% 33.2% 59.4% 56.5% 29.5% 27.6% 35.6% 34.6% 58.6% 24.0% 25.7% 20.0% 12.6% 43.8% 36.7% 44.5%
DiDi 134769 4.1% 18.3% 21.7% 77.5% 47.0% 21.4% 16.3% 38.2% 35.9% 24.1% 22.6% 39.7% 38.4% 30.2% 21.8% 21.5% 38.3% 32.9% 27.0% 8.9% 25.8% 26.6% 25.4%
DiDi lratio 143744 0.3% 24.7% 27.2% 72.7% 44.1% 27.7% 22.6% 45.7% 41.0% 32.3% 30.4% 47.1% 46.0% 34.6% 26.6% 31.2% 50.0% 42.0% 31.3% 11.4% 42.7% 44.1% 42.2%
DiDi lmdiff 170848 9.4% 18.6% 18.9% 37.1% 37.1% 18.6% 15.3% 34.4% 32.6% 25.4% 23.6% 31.8% 32.1% 29.2% 25.0% 26.1% 34.7% 35.8% 28.3% 10.5% 31.2% 31.9% 31.2%
Facebook main 159924 4.8% 69.5% 67.7% 18.0% 24.9% 19.9% 69.5% 45.6% 41.2% 60.0% 57.8% 49.8% 47.0% 51.5% 44.7% 52.0% 35.5% 35.2% 24.0% 10.1% 49.5% 41.4% 50.2%
Facebook contrastive 159723 2.4% 75.4% 72.8% 13.8% 20.3% 16.4% 69.6% 39.9% 37.8% 60.7% 58.3% 40.8% 38.3% 46.5% 45.1% 56.0% 30.4% 29.5% 23.9% 11.5% 50.7% 44.5% 50.7%
Helsinki 341489 0.1% 28.3% 26.9% 15.1% 19.2% 17.2% 21.4% 18.7% 91.3% 28.3% 26.5% 26.6% 30.7% 23.6% 20.9% 31.7% 36.7% 63.0% 42.7% 26.2% 37.8% 36.2% 40.9%
Helsinki contr. 345108 1.1% 28.0% 26.6% 14.0% 17.1% 16.2% 19.1% 17.5% 90.3% 27.5% 25.8% 23.6% 27.5% 21.5% 19.1% 30.2% 33.9% 60.6% 41.8% 25.9% 34.2% 32.7% 37.2%
IITP 264271 0.2% 65.0% 62.2% 12.3% 17.6% 16.4% 36.3% 36.7% 36.6% 35.9% 92.6% 35.5% 34.9% 41.3% 40.4% 56.2% 31.5% 31.7% 21.3% 10.0% 57.0% 49.8% 57.9%
IITP geom 249275 0.1% 65.3% 62.7% 12.2% 17.5% 16.2% 37.1% 37.4% 36.3% 35.8% 98.2% 35.6% 35.1% 41.4% 40.1% 56.1% 31.1% 31.2% 20.5% 9.7% 57.3% 49.8% 58.2%
NRC ensemble 172643 0.2% 47.7% 47.3% 31.0% 39.2% 31.5% 46.2% 37.7% 52.7% 47.2% 54.4% 51.5% 82.5% 65.4% 51.9% 49.5% 47.6% 41.5% 32.3% 10.2% 57.7% 54.5% 58.3%
NRC xlm 195332 1.1% 39.8% 39.1% 26.5% 33.9% 28.0% 38.5% 31.3% 53.6% 48.7% 47.2% 44.8% 72.9% 50.0% 43.4% 44.2% 47.1% 47.8% 34.8% 13.1% 53.2% 50.5% 54.4%
NRC yisi-2-sup 192017 1.9% 53.6% 51.3% 21.2% 25.9% 26.0% 42.9% 38.7% 41.9% 38.6% 56.8% 53.7% 58.8% 50.8% 65.4% 47.7% 33.4% 32.0% 27.8% 9.8% 50.6% 47.5% 51.1%
NRC yisi-2-unsup 215421 5.6% 47.7% 44.5% 13.6% 17.7% 19.8% 33.2% 33.5% 33.2% 30.6% 49.6% 46.4% 41.6% 39.3% 58.3% 44.4% 26.1% 27.2% 30.2% 12.2% 50.0% 47.5% 50.2%
Sciling 332120 11.7% 51.6% 48.8% 8.7% 13.5% 13.4% 25.0% 26.9% 32.6% 31.4% 44.7% 42.1% 25.7% 26.0% 27.6% 28.8% 29.2% 29.9% 25.3% 15.0% 50.6% 46.9% 50.7%
Stockholm 250767 2.7% 28.1% 26.4% 20.6% 28.6% 23.6% 22.6% 19.3% 49.9% 46.6% 33.2% 30.9% 32.8% 36.7% 25.6% 22.4% 38.7% 73.4% 41.4% 21.0% 46.1% 45.6% 47.4%
Stockholm ngram 444106 17.5% 17.5% 16.0% 10.0% 13.6% 13.8% 12.7% 10.6% 48.4% 47.1% 18.9% 17.5% 16.1% 21.0% 13.8% 13.2% 22.4% 41.5% 29.8% 20.2% 28.9% 27.8% 31.7%
TALP-UPC 289674 3.5% 20.9% 19.1% 12.5% 15.5% 16.7% 13.2% 13.2% 50.4% 49.8% 19.5% 17.7% 19.2% 23.5% 18.4% 22.5% 29.0% 35.8% 45.7% 49.6% 39.4% 41.9% 40.8%
TALP-UPC sec. 437636 56.3% 8.8% 8.0% 2.8% 3.7% 4.1% 3.7% 4.2% 20.4% 20.4% 6.0% 5.5% 4.0% 5.8% 4.3% 6.0% 11.4% 12.0% 20.5% 32.8% 14.3% 16.2% 15.1%
Webinterpret 328620 0.0% 39.4% 36.9% 10.6% 18.7% 16.2% 24.1% 24.7% 39.3% 35.9% 45.9% 43.5% 30.3% 31.6% 29.5% 32.8% 51.1% 35.2% 39.1% 34.7% 19.0% 85.7% 96.0%
Webinterpret cov 318360 1.9% 34.4% 31.9% 11.3% 19.9% 17.1% 20.8% 22.3% 38.8% 35.5% 41.3% 39.0% 29.5% 31.0% 28.7% 32.1% 48.9% 35.9% 38.8% 38.1% 22.3% 88.4% 86.5%
Webinterpret prob 345536 1.3% 38.1% 35.6% 9.9% 17.6% 15.4% 23.2% 23.4% 40.4% 37.2% 44.3% 42.0% 29.1% 30.7% 28.4% 31.3% 48.7% 34.4% 40.7% 34.2% 19.1% 91.3% 79.7%

Table 16: Overlap for Sinhala, 5 million word data condition. For each submission, a row in the table lists the
total number of sentence pairs, the ratio of unique sentence pairs that are in included in no other submission, and
the ratio of sentence pairs shared with each of the other submissions.
For Nepali, there was less overlap in the 5 million word data condition, compared to the 1 million word data
condition. Here, for Sinhala, the trend goes the other way.
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Wolfgang Täger. 2011. The sentence-aligned european
patent corpus. In Proceedings of the 15th Interna-
tional Conference of the European Association for
Machine Translation (EAMT), pages 177–184.

Kaveh Taghipour, Shahram Khadivi, and Jia Xu. 2011.
Parallel corpus refinement as an outlier detection al-
gorithm. In Proceedings of the 13th Machine Trans-
lation Summit (MT Summit XIII), pages 414–421. In-
ternational Association for Machine Translation.

Jörg Tiedemann. 2012. Parallel data, tools and in-
terfaces in opus. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC-2012), pages 2214–2218, Istan-
bul, Turkey. European Language Resources Asso-
ciation (ELRA). ACL Anthology Identifier: L12-
1246.
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Nagy, László Németh, and Viktor Trón. 2007. Par-
allel corpora for medium density languages. Ams-
terdam Studies In The Theory And History Of Lin-
guistic Science Series 4, 292:247.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.
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Abstract

We obtain new results using referential transla-
tion machines with increased number of learn-
ing models in the set of results that are stacked
to obtain a better mixture of experts predic-
tion. We combine features extracted from the
word-level predictions with the sentence- or
document-level features, which significantly
improve the results on the training sets but de-
crease the test set results.

1 Referential Translation Machines for
Machine Translation Performance
Predicion

Quality estimation task in WMT19 (Specia et al.,
2019) (QET19) address machine translation per-
formance prediction (MTPP), where translation
quality is predicted without using reference trans-
lations, at the sentence- and word- (Task 1),
and document-levels (Task 2). The tasks con-
tain subtasks involving English-German, English-
Russian, and English-French machine transla-
tion (MT). The target to predict in Task 1
is HTER (human-targeted translation edit rate)
scores (Snover et al., 2006) and binary classifica-
tion of word-level translation errors and the tar-
get in Task 2 is multi-dimensional quality metrics
(MQM) (Lommel, 2015). Table 1 lists the number
of sentences in the training and test sets for each
task and the number of instances used as interpre-
tants in the RTM models (M for million).

We use referential translation machine
(RTM) (Biçici, 2018; Biçici and Way, 2015)
models for building our prediction models. RTMs
predict data translation between the instances in
the training set and the test set using interpretants,
data close to the task instances. Interpretants
provide context for the prediction task and are
used during the derivation of the features mea-
suring the closeness of the test sentences to the

RTM interpretants
Task Train Test Training LM
Task 1 (en-de) 14442 1000

0.250M 5MTask 1 (en-ru) 16089 1000
Task 2 (en-fr) 1468 180

Table 1: Number of instances and interpretants used.

training data, the difficulty of translating them,
and to identify translation acts between any two
data sets for building prediction models. With
the enlarging parallel and monolingual corpora
made available by WMT, the capability of the
interpretant datasets selected by RTM models
to provide context for the training and test sets
improve as can be seen in the data statistics
of parfda instance selection (Biçici, 2019).
Figure 1 depicts RTMs and explains the model
building process. RTMs use parfda for instance
selection and machine translation performance
prediction system (MTPPS) for obtaining the
features, which includes additional features
from word alignment and also from GLMd for
word-level prediction.

We use ridge regression, kernel ridge regres-
sion, k-nearest neighors, support vector regres-
sion, AdaBoost (Freund and Schapire, 1997), gra-
dient tree boosting, gaussian process regressor, ex-
tremely randomized trees (Geurts et al., 2006), and
multi-layer perceptron (Bishop, 2006) as learn-
ing models in combination with feature selection
(FS) (Guyon et al., 2002) and partial least squares
(PLS) (Wold et al., 1984) where most of these
models can be found in scikit-learn.1 We
experiment with:

• including the statistics of the binary tags ob-
tained as features extracted from word-level
tag predictions for sentence-level prediction,

• using KNN to estimate the noise level for
1http://scikit-learn.org/
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Figure 1: RTM depiction: parfda selects interpretants close to the training and test data using parallel corpus in
bilingual settings and monolingual corpus in the target language or just the monolingual target corpus in monolin-
gual settings; an MTPPS use interpretants and training data to generate training features and another use interpre-
tants and test data to generate test features in the same feature space; learning and prediction takes place taking
these features as input.

SVR, which obtains accuracy with 5% er-
ror compared with estimates obtained with
known noise level (Cherkassky and Ma,
2004) and set ε = σ/2.

Martins et al. (2017) used a hybrid stacking
model to combine the word-level predictions from
15 predictors using neural networks with different
initializations together with the previous features
from a linear model. The neural network architec-
ture they used is also hybrid with different types of
layers: input word embedding use 64 dimensional
vectors, the next three layers are two feedforward
layers with 400 nodes and a bidirectional gated
recurrent units layer with 200 units, followed by
similar three layers with half nodes, followed by
a feedforward layer with 50 nodes and a softmax
layer.

We use Global Linear Models (GLM) (Collins,
2002) with dynamic learning (GLMd) (Biçici,
2018) for word- and phrase-level translation per-
formance prediction. GLMd uses weights in a
range [a, b] to update the learning rate dynami-
cally according to the error rate. Evaluation met-
rics listed are Pearson’s correlation (r), mean ab-
solute error (MAE), and root mean squared error
(RMSE).

2 Mixture of Experts Models

We use prediction averaging (Biçici, 2018) to ob-
tain a combined prediction from various predic-
tion outputs better than the components, where the
performance on the training set is used to obtain
weighted average of the top k predictions, ŷ with

evaluation metrics indexed by j ∈ J and weights
with w:

wj,i =
wj,i

1−wj,i

ŷ̂ŷyµk = 1
k

∑k
i=1 ŷ̂ŷyi MEAN

ŷ̂ŷy
j,wj

k
= 1∑k

i=1 wj,i

∑k
i=1wj,i ŷ̂ŷyi

ŷ̂ŷyk = 1
|J |
∑

j∈J ŷ̂ŷyj,wj
k

MIX
(1)

We assume independent predictions and use
pi/(1−pi) for weights where pi represents the ac-
curacy of the independent classifier i in a weighted
majority ensemble (Kuncheva and Rodrı́guez,
2014). We only use the MIX prediction if we ob-
tain better results on the training set. We select
the best model using r and mix the results using r,
RAE, MRAER, and MAER. We filter out those re-
sults with higher than 1 relative evaluation metric
scores.

We also use stacking to build higher level mod-
els using predictions from base prediction models
where they can also use the probability associated
with the predictions (Ting and Witten, 1999). The
stacking models use the predictions from predic-
tors as features and build second level predictors.

For the document-level RTM model, instead of
running separate MTPPS instances for each train-
ing or test document to obtain specific features
for each document, we concatenate the sentences
from each document to obtain a single sentence
representing each and then run an RTM model.
This conversion decreases the number of features
and obtains close results (Biçici, 2018).

Before model combination, we further filter
prediction results from different machine learn-
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sentence

rP MAE RAE MAER MRAER

20
19

en-de
0.4908 0.1102 0.8017 0.8721 0.7554

+word tags 0.9608 0.0237 0.1725 0.1388 0.1823

en-ru
0.2724 0.1548 0.8769 0.9064 0.7736

+word tags 0.9481 0.028 0.1587 0.1541 0.1553

document en-fr
0.3959 17.982 0.8564 0.933 0.7908

+word tags 0.478 17.1015 0.8144 0.8921 0.7564

20
18 sentence

en-de SMT
0.4386 0.1368 0.8675 0.9103 0.8168

+word tags 0.9424 0.0391 0.248 0.1716 0.2969

en-de NMT
0.4613 0.1109 0.8066 0.8414 0.7347

+word tags 0.9589 0.0244 0.1777 0.144 0.1901

de-en SMT
0.5636 0.1355 0.7903 0.9173 0.7826

+word tags 0.9276 0.0485 0.2828 0.2413 0.3378

en-cs SMT
0.5397 0.1506 0.8084 0.8203 0.7886

+word tags 0.9356 0.0477 0.256 0.1825 0.3021

en-lv SMT
0.4006 0.1329 0.8832 0.9316 0.8059

+word tags 0.9452 0.0342 0.2271 0.1768 0.2625

en-lv NMT
0.5779 0.1441 0.7831 0.8679 0.7768

+word tags 0.9571 0.0398 0.2163 0.1778 0.2573

document en-fr
0.2141 40.7359 0.9324 1.2074 0.7573

+word tags 0.2254 41.6591 0.9535 1.0849 0.7783

Table 2: RTM train results in sentence- and document-level MTPP. rP is Pearson’s correlation.

ing models based on the results on the training
set to decrease the number of models combined
and improve the results. A criteria that we use is
to include results that are better than the best RR
model’s results. In general, the combined model is
better than the best model in the set and stacking
achieves better results than MIX.

3 Results

We tokenize and truecase all of the corpora us-
ing Moses’ (Koehn et al., 2007) processing tools.2

LMs are built using kenlm (Heafield et al., 2013).
The comparison of results on the training set are in
Table 2 and the results on the test set we obtained
after the competition are in Tables 3 and 5. Official
competition results of RTMs are similar.

We convert MQM annotation to word-level tags
to train GLMd models and obtain word-level pre-
dictions. Addition of the tagging features from the
word-level prediction improves the training results
significantly but does not improve the test results
at the same rate, which indicates overfitting. The
reason for the overfitting with the word-level fea-
tures is due to their high correlation with the tar-
get. Table 4 lists some of the top individual feature

2https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

correlations for en-ru in Task1. Top 26 highly cor-
related features belong to word-level features.

We also obtained new results on QET18
datasets and experimented adding features from
word-level predictions on the QET18 sentence-
level results. QET18 results in Table 3 are im-
proved overall.

4 Conclusion

Referential translation machines pioneer a lan-
guage independent approach and remove the need
to access any task or domain specific information
or resource and can achieve top performance in au-
tomatic, accurate, and language independent pre-
diction of translation scores. We present RTM re-
sults with stacking.
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Abstract

We present the contribution of the Unbabel
team to the WMT 2019 Shared Task on Qual-
ity Estimation. We participated on the word,
sentence, and document-level tracks, encom-
passing 3 language pairs: English-German,
English-Russian, and English-French. Our
submissions build upon the recent OpenKiwi
framework: we combine linear, neural, and
predictor-estimator systems with new transfer
learning approaches using BERT and XLM
pre-trained models. We compare systems in-
dividually and propose new ensemble tech-
niques for word and sentence-level predic-
tions. We also propose a simple technique
for converting word labels into document-level
predictions. Overall, our submitted systems
achieve the best results on all tracks and lan-
guage pairs by a considerable margin.

1 Introduction

Quality estimation (QE) is the task of evaluating
a translation system’s quality without access to
reference translations (Blatz et al., 2004; Specia
et al., 2018). This paper describes the contribution
of the Unbabel team to the Shared Task on Word,
Sentence, and Document-Level (QE Tasks 1 and
2) at WMT 2019.

Our system adapts OpenKiwi,1 a recently re-
leased open-source framework for QE that im-
plements the best QE systems from WMT 2015-
18 shared tasks (Martins et al., 2016, 2017; Kim
et al., 2017; Wang et al., 2018), which we extend
to leverage recently proposed pre-trained models

1https://unbabel.github.io/OpenKiwi.

via transfer learning techniques. Overall, our main
contributions are as follows:

• We extend OpenKiwi with a Transformer
predictor-estimator model (Wang et al., 2018).

• We apply transfer learning techniques, fine-
tuning BERT (Devlin et al., 2018) and XLM
(Lample and Conneau, 2019) models in a
predictor-estimator architecture.

• We incorporate predictions coming from the
APE-BERT system described in Correia and
Martins (2019), also used in this year’s Unba-
bel’s APE submission (Lopes et al., 2019).

• We propose new ensembling techniques for
combining word-level and sentence-level pre-
dictions, which outperform previously used
stacking approaches (Martins et al., 2016).

• We build upon our BERT-based predictor-
estimator model to obtain document-level anno-
tation and MQM predictions via a simple word-
to-annotation conversion scheme.

Our submitted systems achieve the best results
on all tracks and all language pairs by a consid-
erable margin: on English-Russian (En-Ru), our
sentence-level system achieves a Pearson score
of 59.23% (+5.96% than the second best sys-
tem), and on English-German (En-De), we achieve
57.18% (+2.44%).

2 Word and Sentence-Level Task

The goal of the word-level QE task is to as-
sign quality labels (OK or BAD) to each machine-
translated word, as well as to gaps between words
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(to account for context that needs to be inserted),
and source words (to denote words in the origi-
nal sentence that have been mistranslated or omit-
ted in the target). The goal of the Sentence-level
QE task, on the other hand, is to predict the qual-
ity of the whole translated sentence, based on how
many edit operations are required to fix it, in terms
of HTER (Human Translation Error Rate) (Specia
et al., 2018). We next describe the datasets, re-
sources, and models that we used for these tasks.

2.1 Datasets and Resources

The data resources we use to train our systems are
of three types: the QE shared task corpora, addi-
tional parallel corpora, and artificial triplets (src,
pe, mt) in the style of the eSCAPE corpus (Negri
et al., 2018).

• The En-De QE corpus provided by the shared
task, consisting of 13,442 train triplets.

• The En-Ru QE corpus provided by the shared
task, consisting of 15,089 train triplets.

• The En-De parallel dataset of 3,396,364 sen-
tences from the IT domain provided by the
shared task organizers. which we extend in the
style of the eSCAPE corpus to contain artificial
triplets. To do this, we use OpenNMT with 5-
fold jackknifing (Klein et al., 2017) to obtain
unbiased translations of the source sentences.

• The En-Ru eSCAPE corpus (Negri et al., 2018)
consisting of 7,735,361 artificial triplets.

2.2 Linear Sequential Model

Our simplest baseline is the linear sequential
model described by Martins et al. (2016, 2017). It
is a discriminative feature-based sequential model
(called LINEARQE). The system uses a first-order
sequential model with unigram and bigram fea-
tures, whose weights are learned by using the max-
loss MIRA algorithm (Crammer et al., 2006). The
features include information about the words, part-
of-speech tags, and syntactic dependencies, ob-
tained with TurboParser (Martins et al., 2013).

2.3 NuQE

We used NUQE (NeUral Quality Estimation) as
implemented in OpenKiwi (Kepler et al., 2019)
and adapted it to jointly learn MT tags, source tags
and also sentence scores. We use the original ar-
chitecture with the following additions. For learn-
ing sentence scores, we first take the average of

the MT tags output layer and than pass the result
through a feed-forward layer that projects the re-
sult to a single unit. For jointly learning source
tags, we take the source text embeddings, project
them with a feed-forward layer, and then sum the
MT tags output vectors that are aligned. The re-
sult is then passed through a feed-forward layer,
a bi-GRU, two other feed-forward layers, and fi-
nally an output layer. The layer dimensions are
the same as in the normal model. It is worth
noting that NUQE is trained from scratch using
only the shared task data, with no pre-trained com-
ponents, besides Polyglot embeddings (Al-Rfou
et al., 2013).

2.4 RNN-Based Predictor-Estimator
Our implementation of the RNN-based prediction
estimator (PREDEST-RNN) is described in Kepler
et al. (2019). It follows closely the architecture
proposed by Kim et al. (2017), which consists of
two modules:

• a predictor, which is trained to predict each to-
ken of the target sentence given the source and
the left and right context of the target sentence;

• an estimator, which takes features produced by
the predictor and uses them to classify each
word as OK or BAD.

Our predictor uses a biLSTM to encode the source,
and two unidirectional LSTMs processing the tar-
get in left-to-right (LSTM-L2R) and right-to-left
(LSTM-R2L) order. For each target token ti, the
representations of its left and right context are con-
catenated and used as query to an attention mod-
ule before a final softmax layer. It is trained on
the large parallel corpora mentioned above. The
estimator takes as input a sequence of features:
for each target token ti, the final layer before the
softmax (before processing ti), and the concate-
nation of the i-th hidden state of LSTM-L2R and
LSTM-R2L (after processing ti). We train this
system with a multi-task architecture that allows
us to predict sentence-level HTER scores. Over-
all, this system is capable to predict sentence-level
scores and all word-level labels (for MT words,
gaps, and source words)—the source word labels
are produced by training a predictor in the reverse
direction.

2.5 Transformer-Based Predictor-Estimator
In addition, we implemented a Transformer-based
predictor-estimator (PREDEST-TRANS), follow-
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ing Wang et al. (2018). This model has the fol-
lowing modifications in the predictor: (i) in or-
der to encode the source sentence, the bidirec-
tional LSTM is replaced by a Transformer en-
coder; (ii) the LSTM-L2R is replaced by a Trans-
former decoder with future-masked positions, and
the LSTM-R2L is replaced by a Transformer de-
coder with past-masked positions. Additionally,
the Transformer-based model produces the “mis-
match features” proposed by Fan et al. (2018).

2.6 Transfer Learning and Fine-Tuning

Following the recent trend in the NLP commu-
nity leveraging large-scale language model pre-
training for a diverse set of downstream tasks,
we used two pre-trained language models as fea-
ture extractors, the multilingual BERT (Devlin
et al., 2018) and the Cross-lingual Language
Model (XLM) (Lample and Conneau, 2019). The
predictor-estimator model consists of a predic-
tor that produces contextual token representations,
and an estimator that turns these representations
into predictions for both word level tags, and sen-
tence level scores. As both of these models pro-
duce contextual representations for each token in
a pair of sentences, we simply replace the predic-
tor part by either BERT or XLM to create new QE
models: PREDEST-BERT and PREDEST-XLM.
The XLM model is particularly well suited to the
task at hand, as its pre-training objective already
contains a translation language modeling part.

For improved performance, we employ a pre-
fine-tuning step by continuing their language
model pre-training on data that is closer to the do-
main of the shared task. For the En-De pair we
used the in-domain data provided by the shared
task, and for the En-Ru pair we used the eSCAPE
corpus (Negri et al., 2018).

Despite the shared multilingual vocabulary,
BERT is originally a monolingual model, treat-
ing the input as either being from one lan-
guage or another. We pass both sentences as
input by concatenating them according to the
template: [CLS] target [SEP] source
[SEP], where [CLS] and [SEP] are special
symbols from BERT, denoting beginning of sen-
tence and sentence separators, respectively. In
contrast, XLM is a multilingual model which re-
ceives two sentences from different languages as
input. Thus, its usage is straightforward.

The output from BERT and XLM is split into

target features and source features, which in turn
are passed to the regular estimator. They work
with word pieces rather than tokens, so the model
maps their output to tokens by selecting the first
word piece of each token. For En-Ru the mapping
is slightly different, it is done by taking the aver-
age of the word pieces of each token.

For PREDEST-BERT, we obtained the best re-
sults by ignoring features from the other lan-
guage, that is, for predicting target and gap tags
we ignored source features, and for predicting
source tags we ignored target features. On the
other hand, PREDEST-XLM predicts labels for
target, gaps and source at the same time. As the
predictor-estimator model, PREDEST-BERT and
PREDEST-XLM are trained in a multi-task fash-
ion, predicting sentence-level scores along with
word-level labels.

2.7 APE-QE

In addition to traditional QE systems, we also
use Automatic Post-Editing (APE) adapted for QE
(APE-QE), following Martins et al. (2017). An
APE system is trained on the human post-edits
and its outputs are used as pseudo-post-editions
to generate word-level quality labels and sentence-
level scores in the same way that the original labels
were created.

We use two variants of APE-QE:

• PSEUDO-APE, which trains a regular transla-
tion model and uses its output as a pseudo-
reference.

• An adaptation of BERT to APE (APE-BERT)
with an additional decoding constraint to re-
ward or discourage words that do not exist in
the source or MT.

PSEUDO-APE was trained using
OpenNMT-py (Klein et al., 2017). For En-
De, we used the IT domain corpus provided by the
shared task, and for En-Ru we used the Russian
eSCAPE corpus (Negri et al., 2018).

For APE-BERT, we follow the approach
of Correia and Martins (2019), also used by Unba-
bel’s APE shared task system (Lopes et al., 2019),
and adapt BERT to the APE task using the QE in-
domain corpus and the shared task data as input,
where the source and MT sentences are the en-
coder’s input and the post-edited sentence is the
decoder’s output. In addition, we also employ a
conservativeness penalty (Lopes et al., 2019), a
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METHOD TARGET F1

STACKED LINEAR 43.88
POWELL 44.61

Table 1: Performance of the stacked linear ensem-
ble and Powell’s method on the WMT17 dev set (F1-
MULT on MT tags). The ensemble is over the same
set of models3 reported in the release of the OpenKiwi
(Kepler et al., 2019) framework. To estimate the per-
formance of Powell’s method, the dev set was parti-
tioned into 10 folds fi. We ran Powell’s method 10
times, leaving out one fold at a time, to learn weights
wi. Predicting on fold fi using weights wi and calcu-
lating F1 performance over the concatenation of these
predictions gives an approximately unbiased estimate
of the performance of the method.

beam decoding penalty which either rewards or
penalizes choosing tokens not in the src and mt,
with a negative score to encourage more edits of
the MT.

2.8 System Ensembling

We ensembled the systems above to produce a sin-
gle prediction, as described next.

Word-level ensembling. We compare two ap-
proaches:

• A stacked architecture with a feature-based
linear system, as described by Martins et al.
(2017). This approach uses the predictions of
various systems as additional features in the lin-
ear system described in §2.2. To avoid overfit-
ting on the training data, this approach requires
jackknifing.

• A novel strategy consisting of learning a con-
vex combination of system predictions, with the
weights learned on the development set. We use
Powell’s conjugate direction method (Powell,
1964)2 as implemented in SciPy (Jones et al.,
2001) to directly optimize for the task metric
(F1-MULT).

Using the development set for learning carries a
risk of overfitting; by using k-fold cross-validation
we avoided this, and indeed the performance is
equal or superior to the linear stacking ensemble
(Table 1), while being computationally cheaper as
only the development set is needed to learn an en-
semble, avoiding jackknifing.

2This is the method underlying the popular MERT method
(Och, 2003), widely used in the MT literature.

Sentence-level ensembling. We have systems
outputting sentence-level predictions directly, and
others outputting word-level probabilities that can
be turned into sentence-level predictions by aver-
aging them over a sentence, as in (Martins et al.,
2017). To use all available features (sentence
score, gap tag, MT tag and source tag predictions
from all systems used in the word-level ensem-
bles), we learn a linear combination of these fea-
tures using `2-regularized regression over the de-
velopment set. We tune the regularization constant
with k-fold cross-validation, and retrain on the full
development set using the chosen value.

3 Document-Level Task

Estimating the quality of an entire document intro-
duces additional challenges. The text may become
too long to be processed at once by previously de-
scribed methods, and longer-range dependencies
may appear (e.g inconsistencies across sentences).

Both sub-tasks were addressed: estimating
the MQM score of a document and identify-
ing character-level annotations with correspond-
ing severities. Note that, given the correct number
of annotations in a document and their severities,
the MQM score can be computed in closed form.
However, preliminary experiments using the pre-
dicted annotations to compute MQM did not out-
perform the baseline, hence we opted for using in-
dependent systems for each of these sub-tasks.

3.1 Dataset

The data for this task consists of Amazon reviews
translated from English to French using a neural
MT system. Translations were manually anno-
tated for errors, with each annotation associated
to a severity tag (minor, major or critical).

Note that each annotation may include several
words, which do not have to be contiguous. We
refer to each contiguous block of characters in an
annotation as a span, and refer to an annotation
with at least two spans as a multi-span annotation.
Figure 1 illustrates this, where a single annotation
is comprised of the spans bandes and parfaits.

Across training set and last year’s development
and test set, there are 36,242 annotations. Out of
these, 4,170 are multi-span, and 149 of the multi-
span annotations contain spans in different sen-
tences. The distribution of severities is 84.12% of
major, 11.74% of minor and 4.14% of critical.
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Source: resistance bands are great for home use,
gym use, offices, and are ideal for travel.

Target: les bandes de résistance sont parfaits pour 
l’usage domestique, l’utilisation de la salle de gym,
bureaux et sont idéales pour les voyages.

Figure 1: Example of a multi-span annotation contain-
ing two spans: parfaits does not agree with bandes due
to gender—it should be parfaites. This mistake corre-
sponds to a single annotation with severity “minor”.

3.2 Implemented System

To predict annotations within a document the
problem is first treated as a word-level task, with
each sentence processed separately. To obtain
gold labels, the training set is tokenized and an
OK/BAD tag is attributed to each token, depending
on whether the token contains characters belong-
ing to an annotation. Note that besides token tags,
we will also have gap tags in between tokens. A
gap tag will only be labeled as BAD if a span be-
gins and ends exactly in the borders of the gap.
Our best-performing model for the word-level part
is an ensemble of 5 BERT models. Each BERT
model was trained as described in §2.6, but with-
out pre-fine-tuning. Systems were ensembled by a
simple average.

Later, annotations may be retrieved from the
predicted word-level tags by concatenating con-
tiguous BAD tokens into a single annotation. This
is done for token-tags, while each gap-tag can
be directly mapped to a single annotation without
attempting any merge operation. Note that this
immediately causes 4 types of information loss,
which can be addressed in a second step:

• Severity information is lost, since all three
severity labels are converted to BAD tags. As
a baseline, all spans are assigned the most fre-
quent severity, “major.”

• Span borders are defined on character-level,
whose positions may not match exactly the be-
ginning or ending of a token. This will cause
all characters of a partially correct token to be
annotated with an error.

• Contiguous BAD tokens will always be mapped
to a single annotation, even if they belong to dif-
ferent ones.

• Non-contiguous BAD tokens will always be
mapped to separate annotations, even if they be-
long to the same one.

PAIR SYSTEM TARGET F1 SOURCE F1 PEARSON

En-De

LINEAR 0.3346 0.2975 -
APE-QE 0.3740 0.3446 0.3558
APE-BERT 0.4244 0.4109 0.3816
PREDEST-RNN 0.3786 - 0.5020
PREDEST-TRANS 0.3980 - 0.5300
PREDEST-XLM 0.4144 0.3960 0.5810
PREDEST-BERT 0.3870 0.3310 0.5190
LINEAR ENS. 0.4520 0.4116 -
(*)POWELL’S ENS. 0.4872 0.4607 0.5968

En-Ru

LINEAR 0.2839 0.2466 -
APE-QE 0.2592 0.2336 0.1921
APE-BERT 0.2519 0.2283 0.1814
NUQE 0.3130 0.2000 -
PREDEST-RNN 0.3201 - -
PREDEST-TRANS 0.3414 - 0.3655
PREDEST-XLM 0.3799 0.3280 0.4983
PREDEST-BERT 0.3782 0.3039 0.5000
(*)ENSEMBLE 1 0.3932 0.3640 0.5469
(*)ENSEMBLE 2 0.3972 0.3700 0.5423

Table 2: Word and sentence-level results for En-De
and En-Ru on the validation set in terms of F1-MULT
and Pearson’s r correlation. (*) Lines with an aster-
isk use Powell’s method for word level ensembling and
`2-regularized regression for sentence level. As the
weights are tuned on the dev set, their numbers can not
be directly compared to the other models

Although more sophisticated approaches were
tested for predicting severities and merging spans
into the same annotation, these approaches did not
result in significant gains, hence we opted by us-
ing the previously described pipeline as our final
system. To predict document-level MQM, each
sentence’s MQM is first predicted and used to get
the average sentence MQM (weighting the aver-
age by sentence length degraded results in all ex-
periments). This is used together with 3 percent-
ages of BAD tags from the word-level model (con-
sidering token tags, gap tags and all gaps) as fea-
tures for a linear regression which outputs the final
document-level MQM prediction. The percentage
of BAD tags is obtained from the previously de-
scribed word-level predictions, whereas the sen-
tence MQMs are obtained from an ensemble of
5 BERT models trained for sentence-level MQM
prediction. Again, each BERT model was trained
as described in §2.6 without pre-fine-tuning, and
the ensembling consisted of a simple average.4

4 Experimental Results

4.1 Word and Sentence-Level Task
The results achieved by each of the systems de-
scribed in §2 for En-De and En-Ru on the valida-

4Using the approach of Ive et al. (2018) proved less ro-
bust to this year’s data due to differences in the annotations.
Particularly some outliers containing zero annotations would
strongly harm the final Pearson score when mis-predicted.
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PAIR SYSTEM TARGET F1 TARGET MCC SOURCE F1 SOURCE MCC PEARSON

En-Ru
Baseline 0.2412 0.2145 0.2647 0.1887 0.2601
ENSEMBLE 1 0.4629 0.4412 0.4174 0.3729 0.5889
ENSEMBLE 2 0.4780 0.4577 0.4541 0.4212 0.5923

En-De
Baseline 0.2974 0.2541 0.2908 0.2126 0.4001
LINEAR ENSEMBLE 0.4621 0.4387 0.4284 0.3846 -
POWELL’S ENSEMBLE 0.4752 0.4585 0.4455 0.4094 0.5718

Table 3: Word and sentence-level results for En-De and En-Ru on the test set in terms of F1-MULT and Pearson’s
r correlation.

tion set are shown in Table 2. We tried the follow-
ing strategies for ensembling:

• For En-De, we created a word-level ensem-
bled system with Powell’s method, by com-
bining one instance of the APE-BERT sys-
tem, another instance of the PSEUDO-APE-
QE system, 10 runs of the PREDEST-XLM
model (trained jointly for all subtasks), 6 runs of
the same model without pre-fine-tuning, 5 runs
of the PREDEST-BERT model (trained jointly
for all subtasks), and 5 runs of the PREDEST-
TRANS model (trained jointly for MT and sen-
tence subtasks, but not for predicting source
tags). For comparison, we report also the per-
formance of a stacked linear ensembled word-
level system. For the sentence-level ensemble,
we learned system weights by fitting a linear re-
gressor to the sentence scores produced by all
the above models.

• For En-Ru, we tried two versions of word-
level ensembled systems, both using Powell’s
method: EMSEMBLE 1 combined one instance
of the APE-BERT system, 5 runs of the
PREDEST-XLM model (trained jointly for all
subtasks), one instance of the PREDEST-BERT
model (trained jointly for all subtasks), 5 runs
of the NUQE models (trained jointly for all
subtasks), and 5 runs of the PREDEST-TRANS

model (trained jointly for MT and sentence sub-
tasks, but not for predicting source tags). EM-
SEMBLE 2 adds to the above predictions from
the PSEUDO-APE-QE system. In both cases,
for sentence-level ensembles, we learned sys-
tem weights by fitting a linear regressor to the
sentence scores produced by all the above mod-
els.

The results in Table 2 show that the transfer
learning approach with BERT and XLM bene-
fits the QE task. The PREDEST-XLM model,
which has been pre-trained with a translation ob-

DEV DEV0 TEST

F1 ANN. (BERT) 0.4664 0.4457 0.4811
MQM (BERT) 0.3924 - 0.3727
MQM (LINBERT) - 0.4714 0.3744

Table 4: Results of document-level submissions, and
their performance of the dev and dev0 validation sets.

jective, has a small but consistent advantage over
both PREDEST-BERT and PREDEST-TRANSF. A
clear takeaway is that ensembling of different sys-
tems can give large gains, even if some of the sub-
systems are weak individually.

Table 3 shows the results obtained with our en-
semble systems on the official test set.

4.2 Document-Level Task

Finally, Table 4 contains results for document-
level submissions, both on validation and test set
submissions. On F1 annotations, results across all
data sets are reasonably consistent. On the other
hand, MQM Pearson varies significantly between
dev and dev0. Differences in the training of the
two systems shouldn’t explain this variation, since
both have equivalent performance on the test set.

5 Conclusions

We presented Unbabel’s contribution to the WMT
2019 Shared Task on Quality Estimation. Our
submissions are based on the OpenKiwi frame-
work, to which we added new transfer learning ap-
proaches via BERT and XLM pre-trained models.
We also proposed a new ensemble technique using
Powell’s method that outperforms previous strate-
gies, and we convert word labels into span anno-
tations to obtain document-level predictions. Our
submitted systems achieve the best results on all
tracks and language pairs.
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Abstract
For translation quality estimation at word and
sentence levels, this paper presents a novel
approach based on BERT that recently has
achieved impressive results on various natu-
ral language processing tasks. Our proposed
model is re-purposed BERT for the translation
quality estimation and uses multi-task learning
for the sentence-level task and word-level sub-
tasks (i.e., source word, target word, and tar-
get gap). Experimental results on Quality Es-
timation shared task of WMT19 show that our
systems show competitive results and provide
significant improvements over the baseline.

1 Introduction

Translation quality estimation (QE) has become an
important research topic in the field of machine
translation (MT), which is used to estimate qual-
ity scores and categories for a machine-translated
sentence without reference translations at various
levels (Specia et al., 2013).

Recent Predictor-Estimator architecture-based
approaches (Kim and Lee, 2016a,b; Kim et al.,
2017a,b, 2019; LI et al., 2018; Wang et al., 2018)
have significantly improved QE performance. The
Predictor-Estimator (Kim and Lee, 2016a,b; Kim
et al., 2017a,b, 2019) is based on a modified neu-
ral encoder architecture that consists of two subse-
quent neural models: 1) a word prediction model,
which predicts each target word given the source
sentence and the left and right context of the tar-
get word, and 2) a quality estimation model, which
estimates sentence-level scores and word-level la-
bels from features produced by the predictor. The
word prediction model is trained from additional
large-scale parallel data and the quality estimation
model is trained from small-scale QE data.

Recently, BERT (Devlin et al., 2018) has led to
impressive improvements on various natural lan-
guage processing tasks. BERT is a bidirectionally

trained language model from large-scale “mono-
lingual” data to learn the “monolingual” context
of a word based on all of its surroundings (left and
right of the word).

Both BERT that is based on the Transformer
architecture (Vaswani et al., 2017) and the word
prediction model in the Predictor-Estimator that is
based on the attention-based recurrent neural net-
work (RNN) encoder-decoder architecture (Bah-
danau et al., 2015; Cho et al., 2014) have some
common ground utilizing generative pretraining of
sentence encoder.

In this paper, we propose a “bilingual” BERT
using multi-task learning for translation quality
estimation (called the QE BERT). We describe
how we have applied BERT (Devlin et al., 2018)
to the QE task to make much improvements. In
addition, for recent QE task, which consists of
one sentence-level subtask to predict HTER scores
and three word-level subtasks to detect errors for
each source word, target (mt) word, and target
(mt) gap, we also have applied multi-task learning
(Kim et al., 2019, 2017b) to enhance the training
data from other QE subtasks1. The results of ex-
periments conducted on the WMT19 QE datasets
show that our proposed QE BERT using multi-task
learning provides significant improvements over
the baseline system.

2 QE BERT

In this section, we describe two training steps for
QE BERT: pre-training and fine-tuning. Figure
1 shows QE BERT architecture to predict HTER
scores in sentence-level subtask and to detect er-
rors in word-level source word, mt word, and mt
gap subtasks. The sentences are tokenized using

1Kim et al. (2019, 2017b) use multi-task learning to take
into account the training data of other QE subtasks as alter-
native route of handling the insufficiency of target training
data.
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(SRC) deleting this text is harmless . 

QE BERT

OK OK       OK      BAD    BAD OK

OK OK OK OK BAD OK OK OK

0.375

< MT Word Tags >

OK OK OK OK OK OK BAD  BAD BAD BAD OK 

< HTER >

< MT Gap Tags >

OK OK OK OK BAD  BAD OK 

OK        OK        OK       OK      BAD     BAD     BAD      OK

(MT) das Löschen dieses Texts ist unbemerkt .
(PE)  das Löschen dieses Texts verursacht keine Probleme .

< SRC Word Tags >

Figure 1: QE BERT architecture.

WordPiece tokenization.

2.1 Pre-training

The original BERT (Devlin et al., 2018) is focused
on “monolingual” natural language understanding
using generative pretraining of sentence encoder.
QE BERT, which is focused on “bilingual” natural
language understanding2, is pre-trained from par-
allel data to learn the bilingual context of a word
based on all of its left and right surroundings.

In pre-training, a default [SEP] token is used
to separate source sentence and target sentence of
parallel data. In addition, [GAP] tokens, which are
newly introduced in this paper for word-level tar-
get gap, are inserted between target words.

As a pre-training task of QE BERT, only the
masked LM task between parallel sentences is
conducted where 15% of the words are replaced
with a [MASK] token and then original values
of the masked words are predicted3. The pre-
training enables to make a large-scale parallel data
helpful to QE task. As an initial checkpoint of
pre-training, we used the released multilingual
model4.

2.2 Fine-tuning

QE BERT is fine-tuned from QE data with the
above pre-trained model for a target-specific QE

2In Lample and Conneau (2019), translation language
model (TLM) pretraining is used for cross-lingual under-
standing by concatenating parallel sentences.

3In Devlin et al. (2018), two pre-training tasks – masked
LM and next sentence prediction – are conducted simultane-
ously.

4“BERT-Base Multilingual Cased” model, released in
https://github.com/google-research/bert.

task.
Similar to the pre-training step, a [SEP] token

is used to separate source sentence and machine
translation sentence of QE data. [GAP] tokens are
inserted between words of the machine translation
sentence.

2.2.1 Word-level QE
To compute a word-level QE, the final hidden state
(ht) corresponds to each token embedding is used
as follows:

P = softmax(W• ht) (1)

where P is the label probabilities and W is the
weight matrix used for word-level fine-tuning. Be-
cause word-level QE task consists of source word,
mt word, and mt gap subtasks, three different types
of weight matrix are used for each task: Wsrc.word,
Wmt.word, and Wmt.gap.

Because each word of sentences could be tok-
enized to several tokens, we primarily compute the
token-level labels as follows:

QEtoken =

{
OK , if argmax(P ) = 1

BAD, if argmax(P ) = 0.
(2)

And then, we compute word-level labels from the
token-level labels. In training, if a word is labeled
as ‘BAD’, all of tokens in the word boundary have
‘BAD’ labels. In inference, if any token in the
word boundary is labeled as ‘BAD’, the output of
the word-level QE has a ‘BAD’ label.

2.2.2 Sentence-level QE
To compute a sentence-level QE, the final hidden
state (hs) corresponds to the [CLS] token embed-
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ding, which is a fixed-dimensional pooled repre-
sentation of the input sequence, is used as follows:

QEsent = sigmoid(Ws hs) (3)

where Ws is the weight matrix used for sentence-
level fine-tuning.

2.2.3 Multi-task learning
The QE subtasks at word and sentence levels are
highly related because their quality annotations
are commonly based on the HTER measure. Qual-
ity annotated data of other QE subtasks could be
helpful in training a QE model specific to a target
QE task (Kim et al., 2019). To take into account
the training data of other QE subtasks as a route of
supplementation of target training data, we apply
multi-task learning (Kim et al., 2019, 2017b).

For multi-task learning of word-level QE, we
use a linear summation of word-level objective
losses as follows:
LWORD = Lsrc.word + Lmt.word + Lmt.gap

where most QE BERT components are common
across word-level source word, mt word, and
mt gap subtasks except for the output matrices
Wsrc.word, Wmt.word, and Wmt.gap.

Kim et al. (2019) showed that it is helpful to
use word-level training examples for training a
sentence-level QE model. For multi-task learn-
ing of sentence-level QE, we combine sentence-
level objective loss and word-level objective losses
by simply performing a linear summation of the
losses for each task as follows:
LSENT = Lhter+Lsrc.word+Lmt.word+Lmt.gap

where most QE BERT components are common
across sentence-level and word-level tasks except
for the output matrices of each task.

3 Experimentation

3.1 Experimental settings
The proposed learning methods were evaluated
on the WMT19 QE Shared Task5 of word-level
and sentence-level English-Russian and English-
German.

We used parallel data provided for the WMT19
news machine translation task6 to pre-train QE
BERT. The English-Russian parallel data set con-
sisted of the ParaCrawl corpus, Common Crawl
corpus, News Commentary corpus, and Yandex

5http://www.statmt.org/wmt19/qe-task.html
6http://www.statmt.org/wmt19/translation-

task.html

Corpus. The English-German parallel data set
consisted of the Europarl corpus, ParaCrawl cor-
pus, Common Crawl corpus, News Commentary
corpus, and Document-split Rapid corpus.

In pre-training, we used the default hyperpa-
rameter setting of the released multilingual model.
In fine-turing, a sequence length of 512 was used
to cover the length of QE data.

To make ensembles, we combined five instances
having different hyperparameter weight for ‘BAD’
label (i.e., 1:10, 1:15, 1:20, 1:25, and 1:30). For
word-level ensemble results, we voted the pre-
dicted labels from each instance. For sentence-
level ensemble results, we averaged the predicted
HTER scores from each instance.

3.2 Comparison of learning methods

Tables 1 and 2 show the experimental results ob-
tained from the QE BERT using the different
learning methods for the WMT19 word-level and
sentence-level QE tasks. For both language pairs,
using multi-task learning consistently improves
the scores.

We made ensembles by combining five in-
stances of QE BERT models. The word-level re-
sults of ensemble A are based on mixtures of the
best performance systems on each subtasks (i.e.,
source word, mt word, and mt gap tasks). On
the other hand, the word-level results of ensemble
B are based on an all-in-one system using a uni-
fied criterion7 with same model parameters for all
word-level subtasks.

Finally, Tables 3 and 4 show the results obtained
in the WMT19 test set for our submitted systems
and official baseline systems.

4 Conclusion

In this paper, we explored an adaptation of BERT
for translation quality estimation. Because the
quality estimation task consists of one sentence-
level subtask to predict HTER scores and three
word-level subtasks to detect errors for each
source word, target word, and target gap, we also
applied multi-task learning to enhance the train-
ing data from other subtasks. The results of
experiments conducted on WMT19 quality esti-
mation datasets strongly confirmed that our pro-
posed bilingual BERT using multi-task learning

7The averaged performance on source word, mt word, and
mt gap tasks is used as the unified criterion to select model
parameters of the all-in-one system.
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Word level Source Word MT (All)
( F1-Mult ↑ F1-BAD ↑ F1-OK ↑ ) ( F1-Mult ↑ F1-BAD ↑ F1-OK ↑ )

<English-Russian>
QE-BERT Word 0.3344 0.3663 0.9128 0.3895 0.4051 0.9617
QE-BERT Multitask-Word 0.3513 0.3780 0.9294 0.3943 0.4076 0.9673
QE-BERT Multitask-Word Ensemble A∗ 0.3600 0.3861 0.9326 0.4128 0.4275 0.9657
QE-BERT Multitask-Word Ensemble B∗ 0.3452 0.3700 0.9331 0.3934 0.4071 0.9665

<English-German>
QE-BERT Word 0.3755 0.4113 0.9130 0.4028 0.4198 0.9595
QE-BERT Multitask-Word 0.3918 0.4288 0.9138 0.4074 0.4258 0.9567
QE-BERT Multitask-Word Ensemble A∗ 0.4044 0.4391 0.9210 0.4318 0.4501 0.9593
QE-BERT Multitask-Word Ensemble B∗ 0.3916 0.4262 0.9189 0.4288 0.4466 0.9602

Word level MT Word MT Gap
( F1-Mult ↑ F1-BAD ↑ F1-OK ↑ ) ( F1-Mult ↑ F1-BAD ↑ F1-OK ↑ )

<English-Russian>
QE-BERT Word 0.4215 0.4561 0.9240 0.1609 0.1631 0.9863
QE-BERT Multitask-Word 0.4313 0.4616 0.9344 0.1734 0.1758 0.9866
QE-BERT Multitask-Word Ensemble A∗ 0.4354 0.4642 0.9381 0.1791 0.1812 0.9884
QE-BERT Multitask-Word Ensemble B∗ 0.4180 0.4446 0.9403 0.1710 0.1730 0.9882

<English-German>
QE-BERT Word 0.4307 0.4640 0.9283 0.2729 0.2765 0.9871
QE-BERT Multitask-Word 0.4365 0.4724 0.9241 0.2936 0.2983 0.9840
QE-BERT Multitask-Word Ensemble A∗ 0.4429 0.4766 0.9293 0.3060 0.3107 0.9849
QE-BERT Multitask-Word Ensemble B∗ 0.4443 0.4767 0.9320 0.2884 0.2930 0.9845

∗ Our submissions at the WMT19 QE task

Table 1: Results of the QE BERT model on the development set of the WMT19 word-level QE task.

Sentence level Pearson’s r ↑ Spearman’s ρ ↑ MAE ↓ RMSE ↓
<English-Russian>
QE-BERT Sent 0.4683 0.4524 0.1151 0.2072
QE-BERT Multitask-Sent-Word 0.4948 0.4908 0.1106 0.2056
QE-BERT Multitask-Sent-Word Ensemble∗ 0.5229 0.5102 0.1080 0.2016

<English-German>
QE-BERT Sent 0.4849 0.5401 0.1072 0.1698
QE-BERT Multitask-Sent-Word 0.5199 0.5859 0.1026 0.1670
QE-BERT Multitask-Sent-Word Ensemble∗ 0.5450 0.6229 0.0978 0.1665

∗ Our submissions at the WMT19 QE task

Table 2: Results of the QE BERT model on the development set of the WMT19 sentence-level QE task.

Word level Source Word
F1-Mult ↑

MT (All)
F1-Mult ↑

<English-Russian>
Baseline 0.2647 0.2412
QE-BERT Multitask-Word Ensemble A∗ 0.4202 0.4515
QE-BERT Multitask-Word Ensemble B∗ 0.4114 0.4300

<English-German>
Baseline 0.2908 0.2974
QE-BERT Multitask-Word Ensemble A∗ 0.3946 0.4061
QE-BERT Multitask-Word Ensemble B∗ 0.3960 0.4047

∗ Our submissions at the WMT19 QE task

Table 3: Results of the QE BERT model on the test set of the WMT19 word-level QE task.

Sentence level Pearson’s r ↑ Spearman’s ρ ↑
<English-Russian>
Baseline 0.2601 0.2339
QE-BERT Multitask-Sent-Word Ensemble∗ 0.5327 0.5222

<English-German>
Baseline 0.4001 0.4607
QE-BERT Multitask-Sent-Word Ensemble∗ 0.5260 0.5745

∗ Our submissions at the WMT19 QE task

Table 4: Results of the QE BERT model on the test set of the WMT19 sentence-level QE task.
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achieved significant improvements. Given this
promising approach, we believe that BERT-based
quality estimation models can be further advanced
with more investigation.
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Abstract

We explore different model architectures for
the WMT 19 shared task on word-level qual-
ity estimation of automatic translation. We
start with a model similar to Shef-bRNN (Ive
et al., 2018), which we modify by using con-
ditional random fields (CRFs) (Lafferty et al.,
2001) for sequence labelling. Additionally, we
use a different approach for labelling gaps and
source words. We further develop this model
by including features from different sources
such as BERT (Devlin et al., 2018), baseline
features for the task (Specia et al., 2018) and
transformer encoders (Vaswani et al., 2017).
We evaluate the performance of our models
on the English-German dataset for the corre-
sponding task.

1 Introduction

Current methods of assessing the quality of ma-
chine translation, like BLEU (Papineni et al.,
2002), are based on comparing the output of a ma-
chine translation system with several gold refer-
ence translations. The tasks of quality estimation
at the WMT 19 conference aims at detecting er-
rors in automatic translation without a reference
translation at various levels (word-level, sentence-
level and document-level). In this work we predict
word-level quality.

In the task the participants are given a source
sentence and its automatic translation and are
asked to label the words in the machine transla-
tion as OK or BAD. The machine translation sys-
tem could have omitted some words in the trans-
lated sentence. To detect such errors participants
are also asked to label the gaps in the automatic
translation. A target sentence has a gap between
every pair of neighboring words, one gap in the
beginning of the sentence and one gap at the end
of the sentence. We are also interested in detect-
ing the words in the source sentence that led to

errors in the translation. For this purpose partici-
pants are also asked to label the words in source
sentences. The source labels were obtained based
on the alignments between the source and the post-
edited target sentences. If a target token is labeled
as BAD in the translation, then all source tokens
aligned to it are labeled as BAD as well.

In section 2 we introduce our base model, which
is a modified version of phrase-level Shef-bRNN
(Ive et al., 2018), and further develop it by using
different methods of extracting features from the
input alongside the bi-RNN features. In section
3 we write about our experimental setup and in
section 4 we present the scores achieved by our
models. In section 5 we summarize our work and
propose ways for further development.

2 Models

All of our models have two stages: feature extrac-
tion and tag prediction. The first stage uses dif-
ferent neural architectures like bi-LSTM encoder
and BERT (Devlin et al., 2018) to extract fea-
tures from the input sequences. Some models also
use human-crafted features alongside the automat-
ically generated ones. The second stage feeds the
sequence of extracted features into a CRF (Laf-
ferty et al., 2001) to obtain labels for words or gaps
in the automatic translation.

2.1 RNN Features

Our base model is similar to phrase-level Shef-
bRNN (Ive et al., 2018). We chose the phrase-level
version of Shef-bRNN over the word-level version
because we found it to be more understandable
and intuitive.

The model is given a sequence of source to-
kens s1, . . . , sn and a sequence of target tokens
t1, . . . , tm. The source sequence is fed into the
source encoder, which is a bidirectional LSTM.
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Thus, for every word sj in the source a source vec-

tor hsrcj =
[
~hsrcj , ~h

src

j

]
is produced, where ~hsrcj and

~h
src

j are the corresponding hidden states of the for-
ward and backward LSTMs and [x, y] is the con-
catenation of vectors x and y. Similarly, the target
sequence is fed into the target encoder, which is
also a bidirectional LSTM, to obtain a target vec-
tor htgtj for every word tj in the target sequence.
Global attention (Luong et al., 2015) is used to ob-
tain context vector cj for every target vector htgtj :

αij = hsrc>i htgtj ,

aij =
exp(αij)∑

k=1n exp(αkj)
,

cj =
n∑

k=1

akjh
src
k .

The vector cj gives a summary of the source sen-
tence, focusing on parts which are most relevant to
the target token. Using the same technique, we ob-
tain self-context vector scj for every target vector
htgtj by computing global attention for htgtj over
htgti , i 6= j. The resulting feature vector is denoted

as fRNN
j =

[
htgtj , cj , scj

]
for every word tj in the

target sequence.

2.2 Baseline Features

Specia et al. (2018) use a CRF (Lafferty et al.,
2001) with a set of human-crafted features as the
baseline model for the same task at WMT 18.
The WMT 18 and WMT 19 tasks use the same
English-German dataset, so we can use the base-
line features provided with the WMT 18 dataset to
further improve the performance our model.

For every word tj in the target sequence base-
line features represent a sequence of 34 values:
b1j , . . . , b

34
j , some of which are numerical – like

the word count in source and target sentences –
and the others are categorical – like the target to-
ken, aligned source token and their part-of-speech
(POS) tags. We represent categorical features us-
ing one-hot encoding. In this case if a value of
a categorical feature occurs less than min occurs
times in the train dataset, then this value is ignored
(i.e. it is represented by a zero vector). After the
conversion all features are concatenated into a sin-
gle feature vector fBase

j

2.3 BERT Features
BERT is a model for language representation pre-
sented by Delvin et al. (2018) which demonstrated
state of the art performance on several NLP tasks.
BERT is trained on a word prediction task and, as
shown in (Kim et al., 2017), word prediction can
be helpful for the quality estimation task. Pre-
trained versions of BERT are publicly available
and we use one of them to generate features for
our models.

To extract BERT features the target sequence is
fed into a pretrained BERT model. It is impor-
tant to note that we do not fine-tune BERT and
just use its pretrained version as-is. BERT uti-
lizes WordPiece tokenization (Wu et al., 2016),
so for each target token tj it produces kj output
vectors BERT1

j , . . . ,BERT
kj
j . However, we can

only use a fixed size feature vector for each source
token. We noticed that about 83% of target to-
kens produce less than three BERT tokens. This
means that by using only two of the produced to-
kens we will preserve most of the information.
To obtain the BERT feature vector, we decided
to concatenate the first and the last BERT outputs
fBERT
j =

[
BERT1

j ,BERT
kj
j

]
. We chose the first

and the last outputs, because this approach was the
easiest to implement.

2.4 Transformer Encoder
We tried replacing bi-RNN encoders with trans-
former encoders (Vaswani et al., 2017) to include
more contextual information in the encoder out-
puts.

The source transformer encoder produces em-
beddings hsrc1 , . . . , hsrcn for the source sequence
and the target transformer encoder produces out-
puts htgt1 , . . . , htgtm for the target sequence. Af-
ter that, similarly to 2.1, a context vector cj is
obtained for every word in the target sequence.
For transformer encoder we do not compute self-
context vectors as the transformer architecture it-
self utilizes the self-attention mechanism.

The resulting feature vector is denoted as
fTrfj =

[
htgtj , cj

]
.

2.5 Word Labelling
After the feature vectors for the target sequence
have been obtained, they are fed into a CRF that
labels the words in the translation. In this paper we
explore architectures that use the following feature
vectors:
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• RNN: fRNN
j ;

• RNN+Baseline:

fRNN+Baseline
j =

[
fRNN
j , fBase

j

]
;

• RNN+BERT:

fRNN+BERT
j =

[
fRNN
j , fBERT

j

]
;

• RNN+Baseline+BERT:

fRNN+Baseline+BERT
j =

=
[
fRNN
j , fBase

j , fBERT
j

]
;

• Transformer: fTrfj .

• Transformer+Baseline+BERT:

fTransformer+Baseline+BERT
j =

=
[
fTrfj , fBase

j , fBERT
j

]
;

To label words in the source sequence we use
the alignments between the source sentence and
the machine translation provided with the dataset.
Specifically, if a source word sj is aligned with
a target word tj , which is labeled as BAD then we
label sj as BAD as well. In case when sj is aligned
with multiple target words, we label sj as BAD if
at least one of the aligned target words is labeled
BAD.

2.6 Gap Labelling

Unlike word-level Shef-bRNN, we refrain from
using a dummy word to predict gap tags, because
increasing the input sequence length might make it
difficult for encoders to carry information between
distant words. Instead, we train different models
for word labelling and gap labelling.

To modify a word labelling architecture Arch,
where Arch is either RNN+Baseline+BERT or
Transformer+Baseline+BERT, to label gaps, we
construct a new sequence of features:

fgArch
j =

[
fArch
j , fArch

j+1

]

for j = 0, . . . ,m. Here we assume fArch
0 and

fArch
m+1 to be zero vectors.

After the new sequence has been constructed,
we feed it into a CRF to label the gaps.

3 Experimental Setup

We train and evaluate our models on the WMT
19 Word-Level Quality Estimation Task English-
German dataset. In our experiments we did not
utilize pre-training or multi-task learning unlike
some versions of Shef-bRNN. All our models
were implemented in PyTorch, the code is avail-
able online. 1

For RNN feature extraction we use OpenNMT
(Klein et al., 2017) bi-LSTM encoder implemen-
tation with 300 hidden units in both backward and
forward LSTMs for models that label words and
150 hidden units for models that label gaps. We
used FastText models (Grave et al., 2018) for En-
glish and German languages to produce word em-
beddings.

Baseline features were provided with
the dataset. In our experiments we used
min occurs = 4 when building baseline feature
vocabularies.

Pretrained BERT model was provided by the
pytorch-pretrained-bert package. 2 In our exper-
iments we used the bert-base-multilingual-cased
version of BERT.

We used the OpenNMT (Klein et al., 2017)
transformer encoder implementation with the fol-
lowing parameters: num layers = 3, d model =
300, heads = 4, d ff = 600 (or d ff = 300 for
gap labelling), dropout = 0.1.

We trained our models using PyTorch imple-
mentation of the ADADELTA algorithm (Zeiler,
2012) with all parameters, except the learning rate,
set to their default values. For the train loss to con-
verge we used the learning rate of 1 for the RNN
and Transformer models, the learning rate of 0.3
for the RNN+Baseline model and the learning rate
of 0.1 for RNN+Bert, RNN+Baseline+Bert and
Transformer+Baseline+Bert models. The inputs
were fed into the model in mini-batches of 10 sam-
ples.

4 Results

We used the English-German dataset provided in
the WMT 19 Shared task on Word-Level Quality
Estimation. The primary metric for each type of
tokens – source words, target words and gaps – is

1https://github.com/Mogby/
QualityEstimation

2https://github.com/huggingface/
pytorch-pretrained-BERT
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F1 Mult which is the product of F1 scores for BAD
and OK labels.

The scores for each system are presented
in Table 1 (participation results), Table 2 (tar-
get words), Table 3 (source words) and Ta-
ble 4 (gaps). For the WMT 19 task we
submitted the RNN+Baseline+BERT and Trans-
former+Baseline+BERT models which corre-
spond to the Neural CRF RNN and Neural CRF
Transformer entries in the public leaderboard.

We don’t have the scores for the WMT
18 Baseline system and the Shef-bRNN sys-
tem on the development dataset, so we can
compare them directly with only two of our
systems from table 1. Both of these sys-
tems perform on par with Shef-bRNN and the
Transformer+Baseline+BERT model was able to
achieve a slightly better score for target classifica-
tion. Word-level Shef-bRNN seems to outperform
all of our other systems, most likely, because it
uses a more appropriate architecture for the task.
All of our systems, seem to outperform the WMT
18 baseline system.

The BERT features turned out to improve the
performance a little – an increase of 0.02 for tar-
get labelling and an increase of 0.01 for source
labelling. The baseline features, on the other
hand, have a greater impact on the model’s per-
formance, increasing the score by 0.05 for target
labelling and by 0.04 for source labelling. Replac-
ing the bi-RNN encoder with a transformer en-
coder also improved the score by 0.03 in case of
the RNN+Baseline+BERT configuration.

5 Conclusion

We applied different neural systems to the task of
word-level quality estimation. We measured their
performance in comparison to each other and the
baseline system for the task. All of our systems
outperformed the WMT 18 baseline on the devel-
opment dataset and can be trained in a couple of
hours on a single Tesla K80 GPU.

Our models can be further improved by fine-
tuning BERT and utilizing multi-task learning as
proposed in (Kim et al., 2017).

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

Julia Ive, Carolina Scarton, Frédéric Blain, and Lucia
Specia. 2018. Sheffield submissions for the WMT18
quality estimation shared task. In Proceedings of the
Third Conference on Machine Translation: Shared
Task Papers, WMT 2018, Belgium, Brussels, Octo-
ber 31 - November 1, 2018, pages 794–800.

Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon Na.
2017. Predictor-estimator using multilevel task
learning with stack propagation for neural quality
estimation. pages 562–568.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proc. ACL.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001, pages 282–289.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. CoRR,
abs/1508.04025.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Lucia Specia, Frédéric Blain, Varvara Logacheva,
Ramón Astudillo, and André F. T. Martins. 2018.
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RNN + Baseline + BERT dev 0.88 0.29 0.25
Transformer dev 0.88 0.23 0.20
Transformer + Baseline + BERT dev 0.89 0.28 0.25

Table 3: Models scores on WMT 19 English-German dataset, source prediction. The Shef-bRNN scores are taken
from (Ive et al., 2018)
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from (Ive et al., 2018)
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Abstract
In this paper, we describe the submissions
of the team from Nanjing University for
the WMT19 sentence-level Quality Estima-
tion (QE) shared task on English-German lan-
guage pair. We develop two approaches based
on a two-stage neural QE model consisting
of a feature extractor and a quality estima-
tor. More specifically, one of the proposed
approaches employs the translation knowledge
between the two languages from two differ-
ent translation directions; while the other one
employs extra monolingual knowledge from
both source and target sides, obtained by pre-
training deep self-attention networks. To ef-
ficiently train these two-stage models, a joint
learning training method is applied. Experi-
ments show that the ensemble model of the
above two models achieves the best results
on the benchmark dataset of the WMT17
sentence-level QE shared task and obtains
competitive results in WMT19, ranking 3rd
out of 10 submissions.

1 Introduction

Sentence-level Quality Estimation (QE) of Ma-
chine Translation (MT) is a task to predict the
quality scores for unseen machine translation out-
puts at run-time, without relying on reference
translations. There are some interesting appli-
cations of sentence-level QE, such as deciding
whether a given translation is good enough for
publishing, informing readers of the target lan-
guage only whether or not they can rely on a trans-
lation, filtering out sentences that are not good
enough for post-editing by professional transla-
tors, selecting the best translation among multiple
MT systems and so on.

The common methods formalize the sentence-
level QE as a supervised regression task. Tradi-
tional QE models (Specia et al., 2013, 2015) have

∗ Corresponding author.

two independent modules: feature extractor mod-
ule and machine learning module. The feature ex-
tractor module is used to extract human-crafted
features, which describe the translation quality,
such as source fluency indicators, translation com-
plexity indicators, and adequacy indicators. And
the machine learning module serves for predicting
how much effort is needed to post-edit translations
to acceptable results as measured by the Human-
targeted Translation Edit Rate (HTER) (Snover
et al., 2006) based on extracted features above.

With the great success of deep neural networks
in a number of tasks in natural language process-
ing (NLP), some researches have begun to apply
neural networks to QE task and these neural ap-
proaches have shown promising results. Shah et al.
(2015, 2016) combine neural features, such as
word embedding features and neural network lan-
guage model (NNLM) features with other features
produced by QuEst++ (Specia et al., 2015). Kim
and Lee (2016); Kim et al. (2017a,b) apply mod-
ified recurrent neural network (RNN) based neu-
ral machine translation (NMT) model (Bahdanau
et al., 2014) to the sentence-level QE task, which
does not require manual effort for finding the best
relevant features. Wang et al. (2018) replace the
above NMT model with modified self-attention
mechanism based transformer model (Vaswani
et al., 2017). This approach achieves the best re-
sult we know so far in the WMT17 sentence-level
QE task on English-German language pair.

In this paper, we present two different ap-
proaches for the sentence-level QE task, which
employ bi-directional translation knowledge and
large-scale monolingual knowledge to the QE
task, respectively. Also, a simple ensemble of
them can help to achieve better quality estimation
performance in the sentence-level QE task. The
remainder of this paper is organized as follows. In
Section 2 and Section 3, we separately describe
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the two proposed QE models above. In Section 4,
we report experimental results and conclude our
paper in Section 5.

2 Employing Bi-directional Translation
Knowledge

Sennrich et al. (2015) apply the idea of back-
translation to improve the performance of NMT
model by extending the parallel corpus with
monolingual data. Kozlova et al. (2016) propose
two types of features including pseudo-references
features for source sentence and back-translations
features for machine translation to enrich the base-
line features in sentence-level QE task. Inspired
by these successful practices, we present a Bi-
directional QE model, as depicted in Figure 1.

2.1 Model Architecture

The Bi-directional QE model contains a neural
feature extractor and a neural quality estimator.
The feature extractor relies on two symmetric
word predictors to extract quality estimation fea-
ture vectors (QEFVs) of the source sentence and
target sentence (i.e., machine translation output).
The quality estimator is based on two identical Bi-
directional RNN (BiRNN) (Schuster and Paliwal,
1997) for predicting quality scores using QEFVs
as inputs.

Figure 1: An illustration of the architecture of the pro-
posed Bi-directional QE model.

The source-to-target word predictor modi-
fies self-attention mechanism based transformer
model (Vaswani et al., 2017) to i) apply additional
backward decoder for the target sentence with the
right to left masked self-attention and ii) generate

QEFVs for target words as outputs, which is sim-
ilar with QEBrain model as described in Wang
et al. (2018). It is a conditional probabilistic model
that generates a target word y at j-th position via
the source context x = (x1, ..., xTx) and target
context y−j = (y1, ..., yj−1, yj+1, ..., yTy) as fol-
lows:

P (yj | y−j , x; θ) = softmax([−→sj ;←−sj ])

=
exp(w T

j Wsj)
∑Ky

k=1 exp(wT
kWsj)

(1)

where Tx and Ty are the length of the source and
target sentences. sj = [−→sj ;←−sj ] is the concatena-
tion of−→sj and←−sj , −→sj is the hidden state at the last
layer of forward decoder and←−sj is the hidden state
of backward decoder. wj ∈ RKy is the one-hot
representation of the target word, andKy is the vo-
cabulary size of the target language. W ∈ RKy×2d

is the weight matrix, and d is the size of a unidi-
rectional hidden layer.

To describe how well a target word yj in a target
sentence is translated from a source sentence, the
QEFVj is defined as follows:

QEFVj = [(wT
jW )� sT

j ]
T (2)

where � is an element-wise multiplication.
Similarly, the target-to-source word predictor

encodes a target sentence as input and decodes ev-
ery word for source sentence step by step. We use
the identical modified transformer model to gener-
ate QEFVi for every source word xi as output.

The quality estimator firstly uses the Bi-
directional Long Short-term Memory (BiL-
STM) (Hochreiter and Schmidhuber, 1997) model
to encode given QEFVs of the source and target
sentences such that
−−→
h1:Tx ,

←−−
h1:Tx = BiLSTM({QEFVi}i=Tx

i=1 ) (3)

−−→
h1:Ty ,

←−−
h1:Ty = BiLSTM(

{
QEFVj

}j=Ty

j=1
) (4)

Secondly, the quality estimator compresses the
concatenation of two sequential hidden states
along the depth direction to a single one by av-
eraging them respectively as follows:

hsrc =
1

Tx

i=Tx∑

i=1

([
−→
hi ;
←−
hi ]) (5)

htgt =
1

Ty

j=Ty∑

j=1

([
−→
hj ;
←−
hj ]) (6)
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Finally, sentence-level quality score of a trans-
lation sentence is calculated as follows:

QEsentence(y, x) = σ(vT[hsrc;htgt]) (7)

where v is a vector, σ denotes the logistic sigmoid
function.

In general, the word predictors in both direc-
tions can supervise each other and jointly com-
plete the goal of feature extractor, which enhances
the representation ability of the whole QE model.
At the same time, bi-directional translation knowl-
edge is transferred from feature extractor to qual-
ity estimator, which can be deemed to data aug-
mentation of the original parallel corpus. There-
fore, this approach can increase the diversity of
training samples and improve the robustness of QE
model.

2.2 Model Training
The training objective of Bi-directional QE model
is to minimize the Mean Average Error (MAE) be-
tween the gold standard labels and predicted qual-
ity scores over the QE training samples. Because
the training set for QE task is not sufficient for
training the entire QE model, we need to use large-
scale parallel corpus in source-to-target direction
and reverse (target-to-source) direction to pre-train
two word predictors respectively. Then, the pa-
rameters of the whole Bi-directional QE model
are trained jointly with the training samples of
sentence-level QE task.

3 Employing Monolingual Knowledge

In fact, most language pairs do not have a large
amount of parallel corpus to train the modified
NMT model. But finding monolingual data for any
language is relatively easy. Therefore, we propose
a QE model to integrate monolingual knowledge,
as depicted in Figure 2.

3.1 Model Architecture
The BERT-based QE model also consists of a
neural feature extractor and a neural quality es-
timator. The feature extractor is implemented
by a pre-training representation learning model
for language understanding called Multilingual-
BERT (Devlin et al., 2018), which extracts hidden
states corresponding to the last attention block as
QEFVs for the sentence pair of source sentence
and target sentence. Further, we can use a self-
attention based transformer model (Vaswani et al.,

Figure 2: An illustration of the architecture of the pro-
posed BERT-based QE model.

2017) to translate the source sentence to pseudo-
reference, which is the same language as the target
sentence. Then, the input of feature extractor is re-
placed with the sentence pair of pseudo-reference
and target sentence.

The quality estimator applies BiLSTM based
model to predict quality scores using QEFVs as
inputs such that

−−−−−→
h1:Tx+Ty ,

←−−−−−
h1:Tx+Ty = BiLSTM({QEFVi}i=Tx+Ty

i=1 )
(8)

hsrc−tgt =
1

Tx + Ty

i=Tx+Ty∑

i=1

([
−→
hi ;
←−
hi ]) (9)

QEsentence(x, y) = σ(vT
1hsrc−tgt) (10)

where v1 is a vector.

3.2 Model Training
Consistently, the pre-trained feature extractor and
initialized quality estimator of BERT-based QE
model are trained jointly over the training samples
of sentence-level QE task by minimizing the MAE
loss function.

4 Experiments

4.1 Dataset and Metrics
The bilingual parallel corpus that we used for
training word predictors is officially released by
the WMT17 Shared Task: Machine Translation
of News1, including Europarl v7, Common Crawl
corpus, News Commentary v12, and Rapid corpus
of EU press releases. The newstest2016 was used

1http://www.statmt.org/wmt17/translation-task.html

99



Train Dev Test 2017
Sentences 23,000 1,000 2,000

Table 1: Statistics of the en-de dataset of the WMT17
sentence-level QE task.

Train Dev Test 2019
Sentences 13,442 1,000 1,023

Table 2: Statistics of the en-de dataset of the WMT19
sentence-level QE task.

as development dataset. Pre-processing script can
be found at github2.

To test the performance of the proposed
QE models, we conducted experiments on the
WMT17 and WMT19 sentence-level QE task for
English-to-German (en-de) direction. Because the
gold standard labels of testing data on the WMT18
sentence-level QE task are unobtainable. The
statistics of the dataset are shown in Tables 1 and
2.

Pearson’s correlation coefficient (Pearson) (as
primary metric), Mean Average Error (MAE) and
Root Mean Squared Error (RMSE) are used to
evaluate the correlation between the predicted
quality scores and the true HTER scores.

4.2 Experimental Setting

Both of the word predictors of Bi-directional QE
Model hold the same parameters. The number
of layers for the self-attention encoder and for-
ward/backward self-attention decoder are all set as
6, where we use 8-head self-attention in practice.
The dimensionality of word embedding and self-
attention layers are all 512 except the feed-forward
sub-layer is 2048. The dropout rate is set as 0.1.
Worth mentioning, the normal transformer model
introduced in BERT-based QE model is trained us-
ing the same parallel corpus and parameter set-
tings as word predictors.

For quality estimator module, the number of
hidden units for forward and backward LSTM is
512. And we uniformly use a minibatch stochastic
gradient descent (SGD) algorithm together with
Adam (Kingma and Ba, 2014) to train all models
described.

These proposed models were compared with
the traditional QE framework QuEst++ (Specia
et al., 2015), the neural network features based

2https://github.com/zhaocq-nlp/MT-data-processing

QE model SHEF/QUEST-EMB (Shah et al., 2016)
and the QE model combined with NMT model,
including POSTECH (Kim et al., 2017b), QE-
Brain (Wang et al., 2018), and UNQE (Li et al.,
2018).

4.3 Experimental Results

In this section, we will report the experimental re-
sults of our approaches for WMT17 and WMT19
sentence-level QE task in English-German direc-
tion. For WMT17 QE task, we tried to verify our
proposed models and chose the best two models
to participate in WMT19 QE task. In Table 3 and
Table 4, results of WMT17 and WMT19 QE tasks
are listed respectively.

Method
test 2017 en-de

Pearson ↑MAE ↓ RMSE ↓
Baseline 0.397 0.136 0.175

SHEF/QUEST-EMB 0.496 0.126 0.166
POSTECH Single 0.6599 0.1057 0.1450
QEBrain Single 0.6837 0.1001 0.1441
UNQE Single 0.700 - -

Bi-directional QE 0.7097 0.1028 0.1352
BERT-based QE 0.6827 0.1081 0.1456

+NMT 0.703 0.1007 0.1377
POSTECH Ensemble 0.6954 0.1019 0.1371
QEBrain Ensemble 0.7159 0.0965 0.1384
UNQE Ensemble 0.710 - -
Ours Ensemble 0.7337 0.0964 0.1294

Table 3: Results of the models on the WMT17
sentence-level QE. “BERT-based QE model” repre-
sents the original model with the sentence pair of
source sentence and target sentence as inputs. “+NMT”
represents that we use the sentence pair of pseudo-
reference and target sentence as inputs of BERT-based
QE model. And the rest of these two models remain
the same.

Method
test 2019 en-de

Pearson ↑ Rank
Baseline 0.4001

Bi-directional QE 0.5412 4
Ours Ensemble 0.5433 3

Table 4: Results of submitted models on the WMT19
sentence-level QE.

From the results listed in Table 3, our proposed
single models, Bi-directional QE and BERT-based
QE (+NMT) can outperform all the other com-
pared single models for the primary metric. Then,
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we ensemble the two best single models above,
where corresponding weights are tuned according
to Pearson’s correlation coefficient on the devel-
opment dataset. The ensemble model can be com-
parable or better than the state-of-the-art (SOTA)
ensemble models of WMT17 sentence-level QE
task.

Considering the experimental results obtained
from WMT17 QE task, we submitted the en-
semble model and Bi-directional QE model to
WMT19 sentence-level QE task, and ranked 3rd
and 4th respectively according to WMT19 QE
website.

5 Conclusion

This paper introduces two proposed QE mod-
els, Bi-directional QE model and BERT-based QE
model, for the WMT19 sentence-level Quality
Estimation shared task on English-German lan-
guage pair. They can be used selectively in sit-
uations where parallel corpus and/or monolin-
gual corpus are available. Experimental results
showed that our ensemble model outperformed the
SOTA results on WMT17 sentence-level QE task
in English-German direction and ranked 3rd in
WMT19 QE task. In future work, we would like
to explore how to apply our approaches for finer-
grained QE task, such as phrase-level and word-
level.
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Abstract

We propose the use of pre-trained embeddings
as features of a regression model for sentence-
level quality estimation of machine translation.
In our work we combine freely available BERT
and LASERmultilingual embeddings to train a
neural-based regression model. In the second
proposed method we use as an input features
not only pre-trained embeddings, but also log
probability of any machine translation (MT)
system. Both methods are applied to several
language pairs and are evaluated both as a clas-
sical quality estimation system (predicting the
HTER score) as well as an MT metric (predict-
ing human judgements of translation quality).

1 Introduction

Quality estimation (Blatz et al., 2004; Specia et al.,
2009) aims to predict the quality of machine trans-
lation (MT) outputs without human references,
which is what sets it apart from translation metrics
like BLEU (Papineni et al., 2002) or TER (Snover
et al., 2006). Most approaches to quality esti-
mation are trained to predict the post-editing ef-
fort, i.e. the number of corrections the translators
have to make in order to get an adequate transla-
tion. The effort is measured by the HTER metric
(Snover et al., 2006) applied to human post-edits.

In this paper, we introduce a light-weight neural
method with pre-trained embeddings, that means
it does not require any pre-training. The second
proposed method is the extension of the first one:
besides pre-trained embeddings, it takes log prob-
ability from any MT system as an input feature.

In addition to the official datasets provided for
this year’s WMT sentence level shared task, we
analyze the performance of our methods against
the extended datasets made from previous years
data. Using the extended datasets allows to get a
more reliable score and avoid skewed distributions
of the predicted metrics.

Besides that we apply our method to predict
direct human assessment (DA) (Graham et al.,
2017). In direct human assessment humans com-
pare the machine translation output with a refer-
ence translation not seeing a source translation.
Usually MT metrics (Ma et al., 2018) are com-
pared to DA, but we decided to compare our pre-
dictions as well, because there is a difference be-
tween a number of post-edits and a human assess-
ment. For example, if everything in a translation
is perfect except one thing: all indefinite articles
are missed, the number of post-edits may be large
enough and a score will be low whereas humans
likely give it a high score. The main difference
between MT metrics and quality estimation is that
quality estimation is computing without reference
sentences.

2 Architecture

Our method performs sentence-level quality es-
timation of machine translation. As other state-
of-the-art methods (Kim et al., 2017; Fan et al.,
2018), we use a neural-based architecture. How-
ever, compared to the other neural-based meth-
ods, we do not train embeddings from scratch,
that usually takes a lot of data and computational
resources. Instead of that, we use already well
trained and freely available embeddings.

For our method we have picked BERT (Devlin
et al., 2018) and LASER (Artetxe and Schwenk,
2018) multilingual embeddings toolkits. We ex-
tract both BERT and LASER embeddings and
feed them into a feed-forward neural network.
A sigmoid output layer produces the desirable
score. In case of HTER prediction we can add
log probability score obtained from a neural MT
system as an additional feature to the described
above feed-forward neural network. The whole
architecture of our system is depicted in Fig.1.
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BERT embeddings are extracted from a deep
bidirectional transformer encoder, which is pre-
trained on Wikipedia data, with the aim of gen-
erating a general-purpose “language understand-
ing”. LASER embeddings are extracted from bidi-
rectional word-level recurrent encoder, where sen-
tence embeddings are extracted from max-pooled
word embeddings, trained on publicly available
parallel corpora.

source
sentence

translated
sentence

LASER
embed-
dings

BERT em-
beddings

FF-layer FF-layer

FF-layers

sigmoid

NMT
system

log prob-
ability

output:
HTER

Figure 1: The proposed methods: LABEL: it requires
LASER and BERT to get embeddings and NMT system
to compute log probability and LABE: it requires only
LASER and BERT to get embeddings.

3 Experimental Settings

In this section we analyze the performance of
proposed methods on different prediction out-
puts (HTER and DA) and different datasets
and compare them with another neural method
DeepQuest (Ive et al., 2018) that does not re-
quire additional data.

To predict HTER we take a dataset that con-
tains source sentences, their translated outputs and
HTER scores. It is domain-specific: IT or pharma-
ceutical depending on the language pair. As there
is no large enough corpus with DA labels, we use a
dataset that consists only of source sentences and
their machine translation output. The domain of
this corpus is more general and source sentences
have taken from the open resources.

3.1 Experiments

We have implemented our methods using the
Keras toolkit. As a regression model we have
used four-layered feed-forward neural network
with sigmoid as a final activation function.

To obtain a log probability score, we trained
neural MT systems using sockeye toolkit. We
used Transformer (Vaswani et al., 2017) as a net-
work architecture with six layers in encoder and
decoder, word vectors of size 512, batch size 50,
and Adam (Kingma and Ba, 2015) as optimizer
with an initial learning rate of 0.0002.

We present two models with different set of fea-
tures:

• LABE: embeddings extracted from LASER
and BERT

• LABEL: embeddings extracted from LASER
and BERT and log probability obtained from
Transformer NMT model

BERT embeddings are extracted for multilin-
gual cased BERTmodel. Only the last layer of em-
beddings is extracted. BERT gives 728-dimension
embeddings for each word, source and target em-
beddings are separated by a special token and then
average pooling is used to get sentence embed-
dings for source and target sentences.

3.2 Data and Results of HTER Prediction
Data
We gathered the data from WMT16 - WMT18
shared tasks on sentence-level quality estima-
tion for English-German (En-De) (Bojar et al.,
2016a, 2017a; Specia et al., 2018), from WMT17
- WMT18 German-English (De-En) and from
WMT 18 English-Czech (En-Cs).

The En-De data contains translations from neu-
ral and statistical MT systems and De-En and En-
Cs datasets contain outputs only from statistical
MT. However, for our method there is no differ-
ence between neural and statistical MT output.
En-De and En-Cs sentences on the IT domain and
De-En — on the pharmaceutical domain.

We removed duplicated sentences and randomly
split data into training, dev and test sets in the
70/20/10 ratio. As a result, we got the following
number of sentences:

• En-De: ≈ 55K/16K/8K

• De-En: ≈ 37K/10K/5K

• En-Cs: ≈ 29K/8K/4K

We intentionally increased the size of the test
sets to reduce the impact of skewed distributions
towards high quality translations. These fluent
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translation have the HTER score equalled zero and
make up 70% of all data. Such distribution where
we have 70% of zeros and other 30% of data is
uniform from 0 to 1 is hard to learn with a regres-
sion model.

Results
Below we describe the results of our systems for
two test datasets: the extended dataset is described
above and the second one is the small dataset
(around 1K sentences) provided by organizers of
WMT19.

Results for extended datasets The resulting
Pearson and Spearman coefficients for the all
given language pairs are presented in Table 1. As
one can see the highest values were obtained by
applying the models LABEL, but the difference of
the computing values is small. The obtained num-
bers for En-De and En-Cs are close to each other
whereas the resulting coefficients for De-En are
noticeably higher. Both our models showed the
better performance than deepQuest.

LABE LABEL deepQuest
PCC SCC PCC SCC PCC SCC

DEEN 0.599 0.586 0.64 0.615 0.368 0.347
ENDE 0.533 0.566 0.542 0.57 0.294 0.305
ENCS 0.542 0.532 0.557 0.549 0.446 0.433

Table 1: Pearson and Spearman correlation coefficients
for the monolingual models LABE and LABEL, and
deepQuest . For models LABE and LABEL we
show PCC and SCC between ensemble of five runs and
HTER.

Results for WMT 2019 The results for the
small WMT dataset do not look so impressive (Ta-
ble 2) compared to the results of extended datasets.
Without knowledge of data, it is difficult to say
what the reason for it. We can assume that it
may be due to the skewed distribution of the given
dataset. It is worth noting that the same En-De
(nmt) dataset was given also in WMT18 shared
task and looking at the results1, we can see a drop
in performance for this dataset as well.

3.3 Data and Results for human assessment
prediction

Data
We took data from News Translation Tasks
2015-2018 years (Bojar et al., 2015, 2016a,

1http://statmt.org/wmt18/
quality-estimation-task.html#results

LABE LABEL
PCC SCC PCC SCC

ENDE 0.319 0.377 0.249 0.253
ENRU 0.401 0.336 - -

Table 2: Pearson and Spearman correlation coefficients
for the monolingual models LABE and LABEL. Test
set: official test set of WMT19. We show PCC and
SCC between ensemble of five runs and HTER.

2017a, 2018) for En-De, English-Finnish (En-Fi),
English-Russian (En-Ru) (both directions for all
three language pairs) and En-Cs. The data con-
sists of source sentences and their translation. The
number of unique source sentences (≈10-11K for
each language pair) are significantly less than the
number of translation, because every source sen-
tence has several translations obtained from dif-
ferent systems. We randomly split the data into
training and dev sets in the ratio 80/20:

• En-De: ≈ 141K/35K

• De-En: ≈ 111K/28K

• En-Fi: ≈ 100K/25K

• Fi-En: ≈ 73K/18K

• En-Ru: ≈ 95K/24K

• Ru-En: ≈ 94K/24K

• En-Cs: ≈ 113K/28K

As test sets we used DAseg-newstest2016 (Bo-
jar et al., 2016b) that consists of 560 sentences for
each language pair. As fine-tuning sets we took
DAseg-newstest2015 (Stanojević et al., 2015) and
DAseg-newstest2017 (Bojar et al., 2017b) that
gave us around 1K sentences per each language
pair.

Results
Below we describe the obtained results for new-
stest2016 (Bojar et al., 2016b) and compare them
with results of metrics tasks. At the time of publi-
cation of the article, results of newstest2019 were
not yet available.

Results for DAseg-newstest2016 The both pro-
posed methods are supervised, so to train models
we need labels. As DA data is scarce resource
we trained models using chrF++ (Popović, 2017)
(with default hyper-parameters) as labels.

To investigate how the number of language pairs
affects the performance of models, we trained sev-
eral models: with one language pair in the training
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set, with four (De-En, En-De, En-Cs, En-Ru) and
with seven language pairs. As can be seen in the
Figure 2, the best results were achieved with the
mono language pair models, although the differ-
ence between mono- and multimodels is not large.

We also fine-tuned our models by using human
assessment data. Fine-tuned models showed a lit-
tle bit better results compared to the non-tuned
models (Figure: 2).

We compared the obtained results to the metrics
results. For De-En the best resulting Pearson cor-
relation coefficient for metrics is 0.601 and for En-
Ru is 0.666 (Bojar et al., 2016b), whereas the best
scores of our models are 0.520 and 0.668 for De-
En and En-Ru respectively. Our results are com-
parable to the metrics results, despite the fact that
we did not use reference sentences in contrast to
the metrics task.
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Figure 2: Pearson and Spearman correlation coeffi-
cients for LABE model and different number of lan-
guage pairs in training dataset. We show average over
three runs. Test dataset: newstest2016

Results for DAseg-newstest2019 We prepared
scores for all language pairs described in 3.3 by
using non-tuned models trained on seven language
pairs and for De-En, En-Ru, Ru-En, Fi-En by us-
ing fine-tuned models. Results of this submission

will be available (Fonseca et al., 2019).

4 Conclusions

We proposed neural-based models for quality es-
timation of machine translation. One of our
models requires only freely available embeddings
(LASER and BERT) and the second needs also log
probability from any MT system (in our experi-
ments, we use Transformer MT system).

We analyzed performance of both models on
different language pairs and different prediction
outputs and compared them to another neural qual-
ity estimation system. Both our methods showed
better results compared to another light-weight ap-
proach deepQuest and we got comparable re-
sults with the metrics tasks even without using ref-
erences.
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Ondřej Bojar, Yvette Graham, and Amir Kamran.
2017b. Results of the WMT17 metrics shared
task. In Proceedings of the Second Conference on
Machine Translation, pages 489–513, Copenhagen,
Denmark. Association for Computational Linguis-
tics.
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Abstract

Quality estimation (QE) of machine transla-
tion (MT) systems is a task of growing im-
portance. It reduces the cost of post-editing,
allowing machine-translated text to be used
in formal occasions. In this work, we de-
scribe our submission system in WMT 2019
sentence-level QE task. We mainly explore the
utilization of pre-trained translation models in
QE and adopt a bi-directional translation-like
strategy. The strategy is similar to ELMo, but
additionally conditions on source sentences.
Experiments on WMT QE dataset show that
our strategy, which makes the pre-training
slightly harder, can bring improvements for
QE. In WMT-2019 QE task, our system ranked
in the second place on En-De NMT dataset and
the third place on En-Ru NMT dataset.

1 Introduction

The quality of machine translation systems have
been significantly improved over the past few
years (Chatterjee et al., 2018), especially with the
development of neural machine translation (NMT)
models (Sutskever et al., 2014; Bahdanau et al.,
2014). Despite such inspiring improvements,
some machine translated texts are still error-prone
and unreliable compared to those by professional
humans. It is often desirable to have human ex-
perts perform post-editing on machine-translated
text to achieve a balance between cost and cor-
rectness. Correspondingly, we may also want to
develop automatic quality estimation systems to
judge the quality of machine translation outputs,
leading to the development of the Machine Trans-
lation Quality Estimation task. The task of QE
aims to evaluate the output of a machine trans-
lation system without access to reference transla-
tions. It would allow human experts to concentrate

∗equal contribution

on translations that are estimated of low-quality,
further reducing post-editing cost.

In this work, we focus on sentence-level QE
and describe our submission to the WMT 2019
QE task. Sentence-level QE aims to predict a
score for the entire source–translation pair that in-
dicates the effort required for further post-editing.
The goals of the task are two-fold: 1) to pre-
dict the required post-editing cost, measured in
HTER (Snover et al., 2006); 2) to rank all sentence
pairs in descending translation quality.

In previous works, including the participating
systems in previous WMT shared tasks, there
have been various methods to tackle this prob-
lem. Traditional linear models are based on hand-
crafted features, while recent state-of-the-art sys-
tems adopt end-to-end neural models (Kim and
Lee, 2016; Wang et al., 2018). The neural sys-
tems are usually composed of two modules: the
bottom part is an MT-like source–target encod-
ing model pre-trained with large parallel corpora,
stacked with a top-level QE scorer based on the
neural features extracted by the bottom model. Es-
pecially, Wang et al. (2018) adopted the “Bilingual
Expert” model (Fan et al., 2018) for pre-training
the bottom model and obtained several best re-
sults in WMT 2018. In this work, we improve
the “Bilingual Expert” model with a SOURce-
Conditional ELMo-style (SOURCE) strategy: in-
stead of predicting target words based on contexts
from both sides, we train two conditioned lan-
guage (translation) models, each restricted to con-
text from one side only. This harder setting may
force the model to condition more on the source.
Experiments show that this strategy can bring im-
provements for QE.
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Figure 1: The architecture of our QE system, which consists of two modules: 1) the MT Module encodes the
bilingual information and can be pre-trained with large parallel data, 2) the QE Module adopts the source and
target representations from the MT Module and further encodes those information followed by a final linear layer
for QE scoring.

2 System

2.1 Basic Framework

We follow previous works and adopt the end-to-
end styled model for the QE scoring task. The
overall system architecture is shown in Figure 1.
The system consists of two components: 1) a pre-
trained MT module which learns the representa-
tions of the source and target sentences, 2) a QE
scorer which takes the representations from the
MT module as inputs and predicts the translation
quality score.

The MT module is pre-trained on large paral-
lel corpus. It is trained to predict each token in
the translated sentence by using the information in
source sentence and tokens in the translated sen-
tence. Details of the model will be described in
Section 2.2.

In the QE scorer module, the problem can be
cast as a regression task, where the QE score is
predicted given the source and target sentences.
The original inputs are encoded by the pre-trained
MT module, whose outputs are taken as input fea-
tures for this module. We basically follow the
model architecture of Wang et al. (2018). For each
token, a quality vector is formed as:

qj = Concat(←−zj ,−→zj , etj−1, etj+1, f
mm
j ), (1)

where←−zj ,−→zj are state vectors produced by the bi-
directional Transformer, and etj−1, e

t
j+1 are em-

bedding vectors. The “mismatching feature” fmm
j

is formed by extracting the score corresponding

to yj , the highest score in the distribution, their
difference, and an indicator of whether yj has the
highest score. After this, the quality vectors are
viewed as another sequence and encoded by the
Bi-LSTM/Transformer Quality Estimator to pre-
dict the QE score. The loss function for training is
mean squared error which is typical for regression
tasks.

2.2 Pre-trained Translation Models

Bilingual Expert We start with a short descrip-
tion for the model of Wang et al. (2018). The
model can be seen as a token-level reconstruction-
styled translation model: each target word yj is
predicted given a source sentence and all other
target words {. . . , yj−1, yj+1, . . . }. This setting
is different to the traditional MT scenario where
only previous target words can be seen. The model
uses the encoder–decoder architecture. An en-
coder is applied over the source tokens to obtain
the contextual representations of the source sen-
tence. A bidirectional pair of decoders (one for-
ward and one backward) are adopted to encode the
target translation sentence, while conditioning on
the source sentence via attention mechanism. For-
mally, for source tokens {x1, . . . , xms} and trans-
lation tokens {y1, . . . , ymt}, the forward and back-
ward target representations {−→z1 , . . . ,−→zmt} and
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Figure 2: Illustration of reconstruction loss for the
token “Wi” in different pre-training strategies. a) In
Bilingual Expert, one reconstruction loss is computed
for each token, conditioned on the entire target con-
text provided by the Forward and Backward decoders.
b) With Elmo-Style, it is equivalent to training bidi-
rectional translation models. Two reconstruction losses
are computed for each token, each only depending on
one side of the context. c) With BERT-Style, certain
inputs are masked out (colored in grey) and a masked-
LM is learned. One reconstruction loss is computed for
each masked token.

{←−z1 , . . . ,←−zmt} are computed as:

c1, . . . , cms = Encoder(x1, . . . , xms),

−→z1 , . . . ,−→zmt =
−−−−−→
Decoder(y1, . . . , ymt , c1, . . . , cms),

←−z1 , . . . ,←−zmt =
←−−−−−
Decoder(y1, . . . , ymt , c1, . . . , cms).

Both encoder and decoders use Trans-
former (Vaswani et al., 2017) as their backbone
for its better performances in machine translation
tasks.

After obtaining these representations, the model
is trained with the token reconstruction cross-
entropy loss for each target token with contextual
information from both sides:

log p(yj | yi 6=j , x) = softmax(ff([−→zj−1;←−zj+1])).
(2)

Here “ff” denotes a feed-forward layer. Note
that we cannot use representations that capture yj ,

therefore, we use the forward representation of the
previous token−→zj−1 and the backward representa-
tion of the next token←−zj+1.

SOURCE In the Bilingual Expert model, each
target token is predicted given all target tokens on
both sides. However, this training scheme makes
too much information visible to the model, such
that the model could predict the target word even
without seeing the source sentence.

For example, we can easily infer that the miss-
ing word in “He loves playing and his
favorite basketball player is Michael Jordan” is
“basketball”. In another words, too much visi-
ble information on the target side provides an in-
ductive bias that pushes the model towards learn-
ing a bi-directional language model instead of a
translation-like model, by omitting the informa-
tion on the source sentence.

We want to force our model to exploit the re-
lationship between the source tokens and target
tokens. Thus, we no longer make the words
on both sides visible to our model at the same
time. Instead, we separate the two directions, so
that the model must predict each target word de-
pending only on the source sentence and target
words on one side. More specifically, we com-
pute two losses, `1 and `2. The cross-entropy
loss `1 is derived by predicting the target word
yj based on the source sentence {x0, . . . , xms}
and left-side target words {y0, . . . , yj−1}. An-
other cross-entropy loss `2 is derived by predict-
ing yj based on the source sentence and right-
side target words {yj+1, . . . , ymt}. This train-
ing scheme corresponds to the strategy used in
ELMo (Peters et al., 2018), but the difference is
that here we condition on additional source in-
formation, hence the name SOURce-Conditional
Elmo-style (SOURCE) model.

Another method to force the model to attend
more to source is using BERT (Devlin et al.,
2018), which masks several words and try to pre-
dict those words at once. Inspired by the work
of Cross-lingual BERT (Lample and Conneau,
2019), we choose to use the structure as shown
in Figure 2. It can reduce the information seen by
the decoder and force it to condition more on the
source sentence. Due to limitations on time and
computing resources, we did not manage to pro-
duce successful results using BERT. This would be
an interesting and promising direction to explore
in future work.
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Dataset Parallel QE

train dev test

En-De-SMT
32.8M

26299 1000 1926
En-De-NMT 13442 1000 1023

En-Ru 8.0M 15089 1000 1023

Table 1: Statistics of the parallel data and QE data.

From empirical results of SOURCE, we find
that although the prediction accuracy on MT par-
allel data decreases, the final performance on QE
increases significantly. This shows that decreas-
ing the visible information makes token-prediction
more difficult, and forces the model to learn more
useful structures from the data, which in turn be-
comes features of higher quality for the QE task.

2.3 Model Ensemble

We perform model ensembling by stacking, which
means we use the prediction results of different
models on the development set as new features,
and train a simple regression model to predict the
actual development set labels. Finally, the regres-
sion model is applied on the predictions of differ-
ent models on test set. We use ridge regression
here as the regression model. We also use grid
search and cross-validation to select the regular-
ization weight for ridge regression.

We train both the pre-trained MT module
and the QE scorer module with different hyper-
parameters to produce different models for en-
sembling. For the pre-trained MT module, tog-
gled hyper-parameters include number of lay-
ers, number of self-attention heads, learning rate,
label-smoothing rate, warm-up steps, and dropout
rates. For the QE scorer module, toggled hyper-
parameters include number of layers, hidden
size, percentage of augmented data, encoder type
(LSTM or Transformer), and dropout rate.

3 Experiments

3.1 Settings

Our system is evaluated on the WMT18/19 QE
sentence-level task. The main metric is the Pear-
son’s r correlation score between predicted scores
and ground-truth HTER scores. There are other
metrics including Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) for scoring
and the Spearman’s ρ rank correlation for rank-
ing. We evaluate our models on datasets in the

WMT 18/19 shared task with different translation
systems: WMT-18 En-De-SMT, WMT-18/19 En-
De-NMT, WMT-19 En-Ru-NMT. For experiments
on WMT-19 data, we report results based on offi-
cial evaluation results.

Data For the parallel data used in pre-training
of the MT module, we collect large-scale parallel
corpora for En-De and En-Ru from the WMT-18
translation task. Officially pre-processed data1 are
utilized. To make it compatible with QE data, we
re-escaped certain punctuation tokens. To reduce
the corpus size, we further apply a more strict fil-
tering step by discarding sentence pairs with too
many overlapping words in their source and target
sentences (> 0.9 for En-De, > 0.5 for En-Ru).
Finally, we obtain 32.1M EN-De and 7.8M En-Ru
sentence pairs and mix it with the training set of
the QE data (using post-edited sentences as target).
Our mixing strategy is to mix one copy of QE data
for every 1M of parallel data. The statistics of the
mixed parallel data and QE data are summarized
in Table 1.

Following Wang et al. (2018), we also prepare
artificial data via round-trip translation (Junczys-
Dowmunt and Grundkiewicz, 2016, 2017). Since
the QE data are obtained with two kinds of transla-
tion systems: SMT and NMT, we also prepare two
kinds of artificial data. For simplicity, we take the
back-translated corpus by the Edinburgh’s transla-
tion system,2 which contains 3.6M back-translated
sentences for En-De and 1.9M for En-Ru. We fur-
ther train a SMT system with Moses and decode
the English sentence back to German. For NMT,
we simply take a pre-trained NMT system (also
Edinburgh’s system3) for decoding.

Implementation We implement our system
from scratch in Python with TensorFlow (Abadi
et al., 2015) and OpenNMT (Klein et al., 2017).
Because of limited resources, we manually search
for good hyper-parameters by heuristics evaluated
on the development set. The training of the MT
module takes around 4 to 5 days and the training
of the QE module takes a couple of hours with one
GPU.

1http://data.statmt.org/wmt18/
translation-task/preprocessed/. According to
the official script, the data is processed with tokenization,
cleaning and truecase with standard Moses scripts.

2http://data.statmt.org/rsennrich/
wmt16_backtranslations/.

3http://data.statmt.org/wmt17_systems/.
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System test 2018 En-De-SMT test 2018 En-De-NMT

Pearson r ↑ MAE↓ RMSE↓ Pearson r ↑ MAE↓ RMSE↓ Spearman ρ ↑

Alibaba (ensemble) 0.7397 0.0937 0.1362 0.5012 0.1131 0.1742 0.6049
JXNU (ensemble) 0.7000 0.0962 0.1382 0.5129 0.1114 0.1749 0.6052

SOURCE (ours, ensemble) — — — 0.5474 0.1123 0.1623 0.6155

SOURCE (ours) 0.6970 0.1009 0.1409 0.4956 0.1197 0.1797 —
Bilingual Expert (our impl.) 0.6645 0.1089 0.1488 0.4447 0.1240 0.1791 —

melaniad 0.4877 0.1316 0.1675 0.4198 0.1359 0.1770 —
cscarton 0.4872 0.1321 0.1714 0.3808 0.1297 0.1785 —

Table 2: Evaluation results on the test sets of WMT-18 En-De-SMT and WMT-18 NMT. The two leading teams
only provide ensemble results on 2018 test data. We re-implement Alibaba’s single model (Bilingual Expert) and
achieved similar results on 2017 data as reported in their paper. We test that Bilingual Expert on 2018 data to
make a fair comparison for single model. With limited computational resource, we only run the ensemble for
En-De-NMT, because in WMT2019 they only requires NMT submission.

System En-De-NMT En-Ru-NMT

Pearson r ↑ Spearman ρ ↑ Pearson r ↑ Spearman ρ ↑

UNBABEL 0.5718 0.6221 0.5923 0.5388
SOURCE (ours) 0.5474 0.5947 0.4575 0.4039

NJU 0.5433 0.5694 – –
ETRI 0.5260 0.5745 0.5327 0.5222

Table 3: Evaluation results on the WMT-19 QE sentence-level shared task. Here we only show the top four teams.

3.2 Results

WMT-18 En-De-SMT Results are shown on the
left side of Table 2. We can see that our SOURCE
model significantly outperforms the state-of-the-
art single model from the previous year (Bilingual
Expert) and is comparable to the ensemble model
from JXNU.

WMT-18 En-De-NMT We evaluate our model
through CodaLab, which is recommended by the
host. Results are shown on the right side of Table
2. The results are similar to the SMT ones, our sin-
gle SOURCE model can obtain results comparable
to the best ensemble systems. It is worth men-
tioning that our ensemble model significantly out-
performs the best system from the previous year
on both scoring (Pearson r) and ranking (Spear-
man ρ) subtasks.

WMT-19 En-De-NMT and En-Ru-NMT The
official result from WMT-19 is shown in Table 3.
Our system achieves the second place on En-De
and the third place on En-Ru. It is worth men-
tioning that due to the limitation of computational
resource, we train far fewer models for En-Ru than
En-De, so it is reasonable that our system performs

much better on the En-De dataset.

4 Conclusion and Discussion

Empirical results indicate that decreasing the visi-
ble information makes token-prediction more dif-
ficult, and forces the model to learn more useful
structures from the data, which in turn becomes
features of higher quality for the QE task. The
experimental results on WMT-18 shows the effec-
tiveness of our SOURCE model as well as our
stacking ensemble strategy. According to the offi-
cial evaluation results on WMT-19 dataset, our en-
semble SOURCE modela chieves the second place
on En-De dataset and the third place on En-Ru
dataset.

We will explore the BERT-style structure to bet-
ter condition on source sentences in the future.
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Abstract 

This paper describes POSTECH’s submis-

sion to the WMT 2019 shared task on Au-

tomatic Post-Editing (APE). In this paper, 

we propose a new multi-source APE mod-

el by extending Transformer. The main 

contributions of our study are that we 1) 

reconstruct the encoder to generate a joint 

representation of translation (mt) and its 

src context, in addition to the conventional 

src encoding and 2) suggest two types of 

multi-source attention layers to compute 

attention between two outputs of the en-

coder and the decoder state in the decoder. 

Furthermore, we train our model by apply-

ing various teacher-forcing ratios to alle-

viate exposure bias. Finally, we adopt the 

ensemble technique across variations of 

our model. Experiments on the WMT19 

English-German APE data set show im-

provements in terms of both TER and 

BLEU scores over the baseline. Our pri-

mary submission achieves -0.73 in TER 

and +1.49 in BLEU compared to the base-

line, and ranks second among all submit-

ted systems. 

1 Introduction  

Automatic Post-Editing (APE) is the task of au-

tomatically correcting errors in a given the ma-

chine translation (MT) output to generate a better 

translation (Chatterjee et al., 2018). Because APE 

can be regarded as a sequence-to-sequence prob-

lem, MT techniques have been previously applied 

to this task. Subsequently, it is only natural that 

neural APE has been proposed following the ap-

pearance of neural machine translation (NMT). 

Among the initial approaches to neural APE, a 

log-linear combination model (Junczys-Dowmunt 

and Grundkiewicz, 2016) that combines bilingual 

                                                           
* Both authors equally contributed to this work 

and monolingual translations yielded the best re-

sults. Since then, In order to leverage information 

from both MT outputs (mt) and its corresponding 

source sentences (src), a multi-encoder model 

(Libovický et al., 2016) based on multi-source 

translation (Zoph and Knight, 2016) has become 

the prevalent approach (Bojar et al., 2017). Re-

cently, with the advent of Transformer (Vaswani 

et al., 2017), most of the participants in the 

WMT18 APE shared task proposed Transformer-

based multi-encoder APE models (Chatterjee et 

al., 2018). 

Previous multi-encoder APE models employ 

separate encoders for each input (src, mt), and 

combine their outputs in various ways: by 1) se-

quentially applying attention between the hidden 

state of the decoder and the two outputs (Junczys-

Dowmunt and Grundkiewicz, 2018; Shin and Lee, 

2018) or 2) simply concatenating them (Pal et al., 

2018; Tebbifakhr et al., 2018). However, these 

approaches seem to overlook one of the key dif-

ferences between general multi-source translation 

and APE. Because the errors mt may contain are 

dependent on the MT system, the encoding pro-

cess for mt should reflect its relationship with the 

source sentence. Furthermore, we believe that it 

would be helpful to incorporate information from 

the source sentence, which should ideally be er-

ror-free, in addition to the jointly encoded mt in 

generating post-edited sentence. 

From these points of view, we propose a multi-

source APE model by extending Transformer to 

contain a joint multi-source encoder and a decod-

er that involves a multi-source attention layer to 

combine the outputs of the encoder. Apart from 

that, we apply various teacher-forcing ratios at 

training time to alleviate exposure bias. Finally, 

we ensemble model variants for our submission. 

The remainder of the paper is organized as fol-

lows: Section 2 describes our model architecture. 
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Section 3 summarizes the experimental results, 

and Section 4 gives the conclusion.  

2 Model Description 

We adopt Transformer to the APE problem, which 

takes multiple inputs (src, mt) to generate a post-

edited sentence (pe). In the following subsections, 

we describe our modified encoder and decoder.  

2.1 Encoder 

The proposed encoder structure for multi-

source inputs, as shown in Figure 1, is an exten-

sion of what is introduced in Vaswani et al. (2017) 

developed considering single-source input. Simi-

lar to recent APE studies, our encoder receives 

two sources: src x = (𝑥1, … , 𝑥𝑇𝑥)  and mt y =

(𝑦1, … , 𝑦𝑇𝑦) , where 𝑇𝑥  and 𝑇𝑦  denote their se-

quence lengths respectively, but produce the joint 

representation E𝑗𝑜𝑖𝑛𝑡 = (𝑒1
𝑗
, … , 𝑒𝑇𝑦

𝑗
), in addition to 

encoded src E𝑠𝑟𝑐 = (𝑒1
𝑠, … , 𝑒𝑇𝑥

𝑠 ).  

Joint representation. Unlike previous studies, 

which independently encode two input sources 

using separate encoding modules, we incorporate 

src context information into each hidden state of 

mt through the single encoding module, resulting 

in a joint representation of two sources. As shown 

with the dashed square in Figure 1, jointly repre-

sented hidden states are obtained from the residu-

al connection and multi-head attention that takes 

𝐻𝑠𝑟𝑐 ∈ ℝ𝑇𝑥×𝑑  as keys and values and 𝐻𝑚𝑡 ∈

ℝ𝑇𝑦×𝑑 as queries. Therefore, the joint representa-

tion of each level of the stack (𝑖 = 1,… , 𝑁) can be 

expressed with MultiHead(Q, K, V) and Lay-

erNorm described in Vaswani et al. (2017) as fol-

lows: 

 𝐻𝑗𝑜𝑖𝑛𝑡
𝑖 = LayerNorm(𝐻𝑚𝑡

𝑖 + 𝐶𝑠𝑟𝑐
𝑖 )   

where 

 𝐶𝑠𝑟𝑐
𝑖 = MultiHead(𝐻𝑚𝑡

𝑖 , 𝐻𝑠𝑟𝑐
𝑖 , 𝐻𝑠𝑟𝑐

𝑖 ) (1)  

Stack-level attention. When applying attention 

across source and target, the original Transformer 

only considers source hidden states retrieved from 

the final stack, whereas our encoder feeds into 

each attention layer the src embeddings from the 

same level, as can be seen in (1).  

Masking option. The self-attention layer that is 

the first attention layer of the mt encoding module 

optionally includes a future mask, which mimics 

the general decoding process of MT systems that 

depends only on previously generated words. We 

conduct experiments (§3.2) for two cases: with 

and without this option.  

2.2 Decoder 

Our decoder is an extension of Transformer de-

coder, in which the second multi-head attention 

layer that originally only refers to single-source 

 

Figure 2: The architecture of the decoder 
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encoder states is replaced with a multi-source at-

tention layer. Figure 2 shows our decoder archi-

tecture including the multi-source attention layer 

that attends to both outputs of the encoder. Fur-

thermore, we construct two types of the multi-

source attention layer by utilizing different strate-

gies in combining attention over two encoder out-

put states.  

Multi-source parallel attention. Figure 3a illus-

trates the structure of parallel attention. The de-

coder's hidden state simultaneously attends to 

each output of the multi-source encoder, followed 

by residual connection, and the results are linearly 

combined by summing them at the end: 

 𝐻𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 𝐻1 + 𝐻2   

where 

 

𝐻1 = LayerNorm(𝐻𝑝𝑒 + 𝐶𝑗𝑜𝑖𝑛𝑡) 

𝐻2 = LayerNorm(𝐻𝑝𝑒 + 𝐶𝑠𝑟𝑐) 

𝐶𝐽𝑜𝑖𝑛𝑡 = MultiHead(𝐻𝑝𝑒 , 𝐸𝑗𝑜𝑖𝑛𝑡 , 𝐸𝑗𝑜𝑖𝑛𝑡) 

𝐶𝑠𝑟𝑐 = MultiHead(𝐻𝑝𝑒 , 𝐸𝑠𝑟𝑐 , 𝐸𝑠𝑟𝑐). 
 

 

Note that 𝐻𝑝𝑒 ∈ ℝ𝑇𝑧×𝑑
 denotes the hidden states 

for decoder input pe z = (𝑧1, … , 𝑧𝑇𝑧
). 

Multi-source sequential attention. As shown in 

Figure 3b, two outputs of the encoder are sequen-

tially combined with the decoder’s hidden state: 

𝐸𝑗𝑜𝑖𝑛𝑡  and the decoder’s hidden state are first 

assigned to multi-head attention and residual con-

nection layers, then the same operation is per-

formed between the result and 𝐸𝑠𝑟𝑐.  

 𝐻𝑠𝑒𝑞 = LayerNorm(𝐻′ + 𝐶𝑠𝑟𝑐)    

where 

 

𝐻′ = LayerNorm(𝐻𝑝𝑒 + 𝐶𝑗𝑜𝑖𝑛𝑡) 

𝐶𝑠𝑟𝑐 = MultiHead(𝐻′, 𝐸𝑠𝑟𝑐 , 𝐸𝑠𝑟𝑐) 

𝐶𝑗𝑜𝑖𝑛𝑡 = MultiHead(𝐻𝑝𝑒 , 𝐸𝑗𝑜𝑖𝑛𝑡 , 𝐸𝑗𝑜𝑖𝑛𝑡). 
 

 

This approach is structurally equivalent to 

Junczys-Dowmunt and Grundkiewicz (2018), 

except that the encoder states being passed on are 

different. 

3 Experiments 

3.1 Dataset 

We used the WMT19 official English-German 

APE dataset (Chatterjee et al., 2018) which con-

sists of a training and development set. In addition, 

we adopted the eSCAPE NMT dataset (Negri et 

al., 2018) as additional training data. We extracted 

sentence triplets from the eSCAPE-NMT dataset 

according to the following criteria, to which the 

official training dataset mostly adheres. Selected 

triplets have no more than 70 words in each sen-

tence, a TER less than or equal to 75, and a recip-

rocal length ratio within the monolingual pair (mt, 

pe) less than 1.4. Table 1 summarizes the statistic 

of the datasets. 

3.2 Training Details 

Settings. We modified the OpenNMT-py (Klein 

et al., 2017) implementation of Transformer to 

build our models. Most hyperparameters such as 

the dimensionality of hidden states, optimizer set-

tings, dropout ratio, etc. were copied from the 

“base model” described in Vaswani et al. (2017). 

We adjusted the warm-up learning steps and batch 

size per triplets to 18k and ~25k, respectively. For 

data preprocessing, we employed subword encod-

ing (Kudo, 2018) with 32k shared vocabulary. 

 
(a) 

 
(b) 

Figure 3: Illustrations of the multi-source attention 

layer. (a) and (b) refer to the linear and sequential 

combinations, respectively. 
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Dataset Triplets TER 

official training set 13,442 14.89  

official development set 1,000 15.08  

eSCAPE-NMT 7,258,533 60.54  

eSCAPE-NMT-filtered 4,303,876 39.65  

Table 1: Dataset statistics – number of sentence tri-

plets (src, mt, pe) and TER score. 
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Two-step training. We separated the training 

process into two steps: the first phase for training 

a generic model, and the second phase to fine-

tune the model. For the first phase, we trained the 

model with a union dataset that is the concatena-

tion of eSCAPE-NMT-filtered, and the upsam-

pled official training set by copying 20 times. Af-

ter reaching the convergence point in the first 

phase, we fine-tuned the model by running the 

second phase using only the official training set.  

Model variations. In our experiment, we con-

structed four types of models in terms of the ex-

istence of the encoder future mask and the type of 

the multi-source attention layer in the decoder as 

follows:  

 Parallel w/ masking where the model 

involves the multi-source parallel atten-

tion layer with the encoder mask. 

 Parallel w/o masking in which the en-

coder mask is excluded from Parallel w/ 

masking.  

 Sequential w/ masking where the mod-

el involves the multi-source sequential 

attention layer with the encoder mask. 

 Sequential w/o masking in which the 

encoder mask is excluded from Seq. w/ 

masking. 

Teacher-forcing ratio. During training, because 

the decoder takes as input the target shifted to the 

right, the ground-truth words are passed to the 

decoder. However, at inference time, the decoder 

consumes only previously produced output words, 

causing exposure bias. To overcome this problem, 

we have empirically adjusted the teacher-forcing 

ratio in the second phase of training, so that 

teacher-forcing is applied stochastically in such a 

way that given a ratio 𝛼, the greedy decoding 

output of the previous step is fed into the next 

input with a probability of 1 − 𝛼. 

Ensemble. To leverage all variants in different 

architectures and teacher-forcing ratios, we com-

bined them using an ensemble approach accord-

ing to the following three criteria: 

 Ens_set_1: top-N candidates among all 

variants in terms of TER.  

 Ens_set_2: top-N candidates for variants 

in each architecture, in terms of TER. 

 Ens_set_3: two candidates for variants in 

each architecture, achieving the best 

TER and BLEU scores, respectively. 

3.3 Results  

We trained a generic model for each of the four 

model variations mentioned in §3.2. Then, we 

fine-tuned those models using various teacher-

forcing ratios. For evaluation, we used TER 

(Snover et al., 2006) and BLEU (Papineni et al., 

2002) scores on the WMT official development 

dataset. Table 2 shows the scores of the generic 

and fine-tuned models according to their architec-

tures and teacher-forcing ratios. The result shows 

that adjusting teacher-forcing ratio helps improve 

the post-editing performance of the models. 

Table 3 gives the results of the ensemble mod-

els. The ensemble models had slightly worse TER 

scores (+0.02 ~ +0.13) than the best TER score in 

the fine-tuned variants, but better BLEU scores 

(+0.09 ~ +0.27) than the best BLEU score. We 

Teacher-

forcing 

Ratios 

 
Architecture 

 

Parallel 

w/ masking  

Parallel 

 w/o masking  

Sequential 

 w/ masking  

Sequential 

w/o masking 

  TER BLEU   TER BLEU   TER BLEU   TER BLEU 

w/o tuning 
 

15.06  77.18  
 

15.03  77.29  
 

14.89  77.38  
 

15.10  77.19  

1.00  
 

15.02  77.25  
 

14.95  77.41  
 

14.83  77.54  
 

14.75  77.68  

0.95  
 

15.07  77.24  
 

14.94  77.24  
 

14.83  77.41  
 

14.53  77.36  

0.90  
 

14.75  77.54  
 

14.94  77.26  
 

14.79  77.40  
 

14.99  77.26  

0.85  
 

14.86  77.37  
 

14.95  77.30  
 

14.73  77.50  
 

14.76  77.56  

0.80    14.98  77.06    14.93  77.15    14.83  77.44    15.34  76.79  

Table 2: Results of training variants – the columns correspond to their architectures and the rows correspond to 

their teacher-forcing ratios. The bold values indicate the best result in the metrics for each architecture. “w/o 

tuning" refer to generic model. 
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selected the three best ensemble models for sub-

mission, expecting to reap the benefits from lev-

eraging different architectures in the decoding 

process. The names and types for submission are 

noted in Table 3.  

Submission results. The results of primary and 

contrastive submission on the official test set are 

reported in Table 4. Our primary submission 

achieves improvements of -0.73 in TER and 

+1.49 in BLEU compared to the baseline, and 

shows better results than the state-of-the-art of the 

last round with -0.35 in TER and +0.69 in BLEU. 

While our primary system ranks second out of 18 

systems submitted this year, it shows the highest 

BLEU score. 

4 Conclusion 

In this paper, we present POSTECH's submissions 

to the WMT19 APE shared task. We propose a 

new Transformer-based APE model comprising a 

joint multi-source encoder and a decoder with two 

types of multi-source attention layers. The pro-

posed encoder generates a joint representation for 

MT output with optional masking, in addition to 

the encoded source sentence. The proposed de-

coder employs two types of multi-source attention 

layers according to the post-editing strategy. We 

refine the eSCAPE-NMT dataset and apply two-

step training with various teacher-forcing ratios. 

Finally, our ensemble models showed improve-

ments in terms of both TER and BLEU, and out-

perform not only the baseline but also the best 

model from the previous round of the task.  
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Abstract

This paper describes Unbabel’s submission
to the WMT2019 APE Shared Task for
the English-German language pair. Follow-
ing the recent rise of large, powerful, pre-
trained models, we adapt the BERT pretrained
model to perform Automatic Post-Editing in
an encoder-decoder framework. Analogously
to dual-encoder architectures we develop a
BERT-based encoder-decoder (BED) model in
which a single pretrained BERT encoder re-
ceives both the source src and machine trans-
lation mt strings. Furthermore, we explore a
conservativeness factor to constrain the APE
system to perform fewer edits. As the official
results show, when trained on a weighted com-
bination of in-domain and artificial training
data, our BED system with the conservative-
ness penalty improves significantly the trans-
lations of a strong Neural Machine Translation
(NMT) system by −0.78 and +1.23 in terms
of TER and BLEU, respectively. Finally, our
submission achieves a new state-of-the-art, ex-
aequo, in English-German APE of NMT.

1 Introduction

Automatic Post Editing (APE) aims to improve the
quality of an existing Machine Translation (MT)
system by learning from human edited samples. It
first started by the automatic article selection for
English noun phrases (Knight and Chander, 1994)
and continued by correcting the errors of more
complex statistical MT systems (Bojar et al., 2015,
2016; Chatterjee et al., 2018a). In 2018, the orga-
nizers of the WMT shared task introduced, for the
first time, the automatic post-editing of neural MT
systems (Chatterjee et al., 2018b).

Despite its successful application to SMT sys-
tems, it has been more challenging to automati-
cally post edit the strong NMT systems (Junczys-
Dowmunt and Grundkiewicz, 2018). This mostly

is due to the fact that high quality NMT sys-
tems make fewer mistakes, limiting the improve-
ments obtained by state-of-the-art APE systems
such as self-attentive transformer-based models
(Tebbifakhr et al., 2018; Junczys-Dowmunt and
Grundkiewicz, 2018). In spite of these findings
and considering the dominance of the NMT ap-
proach in both the academic and industrial appli-
cations, the WMT shared task organizers decided
to move completely to the NMT paradigm this
year and ignore the SMT technology. They also
provide the previous year in-domain training set
(i.e. 13k of <src,mt,pe> triplets) further in-
creasing the difficulty of the task.

Training state-of-the-art APE systems capable
of improving high quality NMT outputs requires
large amounts of training data, which is not al-
ways available, in particular for this WMT shared
task. Augmenting the training set with artificially
synthesized data is one of the popular and effec-
tive approaches for coping with this challenge. It
was first used to improve the quality of NMT sys-
tems (Sennrich et al., 2016) and then it was applied
to the APE task (Junczys-Dowmunt and Grund-
kiewicz, 2016). This approach, however, showed
limited success on automatically post editing the
high quality translations of APE systems.

Transfer learning is another solution to deal
with data sparsity in such tasks. It is based on
the assumption that the knowledge extracted from
other well-resourced tasks can be transferred to
the new tasks/domains. Recently, large models
pre-trained on multiple tasks with vast amounts
of data, for instance BERT and MT-DNN (Devlin
et al., 2018a; Liu et al., 2019), have obtained state-
of-the-art results when fine-tuned over a small set
of training samples. Following Correia and Mar-
tins (2019), in this paper we use BERT (Devlin
et al., 2018a) within the encoder-decoder frame-
work (§2.1) and formulate the task of Automatic
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Post Editing as generating pe which is (possi-
bly) the modified version of mt given the original
source sentence src. As discussed in §2.1, in-
stead of using multi-encoder architecture, in this
work we concatenate the src and mt with the
BERT special token (i.e. [SEP] and feed them
to our single encoder.

We also introduce the conservativeness penalty,
a simple yet effective mechanism that controls the
freedom of our APE in modifying the given MT
output. As we show in §2.2, in the cases where
the automatic translations are of high quality, this
factor forces the APE system to do less modifi-
cations, hence avoids the well-known problem of
over-correction.

Finally, we augmented our original in-domain
training data with a synthetic corpus which con-
tains around 3M <src,mt,pe> triplets (§3.1).
As discussed in §4, our system is able to im-
prove significantly the MT outputs by −0.78
TER (Snover et al., 2016) and +1.23 BLEU (Pa-
pineni et al., 2002), achieving an ex-aequo first-
place in the English-German track.

2 Approach

In this section we describe the main features of our
APE system: the BERT-based encoder-decoder
(BED) and the conservativeness penalty.

2.1 BERT-based encoder-decoder

Following (Correia and Martins, 2019) we adapt
the BERT model to the APE task by integrating
the model in an encoder-decoder architecture. To
this aim we use a single BERT encoder to obtain
a joint representation of the src and mt sen-
tence and a BERT-based decoder where the multi-
head context attention block is initialized with the
weights of the self-attention block. Both the en-
coder and the decoder are initialized with the pre-
trained weights of the multilingual BERT1 (Devlin
et al., 2018b). Figure 1 depicts our BED model.

Instead of using multiple encoders to separately
encode src and mt, we use BERT pre-training
scheme, where the two strings after being con-
catenated by the [SEP] special symbol are fed
to the single encoder. We treat these sentences as
sentenceA and sentenceB in (Devlin et al.,
2018b) and assign different segment embeddings
to each of them. This emulates a similar setting

1https://github.com/google-research/
bert
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Figure 1: BERT encoder decoder, taken from Correia
and Martins (2019).

to (Junczys-Dowmunt and Grundkiewicz, 2018)
where a dual-source encoder with shared parame-
ters is used to encode both input strings.

On the target side, following (Correia and Mar-
tins, 2019) we use a single decoder where the
context attention block is initialized with the self
attention weights, and all the weights of the
self-attention are shared with the respective self-
attention weights in the encoder.

2.2 Conservativeness penalty

With domain specific NMT systems making rel-
atively few translation errors, APE systems face
new challenges. This means more careful deci-
sions have to be made by the APE system, making
the least possible edits to the raw mt. To this aim,
we introduce our “conservativeness” penalty de-
veloped on the post editing penalty proposed by
(Junczys-Dowmunt and Grundkiewicz, 2016). It
is a simple yet effective method to penalize/reward
hypotheses in the beam, at inference time, that di-
verge far from the original input.

More formally, let V be the source and target
vocabulary. We define Vc = {Vsrc ∪ Vmt} as
the conservative tokens of an APE triplet, where
Vsrc, Vmt ⊂ V are the src and mt tokens, re-
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spectively. For the sake of argument we define Vc

for decoding a single APE triplet, which can be
generalized to batch decoding with Vc defined for
each batch element. Given the |V | sized vector of
candidates ht at each decoding step t, we modify
the score/probability of each candidate v as:

ht(v) =

{
ht(v)− c if v ∈ V \ Vc

ht(v) otherwise
(1)

where c is the conservativeness penalty, penalizing
(or rewarding for negative values) all tokens of V
not present in Vc. Note that, this penalty can be
applied to either the raw non-normalized outputs
of the model (logit) or the final probabilities (log
probabilities).

As the log probabilities and logit scores have
different bounds of (−∞, 0) and (−∞,+∞), re-
spectively, c is set accordingly. Hence, for posi-
tive values of conservativeness the aim is to avoid
picking tokens not in the src and mt, thus, limit-
ing the number of corrections. On the other hand,
negative values enable over correction.

Moreover, in order to apply the penalty in the
log probabilities, there are some considerations
to take into account as we don’t renormalize af-
ter the transformation. For positive values, the
factor lowers the probability of all non conser-
vative tokens, either increasing the confidence of
an already picked conservative token, or favouring
these tokens that are close to the best candidate –
thus being closer to scores rather than probabili-
ties. In contrast, negative penalties might require
carefully selected values and truncating at the up-
per boundary – we did not experiment with nega-
tive values in this work, however the Quality Esti-
mation shared task winning system used an APE-
QE system with negative conservativeness (Kepler
et al., 2019).

In contrast with Junczys-Dowmunt and Grund-
kiewicz, our model takes into account both src
and mt, allowing to copy either of them directly.
This is beneficial to handle proper nouns as they
should be preserved in the post edition without
any modification. Moreover, instead of setting the
penalty as a fixed value of−1, we define it as a hy-
perparameter which enables a more dynamic con-
trol of our model’s post-editions to the mt input.

3 Experiments

3.1 Data

This year for the English-German language pair
the participants were provided an in-domain train-
ing set and the eSCAPE corpus, an artificially syn-
thesized generic training corpus for APE (Negri
et al., 2018). In addition to these corpora, they
were allowed to use any additional data to train
their systems. Considering this, and the fact that
the in-domain training set belongs to the IT do-
main, we decided to use our own synthetic training
corpus. Thus, we trained our models on a combi-
nation of the in-domain data released by the APE
task organizers and this synthetic dataset.

In-domain training set: we use the 13k triplets
of <src,mt,pe> in the IT domain without any
preprocessing as they are already preprocessed by
the shared task organizers. Despite the previous
year where the mt side was generated either by
a phrase-based or a neural MT system, this year
all the source sentences were translated only by a
neural MT system unknown to the participants.

Synthetic training set: instead of the eSCAPE
corpus provided by the organizers we created our
own synthetic corpus using the parallel data pro-
vided by the Quality Estimation shared task2. We
found this corpus closer to the IT domain which is
the target domain of the APE task. To create this
corpus we performed the following steps:

1. Split the corpus into 5 folds fi.

2. Use OpenNMT (Klein et al., 2017) to train 5
LSTM based translation models, one model
Mi for every subset created by removing fold
fi from the training data.

3. Translate each fold fi using the translation
ModelMi.

4. Join the translations to get an unbiased ma-
chine translated version of the full corpus.

5. Remove empty lines.

The final corpus has 3.3M triplets. We then
oversampled the in-domain training data 20 times
(Junczys-Dowmunt and Grundkiewicz, 2018) and
used them together with our synthetic data to train
our models.

2Dataset can be found under Additional Resouces at
http://www.statmt.org/wmt19/qe-task.html
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System Beam ↓w/o c ↓best c ↓worst c
MT Baseline - 15.08 - -

BED
4 15.65 - -
6 15.61 - -

+ logprobs
4 - 14.84 (c = 1.5) 15.06 (c = 2.3)
6 - 14.87 (c = 1.5) 15.01 (c = 2.5)

+ logits
4 - 15.03 (c = 1.7) 15.25 (c = 0.9)
6 - 15.05 (c = 1.7) 15.23 (c = 0.9)

Table 1: TER scores of the baseline NMT system and our BERT encoder-decoder ape model. The columns “w/o
c”, “best c”, and “worst c” presents the scores of our system without the conservativeness penalty, with the best
and the worst conservativeness penalty settings on our dev corpus, respectively. “logprobs” and “logits” refer,
respectively, to the state where we apply the conservativeness factor (see §2.2)

3.2 BED training

We follow Correia and Martins for training our
BERT-based Encoder-Decoder APE models. In
particular, we set the learning rate to 5e−5 and use
bertadam optimizer to perform 200k steps from
which 20k are warmup steps. We set the effective
batch size to 2048 tokens. Furthermore, we also
use a shared matrix for the input and output token
embedddings and the projection layer (Press and
Wolf, 2017). Finally, we share the self-attention
weights between the encoder and the decoder and
initialize the multi-head attention of the decoder
with the self-attention weights of the encoder.

Similarly to Junczys-Dowmunt (2018), we ap-
ply a data weighting strategy during training.
However, we use a different weighting approach,
where each sample si is assigned a weight, wsi ,
defined as 1 − TER(si). This results in assign-
ing higher weights to the samples with less MT
errors and vice versa, which might sound counter
intuitive since in the APE task the goal is to learn
more from the samples with larger number of er-
rors. However, in this task, where the translations
are provided by strong NMT systems with very
small number of errors, our APE system needs to
be conservative and learn to perform limited num-
ber of modifications to the mt.

3.3 BED decoding

In the decoding step we perform the standard
beam decoding with our conservativeness factor.
We fine tuned the this factor on the dev set pro-
vided by the organizers. Furthermore, in our ex-
periments we set restrict the search to c ∈ [0,+5]
and use beam sizes of 4 and 6. In our prelimi-
nary experiments larger beam sizes didn’t help to
improve the performance further. Finally, we used

the evaluation script available on the website to ac-
cess the performance of our model.

4 Results and discussion

In our preliminary experiments we noticed that
using the pure BED model does not improve
the quality of the translations provided by strong
NMT systems. As Table 1 shows, it actually de-
grades the performance by−0.57 TER scores. Al-
though the scores in Correia and Martins are actu-
ally closer to the baseline, we find that using the
BED model only, without controlling the conser-
vativeness to the original MT can lead to baseline
level scores (on dev). Hence, we applied different
conservativeness penalties during the beam decod-
ing and as the results in Table1 show, different val-
ues for this hyperparameter significantly changes
the performance of our model. For the sake of
compactness, here we present only the best (i.e.
best c) and worst (i.e. worst c) scores by our
model, to compare the effect of this factor.

Furthermore, intuitively, logits stands as the
best candidate to apply the penalty, not only it
was done in a similar fashion previously (Junczys-
Dowmunt and Grundkiewicz, 2018), but also, af-
ter the normalization of the weights, the conserva-
tive tokens should have large peaks while having a
stable behaviour. However, we achieved our best
scores with penalties over the log probabilities,
suggesting pruning hypothesis directly after nor-
malizing the logits leads to more conservative out-
puts. Nonetheless, we leave as future work further
investigations on the impact of pruning before and
after normalizing the logits, as well as exploring
renormalization of the log probabilities. Finally,
we hypothesize that not only our BED model but
also other APE models could benefit from the con-
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servativeness penalty. We, however, leave it to be
explored in future work.

Regarding the performance of our model on the
official test set, as the results of Table 2 show, we
outperform last year’s winning systems by almost
−0.4 TER and +0.5 BLEU, which for strong per-
forming NMT systems is significant. In addition,
our submission ranks first in the official results 3,
ex aequo with 3 other systems. Table 3 depicts the
official results of the shared task, considering only
the best submission of each team.

↓TER ↑BLEU
Baseline 16.84 74.73
(Tebbifakhr et al., 2018) 16.46 75.53
Primary 16.08 75.96
Contrastive 16.21 75.70

Table 2: Submission at the WMT APE shared task.

Although in this paper we did not present an ab-
lation analysis (due to time constraints), we hy-
pothesize that three BED training and decoding
techniques used in this work were influential on
the final result obtained for this task: i) the syn-
thetic training corpus contains more IT domain
samples than the generic eSCAPE corpus, mak-
ing it a suitable dataset to train APE systems for
this domain; ii) the data weighting mechanism
enforces the system to be more conservative and
learn fewer edits which is crucial for strong spe-
cialized NMT engines, and, finally, iii) the con-
servativeness factor is crucial to avoid the well-
known problem of over-correction posed generally
by APE systems over the high quality NMT out-
puts, guaranteeing faithfulness to the original MT.

5 Conclusion

We presented Unbabel’s submissions to the APE
shared task at WMT 2019 for the English-
German language pair. Our model uses the BERT
pre-trained language model within the encoder-
decoder framework and applies a conservative fac-
tor to control the faithfulness of APE system to the
original input stream.

The result of the official evaluation show that
our system is able to effectively detect and correct
the few errors made by the strong NMT system,
improving the score by −0.8 and +1.2 in terms of
TER and BLEU, respectively.

3Available at http://www.statmt.org/wmt19/
ape-task.html under Results.

System ↓Ter ↑BLEU
Ours (Unbabel) 16.06? 75.96
POSTECH 16.11? 76.22
USSAR DFKI 16.15? 75.75
FBK 16.37? 75.71
UdS MTL 16.77 75.03
IC USFD 16.78 74.88
Baseline 16.84 74.73
ADAP DCU 17.07 74.30

Table 3: APE Results as provided by the shared task or-
ganizers. We only present the best score of each team.
? indicates not statistically significantly different, ex
aequo.

Finally, using APE to improve strong in-
domain Neural Machine Translation systems is in-
creasingly more challenging, and ideally the edit-
ing system will tend to perform less and less mod-
ifications of the raw mt. In line with Junczys-
Dowmunt and Grundkiewicz’s suggestion, study-
ing how to apply APE to engines in generic data
(domain agnostic) can be a more challenging task,
as it would require more robustness and general-
ization of the APE system.
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1Department of Language Science and Technology,
Saarland University, Germany

2German Research Center for Artificial Intelligence (DFKI),
Saarland Informatics Campus, Germany

{santanu.pal, josef.vangenabith}@uni-saarland.de
{hongfei.xu, nico.herbig, krueger, josef.van genabith}@dfki.de

Abstract

In this paper we present an English–German
Automatic Post-Editing (APE) system called
transference, submitted to the APE Task orga-
nized at WMT 2019. Our transference model
is based on a multi-encoder transformer ar-
chitecture. Unlike previous approaches, it
(i) uses a transformer encoder block for src,
(ii) followed by a transformer decoder block,
but without masking, for self-attention on mt,
which effectively acts as second encoder com-
bining src→ mt, and (iii) feeds this represen-
tation into a final decoder block generating pe.
This model improves over the raw black-box
neural machine translation system by 0.9 and
1.0 absolute BLEU points on the WMT 2019
APE development and test set. Our submis-
sion ranked 3rd, however compared to the two
top systems, performance differences are not
statistically significant.

1 Introduction & Related Work

Automatic post-editing (APE) is a method that
aims to automatically correct errors made by ma-
chine translation (MT) systems before perform-
ing actual human post-editing (PE) (Knight and
Chander, 1994), thereby reducing the translators’
workload and increasing productivity (Pal et al.,
2016a; Parra Escartı́n and Arcedillo, 2015b,a; Pal
et al., 2016a). Recent advances in APE research
are directed towards neural APE based on neu-
ral MT where APE systems can be viewed as a
2nd-stage MT system, translating predictable er-
ror patterns in MT output to their corresponding
corrections. APE training data minimally involves
MT output (mt) and the human post-edited (pe)
version of mt, but additionally using the source
(src) has been shown to provide further bene-
fits (Bojar et al., 2015, 2016, 2017). Based on
the training process, APE systems can be catego-
rized as either single-source (mt → pe) or multi-

source ({src,mt} → pe) approaches. This in-
tegration of source-language information in APE
is intuitively useful in conveying context infor-
mation to improve APE performance. Neural
APE was first proposed by Pal et al. (2016b) and
Junczys-Dowmunt and Grundkiewicz (2016). A
multi-source neural APE system can be config-
ured either by using a single encoder that encodes
the concatenation of src and mt (Niehues et al.,
2016) or by using two separate encoders for src
and mt and passing the concatenation of both
encoders’ final states to the decoder (Libovický
et al., 2016). A small number of multi-source neu-
ral APE approaches were proposed in the WMT
2017 APE shared task. The two-encoder architec-
ture (Junczys-Dowmunt and Grundkiewicz, 2017;
Chatterjee et al., 2017; Varis and Bojar, 2017) of
multi-source models utilizes both the source text
(src) and the MT output (mt) to predict the post-
edited output (pe) in a single end-to-end neural ar-
chitecture.

In the WMT 2018 APE shared task, further
multi-source APE architectures based on the trans-
former model (Vaswani et al., 2017) have been
presented. The winning team for the NMT task
in WMT 2018 Tebbifakhr et al. (2018) employ
sequence-level loss functions in order to avoid ex-
posure bias during training and to be consistent
with the automatic evaluation metrics. (Pal et al.,
2018) proposed an APE model that uses two sep-
arate self-attention-based encoders to encode mt
and src, followed by a self-attended joint encoder
that attends over a combination of the two encoded
sequences and is used by the decoder for gener-
ating the post-edited sentence pe. Shin and Lee
(2018) propose that each encoder has its own self-
attention and feed-forward layer to process each
input separately. On the decoder side, they add
two additional multi-head attention layers, one for
src → mt and another for src → pe. There-
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after another multi-head attention between the out-
put of those attention layers helps the decoder to
capture common words in mt which should re-
main in pe. The WMT 2018 winner for the PB-
SMT task (Junczys-Dowmunt and Grundkiewicz,
2018) also presented transformer-based multi-
source APE called a dual-source transformer ar-
chitecture. They use two encoders and stack an ad-
ditional cross-attention component for src → pe
above the previous cross-attention for mt → pe.
Comparing Shin and Lee (2018)’s approach with
the winner system, there are only two differences
in the architecture: (i) the cross-attention order of
src → mt and src → pe in the decoder, and (ii)
the winner system additionally shares parameters
between two encoders.

In this work, we present a multi-source neural
APE architecture called transference1. Our model
contains (i) a source encoder (encsrc) which en-
codes src information, (ii) a second encoder
(encsrc→mt) which can also be viewed as a stan-
dard transformer decoding block, however, with-
out masking, and (iii) a decoder (decpe) which
captures the final representation from encsrc→mt

via cross-attention. We thus recombine the dif-
ferent blocks of the transformer architecture and
repurpose them for the APE task in a simple yet
effective way. The intuition behind our architec-
ture is to generate better representations via both
self- and cross-attention and to further facilitate
the learning capacity of the feed-forward layer in
the decoder block.

The rest of the paper is organized as follows.
In 2, we describe the transference architecture; 3
describes our experimental setup; 4 reports the re-
sults of our approach against the baseline; and fi-
nally, 5 concludes the paper with directions for fu-
ture work.

2 Transference Model for APE

We propose a multi-source transformer model
called transference (Figure 1), which takes advan-
tage of both the encodings of src and mt and at-
tends over a combination of both sequences while
generating the post-edited sentence. The sec-
ond encoder, encsrc→mt, is identical to the trans-
former’s decoder block but uses no masking in the
self-attention layer, thus having one self-attention

1Our implementation is available at https://
github.com/santanupal1980/Transference.
git

Figure 1: The transference model architecture for APE
({src,mt}tr → pe).

layer and an additional cross-attention layer for
src → mt. Here, the encsrc encoder and the
decpe decoder are equivalent to the original trans-
former for neural MT (Vaswani et al., 2017). Put
differently, our multi-source APE implementation
extends Vaswani et al. (2017) by introducing an
additional encoding block by which src and mt
communicate with the decoder.

3 Experiments

We compare our approach against the raw MT out-
put provided by the 1st-stage MT system. We
evaluate the systems using BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006).

3.1 Data
For our experiments, we use the English–German
WMT 2019 (Chatterjee et al., 2018) neural APE
data. All released APE datasets consist of
English–German triplets containing source En-
glish text (src) from the IT domain, the corre-
sponding German translations (mt) from a 1st-
stage NMT system, and the corresponding human-
post-edited version (pe). Table 1 presents the
statistics of the released data. As this released
APE dataset is small in size (see Table 1), the
synthetic eScape APE corpus (Negri et al., 2018),
consisting of more than 7M triples, is available as
an additional resource. All datasets, except for the
eScape corpus, do not require any preprocessing
in terms of encoding, tokenization or alignment.

For cleaning the noisy eScape dataset contain-
ing many unrelated language words (e.g. Chinese),
we perform the following two steps: (i) we use the
cleaning process described in Pal et al. (2015), and
(ii) we execute the Moses (Koehn et al., 2007) cor-
pus cleaning scripts with minimum and maximum
number of tokens set to 1 and 100, respectively.
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Corpus
Sentences

Overall Cleaning
Train 13,442 -
Dev 1,000 -
Test 1,023 -
eScape 7.2M 6.5M

Table 1: Statistics of the WMT 2019 English-German
APE Shared Task Dataset.

(iii) After cleaning, we perform punctuation nor-
malization, and then use the Moses tokenizer to
tokenize the eScape corpus with ‘no-escape’ op-
tion. Finally, we apply true-casing.

3.2 Experiment Setup
We split the released data (13.4K) into two sets;
we use the first 12K for training and the remain-
ing 1.4K as validation data. The development set
(Dev) released by WMT20192 is used as test data
for our experiment. We build two models transfer-
ence4M and transferenceALL using slightly differ-
ent training procedures.

For transference4M, we first train on a train-
ing set called eScape4M combined with the first
12k of the provided NMT training data. This eS-
cape4M data is prepared using in-domain (for our
case the 12K training data) bilingual cross-entropy
difference for data selection as described in Axel-
rod et al. (2011). The difference in cross-entropy
is computed based on two language models (LM):
a domain-specific LM is estimated from the in-
domain (12K) PE corpus (lmi) and the out-domain
LM (lmo) is estimated from the eScape corpus.
We rank the eScape corpus by assigning a score to
each of the individual sentences which is the sum
of the three cross-entropy (H) differences. For a
jth sentence pair srcj–mtj–pej , the score is cal-
culated based on Equation 1.

score = |Hsrc(srcj , lmi)−Hsrc(srcj , lmo)|
+ |Hmt(mtj , lmi)−Hmt(mtj , lmo)|

+ |Hpe(pej , lmi)−Hpe(pej , lmo)| (1)

For transferenceALL, we initially train on the
complete eScape dataset (eScapeAll) combined
with the first 12k of the training data. The eS-
capeAll data is sorted based on their in-domain
similarities as described in Equation 1.

2It is to be noted that, the released development set and
test set are same as in WMT2018.

Both models are then fine-tuned towards the
real data, by training again solely on the first 12k
segments of the provided data. For both models,
we perform checkpoint averaging using the 8 best
checkpoints. We report the results on the develop-
ment set provided by WMT2019, which we use as
a test set.

To handle out-of-vocabulary words and to re-
duce the vocabulary size, instead of considering
words, we consider subword units (Sennrich et al.,
2016) by using byte-pair encoding (BPE). In the
preprocessing step, instead of learning an explicit
mapping between BPEs in the src, mt and pe,
we define BPE tokens by jointly processing all
triplets. Thus, src, mt and pe derive a single BPE
vocabulary. Since mt and pe belong to the same
language (DE) and src is a close language (EN),
they naturally share a good fraction of BPE tokens,
which reduces the vocabulary size.

3.3 Hyper-parameter Setup

We follow a similar hyper-parameter setup
for all reported systems. All encoders (for
{src,mt}tr → pe), and the decoder, are com-
posed of a stack of Nsrc = Nmt = Npe = 6 iden-
tical layers followed by layer normalization. We
set all dropout values in the network to 0.1. During
training, we employ label smoothing with value εls
= 0.1. The learning rate is varied throughout the
training process, and increasing for the first train-
ing stepswarmupsteps = 8000 and afterwards de-
creasing as described in (Vaswani et al., 2017). All
remaining hyper-parameters are set analogously to
those of the transformer’s base model.

At training time, the batch size is set to 25K to-
kens, with a maximum sentence length of 256 sub-
words, and a vocabulary size of 28K. After each
epoch, the training data is shuffled. During decod-
ing, we perform beam search with a beam size of
4. We use shared embeddings between mt and pe
in all our experiments.

4 Results

The results of our two models, transference4M
and transferenceALL, in comparison to the base-
line raw MT are presented in Table 2 and 3. Ta-
ble 2 reports results on the WMT2019 develop-
ment set (Dev), Table 3 on the WMT2019 test set
(Test).
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Exp
No.

Models
Dev

BLEU ↑ TER ↓
Baseline

1 raw MT 76.76 15.08
No fine-tuning

2 transference4M (CONTRASTIVE) 77.11 (+0.35) 14.94 (-0.14)
3 transferenceALL 77.25 (+0.49) 14.87 (-0.21)

Fine tune with 12K
4 transference4M 77.22 (+0.46) 14.89 (-0.19)
5 transferenceALL 77.39 (+0.63) 14.71 (-0.37)

Average 8 checkpoints on fine tuned models
6 transference4M 77.27 (+0.51) 14.88 (-0.20)
7 transferenceALL (PRIMARY) 77.67 (+0.91) 14.52 (-0.56)

Table 2: Evaluation results on the WMT APE 2019 development set for the EN-DE NMT task.

Exp
No.

Models
Test

BLEU ↑ TER ↓
Baseline

1 raw MT 74.73 16.84
Submission

2 transference4M (CONTRASTIVE) 73.97 (-0.76) 17.31 (+0.47)
3 transferenceALL (PRIMARY) 75.75 (+1.02) 16.15 (-0.69)

Table 3: Evaluation results on the WMT APE 2019 test set for the EN-DE NMT task.

4.1 Baselines

The raw MT output in Table 2 and Table 3 is a
strong black-box NMT system (i.e., 1st-stage MT)
on Dev and Test respectively. We report its perfor-
mance observed with respect to the ground truth
(pe), i.e., the post-edited version of mt. The orig-
inal MT system scores 76.76 BLEU points and
15.08 TER on Dev as well as 74.73 BLEU points
and 16.84 TER on Test.

4.2 Transference Transformer for APE

Table 2 shows the results of our transference ar-
chitecture on the Dev set, where our two experi-
mental setups transference4M (Exp 2) and trans-
ferenceALL (Exp 3) improve the performance over
the baseline system. Compared to transference4M
(Exp 2), our transferenceALL (Exp 3) performs
better in terms of both BLEU and TER on the Dev
set. Moreover, fine-tuning our transference mod-
els (Exp 4 and 5 in Table 2) yields further perfor-
mance gains. Additionally averaging the 8 best
checkpoints of our fine-tuned version models (Exp
6 and 7) provides further improvements. All mod-
els except transference4M (CONTRASTIVE, our
contrastive submission in WMT2019 APE task)

yield statistically significant results (p < 0.001)
over the raw MT baseline. transferenceALL (PRI-
MARY, our primary submission in WMT2019
APE task) (Exp 7) also provides statistically sig-
nificant improvement over transference4M (Exp
6). For these and all following significance tests
we employ the method by Clark et al. (2011)3.
Table 2 shows that our APE architecture trans-
ferenceALL (PRIMARY) (Exp 7) significantly im-
proves over the already very good NMT system by
about +0.91 BLEU and -0.56 TER.

Table 3 presents the results of our submis-
sions on the Test set in the WMT 2019 EN-
DE APE task. We submitted transference4M
(CONTRASTIVE) system – a weak model hav-
ing performance close to the baseline, (i) to check
whether in-domain data provides any gain in per-
formance on the Test set or not, (ii) to create
another baseline trained on in-domain data, by
which we could analyze our PRIMARY trans-
ference model’s capability of transfer learning.
So far, we could not find an explanation why
our CONTRASTIVE system behaves completely
different on the Test set compared to the Dev

3https://github.com/jhclark/multeval
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set. However, our primary submission transfer-
enceALL (PRIMARY) shows similar performance
on the WMT2019 Test set as on the Dev set.
Overall our transferenceALL (PRIMARY) sub-
mission achieves statistically significant +1.02 ab-
solute BLEU point and -0.69 absolute in TER im-
provements in performance over the baseline on
the Test set.

4.3 Discussion

It is important to note that raw MT provides a
strong baseline. Our proposed transference model
(transferenceALL) shows statistically significant
improvements in terms of BLEU and TER com-
pared to this baseline even before fine-tuning, and
further improvements after fine-tuning. Finally,
after averaging the 8 best checkpoints, our trans-
ferenceALL model also shows consistent improve-
ments in comparison to the baseline and other ex-
perimental setups.

Table 4 shows the performance of our transfer-
enceALL model compared to the winner system of
WMT 2018 (wmt18Best) for the NMT task (Tebb-
ifakhr et al., 2018) on Dev and Test data. The
primary submission of wmt18Best scores 14.78 in
TER and 77.74 in BLEU on the Dev set and 16.46
in TER and 75.53 in BLEU on the Test set. In
comparison to wmt18Best, our transferenceALL
model achieves better scores in TER on both the
Dev and Test set, however, in terms of BLEU the
score acquired by our transferenceALL model is
slightly worse for the Dev set, while some im-
provements were achieved on the Test data. In
comparison to the wmt2019Best system, which
achieved 16.06 in TER and 75.95 in BLEU ac-
cording to the official released results4, we do
not used BERT (Devlin et al., 2018) in our sys-
tem. Even thoughwmt2019Best integrated BERT,
there is no statistical significant performance dif-
ference to our primary submission. Moreover, our
system does not perform ensembling of multiple
models, as the 2nd best system in WMT 2019,
which achieves 16.11 in TER and 76.22 in BLEU.

We believe the reasons for the effectiveness of
our approach to be as follows. (1) Our encsrc→mt

contains two attention mechanisms: one is self-
attention and another is cross-attention. The self-
attention layer is not masked here; therefore, the
cross-attention layer in encsrc→mt is informed by
both previous and future time-steps from the self-

4http://www.statmt.org/wmt19/ape-task.html

attended representation of mt (encmt) and addi-
tionally from encsrc. As a result, each state rep-
resentation of encsrc→mt is learned from the con-
text of src and mt. This might produce better rep-
resentations for decpe which can access the com-
bined context. In contrast, in wmt18Best, the
decpe accesses the concatenated encoded repre-
sentations from src and mt encoder jointly. (2)
Since pe is a post-edited version of mt, sharing
the same language, mt and pe are quite simi-
lar compared to src. Therefore, attending over a
fine-tuned representation from mt along with src,
which is what we have done in this work, might be
a reason for the better results compared to those
achieved by attending over concatenated encoded
information from src and mt directly.

5 Conclusions and Future Work

In this paper, we presented our submissions to the
APE shared task at WMT 2019. We extend the
transformer-based architecture to a multi-encoder
transformer-based model that extends the standard
transformer blocks in a simple and effective way
for the APE task. Our model makes use of two
separate encoders to encode src and mt; the sec-
ond encoder additionally attends over a combina-
tion of both sequences to prepare the representa-
tion for the decoder to generate the post-edited
translation. The proposed model outperforms the
best-performing system of WMT 2018 on the Test
data. Our primary submission ranked 3rd, how-
ever compared to other two top systems, the per-
formance differences are not statistically signifi-
cant.

Taking a departure from traditional transformer-
based encoders, which perform self-attention only,
our second encoder also performs cross-attention
to produce representations for the decoder based
on both src and mt. Our proposed multi-encoder
transformer-based architecture is also generic and
can be used for any multi-modal (or multi-source)
task, e.g., multi-modal translation, multi-modal
summarization.
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Ondřej Bojar, and Pavel Pecina. 2016. CUNI Sys-
tem for WMT16 Automatic Post-Editing and Multi-
modal Translation Tasks. In Proceedings of the First
Conference on Machine Translation, pages 646–
654, Berlin, Germany. Association for Computa-
tional Linguistics.

Matteo Negri, Marco Turchi, Rajen Chatterjee, and
Nicola Bertoldi. 2018. ESCAPE: a Large-scale
Synthetic Corpus for Automatic Post-Editing. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Jan Niehues, Eunah Cho, Thanh-Le Ha, and Alex
Waibel. 2016. Pre-Translation for Neural Machine
Translation. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: Technical Papers, pages 1828–1836,
Osaka, Japan. The COLING 2016 Organizing Com-
mittee.

Santanu Pal, Nico Herbig, Antonio Krger, and Josef
van Genabith. 2018. A Transformer-Based Multi-
Source Automatic Post-Editing System. In Proceed-
ings of the Third Conference on Machine Transla-
tion, Volume 2: Shared Task Papers, pages 840–848,
Belgium, Brussels. Association for Computational
Linguistics.

Santanu Pal, Sudip Naskar, and Josef van Genabith.
2015. UdS-sant: English–German hybrid machine
translation system. In Proceedings of the Tenth
Workshop on Statistical Machine Translation, pages
152–157, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Santanu Pal, Sudip Kumar Naskar, and Josef van Gen-
abith. 2016a. Multi-Engine and Multi-Alignment
Based Automatic Post-Editing and Its Impact on
Translation Productivity. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
2559–2570, Osaka, Japan.

Santanu Pal, Sudip Kumar Naskar, Mihaela Vela, and
Josef van Genabith. 2016b. A Neural Network
Based Approach to Automatic Post-Editing. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 281–286, Berlin, Germany. Associa-
tion for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Philadelphia, Pennsylvania.

Carla Parra Escartı́n and Manuel Arcedillo. 2015a.
Living on the Edge: Productivity Gain Thresh-
olds in Machine Translation Evaluation Metrics.
In Proceedings of the Fourth Workshop on Post-
editing Technology and Practice, pages 46–56, Mi-
ami, Florida (USA). Association for Machine Trans-
lation in the Americas (AMTA).

Carla Parra Escartı́n and Manuel Arcedillo. 2015b.
Machine Translation Evaluation Made Fuzzier: A
Study on Post-Editing Productivity and Evaluation
Metrics in Commercial Settings. In Proceedings of
the MT Summit XV, Miami (Florida). International
Association for Machine Translation (IAMT).

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers.

Jaehun Shin and Jong-Hyeok Lee. 2018. Multi-
encoder Transformer Network for Automatic Post-
Editing. In Proceedings of the Third Conference on
Machine Translation, Volume 2: Shared Task Pa-
pers, pages 853–858, Belgium, Brussels. Associa-
tion for Computational Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
Translation Edit Rate with Targeted Human Anno-
tation. In Proceedings of Association for Machine
Translation in the Americas, pages 223–231, Cam-
bridge, Massachusetts, USA.

Amirhossein Tebbifakhr, Ruchit Agrawal, Rajen Chat-
terjee, Matteo Negri, and Marco Turchi. 2018.
Multi-Source Transformer with Combined Losses
for Automatic Post Editing. In Proceedings of the
Third Conference on Machine Translation, Volume
2: Shared Task Papers, pages 859–865, Belgium,
Brussels. Association for Computational Linguis-
tics.
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Abstract

Automatic post-editing (APE) can be reduced
to a machine translation (MT) task, where the
source is the output of a specific MT system
and the target is its post-edited variant. How-
ever, this approach does not consider context
information that can be found in the original
source of the MT system. Thus a better ap-
proach is to employ multi-source MT, where
two input sequences are considered – the orig-
inal source and the MT output.

Extra context information can be introduced
in the form of extra tokens that identify cer-
tain global properties of a group of segments,
added as a prefix or a suffix to each segment.
Successfully applied in domain adaptation of
MT as well as on APE, this technique de-
serves further attention. In this work we inves-
tigate multi-source neural APE (or NPE) sys-
tems with training data which has been aug-
mented with two types of extra context tokens.
We experiment with authentic and synthetic
data provided by WMT 2019 and submit our
results to the APE shared task. We also experi-
ment with using statistical machine translation
(SMT) methods for APE. While our systems
score bellow the baseline, we consider this
work a step towards understanding the added
value of extra context in the case of APE.

1 Introduction

Automatic post-editing (APE) aims at improving
text that was previously translated by Machine
Translation (MT). An APE system is typically
trained on triplets composed of: a segment in the
source language, a translation hypothesis of that
segment by an MT system, and the edited version
of that hypothesis, created by a human translator.

Currently, neural machine translation (NMT)
systems are the state-of-the-art in MT, achieving
quality beyond that of phrase-based statistical MT
(SMT) (Bentivogli et al., 2016; Shterionov et al.,

2018). NMT output is more fluent but may con-
tain issues related to accuracy. However, auto-
matic post-editing of NMT output has proved to
be a challenging task (Chatterjee et al., 2018).

In terms of post-editing technology, neural
methods as well represent the current state-of-
the-art (do Carmo et al., 2019). And while neu-
ral post-editing (NPE) has shown substantial im-
provements when applied on PBSMT output, it
has not been as effective in improving output from
NMT systems. One of the reasons is that NMT and
NPE typically use similar approaches, which can
make the latter redundant, as it can be assimilated
by the former, e.g., in some cases, by increasing
the number of layers of the network. One alterna-
tive is to explore features of the data not available
while training MT systems. In this paper, we ex-
plore the effect of adding tokens that identify par-
titions in the training data which may be relevant
to guide the behaviour of the NPE system. Ex-
amples of such tokens are related to basic source
and/or target sentence length or to more sophisti-
cated analyses of the text. In this work, we explore
two features: sentence length and topic.

2 Related Work

Adding a token to the input of a sequence model to
shape its behaviour is not a new idea. Mikolov and
Zweig (2012) aim at improving neural language
models and avoid the data fragmentation in mul-
tiple datasets by using Latent Dirichlet Allocation
(Blei et al., 2003) to construct context vectors and
represent topics. Sennrich et al. (2016a) call the
added token a ’side constraint’, which informs the
system about target side features, such as honorific
forms of treatment, tense, number, gender, or other
grammatical or discourse features, which may not
exist or be different in the source side. The authors
use an automatic annotator of politeness in the tar-
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get sentences in the training set, which places a
token at the end of each sentence to control the
politeness level of the output of an NMT model.
Yamagishi et al. (2016) also use target side an-
notations during training to control active versus
passive voice in the output. Vanmassenhove et al.
(2018) used prefixed tokens identifying the gen-
der of the author to aid the MT system in correctly
presenting gender features in discourse.

Special input tokens have also been used to aid
training of single models on multilingual transla-
tion tasks: Johnson et al. (2017) prefix each source
sentence in an NMT system with a token to in-
dicate the target language, training a multilingual
model on a scenario with multiple source and tar-
get languages. This approach is at the background
of the research on zero-shot translation. In the
context of low-resource languages, Mattoni et al.
(2017) add two tokens, one to specify the source
language and another to specify the target lan-
guage. In their case, the source-language token
is used for language specific tokenisation. Sim-
ilarly, Zhou et al. (2018) found that adding to-
kens that encode the source and target language
family, e. g. source-family:Germanic and
target-family:Slavic for English-Czech
translation, may improve the accuracy of the NMT
outputs for low-resource languages.

Added tokens in APE were used in a scenario
where SMT and NMT outputs were trained jointly
in a single model (Pylypenko and Rubino, 2018).
An artificial token was added to the data to indi-
cate the system the segments had been produced
from. However, this strategy was not very suc-
cessful, especially when editing NMT output.

Our current work further explores the strat-
egy of adding such tokens about data partitions
in NPE. Partitions are derived according to topic
models or sentence lengths. Topic models are
trained separately on the provided data and aim to
identify the topic of each segment of the data.

3 Data and Labels

While the shared task is open to using addi-
tional data sources, we only use the data sets
linked on the shared task website, aiming at bet-
ter result reproducibility: i. e. (a) the authentic
English-German WMT 2018 APE shared task data
(Turchi et al., 2018), (b) the synthetic English-
German data of the WMT 2016 AmuNMT sys-
tem (Junczys-Dowmunt and Grundkiewicz, 2016),

(c) the NMT part of the synthetic English-German
data of the eSCAPE corpus (Negri et al., 2018),
(d) the authentic English-Russian data new in the
WMT 2019 APE shared task provided by Mi-
crosoft1 and (e) the synthetic English-Russian data
of the eSCAPE corpus.

3.1 Training Data
For the EN-DE experiments, we used the 500k
and 4M triplets defined in (Junczys-Dowmunt and
Grundkiewicz, 2016). For EN-RU, we used the
8M triplets from the eSCAPE project. Table 1 and
Table 2 show statistics about the data used to train
our systems.

Size EN-DE EN-RU
small 268 840 301 780
medium 795 208 N/A
large 4 660 020 8 037 141

Table 1: Number of SRC-NMT-PE triplets distributed
over three data sets used in our experiments.

3.2 Induction of Topic Clusters
We induce ten topic clusters for each language
pair using Scikit-Learn’s implementation of Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). We
use the English side of the data. The data is the
concatenation of the authentic and a sample of the
synthetic data. For English-German, we sample
50k segments each of AmuNMT (500k) and eS-
CAPE data (7M). For English-Russian, we sam-
ple 100k of eSCAPE data. The data was cleaned
of stop words and words that occur less than five
times or in more than 90% of segments.

3.3 Topic Classification
We split the data for training the LDA models,
into ten files according to the induced topics and
then label each sentence of all data according to
the most similar topic file. We measure similar-
ity with cosine similarity on character n-gram tf-
idf vector representations (n = 5, 6, 7). Before
n-gram extraction, segments are lowercased and
e-mail addresses, URL numbers and characters re-
peated more than three times are normalised. For
tf-idf values, we use plus one smoothing and we
avoid zero and negative idf values by adding two
to the number of documents. To represent topic
clusters, we use the average of its segment vectors.

1http://www.statmt.org/wmt19/ape-task.
html accessed during the task and last 2019-04-30
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Size EN-DE EN-RU
SRC NMT PE SRC NMT PE

small 10 771 15 477 18 088 9 125 14 783 15 761
medium 48 227 48 257 48 869 N/A
large 50 327 50 538 50 790 53 030 50 646 52 970

Table 2: Vocabulary sizes (after applying BPE on the train data set).

3.4 Length Partitions

Another way of partitioning the data is by sen-
tence length. We use the length of the source side
of each segment, i. e. the English side to create a
partitioning of the data according to the number
of tokens. We choose the partition boundaries as
thresholds on the number of tokens keeping each
partition similar in size within the sample data.
Size is measured as

∑
i s

e
i where si is the number

of tokens in the ith segment and e = 0.5. This is
a compromise between counting segments (e = 0)
and counting tokens (e = 1).

3.5 Pre-processing for APE Training

We use the available authentic and synthetic data
as is. The authentic data, the synthetic AmuNMT
data and the synthetic EN-RU eSCAPE data used
for training are already tokenised, thus no further
tokenisation is conducted. We do not apply lower-
nor true-casing, aiming to learn how to correct er-
rors related to the casing. We learn a byte-pair en-
coding (Sennrich et al., 2016b) of 50 000 opera-
tions from our training data which we then apply
to split each data set into subword units. After that,
the corresponding partition tokens are attached to
each segment. In particular, the partition labels are
attached to both source and MT segments, i.e., the
two sources in our multi-source NPE systems.

4 Experiments

4.1 Objectives

Our experiments aim at two objectives: (i) to in-
vestigate the effect of extra information in the
form of prefix tokens for NPE; and (ii) to assess
whether monolingual SMT2, can be effective for
post-editing of NMT output. The latter is driven
by the idea of added benefits from interleaving dif-
ferent MT technologies.

2In this work, we use the term monolingual to define an
MT system where the source and the target are in the same
language, e.g. the source is a translated sentence in German
and the target is its post-edited variant.

We conduct three types of NPE experiments –
(a) baseline experiments, using no extra tokens to
build a set of baseline systems; (b) length tokens
– prefixed with tokens stating the data partition
based on the length and (c) topic tokens – data
is prefixed with tokens stating the data partition
based on the LDA clustering. For the SMT exper-
iments no additional tokens were attached to the
text. We assumed that such augmentation of the
source side would increase the difference with re-
spect to word alignment and thus it would have a
negative impact on the quality of the system.

4.2 Models

NPE We trained 15 NPE systems: small,
medium and large for EN-DE and small and large
for EN-RU, on the data discussed in Section 3.1,
for the three different prefix token settings – no
token, topic token, length token. For all of
them, we employed Marian-NMT3 to train multi-
source sequence-to-sequence models (multi-s2s)
with LSTM units.4 The two sources are the actual
source-side data (EN) from the training corpus and
its translation (DE or RU). We used cross-entropy
as validation metric and the max-length was 150
tokens. The training stops after 5 epochs with no
improvement, i.e., early stopping.

SMT We trained 5 SMT models (small, medium
and large for EN-DE and small and large for EN-
RU) using Moses (Koehn et al., 2007) release 4.0,
Giza++ (Och and Ney, 2003) for word alignment
and a 5-gram KenLM language model (Heafield,
2011). Models are tuned with Mert (Och, 2003).
We ought to stress that these models are monolin-
gual, i.e., trained only on the original MT output
as source and its post-edited variant as target.

3https://marian-nmt.github.io/
4Options: –mini-batch-fit, –workspace 9000, –layer-

normalization, –dropout-rnn 0.2 –dropout-src 0.1 –dropout-
trg 0.1, –early-stopping 5, –max-length 150 –max-length-
crop, –valid-freq 2000 –save-freq 2000 –disp-freq 1000
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4.3 Evaluation and selection for WMT
submission

We evaluated our models using BLEU (Papineni
et al., 2002) and TER (Snover et al., 2006). For
the former, we used the multi-bleu implementation
provided alongside Moses; and for the latter we
used the script provided by the WMT organisation.

We computed BLEU and TER using the human
PE side of the data as reference, and the NPE out-
put as hypothesis, e.g. TER(npe,pe). We also
computed BLEU and TER scores for the original
data, i.e. in this case the reference again is the
human PE but the hypothesis is the NMT part of
the training data: TER(nmt,pe). We present our
results on the development set in Tables 3 and 4
for EN-DE and EN-RU, respectively. We denote
the scores for the original (baseline) MT output
with MT. Scores are scaled between 0 and 100.

Model Prefix BLEU ↑ TER ↓
MT Baseline N/A 76.94 15.08
NPE small N/A 63.28 24.09

medium N/A 70.57 18.81
large N/A 70.29 19.89
small topic 60.41 28.59
medium topic 73.08 17.81
large topic 75.82 15.89
small length 62.56 26.91
medium length 73.74 17.26
large length 75.85 15.91

SMT small N/A 76.82 15.33
medium N/A 77.04 15.17
large N/A 76.82 15.26

Table 3: BLEU and TER scores for the EN-DE NPE
and SMT models (dev set). Rows in bold indicate sub-
mitted system results.

For submission to the shared task, we selected the
best models, according to TER, available at the
submission deadline. For EN-DE, these are: the
NPE-large-topic (primary), the NPE-large-length
and the SMT-medium; for EN-RU these are the
NPE-large-length (primary) and the SMT-small.
In the result tables these are marked in bold.

5 Results and Analysis

5.1 Development Observations

Table 3 and Table 4 show the evaluation scores
(BLEU and TER) on the development set results.
In our experiments, the ranking of the systems’

Model Prefix BLEU ↑ TER ↓
MT Baseline N/A 80.22 13.13
NPE small N/A 50.76 34.45

large N/A 59.01 28.01
small topic 48.30 41.19
large topic 75.39 16.18
small length 44.68 44.57
large length 73.67 19.74

SMT small N/A 79.40 13.68

Table 4: BLEU and TER scores for the EN-RU NPE
and SMT models (dev set). Rows in bold indicate sub-
mitted system results.

performance scores is always the same, no matter
if we use TER or BLEU.

We can see that all NPE systems in our experi-
ments, whether or not they are augmented with in-
formative tokens, are unable to perform as well as
the original NMT translations. So, our NPE sys-
tems are not fulfilling their main function. Still,
it is worth analysing the evolution of scores from
system to system.

As expected, in general, the larger the systems,
the better the results. This is most visible in the
EN-DE experiments, for which we trained systems
in a three-size scale. Systems with small amounts
of training data deteriorate the scores very much,
which makes them not viable. For augmented sys-
tems, in both languages, the addition of more data
has a very visible effect, with the largest systems
having the best results. The same is not true for the
systems with no tokens, in which medium-sized
systems achieve better scores than large ones. For
the SMT systems, size of the training data was
the only factor we tested, but the scores are very
close for all systems, with medium-sized systems
achieving slightly better results.

The addition of the tokens also has a positive
effect in the scores, especially for systems trained
with medium-sized and large-sized datasets. For
EN-DE, in the systems trained with a small vol-
ume of data, the highest scores are for systems
with no tokens. But for medium-sized trained sys-
tems, the addition of the token length achieves
the best results. For large systems, the scores are
much closer to each other, but augmented systems
beat the system with no tokens. In EN-RU, the ad-
vantages of adding the tokens is also more visible
for the larger datasets, with topic as the token that
enables the highest scores.
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Surprisingly, the APE systems using SMT are
the best performing ones, beating all neural ones.
In fact, their scores are very close to the original
ones, and very consistent, seeming not to be sensi-
tive to the increase in the volumes of training data.

5.2 Final Systems

As noted in Section 4.3 we submitted three
systems for EN-DE: the NPE-large-topic (as
primary), the NPE-large-length and the SMT-
medium. Only the SMT system scores above the
original MT system, and only in terms of BLEU.
For EN-RU, we submitted two systems: NPE-
large-length (as primary) and the SMT-small.
None of the system improved on the original MT
data, but the SMT system was close. The baseline
scores compared to our systems’ scores are pre-
sented in Table 5 and Table 6.

System Model Prefix BLEU ↑ TER ↓
MT Baseline N/A N/A 74.73 16.84
NPE Primary large topic 74.29 17.29

Contrastive I large length 74.01 17.41
SMT Contrastive II medium N/A 74.30 17.07

Table 5: BLEU and TER scores for submitted and base-
line systems for the EN-DE language pair.

System Model Prefix BLEU ↑ TER ↓
MT Baseline N/A N/A 76.20 16.16
NPE Primary large length 72.90 18.31
SMT Contrastive small N/A 75.27 16.59

Table 6: BLEU and TER scores for submitted and base-
line systems for the EN-RU language pair.

We believe one of the main factors for these re-
sults is the initially high quality of the baseline
MT systems. The inherent nature of APE systems
dictates that they generate a whole new sentence
when the inputs are passed through the model.
However, in cases when no or barely any changes
are required, it will be desirable not generate a
new sentence, i.e. the post-edit, but to retain the
original one, as any transformation process would
be likely to impede the quality. In future work,
we will look into combining NPE models with
Quality Estimation (QE), to filter NMT output by
expected quality and thus control over-correction:
the NPE system will then only present alternatives
for sentences that require improvements.

6 Conclusions

Although our NPE systems do not fulfill their
main aim (improving the output of an NMT sys-
tem), this paper highlights the potential of two
strategies for APE which explore the thin improve-
ment margins allowed by NMT output.

The augmentation strategy is a simple process
that requires no system development, but presents
its own challenges. The tokens that are used must
be informative, so as to guide the NPE system to
features in the datasets with a very close relation
to the editing patterns the system is supposed to
learn. Future work should check the topic model
and if necessary switch to a more suitable model.
Other types of tokens should also be tested. Fur-
thermore, data augmentation in APE implies pre-
analysis of the datasets, since the same tokens are
not applicable to different datasets nor use-cases.

The strategy of applying a different MT
paradigm, SMT for APE of NMT output, yielded
interesting results, albeit still not being able to im-
prove the original NMT output. The margin of de-
velopment of SMT systems may be limited, but
this is also worth experimenting, in view of the
challenges APE currently faces with NMT output.

Furthermore, we outlined a hypothesis about the
reasons why the post-edited texts score below the
baseline system. In particular, we believe this re-
sult has to do with the high quality of the base-
line MT systems: this implies that some segments
should not be post-edited, but our APE system at-
tempted to edit every sentence. We plan to incor-
porate QE and data selection to mitigate this over-
correction issue, offering an APE suggestion only
when editing is necessary.

7 Acknowledgements

This research is supported by Science Founda-
tion Ireland through the ADAPT Centre for Dig-
ital Content Technology, which is funded un-
der the SFI Research Centres Programme (Grant
13/RC/2106) and is co-funded under the European
Regional Development Fund. Félix do Carmo col-
laborates in this project in the ambit of a European
Unions Horizon 2020 research and innovation
programme, under the EDGE COFUND Marie
Skłodowska-Curie Grant Agreement no. 713567.
This publication has emanated from research sup-
ported in part by a research grant from Science
Foundation Ireland (SFI) under Grant Number
13/RC/2077.

138



References
Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo, and

Marcello Federico. 2016. Neural versus Phrase-
Based Machine Translation Quality: a Case Study.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
257–267, Austin, Texas. Association for Computa-
tional Linguistics.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Félix do Carmo, Dimitar Shterionov, Joachim Wagner,
Murhaf Hossari, Eric Paquin, and Joss Moorkens.
2019. A review of the state-of-the-art in automatic
post-editing. Under review for publication: Ma-
chine Translation.

Rajen Chatterjee, Matteo Negri, Raphael Rubino, and
Marco Turchi. 2018. Findings of the WMT 2018
shared task on automatic post-editing. In Proceed-
ings of the Third Conference on Machine Trans-
lation: Shared Task Papers, pages 710–725, Bel-
gium, Brussels. Association for Computational Lin-
guistics.

Kenneth Heafield. 2011. KenLM: faster and smaller
language model queries. In Proceedings of the
EMNLP 2011 Sixth Workshop on Statistical Ma-
chine Translation, pages 187–197, Edinburgh, Scot-
land, United Kingdom.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Log-linear combinations of monolingual and
bilingual neural machine translation models for au-
tomatic post-editing. In Proceedings of the First
Conference on Machine Translation, pages 751–
758, Berlin, Germany. Association for Computa-
tional Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Giulia Mattoni, Pat Nagle, Carlos Collantes, and Dim-
itar Shterionov. 2017. Zero-shot translation for
low-resource indian languages. In Proceedings of
MT Summit XVI – Vol.2 Commercial MT Users

and Translators Track, pages 1–10, Nagoya, Aichi,
Japan. Asia-Pacific Association for Machine Trans-
lation.

Tomas Mikolov and Geoffrey Zweig. 2012. Context
dependent recurrent neural network language model.
In Spoken Language Technologies. IEEE.

Matteo Negri, Marco Turchi, Rajen Chatterjee, and
Nicola Bertoldi. 2018. ESCAPE: a large-scale syn-
thetic corpus for automatic post-editing. In Proceed-
ings of the 11th Language Resources and Evaluation
Conference, Miyazaki, Japan. European Language
Resource Association.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 160–167, Sap-
poro, Japan. Association for Computational Linguis-
tics.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA.

Daria Pylypenko and Raphael Rubino. 2018. DFKI-
MLT system description for the WMT18 automatic
post-editing task. In Proceedings of the Third Con-
ference on Machine Translation: Shared Task Pa-
pers, pages 836–839, Belgium, Brussels. Associa-
tion for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Controlling politeness in neural machine
translation via side constraints. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 35–40, San
Diego, California. Association for Computational
Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Dimitar Shterionov, Riccardo Superbo, Pat Nagle,
Laura Casanellas, Tony O’Dowd, and Andy Way.
2018. Human versus automatic quality evalua-
tion of NMT and PBSMT. Machine Translation,
32(3):217–235.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.

139



In AMTA 2006. Proceedings of the 7th Conference
of the. Association for Machine Translation of the
Americas. Visions for the Future of Machine Trans-
lation, pages 223–231, Cambridge, Massachusetts,
USA.

Marco Turchi, Matteo Negri, and Rajen Chatterjee.
2018. WMT18 APE shared task: En-DE NMT
train and dev data. LINDAT/CLARIN digital li-
brary at the Institute of Formal and Applied Linguis-
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Abstract

For this round of the WMT 2019 APE shared
task, our submission focuses on addressing
the “over-correction” problem in APE. Over-
correction occurs when the APE system tends
to rephrase an already correct MT output,
and the resulting sentence is penalized by
a reference-based evaluation against human
post-edits. Our intuition is that this prob-
lem can be prevented by informing the sys-
tem about the predicted quality of the MT out-
put or, in other terms, the expected amount
of needed corrections. For this purpose, fol-
lowing the common approach in multilingual
NMT, we prepend a special token to the begin-
ning of both the source text and the MT output
indicating the required amount of post-editing.
Following the best submissions to the WMT
2018 APE shared task, our backbone archi-
tecture is based on multi-source Transformer
to encode both the MT output and the corre-
sponding source text. We participated both in
the English-German and English-Russian sub-
tasks. In the first subtask, our best submission
improved the original MT output quality up
to +0.98 BLEU and -0.47 TER. In the second
subtask, where the higher quality of the MT
output increases the risk of over-correction,
none of our submitted runs was able to im-
prove the MT output.

1 Introduction

Automatic Post-Editing (APE) is the task of cor-
recting the possible errors in the output of a Ma-
chine Translation (MT) system. It is usually
considered as a supervised sequence-to-sequence
task, which aims to map the output of MT system
to a better translation i.e. post-edited output, by
leveraging a three-way parallel corpus containing
(source text, mt output, post-edited output). Con-
sidering the MT output as a source sentence and
the post-edited output as a target sentence, this

problem can be cast as a monolingual translation
task and be addressed with different MT solutions
(Simard et al., 2007; Pal et al., 2016). However,
it has been proven that better performance can
be obtained by not only using the raw output of
the MT system but also by leveraging the source
text (Chatterjee et al., 2017). In the last round
of the APE shared task (Chatterjee et al., 2018a),
the top-ranked systems (Tebbifakhr et al., 2018;
Junczys-Dowmunt and Grundkiewicz, 2018) were
based on Transformer (Vaswani et al., 2017), the
state-of-the-art architecture in neural MT (NMT),
with two encoders to encode both source text and
MT output. Although using these systems to post-
edit the output of Phrase-Based Statistical Ma-
chine Translation (PBSMT) system resulted in a
large boost in performance, smaller improvements
were observed over neural MT outputs. Indeed,
the good performance of the NMT systems leaves
less room for improvement and poses the risk of
over-correcting the MT output. Over-correction
occurs when the APE system rephrases an already
correct MT output. Although the post-edited out-
put can still be a correct translation, it is penal-
ized in terms of reference-based evaluation met-
rics, since it differs from the reference post-edited
output.

With the steady improvement of NMT technol-
ogy on the one side, and the adoption of reference-
based evaluation metrics that penalizes correct but
unnecessary corrections on the other side, tack-
ing this problem has become a priority. In order
to respond to this priority, for this round of the
shared task our submission focuses on address-
ing the over-correction problem. Over-correction
has been already addressed before by integrating
Quality Estimation (QE) and APE system in three
different ways (Chatterjee et al., 2018b), namely:
i) as an activator, to decide whether to apply post-
editing or not, using a threshold on the estimated
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quality of the MT output, ii) as a guidance, to
post-edit only the parts of a text that have poor
estimated quality, iii) as a selector, to select the
best output by comparing the estimated quality of
the MT output and the automatically post-edited
output. Our approach is a mixture of the first
two. While in all previous scenarios the deci-
sion is made externally to the APE system, we
allow the APE system to implicitly make the de-
cision and in a softer manner. Instead of choos-
ing between “do” and “do not” post-edit, we let
the system decide which post-editing strategy to
apply, choosing between three strategies: no post-
editing (i.e. leaving the sentence untouched), light
post-editing (i.e. a conservative modification) and
heavy post-editing (i.e. an aggressive modifica-
tion). To this aim, similar to the idea of multilin-
gual NMT (Johnson et al., 2017), a special token
is added to the beginning of both the source text
and the MT output indicating the required amount
of post-editing. Similar to last year’s submis-
sion (Tebbifakhr et al., 2018), we use Transformer
architecture with two encoders for encoding the
source text and the MT output, while we share
the parameters of the two encoders and tie the
embeddings and decoder’s softmax layer weights
(Junczys-Dowmunt and Grundkiewicz, 2018).

We participated in both the APE sub-tasks pro-
posed this year, which respectively consist in post-
editing the output of English-German and English-
Russian NMT systems. Our experiments show
that, on the development sets for both language
directions, prepending the special token can im-
prove the performance of the APE system up to
0.5 BLEU points. However, predicting the correct
token at test time, when the quality of the MT out-
put is unknown, is still challenging and can harm
the systems’ performance. In the English-German
subtask, our top system improves the MT output
up to -0.47 TER and +0.98 BLEU points. In the
English-Russian subtask, due to the high quality
of the MT segments, none of our submitted sys-
tems was able to improve the MT output, empha-
sizing the need for further research towards more
reliable solutions to the over-correction problem.

2 System Architecture

The backbone architecture of our system is based
on the state-of-the-art architecture in NMT i.e.
Transformer (Vaswani et al., 2017). Like most
NMT models, it follows the encoder-decoder

framework, where an encoder encodes the input
sentence into a continuous space, and a decoder
decodes this encoded representation into the out-
put sentence. However, we use two encoders in
order to process both the source text and the MT
output. By attending to the concatenation of the
representation of the source and MT sentences, the
decoder generates the post-edited output. Follow-
ing Junczys-Dowmunt and Grundkiewicz (2018),
we share all the parameters between the encoders,
and we use shared embedding weights across all
encoders and the decoder and tie them to decoder’s
softmax layer weights.

In order to tackle the over-correction problem
and to induce a post-editing strategy that resem-
bles the work of a human post-editor, we add a
special token to the beginning of both the source
text and the MT output indicating the amount of
required post-editing. In this paper, we use three
different tokens, namely “no post-edit” (no edits
are required), “light post-edit” (minimal edits are
required), and “heavy post-edit” (a large number
of edits are required). However, the number of to-
kens can be increased/decreased to provide more
fine/coarse-grained information to the APE sys-
tem, but this is beyond the scope of this paper. Be-
fore training, we first compute the TER (Snover
et al., 2006) score between the MT output and the
post-edited output, then we add the no post-edit
token to samples with zero TER score, light post-
edit to samples with non-zero TER score smaller
than 40, and finally heavy post-edit to samples
with TER score larger than 40. According to
(Turchi et al., 2013, 2014), 40 TER is the level
of quality above which a human translator tends to
rewrite the post-edited sentence from scratch.

At testing time, since the post-edited output is
not available, we need to predict the proper token
for the input sample. For predicting the proper
token, we test two approaches. The first one,
namely BERT, is based on a text classifier ob-
tained by fine-tuning BERT (Devlin et al., 2018)
on the in-domain data, which classifies the MT
output into the three defined classes. The second
one, namely SIM, is an information retrieval ap-
proach, that, given a query containing the source
and the MT sentence to be post-edited, retrieves
the most similar triplet (source, MT sentence and
post-edit) from the training data using an inverted
index. Then, similarly to (Farajian et al., 2017),
the retrieved triplets are ranked based on the aver-
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age of the sentence-level BLEU scores (Chen and
Cherry, 2014) between a) the source segment in
the query and the retrieved source sentence and b)
the MT segment in the query and the retrieved MT
sentence. For the most similar triplet, the TER be-
tween the MT sentence and the post-edit is com-
puted and the token created. For highly repetitive
and homogeneous corpora, the similarity between
the top retrieved triplet and the query is quite high,
but this is not always the case. So, to limit the risk
of assigning a token obtained from the top triplet,
but with a low similarity, a threshold (τ ) is set.
If the average sentence-level BLEU of the top re-
trieved triplet is above τ , the relative token is as-
sociated to the query, otherwise the most frequent
token in the training data is used. Once the token is
obtained, it is added to the source and the sentence
to be post-edited during inference.

3 Experimental Settings

3.1 Data

The official training data of the APE shared task
contains a small amount of in-domain data, in
which the post-edited outputs are real human post-
edits. To overcome the lack of data and to train
neural APE models, the organizers also provided
a large amount of synthetic data. For the En-Ru
subtask, they provided the eSCAPE dataset (Ne-
gri et al., 2018), which is produced from a paral-
lel corpus by considering the target sentences as
artificial human post-edits and machine-translated
source sentences as MT output. For the En-De
subtask, in addition to the eSCAPE dataset, an-
other synthetic dataset was made available, which
is created using round-trip translation from a Ger-
man monolingual corpus (Junczys-Dowmunt and
Grundkiewicz, 2016). We clean the English to
German/Russian eSCAPE dataset by removing i)
samples with a length ratio between source text
and post-edited output which is too different than
the average and ii) samples where the source text
language is not English or post-edited output lan-
guage is not German/Russian. In order to reduce
the vocabulary size, we apply Byte Pair Encoding
(BPE) (Sennrich et al., 2016). We learn the BPE
merging rules on the union of the source text, MT
output and post-edit output to obtain a shared vo-
cabulary.

3.2 Hyperparameters

In our APE system, we use 32K merging rules for
applying BPE. We employ OpenNMT-tf toolkit
(Klein et al., 2017) to implement our system. We
use 512 dimensions for the word embedding and
6 layers for both the encoders and the decoder,
each containing 512 units and a feed-forward net-
work with 1,024 dimensions. We set the atten-
tion and residual dropout probabilities, as well as
the label-smoothing parameter to 0.1. For training
the system, we use Adam optimizer (Kingma and
Ba, 2014) with effective batch size of 8,192 tokens
and the warm-up strategy introduced by (Vaswani
et al., 2017) with warm-up steps equal to 8,000.
We also employ beam search with beam width of
4.

3.3 Evaluation Metrics

We use two different evaluation metrics to assess
the quality of our APE systems: i) TER (Snover
et al., 2006), the official metric for the task, com-
puted based on the edit distance between the given
hypothesis and the reference and ii) BLEU (Pa-
pineni et al., 2002), as the geometric average of
n−gram precisions in the given hypothesis multi-
plied by the brevity penalty.

4 Results

For both subtasks, we train our APE systems
with and without prepending the token. We start
the training of the APE systems on the union of
the synthetic data and 20-times over-sampled in-
domain data. Then, we fine-tune the best perform-
ing checkpoint on the development set only on the
in-domain data. The best performance on the de-
velopment sets for En-De and En-Ru is reported in
Tables 1 and 2 respectively.

As shown in Table 1, both APE systems, with
the oracle token and without the token (lines 2
and 3), improve the quality of the MT output for
En-De subtask. This improvement is larger when
the token indicating the required amount of post-
editing is provided to the system. This observa-
tion confirms the need for guiding the APE sys-
tem to adopt different post-editing strategies ac-
cording to the MT quality. For the En-Ru sub-
task, as shown in line 2 and 3 of Table 2, although
none of the two systems can improve over the MT
output, the system with the token has better per-
formance compared to the one without. However,
during testing, the oracle token is not available and
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Systems TER (↓) BLEU (↑)
MT Output 15.08 76.76

Without Token 14.65 77.55

Token (ORACLE) 14.38 77.85

Token (BERT) 15.54 76.56
Token (SIM) 15.31 77.06

Robust (BERT) 15.04 77.24
Robust (SIM) 15.07 77.24

Table 1: Performance of the APE systems, on the
English-German development set.

Systems TER (↓) BLEU (↑)
MT Output 13.12 79.97

Without Token 14.92 78.17

Token (ORACLE) 14.77 78.51

Token (BERT) 15.72 77.28
Token (SIM) 15.07 77.97

Robust (BERT) 15.85 77.19
Robust (SIM) 15.04 78.09

Table 2: Performance of the APE systems, on the
English-Russian development set.

we need to predict the proper token for each input
sample. We run our post-editing system using the
predicted tokens obtained by the approach based
on the BERT text classifier (BERT) and the infor-
mation retrieval method (SIM). 1 As reported in
the lower part of both tables, performance drops
when the predicted tokens are prepended to the
source text and the MT output instead of the or-
acle tokens. On the one side, this shows that the
errors made by our predicting approaches hurt the
work of the APE. On the other side, this drop in
performance confirms that the APE system is able
to leverage the token when generating the post-
edited output. In order to make the APE robust
to the wrong token, we run the fine-tuning step
on in-domain data using noisy tokens instead of
oracle ones. To add noise to the tokens, we re-
place 30 percent of the tokens in the in-domain
train data with a different token, randomly sam-
pled from the two wrong labels. As shown in the

1The most frequent label in the En-Ru in-domain dataset
is “no post-edit”, while for En-De is “light post-edit”. The τ
values are 0.75 for En-Ru and 0.5 for En-De.

Systems TER (↓) BLEU (↑)
MT Output 16.84 74.73

Primary 16.37 75.71
Contrastive 16.61 75.28

Table 3: Performance of the APE systems, on the
English-German test set.

Systems TER (↓) BLEU (↑)
MT Output 16.16 76.20

Primary 19.34 72.42
Contrastive 19.48 72.91

Table 4: Performance of the APE systems, on the
English-Russian test set.

last two lines of each table, adding noise to the
tokens during training improves the results. In En-
De, both approaches (BERT and SIM) have sim-
ilar performance, while in En-Ru, the approach
based on retrieving similar samples outperforms
the approach using the text classifier. This is due
to the fact that in En-Ru the majority token is “no
post-edit” and the information retrieval approach
tends to choose the majority token when the simi-
larity is above the threshold resulting in more con-
servative post-editing. We submitted our best per-
forming system without prepending the token as
our Primary submission, and the best robust sys-
tem with predicted tokens using the retrieval ap-
proach as our Contrastive submission. The results
on English-German and English-Russian test sets
are reported in Tables 3 and 4 respectively. These
results confirm our findings on the dev data show-
ing that i) the APE system is not able to improve
the quality of the baseline for En-Ru, while it has
limited gains for En-De and ii) the addition of the
token seems to be more useful for En-Ru than for
En-De, resulting in a small gain in BLEU com-
pared to the system without prepending the token.

5 Conclusions

For this round of the APE shared task, we focused
on the over-correction problem. In order to ad-
dress this problem, we augmented the input of the
APE system with a token to guide the system to be
conservative when the MT output has high qual-
ity and aggressive with low-quality MT segments.
Our experiments showed that it can result in bet-
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ter performance when the added token is accurate.
In fact, when the token has to be predicted during
testing, it results in lower APE performance. In
order to make the APE system robust to this noise,
we fine-tune the APE system on in-domain data by
altering a portion of the tokens in the data. This
can help the system to be more robust against the
noisy token at test time, but it still shows lower
performance than the system without the token.
We learned that it is necessary for the system to
be aware of the quality of the MT output before
applying the post-editing. However, predicting the
quality of the MT output is still an open problem
which has to be addressed.

References
Rajen Chatterjee, M. Amin Farajian, Matteo Negri,

Marco Turchi, Ankit Srivastava, and Santanu Pal.
2017. Multi-source neural automatic post-editing:
FBK’s participation in the WMT 2017 APE shared
task. In Proceedings of the Second Conference on
Machine Translation, pages 630–638, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Rajen Chatterjee, Matteo Negri, Raphael Rubino, and
Marco Turchi. 2018a. Findings of the WMT 2018
shared task on automatic post-editing. In Proceed-
ings of the Third Conference on Machine Trans-
lation: Shared Task Papers, pages 710–725, Bel-
gium, Brussels. Association for Computational Lin-
guistics.

Rajen Chatterjee, Matteo Negri, Marco Turchi,
Frédéric Blain, and Lucia Specia. 2018b. Combin-
ing quality estimation and automatic post-editing to
enhance machine translation output. In Proceedings
of the 13th Conference of the Association for Ma-
chine Translation in the Americas (Volume 1: Re-
search Papers), pages 26–38, Boston, MA. Associa-
tion for Machine Translation in the Americas.

Boxing Chen and Colin Cherry. 2014. A systematic
comparison of smoothing techniques for sentence-
level bleu. In Proceedings of the Ninth Workshop on
Statistical Machine Translation, pages 362–367.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

M Amin Farajian, Marco Turchi, Matteo Negri, and
Marcello Federico. 2017. Multi-domain neural ma-
chine translation through unsupervised adaptation.
In Proceedings of the Second Conference on Ma-
chine Translation, pages 127–137.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,

Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Log-linear Combinations of Monolingual
and Bilingual Neural Machine Translation Models
for Automatic Post-Editing. In Proceedings of the
First Conference on Machine Translation: Volume
2, Shared Task Papers, pages 751–758. Association
for Computational Linguistics.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2018. MS-UEdin submission to the WMT2018 APE
shared task: Dual-source transformer for automatic
post-editing. In Proceedings of the Third Confer-
ence on Machine Translation: Shared Task Papers,
pages 822–826, Belgium, Brussels. Association for
Computational Linguistics.

D. P. Kingma and J. Ba. 2014. Adam: A Method for
Stochastic Optimization. ArXiv e-prints.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. OpenNMT:
Open-Source Toolkit for Neural Machine Transla-
tion. In Proceedings of ACL 2017, System Demon-
strations, pages 67–72, Vancouver, Canada.

M. Negri, M. Turchi, R. Chatterjee, and N. Bertoldi.
2018. eSCAPE: a Large-scale Synthetic Corpus for
Automatic Post-Editing. ArXiv e-prints.

Santanu Pal, Sudip Kumar Naskar, Mihaela Vela, and
Josef van Genabith. 2016. A neural network based
approach to automatic post-editing. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), volume 2, pages 281–286.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Philadelphia, Pennsylvania. Association for Compu-
tational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Michel Simard, Nicola Ueffing, Pierre Isabelle, and
Roland Kuhn. 2007. Rule-based translation with
statistical phrase-based post-editing. In Proceed-
ings of the Second Workshop on Statistical Machine
Translation, pages 203–206. Association for Com-
putational Linguistics.

145



Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study of
Translation Edit Rate with Targeted Human Anno-
tation. In Proceedings of Association for Machine
Translation in the Americas, pages 223–231, Cam-
bridge, Massachusetts, USA.

Amirhossein Tebbifakhr, Ruchit Agrawal, Matteo Ne-
gri, and Marco Turchi. 2018. Multi-source trans-
former with combined losses for automatic post edit-
ing. In Proceedings of the Third Conference on Ma-
chine Translation: Shared Task Papers, pages 846–
852, Belgium, Brussels. Association for Computa-
tional Linguistics.

Marco Turchi, Matteo Negri, and Marcello Federico.
2013. Coping with the subjectivity of human judge-
ments in MT quality estimation. In Proceedings of
the Eighth Workshop on Statistical Machine Trans-
lation, pages 240–251, Sofia, Bulgaria. Association
for Computational Linguistics.

Marco Turchi, Matteo Negri, and Marcello Federico.
2014. Data-driven annotation of binary MT quality
estimation corpora based on human post-editions.
Machine Translation, 28(3):281–308.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In I Guyon, U V Luxburg, S Bengio,
H Wallach, R Fergus, S Vishwanathan, and R Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

146



Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 3: Shared Task Papers (Day 2) pages 147–152
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

UdS Submission for the WMT 19 Automatic Post-Editing Task

Hongfei Xu
Saarland University

DFKI
hfxunlp@foxmail.com

Qiuhui Liu
China Mobile Online Services

liuqiuhui@cmos.chinamobile.com

Josef van Genabith
Saarland University

DFKI
josef.van genabith@dfki.de

Abstract

In this paper, we describe our submission to
the English-German APE shared task at WMT
2019. We utilize and adapt an NMT architec-
ture originally developed for exploiting con-
text information to APE, implement this in our
own transformer model and explore joint train-
ing of the APE task with a de-noising encoder.

1 Introduction

The Automatic Post-Editing (APE) task is to au-
tomatically correct errors in machine translation
outputs. This paper describes our submission to
the English-German APE shared task at WMT
2019. Based on recent research on the APE task
(Junczys-Dowmunt and Grundkiewicz, 2018) and
an architecture for the utilization of document-
level context information in neural machine trans-
lation (Zhang et al., 2018b), we re-implement a
multi-source transformer model for the task. In-
spired by Cheng et al. (2018), we try to train a
more robust model by introducing a multi-task
learning approach which jointly trains APE with
a de-noising encoder.

We made use of the artificial eScape data set
(Negri et al., 2018) provided for the task, since
the multi-source transformer model contains a
large number of parameters and training with large
amounts of supplementary synthetic data can help
regularize its parameters and make the model
more general. We then tested the BLEU scores be-
tween machine translation results and correspond-
ing gold standard post-editing results on the orig-
inal development set, the training set and the syn-
thetic data as shown in Table 1.

dev train eScape
77.15 77.42 37.68

Table 1: BLEU Scores of Data Sets

Table 1 shows that there is a significant gap be-
tween the synthetic eScape data set (Negri et al.,
2018) and the real-life data sets (the develop-
ment set and the original training set from post-
editors), potentially because Negri et al. (2018)
generated the data set in a different way compared
to Junczys-Dowmunt and Grundkiewicz (2016)
and very few post-editing actions are normally re-
quired due to the good translation quality of neu-
ral machine translation (Bahdanau et al., 2014;
Gehring et al., 2017; Vaswani et al., 2017) which
significantly reduces errors in machine translation
results and makes the post-editing results quite
similar to raw machine translation outputs.

2 Our Approach

We simplify and employ a multi-source trans-
former model (Zhang et al., 2018b) for the APE
task, and try to train a more robust model through
multi-task learning.

2.1 Our Model
The transformer-based model proposed by Zhang
et al. (2018b) for utilizing document-level context
information in neural machine translation has two
source inputs which can also be a source sentence
along with the corresponding machine translation
output and therefore caters for the requirements
of APE. Since both source sentence and machine
translation outputs are important for the APE task
(Pal et al., 2016; Vu and Haffari, 2018), we remove
the context gate used to restrict the information
flow from the first input to the final output in their
architecture, and obtain the model we used for our
submission shown in Figure 1.

The model first encodes the given source sen-
tence with stacked self-attention layers, then
“post-edits” the corresponding machine trans-
lation result through repetitively encoding the
machine translation result (with a self-attention
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Figure 1: Our Transformer-Based Multi-Source Model for the APE Task

layer), attending to the source sentence (with a
cross-attention layer) and processing the collected
information (with a feed-forward neural network).
Finally, the decoder attends to representations of
the source sentence and the machine translation
result and generates the post-editing result.

Compared to the multi-source transformer
model used by Junczys-Dowmunt and Grund-
kiewicz (2018), this architecture has one more
cross-attention module in the encoder for machine
translation outputs to attend to the source input
which makes the parameter sharing of layers be-
tween two encoders impossible, but we think this
cross-attention module can help the de-noising
task. The embedding of source, machine transla-
tion outputs and post-editing results is still shared
as Junczys-Dowmunt and Grundkiewicz (2018)
advised.

2.2 Joint Training with De-noising Encoder
Table 1 shows a considerable difference between
the synthetic data set (Negri et al., 2018) and the
real data set. To enable the model to handle more
kinds of errors, we simulate new “machine trans-
lation outputs” through adding noise to the cor-
responding post-editing results. Following Cheng
et al. (2018), we add noise directly to the look-up
embedding of post-editing results instead of ma-

nipulating post-editing sequences.
Since the transformer (Vaswani et al., 2017)

does not apply any weight regularization, we as-
sume that the model can easily learn to reduce
noise by enlarging weights, and propose to add
adaptive noise to the embedding:

embout = emb+ strength ∗ abs(emb) ∗N (1)

where emb is the embedding matrix, strength
is a number between [0.0,+∞) to control the
strength of noise, N is the noise matrix of the
same shape as emb. We explore both standard
Gaussian distribution and uniform distribution of
[−1.0,−1.0] as N . In this way the noise will
automatically grow with the growing embedding
weights.

Given that the transformer translation model
(Vaswani et al., 2017) incorporates word order in-
formation through adding positional embedding to
word embedding, we add noise to the combined
embedding. In this case, the noise can both affect
the word embedding (replacing words with their
synonyms) and positional embedding (swapping
word orders).

During training, we use the same model, and
achieve joint training by randomly varying inputs:
the inputs for the APE task are {source, mt, pe},
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while those for the de-noising encoder task are
{source, pe+noise, pe} where “source”, “mt” and
“pe” stand for the source sentence, the correspond-
ing output from the machine translation system
and the correct post-editing result. The final loss
for joint training is:

loss = λ ∗ lossape+(1−λ) ∗ lossde−noising (2)

i.e. the loss between the APE task and the de-
noising encoder task are balanced by λ in this way.

3 Experiments

We implemented our approaches based on the
Neutron implementation (Xu and Liu, 2019) for
transformer-based neural machine translation.

3.1 Data and Settings
We only participated in the English to German
task, and we used both the training set provided
by WMT and the synthetic eSCAPE corpus (Ne-
gri et al., 2018). We first re-tokenized1 and true-
cased both data sets with tools provided by Moses
(Koehn et al., 2007), then cleaned the data sets
with scripts ported from the Neutron implementa-
tion, and the original training set was up-sampled
20 times as in (Junczys-Dowmunt and Grund-
kiewicz, 2018). We applied joint Byte-Pair En-
coding (Sennrich et al., 2016) with 40k merge op-
erations and 50 as the vocabulary threshold for the
BPE. We only kept sentences with a max of 256
sub-word tokens for training, and obtained a train-
ing set of about 6.5M triples with a shared vo-
cabulary of 42476. We did not apply any domain
adaptation approach for our submission consid-
ering that (Junczys-Dowmunt and Grundkiewicz,
2018) shows few improvements, but advanced do-
main adaption (Wang et al., 2017) or fine-tuning
(Luong and Manning, 2015) methods may still
bring some improvements. The training set was
shuffled for each training epoch.

Like Junczys-Dowmunt and Grundkiewicz
(2018), all embedding matrices were bound with
the weight of the classifier. But for tokens which in
fact do never appear in post-editing outputs in the
shared vocabulary, we additionally remove their
weights in the label smoothing loss and set corre-
sponding biases in the decoder classifier to−1032.

Unlike Zhang et al. (2018b), the source en-
coder, the machine translation encoder and the de-
coder had 6 layers. The hidden dimension of the

1using arguments: -a -no-escape

position-wise feed-forward neural network was
2048, the embedding dimension and the multi-
head attention dimension were 512. We used a
dropout probability of 0.1, and employed label
smoothing (Szegedy et al., 2016) value of 0.1. We
used the Adam optimizer (Kingma and Ba, 2015)
with 0.9, 0.98 and 10−9 as β1, β2 and ε. The learn-
ing rate schedule from Vaswani et al. (2017) with
8, 000 as the number of warm-up steps2 was ap-
plied. We trained our models for only 8 epochs
with at least 25k post-editing tokens in a batch,
since we observed over-fitting afterwards. For the
other hyper parameters, we used the same as the
transformer base model (Vaswani et al., 2017).

During training, we kept the last 20 checkpoints
saved with an interval of 1, 500 training steps
(Vaswani et al., 2017; Zhang et al., 2018a), and
obtained 4 models for each run through averaging
every 5 adjacent checkpoints.

For joint training, we simply used 0.2 as the
strength of noise (strength), and 0.5 as λ for joint
training. Other values may provide better perfor-
mance, but we did not have sufficient time to try
this for our submission.

During decoding, we used a beam size of 4
without any length penalty.

3.2 Results

We first evaluated case-sensitive BLEU scores3

on the development set, and results of all our ap-
proaches and baselines are shown in Table 2.

“MT as PE” is the do-nothing baseline which
takes the machine translation outputs directly
as post-editing results. “Processed MT” is
the machine translation outputs through pre-
processing (re-tokenizing and truecasing) and
post-processing (de-truecasing and re-tokenizing
without “-a” argument4) but without APE. “Base”,
“Gaussian” and “Uniform” stand for our model
trained only for the APE task, jointly trained
with Gaussian noise and uniform noise, respec-
tively. We reported the minimum and the maxi-
mum BLEU scores of the 4 averaged models for

2https://github.com/tensorflow/
tensor2tensor/blob/master/tensor2tensor/
models/transformer.py#L1623.

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl.

4“-a” indicates tokenizing in the aggressive mode, which
normally helps reduce vocabulary size. The official data sets
were tokenized without this argument, so we have to recover
our post-editing outputs.
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each experiment. “Ensemble x5” is the ensemble
of 5 models from joint training, 4 of which were
averaged models with highest BLEU scores on the
development set, another one was the model saved
for each training epoch with lowest validation per-
plexity.

Models BLEU
MT as PE 76.76
Processed MT 76.61
Base 76.91 ∼ 77.13
Gaussian 76.94 ∼ 77.08
Uniform 77.01 ∼ 77.10
Ensemble x5 77.22

Table 2: BLEU Scores on the Development Set

Table 2 shows that the performance got slightly
hurt (comparing “Processed MT” with “MT as
PE”) with pre-processing and post-processing pro-
cedures which are normally applied in training
seq2seq models for reducing vocabulary size. The
multi-source transformer (Base) model achieved
the highest single model BLEU score without joint
training with the de-noising encoder task. We
think this is perhaps because there is a gap be-
tween the generated machine translation outputs
with noise and the real world machine translation
outputs, which biased the training.

Even with the ensembled model, our APE
approach does not significantly improve ma-
chine translation outputs measured in BLEU
(+0.46). We think human post-editing results
may contain valuable information to guide neu-
ral machine translation models in some way like
Reinforcement-Learning, but unfortunately, due to
the high quality of the original neural machine
translation output, only a small part of the real
training data in the APE task are actually correc-
tions from post editors, and most data are gener-
ated from the neural machine translation system,
which makes it like adversarial training of neural
machine translation (Yang et al., 2018) or multi-
pass decoding (Geng et al., 2018).

All our submissions were made by jointly
trained models because the performance gap be-
tween the best and the worst model of jointly
trained models is smaller, which means that jointly
trained models may have smaller variance.

Results on the test set from the APE shared task
organizers are shown in Table 3. Even the ensem-
ble of 5 models did not result in significant differ-

ences especially in BLEU scores.

Models TER BLEU
MT as PE 16.84 74.73
Gaussian 16.79 75.03
Uniform 16.80 75.03
Ensemble x5 16.77 75.03

Table 3: Results on the Test Set

4 Related Work

Pal et al. (2016) applied a multi-source sequence-
to-sequence neural model for APE, and Vu and
Haffari (2018) jointly trained machine translation
with the post editing sequence prediction task (Be-
rard et al., 2017). Though all previous approaches
get significant improvements over Statistical Ma-
chine Translation outputs, benefits with APE on
top of Neural Machine Translation outputs are not
very significant (Chatterjee et al., 2018).

On the other hand, advanced neural machine
translation approaches may also improve the APE
task, such as: combining advances of the recurrent
decoder (Chen et al., 2018), the Evolved Trans-
former architecture (So et al., 2019), Layer Ag-
gregation (Dou et al., 2018) and Dynamic Convo-
lution structures (Wu et al., 2019).

5 Conclusion

In this paper, we described details of our ap-
proaches for our submission to the WMT 19 APE
task. We borrowed a multi-source transformer
model from the context-dependent machine trans-
lation task and applied joint training with a de-
noising encoder task for our submission.
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Abstract

In this work, we give a description of
the TALP-UPC systems submitted for the
WMT19 Biomedical Translation Task. Our
proposed strategy is NMT model-independent
and relies only on one ingredient, a biomedi-
cal terminology list. We first extracted such a
terminology list by labelling biomedical words
in our training dataset using the BabelNet API.
Then, we designed a data preparation strat-
egy to insert the terms information at a to-
ken level. Finally, we trained the Transformer
model (Vaswani et al., 2017) with this terms-
informed data. Our best-submitted system
ranked 2nd and 3rd for Spanish-English and
English-Spanish translation directions, respec-
tively.

1 Introduction

Domain adaptation in Neural Machine Transla-
tion (NMT) remains one of the main challenges
(Koehn and Knowles, 2017). Domain-specific
translations are especially relevant for industrial
applications where there is a need for achieving
both fluency and terminology in translations. Cur-
rent state-of-the-art NMT systems achieve high
performances when trained with large-scale par-
allel corpora. However, most of the time, large-
scale parallel corpora are not available for spe-
cific domains. Consequently, NMT models per-
form poorly for domain-specific translation when
trained in low-resource scenario (Chu and Wang,
2018). Several works have been proposed to over-
come the lack of domain parallel data by lever-
aging on both monolingual domain data (Domhan
and Hieber, 2017; Currey et al., 2017) and paral-
lel out-of-domain data (Wang et al., 2017; van der
Wees et al., 2017) to improve the performance of
domain-specific systems. Furthermore, some at-
tempts have been made to directly insert exter-
nal knowledge into NMT models through termi-

nology (Chatterjee et al., 2017) and domain in-
formation (Kobus et al., 2016). In this work, we
designed a data preparation strategy for domain-
specific translation systems to enrich data with ter-
minology information without affecting the model
architecture. The approach consists on two main
steps: 1) Retrieve a biomedical terms list from
on our training data 2) use terms to add a do-
main feature on the source side and define a
terminology-aware segmentation. The data prepa-
ration is a model-independent process which gen-
erates terms-informed token representations that
can be used to train any NMT model. For the
Biomedical WMT19 task, we decided to train one
of the state-of-the-art neural models, the trans-
former (Vaswani et al., 2017). In our knowledge,
this is the first attempt to design a domain-specific
text segmentation based on a given terminology
list. The rest of the paper is organized as follows.
In Sec. 2, we described how terminology is ex-
tracted from BabelNet; in Sec. 3 and 4, we de-
fined the terminology-aware segmentation and the
domain feature approach, respectively; in Sec. 5,
we described the experiments performed, the per-
formance evaluation and the results of the WMT19
competition. Finally, Sec. 6 describes the conclu-
sion and future works.

2 BabelNet

In our work, in order to collect biomedical terms,
the domain category of each word was detected
with the help of BabelNet (Navigli and Ponzetto,
2012). Specifically, we extracted a list of biomed-
ical terms from our training data using the Ba-
belNet API. To capture biomedical-related do-
mains, we refer to the ”biomedical” definition
in the BabelNet as stated, ”The science of deal-
ing with the maintenance of health and the pre-
vention and treatment of disease”. Moreover,
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a biomedical word has BabelNet relations with
bio-science, technology, medical practice, medi-
cal speciality, neurology and orthopaedics. Con-
sequently, we identified related BabelNet domains
to the ”biomedical” domain which are: Health
and Medicine, Chemistry and Mineralogy, Biol-
ogy and Engineering and Technology. Based on
these domains, we then used the BabelNet API
to find the domain of each word in the training
dataset by searching through the BabelNet multi-
lingual dictionary. Since a word can have multiple
Babel synsets and domains, we collected a domain
according to the key concept of a word. For our
experiments, we created a list of 10,000 biomedi-
cal terms for both English and Spanish.

3 Terminology-aware segmentation

We propose the so-called ”bpe-terms segmenta-
tion” consisting of both subwords and terms to-
kens. The idea is to overcome the open-vocabulary
problem with subwords and at the same time have
the ability to add domain features for terms at the
word level. The procedure is rather simple. Af-
ter learning the bpe codes (Sennrich et al., 2015),
they are applied to segment the sentences by ex-
plicitly excluding terms belonging to a given do-
main terminology list. The resulting sentence is
a mixture of both subwords and term tokens. In
Table 1, we show the differences between stan-
dard bpe-segmentation and our bpe-terms segmen-
tation. Unlike general domain words, biomedical
terms are not divided into subwords producing a
shorter sequence of tokens. It is also important
to notice that all the terms that are not present
in the terminology list, like ”hypertension” and
”clot” in the examples, might be split into sub-
words. These examples show how the effective-
ness of bpe-term segmentation depends entirely on
the size and quality of the terminology list.

4 Domain features

Following the domain control approach (Kobus
et al., 2016), we enrich the data with a word-level
binary feature by means of the biomedical termi-
nology. Every word belonging to the terminol-
ogy list has been labelled as biomedical, while
all others as a general domain. The resulting bi-
nary feature is then embedded into a dense vec-
tor and combined with the word vector. The most
common combination strategy consists in concate-
nating the feature embedding with the word em-

bedding. However, we introduced an additional
Multi-Layer perception with one hidden layer af-
ter the concatenation. This operation maps the re-
sulting embedding into a new vector that might be
more useful for the translation task. More pre-
cisely, given the word embedding xw ∈ Rn and
the feature embedding xf ∈ Rm, the resulting vec-
tor x̂ ∈ Rd is computed as:

x̂ = g([xw,xf ]W + b)

where W ∈ Rn+m,d is the weight matrix, b ∈ Rd

is the bias term and g is a nonlinear functions for
the hidden layer that is applied element-wise. In
our experiments, due to the binary nature of the
domain feature, we set m = 3 as its embedding
dimension. The word embedding dimension is set
to n = 512 instead.

5 Experiments

This section describes the experiments we per-
formed. We first start with the data collection
and preprocessing processes. Then, we describe
trained systems and their evaluations. Finally, we
present the results of the competition in terms of
BLEU score. (Papineni et al., 2002).

5.1 Data collection
We gathered data from the resources provided in
the official WMT19 web page and from the OPUS
collection. For our submissions, all the available
biomedical parallel sentences for en/es are chosen
both in plain text and Dublin Core format. Then,
data have been parsed and merged to create the
training and validation sets. Finally, we cleaned
the datasets by removing empty sentences and du-
plicates. In particular, we selected Scielo (Soares
et al., 2018), (Neves et al., 2016), UFAL, Pubmed,
Medline, IBECS (Villegas et al., 2018) and EMEA
(Tiedemann, 2012) sources for the training set and
Khresmoi (Dušek et al., 2017) for the validation
set.

5.2 Data preprocessing
Data are preprocessed following the standard
pipeline by normalizing punctuation, tokeniza-
tion and true-casing. We also removed sentences
longer than 80 tokens and shorter than 2 tokens.
For the previous steps, we used the scripts found
in the Moses distribution (Koehn et al., 2007).
Eventually, we trained shared byte-pairs encoding
(BPE) (Sennrich et al., 2015) on both source and
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Segmentation Sentence
Bpe ”the intr@@ ig@@ u@@ ing pro@@ ble@@ m of

cal@@ ci@@ fic@@ ation and os@@ s@@ ific@@ ation ;
ne@@ ed to un@@ der@@ st@@ and it for
the comp@@ re@@ h@@ ens@@ ion of
b@@ one phys@@ io@@ path@@ ology .”

”inhibition of T@@ AF@@ I activity also resulted in a tw@@ of@@ old
increase in clot lysis whereas inhibition of both factor XI
and T@@ AF@@ I activity had no additional effect . ”

”a 5@@ 7-@@ year-old male with hepatos@@ plen@@ omegaly ,
p@@ ancy@@ topenia and hypertension .”

Bpe-terms ”the intr@@ ig@@ u@@ ing pro@@ ble@@ m of
calcification and ossification ;
ne@@ ed to un@@ der@@ st@@ and it for
the comp@@ re@@ h@@ ens@@ ion of
bone physiopathology .”

inhibition of TAFI activity also resulted in a tw@@ of@@ old
increase in clot lysis whereas inhibition of both factor XI
and TAFI activity had no additional effect .

”a 5@@ 7-@@ year-old male with hepatosplenomegaly ,
pancytopenia and hypertension .”

Table 1: Different segmentation for some sample sentences extracted from the training data. Biomedical terms are
in bold type to highlight the effect of the segmentation on them.

Training set Validation set
es/en 2812577 500

Table 2: The total number of parallel sentences in the
training and validation sets after the preprocessing step.

target data with a number of maximum BPE sym-
bols of 50k. The statistics of the final datasets in
terms of the total number of lines are shown in Ta-
ble 2.

5.3 Training with data enriched with terms
information

Our strategy involves a data preparation designed
to enrich the sentences with terminology informa-
tion at the token level before the actual training
takes place. There are two important components,
the bpe-terms segmentation and the domain fea-
ture approach as explained in Sec. 3 and Sec.
4. Both of them are based on the terminology

list that was created using the BabelNet API as
described in Sec 2. The bpe-terms segmentation
is applied to both the source and target side. In-
stead, the domain feature approach is applied only
on the source side. After that, the resulting terms-
informed data are used to train the NMT Trans-
former model. (Vaswani et al., 2017). Thereafter,
three different experiments have been performed:

1. The first experiment combined both the
terminology-aware segmentation and the do-
main feature.

2. The second, instead, make just use of the bpe-
terms segmentation.

3. The third experiment combined both the
terminology-aware segmentation and the do-
main feature. Additionally, both the vocabu-
laries among source and target and the em-
bedding weights between encoder and de-
coder are shared during the training.
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en2es es2en
System WMT18 WMT18
baseline 40.84 43.70
bpe-terms src-tgt + domain feature 44.26 43.49
bpe-terms src-tgt + shared vocab & embs 44.04 43.84
bpe-terms src-tgt 44.09 44.84

Table 3: The BLEU scores calculated on the WMT18 test set for the three systems compared with the baseline.

en2es es2en
System WMT19 (All) WMT19 (OK) WMT18 (All) WMT19 (OK)
bpe-terms src-tgt 43.40 46.09 37.92 43.55
bpe-terms src-tgt + domain feature 43.01 45.68 37,21 42.70
bpe-terms src-tgt + shared vocab & embs 43.92 46.83 39.41 45.09

Table 4: The BLEU scores calculated on the WMT19 test set for the three systems.

Furthermore, we trained a baseline model with
standard BPE segmentation to make a comparison
with the three proposed experiments. All the mod-
els have maximum vocabulary size of 50k tokens.
However, the final vocabulary size is affected by
both the bpe-terms segmentation and the shared
vocabularies between source and target side. It
turns out that only the baseline and the third exper-
iment had a vocabulary size of 50k tokens. For the
training, we used the Transformer (Vaswani et al.,
2017) implementation with its default parameters
found in the OpenNMT toolkit (Klein et al.).

5.4 Evaluation and results

We evaluated all the models calculating the BLEU
score on the WMT18 test set with the ’multi-bleu-
detok.sh’ script in the Moses distribution (Koehn
et al., 2007). For the WMT19 competition, we
first calculated the averages of the training check-
points that achieved the highest BLEU scores on
the validation set. Then, we submitted these av-
erages as our best models. The results for both
WMT18 and WMT19 test sets are shown in ta-
ble 3 and 4. In Table 5, we also calculated how
many biomedical terms are found in the validation
and WMT18/WMT19 test sets to have an idea of
the coverage of the terminology list on the out-of-
training data. On the WMT18 test set, our pro-
posed models performed better than the baseline,
indicating that the Transformer model (Vaswani
et al., 2017) took advantages from the bpe-terms
segmentation. On the contrary, the domain fea-
ture approach overall hurts the test set perfor-
mances. The best performing system evaluated on
the WMT19 test set is the one with bpe-terms seg-

mentation plus shared vocabulary and embedding
layers for both source/target and encoder/decoder
layers, respectively, showing consistency across
both es/en direction. As a result, we placed 2nd
for es2en and 3rd for en2es in the WMT19 com-
petition.

Validation set WMT18 WMT19
es 713 355 399
en 831 363 502

Table 5: The number of biomedical terms from the
terminology list found in the validation set and the
WMT18 and WMT19 test sets.

6 Conclusions and future works

In this article, we described the TALP-UPC
systems submitted to the WMT19 Biomedical
Translation Task. Our experiments show an
NMT model-independent approach that benefits
from terminology to improve translations in the
biomedical domain. The future efforts will be
devoted to extending our bpe-terms segmentation
by taking into account multi-word terms extracted
from available biomedical glossaries and collect-
ing a terminology list independent from training
data.
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Abstract

Transfer Learning and Selective data training
are two of the many approaches being exten-
sively investigated to improve the quality of
Neural Machine Translation systems. This pa-
per presents a series of experiments by apply-
ing transfer learning and selective data train-
ing for participation in the Bio-medical shared
task of WMT19. We have used Informa-
tion Retrieval to selectively choose related sen-
tences from out-of-domain data and used them
as additional training data using transfer learn-
ing. We also report the effect of tokenization
on translation model performance.

1 Introduction

This paper describes the first system submis-
sion by Fatima Jinnah Women University un-
der the NRPU project (NRPU-FJ) for the Bio-
medical task. We have built our systems using
the paradigm of Neural Machine Translation. We
worked on translation between French and En-
glish (in both directions) and incorporated domain
adaption by using selective data training utiliz-
ing information retrieval to retrieve domain related
sentences from out-of-domain corpus.

Neural Machine Translation (NMT) (Kalch-
brenner and Blunsom, 2013; Sutskever et al.,
2014; Cho et al., 2014), is the current state-of-the-
art in Machine Translation. Since its arrival, active
research is being done to investigate the field and
exploit its benefits to produce quality translations.
These efforts have resulted in state of the art trans-
lation architectures (Vaswani et al., 2017; Gehring
et al., 2017). Despite the winning results of NMT
over it’s counter part Statistical Machine Transla-
tion (SMT) for large training corpora; the qual-
ity of NMT systems for low resource languages
and smaller corpora is still a challenge (Koehn and
Knowles, 2017).

To overcome this challenge various studies ex-
plore numerous techniques to improve NMT qual-
ity especially in low resource settings. Domain
adaptation (Freitag and Al-Onaizan, 2016), trans-
fer learning (Zoph et al., 2016; Khan et al., 2018),
fine tuning (Dakwale and Monz, 2017; Huck et al.,
2018) and data selective training (van der Wees
et al., 2017); are few terms being interchangeably
used for such techniques as reported in the litera-
ture.

As is common in machine learning approaches,
the quality of the system being built depends on
the data used to train the system. This was true for
SMT systems and still holds significance for NMT
based systems (Sajjad et al., 2017; Chu et al.,
2017). The domain of the training data is crucial to
get quality translations. MT performance quickly
degrades when the testing domain is different from
the training domain. The reason for this degra-
dation is that the learning models closely approx-
imate the empirical distributions of the training
data (Lambert et al., 2011). An MT system trained
on parallel data from the news domain may not
give appropriate translations when used to trans-
late articles from the medical domain.

The availability of language resources has in-
creased over the last decade, previously this
was mainly true only for monolingual corpora,
whereas parallel corpora were a limited resource
for most domains. Most of the parallel data
available to the research community was lim-
ited to texts produced by international organiza-
tions, parliamentary debates or legal texts (pro-
ceedings of the Canadian or European Parliament
(Koehn, 2006), or of the United Nations,1 Mul-
tiUN.2 These only covered specific languages and
domains which posed a challenge for the porta-

1https://cms.unov.org/UNCorpus/
2 http://www.euromatrixplus.net/multi-un
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bility of MT systems across different application
domains and also its adaptability with respect to
language within the same application domain.

Translation quality of medical texts also suffers
due to fewer resources available to train a quality
NMT system. Though, medical domain is a grow-
ing domain with respect to availability of paral-
lel corpora like scielo (Neves et al., 2016), EMEA
(Tiedemann, 2012), Medline (Yepes et al., 2017)
and others in making are being made available to
the research community.

In this paper we present an approach which
aims at increasing the training corpus by mining
similar in domain (Bio Med) sentences from out
of domain data. We have developed NMT system
for English-French language pair, for translation
in both directions. Data selective training over cas-
caded transfer learning, approach has been used to
train the model for English to French translation
direction; whereas for French to English trans-
lation, data selective training approach was used
over the whole corpus.

The systems were built with tokenized and un-
tokenized data to study the affect of tokenization
in NMT. Tokenization is an important prepossess-
ing step to build MT system. It benefits the MT
system by splitting the words into sub-word units,
removing punctuations and any other unnecessary
tags from the corpus; thus decreasing the vocabu-
lary and helping to translate the unknown words.
Tokenization, where, improves the MT system
quality it also raises a challenge of developing
good quality tokenizers for each language. Stud-
ies are performed to investigate tokenization for
SMT systems (Zalmout and Habash, 2017; Chung
and Gildea, 2009), the question arises how impor-
tant tokenization is for NMT? Could tokenization
be ignored in NMT? (Domingo et al., 2018) in-
vestigate tokenization in NMT, to explore the im-
pact of tokenization scheme selected for building
NMT, but do not report that, if tokenization is not
done, how much will it affect the quality of the
NMT system. We present an answer to this ques-
tion along with other explorations.

The rest of the paper structured as follows; Sec-
tion 2 provides a brief overview of the related
work and background. Section 3 discusses the ex-
perimental setup. Results for the different systems
are presented in section 3.3. The paper concludes
with a brief conclusion.

2 Related Work

This section reports a brief review of the existing
literature for machine translation in bio-medical
domain. The literature for neural machine transla-
tion with the focus of bio-medical domain data is
not in abundance. Few studies which we found are
discussed followed by a brief overview of trans-
fer learning, domain adaptation and data selective
training methods

The system by (Huck et al., 2017) ranked high-
est in human evaluation in WMT17. They used
linguistically informed cascaded word segmenta-
tion at the target language side using suffix and
compound splitting and BPE. The system was
built using attention based gated recurrent units
(GRUs).

The techniques used to improve machine trans-
lation quality also include selection of best trans-
lation among various candidate translations from
different translation models. (Grozea, 2018) fo-
cuses the mentioned dimension for bio-medical
domain NMT system for English Romanian lan-
guage pair. Percentages were computed for source
words which have correspondence in the transla-
tion, to select the quality translation. The resultant
BLEU scores did not improve more than 0.5.

Khan et al. (2018) trained three NMT systems
with different corpus grouping. One experiment
included only in-domain corpus, whereas two ex-
periments were performed to train in-domain cor-
pus by initializing the training parameters from
general domain system. Learning rate was ad-
justed to 0.25 and dropout to 0.2, for all the train-
ing experiments. The study reveals that training
in-domain corpus by transfer learning from gen-
eral domain corpus increase the MT system qual-
ity. The study reports a gain of 4.02 BLEU points
over the baseline through transfer learning.

2.1 Transfer Learning

Transfer learning is a process of training a model
by utilizing the learned parameters of an already
trained model. Learned knowledge of one model
is transferred to initiate the training process of a
new model for some related models. (Zoph et al.,
2016) has defined the process in terms of parent
and child model training. The model which is first
trained then used to initialize the parameters of a
new training process is considered as parent model
and the new model which has utilized the knowl-
edge of parent model for its training is considered
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as child model.
Jointly training both source-target and target-

source models minimizes reconstruction errors of
monolingual sentences as proposed in the dual
learning framework by (He et al., 2016) where
two translation models teach each other through
a reinforcement learning process. (Wang et al.,
2018) also proposed dual transfer learning by sam-
pling several most likely source sentences (target-
to-source) to avoid enumerating all source sen-
tences, thus transferring the knowledge from the
dual model to boost the training of the primal
source-to-target translation.

2.2 Domain adaptation using selective data
training

Adaptation using existing parallel texts has shown
to be beneficial for translation quality by distribut-
ing the probability mass associated with the exist-
ing translation phrases. Our method also mostly
distributes the probability mass of existing trans-
lation phrases and has shown improved results in
the paradigm of SMT systems(Abdul-Rauf et al.,
2016, 2017). In this study we show the effective-
ness of the method in NMT systems. Information
retrieval has been previously used in the context of
translation model adaptation by (Hildebrand et al.,
2005), who use IR to find sentences similar to the
test set from the parallel training data. They use
the source side of the test data to find related sen-
tences from the parallel corpora. (Lu et al., 2008)
use a similar technique of using IR to select and
weight portions of existing training data to im-
prove translation performance.

3 Experiments

We have studied two approaches being used to im-
prove NMT in low resource settings. A detailed
description of our experiments is provided in this
section.

3.1 Corpus

We used in-domain and general domain corpora
to train our systems. News-Commentary (Tiede-
mann, 2012) was used as general domain corpus
to perform Information Retrieval for selective data
selection. The books corpus was used as the main
out-domain corpus. For in-domain corpus we
used Medline abstracts training corpus, subset of
scielo corpus (Neves et al., 2016), EMEA corpus
(Tiedemann, 2012), Medline titles training corpus

Corpus English French

In-domain:
EMEA 12.3M 14.5M
Scielo 0.09M 0.1M
UFAL 1.4M 1.5M
Medline Abstracts 1.4M 1.7M
Medline Titles 6.0M 6.7M
Out-domain:
Books 2.71M 2.76M

News Commentary (nc) 4.9M 5.9M

NC English IR, top-1 (ncSDE) 1.2M 1.5M
NC French IR, top-2 (ncSDF) 2.1M 2.5M

Development set 1.1M 1.2M
Test set 9.2K 10.9K

Table 1: Train, Development and Test set details in
terms of number of words (tokenized).

provided by WMT17 (Yepes et al., 2017), UFAL
Medical corpus and Khresmoi corpus. Medline
titles corpus was used as test set. Table 1 summa-
rizes the details of our training, development and
test corpora.

3.2 Data Selection Procedure

We adopted the technique reported in (Abdul-Rauf
and Schwenk, 2011) for our data selection proce-
dure. In-domain Medline titles corpus were used
as queries to retrieve related sentences from News
Commentary corpus. We had a total of 627,576
queries for data selection. Top n ( 1 < n < 10)
relevant sentences were ranked against each query.
We used just the unique samples to train the sys-
tems.

The data selection process was done on both
French and English. For the English News Com-
mentary corpus, English side of Medline titles
were used as queries and correspondingly for
French News Commentary Corpus as Index using
French part of Medline titles as queries. Two sep-
arate data selection pipelines were executed to in-
vestigate the effect of language used for data se-
lection, inspired by the previous results on choice
of translation direction reported in (Abdul-Rauf
et al., 2016).
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ID Train Set Detail Test
English to French Un-tokenized tokenized

Adding in-domain data to In-domain baseline:

M1 em+sc+medAbs+uf Baseline-in-domain 12.68 15.65
M2 em+sc+medAbs+uf+ncSDF M1 ⇒ M2 14.57 19.56
M3 em+sc+medAbs+uf+ncSDE M1 ⇒ M3 14.71 19.76
M4 em+sc+medAbs+uf+NewsComentary M1 ⇒ M4 14.54 17.75

Adding in-domain data to Out-domain baseline:

M5 books Baseline-outdomain - 4.53
M6 books+em+sc+medAbs+uf M5 ⇒ M6 - 14.48
M7 books+em+sc+medAbs+uf+ncSDF M6 ⇒ M7 - 16.12

M8 books+em+sc+medAbs+uf-ncSDF+ncSDE+medTitle M5 ⇒ M8 - 21.97

French to English Un-tokenized tokenized
FE em+sc+medAbs+uf+ncSDF+ncSDE+medTitle - 15.94

Table 2: BLEU scores for English to French Models and English to French. ⇒ shows the direction of transfer
learning while building the models. The best model from IR was chosen which was top2 for French IR and top1
for English IR.

3.3 Training Parameters

We used OpenNMT-py (Klein et al., 2017) to
train the models. For English to French trans-
lation direction we adopted transfer learning ap-
proach along with selective data training. A se-
ries of experiments were performed to train a two
layer RNN (Recurrent Neural Network) encoder
decoder model, having 500 LSTM (Long Short
Term Memory) units in each layer. Training was
optimized via Adam optimizer and 0.001 learning
rate fixed for all the experiments. Whereas for ini-
tial experiments we kept the batch size to 64 sam-
ples, and afterwards we increased the batch size to
128 samples. Validation was applied after every
10000 steps.

For training NMT system for French to En-
glish direction, we followed simple training pro-
cess. The training model architecture and training
parameters were same as for English to French ex-
periments, except that the batch size was set to 128
through out the training process.

4 Results

This section describes the procedure and results of
all experiments done by using tokenized and un-
tokenized corpora in the training pipeline. Table 2
and Figure 1 show our results in values as well
as graphically for English to French. The section
is further sub-divided in two sub-sections, Adding
in-domain data to In-domain baseline (section 4.1)

and Adding in-domain data to Out-domain base-
line (section 4.2), in which we discuss the results
the results on tokenized data following the gen-
eral MT convention. Effect of tokenization is dis-
cussed in the corresponding section 4.3. Experi-
ments were performed with the aim to answer the
following research questions:

• How important is the decision for selection of
parent model for transfer learning.

• What is the effect of transfer learning when
selective data training is initialized from an
already trained in-domain model.

• Does selective data training has any benefit
over simple training with out-domain corpus.

• How the source or target side data selection
affects the translation performance.

• How the performance of a system is affected,
if the corpus is not tokenized before starting
the training pipeline.

4.1 Adding in-domain data to In-domain
baseline

Table 1 summarizes the corpora used in our exper-
iments. We have used the general domain News
Commentary NC corpus having 4.9M English
and 5.9M French tokens to do IR to select medical
domain related sentences. We retrieved top − 10
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sentences from both English and French NC cor-
pus (section 3.2) and built NMT systems to choose
the best system. The results of these experiments
are graphically depicted in Figure 1. As is evi-
dent, selected data training always outperforms the
baseline as well as the system built by adding the
whole NC corpus to the baseline (row 4 Table 2).
We then selected the best systems from both IR
pipelines, which were top−1 (ncSDE) for English
IR yielding 1.2M and 1.5M English and French to-
kens respectively. For the IR in French direction
the best system was top− 2 (ncSDF) having 2.1M
and 2.5M English and French tokens respectively.

Table 2, summarizes the results of all the ex-
periments. We have used short representations to
name the corpora used for training. We repre-
sented EMEA as em, Scielo as sc, Medline ab-
stracts as medAbs, UFAL as uf , selected data
of News Commentary using French queries as
ncSDF , selected data of News Commentary us-
ing English queries as ncSDE. Right arrow is
used to show the application of transfer learning.

For our experiments on transfer learning and
selective data training, we first trained a baseline
system (M1), by concatenating in-domain EMEA
corpus, Medline abstracts corpus, Scielo corpus
and UFAL corpus. We didn’t add Medline titles
corpus in our baseline training pipeline, to get a
clear picture of the results of data selective train-
ing over transfer learning (as Medline titles were
used as a key to select the data from general do-
main). The BLEU scores of the baseline system,
calculated over test set from Medline titles corpus
were 15.65.

In the second experiment we applied transfer
learning to initialize the selective data training
over sentences found by IR from News Com-
mentary French corpus (ncSDF ) from baseline
model. For this experiment data selection was
done using the French queries which is the tar-
get language in our case. Transfer learning over
selective data training improved the system (M2)
performance by 4 BLEU points from the baseline.
Which is a significant improvement.

The third experiment was done by applying
transfer learning to initialize the selective data
training from baseline model, but this time data
selection was performed using English queries
(ncSDE). The resulting model (M3) performed
better than the baseline with gain of 4.11 BLEU
points. Comparing the resulting BLEU scores of
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Figure 1: Effect of adding our IR selected data to base-
line. In this figure we also show the difference between
the the use of tokenized vs untokenized data

both the selective data training experiments, no
obvious difference is observed by the change in
language to select data.

To explore if selective data training gives any
benefit over simple training using whole NC cor-
pus; we built M5. In this experiment we continue
to train the baseline system with full News Com-
mentary corpus, which was used for finding do-
main related sentences for selective data training
in above mentioned experiments (M2 and M3).
Note that NC corpus is more than double the size
of ncSDE and ncSDF (see table 1). The result-
ing model (M5) only achieved an improvement of
2.1 BLEU points. This clearly demonstrates the
efficiency and performance of IR based data se-
lection method.

4.2 Adding in-domain data to Out-domain
baseline

Table 2 shows the detailed results of our exper-
iments on building NMT systems for English to
French translation focusing on the above stated re-
search questions. We first trained the out-domain
baseline system (M5) on 2.7M French words of
books corpus and getting a baseline score of 4.53
BLEU. We applied transfer learning to initialize
the training of 17.2M French words of in-domain
em + sc + medAbs + uf corpus to train a new
model (M6).

We see that starting from an out-domain base-
line books corpus, the addition of in-domain data
drastically improves system performance, giving
a total gain of around 10 BLEU points (Table 2
row 6). We did not observe this scale of im-
provement in previous experiments (section 4.1)
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when in-domain IR selected data was added to in-
domain medical corpora.

Then, we evaluate the performance of cascaded
transfer learning over selective data training. We
applied transfer learning over the model which
was first trained by transferring the parameters of
baseline-out-domain to train over major in-domain
corpus (M6). However, here we see a similar
trend when we apply selective data training using
ncSDF (M6 ⇒ M7) and resulting improvement
is of 1.64 BLEU points. Here, domain data selec-
tion exhibited the same trend as we observed in
previous section.

In the last experiment we concatenated all the
in-domain corpus and trained a model (M8) ini-
tiating from out-domain books corpus. Interest-
ingly, this is the best result achieved, giving a total
improvement of 17.44 BLEU points from the out-
domain books corpus baseline (4.53 ⇒ 21.97).
The improvement of 1.64 BLEU points (M6 ⇒
M7) achieved with a rather stronger baseline as in
the previous section, strengthens our claim of effi-
ciency of our IR based data selection method using
selective data training.

4.3 Effect of Tokenization on translation
quality

To study the effect of tokenization on perfor-
mance of NMT systems, we built four models
(from M1 to M4) with both tokenized and unto-
kenized corpora. For the experiments done with
tokenized corpora we used MossesTokenizer
(Koehn et al., 2007), which is reported to yield
best results as compared to other tokenizers
(Domingo et al., 2018).

Table 2 lists the results of our findings. All
the models built using tokenized corpora signifi-
cantly out-performed their corresponding counter-
parts built using untokenized corpora.

M1 dropped in performance, by 2.97 BLEU
points when trained with untokenized corpora,
than its corresponding system trained with tok-
enized corpora (12.68 ⇔ 15.65). Same trend is
observed in M2 which showed a decline of 4.99
BLEU points by using untokenized corpora dur-
ing training, in comparison to its training using
tokenized corpora (14.57 ⇔ 19.56). The decline
in performance of M3, when trained with unto-
kenized corpora is highest. Its performance de-
creased by 5.05 BLEU points as compared to
training using tokenized corpora. M4 maintained

the trend of decrease in performance when trained
with untokenized corpora. It lost 3.21 BLEU
points with respect to its corresponding system
trained using tokenized corpora. The trend of de-
cline in performance for untokenized corpora can
also be observed from Figure 1.

On average the decline in performance of the
systems is around 4 BLEU points, which reveals
the importance of tokenization of corpora in NMT.
This concludes that tokenization of corpora is
an important pre-processing step when building
NMT systems.

It must be noted here that the selective data
training maintained its trend to perform better than
the baseline as well as the system built by adding
ncSDE, ncSDF and the whole NC corpus to the
baseline for the systems built using untokenized
corpora. Our IR based data selection method still
holds it’s efficiency claim here (see M2 and M3
vs M4). This adds to the efficacy of the data se-
lective training approach we adapted to build our
systems for domain adaptation.

4.4 French to English

To train the system for French to English direc-
tion, we followed simple training pipeline with se-
lective data training using both source and target
language as selection queries. We concatenated
all the in-domain corpus and trained the system
with selective data training from News Commen-
tary. This model (FE) gave 15.94 BLEU score on
the test set. The reported BLEU scores from WMT
official results are 0.1972 and 0.2105 for all and
OK sentences respectively.

5 Conclusion

In this paper, we have described our submission
to the Bio Medical task based on the sequence-
to-sequence NMT architecture for the WMT2019
shared task. In the Bio-medical task we worked on
translation between French and English (in both
directions). We used transfer learning approach to
train our systems along with selective data training
using information retrieval techniques.

We performed a series of experiments to inves-
tigate a few important research questions. Data
selective training, though done with selected cor-
pus smaller in size, yields better results than using
the whole out-domain corpus in training for do-
main adaptation. Our study also adds to the previ-
ous results, that tokenization is an important pre-
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processing step for NMT and it helps significantly
improve the system performance.

Over all our system achieved an improvement
of 17.44 BLEU points from the out-domain books
corpus baseline (4.53 ⇒ 21.97) by adding all in-
domain data. The improvement of 4.11 and 1.64
BLEU points in selective data training from in-
domain to in-domain and out-domain to in-domain
respectively show the efficiency of our IR based
data selection method using selective data training
methods.
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Abstract

This paper describes Huawei’s neural ma-
chine translation systems for the WMT 2019
biomedical translation shared task. We trained
and fine-tuned our systems on a combina-
tion of out-of-domain and in-domain paral-
lel corpora for six translation directions cov-
ering English–Chinese, English–French and
English–German language pairs. Our sub-
mitted systems achieve the best BLEU scores
on English–French and English–German lan-
guage pairs according to the official evaluation
results. In the English–Chinese translation
task, our systems are in the second place. The
enhanced performance is attributed to more in-
domain training and more sophisticated mod-
els developed. Development of translation
models and transfer learning (or domain adap-
tation) methods has significantly contributed
to the progress of the task.

1 Introduction

In recent years, neural machine translation (NMT)
has achieved substantial progress and outper-
forms statistical machine translation (SMT), espe-
cially when large volumes of parallel corpora are
available. However, compared to out-of-domain
(OOD) data, in-domain data is typically in a small
volume and hard to obtain. Therefore, a lot of
research focuses on how to make use of OOD
data to improvement in-domain NMT systems.
Among them, a well-accepted method for domain
adaptation is to fine-tune a pre-trained baseline
model using in-domain data (Koehn and Knowles,
2017; Luong and Manning, 2015; Freitag and Al-
Onaizan, 2016).

In this paper, we present Huawei’s practices on
adapting our NMT systems from general-domain
to in-domain. In addition to fine-tuning our OOD
systems on in-domain data, we also resort to a

∗Co-first author

broader spectrum of domain adaptation settings
(Chu and Wang, 2018), including training models
from scratch on a mixture of shuffled OOD and in-
domain data and ensemble various models at the
decoding stage. Final systems are submitted to the
biomedical shared task of WMT 2019 on six trans-
lation directions for English–Chinese, English–
French and English–German language pairs.

This paper is organized as below: Section 2 il-
lustrates the system architecture followed by de-
tails of parallel corpora for training in Section 3.
Section 4 presents our experimental settings. Re-
sults are presented and discussed in Section 5. In
Section 6, we conclude the paper and unveil future
work.

2 System Architecture

Our systems are implemented in TensorFlow
1.8 platform with the Transformer architecture
(Vaswani et al., 2017) which consists of an en-
coder stack and a decoder stack with multi-head
attention mechanisms. Each encoder layer con-
sists of two sub-layers: a multi-head self-attention
layer and a feed-forward layer with relu as the
activation function. Compared to the encoder,
each decoder layer includes an additional sub-
layer to attend to outputs of the encoder. The hy-
perparameters used in our systems are defined in
Table 1 which follow the transformer-big settings
in Vaswani et al. (2017).

Hyperparameters Values
Encoder Layers 6
Decoder Layers 6
Embedding Units 1,024
Attention Heads 16
Feed-forward Hidden Units 4,096

Table 1: Hyperparameters of our systems.
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3 Parallel Corpora

In this section, we present the parallel corpora
used to train and evaluate translation models. The
statistics of the data used is shown in Table 2. The
OOD parallel corpora are collected from a num-
ber of sources. In addition to WMT parallel cor-
pora for the news translation task, we also gather
data from OPUS.1 For English–Chinese tasks, we
also include in-house data. The data generated
by back-translating WMT monolingual corpus is
named as “BT” data. Data from other sources
such as the UM-Corpus (Tian et al., 2014) and
Wikipedia are also included.

The in-domain data is from WMT biomedical
translation shared task website.2 More specifi-
cally, the in-domain data are gathered from the fol-
lowing sources (shown in Table 2):

• The EMEA corpus (Tiedemann, 2012).
The EMEA corpus encompasses biomedi-
cal documents from the European Medicines
Agency (EMEA). This corpus is a major
component of in-domain training data.

• The UFAL medical corpus collection.3 The
extracted EN–FR parallel corpus contains
data predominantly from PatTR Medical data
whilst EMEA (OpenSubtitles and crawled)
contributing to approximately one-third of
the EN–DE data. PathTR is a parallel EN–
DE and EN–FR corpus extracted from the
MAREC patent collection and it has been
used for this task since 2014, containing
aligned sentence segments from patent titles,
abstracts, and claims.4

• A small portion of in-domain data are from
Medline and Pubmed.5 This source of data is
provided by the WMT Biomedical task orga-
nizers.

4 Experiments

The data depicted in Table 2 are mixed, pre-
processed and split into training and development
sets. The development data is created by random

1http://opus.nlpl.eu/
2http://www.statmt.org/wmt19/biomedical-translation-

task.html
3https://ufal.mff.cuni.cz/ufal medical corpus
4https://www.cl.uni-heidelberg.de/statnlpgroup/pattr/
5https://github.com/biomedical-translation-

corpora/corpora

Corpus EN–ZH EN–FR EN–DE
OOD Parallel 48.94M 66.33M 22.28M
BT 6.12M - 24.19M
UM-Corpus 875K - -
Wikipedia - 818K 2.46M
UFAL - 2.81M 3.04M
EMEA - 1.09M 1.11M
Medline 6 - 55K 29K
Pubmed - 613K -
Total 55.93M 71.72M 53.11M

Table 2: Corpora statistics in the numbers of sentence
pairs after cleaning.

Figure 1: Data Processing Pipeline

selection 1% from the mixed data sets. We also
pre-processed the WMT 2018 test data and treated
it as test data to benchmark the models trained un-
der various settings.

4.1 Pre-processing and Post-processing

We noticed that the data processing procedure is
an important factor in enhancing the quality of
training data and thus the performance of trained
models. Our pre-processing pipeline is composed
of a number of steps (depicted in Figure 1). The
data is undergone data cleaning, puncture normal-
ization (Punc-Norm), tokenization, truecasing and
subword segmentation:

• Data cleaning addresses the issues of noisy
training data. For example, we remove sen-
tence pairs which are potentially misaligned
according to scores from fast-align. We
also remove sentence pairs if the ratio of
language-specific characters is lower than a
threshold. As we found parallel corpora of
a language pair may contain sentences pairs
which are in a third language, we apply lan-
guage detection7 and filtering as well.

7https://github.com/aboSamoor/polyglot
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• After cleaning data, a few common steps used
for machine translation are applied by us-
ing scripts from Moses (Koehn et al., 2007).
Punc-Norm deals with variations of punctua-
tion in different languages (i.e., French, Ger-
man) by normalizing them into a standard
form. Tokenization is a language-dependent
process of splitting a sentence into a sequence
of tokens. Truecasing models are trained for
each language and applied appropriate case
forms on words.

• In order to alleviate the out-of-vocabulary
problem, subword segmentation (Sennrich
et al., 2016) is used as well. Instead of
training an individual segmentation model
for each language independently, we directly
use subsets of the multilingual vocabular-
ies8 from the BERT (Devlin et al., 2018)
project.9 It is generated by the WordPiece
(Schuster and Nakajima, 2012) model trained
on Wikipedia dump. A greedy algorithm is
then applied to segment a word in our cor-
pus into a sequence of subwords according
to the vocabulary if applicable. For exam-
ple, “Bitstream” is segmented into “Bit” and
“##stream”.

After decoding, the outputs are post-processed
by combining subwords, de-truecasing and de-
tokenization. Punctuation is also converted back
to their original form in a specific language when
translating to Chinese, French and German.

4.2 Training and Decoding Details
The models are trained in two different ways: (1)
Mixed: the model is simply trained on a mix-
ture of data without differentiating OOD and in-
domain data. The data is shuffled randomly and
there is no oversampling technique applied; (2)
Fine-tuned: the baseline model is first pre-trained
on the OOD parallel corpus and then fine-tuned on
the in-domain data.

All systems are trained for 400K steps, except
that, in the Fine-tuned setting, we further fine-tune
base systems for 300K unless early stopped. The
training was performed on GPU clusters with 4 or
8 Tesla V100. Follow Transformer, we use Adam
as a optimizer and a dynamic learning rate with a

8Vocabulary size for EN–ZH: 42K (ZH), 46K (EN); Vo-
cabulary size for EN–DE: 58K (DE), 58K (EN); Vocabulary
size for EN–FR: 59K (FR), 58K (EN).

9https://github.com/google-research/bert

linear warmup and root-squared decay. The batch
size is set to be 3K source or target words on each
GPU card.

We average top 10 checkpoints (Vaswani et al.,
2017) evaluated against the development set as the
final model for decoding. The beam size is set to
4 and a length penalty weight factor with a value 1
is used (Wu et al., 2016).

We further optionally apply ensemble decoding
to combine best models trained in the two settings
mentioned above. Ensemble decoding (or predic-
tion) is an approach combining multiple predictors
to reduce the errors. It has been widely used in im-
proving NMT performance.

5 Experimental Results

We experimented with more than twenty mod-
els in total trained on different combina-
tions of various data and under different set-
tings. sacrebleu.py (Post, 2018) and
multi-bleu.perl from Moses10 are used to
evaluate translations on the development and test
data. Table 3 shows BLEU scores on WMT 2018
test set under different settings. We found that
models from fine-tuning on in-domain data outper-
form models trained on the mixed data set when
reasonable volumes of in-domain data are avail-
able (e.g., on EN–FR and EN–DE). By contrast,
the mixed method performs the best on EN–ZH
where we do not have genuine in-domain data for
fine-tuning. Another interesting finding is that the
ensemble decoding consistently takes the middle
place when we simply combine the best two mod-
els under the three settings. We presume this is
caused by domain issues as at least one of the two
models used was not well trained on in-domain
data.

The results in terms of official BLEU scores of
our submissions for WMT 2019 are presented in
Table 4 and Table 5. Our final systems achieve
the best BLEU scores on English–French and
English–German language pairs according to the
official evaluation results. In the English–Chinese
translation task, our systems are in the second
place. We can also find from the tables that
training with the mixed data, fine-tuning on in-
domain data have contributed to a number of win-
ning models on different language pairs. While
the mixed method works better than the Fine-
tuned method on English–Chinese and English–

10https://github.com/moses-smt/mosesdecoder
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BLEU Scores on WMT 18 Data

Models EN2ZH ZH2EN EN2DE DE2EN EN2FR FR2EN

Baseline 33.49 19.46 24.4 27.98 30.57 35.40
Fine-tuned 31.65 21.46 26.56 32.8 34.38 40.56
Mixed 34.36 24.37 24.54 29.18 31.88 36.46
Ensemble (top 2) 34.27 23.41 25.28 32.36 34.30 38.77

Table 3: BLEU scores of the trained models measured against a subset of the test data for WMT 18 biomedical
task (bold fonts show the best scores).

German, the fine-tuned method outperforms on
French–English (EN2FR Run1) due to a reason-
able volume of high-quality in-domain data in-
cluded. It is noted that the submission (EN2FR
Run3) based on the ensemble decoding method
has resulted in much lower performance.

According to our experiments and experiences,
we reached the same conclusion as that from the
WMT biomedical task organizers (Neves et al.,
2018): the enhanced performance is attributed to
more in-domain training and more sophisticated
models developed (i.e., Transformers). The devel-
opment of translation models and transfer learning
(or domain adaptation) methods have significantly
contributed to the progress of the task.

6 Conclusions

In this paper, we present Huawei’s neural machine
translation systems for the WMT 2019 biomed-
ical translation shared task. More than twenty
models have been trained and tested under dif-
ferent training settings on three language pairs
(six translation directions), i.e., English–Chinese,
English–French and English–German. A number
of pre-processing and post-processing techniques
have been employed to enhance the quality of the
data. Our final systems rank the best BLEU scores
on English–French and English–German language
pairs and the second on English–Chinese accord-
ing to the official evaluation results in terms of
BLEU scores.
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Névéol, Cristian Grozea, Amy Siu, Madeleine Kit-
tner, and Karin M. Verspoor. 2018. Findings of the
wmt 2018 biomedical translation shared task: Eval-
uation on medline test sets. In Proceedings of the
Third Conference on Machine Translation: Shared
Task Papers, pages 324–339, Belgium, Brussels. As-
sociation for Computational Linguistics.

169



WMT 19 Submission EN2ZH ZH2EN EN2DE DE2EN EN2FR FR2EN

Best Official 42.34 34.13 27.89 28.82 39.95 35.56
ARC Run 1 35.47 30.07 27.89 28.71 39.95 35.51
ARC Run 2 35.47 30.05 27.86 28.79 36.67 35.51
ARC Run 3 35.47 30.05 27.85 28.82 36.19 35.56
ARC Best Model Mixed Mixed Mixed Mixed Fine-tuned Fine-tuned

Table 4: Official BLEU scores of ARC submission for WMT 19 biomedical task test sets with all sentences (bold
fonts show the best official scores).

WMT 19 Submission EN2ZH ZH2EN EN2DE DE2EN EN2FR FR2EN

Best Official 43.92 35.61 35.39 38.84 42.41 38.24
ARC Run 1 37.09 32.15 35.39 38.66 42.41 38.18
ARC Run 2 37.09 32.16 35.28 38.80 38.89 38.18
ARC Run 3 37.09 32.16 35.26 38.84 38.29 38.24
ARC Best Model Mixed Mixed Mixed Mixed Fine-tuned Fine-tuned

Table 5: Official BLEU scores of our submissions for WMT 19 biomedical task with OK-aligned test sets (bold
fonts show the best official scores).

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In International Confer-
ence on Acoustics, Speech and Signal Processing,
pages 5149–5152.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Liang Tian, Derek F. Wong, Lidia S. Chao, Paulo
Quaresma, Francisco Oliveira, Yi Lu, Shuo Li, Yim-
ing Wang, and Longyue Wang. 2014. Um-corpus:
A large english-chinese parallel corpus for statis-
tical machine translation. In Proceedings of the
Ninth International Conference on Language Re-
sources and Evaluation (LREC’14), pages 1837–
1842, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Jörg Tiedemann. 2012. Parallel data, tools and in-
terfaces in opus. In Proceedings of the Eight In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

170



Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 3: Shared Task Papers (Day 2) pages 171–176
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

UCAM Biomedical translation at WMT19: Transfer learning
multi-domain ensembles

Danielle Saunders† and Felix Stahlberg† and Bill Byrne‡†

†Department of Engineering, University of Cambridge, UK

‡SDL Research, Cambridge, UK

Abstract

The 2019 WMT Biomedical translation task
involved translating Medline abstracts. We ap-
proached this using transfer learning to ob-
tain a series of strong neural models on dis-
tinct domains, and combining them into multi-
domain ensembles. We further experiment
with an adaptive language-model ensemble
weighting scheme. Our submission achieved
the best submitted results on both directions of
English-Spanish.

1 Introduction

Neural Machine Translation (NMT) in the
biomedical domain presents challenges in addi-
tion to general domain translation. Firstly, avail-
able corpora are relatively small, exacerbating the
effect of noisy or poorly aligned training data.
Secondly, individual sentences within a biomed-
ical document may use specialist vocabulary from
small domains like health or statistics, or may con-
tain generic language. Training to convergence on
a single biomedical dataset may therefore not cor-
respond to good performance on arbitrary biomed-
ical test data.

Transfer learning is an approach in which a
model is trained using knowledge from an exist-
ing model (Khan et al., 2018). Transfer learning
typically involves initial training on a large, gen-
eral domain corpus, followed by fine-tuning on the
domain of interest. We apply transfer learning iter-
atively on datasets from different domains, obtain-
ing strong models that cover two domains for both
directions of the English-German language pair,
and three domains for both directions of English-
Spanish.

The domain of individual documents in the
2019 Medline test dataset is unknown, and may
vary sentence-to-sentence. Evenly-weighted en-
sembles of models from different domains can

give good results in this case (Freitag and Al-
Onaizan, 2016). However, we suggest a better
approach would take into account the likely do-
main, or domains, of each test sentence. We there-
fore investigate applying Bayesian Interpolation
for language-model based multi-domain ensemble
weighting.

1.1 Iterative transfer learning

Transfer learning has been used to adapt models
both across domains, e.g. news to biomedical
domain adaptation, and within one domain, e.g.
WMT14 biomedical data to WMT18 biomedical
data (Khan et al., 2018). For en2de and de2en we
have only one distinct in-domain dataset, and so
we use standard transfer learning from a general
domain news model.

For es2en and en2es, we use the domain-
labelled Scielo dataset to provide two distinct
domains, health and biological sciences (‘bio’),
in addition to the complete biomedical dataset
(Neves et al., 2016). We therefore experiment
with iterative transfer learning, in which a model
trained with transfer learning is then trained fur-
ther on the original domain.

NMT transfer learning for domain adaptation
involves using the performance of a model on
some general domain A to improve performance
on some other domain B: A → B. However, if
the two domains are sufficiently related, we sug-
gest that task B could equally be used for trans-
fer learning A: B → A. The stronger general
model A could then be used to achieve even bet-
ter performance on other tasks: B → A → B,
B → A→ C, and so on.

1.2 Adaptive decoding

Previous work on transfer learning typically aims
to find a single model that performs well on a
known domain of interest (Khan et al., 2018).
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The biomedical translation task offers a scenario
in which the test domain is unknown, since indi-
vidual Medline documents can have very different
styles and topics. Our approach is to decode such
test data with an ensemble of distinct domains.

For intuitive ensemble weights, we use
sequence-to-sequence Bayesian Interpolation (BI)
as described in Saunders et al. (2019), which also
contains a more in-depth derivation and discusses
possible hyperparameter configurations. We
consider models pk(y|x) trained on K domains,
used for T = K domain decoding tasks. We
assume throughout that p(t) = 1

T , i.e. that tasks
are equally likely absent any other information.
Weights λk,t define a task-conditional ensemble.
At step i, where hi = y1:i−1 is decoding history:

p(yi|hi,x) =
K∑

k=1

pk(yi|hi,x)
T∑

t=1

p(t|hi,x)λk,t

(1)

This is an adaptively weighted ensemble where,
for each source sentence x and output hypothesis
y, we re-estimate p(t|hi,x) at each step:

p(t|hi,x) =
p(hi|t,x)p(t|x)∑T

t′=1 p(hi|t′,x)p(t′|x)
(2)

p(hi|t,x) is found from the last score of each
model:

p(hi|t,x) = p(yi−1|hi−1, t,x) (3)

=
∑

k

pk(yi−1|hi−1, t,x)λk,t

We use Gt, an n-gram language model trained on
source training sentences from task t, to estimate
initial task posterior p(t|x):

p(x|t)p(t)
∑T

t′=1 p(x|t′)p(t′)
=

Gt(x)
α

∑T
t′=1Gt′(x)

α
(4)

Here α is a smoothing parameter. If Gk,t =∑
x∈Testt Gk(x), we take:

λk,t =
G
α
k,t∑

k′ G
α
k′,t

(5)

Figure 1 demonstrates this adaptive decoding
when weighting a biomedical and a general (news)
domain model to produce a biomedical sentence.
The model weights are even until biomedical-
specific vocabulary is produced, at which point the
in-domain model dominates.

Figure 1: Adaptively adjusting model weights during
decoding with Bayesian Interpolation

1.3 Related work

Transfer learning has been applied to NMT in
many forms. Luong and Manning (2015) use
transfer learning to adapt a general model to in-
domain data. Zoph et al. (2016) use multilin-
gual transfer learning to improve NMT for low-
resource languages. Chu et al. (2017) intro-
duce mixed fine-tuning, which carries out trans-
fer learning to a new domain combined with some
original domain data. Kobus et al. (2017) train a
single model on multiple domains using domain
tags. Khan et al. (2018) sequentially adapt across
multiple biomedical domains to obtain one single-
domain model.

At inference time, Freitag and Al-Onaizan
(2016) use uniform ensembles of general and fine-
tuned models. Our Bayesian Interpolation experi-
ments extend previous work by Allauzen and Ri-
ley (2011) on Bayesian Interpolation for language
model combination.

2 Experimental setup

2.1 Data

We report on two language pairs: Spanish-English
(es-en) and English-German (en-de). Table 1
lists the data used to train our biomedical do-
main evaluation systems. For en2de and de2en

1https://ufal.mff.cuni.cz/ufal_
medical_corpus

2Dušek et al. (2017)
3Neves et al. (2016)
4https://github.com/

biomedical-translation-corpora/medline
(Yepes et al., 2017)

5http://www.himl.eu/test-sets
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Domain Training datasets Sentence pairs Dev datasets Sentence pairs

es-en

All-biomed

UFAL Medical1 639K

Khresmoi2 1.5K
Scielo3 713K
Medline titles4 288K
Medline training abstracts 83K
Total (pre) / post-filtering (1723K) / 1291K

Health Scielo health only 587K Scielo 2016 health 5KTotal post-filtering 558K

Bio Scielo bio only 126K Scielo 2016 bio 4KTotal post-filtering 122K

en-de All-biomed
UFAL Medical 2958K Khresmoi 1.5K
Medline training abstracts 33K Cochrane5 467
Total (pre) / post-filtering (2991K) / 2156K

Table 1: Biomedical training and validation data used in the evaluation task. For both language pairs identical data
was used in both directions.

we additionally reuse strong general domain mod-
els trained on the WMT19 news data, includ-
ing filtered Paracrawl. Details of data prepara-
tion and filtering for these models are discussed
in Stahlberg et al. (2019).

For each language pair we use the same train-
ing data in both directions, and use a 32K-merge
source-target BPE vocabulary (Sennrich et al.,
2016) trained on the ‘base’ domain training data
(news for en-de, Scielo health for es-en)

For the biomedical data, we preprocess the data
using Moses tokenization, punctuation normaliza-
tion and truecasing. We then use a series of simple
heuristics to filter the parallel datasets:

• Detected language filtering using the Python
langdetect package6. In addition to mis-
labelled sentences, this step removes many
sentences which are very short or have a high
proportion of punctuation or HTML tags.

• Remove sentences containing more than 120
tokens or fewer than 3.

• Remove duplicate sentence pairs

• Remove sentences where the ratio of source
to target tokens is less than 1:3.5 or more than
3.5:1

• Remove pairs where more than 30% of either
sentence is the same token.

2.2 Model hyperparameters and training
We use the Tensor2Tensor implementation of the
Transformer model with the transformer big
setup for all NMT models (Vaswani et al., 2018).
By default this model size limits batch size of

6https://pypi.org/project/langdetect/

2K due to memory constraints. We delay gra-
dient updates by a factor of 8, letting us effec-
tively use a 16K batch size (Saunders et al., 2018).
We train each domain model until it fails to im-
prove on the domain validation set in 3 consecu-
tive checkpoints, and perform checkpoint averag-
ing over the final 10 checkpoints to obtain the final
model (Junczys-Dowmunt et al., 2016).

At inference time we decode with beam size
4 using SGNMT (Stahlberg et al., 2017). For
BI we use 2-gram KENLM models (Heafield,
2011) trained on the source training data for each
domain. For validation results we report cased
BLEU scores with SacreBLEU (Post, 2018)7; test
results use case-insensitive BLEU.

2.3 Results
Our first experiments involve iterative transfer
learning in es2en and en2es to obtain models on
three separate domains for the remaining evalua-
tion. We use health, a relatively clean and small
dataset, as the initial domain to train from scratch.
Once converged, we use this to initialise training
on the larger, noiser all-biomed corpus. When
the all-biomed model has converged, we use it to
initialise training on the health data and bio data
for stronger models on those domains. Figure 2
shows the training progression for the health and
all-biomed models, as well as the standard transfer
learning case where we train on all-biomed from
scratch.

Table 2 gives single model validation scores for
es2en and en2es models with standard and itera-
tive transfer learning. We find that the all-biomed
domain gains 1-2 BLEU points from transfer
learning. Moreover, the health domain gains on

7SacreBLEU signature: BLEU+case.mixed
+numrefs.1+smooth.exp+tok.13a+version.1.3.2

173



Figure 2: Transfer learning for es2en domains. Left: standard transfer learning improves performance from a
smaller (health) to a larger (all-biomed) domain. Right: returning to the original domain after transfer learning
provides further gains on health.

Transfer learning schedule es2en en2es
Khresmoi Health Bio Khresmoi Health Bio

Health 45.1 35.7 34.0 41.2 34.7 36.1
All-biomed 49.8 35.4 35.7 43.4 33.9 37.5
All-biomed → Health 48.9 36.4 35.9 43.0 35.2 38.0
All-biomed → Bio 48.0 34.6 37.2 43.2 34.1 40.5
Health → All-biomed 52.1 36.7 37.0 44.2 35.0 39.0
Health → All-biomed → Health 51.1 37.0 37.2 44.0 36.3 39.5
Health → All-biomed → Bio 50.6 36.0 38.0 45.2 35.3 41.3

Table 2: Validation BLEU for English-Spanish models with transfer learning. We use the final three models in our
submission.

all domains from iterative transfer learning rela-
tive to training from scratch and relative to stan-
dard transfer learning(All-biomed→ Health), de-
spite being trained twice to convergence on health.

We submitted three runs to the WMT19
biomedical task for each language pair: the best
single all-biomed model, a uniform ensemble of
models on two en-de and three es-en domains, and
an ensemble with Bayesian Interpolation. Tables
3 and 4 give validation and test scores.

We find that a uniform multi-domain ensemble
performs well, giving 0.5-1.2 BLEU improvement
on the test set over strong single models. We see
small gains from using BI with ensembles on most
validation sets, but only on en2es test.

Following test result release, we noted that, in
general, we could predict BI (α = 0.5) perfor-
mance by comparing the uniform ensemble with
the oracle model performing best on each valida-
tion domain. For en2es uniform ensembling un-
derperforms the health and bio oracle models on
their validation sets, and the uniform ensemble
slightly underperforms BI on the test data. For
en2de, by contrast, uniform ensembling is consis-
tently better than oracles on the dev sets, and out-
performs BI on the test data. For de2en and es2en,

uniform ensembling performs similarly to the ora-
cles, and performs similarly to BI.

From this, we hypothesise that BI (α = 0.5)
has a tendency to converge to a single model.
This is effective when single models perform well
(en2es) but ineffective if the uniform ensemble is
predictably better than any single model (en2de).
Consequently in Table 5 we experiment with BI
(α = 0.1). In this case BI matches or out-performs
the uniform ensemble. Notably, for en2es, where
BI (α = 0.5) performed well, taking α = 0.1 does
not harm performance.

3 Conclusions

Our WMT19 Biomedical submission covers the
English-German and English-Spanish language
pairs, achieving the best submitted results on both
directions of English-Spanish. We use transfer
learning iteratively to train single models which
perform well on related but distinct domains,
and show further gains from multi-domain en-
sembles. We explore Bayesian Interpolation for
multi-domain ensemble weighting, and find that a
strongly smoothed case gives small gains over uni-
form ensembles.
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es2en en2es
Khresmoi Health Bio Test Khresmoi Health Bio Test

Health → All-biomed 52.1 36.7 37.0 42.4 44.2 35.0 39.0 44.9
Health → All-biomed → Health 51.1 37.0 37.2 - 44.0 36.3 39.5 -
Health → All-biomed → Bio 50.6 36.0 38.0 - 45.2 35.3 41.3 -
Uniform ensemble 52.2 36.9 37.9 43.0 45.1 35.6 40.2 45.4
BI ensemble (α=0.5) 52.1 37.0 38.1 42.9 44.5 35.7 41.2 45.6

Table 3: Validation and test BLEU for models used in English-Spanish language pair submissions.

de2en en2de
Khresmoi Cochrane Test Khresmoi Cochrane Test

News 43.8 46.8 - 30.4 40.7 -
News → All-biomed 44.5 47.6 27.4 31.1 39.5 26.5
Uniform ensemble 45.3 48.4 28.6 32.6 42.9 27.2
BI ensemble (α=0.5) 45.4 48.8 28.5 32.4 43.1 26.4

Table 4: Validation and test BLEU for models used in English-German language pair submissions.

es2en en2es de2en en2de
Uniform 43.2 45.3 28.3 25.9

BI (α=0.5) 43.0 45.5 28.2 25.2
BI (α=0.1) 43.2 45.5 28.5 26.0

Table 5: Comparing uniform ensembles and BI with
varying smoothing factor on the WMT19 test data.
Small deviations from official test scores on submitted
runs are due to tokenization differences. α = 0.5 was
chosen for submission based on results on available de-
velopment data.
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Abstract

This paper describes the machine translation
systems developed by the Barcelona Super-
computing (BSC) team for the biomedical
translation shared task of WMT19. Our sys-
tem is based on Neural Machine Translation
unsing the OpenNMT-py toolkit and Trans-
former architecture. We participated in four
translation directions for the English/Spanish
and English/Portuguese language pairs. To
create our training data, we concatenated sev-
eral parallel corpora, both from in-domain and
out-of-domain sources, as well as terminolog-
ical resources from UMLS.

1 Introduction

In this paper, we present the system developed
at the Barcelona Supercomputing Center (BSC)
for the Biomedical Translation shared task in
the Fourth Conference on Machine Translation
(WMT19), which consists in translating scientific
texts from the biological and health domain.

Our participation in this task considered the
English/Portuguese and English/Spanish language
pairs, with translations in both directions. For
that matter, we developed a machine translation
(MT) system based on neural machine translation
(NMT), using OpenNMT-py (Klein et al., 2017).

2 Related Works

Previous participation in biomedical translation
tasks include the works of Costa-Jussà et al.
(2016) which employed Moses Statistic Machine
Translation (SMT) to perform automatic transla-
tion integrated with a neural character-based re-
current neural network for model re-ranking and
bilingual word embeddings for out of vocabulary
(OOV) resolution. Given the 1000-best list of
SMT translations, the RNN performs a rescoring
and selects the translation with the highest score.

The OOV resolution module infers the word in
the target language based on the bilingual word
embedding trained on large monolingual corpora.
Their reported results show that both approaches
can improve BLEU scores, with the best results
given by the combination of OOV resolution and
RNN re-ranking. Similarly, Ive et al. (2016) also
used the n-best output from Moses as input to a re-
ranking model, which is based on a neural network
that can handle vocabularies of arbitrary size.

More recently, Tubay and Costa-jussÃ (2018)
employed multi-source language translation us-
ing romance languages to translate from Spanish,
French, and Portuguese to English. They used
data from SciELO and Medline abstracts to train
a Transformer model with individual languages to
English and also with all languages concatenated
to English.

In the last WMT biomedical translation chal-
lenge (2018) (Neves et al., 2018), the submission
that achieved the best BLEU scores for the ES/EN
and PT/EN, in both directions, were the ones sub-
mited by the UFRGS team (Soares and Becker,
2018), followed by the TALP-UPC (Tubay and
Costa-jussÃ, 2018) in the ES/EN direction and the
UHH-DS in the EN/PT directions.

3 Resources

In this section, we describe the language resources
used to train both models, which are from two
main types: corpora and terminological resources.

3.1 Corpora
We used both in-domain and general domain cor-
pora to train our systems. For general domain data,
we used the books corpus (Tiedemann, 2012),
which is available for several languages, included
the ones we explored in our systems, and the JRC-
Acquis (Tiedemann, 2012). As for in-domain data,
we included several different corpora:
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• The corpus of full-text scientific articles from
Scielo (Soares et al., 2018a), which includes
articles from several scientific domains in
the desired language pairs, but predominantly
from biomedical and health areas.

• A subset of the UFAL medical corpus1, con-
taining the Medical Web Crawl data for the
English/Spanish language pair.

• The EMEA corpus (Tiedemann, 2012), con-
sisting of documents from the European
Medicines Agency.

• A corpus of theses and dissertations abstracts
(BDTD) (Soares et al., 2018b) from CAPES,
a Brazilian governmental agency respon-
sible for overseeing post-graduate courses.
This corpus contains data only for the En-
glish/Portuguese language pair.

• A corpus from Virtual Health Library2

(BVS), containing also parallel sentences for
the language pairs explored in our systems.

Table 1 depicts the original number of paral-
lel segments according to each corpora source. In
Section 4.1, we detail the pre-processing steps per-
formed on the data to comply with the task evalu-
ation.

Corpus Sentences
EN/ES EN/PT

Books 93,471 -
UFAL 286,779 -
Full-text Scielo 425,631 2.86M
JRC-Acquis 805,757 1.64M
EMEA - 1.08M
CAPES-BDTD - 950,252
BVS 737,818 631,946
Total 2.37M 7.19M

Table 1: Original size of individual corpora used in our
experiments

3.2 Terminological Resources
Regarding terminological resources, we extracted
parallel terminologies from the Unified Medical
Language System3 (UMLS). For that matter, we

1https://ufal.mff.cuni.cz/ufal_
medical_corpus

2http://bvsalud.org/
3https://www.nlm.nih.gov/research/

umls/

used the MetamorphoSys application provided by
U.S. National Library of Medicine (NLM) to sub-
set the language resources for our desired lan-
guage pairs. Our approach is similar to what
was proposed by Perez-de Viñaspre and Labaka
(2016).

Once the resource was available, we imported
the MRCONSO RRF file to an SQL database to
split the data in a parallel format in the two lan-
guage pairs. Table 2 shows the number of parallel
concepts for each pair.

Language Pair Concepts
EN/ES 14,399
EN/PT 26,194

Table 2: Number of concepts from UMLS for each
language pair

4 Experimental Settings

In this section, we detail the pre-processing steps
employed as well as the architecture of the Trans-
former.

4.1 Pre-processing

As detailed in the description of the biomedical
translation task, the evaluation is based on texts
extracted from Medline. Since one of our corpora,
the one comprised of full-text articles from Scielo,
may contain a considerable overlap with Medline
data, we decided to employ a filtering step in order
to avoid including such data.

The first step in our filter was to down-
load metadata from Pubmed articles in Spanish
and Portuguese. For that matter, we used the
Ebot utility4 provided by NLM using the queries
POR[la] and ESP[la], retrieving all results avail-
able. Once downloaded, we imported them to an
SQL database which already contained the cor-
pora metadata. To perform the filtering, we used
the pii field from Pubmed to match the Scielo
unique identifiers or the title of the papers, which
would match documents not from Scielo.

Once the documents were matched, we re-
moved them from our database and partitioned the
data in training and validation sets. Table 3 con-
tains the final number of sentences for each lan-
guage pair and partition.

4https://www.ncbi.nlm.nih.gov/Class/
PowerTools/eutils/ebot/ebot.cgi
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Language Train Dev
EN/ES 2.35M 22,670
EN/PT 7.17M 24,206

Table 3: Final corpora size for each language pair

4.2 NMT System

As for the NMT system, we employed
the OpenNMT-py toolkit (Klein et al.,
2017) to train three MT systems, one for
(Spanish,Portuguese)→English, another one for
(English,Spanish)→Portuguese and a third one
for (English,Portuguese)→Spanish. Tokenization
was performed using the SentecePiece5 unsu-
pervised tokenizer with a vocabulary size of
32,000. The tokenization was done for each MT
system (e.g. concatenated English, Spanish and
Portuguese to generate one of the models).

The parameters of our network are as follows.
Encoder and Decoder: Transformer; Word vector
size: 1024; Layers for encoder and decoder: 6; At-
tention heads: 16; RNN size: 1024; Hidden trans-
former feed-forward: 4096; Batch size: 4096.

To train our system, we used the an IBM clus-
ter with 2 Power-9 CPUs and with four NVIDIA
Tesla V100 GPUs. The models with the best per-
plexity value were chosen as final models. Dur-
ing translation, OOV words were replace by their
original word in the source language, all other
OpenNMT-py options for translation were kept as
default.

5 Results

We now detail the results achieved by our Trans-
former systems on the official test data used in the
shared task. Table 4 shows the BLEU scores (Pa-
pineni et al., 2002) for our systems and for the
submissions made by other teams. For the ES/EN
language pair, we figured in 5 out of 11, while for
EN/ES in 4 out of 8.

However, one should also take in account the
confidence interval of the average of the results.
By performing a t-test on the ES/EN results, we
found out that the mean of the BLEU scores is
0.4366 (p-value < 0.01 with confidence interval
(95%) between 0.4145 and 0.4857. This means
that only the submissions from UCAM can be
said to be better than the average. Similarly, the

5https://github.com/google/
sentencepiece

team from UHH-DS is has statistically lower per-
formance than the average. Meanwhile, all other
teams, including ours, are statistically tied around
the mean, meaning that there is no sufficient in-
formation to difference the performance from one
system to another.

Similarly, for the EN/ES language pair, we per-
formed the same statistical test and achieved p-
value < 0.01. The reported mean is 0.4675, with
confidence interval (95%) between 0.4489 and
0.4861. Thus, Only submissions 2 and 3 from
UCAM can be said to be better than average, while
the submission from MT-UOC-UPF performed
worse than the average. All other teams, including
ours, are statistically tied around the mean, with-
out evidence that there is any significant difference
among the systems.

Unfortunately, no other team participated on the
PT/EN and EN/PT language pairs.

6 Conclusions

We presented the BSC machine translation sys-
tem for the biomedical translation shared task
in WMT19. For our submission, we trained
three Transformers NMT systems with multilin-
gual implementation for the English/Spanish and
English/Portuguese language pairs.

For model building, we included several cor-
pora from biomedical and health domain, and
from out-of-domain data that we considered to
have similar textual structure, such as JRC-Acquis
and books. Prior training, we also pre-processed
our corpora to ensure, or at least minimize the
risk, of including Medline data in our training
set, which could produce biased models, since the
evaluation was carried out on texts extracted from
Medline.

Regarding future work, we are planning on op-
timizing our systems by studying the use of syn-
thetic data from back-translation of monolingual
to increase NMT performance (Sennrich et al.,
2016) by providing additional training data.

Acknowledgements

This work was supported by the Encargo de Ges-
tion SEAD-BSC of the Spanish National Plan
for the Advancement of Language technologies,
the ICTUSnet INTERREG Sudoe programme, the
European Union Horizon2020 eTransafe (grant
agreemed 777365) project, and the Amazon AWS
Cloud Credits for Research.

179



Teams Runs ES/EN EN/ES PT/EN EN/PT
BSC 1 0.4356 0.4701 0.3990 0.4811

MT-UOC-UPF 1 0.4159 0.4219 - -
Talp upc 1 0.4509 0.4568 - -
Talp upc 2 0.4355 0.4609 - -
Talp upc 3 0.4270 0.4683 - -
UCAM 1 0.4770 0.4834 - -
UCAM 2 0.4833 0.4891 - -
UCAM 3 0.4811 0.4896 - -

UHH-DS 1 0.3969 - - -
UHH-DS 2 0.3999 - - -
UHH-DS 3 0.3997 - - -

Table 4: Official BLEU scores for the English/Spanish and English/Portuguese language pairs in both translation
directions for the well aligned sentences of the test set. Bold numbers indicate the best result for each direction.
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Abstract

This paper describes the participation of
the MLLP research group of the Universi-
tat Politècnica de València in the WMT 2019
Similar Language Translation Shared Task.
We have submitted systems for the Portuguese
↔ Spanish language pair, in both directions.
They are based on the Transformer architec-
ture as well as on a novel architecture called
2D alternating RNN. Both systems have been
domain adapted through fine-tuning that has
been shown to be very effective.

1 Introduction

In this paper we describe the supervised Statisti-
cal Machine Translation (MT) systems developed
by the MLLP research group of the Universitat
Politècnica de València for the Related Languages
Translation Shared Task of the ACL 2019 Fourth
Conference on Machine Translation (WMT19).
For this task, we participated in both directions
of the Portuguese ↔ Spanish language pair us-
ing Neural Machine Translation (NMT) models.
This paper introduces a novel approach to trans-
lation modeling that is currently being developed.
We report results for this approach and compare
them with models based on the well-performing
Transformer (Vaswani et al., 2017) NMT architec-
ture. A domain adapted version of this latter sys-
tem achieves the best results out of all submitted
systems on both directions of the shared task.

The paper is organized as follows. Section 2
describes the architecture and settings of the novel
2D RNN model. Section 3 describes our baseline
systems and the results obtained. Section 4 reports
the results obtained by means of the fine-tuning
technique. Section 5 reports comparative results
with respect to the systems submitted by the other
competition participants. Section 6 outlines our
conclusions for this shared task.

2 2D Alternating RNN

In this section, we will describe the general archi-
tecture of the 2D alternating RNN model. The 2D
alternating RNN is a novel translation architecture
in development by the MLLP group. This archi-
tecture approaches the machine translation prob-
lem with a two-dimensional view, much in the
same manner as Kalchbrenner et al. (2015); Ba-
har et al. (2018) and Elbayad et al. (2018). This
view is based on the premise that translation is
fundamentally a two-dimensional problem, where
each word of the target sentence can be explained
in some way by all the words in the source sen-
tence. Two-dimensional translation models define
the distribution p(ei|fJ0 , ei−1

0 ) by jointly encod-
ing the source sentence (fJ0 ) and the target history
(ei−1

0 ), whereas the usual translation models en-
code them separately, in separate components usu-
ally called “encoder” and “decoder”.

The proposed architecture is depicted in Figure
1. It defines a two-dimensional translation model
by leveraging already known recurrent cells, such
as LSTMs or GRU, without any further modifica-
tion.

As many other translation models, we have
a context vector which is projected to vocabu-
lary size and a softmax (σ) is applied to obtain
the probability distribution of the next word at
timestep i:

p(ei = x|fJ0 , ei−1
0 ) = σ(Wci)x (1)

To explain how this context vector is drawn
from a two-dimensional processing style, we need
to define a grid with two dimensions: one for the
source, and one for the target. From this point,
we will define a layer-like structure called block,
where each block of the model has such a grid as
the input, and another one as the output.
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Figure 1: The 2D alternating RNN architecture. White
grids on the top and bottom represent the input/output
of a block. Arrows in grey grids represent the RNNs,
while the arrows on the left depict how the layers are
interconnected. Arrows on the bottom and bottom right
indicate the source and target dimensions.

The first grid that serves as input to this two-
dimensional architecture has each cell s0ij contain-
ing the concatenation of the source embedding in
position j and the target embedding in position
i− 1:

s0ij =

[
fj
ei−1

]
(2)

Each block of the model has two recurrent cells:
one along the source dimension and another one
along the target dimension. They process each row
or column independently of one another. The hor-
izontal cell is bidirectional and receives the grid sl

as its input:

hlij =

[
RNNh1(h

l
i,j−1, s

l−1
ij )

RNNh2(h
l
i,j+1, s

l−1
ij )

]
(3)

The vertical cell receives the concatenation of
hl and sl:

klij = RNNk(k
l
i−1,j , [s

l−1
ij ;hlij ]) (4)

The output of the block is the concatenation of
the output of both cells:

slij =

[
hlij
klij

]
(5)

From the output of the last block, sL, we gener-
ate a context vector as follows:

ci = Attention([sLi0, . . . , s
L
iJ]) (6)

The Attention function extracts a single vec-
tor from a set of vectors leveraging an attention
mechanism. That is, it scores the vectors accord-
ing to a learned linear scoring function, which is
followed by a softmax to extract scores; and with
those scores it performs a weighted sum to obtain
a context vector.

3 Baseline systems

This section describes training corpora as well as
the baseline model architectures and configura-
tions adopted to train our NMT systems. As said in
Section 1, two different model architectures were
trained: the Transformer architecture (Vaswani
et al., 2017) and our proposed 2D alternating RNN
architecture. BLEU (Papineni et al., 2002) scores
were computed with the multi-bleu utility
from Moses (Koehn et al., 2007).

3.1 Corpus description and data preparation

The training data is made up of the JCR, Europarl,
news-commentary and wikititles corpora. Table 1
shows the number of sentences, number of words
and vocabulary size of each corpus. The provided
development data was split equally in two disjoint
sets, and one was used as development set and the
other as test set.

Corpus Sent.(K) Words(M) Vocab.(K)
Es Pt Es Pt

JCR 1650 42 40 264 264
Europarl 1812 53 52 177 156
news 48 1 1 49 47
wikititles 621 1 1 292 295
dev 1.5 0 0 6 6
test 1.5 0 0 6 6
Total 4131 98 96 623 604

Table 1: Statistics of the data sets used to train the
Spanish↔ Portuguese MT systems.

The data was processed using the standard
Moses pipeline (Koehn et al., 2007), specifically,
punctuation normalization, tokenization and true-
casing. Then, we applied 32K BPE (Sennrich
et al., 2016b) operations, learned jointly over the
source and target languages. We included in the
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vocabulary only those tokens occurring at least 10
times in the training data.

3.2 Transformer baseline models
For the Transformer (Vaswani et al., 2017) mod-
els, we used the “Base” configuration (512 model
size, 2048 feed-forward size), trained on one GPU.
The batch size was 4000 tokens, and we carried
out gradient accumulation by temporarily stor-
ing gradients and updating the weights every 4
batches. This setup allowed us to train mod-
els using an effective batch size of 16000 tokens.
We used dropout (Srivastava et al., 2014) with
0.1 probability of dropping, and label smoothing
(Szegedy et al., 2016) where we distribute 0.1 of
the probability among the target vocabulary. We
stored a checkpoint every 10000 updates, and for
inference we used the average of the last 8 check-
points.

We used the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98. The learning
rate was updated following an inverse square-root
schedule, with an initial learning rate of 5 · 10−4

and 4000 warm-up updates.
The models were built using the fairseq toolkit

(Ott et al., 2019).

3.3 2D alternating RNN baseline model
For the 2D alternating RNN models, we used GRU
as the recurrent cell, 256 for the embedding size
and 128 as the number of units of each layer of
the block. The model consisted of a single block.
The batch size was 20 sentences, with a maximum
length of 75 subword units.

We used the Adam optimizer with β1 = 0.9,
β2 = 0.98. The learning rate was initialized at
10−3 and kept constant, but halved after 3 check-
points without improving the development per-
plexity. A checkpoint was saved every 5000 up-
dates. The model was built using our own toolkit.
Due to time constraints, the 2D alternating model
was only trained for the Portuguese→ Spanish di-
rection.

3.4 Results
Table 2 shows the evaluation results for
the Portuguese→Spanish systems, and Ta-
ble 3 shows the evaluation results for our
Spanish→Portuguese Transformer system. For
the Portuguese → Spanish direction, the Trans-
former model obtains 57.4 BLEU in the test set,
and 51.9 in the hidden test set of the competition.

BLEU
System test test-hidden
Transformer 57.4 51.9
2D altern. RNN 55.1 49.7

Table 2: Baseline BLEU scores on the Portuguese →
Spanish task.

BLEU
System test test-hidden
Transformer 51.2 45.5

Table 3: Baseline BLEU scores on the Spanish→ Por-
tuguese task.

The 2D alternating model achieves 55.1 and 49.7
BLEU, respectively. These results show how,
even though it is in early stages of development,
the 2D alternating RNN model is able to obtain
competitive results for this task that are not very
far from those obtained by the state-of-the-art
Transformer architectures. It is worth noting
that this has been achieved with a model that has
significantly fewer parameters (14.9M) than its
Transformer counterpart (60.2M).

4 Fine-tuning

NMT models perform best when trained with data
from the domain of the test data. However, most
available parallel corpora belong to institutional
documents or internet-crawled content domains,
so it is common to find situations where there is
a domain mismatch between train and test data. In
such cases, small amounts of in-domain data can
be used to improve system performance by carry-
ing out an additional training step, often referred
to as the fine-tuning step, using the in-domain data
after the main training finishes. This technique has
been used to adapt models trained with general do-
main corpora to specific domains with only small
amounts of in-domain data (Luong and Manning,
2015; Sennrich et al., 2016a).

In order to empirically test if this is one of such
cases, we have trained two language models, one
using only the presumably out-of-domain data (the
train corpora from Table 1), and one using only the
in-domain development data. The models were 4-
gram language models trained using the SRI Lan-
guage Modelling Toolkit (Stolcke et al., 2011). We
then computed the perplexity of the test set using
these two language models. The model that was
trained with the out-of-domain data obtains a per-
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BLEU
System test test-hidden
Transformer 57.4 51.9
+ fine-tuned 72.4 66.6
2D altern. RNN 55.1 49.7
+ fine-tuned 64.0 -

Table 4: Comparative BLEU scores of the Transformer
and 2D alternating RNN models on the Portuguese→
Spanish task.

BLEU
System test test-hidden
Transformer 51.3 45.5
+ fine-tuned 70.7 64.7

Table 5: Comparative BLEU scores of the Transformer
model on the Spanish→ Portuguese task.

plexity of 298.0, whereas the model that used the
in-domain data obtains a perplexity of 81.9. This
result shows that there is in a fact a domain mis-
match between the train and test data, which sup-
ports the idea of carrying out fine-tuning.

We applied this to both translation directions,
using the first part of the development data as in-
domain training data, and the second part as a new
dev set. One checkpoint was stored after every
fine-tuning epoch, and we monitored model per-
formance on the new dev set in order to stop fine-
tuning once the BLEU results started decreasing.
For the Transformer models, we used the same
learning rate as when training stopped, while for
the 2D alternating models we used 10−3.

Tables 4 and 5 compare the BLEU scores
achieved by the fine-tuned systems with that
of the baseline non fine-tuned ones on the
Portuguese→Spanish and Spanish→Portuguese
tasks, respectively.

Table 4 shows that for this particular task, fine-
tuning is a key step for achieving very substantial
performance gains: in the Portuguese→Spanish
task, we obtained a 15.0 BLEU improvement in
the test set and a 14.7 BLEU improvement in the
hidden test set for the Transformer model. The 2D
alternating RNN obtained a 8.9 BLEU improve-
ment thanks to fine-tuning. This also applies to
the Spanish→Portuguese task, shown in Table 5:
we obtained a 19.4 BLEU improvement in the test
set, and a 19.2 BLEU improvement in the hidden
test set after applying fine-tuning.

In order to understand the impact and behaviour

 55

 60

 65

 70

 0  5  10  15  20  25  30

BLEU

Epoch

Transformer

2D

Portuguese-Spanish

Figure 2: BLEU scores as a function of the number of
fine-tuning epochs on the Transformer and 2D alternat-
ing RNN models for the Portuguese→Spanish task.
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Figure 3: BLEU scores as a function of the number of
fine-tuning epochs on the Transformer model for the
Spanish→Portuguese task.

of the fine-tuning process, we have analyzed the
model’s performance as a function of the number
of fine-tuning epochs. Figure 2 shows the im-
pact of the fine-tuning step for the Transformer
and 2D alternating RNN models on the Portuguese
→ Spanish task, while Figure 3 shows the results
of the fine-tuning step applied to the Transformer
model on the Spanish→ Portuguese task. In both
language pairs, the first epochs are the most bene-
ficial for system performance, and additional fine-
tuning epochs bring diminishing returns until the
BLEU curve flattens.

5 Comparative results

We now move on to the results for the primary
submissions of all participants in the Shared Task.
We chose to send our fine-tuned Transfomer sys-
tems as primary submissions to both tasks after re-
viewing the results on the provided test set (Sec-
tion 4). The submission was made with the check-
point that achieved the best performance on the
fine-tuning dev data. Table 6 shows the results
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Team BLEU TER
MLLP 66.6 19.7
NICT 59.9 25.3
U. Helsinki 58.4 25.3
Kyoto U. 56.9 26.9
BSC 54.8 29.8
UBC-NLP 52.3 32.9

Table 6: Primary submission results of the Portuguese
→ Spanish shared task in the hidden test set.

Team BLEU TER
MLLP 64.7 20.8
UPC-TALP 62.1 23.0
NICT 53.3 29.1
U. Helsinki 52.0 29.4
UBC-NLP 46.1 36.0
BSC 44.0 37.5

Table 7: Primary submission results of the Spanish→
Portuguese shared task in the hidden test set.

of the Portuguese→Spanish task, while Table 7
shows the results of the Spanish→Portuguese task;
both in BLEU and TER (Snover et al., 2006).

In both tasks, our system outperformed all
other participants by a significant margin. In the
Portuguese→Spanish task, our submission outper-
forms the next best system by 6.7 BLEU and 5.6
TER. In a similar manner, our submission to the
Spanish→ Portuguese task improves the results of
the second-best submission by 2.6 BLEU and 2.2
TER points. We attribute our success to the do-
main adaptation carried out by means of the fine-
tuning technique. We have been able to apply this
technique by using part of the competition’s devel-
opment data as in-domain training data.

6 Conclusions

We have taken on the similar language task with
the same approaches that we found useful for other
kinds of translation tasks. NMT models, specifi-
cally the Transformer architecture, fare well in this
task without making any specific adaptation to the
similar-language setting. In fact, we achieved the
best results among the participants using a general
domain-adaptation approach.

For this particular task, the use of in-
domain data to carry out fine-tuning has al-
lowed us to obtain remarkable results that signif-
icantly outperform the next best systems in both
Portuguese→Spanish and Spanish→Portuguese.

We believe these results are explained by the do-
main difference between training and test data, and
are unrelated to the similarity between Spanish
and Portuguese.

We have introduced the 2D alternating RNN
model, a novel NMT architecture, that has been
tested in the Portuguese→Spanish task. With
small embedding and hidden unit sizes and a shal-
low architecture, we achieved similar performance
to the Transformer model, although the difference
between them increases after applying fine-tuning.

In terms of future work, we plan to fully de-
velop the 2D alternating RNN model in order to
support larger embedding and hidden unit sizes as
well as deeper architectures using more regular-
ization. All these improvements should allow us
to increase the already good results achieved by
this model.
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Abstract

Although the problem of similar language
translation has been an area of research inter-
est for many years, yet it is still far from be-
ing solved. In this paper, we study the per-
formance of two popular approaches: statisti-
cal and neural. We conclude that both meth-
ods yield similar results; however, the perfor-
mance varies depending on the language pair.
While the statistical approach outperforms the
neural one by a difference of 6 BLEU points
for the Spanish-Portuguese language pair, the
proposed neural model surpasses the statisti-
cal one by a difference of 2 BLEU points for
Czech-Polish. In the former case, the language
similarity (based on perplexity) is much higher
than in the latter case. Additionally, we re-
port negative results for the system combina-
tion with back-translation.

Our TALP-UPC system submission won 1st
place for Czech→Polish and 2nd place for
Spanish→Portuguese in the official evaluation
of the 1st WMT Similar Language Translation
task.

1 Introduction

Much research work has been done on language
translation in the past decades. Given recent suc-
cess of various machine translation (MT) sys-
tems, it is not surprising that some could consider
similar language translation an already solved
task. However, there are still remaining challenges
that need to be addressed, such as limited re-
sources or out-of-domain. Apart from these well-
known, standard problems, we have discovered
other under-researched phenomena within the task
of similar language translation. Specifically, there
exist languages from the same linguistic family
that have a high degree of difference in alphabets,
as it is the case for Czech-Polish, which may pose
a challenge for MT systems.

Neural MT has achieved the best results in
many tasks, outperforming former statistical MT
(SMT) methods (Sennrich et al., 2016a). How-
ever, there are tasks where previous statistical MT
approaches are still competitive, such as unsuper-
vised machine translation (Artetxe et al., 2018;
Lample et al., 2018). Motivated by the close prox-
imity between the languages at hand and limited
resources, in this article we aimed to determine
whether the neural or the statistical approach is a
better one to solve the given problem.

We report our results in the 1st Simi-
lar Language Translation WMT task (Barrault
et al., 2019). In the official evaluation, our
Czech→Polish and Spanish→Portuguese transla-
tion systems were ranked 1st and 2nd respectively.
The main contributions of our work are the neural
and statistical MT systems trained for similar lan-
guages, as well as the strategies for adding mono-
lingual corpora in neural MT. Additionally, we re-
port negative results on the system combination by
using back-translation and Minimum Bayes Risk
(Kumar and Byrne, 2004) techniques.

2 Background

In this section, we provide a brief overview of sta-
tistical (phrase-based) and neural-based MT ap-
proaches as well as strategies for exploiting mono-
lingual data.

2.1 Phrase-based Approach
Phrase-based (PB) statistical MT (Koehn et al.,
2003) translates by concatenating at a phrase level
the most probable target given the source text. In
this context, a phrase is a sequence of words, re-
gardless if it is a phrase or not from the linguistic
point of view. Phrases are extracted from word
alignments between both languages in a large
parallel corpus, based on the probabilistic study,
which identifies each phrase with several features,
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such as conditional probabilities. The collection of
scored phrases constitutes the translation model.

In addition to this model, there are also other
models to help achieve a better translation, such
as the reordering model, which helps in a better
ordering of the phrases; or the language model,
trained from a monolingual corpus in the target
language helping to obtain a better fluency in the
translation. The weights of each of these mod-
els are optimized by tuning over a validation set.
Based on these optimized combinations, the de-
coder uses beam search to find the most probable
output given an input. Figure 1 shows a diagram
of the phrase-based MT approach.

Figure 1: Basic schema of a phrase-based MT system

2.2 Neural Approach
Neural networks (NNs) have been successful in
many Natural Language Processing (NLP) tasks
in recent years. NMT systems, which use end-to-
end NN models to encode a source sequence in
one language and decode a target sequence in the
second language, early on demonstrated perfor-
mance on a par with or even outperformed tradi-
tional phrase-based SMT systems (Kalchbrenner
and Blunsom, 2013; Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015; Sennrich et al.,
2016a; Zhou et al., 2016; Wu et al., 2016).

Previous state-of-the-art NMT models used pre-
dominantly bi-directional recurrent neural net-
works (RNN) equipped with Long-Short Term
Memory (LSTM; Hochreiter and Schmidhuber
1997) units or Gated Recurrent Units (GRU; Cho
et al. 2014) both in the encoder and the decoder
combined with the attention mechanism (Bah-
danau et al., 2015; Luong et al., 2015). There
were also approaches, although less common, to
leverage convolutional neural networks (CNN) for

sequence modeling (Kalchbrenner et al., 2016;
Gehring et al., 2017).

In this work, we focus on the most cur-
rent state-of-the-art NMT architecture, the Trans-
former (Vaswani et al., 2017), which shows sig-
nificant performance improvements over tradi-
tional sequence-to-sequence models. Interest-
ingly, while the Transformer employs many con-
cepts that were used earlier in encoder-decoder
RNN and CNN based models, such as: resid-
ual connections (He et al., 2016b), position em-
beddings (Gehring et al., 2017), attention; the
Transformer architecture relies solely on the self-
attention mechanism without resorting to either re-
currence or convolution.

The variant of the self-attention mechanism im-
plemented by the Transformer, multi-head atten-
tion, allows to model dependencies between all to-
kens in a sequence irrespective of their actual po-
sition. More specifically, the representation of a
given word is produced by means of computing a
weighted average of attention scores of all words
in a sentence.

Adding Monolingual Data Although our pro-
posed statistical MT model incorporates monolin-
gual corpora, the supervised neural MT approach
is not capable to make use of such data. However,
recent studies have reported notable improvements
in the translation quality when monolingual cor-
pora were added to the training corpora, either
through back-translation (Sennrich et al., 2016b)
or copied corpus (Currey et al., 2017). Encour-
aged by those results and given the similarity of
languages at hand, we propose to exploit monolin-
gual data by leveraging back-translation as well as
by simply copying target-side monolingual corpus
and use it together with the original parallel data.

3 System Combination with
Back-translation

In this paper, we propose to combine the results of
both phrase-based and NMT systems at the sen-
tence level. However, differently from the previ-
ous work of Marie and Fujita (2018), we aimed
for a conceptually simple combination strategy.

In principle, for every sentence generated by the
two alternative systems we used the BLEU score
(Papineni et al., 2002) to select a sentence with
the highest translation quality. Each of the trans-
lations was back-translated (i.e. translated from
the target language to the source language). In-
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stead of using only one system to perform back-
translation, we used both PB and neural MT sys-
tems and weighted them equally. See Figure 2 for
a graphical representation of this strategy.

This approach was motivated by the recent suc-
cess of different uses of back-translation in neural
MT studies (Sennrich et al., 2016b; Lample et al.,
2018). The final test set was composed of sen-
tences produced by the system that obtained the
highest score based on the quality of the combined
back-translation.

4 Experimental Framework

In this section we describe the data sets, data pre-
processing as well as training and evaluation de-
tails for the PB and neural MT systems and the
system combination.

4.1 Data and Preprocessing
Both submitted systems are constrained, hence
they don’t use any additional parallel or mono-
lingual corpora except for the datasets provided
by the organizers. For both Czech-Polish and
Spanish-Portuguese, we used all available paral-
lel training data, which in the case of Czech-
Polish consisted of about 2.2 million sentences
and about 4.5 million sentences in the case of
Spanish-Portuguese. Also, we used all the target-
side monolingual data, which was 1.2 million sen-
tences for Polish and 10.9 million sentences for
Portuguese.

Preprocessing Our NMT model was trained on
a combination of the original Czech-Polish par-
allel corpus together with pseudo-parallel corpus
obtained from translating Polish monolingual data
to Czech with Moses. Additionally, the develop-
ment corpus was split into two sets: first contain-
ing 2k sentences and second containing 1k sen-
tences, where the former was added to the train-
ing data and the latter was used for validation pur-
poses.

Our Phrase-Based model was trained on a com-
bination of the original Spanish-Portuguese par-
allel corpus together with 2k sentences from the
dev corpus. Specifically, the development corpus
was split into two sets: first containing 2k sen-
tences and second containing 1k sentences, where
the former was added to the training data and the
latter was used for validation purposes.

Then we followed the standard preprocessing
scheme, where training, dev and test data are nor-

malized, tokenized and truecased using Moses1

scripts. Additionally, training data was also
cleaned with clean-corpus-n.perl script
from Moses. Finally, to allow open-vocabulary,
we learned and applied byte-pair encoding (BPE)2

for the concatenation of the source and target lan-
guages with 16k operations. The postprocessing
was done in reverse order and included detruecas-
ing and detokenization.

4.2 Parameter Details

Phrase-based For the Phrase-based systems we
used Moses (Koehn et al., 2007), which is a statis-
tical machine translation system. In order to build
our model, we used generally the default parame-
ters which include: grow-diagonal-final-and word
alignment, lexical msd-bidirectional-fe reordering
model trained, lexical weights, binarized and com-
pacted phrase table with 4 score components and
4 threads used for conversion, 5-gram, binarized,
loading-on-demand language model with Kneser-
Ney smoothing and trie data structure without
pruning; and MERT (Minimum Error Rate Train-
ing) optimisation with 100 n-best list generated
and 16 threads.

Neural-based Our neural network model is
based on the Transformer architecture (as de-
scribed in section 2.2) implemented by Facebook
in the fairseq toolkit3. The following hyperpa-
rameter configuration was used: 6 attention lay-
ers in the encoder and the decoder, with 4 at-
tention heads per layer, embedding dimension of
512, maximum number of tokens per batch set to
4000, Adam optimizer with β1 = 0.90, β2 = 0.98,
varied learning rate with the inverse square root
of the step number (warmup steps equal 4000),
dropout regularization and label smoothing set to
0.1, weight decay and gradient clipping threshold
set to 0.

System Combination The key parameter in the
system combination with back-translation, ex-
plained in section 3, is the score. Hence, we
used the BLEU score (Papineni et al., 2002) at the
sentence level, implemented as sentence-bleu in
Moses. Furthermore, we assigned equal weights
to both phrase and neural-based translations and
back-translations.

1https://github.com/moses-smt/mosesdecoder
2https://github.com/rsennrich/subword-nmt
3https://github.com/pytorch/fairseq
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Figure 2: Scheme of the system combination approach

As contrastive approaches for system combi-
nation, we used two additional strategies: Mini-
mum Bayes Risk (Kumar and Byrne, 2004) and
the length ratio. In the former case, we used the
implementation available in Moses. In the latter
approach, the ratio was computed as the number
of words in the translation divided by the number
of words in the source input. Sentence translations
that gave a length ratio closer to 1 were selected.
In the case of ties, we kept the sentence from the
system that scored the best according to Table 3.

5 Results

The results provided in Table 1 show BLEU scores
for the direct phrase-based and neural-based MT
systems. Also, we report on experiments with in-
corporating monolingual data in two ways: either
using a monolingual corpus both on the source
and target sides (monolingual) or using the back-
translation system to produce a translation of a
monolingual corpus (pseudo corpus). Interest-
ingly, we observe that the monolingual approach
harms the performance of the system even in the
case of similar languages. With regard to the
Spanish-Portuguese language pair, due to the large
size of the monolingual corpora as well as the time
constraint, we were unable to finish training of our
NMT model with the pseudo corpus.

Table 1: Phrase-based (PB) and Neural-based (NMT)
results.

CS-PL ES-PT
PB 9.87 64.96
NMT 11.69 58.40
NMT + monolingual 10.91 52.37
NMT + pseudo corpus 12.76 –

As presented in Table 3, our proposed system
combinations, employing either MBR or the back-
translation approach, did not achieve any signif-

Table 2: Back-translation system results.

1st system 2nd system PL-CS PT-ES

PB PB 44.34 84.62
NMT 24.51 66.15

NMT PB 32.47 63.37
NMT 27.31 60.01

Table 3: System Combination results.

CS-PL ES-PT
MBR 12.75 62.17
Back-translation 10.71 64.97

icant improvements. The MBR strategy was ap-
plied to all systems from Table 1, which means
that for the Czech-Polish pair we used 4 systems
and for Spanish-Portuguese we used 3 systems.
Back-translation results were evaluated with re-
spect to the systems in Table 2 and the system
combination with back-translation was created us-
ing the best two systems from Table 1.

In order to analyze the reason behind the
weak performance of the system combination with
back-translation, we evaluated the correlation be-
tween the quality of each translated sentence (gen-
erated using PB and NMT systems) and the quality
of back-translations (both for PB and NMT sys-
tems) on the validation set. For any combination,
Czech-Polish or Spanish-Portuguese, correlation
varies between 0.2 and 0.4, which explains the
poor performance of back-translation as a quality
estimation metric.

6 Discussion

Although Czech and Polish belong to the same
family of languages (Slavic) and share the same
subgroup (Western Slavic), the BLEU score ob-
tained by our winning system is relatively low
comparing to other pairs of similar languages (e.g.
Spanish and Portuguese). It may seem surprising
considering some common characteristics shared
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by both languages, such as 7 noun cases, 2 num-
ber cases, 3 noun gender cases as well as 3 tenses
among others.

Low performance on this task could be ex-
plained by the language distance. Considering the
metric proposed by Gamallo et al. (2017), which is
based on perplexity as a distance measure between
languages, the distance between Czech and Pol-
ish is 27 while for Spanish-Portuguese is 7. The
very same metric used to evaluate the distance of
Czech and Polish from other Slavic languages (i.e.
Slovak and Russian) shows that Polish is the most
distant language within this group (see Table 4).
In general, distances between Latin languages are
smaller than between Slavic ones.

Table 4: Distances between Slavic and Latin languages.
Examples across families.

Slavic Latin Mix
pair dist. pair dist. pair dist.

CS-PL 27 ES-PT 7 ES-CS 37
CS-SL 8 ES-FR 15 ES-PL 44
CS-RU 21 ES-RO 20 PT-CS 31
PL-SL 24 PT-FR 15 PT-PL 38
PL-RU 34 PT-RO 22

While Czech and Polish languages are highly
inflected, which poses a challenge, we hypothe-
size that one of the reasons for the low BLEU
score lies also in the difference of the alphabets.
Even though both alphabets are based on the Latin
script, they include letters with diacritics – ą, ć, ę,
ł, ń, ó, ś, ź, ż in Polish, and á, č, d’, é, ě, ch, í,
ň, ó, ř, š, t’, ú, ů, ý, ž in Czech. The total num-
ber of unique letters in Polish is 32, while in the
Czech language there are 42 letters. Moreover,
some letters are used only in the case of foreign
words, such as q, x (in Czech and Polish), w (in
Czech), and v (in Polish).

7 Future Work

In the future we plan to extend our research in the
following directions. First, we would like to ex-
plore how removing diacritics on the source-side
would impact the performance of our system for
the Czech-Polish language pair. Furthermore, we
would like to study the performance of our system
combination while applying various quality esti-
mation approaches. We would be interested in ex-
perimenting with the reward score introduced by
He et al. (2016a), which is a linear combination of
language model score and the reconstruction prob-
ability of the back-translated sentence, as well as

with other quality measures implemented in the
OpenKiwi (Kepler et al., 2019) toolkit4.
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Abstract

Within the first shared task on machine trans-
lation between similar languages, we present
our first attempts on Czech to Polish machine
translation from an intercomprehension per-
spective. We propose methods based on the
mutual intelligibility of the two languages,
taking advantage of their orthographic and
phonological similarity, in the hope to improve
over our baselines. The translation results are
evaluated using BLEU. On this metric, none of
our proposals could outperform the baselines
on the final test set. The current setups are
rather preliminary, and there are several poten-
tial improvements we can try in the future.

1 Introduction

A special type of semi-communication can be ex-
perienced by speakers of similar languages, where
all participant use their own native languages and
still successfully understand each other. On the
other hand, in countries with more than one offi-
cial languages, even if these languages are mutu-
ally intelligible. While it is a common practice to
use English as a pivot language for building ma-
chine translation systems for under-resourced lan-
guage pairs. If English turns out to be typolog-
ically quite distant from both the source and the
target languages, this circumstance easily results
in accumulation of errors. Hence, the interesting
research question is how to put the similarity be-
tween languages into use for translation purposes
in order to alleviate the problem caused by the lack
of data or limited bilingual resources.

Slavic languages are well-known for their close
relatedness, which may be traced to common an-
cestral forms both in the oral tradition and in writ-
ten text communication. Sharing many common
features, including an inventory of cognate sound-
meaning pairings, they are to various degrees mu-
tually intelligible, being at the same time so differ-

ent that translating between them is never an easy
task. For example, all Slavic languages have rich
morphology, but inflections systematically differ
from one language to another, which makes it im-
possible to have a uniform solution for translating
between them or to a third language.

We chose to work on the language pair Czech-
Polish from the West Slavic subgroup. In an
intercomprehension scenario, when participants
in a multilingual communication speak their na-
tive languages, Czechs and Poles are able to
understand each other to a considerable extent,
mainly due to objectively recognisable and subjec-
tively perceived linguistic similarities. As Czech-
English and Polish-English translation pairs are
challenging enough, this naturally motivates the
search for direct translation solutions instead of a
pivot setup.

We first briefly introduce the phenomenon of in-
tercomprehension between Slavic languages and
our idea how to take advantage of it for machine
translation purposes. The next section spreads out
our plans on Czech-Polish translation by exploring
the similarities and differences between the two
languages. Then, we explain how we organized
the experiments that lead to our submissions to the
shared task. We conclude with a discussion of the
translation results and an outlook.

2 Slavic Intercomprehension

Intercomprehension is a special form of multi-
lingual communication involving receptive skills
when reconstructing the meaning in inter-lingual
contexts under concrete communicative situation
It is common practice for millions of speakers, es-
pecially those of related languages. In order to in-
terpret the message encoded in a foreign but re-
lated language, they rely on linguistic and non-
linguistic elements existing for similar situations
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in their own linguistic repertoire.
Languages from the same family exhibit sys-

tematic degrees of mutual intelligibility which
may be in many cases asymmetric. Czech and
Polish belong to the West Slavic subgroup and re-
lated both genetically and typologically. It could
be shown, for example, that the Poles understood
written Czech better than the Czechs understood
written Polish, while the Czechs understood spo-
ken Polish better than the Poles understood spo-
ken Czech (Golubović, 2016). How can this be
useful for machine translation? In order to tackle
the Czech-to-Polish machine translation problem
from an intercomprehension point of view, we
currently focus on orthographic and phonological
similarities between the two languages that could
provide us with relevant correspondences in order
to establish inter-lingual transparency and reveal
cognate units and structures.

3 Approach

3.1 Orthographic correspondences

Both orthographic systems are based on the Latin
alphabet with diacritics, but the diacritical signs in
the two languages are rather different. Czech has
a larger set of letters with diacritics, while Polish
uses digraphs more often. There are two basic di-
acritical signs in Czech: the acute accent (́ ) used
to mark a long vowel and the haček (̆ ) in the con-
sonants which becomes the acute accent for d’ and
t’. The diacritics used in the Polish alphabet are
the kreska (graphically similar to the acute accent)
in the letters ć, ń, ó, ś, ź; the kreska ukośna (stroke)
in the letter ł. ; the kropka (overdot) in the letter ż;
and the ogonek ("little tail") in the letters ą, ę. The
Czech letters á, č, d’, é, ě, ch, í, ň, ř, š, t’, ú, ů, ý,
ž as well as q, v, and x do not exist in Polish, and
the Polish letters ą, ć, ę, ł, ń, ś, w, ż and ź are not
part of the Czech alphabet.

In a reading intercomprehension scenario, it
is natural for people to simply ignore unknown
elements around graphemes that they are famil-
iar with. That is, when facing unknown alpha-
bet with “foreign” diacritical signs, the reader is
most likely to drop them and treat the respec-
tive letters as the corresponding plain Latin ones.
Experiments showed that efficiency of intercom-
prehension is significantly improved if the text
is manually transformed to mimic the spelling
in the reader’s language (Jágrová, 2016). How-
ever, such rewriting requires a huge effort from

a bilingual linguist and cannot be easily applied
to large amount of data. An alternative to the
manual rewriting is to utilize the correspondence
rules using Minimum Description Length (MDL)
principle (Grünwald, 2007). Most of the around
3000 rules generated from a parallel cognate list
of around 1000 words are not deterministic. We
use only the rules converting Czech letters that do
not exist in Polish, as listed in Table 1, to avoid
over-transformation.

CZ PL
Áá Aa
Čč Cz cz
Ďd’ Dź dź
Ěě Je je
Éé Ee
Íí Ii
Ňň Nn
Řř Rz rz
Šš Sz sz
Ťt’ Ćć
Ůů Óó
Vv Ww
Xx Ks ks
Ýý Yy
Žž Źź

Table 1: Orthographic correspondence list

3.2 Phoneme correspondences

Czech and Polish are both primarily phonemic
with regard to their writing system, which is re-
flected in the alphabets. That is, graphemes con-
sistently correspond to phonemes of the language,
but the relation between spelling and pronuncia-
tion is more complex than a one-to-one correspon-
dence. In addition, Polish uses more digraphs,
such as ch, cz, dz, dź, dż, rz, and sz. In both lan-
guages, some graphemes have been merged due
to historical reasons and at the same time some
changes in phonology have not been reflected in
spelling.

It is well-known, that people often try to pro-
nounce the foreign texts in a way closer to their
own language. Moreover, hearing the correct
pronunciation sometimes helps them to infer the
meaning more easily, in particular, loanwords / in-
ternationalisms and the pan-Slavic vocabulary.

To be able to make use of phonological infor-
mation within a machine translation system, we
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IPAcz IPApl

TextplTextcz

Figure 1: Phoneme-infused translation setup

propose a multi-source multi-target structure as
shown in Figure 1, which considers the IPA tran-
scription of the text as a text in a "new" closely
related language. More specifically, for the trans-
lation from Czech to Polish, the source languages
of the multilingual system include ordinary Czech
and IPA-transcribed Czech. So, three different
translation paths are competing with each other to
produce the final translations.

4 Experiments

4.1 Data and baselines

We used the provided parallel corpora Europarl,
Wiki Titles, JRC-Acquis and the monolingual cor-
pus News Crawl 2018 for Polish. We extract ran-
domly two disjoint subsets from the development
set of the shared task: one with 2000 sentences
and another one with 1000 sentences. During the
development phase, all systems are optimized for
the BLEU score on the first set and the second set
is used as a blind test set. The results reported in
the next section refer to BLEU scores (Papineni
et al., 2002) on the official test set unless specified
otherwise.

For the purpose of more thorough compar-
isons, we build three baseline systems in differ-
ent paradigms, one phrase based statistical ma-
chine translation system (PBSMT) with the Moses
toolkit (Koehn et al., 2007) and two neural ma-
chine translation (NMT) system with the mar-
ian toolkit (Junczys-Dowmunt et al., 2018). All
baselines apply the same pre- and post-processing
steps. Preprocessing consists of tokenization, true-
casing and removing sentences with more than
100 tokens. Postprocessing consists of detruecas-
ing and detokenization. All these steps use scripts
included in the Moses toolkit.

The PBSMT baseline uses both the target side
of the parallel corpora and the monolingual cor-
pus provided for the language model. 5-gram
language models are first built individually from
each corpus and then interpolated with KenLM
(Heafield et al., 2013) given the development. We

run fast_align (Dyer et al., 2013) on the paral-
lel corpora to obtain word alignments in both di-
rections. Then, phrase pairs with less than 6 to-
kens are extracted to construct a translation model
based on the alignments. Weights for the fea-
tures in the translation model are determined with
the Minimal Error Rate Training (MERT) (Och,
2003).

A byte pair encoding (BPE) (Sennrich et al.,
2015) is applied to the training data to reduce the
vocabulary to 36,000 units for the NMT systems.
The first NMT system utilized only the parallel
data. It is a single sequence-to-sequence model
with single-layer RNNs in both the encoder and
the decoder. The embedding size is 512 and the
RNN state size is 1024.

The architecture of our second NMT baseline
follows the architecture described in (Vaswani
et al., 2017). We first train a shallow model from
Polish to Czech with only the parallel corpora in
order to translate the complete monolingual Pol-
ish corpus into Czech for a synthesized parallel
corpus, which is concatenated with the original
data to produce new training data (Sennrich et al.,
2016). We then train four left-to-right (L2R) deep
Transformer-based models and four right-to-left
(R2L) models. The ensemble decoder combines
the four L2R models to generate an n-best list,
which is rescored using the R2L models to pro-
duce the final translation.

System BLEU
PBSMT 11.58
Deep RNN 9.56
Transformer-based
+ Ensemble
+ Rerenking 13.46

Table 2: Czech-Polish baselines on development test

Table 2 lists the BLEU scores of the baselines.
To our surprise, the simple “old-fashioned” PB-
SMT system surpassed the RNN-based NMT sys-
tem and was close to the Transformer-based en-
semble. In fact, the translations produced by the
Transformer-based NMT are not significantly bet-
ter than those from the PBSMT.

4.2 Translation results

The outcome of various experiments based on the
produced baseline systems is presented here by
first looking into the PBSMT and then into the
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Transformer-based NMT.
Note that we actually made a mistake inserting

the source segments into each translation segment
for the final submission. Therefore, the results re-
ported here are all produced after the submission
by re-evaluating the clean sgm files. All the scores
are cased BLEU scores calculated with the nist
evaluation script mteval-v14.perl.

4.2.1 Modifying PBSMT

Our PBSMT experiments start with applying a
joint BPE model to the training sets, both par-
allel and monolingual, similarly to the approach
introduced by (Kunchukuttan and Bhattacharyya,
2016).

Given the lexical similarity between Czech and
Polish, a joint BPE model identifies a small cog-
nate vocabulary of subwords from which words in
both languages can be composed. This step even-
tually identifies the orthographic correspondences
as described in Section 3.1. BPE operations ex-

Corpus %

Acquis 119.23
Europarl 118.09
WikiTitles 238.96
News 2018 145.81

Table 3: Sentence expansion due to BPE operatios
Sentence length ratio (%)

pand the sentences (ratio shown in Table 3), there-
fore we increase the order of the language model
from 5 to 7 and the maximal phrase length in the
translation model from 5 to 6. We also apply char-
acter replacements following the list shown in Ta-
ble 1. Table 4 lists the results of the 3 combina-

BLEUdev BLEUtest

PBSMT baseline 11.58 9.62
+ BPE 12.21 7.90
+ replacement 11.53 5.31*
+ BPE + replacement 11.89 6.71*

Table 4: Translation results of PBSMT systems
* marks the system trained on partial development set

tions of these two operations. The translation does
not seem to benefit from the character replace-
ment. The BPE operation does not improve the
system over the test set either, despite that a minor
change was recorded on the development test set.

BLEUdev BLEUtest

Transformer baseline 13.46 11.54
+replacement 13.33 11.25*

Phoneme-based 4.90
+reranking 5.88

Table 5: Translation results of NMT systems
* marks the system trained on partial development set

4.2.2 Modifying NMT
Table 5 shows the results from the second group
of experiments. We have applied the same char-
acter replacement to our Transformer-based NMT
system, but the impact is again minimal.

As for the phoneme-based system, we first con-
vert all the data into IPA transcriptions using the
finite state transducer (FST) model from (Deri and
Knight, 2016) with the Carmel toolkit (Graehl,
2019) according to the languages. Consequently,
we have 4 versions of the same messages: Czech
texts, Czech IPA transcriptions, Polish texts and
Polish IPA transcriptions. Considering proximity
between the texts and the transcriptions, we use
two separate BPE’s: one for the texts and another
one for the transcriptions. To construct the multi-
way NMT system illustrated in Figure 1, we gather
3 pairs of parallel texts together: (IPAcs, Textpl),
(IPAcs, IPApl) and (IPApl, Textpl). We add to-
kens to each source sentences to mark the source
and target sentence language (Ha et al., 2016).
Then, such a concatenated parallel corpus is used
to train a Transformer-based NMT system. The
test set is sent through this multiway system to cre-
ate an n-best list, which is scored with the original
Transformer-based baseline.

Due to deadline constraints, we do not have
enough time for thorough experiments on this
setup. Such a design seems to degrade the system
significantly, but it is also clear that such an archi-
tecture is producing very different predictions for
the translation.

5 Discussions

This contribution describes our submission to the
shared task on similar language translation. It
is our first attempt to make use of orthographic
and phonological correspondences between two
closely related languages, Czech and Polish, in-
spired by their mutual intelligibility.

The current setups are rather preliminary. Cur-
rently, none of our methods improves the baselines
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on the final test set. There are several potential im-
provements we can try in the future.

A fixed short replacement list we used is just a
small portion of the orthographic correspondence
rules. We are considering to integrate the ortho-
graphic correspondences with a BPE model as our
next step.

Regarding the phoneme based system, the next
thing to investigate is the choice of grapheme-to-
phoneme (g2p) tools. It is not yet clear which g2p
tool and which phoneme transcription set suit our
purpose the best. Grouping similar phonemes is
one of the potential direction to explore.
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Abstract

This paper describes our submission to Shared
Task on Similar Language Translation in
Fourth Conference on Machine Translation
(WMT 2019). We submitted three systems
for Hindi → Nepali direction in which we
have examined the performance of a Recursive
Neural Network (RNN) based Neural Machine
Translation (NMT) system, a semi-supervised
NMT system where monolingual data of both
languages is utilized using the architecture by
(Artetxe et al., 2017) and a system trained with
extra synthetic sentences generated using copy
of source and target sentences without using
any additional monolingual data.

1 Introduction

In this paper, we present the submission for Sim-
ilar Language Translation Task in WMT 2019.
The task focuses on improving machine transla-
tion results for three language pairs Czech-Polish
(Slavic languages), Hindi-Nepali (Indo-Aryan lan-
guages) and Spanish-Portuguese (Romance lan-
guages). The main focus of the task is to utilize
monolingual data in addition to parallel data be-
cause the provided parallel data is very small in
amount. The detail of task is provided in (Barrault
et al., 2019). We participated for Hindi-Nepali lan-
guage pair and submitted three systems based on
NMT for Hindi→ Nepali direction. We have uti-
lized monolingual data of both languages and also
trained an NMT system with copy data from both
sides with no additional monolingual data.
The rest of the paper is organized as follows: We
start with introduction to NMT, followed by a list
of some of the existing methods for how to uti-
lize monolingual data in NMT. A brief introduc-
tion to unsupervised and semi-supervised NMT
is provided. We also describe in brief about two
existing popular methods of training cross-lingual

word embeddings in an unsupervised way. In Sec-
tion 4.3 we describe our three submitted systems
for the task.

2 Neural Machine Translation

Many architectures have been proposed for neu-
ral machine translation. Most famous one is RNN
based encoder-decoder proposed in (Cho et al.),
where encoder and decoder are both recursive neu-
ral networks, encoder can be bi-directional. After
this attention based sequence to sequence mod-
els where attention is utilized to improve perfor-
mance in NMT are proposed in (Bahdanau et al.,
2014), (Luong et al., 2015). Attention basically
instructs the system about which words to focus
more, while generating a particular target word.
Transformer based encoder-decoder architecture
for NMT is proposed in (Vaswani et al., 2017),
which is completely based on self-attention and
positional encoding. This does not follow recur-
rent architecture. Positional encoding provides the
system with information of order of words.
NMT needs lots of parallel data to train a sys-
tem. This task basically focuses on how to im-
prove performance for languages which are simi-
lar but resource scarce. There are many language
pairs for which parallel data does not exist or ex-
ist in a very small amount. In past, to improve the
performance of NMT systems various techniques
like Back-Translation (Sennrich et al., 2016a), uti-
lizing other similar language pairs through pivot-
ing (Cheng et al., 2017) or transfer learning (Zoph
et al., 2016), complete unsupervised architectures
(Artetxe et al., 2017) (Lample et al., 2018) and
many others have been proposed.

2.1 Utilizing monolingual data in NMT
There has been good amount of work done on how
we can utilize monolingual data to improve per-
formance of an NMT system. Back-Translation
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was introduced by (Sennrich et al., 2016b), to uti-
lize monolingual data of target language. This
requires a translation system in opposite direc-
tion. In (Sennrich et al., 2016b), a method where
empty sentences are provided in the input for tar-
get side monolingual data is also evaluated, back-
translation performs better than this. In iterative
Back-Translation, systems in both directions im-
prove each other (Hoang et al., 2018), it is done
in an incremental fashion. To generate back-
translated data, current system in opposite direc-
tion is utilized. In (Currey et al., 2017) , target
side monolingual data is copied to generate source
synthetic translations and the system is trained by
combining this synthetic data with parallel data. In
(Zhang and Zong, 2016), source side monolingual
data is utilized to iteratively generate synthetic
sentences from the same model. In (Domhan and
Hieber, 2017), there is a separate layer for tar-
get side language model in training, decoder uti-
lize both source dependent and source indepen-
dent representations to generate a particular target
word. In (Burlot and Yvon, 2018), it is claimed
that quality of back-translated sentences is impor-
tant.
Recently many systems have been proposed for
Unsupervised NMT, where only monolingual data
is utilized. The Unsupervised NMT approach pro-
posed in (Artetxe et al., 2017) follows an archi-
tecture where encoder is shared and decoder is
separate for each language. Encoder tries to map
sentences from both languages in the same space,
which is supported by cross-lingual word embed-
dings. They fix cross-lingual word embeddings in
the encoder while training, which helps in gener-
ating cross-lingual sentence representations in the
same space.
The system with one shared encoder and two sepa-
rate decoders with no parallel data is trained by it-
erating between Denoising and Back-Translation.
Denoising tries to generate the correct sentence
from noisy sentences, in that way the decoder is
learning how to generate sentences in that partic-
ular language. These noisy sentences are created
by shuffling words within a window. If the sys-
tem is only trained with denoising then it may
turn out to be a denoising auto-encoder. So they
have also introduced back-translation in the train-
ing process to introduce translation task. Train-
ing is done by alternating between denoising and
back-translation for mini-batches if parallel data

is not available. In a semi-supervised setting if
some amount of parallel data is available, train-
ing alternates between denoising, back-translation
and parallel sentences. In (Lample et al., 2018),
encoder and decoder both are shared between the
languages. Training is done by alternating be-
tween denoising and back-translation. Initializa-
tion is performed using a system trained on word-
word translated sentences which is performed us-
ing cross-lingual word embeddings trained using
MUSE(Conneau et al., 2017). They also utilize a
discriminator which tries to identify the language
from the encoder representations, this leads to ad-
versarial training.

2.2 Cross-lingual word embeddings

Cross-lingual word embeddings tries to map two
word embedding spaces of different languages in
the same space. The basic assumption for gener-
ating the cross-lingual word embeddings in most
papers is that both the embedding spaces must be
isometric. Cross-lingual word embeddings is gen-
erated by learning a linear transformation which
minimizes the distances between words given in
a dictionary. There are many methods proposed
for training cross-lingual word embeddings in an
unsupervised way. While training cross-lingual
word embeddings in an unsupervised manner
there is no dictionary available, only the mono-
lingual embeddings are available. In (Artetxe
et al., 2018), cross lingual word embeddings
are generated following a series of steps which
involves: normalization of the embeddings so
they can be used together to utilize for a distance
metric, unsupervised initialization using normal-
ized embeddings, self-learning framework using
adversarial training where it iterates between
creating the dictionary and finding the optimal
mapping, and some weighting refinement over
this. Through these steps a transformation of these
spaces to a common space is learnt. In (Conneau
et al., 2017) an adversarial training process is
followed where discriminator tries to correctly
identify the language using its representation
and the mapping matrix W tries to confuse the
discriminator.

3 System Overview

This section describes the specification of the sys-
tems submitted in detail. We have submitted sys-
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tems for Hindi-Nepali language pair in Hindi →
Nepali direction. Hindi and Nepali both are Indo-
Aryan languages and are very similar to each
other. They share a significant portion of the vo-
cabulary and similar word orders. The three sub-
mitted systems are:

• A pure RNN based NMT system

• Semi-supervised RNN based NMT system

• Utilization of copied data in RNN based
NMT

First system is pure RNN based NMT system. To
train this we have utilized only parallel corpora.
Second system is trained using a semi-supervised
NMT system where monolingual data from both
languages is utilized. We have utilized architec-
ture proposed in (Artetxe et al., 2017) where en-
coder is shared and decoders are separate for each
language and model is trained by alternating be-
tween denoising and back-translation. This archi-
tecture can also be utilized for completely unsu-
pervised setting.
Third system is also a pure RNN based NMT
system where additional parallel data (synthetic
data) is created by copying source side sentences
to target side and target side sentences to source
side, but we do this only for the available parallel
sentences, no additional monolingual data is uti-
lized. In this way the amount of available data
becomes three times of the original data. All the
data is combined together, shuffled and then pro-
vided to the NMT system, there is no identification
provided to distinguish between parallel data and
copy data.
To train all three systems we have utilized the im-
plementation of (Artetxe et al., 2017).

4 Experimental Details

4.1 Dataset
We have utilized monolingual corpora of both lan-
guages in our primary system. The dataset details
are given in Table 1. Hindi-Nepali parallel data
is provided in the task, which contains 65505 sen-
tences. Hindi monolingual corpora is IITB Hindi
monolingual corpora (Kunchukuttan et al., 2018).
Nepali monolingual sentences are created using
the monolingual data of Wikipedia and Common-
Crawl provided for Parallel corpus filtering task 1

1http://www.statmt.org/wmt19/
parallel-corpus-filtering.html

by separating each sentence using | and keeping
sentences of length 500 and less.

Dataset Number of sen-
tences

Hindi-Nepali Par-
allel Data

65,505

IITB Hindi Mono-
lingual Corpora

45,075,242

Nepali Monolin-
gual corpora

6,688,559

Table 1: Dataset details

4.2 Preprocessing

Sentences are preprocessed using tokenization and
Byte Pair Encoding (BPE). Sentences are tok-
enized for both hindi and nepali using IndicNLP2

library. This tokenized data is preprocessed using
BPE. Number of merge operations for BPE is set
to 20000 for both languages and learnt separately
for each language. The results may improve if we
learn BPE jointly because both languages are sim-
ilar. Byte pair Encoding is learnt using the imple-
mentation by (Sennrich et al., 2016b).
Monolingual embeddings are trained using Fast-
Text3 (Bojanowski et al., 2017) using bpe applied
monolingual data for both languages. The dimen-
sion of embeddings is set to 100. Cross-lingual
embeddings are created using VecMap (Artetxe
et al., 2018).

4.3 System detail

Table 2 reports BLEU score for the test and dev
data for all three systems. We have not utilized
dev data while training. We have used encoder
and decoder with 2 layers, 600 hidden units each,
GRU cells, batch size of 50 and maximum sen-
tence length of 50. Adam optimizer is used with
learning rate 0.0002. We have trained all three sys-
tems with fixed 300000 iterations. The number of
sentences in test and dev data is 1567 and 3000
respectively. The BLEU score for test data is pro-
vided by task organizers and for dev data BLEU
score is calculated using multi-bleu.pl from moses
toolkit (Koehn et al., 2007).
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System Test Dev
Basic 3.5 4.6

With Monolingual Data 2.8 3.27
With copy data 2.7 4.38

Table 2: Experimental results (BLEU scores)

4.4 Results
As it is clear from the results in Table 2 that the
system with only parallel data is performing better
than when we are utilizing monolingual data. To
answer why this is happening, a study of size and
quality of monolingual data, the study of ratio of
monolingual and parallel data provided to the sys-
tem is required. The intuition behind using copied
data with parallel data is, that both the languages
are similar and this may provide more data to the
system. But the results show the system is getting
confused as we are providing all the data together
without any distinguishing mark between parallel
and copied sentences. For the same sentence both
original translation and its copy is given in the out-
put which may be causing confusion.

5 Summary

In this paper we have explained about systems
submitted for Similar Language Translation task
in WMT 2019. We have reported results for a
semi-supervised technique which utilizes denois-
ing and back-translation. We have utilized lots
of monolingual data together with available par-
allel data for training a neural machine transla-
tion system which share encoder and have separate
decoders for each language, in a semi-supervised
setting. A study of size and quality of monolin-
gual data is required to analyze the performance
which is left as future work. We have also ex-
plained results for utilizing copied data with par-
allel data and compared both the above mentioned
techniques with a pure RNN based NMT system.
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Abstract
With the extensive use of Machine Transla-
tion (MT) technology, there is progressively
interest in directly translating between pairs
of similar languages. Because the main chal-
lenge is to overcome the limitation of available
parallel data to produce a precise MT output.
Current work relies on the Neural Machine
Translation (NMT) with attention mechanism
for the similar language translation of WMT19
shared task in the context of Hindi-Nepali pair.
The NMT systems trained the Hindi-Nepali
parallel corpus and tested, analyzed in Hindi
⇔ Nepali translation. The official result de-
clared at WMT19 shared task, which shows
that our NMT system obtained Bilingual Eval-
uation Understudy (BLEU) score 24.6 for pri-
mary configuration in Nepali to Hindi transla-
tion. Also, we have achieved BLEU score 53.7
(Hindi to Nepali) and 49.1 (Nepali to Hindi) in
contrastive system type.

1 Introduction

MT acts as an interface, which handles language
perplexity issues using automatic translation in be-
tween pair of diverse languages in Natural Lan-
guage Processing (NLP). Although, corpus-based
based MT system overcome limitations of rule-
based MT system such as dependency on lin-
guistic expertise, the complexity of various tasks
of NLP and language diversity for Interlingua-
based MT system (Dave et al., 2001). But it
needs sufficient parallel corpus to get optimize
MT output. The NMT falls under the category
of corpus-based MT system, which provides bet-
ter accuracy than Statistical Machine Translation
(SMT), corpus-based MT system. The NMT
system used to overcome the demerits of SMT,
such as the issue of accuracy and requirement of
large datasets. Recurrent Neural Network (RNN)
encoder-decoder NMT system, which assists en-
coding of a variable-length source sentence into a

fixed-length vector and same is decoded to gen-
erate the target sentence (Cho et al., 2014). The
simple RNN adopted Long Short Term Memory
(LSTM), which is a gated RNN used to improve
the translation quality of longer sentences. The
importance of LSTM component is to learn long
term features for encoding and decoding. Be-
sides, LSTM, other aspects that improve the per-
formance of the NMT system like the require-
ment of test-time decoding using beam search,
input feeding using attention mechanism (Luong
et al., 2015). The reason behind the massive un-
folding of the NMT system over SMT is the abil-
ity of context analysis and fluent translation (Ma-
hata et al., 2018; Pathak and Pakray, 2018; Pathak
et al., 2018).

Motivated by the merits of the NMT over other
MT systems and the importance of direct trans-
lation in between pairs of similar languages, cur-
rent work has investigated similar language pair
namely, Hindi-Nepali, for translation from Hindi
to Nepali and vice-versa using the NMT sys-
tem. Due to lack of background work of similar
language pair translation, the specific translation
work for Hindi⇔ Nepali is still in its infancy. To
examine the efficiency of our NMT systems, the
predicted translations exposed to automatic eval-
uation using the BLEU score (Papineni et al.,
2002).

The rest of the paper is structured as follows:
Section 2, details of the system description is pre-
sented. Section 3, result and analysis are discussed
and lastly, Section 4, concludes the paper with fu-
ture scope.

2 System Description

The key steps of system architecture are data pre-
processing, system training and system testing and
same have been described in the subsequent sub-
sections. We have used OpenNMT (Klein et al.,
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2017) and Marian NMT (Junczys-Dowmunt et al.,
2018) toolkit to train and test the NMT system.
The OpenNMT, an open source toolkit for NMT,
which prioritizes efficiency, modularity and sup-
port significant research extensibility. Likewise,
Marian, a research-friendly tookit based on dy-
namic computation graphs written in purely C++,
which achieved high training and translation speed
for NMT.

2.1 Data Preprocessing

During the preprocessing step, source and target
sentences of raw data are tokenized using Amun
toolkit and makes a vocabulary size of dimension
66000, 50000 for Nepali-Hindi parallel sentence
pairs, which indexes the words present in the train-
ing process. All unique words are listed out in
dictionary files. The details of the data set are dis-
cussed next.
Data The NMT system has been trained us-
ing parallel source-target sentence pairs for Hindi
and Nepali, where Hindi and Nepali are the
source and target language and vice-versa. The
training corpus has been compiled manually by
back-translation using Google translator1 from the
Wikipedia source of Hindi language,2 Nepali lan-
guage,3 and source of Bible4 and as well as
dataset provided by the WMT19 organizer (Bar-
rault et al., 2019). The test data provided by the or-
ganizer for Hindi to Nepali translation consists of
1,567 number of instances and for Nepali to Hindi
translation consists of 2,000 number of instances,
have been used to check the translational effect of
the trained system. Also, validate using a subset
of training corpus containing 500 instances. The
details of the corpus statistics are shown in Table
1. The NMT system has been trained and tested in
three different configurations such as Run-1, Run-
2, and Run-3 using primary and contrastive system
type, which are summarized in Table 2 and 3.

2.2 System Training

After preprocessing the data, the source and tar-
get sentences were trained using our NMT sys-
tems for translation prediction in case of both
Hindi to Nepali and Nepali to Hindi. Our NMT
systems adopted OpenNMT and Marian NMT to
train parallel training corpora using sequence-to-

1https://translate.google.com/
2https://en.wikipedia.org/wiki/Hindi
3https://en.wikipedia.org/wiki/Nepali language
4https://www.bible.com

Figure 1: NMT System Architecture.

sequence RNN having attention mechanism. In
NMT system architecture, encoder and decoder
are the main components of the system. The en-
coder consists of a two-layer network of LSTM
units, having 500 nodes in each layer, which trans-
forms the variable length input sentence of the
source language into a fixed size summary vec-
tor. After that, a two-layer LSTM decoder hav-
ing 500 hidden units, process the summary vec-
tor (output of encoder) to generate target sentence
as output. Multiple Graphics Processing Units
(GPU) were used to increase the performance of
training. The minimum batch size is set to 2000
for memory requirements, a drop out of 0.1 and
enable layer normalization, which guarantees that
memory will not grow during training that result
in a stable training run.
NMT System with Attention Mechanism The
main disadvantage of the basic encoder-decoder
model is that it transforms the source sentence into
a fixed length vector. Therefore, there is a loss
of information in case of a long sentence. The
encoder is unable to encode all valuable informa-
tion into the summary vector. Hence, an attention
mechanism is introduced to handle such an issue.
The encoder design is the main difference between
basic encoder-decoder model and attention model.
In the attention model, a context vector is taken
as input by the decoder, unlike a summary vec-
tor in the basic encoder-decoder model. The con-
text vector is computed using convex coefficients,
are called attention weights, which measure how
much important is the source word in the genera-
tion of the current target word.

Figure 1 presents the NMT system architec-
ture, where attention mechanism and input feed-
ing are used to translate Hindi source sentence

“ ” into the Nepali target sentence
“ ” (Luong et al., 2015). Here, <
eos > marks the end of a sentence.
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Nature of corpus Name of Corpus/Source Number of instances
Training WMT19 Organizer 65,505

Bible + Wikipedia 1,81,368
(using Back-translation)
Total 2,46,873

Test Hindi to Nepali 1,567
Nepali to Hindi 2,000

Validation WMT19 Organizer 500

Table 1: Corpus Statistics.

Configuration Tools Training Data
(No. of instances)

Primary Marian NMT 65,505
(NMT-1): Run-1 (WMT19 Organizer)
Contrastive OpenNMT 1,33,526
(NMT-2): Run-2 (65,505: WMT19 Organizer + Bible + Wikipedia)
Contrastive Marian NMT 2,46,873
(NMT-3): Run-3 (65,505: WMT19 Organizer + Bible + Wikipedia)

Table 2: Different configuration, tools and training data used for Hindi-Nepali Translation.

Configuration Tools Training Data
(No. of instances)

Primary Marian NMT 65,505
(NMT-1): Run-1 (WMT19 Organizer)
Contrastive Marian NMT 1,33,526
(NMT-2): Run-2 (65,505: WMT19 Organizer + Bible + Wikipedia)
Contrastive OpenNMT 2,46,873
(NMT-3): Run-3 (65,505: WMT19 Organizer + Bible + Wikipedia )

Table 3: Different configuration, tools and training data used for Nepali-Hindi Translation.
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2.3 System Testing

During system testing phase, the trained system
is carried out on test sentences as mentioned in
Section 2.1 provided by the WMT19 organizer for
predicting translations.

3 Result and Analysis

The official results of the competition are reported
by WMT19 organizer (Barrault et al., 2019) and
the same are presented in Table 4, 5, 6 and 7 re-
spectively.

A total of six, five teams participated in Hindi
to Nepali and Nepali to Hindi translation using
primary and contrastive system type. In the pri-
mary system type of Hindi to Nepali translation,
our NMT system attained a lower BLEU score and
a higher BLEU score in Nepali to Hindi trans-
lation than other participated teams. However,
in both directions of Hindi-Nepali translation un-
der contrastive configuration our system (Mar-
ian) obtained excellent BLEU score 53.7 (Hindi
to Nepali), 49.1 (Nepali to Hindi). Moreover, it
has been observed that our system’s BLEU score
of Marian outperforms OpenNMT in both direc-
tions of Hindi-Nepali translation under contrastive
as well as primary configuration.
Analysis To analyze the best and worst perfor-
mance of our NMT system, considered the sam-
ple sentences from test data provided by the orga-
nizer and predicted target sentences on the same
test data by our NMT system and Google transla-
tor. In the case of a short, medium, long sentences
of best performance are given in Table 8, our NMT
system provides a perfect prediction like Google
translation for the given test sentences. In Table 9,
the worst case prediction sentences are presented.
In Segment Id = 136, our NMT system’s predic-
tion is wrong. The predicted target sentence is
in a different language in Segment Id = 25 and
also, in case of a long sentence as given in Seg-
ment Id = 153, the prediction is not precise. How-
ever, Google translation yields accurate prediction
in the same sentences.

Table 8: Best Performance examples in Nepali to
Hindi translation.

Table 9: Worst Performance examples in Nepali to
Hindi translation.

Moreover, the BLEU scores of the test set trans-
lated by the Google translator with the test set pro-
vided by the organizer show close to each other for
both target language Hindi and Nepali, as shown
in Table 10.

Target BLEU
Language Score
Hindi 0.405171
Nepali 0.332679

Table 10: BLEU scores of Hindi and Nepali target lan-
guage for test data and test set translation by Google
translator.
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Team BLEU Score Type System
Panlingua-KMI 11.5 Primary PBSMT
CMUMEA N 11.1 Primary AUGTRAN
TeamZeroGang 8.2 Primary -
NITS-CNLP 3.7 Primary NMT-1 (Marian)

Table 4: BLEU scores result of participated teams at WMT19 shared task in Hindi to Nepali translation.

Team BLEU Score Type System
NITS-CNLP 24.6 Primary NMT-1 (Marian)
CMUMEA N 12.1 Primary AUGTRAN
Panlingua-KMI 9.8 Primary PBSMT
TeamZeroGang 9.1 Primary -
CFILT IITB 2.7 Primary WITH MONOLINGUAL

Table 5: BLEU scores result of participated teams at WMT19 shared task in Nepali to Hindi translation.

Team BLEU Score Type System
NITS-CNLP 53.7 Contrastive NMT-3 (Marian)
TeamZeroGang 8.2 Contrastive -
NITS-CNLP 3.6 Contrastive NMT-2 (OpenNMT)
CFILT IITB N 3.5 Contrastive Basic

Table 6: BLEU scores result of participated teams at WMT19 shared task in Hindi to Nepali translation.

Team BLEU Score Type System
NITS-CNLP 49.1 Contrastive NMT-3 (Marian)
TeamZeroGang 9.1 Contrastive -
Panlingua-KMI 4.2 Contrastive NMT
Panlingua-KMI 3.6 Contrastive NMT-Transformer
NITS-CNLP 1.4 Contrastive NMT-2 (OpenNMT)

Table 7: BLEU scores result of participated teams at WMT19 shared task in Nepali to Hindi translation.
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4 Conclusion and Future Scope

In this work, our NMT systems adopted attention
mechanism to predict translation of similar lan-
guage pair namely, Hindi to Nepali and vice-versa.
In the current competition, in primary configura-
tion, our NMT system obtained BLEU score 24.6
in Nepali to Hindi translation and BLEU score
3.7 in Hindi to Nepali translation. On the other
hand, in contrastive configuration, our NMT sys-
tem acquired BLEU score 53.7 (Hindi to Nepali),
49.1 (Nepali to Hindi). However, close analysis
of generated target sentences on given test sen-
tences remarks that our NMT systems need to im-
prove in case of wrong translation, translation in a
different language. Moreover, BLEU scores pre-
sented in Table 10, pointed out that is case of both
target language Hindi and Nepali, the scores are
in relatively stable in both directions of Hindi-
Nepali translation like our systems (both Marian
and OpenNMT) in contrastive configuration (as
mentioned in Table 6 and 7) but unlike in primary
configuration (Marian) (as mentioned in Table 4
and 5). Hence, more experiments and compar-
ative analysis will be needed in future work to
reason about Marian outperforms OpenNMT in
both directions i.e. Hindi to Nepali and Nepali to
Hindi translation. In the future work, more num-
ber of instances in Hindi-Nepali pair, different In-
dian similar language pair like Bengali-Assamese,
Telugu-Kannada, Hindi-Punjabi, shall be consid-
ered for machine translation, which may be possi-
ble to overcome the limitation of available parallel
data to produce precise MT output.
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Abstract

This paper presents the NICT’s participation in
the WMT19 shared Similar Language Trans-
lation Task. We participated in the Spanish–
Portuguese task. For both translation direc-
tions, we prepared state-of-the-art statistical
(SMT) and neural (NMT) machine translation
systems. Our NMT systems with the Trans-
former architecture were trained on the pro-
vided parallel data enlarged with a large quan-
tity of back-translated monolingual data. Our
primary submission to the task is the result of
a simple combination of our SMT and NMT
systems. According to BLEU, our systems
were ranked second and third respectively
for the Portuguese-to-Spanish and Spanish-to-
Portuguese translation directions. For con-
trastive experiments, we also submitted out-
puts generated with an unsupervised SMT sys-
tem.

1 Introduction

This paper describes the machine translation (MT)
systems built for the participation of the Na-
tional Institute of Information and Communica-
tions Technology (NICT) in the WMT19 shared
Similar Language Translation Task. We partici-
pated in Spanish–Portuguese (es-pt) in both trans-
lation directions. We chose this language pairs to
explore the potential of unsupervised MT for very
close languages with large monolingual data, and
to compare it with supervised MT systems trained
on large bilingual data.

We participated under the team name “NICT.”
All our systems were constrained, i.e., we used
only the parallel and monolingual data provided
by the organizers to train and tune the MT systems.
For both translation directions, we trained super-
vised neural MT (NMT) and statistical MT (SMT)
systems, and combined them through n-best list
reranking using different informative features as

proposed by Marie and Fujita (2018a). This sim-
ple combination method, in conjunction with the
exploitation of large back-translated monolingual
data (Sennrich et al., 2016a), performed among the
best MT systems in this task.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the data preprocess-
ing. Section 3 describes the details of our NMT
and SMT systems, and also our unsupervised SMT
systems. Then, the combination of NMT and SMT
is described in Section 4. Empirical results pro-
duced with our systems are presented in Section 5,
and Section 6 concludes this paper.

2 Data Preprocessing

2.1 Data

As parallel data to train our systems, we used all
the provided data. As monolingual data, we used
the provided “News Crawl” corpora that are suffi-
ciently large and in-domain to train our unsuper-
vised systems and be used for generating useful
pseudo-parallel data through back-translation. To
tune/validate our systems, we used the provided
development data.

2.2 Tokenization, Truecasing, and Cleaning

We used the tokenizer and truecaser of Moses
(Koehn et al., 2007). The truecaser was trained
on one million tokenized lines extracted ran-
domly from the monolingual data. Truecasing
was then performed on all the tokenized data.
For cleaning, we only applied the Moses script
clean-corpus-n.perl to remove lines in the
parallel data containing more than 80 tokens and
replaced characters forbidden by Moses. Note
that we did not perform any punctuation normal-
ization. Table 1 presents the statistics of the par-
allel and monolingual data, respectively, after pre-
processing.
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Corpus #sent. pairs #sent. tokens
es pt es pt

Parallel 3.41M 3.41M 87.38M 84.69M
Development 3,000 3,000 69,704 68,284
Monolingual 40.88M 7.61M 1.22B 171.15M

Table 1: Statistics of our preprocessed data.

3 MT Systems

3.1 NMT

For our NMT systems, we adopt the Transformer
architecture (Vaswani et al., 2017). We chose
Marian (Junczys-Dowmunt et al., 2018)1 to train
our NMT systems since it supports state-of-the-art
features and is one of the fastest NMT frameworks
publicly available. In order to limit the size of the
vocabulary of the NMT models, we segmented to-
kens in the parallel data into sub-word units via
byte pair encoding (BPE) (Sennrich et al., 2016b)
using 30k operations. BPE segmentations were
jointly learned on the training parallel data for the
source and target languages. All our NMT systems
were consistently trained on 4 GPUs,2 with the pa-
rameters for Marian listed in Table 2. To im-
prove translation quality, we added 5M synthetic
sentence pairs, obtained through back-translating
(Sennrich et al., 2016a) the first 5M sentences
from the monolingual corpora, to the original par-
allel data for training. We performed NMT de-
coding with an ensemble of a total of four models
according to the best BLEU (Papineni et al., 2002)
scores on the development data produced by four
independent training runs using the same training
parameters.

3.2 SMT

We trained SMT systems using Moses.3

Word alignments and phrase tables were ob-
tained from the tokenized parallel data using
mgiza. Source-to-target and target-to-source
word alignments were symmetrized with the
grow-diag-final-and heuristic. We also
trained MSLR (monotone, swap, discontinuous-
left, discontinuous-right) lexicalized reordering
model. We trained one 4-gram language models
on the entire monolingual data concatenated to
the target side of the parallel data using LMPLZ

1https://marian-nmt.github.io/, version
1.6.0

2NVIDIA® Tesla® P100 16Gb.
3https://github.com/moses-smt/

mosesdecoder/

--type transformer
--max-length 80
--mini-batch-fit --valid-freq
5000 --save-freq 5000
--workspace 8000 --disp-freq
500 --beam-size 12 --normalize
1 --valid-mini-batch 16
--overwrite --early-stopping
5 --cost-type ce-mean-words
--valid-metrics ce-mean-words
translation --keep-best
--enc-depth 6 --dec-depth
6 --transformer-dropout
0.1 --learn-rate 0.0003
--dropout-src 0.1
--dropout-trg 0.1 --lr-warmup
16000 --lr-decay-inv-sqrt
16000 --lr-report
--label-smoothing 0.1
--devices 0 1 2 3 --dim-vocabs
30000 30000 --optimizer-params
0.9 0.98 1e-09 --clip-norm 5
--sync-sgd --tied-embeddings
--exponential-smoothing

Table 2: Parameters of Marian used for training our
NMT systems.

(Heafield et al., 2013). Our systems used the
default distortion limit of 6. We tuned the SMT
model weights with KB-MIRA (Cherry and
Foster, 2012) and selected the weights giving the
best BLEU score on the development data after
15 iterations.

3.3 Unsupervised SMT

We also built an SMT system, without any super-
vision, i.e., using only but all the provided mono-
lingual data for training. We chose unsupervised
SMT (USMT) over unsupervised NMT (UNMT)
since previous work (Artetxe et al., 2018b) has
shown that USMT slightly outperforms UNMT
and that we expect USMT to work well for this
language pair that involves only very few word re-
orderings.

We built USMT systems using a framework
similar to the one proposed in Marie and Fujita
(2018b). The first step of USMT is the induc-
tion of a phrase table from the monolingual cor-
pora. We first collected phrases of up to six to-
kens from the monolingual News Crawl corpora

211



using word2phrase.4 As phrases, we also con-
sidered all the token types in the corpora. Then,
we selected the 300k most frequent phrases in the
monolingual corpora to be used for inducing a
phrase table. All possible phrase pairs are scored,
as in Marie and Fujita (2018b), using bilingual
word embeddings, and the 300 target phrases with
the highest scores were kept in the phrase table for
each source phrase. In total, the induced phrase
table contains 90M (300k×300) phrase pairs. For
this induction, bilingual word embeddings of 512
dimensions were obtained using word embeddings
trained with fastText5 and aligned in the same
space using unsupervised Vecmap (Artetxe et al.,
2018a). For each one of these phrase pairs a total
of four scores, to be used as features in the phrase
table were computed to mimic phrase-based SMT:
forward and backward phrase and lexical transla-
tion probabilities. Finally, the phrase table was
plugged into a Moses system that was tuned on
the development data using KB-MIRA. We per-
formed four refinement steps to improve the sys-
tem using at each step 3M synthetic parallel sen-
tences generated, from sentences randomly sam-
pled from the monolingual data, by the forward
and backward translation systems, instead of us-
ing only either forward (Marie and Fujita, 2018b)
or backward translations (Artetxe et al., 2018b).
We report on the performance of the systems ob-
tained after the fourth refinement step.

4 Combination of NMT and SMT

Our primary submission for WMT19 is the re-
sult of a simple combination of NMT and SMT.
Indeed, as demonstrated by Marie and Fujita
(2018a), and despite the simplicity of the method
used, combining NMT and SMT makes MT more
robust and can significantly improve translation
quality, even when SMT greatly underperforms
NMT. Moreover, due to the very few word reorder-
ings to perform and the morphological similarity
between Spanish and Portuguese, we can expect
SMT to perform closely to NMT while remaining
different and complementary. Following Marie
and Fujita (2018a), our combination of NMT and
SMT works as follows.

4https://code.google.com/archive/p/
word2vec/

5https://github.com/facebookresearch/
fastText

4.1 Generation of n-best Lists

We first produced the six 100-best lists of trans-
lation hypotheses generated by four NMT left-
to-right models individually, by their ensemble,
and by one right-to-left model. Unlike Moses,
Marianmust use a beam of size k to produce a k-
best list during decoding. However, using a larger
beam size during decoding for NMT may worsen
translation quality (Koehn and Knowles, 2017).
Consequently, we also produced with Marian
the 12-best lists and merged them with Marian’s
100-best lists to obtain lists containing up to 112
hypotheses,6 or up to 672 hypotheses after merg-
ing all the lists produced by NMT. In this way, we
make sure that we still have hypotheses of good
quality in the lists despite using a larger beam size.
We also generated 100-best translation hypotheses
with SMT.7 Finally, we merged the lists produced
by Marian and Moses.

4.2 Reranking Framework and Features

We rescored all the hypotheses in the resulting lists
with a reranking framework using SMT and NMT
features to better model the fluency and the ade-
quacy of each hypothesis. This method can find
a better hypothesis in these merged n-best lists
than the one-best hypothesis originated by either
Moses or Marian. We chose KB-MIRA as a
rescoring framework and used a subset of the fea-
tures proposed in Marie and Fujita (2018a). As
listed in Table 3, it includes the scores given by
the four left-to-right NMT models used to perform
ensemble decoding (see Section 3.1). We also
used as features the scores given by the right-to-
left NMT model that we trained for each transla-
tion direction with the same parameters as left-to-
right NMT models. The right-to-left NMT model
achieving the best BLEU score on the develop-
ment data, was selected, giving us another feature
for each translation direction. All the following
features we used are described in details by Marie
and Fujita (2018a). We computed sentence-level
translation probabilities using the lexical transla-
tion probabilities learned by mgiza during the
training of our SMT systems. The language model
trained for SMT was also used to score the transla-

6Note that we did not remove duplicated hypotheses that
may appear, for instance, in both 12-best and 100-best lists.

7We used the option distinct in Moses to avoid du-
plicated hypotheses, i.e., with the same content but obtained
from different word alignments, and consequently to increase
diversity in the generated n-best lists.
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Feature Description

L2R (4) Scores given by each of the 4 left-to-right Marian models
R2L (1) Scores given by 1 right-to-left Marian models
LEX (4) Sentence-level translation probabilities, for both translation directions
LM (1) Scores given by the language model used by our SMT system
LEN (2) Difference between the length of the source sentence and the length of the translation hypothesis, and

its absolute value

Table 3: Set of features used by our reranking systems. The column “Feature” refers to the same feature name
used in Marie and Fujita (2018a). The numbers in parentheses indicate the number of scores in each feature set.

System es→pt pt→es
dev test dev test

SMT 55.6 - 60.4 -
NMT 53.8 - 61.3 -
Reranked SMT+NMT 57.2 53.3 61.9 59.9

USMT 51.4 47.9 57.9 54.9

Table 4: Results (BLEU). Since the translation refer-
ence of the test data was not released at the time of
writing this paper, we could not compute BLEU scores
on the test data for the configurations that we did not
submit to the tasks and put “-” instead.

tion hypotheses. To account for hypotheses length,
we added the difference, and its absolute value, be-
tween the number of tokens in the translation hy-
pothesis and the source sentence.

The reranker was trained on n-best lists pro-
duced by decoding the same development data that
we used to validate NMT system’s training and to
tune SMT’s model weights.

5 Results

The results for both translation directions are pre-
sented in Table 4. As expected, we obtained very
high BLEU scores that point out that the proxim-
ity between the two languages has a key role in the
success of MT. Also, due to the many characteris-
tics shared by both languages, especially regarding
word orderings and morphology, we can observe
that SMT performed as good as NMT. Combining
SMT and NMT through reranking derived our best
results with, for instance, a substantial improve-
ment of 1.6 BLEU points for es→pt on the devel-
opment data.

USMT also achieved very high BLEU scores:
only 5.4 BLEU points below our primary model
for es→pt on the test data. The USMT perfor-
mance points out that training MT systems with
large bilingual data may be unnecessary for very
close languages, such as Spanish and Portuguese.

6 Conclusion

We participated in the Spanish–Portuguese trans-
lation task and compared a strong supervised MT
system with USMT. While our supervised MT sys-
tem significantly outperformed USMT, we showed
that USMT for close languages has the potential
to be a reasonable alternative since it can deliver a
good translation quality without requiring manual
creation of large parallel data for training.
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Abstract

The present paper enumerates the develop-
ment of Panlingua-KMI Machine Translation
(MT) systems for Hindi ↔ Nepali language
pair, designed as part of the Similar Language
Translation Task at the WMT 2019 Shared
Task. The Panlingua-KMI team conducted
a series of experiments to explore both the
phrase-based statistical (PBSMT) and neural
methods (NMT). Among the 11 MT systems
prepared under this task, 6 PBSMT systems
were prepared for Nepali-Hindi, 1 PBSMT for
Hindi-Nepali and 2 NMT systems were devel-
oped for Nepali↔Hindi. The results show that
PBSMT could be an effective method for de-
veloping MT systems for closely-related lan-
guages. Our Hindi-Nepali PBSMT system
was ranked 2nd among the 13 systems submit-
ted for the pair and our Nepali-Hindi PBSMT
system was ranked 4th among the 12 systems
submitted for the task.

1 Introduction

Automated translation between languages from
the same family is a challenging task. While sim-
ilarity among language pairs may seem to be an
advantageous situation in terms of the possibility
of developing better performing machine transla-
tion systems even with low quantity of resources
(like low volume of parallel data), the challenge
is to figure out how exactly the advantage can be
leveraged and what could be the best method to do
it.

The area of Statistical Machine Translation
(SMT) has witnessed a continuous rise for the
last two decades. The availability of open source
toolkits, like Moses (Koehn et al., 2007), have
also provided it an impetus. However, neural
models have garnered much attention in recent
times as they provide robust solutions to machine
translation tasks. Their popularity is heightened

further with the availability of Neural Machine
Translation (NMT) open source toolkits such as
OpenNMT (Klein et al., 2017), which provides
an almost out-of-the-box solution for developing
the first NMT systems as well as experimenting
with different kinds of architectures and hyper-
parameters (which is crucial for developing a good
NMT system). Keeping in view the recent re-
sults obtained in MT developments, we experi-
mented with both PBSMT as well as NMT mod-
els and evaluated how different models perform in
comparison to each other. In general, NMT sys-
tems are extremely data-hungry and require huge
amounts of parallel data to give a good system.
The team was motivated to know if NMT could
perform better than PBSMT systems even with
low volume of data and without making use of
monolingual data when the language pairs were
closely-related.

Thus, the broad objectives behind conducting
these experiments were,

a) to compare the performance of SMT and
NMT in case of closely-related, relatively
low-resourced language pairs, and

b) to find how SMT can be made to perform bet-
ter for closely-related language pairs.

2 System Overview

This section provides an overview of the systems
developed for the WMT 2019 Shared Task. In
these experiments, the Panlingua-KMI team ex-
plored both phrase-based statistical (Koehn et al.,
2003) method and neural method for Nepali-Hindi
and Hindi-Nepali language pairs. For this pur-
pose, 11 MT systems were developed including 6
Phrase-based Statistical Machine Translation (PB-
SMT) for Nepali-Hindi, 1 PBSMT for Hindi-
Nepali, 2 NMT for Nepali-Hindi and 2 NMT for
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Hindi-Nepali. The system details are provided in
the following subsections.

2.1 Phrase-based SMT Systems

These systems were built on the Moses open
source toolkit using the KenLM language model
(Heafield, 2011) and GIZA++ aligner. ’Grow-
diag-final-and heuristic’ parameters were used to
extract phrases from the corresponding parallel
corpora. In addition to this, KenLM was used
to build 5-gram language models. The pre-
processing was done to handle noise in data (for
example, hyperlink, non-UTF characters etc), the
details of which are provided below in section 3.1.

2.2 Neural Machine Translation System

OpeNMT (pytorch port of this toolkit) was used
to build 2 NMT systems. The first system was
built with 2 layers using LSTM model while the
second system was built with 6 layers using the
Transformer model. 500 hidden units were used.

2.3 Assessment

Assessment of these systems was done on the stan-
dard automatic evaluation metrics: BLEU (Pa-
pineni et al., 2002) and Translation Error Rate
(TER) (Snover et al., 2006). TER was evaluated
only for systems whose BLEU score was above 5.
In addition to these, the errors of the developed
systems were also analysed.

3 Experiments

This section briefly describes the experiment set-
tings for developing the systems.

3.1 Corpus Size

The parallel dataset for these experiments was pro-
vided by the WMT Similar Translation Shared
Task 1organisers and the Nepali monolingual
dataset was taken from WMT 2019 Shared Task:
Parallel Corpus Filtering for Low-Resource Con-
ditions2 (Barrault et al., 2019). The monolingual
dataset for Hindi was procured from Workshop on
Asian Translation Shared Task 2018 (Nakazawa
et al., 2018). The parallel data was sub-divided
into training, tuning and monolingual sets, as de-
tailed in Table 1.
Nepali-Hindi and Hindi-Nepali MT systems were

1http://www.statmt.org/wmt19/similar.html
2http://www.statmt.org/wmt19/parallel-corpus-

filtering.html

Language Pair Training Tuning Monolingual
Nepali↔ Hindi 65505 3000 -

Nepali - - 92296
Hindi - - 104967

Table 1: Statistics of Parallel and Monolingual Sen-
tences of the Nepali and Hindi Languages

tested on 2,000 and 1567 test sentences respec-
tively.

3.2 Pre-processing
The following pre-processing steps were per-
formed as part of the experiments:

a) Both corpora were tokenized and cleaned
(sentences of length over 40 / 80 words were
removed).

b) True-casing of Latin characters in the corpora
was performed. Even though neither of the
language pairs use Latin-based scripts, this
was needed as the corpora for training as well
as testing contained some Latin characters as
well.

All these processes were performed using
Moses scripts. However, the tokenization was
done by the RGNLP team tokenizer (Ojha et al.,
2018). This tokenizer was used since Moses does
not provide tokenizer for Indic languages. Also
the RGNLP tokenizer ensured that the canonical
Unicode representation of the characters are re-
tained.

3.3 Development of MT Systems
The pre-processed dataset was used to develop
three MT models per language pair – two different
phrase-based statistical machine translation sys-
tem using different language models and one neu-
ral MT system using the encoder-decoder frame-
work. Both of these are discussed in the following
subsections.

3.3.1 Training and Development of PBMST
Systems

As mentioned above, we used the Moses open
source toolkit for the development of the PBSMT
system. The translation model (TM) and lan-
guage models (LM) were trained independently
and combined in a log-linear scheme where both
the models were assigned a different weight using
the Minimum Error Rate (MERT) Training tuning
algorithm (Och and Ney, 2003). In addition, 3,000
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parallel sentences were used for Nepali-Hindi and
Hindi-Nepali language pairs to tune the systems.

The details of the experiments are as follows:

I) Nepali-Hindi PBSMT - 6 different experi-
ments (3 each for dataset with sentences of
length up to 40 words and 80 words) were
conducted for Nepali-Hindi PBSMT system.
The difference among the experiments were
only with respect to pre-processing alter-
ations. It was used to gauge the effect of
different pre-processing steps on the perfor-
mance of MT system for closely-related lan-
guages. The following pre-processing alter-
nations were used -

a experiments without lowercasing
b experiments without removing utter-

ances with non-UTF characters
c experiments with complete pre-

processing including lowercasing and
getting rid of utterances with non-UTF
characters.

II) Hindi-Nepali PBSMT - Based on our ex-
perience with Nepali-Hindi system, we de-
veloped only one system for Hindi-Nepali
pair, using the dataset with complete pre-
processing including lowercasing and getting
rid of utterances with non-UTF characters.

3.3.2 Training and Developments of NMT
Systems

The OpenNMT toolkit was used to develop the
NMT systems. The training was done on two lay-
ers of LSTM network with 500 hidden units at
both, the encoder and decoder models for 1,00,000
epochs. The variability of the parameters was lim-
ited with the use of default hyper-parameters con-
figuration. Any unknown words in the translation
were replaced with the word in the source lan-
guage bearing the highest attention weight. All
the NMT experiments were carried out only with a
dataset that contained sentences with length of up
to 40 words.

The hyper-parameters and details of the archi-
tecture used for the experiments are as below.

a LSTM Model - This system was built us-
ing 2-layer LSTM model (Hochreiter and
Schmidhuber, 1997). Our settings followed
the Open-NMT training guidelines that in-
dicate that the default training setup is rea-
sonable for training of any language pairs.

The model is trained on 1,00,000 epochs,
using Adam with a default learning rate of
0.002 and mini-batches of 40 with 500 hid-
den units. Vocabulary size of 32308 and
32895 for Nepali-Hindi and Hindi-Nepali
language pairs respectively was extracted. A
static NMT-setup was maintained with the
use of same hyper-parameters setting across
two language pairs.

b Transformer Model - Another NMT sys-
tem was developed using the Transformer
model (implemented in pytorch port of Open-
NMT) with 6 layers. The Nepali-Hindi sys-
tem was trained for 20,000 epochs and Hindi-
Nepali for 10,000 epochs. All other hyper-
parameters were kept at default values in the
OpenNMT implementation.

3.4 Post-processing
In the end, the translations of the test data using
PBSMT systems were post-processed using meth-
ods including de-tokenization, de-truecasing for
English tokens to improve the accuracy rate of the
translated outputs.

4 Evaluation and Error Analysis

This section discusses the results of automatic
evaluation, human evaluation, and comparative
analysis of the PBSMT and NMT systems.

4.1 Automatic Evaluation Results
Both the PBSMT and NMT systems were evalu-
ated using the reference set provided by the shared
task organizers. The standard MT evaluation met-
rics, BLEU (Papineni et al., 2002) score and TER
(Snover et al., 2006), were used for the automatic
evaluation. These results were prepared on the
Primary and Contrastive system submission which
are depicted in the graph provided below as * P
and * C, where P stands for Primary and C stands
for Contrastive, respectively. The results of only
the highest scoring system across both language
pairs are presented in this paper. It gives a quan-
titative picture of particular differences across dif-
ferent teams, especially with reference to evalua-
tion scores (Figure 1 and 2).

The Panlingua-KMI PBSMT system produced
fourth and second best results for Nepali-Hindi
and Hindi-Nepali language pair respectively,
across 6 teams and 12-13 systems. Also for
PBSMT systems, the Hindi-Nepali language pair
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Figure 1: Accuracy of Nepali-Hindi and Hindi-Nepali MT System at BLEU Metric

Figure 2: Accuracy of Nepali-Hindi and Hindi-Nepali MT System at TER Metric

showed better results in terms of both the metrics
(11.5 in BLEU, 79.1 in TER) while the Nepali-
Hindi language pair scored 9.8 in BLEU, 91.3 in
TER.

4.2 Comparative Analysis of the PBSMT and
NMT Systems

Across both the language pairs, PBSMT per-
formed better than NMT as its accuracy rate was
higher in BLEU and lower in TER metrics as
shown in Figures 1 and 2. On further manual
inspection of the outputs produced by Nepali-
Hindi and Hindi-Nepali PBSMT, NMT-LSTM and
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NMT-Transformer systems, we found that the out-
puts produced by the PBSMT seemed better than
those produced by the NMT systems (shown in
Figures 3 and 4).

Figure 3: Comparative Analysis of Nepali-Hindi PB-
SMT, NMT and NMT-Transformer MT’s Output

Figure 4: Comparative Analysis of Hindi-Nepali PB-
SMT, NMT and NMT-Transformer MT’s Output

NMT’s result was affected primarily due to
over-generation, NER issues, OOV (Out-of-
Vocabulary), and word-order, hence, unable to
provide output of 27 source sentences for Nepali-
Hindi and 12 source sentences for Hindi-Nepali.
The PBSMT’s results were also influenced by the
above-mentioned factors, but despite that, output
of each source sentence was produced.

5 Conclusion

The entire series of experiments revealed several
aspects of developing NMT system for closely-
related languages. It may seem that NMT per-
forms better than SMT on fluency level (3 and
4) but the relation between source and target lan-
guage is erroneous, thereby, resulting in poor
BLEU score and higher TER. Also, alterations at
pre-processing stage do not render any improve-
ment in SMT systems, thus, strengthening the im-
portance of lower casing and excluding non-UTF
characters from the data sets. It was also observed
that datasets with maximum length of sentences
upto 40 words performed better than those with
upto 80 words.

The larger picture, based on these experiments,
reveal that similarities between two languages did
not yield any advantage, as expected at the ini-
tial stage. Thus it could be concluded that simi-
lar features shared between two languages do not
have any significant effect on the performance of
the MT systems, at least, as long as the standard
methodologies are employed for developing the
systems. In order to make use of the similarity in
between the language pairs, some more sophisti-
cated methods need to be explored and is a matter
of further research.
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Abstract

In this paper we present the UDS-DFKI sys-
tem submitted to the Similar Language Trans-
lation shared task at WMT 2019. The first
edition of this shared task featured data from
three pairs of similar languages: Czech and
Polish, Hindi and Nepali, and Portuguese and
Spanish. Participants could choose to partic-
ipate in any of these three tracks and sub-
mit system outputs in any translation direc-
tion. We report the results obtained by our
system in translating from Czech to Polish and
comment on the impact of out-of-domain test
data in the performance of our system. UDS-
DFKI achieved competitive performance rank-
ing second among ten teams in Czech to Polish
translation.

1 Introduction

The shared tasks organized annually at WMT pro-
vide important benchmarks used in the MT com-
munity. Most of these shared tasks include En-
glish data, which contributes to make English the
most resource-rich language in MT and NLP. In
the most popular WMT shared task for example,
the News task, MT systems have been trained to
translate texts from and to English (Bojar et al.,
2016, 2017).

This year, we have observed a shift on the
dominant role that English on the WMT shared
tasks. The News task featured for the first time
two language pairs which did not include En-
glish: German-Czech and French-German. In ad-
dition to that, the Similar Language Translation
was organized for the first time at WMT 2019 with
the purpose of evaluating the performance of MT
systems on three pairs of similar languages from
three different language families: Ibero-Romance,
Indo-Aryan, and Slavic.

The Similar Language Translation (Barrault
et al., 2019) task provided participants with train-

ing, development, and testing data from the fol-
lowing language pairs: Spanish - Portuguese (Ro-
mance languages), Czech - Polish (Slavic lan-
guages), and Hindi - Nepali (Indo-Aryan lan-
guages). Participant could submit system outputs
to any of the three language pairs in any direction.
The shared task attracted a good number of par-
ticipants and the performance of all entries was
evaluated using popular MT automatic evaluation
metrics, namely BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006).

In this paper we describe the UDS-DFKI sys-
tem to the WMT 2019 Similar Language Transla-
tion task. The system achieved competitive per-
formance and ranked second among ten entries
in Czech to Polish translation in terms of BLEU
score.

2 Related Work

With the widespread use of MT technology and
the commercial and academic success of NMT,
there has been more interest in training systems
to translate between languages other than English
(Costa-jussà, 2017). One reason for this is the
growing need of direct translation between pairs
of similar languages, and to a lesser extent lan-
guage varieties, without the use of English as a
pivot language. The main challenge is to over-
come the limitation of available parallel data tak-
ing advantage of the similarity between languages.
Studies have been published on translating be-
tween similar languages (e.g. Catalan - Spanish
(Costa-jussà, 2017)) and language varieties such
as European and Brazilian Portuguese (Fancellu
et al., 2014; Costa-jussà et al., 2018). The study
by Lakew et al. (2018) tackles both training MT
systems to translate between European–Brazilian
Portuguese and European–Canadian French, and
two pairs of similar languages Croatian–Serbian
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and Indonesian–Malay.
Processing similar languages and language va-

rieties has attracted attention not only in the MT
community but in NLP in general. This is evi-
denced by a number of research papers published
in the last few years and the recent iterations
of the VarDial evaluation campaign which fea-
tured multiple shared tasks on topics such as di-
alect detection, morphosyntactic tagging, cross-
lingual parsing, cross-lingual morphological anal-
ysis (Zampieri et al., 2018, 2019).

3 Data

We used the Czech–Polish dataset provided by the
WMT 2019 Similar Language Translation task or-
ganizers for our experiments. The released paral-
lel dataset consists of out-of-domain (or general-
domain) data only and it differs substantially from
the released development set which is part of a
TED corpus. The parallel data includes Europarl
v9, Wiki-titles v1, and JRC-Acquis. We com-
bine all the released data and prepare a large out-
domain dataset.

3.1 Pre-processing

The out-domain data is noisy for our purposes, so
we apply methods for cleaning. We performed the
following two steps: (i) we use the cleaning pro-
cess described in Pal et al. (2015), and (ii) we exe-
cute the Moses (Koehn et al., 2007) corpus clean-
ing scripts with minimum and maximum number
of tokens set to 1 and 100, respectively. After
cleaning, we perform punctuation normalization,
and then we use the Moses tokenizer to tokenize
the out-domain corpus with ‘no-escape’ option.
Finally, we apply true-casing.

The cleaned version of the released data, i.e.,
the General corpus containing 1,394,319 sen-
tences, is sorted based on the score in Equation
1. Thereafter, We split the entire data (1,394,319)
into two sets; we use the first 1,000 for valida-
tion and the remaining as training data. The re-
leased development set (Dev) is used as test data
for our experiment. It should be noted noted that,
we exclude 1,000 sentences from the General cor-
pus which are scored as top (i.e., more in-domain
like) during the data selection process.

We prepare two parallel training sets from
the aforementioned training data: (i) transfer-
ence500K(presented next), collected 500,000 par-
allel data through data selection method (Axelrod

et al., 2011), which are very similar to the in-
domain data (for our case the development set),
and (ii) transferenceALL, utilizing all the released
out-domain data sorted by Equation 1.

The transference500Ktraining set is prepared
using in-domain (development set) bilingual
cross-entropy difference for data selection as was
described in Axelrod et al. (2011). The differ-
ence in cross-entropy is computed based on two
language models (LM): a domain-specific LM is
estimated from the in-domain (containing 2050
sentences) corpus (lmi) and the out-domain LM
(lmo) is estimated from the eScape corpus. We
rank the eScape corpus by assigning a score to
each of the individual sentences which is the sum
of the three cross-entropy (H) differences. For a
jth sentence pair srcj–trgj , the score is calculated
based on Equation 1.

score = |Hsrc(srcj , lmi)−Hsrc(srcj , lmo)|
+ |Htrg(trgj , lmi)−Htrg(trgj , lmo)| (1)

4 System Architecture - The
Transference Model

Our transference model extends the original
transformer model to multi-encoder based trans-
former architecture. The transformer architec-
ture (Vaswani et al., 2017) is built solely upon such
attention mechanisms completely replacing recur-
rence and convolutions. The transformer uses po-
sitional encoding to encode the input and output
sequences, and computes both self- and cross-
attention through so-called multi-head attentions,
which are facilitated by parallelization. We use
multi-head attention to jointly attend to informa-
tion at different positions from different represen-
tation subspaces.

The first encoder (enc1) of our model encodes
word form information of the source (fw), and
a second sub-encoder (enc2) to encode sub-word
(byte-pair-encoding) information of the source
(fs). Additionally, a second encoder (encsrc→mt)
which takes the encoded representation from the
enc1, combines this with the self-attention-based
encoding of fs (enc2), and prepares a represen-
tation for the decoder (dece) via cross-attention.
Our second encoder (enc1→2) can be viewed as
a transformer based NMT’s decoding block, how-
ever, without masking. The intuition behind our
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architecture is to generate better representations
via both self- and cross-attention and to further fa-
cilitate the learning capacity of the feed-forward
layer in the decoder block. In our transference
model, one self-attended encoder for fw, fw =
(w1, w2, . . . , wk), returns a sequence of contin-
uous representations, enc2, and a second self-
attended sub-encoder for fs, fs = (s1, s2, . . . , sl),
returns another sequence of continuous represen-
tations, enc2. Self-attention at this point pro-
vides the advantage of aggregating information
from all of the words, including fw and fs, and
successively generates a new representation per
word informed by the entire fw and fs context.
The internal enc2 representation performs cross-
attention over enc1 and prepares a final repre-
sentation (enc1→2) for the decoder (dece). The
decoder generates the e output in sequence, e =
(e1, e2, . . . , en), one word at a time from left to
right by attending to previously generated words
as well as the final representations (enc1→2) gen-
erated by the encoder.

We use the scale-dot attention mechanism (like
Vaswani et al. (2017)) for both self- and cross-
attention, as defined in Equation 2, where Q, K
and V are query, key and value, respectively, and
dk is the dimension of K.

attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

The multi-head attention mechanism in the trans-
former network maps the Q, K, and V matrices by
using different linear projections. Then h paral-
lel heads are employed to focus on different parts
in V. The ith multi-head attention is denoted by
headi in Equation 3. headi is linearly learned by
three projection parameter matrices: WQ

i ,W
K
i ∈

Rdmodel×dk , W V
i ∈ Rdmodel×dv ; where dk = dv =

dmodel/h, and dmodel is the number of hidden units
of our network.

headi = attention(QWQ
i ,KW

K
i , V W

V
i ) (3)

Finally, all the vectors produced by parallel heads
are linearly projected using concatenation and
form a single vector, called a multi-head attention
(Matt) (cf. Equation 4). Here the dimension of the
learned weight matrix WO is Rdmodel×dmodel .

Matt(Q,K, V ) = Concatni:1(headi)W
O (4)

5 Experiments

We explore our transference model –a two-
encoder based transformer architecture, in CS-PL
similar language translation task.

5.1 Experiment Setup

For transferenceALL, we initially train on the
complete out-of-domain dataset (General). The
General data is sorted based on their in-domain
similarities as described in Equation 1.

transferenceALLmodels are then fine-tuned to-
wards the 500K (in-domain-like) data. Finally,
we perform checkpoint averaging using the 8 best
checkpoints. We report the results on the provided
development set, which we use as a test set before
the submission. Additionally we also report the
official test set result.

To handle out-of-vocabulary words and to re-
duce the vocabulary size, instead of considering
words, we consider subword units (Sennrich et al.,
2016) by using byte-pair encoding (BPE). In the
preprocessing step, instead of learning an explicit
mapping between BPEs in the Czech (CS) and
Polish (PL), we define BPE tokens by jointly pro-
cessing all parallel data. Thus, CS and PL derive
a single BPE vocabulary. Since CS and PL be-
long to the similar language, they naturally share
a good fraction of BPE tokens, which reduces the
vocabulary size.

We pass word level information on the first en-
coder and the BPE information to the second one.
On the decoder side of the transference model we
pass only BPE text.

We evaluate our approach with development
data which is used as test case before submission.
We use BLEU (Papineni et al., 2002) and TER
(Snover et al., 2006).

5.2 Hyper-parameter Setup

We follow a similar hyper-parameter setup for all
reported systems. All encoders, and the decoder,
are composed of a stack of Nfw = Nfs = Nes =
6 identical layers followed by layer normalization.
Each layer again consists of two sub-layers and a
residual connection (He et al., 2016) around each
of the two sub-layers. We apply dropout (Srivas-
tava et al., 2014) to the output of each sub-layer,
before it is added to the sub-layer input and nor-
malized. Furthermore, dropout is applied to the
sums of the word embeddings and the correspond-
ing positional encodings in both encoders as well
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as the decoder stacks.
We set all dropout values in the network to

0.1. During training, we employ label smoothing
with value εls = 0.1. The output dimension pro-
duced by all sub-layers and embedding layers is
dmodel = 512. Each encoder and decoder layer
contains a fully connected feed-forward network
(FFN ) having dimensionality of dmodel = 512
for the input and output and dimensionality of
dff = 2048 for the inner layers. For the scaled
dot-product attention, the input consists of queries
and keys of dimension dk, and values of dimen-
sion dv. As multi-head attention parameters, we
employ h = 8 for parallel attention layers, or
heads. For each of these we use a dimensional-
ity of dk = dv = dmodel/h = 64. For optimiza-
tion, we use the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98 and ε = 10−9.

The learning rate is varied throughout the train-
ing process, and increasing for the first training
steps warmupsteps = 8000 and afterwards de-
creasing as described in (Vaswani et al., 2017). All
remaining hyper-parameters are set analogously to
those of the transformer’s base model. At training
time, the batch size is set to 25K tokens, with a
maximum sentence length of 256 subwords, and
a vocabulary size of 28K. After each epoch, the
training data is shuffled. After finishing training,
we save the 5 best checkpoints which are written
at each epoch. Finally, we use a single model ob-
tained by averaging the last 5 checkpoints. During
decoding, we perform beam search with a beam
size of 4. We use shared embeddings between CS
and PL in all our experiments.

6 Results

We present the results obtained by our system in
Table 1.

tested on model BLEU TER
Dev set Generic 12.2 75.8
Dev set Fine-tuned* 25.1 58.9
Test set Generic 7.1 89.3
Test set Fine-Tuned* 7.6 87.0

Table 1: Results for CS–PL Translation; * averaging 8
best checkpoints.

Our fine-tuned system on development set pro-
vides significant performance improvement over
the generic model. We found +12.9 abso-
lute BLEU points improvement over the generic

model. Similar improvement is also observed in
terms of TER (-16.9 absolute). It is to be noted that
our generic model is trained solely on the clean
version of training data.

Before submission, we performed punctuation
normalization, unicode normalization, and detok-
enization for the run.

In Table 2 we present the ranking of the compe-
tition provided by the shared task organizers. Ten
entries were submitted by five teams and are or-
dered by BLEU score. TER is reported for all
submissions which achieved BLEU score greater
than 5.0. The type column specifies the type of
system, whether it is a Primary (P) or Constrastive
(C) entry.

Team Type BLEU TER
UPC-TALP P 7.9 85.9
UDS-DFKI P 7.6 87.0
Uhelsinki P 7.1 87.4
Uhelsinki C 7.0 87.3
Incomslav C 5.9 88.4
Uhelsinki C 5.9 88.4
Incomslav P 3.2 -
Incomslav C 3.1 -
UBC-NLP C 2.3 -
UBC-NLP P 2.2 -

Table 2: Rank table for Czech to Polish Translation

Our system was ranked second in the competition
only 0.3 BLEU points behind the winning team
UPC-TALP. The relative low BLEU and high TER
scores obtained by all teams are due to out-of-
domain data provided in the competition which
made the task equally challenging to all partici-
pants.

7 Conclusion

This paper presented the UDS-DFKI system sub-
mitted to the Similar Language Translation shared
task at WMT 2019. We presented the results ob-
tained by our system in translating from Czech
to Polish. Our system achieved competitive per-
formance ranking second among ten teams in the
competition in terms of BLEU score. The fact that
out-of-domain data was provided by the organiz-
ers resulted in a challenging but interesting sce-
nario for all participants.

In future work, we would like to investigate how
effective is the proposed hypothesis (i.e., word-
BPE level information) in similar language trans-
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lation. Furthermore, we would like to explore
the similarity between these two languages (and
the other two language pairs in the competition)
in more detail by training models that can best
capture morphological differences between them.
During such competitions, this is not always pos-
sible due to time constraints.
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Abstract

We present our contribution to the WMT19
Similar Language Translation shared task. We
investigate the utility of neural machine trans-
lation on three low-resource, similar language
pairs: Spanish – Portuguese, Czech – Pol-
ish, and Hindi – Nepali. Since state-of-the-
art neural machine translation systems still re-
quire large amounts of bitext, which we do not
have for the pairs we consider, we focus pri-
marily on incorporating monolingual data into
our models with backtranslation. In our analy-
sis, we found Transformer models to work best
on Spanish – Portuguese and Czech – Polish
translation, whereas LSTMs with global atten-
tion worked best on Hindi – Nepali translation.

1 Introduction

We present our contribution to the WMT 2019
Similar Language Translation shared task, which
focused on translation between similar language
pairs in low-resource settings (Barrault et al.,
2019). Similar languages have advantages that
can be exploited when building machine transla-
tion systems. In particular, languages that come
from the same language family (or that come from
related language families) may have in common
a multitude of information such as lexical or syn-
tactic structures. This commonality has been ex-
ploited in a number of previous works for simi-
lar language translation (Haji et al., 2003; Goyal
and Lehal, 2009, 2011; Pourdamghani and Knight,
2017).

In this work, we are primarily concerned with
neural machine translation (NMT). NMT is a lan-
guage agnostic framework where language simi-
larities could possibly be exploited to build scal-
able, state-of-the-art (SOTA) machine translation
systems. For example, NMT systems have been
used on a number of WMT translation tasks where

they enabled highly successful modeling (Bah-
danau et al., 2014; Luong et al., 2015; Koehn,
2017; Vaswani et al., 2017; Edunov et al., 2018).
A weakness with NMT is its dependence on large
bitext corpora. For this reason, researchers have
considered ways to mitigate this specific issue.

A prominent approach meant to alleviate need
for large parallel data is backtranslation. This
technique generates synthetic bitext by trans-
lating monolingual sentences of the target lan-
guage into the source language with a pre-existing
target-to-source translation system. These noisy
source translations are then incorporated to train a
new source-to-target MT system (Sennrich et al.,
2015a). This approach is instrumental in unsu-
pervised machine translation where authors have
shown that, up to a certain amount of bitext, bet-
ter translation systems can be trained with these
unsupervised approaches than supervised methods
(Artetxe et al., 2017; Lample et al., 2017, 2018).
Backtranslation research has also extended to sce-
narios of training supervised systems with just
synthetic data (Edunov et al., 2018; Marie and Fu-
jita, 2018). Given the success of this approach,
it offers a promising avenue to leverage monolin-
gual data for improving translation between simi-
lar languages.

Motivated by the success of backtranslation, we
focus on leveraging monolingual data to improve
NMT systems for similar language pairs. Hence,
for our submissions to the shared task, we focus on
investigating the effectiveness of synthetic bitext
produced with backtranslation.

The rest of the paper is organized as follows:
We discuss our methods in Section 2, including
our NMT models and our decisions for backtrans-
lation. Section 3 is where we describe our anal-
ysis of the shared task data. In Section 4, we
present our experimental findings, discussing the
effectiveness of backtranslation in terms of BLEU

226



score performance. We conclude in Section 5.

2 Methodology

Here, we outline our approach to improve trans-
lation quality for similar languages. This includes
description of the two NMT models we considered
in our analysis, and our procedure for backtrans-
lating data.

2.1 Model Architectures

Sequence to sequence (seq2seq) models (Vinyals
et al., 2015) have emerged as the most prominent
architecture in the NMT literature. In seq2seq
models, source sentences X are encoded as a se-
ries of latent representations capturing words in
context information. A decoder utilizes these hid-
den states, such as for initialization, to help in-
form the decoding process for target sentences Y .
For our work, we consider both a recurrent neu-
ral network (RNN) with attention and Transformer
seq2seq models for our experiments. We briefly
introduce each of these next.

Recurrent Neural Network Architecture
There are a number of variations of RNN archi-
tectures previously considered for NMT. The one
we chose is the default model available in the
OpenNMT-py toolkit (Klein et al., 2017). It is an
implementation of one of several variations stud-
ied by Luong et al. (2015) which focused on un-
derstanding attention in depth. It follows the typ-
ical seq2eq architecture but includes an attention
mechanism which combines the encoder hidden
states as a context vector which is added as an
additional input to the decoder. We include ad-
ditional details of this particular model in the sup-
plementary material, and otherwise only mention
that both the encoder and decoder are Long Short
Term Memory cells (Hochreiter and Schmidhuber,
1997). For the rest of the paper we shall refer to
this model as LSTM+Attn when discussing it.

Transformer
The Transformer is a model that uses intra-
attention (self-attention) instead of sequential hid-
den states. For translation, it has been shown to
train faster compared to RNN-based seq2seq ar-
chitectures (Vaswani et al., 2017). For brevity, we
exclude discussing this model in detail, and in-
stead refer readers to the original paper Vaswani
et al. (2017), or alternatively the tutorial by Rush

(2018) which provides a step-by-step guide on the
implementation.

2.2 Backtranslation Decisions

Applying backtranslation in practise generally re-
quires a number of decisions such as the amount of
synthetic text to add and decoding scheme choice.
Both of these considerations have previously been
studied by Edunov et al. (2018) which can be ap-
plied as general backtranslation guidelines. We
largely based our choices off of their findings, but
with one discrepancy. In their work, the emphasis
was on the number of available training sentence
pairs when making backtranslation choices as the
key factor.

However, Edunov et al. (2018) do not discuss
other aspects of bitext such as sentence length
variation, number of words, or even initial bitext
quality. This makes it difficult to apply their find-
ings to other bitext corpora based solely on num-
ber of sentences. Our assumption when apply-
ing findings from Edunov et al. (2018) is that the
translation system’s BLEU score is more reflec-
tive of the expected synthetic sentence quality than
the number of sentences used. Our final results
suggest this assumption is fairly reasonable. Our
Hindi – Nepali translation models, despite having
the smallest bitext corpus, performed better on the
test sets compared to our Polish – Czech systems
following this choice.

Before backtranslating any data, we trained
both the Transformer and LSTM+Attn NMT sys-
tems with only the provided bitext corpora and
calculated the BLEU score on the validation set.
Based on our bitext only model performances, we
then chose the appropriate backtranslation scheme
for each language pair. For the Spanish – Por-
tuguese systems we sampled the synthetic source
sentences because Edunov et al. (2018) found that
for resource rich language pairs this could provide
better training signal. For our work, this corre-
sponded to randomly picking each word xi from
the probability distribution for the current position
xi ∼ p(xi|y, x<i). For both Czech – Polish and
Hindi – Nepali synthetic sentences, the synthetic
source sentences were deterministically produced
with greedy decoding, as their validation BLEU
scores were much lower. This again was in line
with translation behavior of backtranslation found
by Edunov et al. (2018).

We used these decoding schemes to backtrans-
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late the available monolingual data with the best
corresponding bitext only NMT system (either the
Transformer or LSTM+Attn model) for each lan-
guage direction. The two exceptions were Span-
ish and Hindi, for each of which we had signif-
icantly more monolingual data. For Spanish, we
only used∼3.3M sentences at most, and for Hindi
we only used ∼2.4M sentences.

For our experiments, the best performing bi-
text only systems produced 2 sets of backtrans-
lated text. The first set (which we will refer to as
Synth 1) included only parts of all the considered
monolingual data for a subset of the translation di-
rections. The second set (henceforth referred to
as Synth 2) consisted of backtranslating all Czech,
Polish, Hindi, and Nepali monolingual data and
larger portions of the Portuguese and Spanish data.
As part of the Synth 2 data set, we increased the
frequency bitext was trained on compared to syn-
thetic bitext. This meant that for every synthetic
sentence our models trained on, the model was
trained on several sentences of the bitext. This de-
cision was due to the performances we found on
our Synth 1 datasets where several language pairs
did not perform as well. In most cases, with the ex-
ception of few of our Spanish – Portuguese mod-
els, systems trained with these synthetic datasets
outperformed our bitext only models.

At this point, we had produced 24 models
trained on synthetic and real bitext. 1 From these
24 models, we again chose the best performing
ones to perform a 3rd round of backtranslation.
This 3rd set of backtranslated data (which we re-
fer to as Synth 3) followed the same decoding
schemes for each language pair as previously dis-
cussed. The amount of backtranslation was mostly
the same except for the synthetic Portuguese to
Spanish data where we backtranslated the largest
amount of the available Spanish monolingual data.
Exact counts are available in Tables 2,3,4. In the
work we report here, we only followed this proce-
dure once. In the future, our goal will be to follow
the iterative backtranslation approach proposed by
Hoang et al. (2018).

3 Dataset Analysis

In this section, we present an analysis of the shared
task data. For additional information, such as our
pre-processing of the data, refer to the supplemen-

124 = 2 (Transformer vs. RNN) x 2 (Synth 1 vs. Synth 2)
x 6 (translation pairs).

tary material.
To get an understanding of the provided data,

we collect statistics including the word and sen-
tence counts, sentence length variation, and token
overlap. Table 1 contains information on the ap-
proximate sentence and word counts after clean-
ing the data. Based on the size of the datasets, we
hypothesize that our most successful NMT system
would be for Spanish – Portuguese (∼3.5M sen-
tences), followed by, Czech – Polish (∼1.7M sen-
tences), and Hindi – Nepali being the most diffi-
cult (∼68K sentences).

In addition to this, the sentence length varia-
tions in the box-plots of Figure 1 highlight how
for Spanish – Portuguese, and Czech – Polish the
sentences are generally longer in the bitext com-
pared to Hindi – Nepali. In our experimental re-
sults, we reason that part of the success for the
LSTM+Attn models on Hindi – Nepali is due to
the short sentence lengths. A cited advantage of
the Transformer (Vaswani et al., 2017) is its ability
to encode longer dependencies, but also see Tang
et al. (2018), which on the Hindi – Nepali corpus
would not be as much of a requirement due to the
shorter bitext.

We also wanted to understand from which per-
spective each of the language pairs might be con-
sidered similar, so we analyzed the overlap be-
tween tokens in each language pairs bitext. We
tokenized on our cleaned data with the Tok-Tok To-
kenizer available through the NLTK toolkit.2 We
then calculated the percentage of shared tokens
compared to the total tokens at increasingly higher
thresholds by token frequency.

Figure 2 shows our findings for the percent-
age of shared tokens at different thresholds of to-
ken frequency. These plots would suggest that al-
though Spanish – Portuguese and Czech – Polish
have larger over all token overlap, the most fre-
quent tokens are where much of the language dis-
crepancy is. Czech and Polish in particular, seem
to have significantly fewer shared tokens which
could suggest a smaller lexical overlap. This could
partially be because of differences in alphabets be-
tween Czech and Polish. By contrast, Hindi and
Nepali seem to share much more in common as
we see an increase of overlap for more frequent
tokens, but we note this could be an artefact of the
small size of the Hindi and Nepali data. We now
present our experimental findings.

2https://www.nltk.org/
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Figure 1: Boxplots showing the variation in sentence
lengths between language pairs.

Bitext Monolingual
Lg. Sentences Words Sentences Words
Es ∼3.5M

∼90M ∼46M ∼1.3B
Pt ∼87M ∼10M ∼241M
Cs ∼1.7M

∼36M ∼920K ∼20.8M
Pl ∼37M ∼1.1M ∼22M
Hi ∼68K

∼360K ∼44M ∼890K
Ne ∼337K ∼551K ∼11M

Table 1: Approximate sentence and word counts for
bitext and monolingual data after cleaning the data.

4 Experiments

For all of our experiments, we use OpenNMT-py
(Klein et al., 2017) to handle training and build
our models. For our LSTM+Attn model, we used
the default parameters provided in the OpenNMT-
py toolkit. For the Transformer, we used the rec-
ommended settings provided by the OpenNMT-
py toolkit, with the exception of using 2 layers in
the Transformer encoder and decoder instead of
6. We changed the number of Transformer lay-
ers because we found in our preliminary results on
the bitext only systems that this worked well for
each language direction. We did not investigate
model architecture and hyperparameter tuning fur-
ther, and hence we note additional work in this
context could lead to better performance (Chen
et al., 2018). The exact parameters are listed in
the supplemental material. For our final evalua-
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Figure 2: Lexical overlap between language pairs at
different thresholds for word frequency.

tion, we also perform ensemble decoding by using
different checkpoints in the optimization process
and further details can be found in the supplement
material.

We represented the vocabulary for each lan-
guage with a joint byte-pair encoding (BPE)
model (Sennrich et al., 2015b) trained on all avail-
able bitext and monolingual data shared between
the languages motivated by the work of Lample
et al. (2018). Our BPE models were trained with
the SentencePiece API and consisted of 20,000
merge operations.3 The reader may notice that,
based on our discussion in Section3, Czech and
Polish may not have necessarily benefited from a
joint vocabulary. This indeed may be the case,
especially as our final results for Czech – Polish
translation were the lowest-performing among all
our final systems.

We present our findings for each respective lan-
guage pair on the validation data provided by task
organizers. 4 We measure performance on the val-
idation data with the BLEU score based on the
BPE representations of sentences using the script
that comes with the OpenNMT-py toolkit. Note
that for our test data, BLEU score is measured on
the detokenized input sequences (i.e., word tokens
rather than BPE).

4.1 Spanish↔ Portuguese Results
Table 2 shows validation results with various
amounts of backtranslated text, as well as infor-

3https://github.com/google/sentencepiece
4We provide the formal task evaluation on the TEST data

in Section 4.4.
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Language Model Bitext Only Synth 1 Synth 2 Synth 3

Es - Pt
Transformer 50.26 47.69 52.63 52.83
LSTM+Attn 48.81 46.08 41.91

Pt - Es
Transformer 51.72 54.01 53.91 55.64
LSTM+Attn 49.9 50 50.5

Synth 1 Synth 2 Synth 3
Bitext Synthetic Bitext Synthetic Bitext Synthetic

Es - Pt
3,517,035

2,486,960
3,517,035

3,399,936
7,034,070

3,600,928
Pt - Es 1,597,856 1,940,736 4,033,824

Table 2: Validation BLEU scores from varying quality
and amount of backtranslated text for both directions
for Spanish – Portuguese translation.

Language Model Bitext Only Synth 1 Synth 2 Synth 3

Cs - Pl Transformer 13.5 13.59 16.04 16.32
LSTM+Attn 9.91 9.36 11.24

Pl - Cs Transformer 13.34 13.84 15.1 15.57
LSTM+Attn 10.01 9.65 10.9

Synth 1 Synth 2 Synth 3
Bitext Synthetic Bitext Synthetic Bitext Synthetic

Cs - Pl
1,713,570

874,240
3,427,140

1,194,737
3,427,140

1,194,737
Pl - Cs 921,097 921,097 921,097

Table 3: Validation BLEU scores from varying quality
and amount of backtranslated text for Czech – Polish
translation.

Langauge Model Bitext Only Synth 1 Synth 2 Synth 3

Hi - Ne Transformer 6.38 6.39 7.74 8.96
LSTM+Attn 10.71 10.93 9.89 11.72

Ne - Hi Transformer 5.58 13.31 12.21 13.83
LSTM+Attn 9.48 14.7 11.5 14.07

Synth 1 Synth 2 Synth 3
Bitext Synthetic Bitext Synthetic Bitext Synthetic

Hi - Ne 304,955 278,720 304,955 452,304 487,928 452,304
Ne - Hi 609,910 647,360 609,910 2,622,219 2,439,640 2,622,219

Table 4: Validation BLEU scores from varying quality
and amount of backtranslated text for both directions
of Hindi – Nepali translation.

mation on the size of the training data used for
each model. Note that we did not evaluate the
Synth 3 dataset on the LSTM+Attn model which
was due to our previous findings and compute re-
source limitations.

We found that too much of the sampled back-
translated text did not necessarily improve trans-
lation quality. Between the Synth 1 and Synth 2
synthetic sets, we can see a small drop of per-
formance particularly for Spanish to Portuguese
translation where we had much more available
monolingual data to backtranslate. In our best per-
forming model, part of this improvement is likely
due to us doubling the number of times the bi-
text was looked at with respect to the synthetic
sentences. This is in alignment with previous re-
search findings on the importance of bitext over
synthetic sentence pairs (Sennrich et al., 2015a;
Edunov et al., 2018).

4.2 Czech↔ Polish Translation

Table 3 shows our Czech – Polish validation
BLEU scores and, like our Spanish – Portuguese
systems, excludes results of the LSTM+Attn
model on Synth 3 dataset. Similar to our Spanish –
Portuguese models, we found that the most useful
change is doubling the amount of times the bitext
is trained on. One difference with our Czech – Pol-
ish data was that we had upsampled bitext sooner
having tried it on the Synth 2 dataset instead of
waiting till Synth 3. This discrepancy allowed us
to isolate improvements on the Synth 3 dataset to
the quality of synthetic sentences instead of hav-
ing result confounded with upsampling like with
Spanish – Portuguese. As we see in our results
from Synth 2 to Synth 3, where the only difference
is synthetic sentence quality, we again achieve an
improvement in BLEU score.

4.3 Hindi↔ Nepali Translation

Table 4 show’s our results for Hindi – Nepali trans-
lation. As our initial models on this particular pair
were performing relatively poorly, we decided to
train even more frequently on the bitext compared
to the amounts considered on the previous lan-
guage pairs. This decision was in part motivated
by the results of Edunov et al. (2018) where up-
sampling bitext with deterministically backtrans-
lating data in low resource language pairs seemed
most effective.

Initially we believed that maintaining a close to
1-to-1 ratio of synthetic to real bitext would al-
ways be necessary to achieve better results. For
the Synth 1 dataset, we upsampled the training
corpus by 5x’s for Hindi to Nepali translation
and 10x’s for Nepali to Hindi translation. This
lead to large improvements for both models when
translating from Nepali to Hindi, although it did
not provide quite as noticeable improvements for
translating Hindi to Nepali. The most likely expla-
nation is the noticeable difference in the amount of
synthetic sentences. At least for Nepali to Hindi
this choice to maintain the 1-to-1 ratio seemed to
work best for Nepali to Hindi as we achieved our
best performance on Synth 1 for this translation di-
rection.

Although generally maintaining close to a 1-to-
1 ratio seems to be important, we note one dis-
crepancy for Hindi to Nepali results. Between the
Synth 1 to Synth 2 Hindi to Nepali dataset we kept
the upsampled bitext fixed while increasing the
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Model Dataset Ensemble Val BLEU Test BLEU
Es - Pt Transformer Synth 3 True 46.41 46.1
Pt - Es Transformer Synth 3 True 52.4 52.3
Cs - Pl Transformer Synth 3 False 7.88 2.3
Pl - Cs Transformer Synth 3 True 8.18 6.9
Hi - Ne LSTM + Attn Synth 3 True 10.19 8.2
Ne - Hi LSTM + Attn Synth 1 True 10.66 9.1

Table 5: Final BLEU scores on the detokenized translations for the best performing models across all our experi-
ments.

amount of synthetic sentences to closer to a 2 to 3
ratio of real to synthetic bitext. In the Transformer
case, this increase in data seemed beneficial as
the BLEU score for the Transformer improved,
but seemed to negatively impact the LSTM+Attn
model. This raises a potential question on whether
considerations of backtranslation could be model
dependent. We leave investigating this question as
future work.

We further found that there is a limitation to the
benefit of upsampling the amount of bitext despite
having even more synthetic bitext. For the Synth
3 datasets, we again returned to maintaining a 1-
to-1 ratio of real to synthetic bitext. This lead to
upsampling the data 10x’s for translating Hindi
to Nepali, and 20x’s for Nepali to Hindi. This
upsampling, along with higher quality synthetic
data did seem to benefit both the Transformer ad
LSTM+attn model for Hindi to Nepali translation
which achieved our best performances. In con-
trast, as the amount of synthetic data increased for
Nepali to Hindi translation, we observed this to
negatively impact performance compared to those
on the Synth 1 datasets. Even though the synthetic
sentences were produced with a better translation
systems, the Synth 3 dataset performance was still
worse.

4.4 Shared Task Evaluation

Official, shared task results for our primary sub-
missions are presented in Table 5 along with a
number of important choices we made as to which
models to submit. There are a number of inter-
esting behaviors we see in terms of performance
from our validation to test sets. In the Spanish –
Portuguese translation systems, we can see that the
relative BLEU scores between the two directions
are fairly stable. This is likely in part due to the
sampling process used for backtranslation we used
in comparison for the other language pairs which

used greedily decoded sentences. As for the other
language pairs, although we originally hypothe-
sized that Czech – Polish would produce better
systems than Hindi – Nepali our results seem to
suggest the opposite and that we might have over-
fit the Czech – Polish validation set compared to
Hindi – Nepali translation.

5 Conclusion

Our findings are congruent with previous work
showing the efficacy of backtranslation as a strat-
egy for improving NMT systems. However, we
couch this conclusion with caution. The reason
is that tuning the correct amount of included syn-
thetic data is still much dependent on the size of
data at hand (which can be limited). Further work
is needed before we can reach a more definitive
recommendation as to how to perform backtrans-
lation in different contexts, with varying degrees
of resource availability.
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Bitext Word Counts
Cs PL Es PT Hi Ne

Europarl v9 1,4340,556 14,408,072 52,655,739 51,631,991
Wiki Titles v1 552,136 554,080 1,577,829 1,546,923
JRC-Acquis 21,465,448 22047909 34513834 32,601,655
News Commentary v14 1406962 1358467
Other 306,178 284,419
Dev 59,316 53,710 69,377 67,898 56,465 53,374
Total 36,417,456 37,063,771 90,223,741 87,206,934 362,643 337,793

Table 6: Sentence counts for each dataset after cleaning procedure.

Supplementary Material

A Data Sources

Submissions to the shared task were asked to only use the data provided data from the organizers. This
included bitext from a number of different sources of varying utility to training translation systems. For
the Spanish – Portuguese and Czech – Polish bitext corpora included the latest JRC-Acquis (Steinberger
et al., 2006), Europarl (Koehn, 2005), News Commentary (new) data sets, as well as the Wiki Titles
corpus (Bojar et al., 2018). The Hindi – Nepali corpus consists of the KDE, Ubuntu, and Gnome data
sets available through Tiedemann (2012).5 There was also a bilingual dictionary included for Hindi -
Nepali language pair but we did not include it in our analysis because they were largely word to word
translations. By the same argument, we likely should not have included the Wiki titles data set either
as this corpus was also largely word to word translations. An interesting observation from our results is
that our Czech – Polish systems ended up doing much worse then our Hindi – Nepali systems suggesting
perhaps fewer, longer sentences are indeed more valuable then shorter, near word to word translations.

Additionally, the organizers provided monolingual datasets for Spanish, Portuguese, Czech and Polish.
They all largely came from the same sources including the Europarl, JRC-Acquis, New Crawl, and News
Commentary datasets. For Hindi and Nepali, we were allowed to use any monolingual data we found.
For Hindi monolingual data, we only used the corpora collected by Bojar et al. (2014) which consisted
of several million sentences collected from the internet. For Nepali, we largely used corpora provided in
the WMT19 Parallel Corpus Filtering shared task which included a filtered Wikipedia dump of Nepali
sentences, Global Voices Corpus (Koehn, 2018), the Nepali tagged corpus (nep), and a bible corpus
(Christos-C, 2017). Externally, we found 3 additional Nepali corpora including one called the Nepali
News corpus (Bhatta, 2017), the Ted Multilingual corpus (Kulkarni, 2016),and an additional Wikipedia
dump corpus (Rosa, 2018).

A.1 Data Set Cleaning Information
To clean the datasets, we removed white spaces and re-tabulated the sentence pairs because of formatting
errors. Additionally, we removed any pairs which were less than 4 characters long excluding leading and
trailing white spaces. Table 6,8 contain the number of word counts per data set considered in this work.
Table 7, 9 contain the sentence counts per dataset after the cleaning process.

5The actual Hi – Ne sources were never disclosed but were confirmed by organizers
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Bitext Sentence Counts
CS – PL ES – PT HI – NE

Europarl v9 615,115 1,791,082
Wiki Titles v1 244,028 614,600
JRC-Acquis 859,382 1,067,198
News Commentary v14 46,850
Other 65,506
Dev 3,051 3,001 3,001
Total 1,721,576 3,522,731 68,507

Table 7: Sentence counts for each dataset after cleaning procedure.

Monolingual Datasets Word Counts
Cs PL Es PT Hi Ne

Europarl v9 15,129,685 8,117,153 57,499,268 56,486,759
New commentary v14 5,699,897 11,879,901 1,611,655
News Crawl 2007 - 2018 14,348,031 1,311,839,007 183,746,078
Hindi Monolingual 890,209,442
Ted Multilingual 32,078
Filtered Wikipedia Dump 2,939,682
Wikipedia Dump 3,477,956
Global Voice 86,703
Nepali Tagged Corpus 51,276
Nepali NewsCorpus 4,616,548
Bible Corpus 769,344
Total 20,829,582 22,465,184 1,381,218,176 241,844,492 890,209,442 11,973,587

Table 8: Sentence counts for each dataset after cleaning procedure.

Monolingual Datasets Sentence Counts
Cs Pl Es Pt Hi Ne

Europarl v9 661,426 380,336 2,004,495 2,004,629
New commentary v14 259,666 412,791 58,002
News Crawl 2007 - 2018 814,397 43,807,883 8,299,115
Hindi Monolingual 44,486,496
Ted Multilingual Corpora 4,345
Filtered Wikipedia Dump 92,296
Wikipedia Dump 118,519
Global Voice 2,892
Nepali Tagged Corpus 4,287
Nepali NewsCorpus 298,151
Bible Corpus 30,547
Total 921,092 1,194,733 44,486,496 10,361,746 47,108,715 551,037

Table 9: Sentence counts for each dataset after cleaning procedure.

B Model Information

B.1 Details on RNN with Attention Model
As mentioned in the paper, our RNN architecture is a one of several studied in the work of Luong et al.
(2015). The particular model we use can be described with the following equations.

zi = Encoder(xi, zi−1) , ∀i ε T (1)
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score(zi, sj) = ziW
gsj , ∀i ε T (2)

αi = softmax(score(zi, sj)) , ∀i ε T (3)

c =
T∑

i=1

αi ∗ zi (4)

s̃j−1 =W s[c; sj−1] (5)

sj = Decoder(s̃j−1, yj , sj−1) (6)

p(yj |y<j , x) = Generator(s̃j) (7)

The encoder and decoder are Long Short Term Memory (LSTM) RNNs (Hochreiter and Schmidhuber,
1997), where the encoder produces latent representations zi for each word embedding xi in the source
sentence of length T . Equation 2 refers to general attention proposed by Luong et al. (2015), where W g

is learned and Equations 3 and 4 show the application of this global attention mechanism. The decoder
LSTM then produces hidden states sj using as input the word embedding yj , context vector s̃j−1, and
previous hidden state sj−1. The context hidden states s̃j are how the log-probability of target words
are determined and are calculated on the concatenation of context c and previous hidden state sj−1 with
learned parameters W s.

B.2 Ensemble Decoding
As a way to further improve translation system quality, previous research has shown that an ensemble of
models can improve translation performance (Koehn, 2017). For our work this meant using a window
around the best performing single models that we found on the evaluation set. By window we mean we
translated the test and evaluation sets with the single best model along with the n checkpoint models
before, and n checkpoint models after the single best model.

For our final evaluations this involved either n = 1 or n = 2 windows around the best performing
models. We did not find much difference between the two choices of n as both generally gave only minute
improvements to performance. Our checkpoints were saved after every 10,000 mini-batch updates. As
an example, generally we found the Transformer worked well with around 50,000 or 60,000 updates.
Supposing we found 50,000 steps the best along with picking n = 1, we then included the checkpoint at
40,000 updates and 60,000 updates to translate the final model.

B.3 Hyperparameter Information
Table 10 contains the specific parameters for the models used in our analysis. One parameter left out of
the tables was the number of updates which in OpenNMT-py is counted per batch update. For the RNN
model we found 150,000 steps generally sufficient for our best performances on the Hindi – Nepali data,
and at most 60,000 or 50,000 steps with the Transformer sufficient for Spanish – Portuguese and Czech
– Polish even with the backtranslated data.

B.4 Tuning results
In Table 11 shows the full results of tuning our models. As a reminder, the BLEU scores were calculated
on the byte-pair encoding representations of the sentences instead of the detokenized translations. This
is in part why the scores, particularly in some cases, are much higher than the final validation scores
reported in the paper.
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LSTM Model
Embed Dim 500
RNN Type LSTM

Num Layers 2
Hidden Dim 500

Input Feeding True
Attention Global

Attenion Type General
Dropout 0.3

Optimization
Batch Size 32
Batch type Sentences
Optimizer SGD

Init Learning Rate 1.0
Learning Rate Schedule

# Steps before Decay 50,000
Decay Frequency 10,000 steps
Decay Schedule lrcurr * 0.5

Transformer
Embed Dim 512
RNN Type Transformer

Num Layers 2
Hidden Dim 512
Num Heads 8

Attenion Type Multi-Head
Fully Connected Hidden Size 2048

Dropout 0.1
Position Encoding Sinusoidal

Optimization
Batch Size 4096
Batch type Tokens
Optimizer Adam

β2 0.998
Init Learning Rate 2.0
Label Smoothing 0.1

Gradient Accum. Count 2
Learning Rate Schedule

# Steps before Decay 8000
Decay Schedule Noam

Table 10: The parameters used for the RNN Model and the Transformer model. Parameters are largely from the
OpenNMT-py toolkit suggested parameters.

Model Decoding Type Bitext Only Bitext + Synth 1 Bitext + Synth 2 Bitext + Synth 3
Es - Pt

Transformer

Sampling
50.26 47.69 52.63 52.83

Pt - Es 51.72 54.01 53.91 55.64
Cs - Pl

Greedy

13.5 13.59 16.04 16.32
Pl - Cs 13.34 13.84 15.1 15.57
Hi - Ne 6.38 6.39 7.74 8.96
Ne - Hi 5.58 13.31 12.21 13.83
Es - PT

LSTM+Attn

Sampling
48.81 46.08 41.91

Pt - Es 49.9 50 50.5
Cs - Pl

Greedy

9.91 9.36 11.24
Pl - Cs 10.01 9.65 10.9
Hi - Ne 10.71 10.93 9.89 11.72
Ne - Hi 9.48 14.7 11.5 14.07

BLEU Score

Table 11: BLEU scores on the validation set. These scores were calculated on the BPE tokens.
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Abstract

This paper describes the University of Helsinki
Language Technology group’s participation in
the WMT 2019 similar language translation
task. We trained neural machine translation
models for the language pairs Czech ↔ Pol-
ish and Spanish ↔ Portuguese. Our experi-
ments focused on different subword segmenta-
tion methods, and in particular on the compar-
ison of a cognate-aware segmentation method,
Cognate Morfessor, with character segmenta-
tion and unsupervised segmentation methods
for which the data from different languages
were simply concatenated. We did not ob-
serve major benefits from cognate-aware seg-
mentation methods, but further research may
be needed to explore larger parts of the param-
eter space. Character-level models proved to
be competitive for translation between Spanish
and Portuguese, but they are slower in training
and decoding.

1 Introduction

Machine translation between closely related lan-
guages is, in principle, less challenging than trans-
lation between distantly related ones. Sharing
large parts of their grammars and vocabularies
reduces the amount of effort needed for a ma-
chine translation system to be able to general-
ize (Pourdamghani and Knight, 2017). Neverthe-
less, and especially since the languages offered in
this shared task are to some extent morpholog-
ically complex, we assume that proper subword
segmentation will be beneficial for neural machine
translation (NMT) performance. In particular, we
aim at consistent segmentation across both related
languages. While generic subword segmentation
methods such as BPE (Sennrich et al., 2016), Mor-
fessor (Creutz and Lagus, 2007; Grönroos et al.,
2014), or SentencePiece (Kudo and Richardson,
2018) yield improved consistency by concatenat-

ing data from the two languages and training a sin-
gle segmentation model, the Cognate Morfessor
method (Grönroos et al., 2018) explicitly relies on
cognate word pairs to enforce consistent segmen-
tation.

The University of Helsinki participated in the
similar language translation task for the language
pairs Czech↔ Polish and Spanish↔ Portuguese,
obtaining the following rankings:
– third (out of six) on Portuguese→ Spanish,
– fourth (out of five) on Spanish→ Portuguese,
– third (out of five) on Czech→ Polish,
– first (out of two) on Polish→ Czech.

Section 2 describes the different subword seg-
mentation techniques we considered in our work.
Section 3 details the training data and our prepro-
cessing pipeline, whereas Section 4 presents the
models we evaluated and the models we submit-
ted, together with the results.

2 Subword segmentation

Our experiments focused on four subword seg-
mentation methods, which are summarized shortly
in this section.

2.1 Character segmentation
For similar languages, a commonly used seg-
mentation scheme is character-level segmentation,
where every character, including the space char-
acter, is considered independently. The idea of
character-level machine translation for similar lan-
guages dates back to SMT times (e.g. Tiede-
mann, 2009). More recently, character-level NMT
has shown promising results for distant languages
(Costa-jussà and Fonollosa, 2016; Lee et al., 2017)
as well as for similar ones (Costa-jussà et al.,
2017).

The advantage of character-level models is that
they do not require any other type of preprocess-
ing such as tokenization or truecasing, and that
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the segmentation algorithm is free of hyperparam-
eters. However, character-level NMT models tend
to be slow due to the greater length of the se-
quences.

2.2 Morfessor
Morfessor (Creutz and Lagus, 2002, 2007) is a
method for unsupervised morphological segmen-
tation. In contrast to the byte-pair encoding (BPE)
algorithm widely adopted in neural machine trans-
lation (Sennrich et al., 2016), Morfessor defines
a proper statistical model and applies maximum
a posteriori estimation for the model parameters.
The granularity of the segmentation (and thus size
of the subword lexicon) is tunable by inserting a
hyperparameter for varying the balance between
prior and data likelihood (Kohonen et al., 2010).
The prior can be considered as a encoding cost
for the subword lexicon, and the likelihood as
encoding cost for the corpus given the lexicon.
In the first Morfessor variant, Morfessor Baseline
(Creutz and Lagus, 2002; Virpioja et al., 2013), the
statistical model is a unigram language model, i.e.,
the subword units are assumed to occur indepen-
dently in words. Under this assumption, the prob-
ability of a sequence of tokens is simplified to be
the product of the subword occurrence probabili-
ties, which enables an efficient training algorithm.

The Morfessor Baseline method has been
widely tested in automatic speech recognition
(ASR) for various languages (Kurimo et al., 2006;
Creutz et al., 2007). Smit et al. (2017) report that it
performs slightly better in Finnish ASR compared
to BPE. Morfessor Baseline and BPE segmenta-
tions have not been compared so far with respect
to the performance in NMT. However, the Mor-
fessor FlatCat variant (Grönroos et al., 2014) have
been tested in English-to-Finnish NMT (Grönroos
et al., 2017) and Turkish-to-English NMT (Ata-
man et al., 2017). While the former does not pro-
vide comparison to other segmentation methods,
Ataman et al. (2017) report significant improve-
ments over BPE segmentation for Turkish.

2.3 Cognate Morfessor
Cognate Morfessor (Grönroos et al., 2018) is a
variant of Morfessor designed to optimize sub-
word segmentation for two related languages so
that segmentations are consistent especially for
cognates, i.e., word pairs that are similar or-
thographically, semantically, and distributionally.
Cognate Morfessor extends the cost function of

Morfessor Baseline (consisting of a lexicon and
corpus coding costs) by three lexicon and corpus
costs: one for each language, and one for edit op-
erations that transform the cognate forms between
the languages. Having more components in the
cost function means that they can also be weighted
separately; the method has one hyper-parameter
for the monolingual corpus costs and one for the
edit operations.

The goal of Grönroos et al. (2018) was to im-
prove the translation accuracy from a language
with less parallel data (e.g. Estonian) using a re-
lated language with more data (e.g. Finnish) in the
same NMT system. However, Cognate Morfessor
is also a sensible segmentation approach for trans-
lating between two related languages. For cog-
nates for which the task is similar to translitera-
tion, the method can learn longer subword chunks
that can be transliterated in one step, reducing the
average number of tokens per word and improving
efficiency compared to character-based models.

Moreover, it can improve the consistency of the
segmentation compared to the common approach
of concatenating the bilingual corpora and opti-
mizing a joint subword lexicon for them. For ex-
ample, consider that some common inflection pro-
duces a slightly different suffix for the two lan-
guages. A joint lexicon is likely to have both suf-
fixes as subword units. Then the suffix for lan-
guage A may interfere with the segmentation of
stems of language B that happen to contain the
same string, and vice versa. Cognate Morfessor
can avoid such problems by keeping the suffixes
in separate lexicons.

2.4 SentencePiece unigram model

As discussed in Section 2.2, Morfessor Baseline
defines a unigram language model and determines
the size of its lexicon by using a prior probabil-
ity for the lexicon parameters. A more straightfor-
ward approach, first proposed by Varjokallio et al.
(2013) for application in ASR, is to fix the lexi-
con size beforehand and try to find the set of units
such that they maximize likelihood of the data for
a unigram model. Another heuristic search algo-
rithm for this problem has been proposed by Kudo
(2018). In addition, he proposes a subword reg-
ularization method for NMT: The unigram lan-
guage model can be used to generate multiple can-
didate segmentations to emulate noise and seg-
mentation errors in the data, and thus improve the
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Dataset ES↔ PT CS↔ PL

Europarl 1798 k 619 k
JRC-Acquis 1650 k 1311 k
Wikititles 621 k 249 k
News-Commentary 47 k —

Total 4116 k 2178 k

Table 1: Filtered parallel dataset statistics (sentence
pairs).

Direction Back-trans. Parallel Total

PT→ ES 3405 k 4116 k 7520 k
ES→ PT 2283 k 4116 k 6399 k
PL→ CS 765 k 2178 k 2943 k
CS→ PL 4273 k 2178 k 6451 k

Table 2: Back-translation and training data statistics
(sentence pairs).

robustness of the translation. The unigram method
by Kudo (2018) is implemented in the Sentence-
Piece software (Kudo and Richardson, 2018).

2.5 Byte pair encoding

In Sennrich et al. (2016) the authors adapt the byte
pair encoding (BPE) data compression algorithm
(Gage, 1994) to the task of word segmentation.
They use the idea of the original algorithm, iter-
atively replacing the most frequent pair of bytes
in a sequence with a single and unused byte, on
word segmentation by merging characters instead
of bytes. This allows for the representation of an
open vocabulary through a fixed-size vocabulary
of variable-length character sequences.

3 Data

The organizers of the similar languages task pro-
vided a fixed set of parallel datasets for training.
We filtered these datasets minimalistically, remov-
ing empty lines, lines with more than 500 tokens,
and lines with source-target length ratio higher
than 9.1 Table 1 reports the sizes of these datasets
after filtering.

We trained four character-level NMT systems
(see Section 4.1) with these parallel data in or-
der to create back-translations.2 We created

1We used the clean-corpus-n.perl script of the
Moses SMT distribution. See https://github.com/
moses-smt/mosesdecoder/

2We chose character-level systems for back-translation in

back-translations from all provided monolingual
datasets, starting from the beginning of each
dataset. Table 2 lists the amount of back-translated
sentence pairs per translation direction and sum-
marizes the amount of training data for the final
systems.

For the models based on Morfessor and Cognate
Morfessor, all data was normalized, tokenized and
truecased with the Moses tools3, while the models
based on SentencePiece were only truecased in the
same way. For the character-level models, a sec-
ond filtering step was applied to remove sentence
pairs with less than 20 or more than 1000 charac-
ters.

The development and test sets were processed
analogously, and the system outputs were detok-
enized and detruecased with the Moses tools.

4 Experiments and results

All our NMT models are trained with the same
translation toolkit – OpenNMT-py (Klein et al.,
2017) –, use the same model architecture – the
Transformer (Vaswani et al., 2017) –, and the same
hyperparameters4. Training data are shuffled be-
forehand.

We set a threshold in terms of epochs for each
translation direction, after which we stop model
training.5 This allows us to compare models fairly,
as they have all seen the same amount of train-
ing data, which is not guaranteed when relying on
training time or number of batches.

Results on the development set are shown in Ta-
ble 3 and discussed in detail below. We report
two word-level metrics, BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006), as well
as two character-level metrics, CharacTer (Wang
et al., 2016) and chrF (Popović, 2016). BLEU
and chrF are computed with SacreBLEU (Post,
2018).6 In order to quantify the impact of pre-
and post-processing, we compute BLEU scores
with the unprocessed reference as well as with
an additional reference that has been normalized,

order not to impose any prior decision on preprocessing and
segmentation.

3https://github.com/moses-smt/
mosesdecoder/

4http://opennmt.net/OpenNMT-py/FAQ.
html

5Note however that not all character-level models could
be trained sufficiently long due to timing constraints.

6Signatures: BLEU+case.mixed+numrefs.1+smooth.exp
+tok.13a+version.1.2.12; chrF2+case.mixed+numchars.6
+numrefs.1+space.False+tok.13a+version.1.2.12
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tokenized, truecased and de-truecased and detok-
enized. Surprisingly, the results with the two ref-
erences may vary by up to 2 points.

Despite the large amounts of available training
data, we chose hyperparameters resulting in rather
small vocabulary sizes for all subword splitting
schemes, ranging between 2800 and 8900 units
per language pair. This choice was guided by
three reasons: (1) the competitive performance of
character-level models, (2) the desire to force the
models to split words across languages, and to do
so not only for rare words, and (3) the competi-
tive performance of small vocabulary sizes in re-
lated problems such as historical text normaliza-
tion (Tang et al., 2018).

A general finding, shared by the other partici-
pants, is that the scores on the Slavic language pair
are much lower than on the Romance language
pair. We assume that the Spanish–Portuguese de-
velopment and test sets are built by translating di-
rectly from one language to the other, whereas
the Czech–Polish development and test sets had
been translated from English independently of
each other, leading to much freer translations. If
this hypothesis is correct, the automatic evaluation
scores for Czech–Polish may in fact underestimate
the real translation quality.

4.1 Character-level models

For each translation direction, we train a character-
level model on the parallel data only and use this
model to create back-translations for the opposing
direction. Table 3 show BLEU scores on the de-
velopment set under the Characters-Initial line.

Additional character-level models are trained
with included back-translations. Due to their good
overall performance, these models were selected
as contrastive runs for our submissions . They are
referred to as Characters in Table 3.

The comparison of development scores shows
the impact of back-translations: depending on the
translation direction, gains of 2 to 6 BLEU points
are observed. There is however no clear correla-
tion between the amount (or proportion) of added
back-translations and the scores.

4.2 Morfessor Baseline models

Morfessor Baseline segmentations were trained on
the concatenation of the source and language par-
allel training data using the Morfessor 2.0 soft-
ware (Virpioja et al., 2013). We used the default

parameters7 except that we applied log-dampening
and a minimum frequency threshold of 5. We
selected two corpus weight (α) values, 0.03 and
0.05, for our experiments. Models trained on the
latter setting were submitted as contrastive runs.

Results are shown in Table 3. All Morfessor
models outperform the character-level models on
the processed reference, but not necessarily on the
raw reference, suggesting that some normalization
and tokenization settings might have been harm-
ful. Unfortunately, we became aware of this issue
only after submission.

The differences between the two corpus cost
settings are marginal – in general, translation qual-
ity slightly improves for one direction but de-
creases for the other one.

4.3 Cognate Morfessor models
The Cognate Morfessor training method requires
cognate word pairs as input. We follow the
cognate extraction method presented in Grönroos
et al. (2018) with some minor modifications:

• Word-align the parallel corpora of the
two cognate languages. We use eflomal
(Östling and Tiedemann, 2016) and sym-
metrize the alignment with the grow-diag-
final-and heuristic.

• Remove all word pairs that contain punctua-
tion or occur less than 5 times.

• Filter the list of word pairs based on Leven-
shtein distance. If either of the words consists
of 4 or fewer characters, an exact match is
required. Otherwise, a Levenshtein distance
up to a third of the mean of the lengths is al-
lowed.

• Further filter the list to remove one-to-many
and many-to-one mappings, keeping only the
most frequent pairing.

Cognate Morfessor models have to be trained
on the full vocabulary, not only the cognate pairs.8

Therefore, the list of cognate pairs is comple-
mented with unaligned source-only and target-
only items. This resulted in a training vocabulary
of 140 227 entries for Spanish–Portuguese (63 355
cognate pairs + 35 351 monolingual ES words +

7https://morfessor.readthedocs.io/en/
latest/cmdtools.html#morfessor

8See https://github.com/Waino/
morfessor-cognates.
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Model Parameters Train. Vocab. Proc ref Raw reference
epochs size BLEU BLEU TER cTER chrF2

ES→ PT
Characters-Initial 5.0 562 52.46 53.90 27.00 19.61 76.72
‡ Characters 1.8 813 54.62 56.20 25.63 18.07 77.96

Morfessor Baseline α = 0.03 2.5 3090 57.43 56.14 26.38 18.36 77.88
‡ Morfessor Baseline α = 0.05 2.5 5187 56.94 55.28 28.76 18.64 77.43

Cognate Morfessor α = 0.001 2.5 2818 57.26 55.89 27.85 18.76 77.58
∗ Cognate Morfessor α = 0.01 2.5 3884 56.92 55.41 27.60 18.61 77.45

SentencePiece Unigram |V | = 5000 2.5 7668 59.76 57.79 25.58 17.55 78.52
Byte Pair Encoding |V | = 5000 2.5 6224 58.79 56.92 26.01 17.86 78.25

PT→ ES
Characters-Initial 4.0 562 55.38 56.20 26.35 18.68 78.24
‡ Characters 2.0 834 60.69 62.10 22.61 15.68 81.47

Morfessor Baseline α = 0.03 2.5 3090 62.78 60.77 23.30 15.81 81.32
‡ Morfessor Baseline α = 0.05 2.5 5187 62.89 60.87 23.42 15.63 81.34

Cognate Morfessor α = 0.001 2.5 2818 60.05 58.11 27.67 15.91 80.95
∗ Cognate Morfessor α = 0.01 2.5 3884 61.41 59.48 25.67 16.01 81.16

SentencePiece Unigram |V | = 5000 2.5 7664 62.06 60.27 24.68 16.75 80.05
Byte Pair Encoding |V | = 5000 2.5 6225 61.52 59.77 25.22 17.18 79.58

CS→ PL
Characters-Initial 11.1 419 8.51 8.64 79.16 68.33 35.97
‡ Characters 5.5 486 10.45 10.60 76.91 61.89 39.75

Morfessor Baseline α = 0.03 5.5 4181 12.17 11.90 75.27 61.83 40.72
‡ Morfessor Baseline α = 0.05 5.5 7255 11.93 11.71 76.12 62.29 40.46

Cognate Morfessor α = 0.001 5.5 2884 12.13 11.88 75.24 61.65 40.88
∗ Cognate Morfessor α = 0.01 5.5 4186 11.90 11.66 75.76 61.00 40.96

SentencePiece Unigram |V | = 5000 5.5 8841 9.98 9.74 77.25 66.37 37.39
Byte Pair Encoding |V | = 5000 5.5 6264 10.01 9.80 77.10 66.32 37.39

PL→ CS
Characters-Initial 11.2 419 11.14 11.34 71.06 71.77 34.39
‡ Characters 3.0 868 14.98 15.33 66.69 64.77 38.35

Morfessor Baseline α = 0.03 3.0 4181 15.68 15.39 66.06 64.55 39.22
‡ Morfessor Baseline α = 0.05 3.0 7255 15.80 15.52 66.45 64.36 39.30

Cognate Morfessor α = 0.001 3.0 2884 16.02 15.73 65.82 64.12 39.56
∗ Cognate Morfessor α = 0.01 3.0 4186 15.75 15.48 66.09 64.71 39.20

SentencePiece Unigram |V | = 5000 3.0 8682 13.56 13.28 67.44 69.03 36.93
Byte Pair Encoding |V | = 5000 3.0 5939 14.29 14.08 67.39 68.30 37.49

Table 3: Key figures and results of our experiments on the development set. All scores are percentage values. Proc
ref refers to a preprocessed and postprocessed version of the reference. Primary submissions are marked with ∗,
contrastive submissions with ‡.
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Model BLEU TER

ES→ PT
Characters 52.8 28.6
Morfessor Baseline (α = 0.05) 51.0 33.1
Cognate Morfessor (α = 0.01) 52.0 29.4

PT→ ES
Characters 59.1 25.5
Morfessor Baseline (α = 0.05) 58.6 25.1
Cognate Morfessor (α = 0.01) 58.4 25.3

CS→ PL
Characters 5.9 88.4
Morfessor Baseline (α = 0.05) 7.0 87.3
Cognate Morfessor (α = 0.01) 7.1 87.4

PL→ CS
Characters 6.6 80.2
Morfessor Baseline (α = 0.05) 7.2 79.6
Cognate Morfessor (α = 0.01) 7.0 79.4

Table 4: Official results of the submitted systems.
BLEU scores are based on mt-eval-v13b. The Cognate
Morfessor systems are primary submissions.

41 521 monolingual PT words) and 183 706 en-
tries for Czech–Polish (34 291 cognate pairs +
71 416 monolingual CS words + 77 999 monolin-
gual PL words). It clearly appears that the number
of cognate pairs is proportionally much lower for
Czech–Polish than for Spanish–Portuguese, and
further experiments will be required to quantify
the impact of the cognate extraction heuristics on
these results.

Cognate Morfessor has two hyper-parameters:
the monolingual corpus cost (α) and the edit oper-
ation weight. We keep the recommended value of
10 for the edit operation and experiment with two
values of α, 0.01 and 0.001. Moreover, we disable
the word-final epsilon symbol, which had been in-
troduced by Grönroos et al. (2018) to account for
situations where two aligned words do not have
the same number of morphs. An inspection of our
data showed that this configuration occurred very
rarely in both language families.

The Cognate Morfessor lines in Table 3 show
the NMT results obtained with these models.
Again, the choice of α value does not have a con-
sistent impact on the results. The cognate Morfes-
sor models consistently outperform the character
models when evaluated against the processed ref-
erence, but not when evaluated against the raw ref-

erence. They obtain very similar results compared
to the standard Morfessor approach.

Based on the results obtained on the develop-
ment data and the ability to specifically simulate
the conditions of closely related morphologically
rich languages, we selected the Cognate Morfes-
sor models with α = 0.01 as our primary systems.

4.4 SentencePiece unigram models

We trained the segmentation models only on the
available parallel datasets for each language pair,
following the findings of our submission to the
WMT18 translation task (Raganato et al., 2018).
We specified a vocabulary size of 5,000 tokens for
each language and we took advantage from the
tokenizer integrated in the SentencePiece imple-
mentation (Kudo and Richardson, 2018) by train-
ing the models on non-tokenized data. We applied
the same truecasing models as before.

Results reported in Table 3 show that the mod-
els trained on SentencePiece-encoded data are
consistently behind the Morfessor Baseline and
Cognate Morfessor ones, except for the Spanish–
Portuguese translation direction. This might be
caused by the choice of vocabulary size used and
the selected epoch in the table. These models
had not converged at the reported time, results
were chosen such that different models could be
comparable. Once converged, they achieved bet-
ter BLEU scores, but still fall behind the Cognate
Morfessor models.

4.5 Byte pair encoding models

We ran further contrastive experiments using the
well-known BPE segmentation (Sennrich et al.,
2016). Since the BPE models serve here only for
comparison purposes, we set them to be as com-
parable as possible to the other experiments. For
this reason, we jointly trained them on the parallel
datasets for each language pair and specified them
to have 5,000 merge operations. Said segmenta-
tion models were trained on previously tokenized
and truecased data.

5 Test results

We submitted three systems per language pair.
The official results are reproduced in Table 4. The
good performance of the character-level models
on Spanish–Portuguese and Portuguese–Spanish
can be attributed to the absence of pre- and post-
processing, as illustrated in Table 3, rather than to
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the underlying model architecture. The two Mor-
fessor systems can be considered equivalent, as no
clear winner emerges. The two official evaluation
metrics BLEU and TER do not rank the systems
consistently.

Character-level metrics were not provided by
the organizers, but follow-up experiments showed
that chrF2 yields the same rankings as BLEU,
whereas CharacTer deviates from BLEU and TER.

The results of our submissions – and of many
competitors in this shared task – lie very closely
together. Before drawing any conclusions, it
would therefore be useful to perform statistical
significance testing. MultEval (Clark et al., 2011)
provides significance scores through bootstrap re-
sampling, but requires the output from multiple
training runs of the same translation system. Un-
fortunately, we were not able to complete multiple
training runs of our models due to time constraints.

6 Conclusions

The University of Helsinki participation focused
on a single aspect of neural machine translation,
namely subword segmentation. Subword seg-
mentation that is consistent across the two lan-
guages has shown numerous benefits in transla-
tion quality, especially with respect to morpholog-
ically complex languages and for the translation
(or transliteration) of rare words.

One of the investigated subword segmentation
algorithms, Cognate Morfessor, was previously
used successfully in a multilingual setting (trans-
lating from English to two related languages,
Finnish and Estonian), and it seemed appealing to
us to test this approach on similar language pairs
from the Romance and Slavic language families.
We contrasted the Cognate Morfessor models with
three generic segmentation approaches: character
segmentation, Morfessor Baseline, and Sentence-
Piece. Our results did not show conclusive evi-
dence that Cognate Morfessor would outperform
the segmentation algorithms that did not use the
information on cognates, but we have only ex-
plored a small area of the parameter space. In par-
ticular, the impact of the vocabulary size – inde-
pendently of the segmentation method – on trans-
lation quality should be investigated further.

One rather surprising finding is the competitive-
ness of character-based models in the test evalu-
ation for the Romance languages. This suggests
that rule-based preprocessing and postprocessing

scripts such as tokenization, punctuation normal-
ization etc. can have a significant impact on the
resulting output and penalize systems that rely on
these scripts. Note, however, that models with a
few thousand vocabulary units are typically much
more efficient than pure character-level models in
terms of training and decoding.9

It is obvious that other aspects than subword
segmentation may have a decisive impact on trans-
lation quality: parallel corpus filtering methods,
the amount and quality of back-translations, as
well as fine-tuning towards the target domain are
known to be important factors. We have not con-
sidered these factors in our submissions, but the
shared task setup provides an interesting test bed
for further experiments.
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Abstract
We introduce a purely monolingual approach
to filtering for parallel data from a noisy cor-
pus in a low-resource scenario. Our work
is inspired by Junczys-Dowmunt (2018), but
we relax the requirements to allow for cases
where no parallel data is available. Our pri-
mary contribution is a dual monolingual cross-
entropy delta criterion modified from Cynical
data selection (Axelrod, 2017), and is compet-
itive (within 1.8 BLEU) with the best bilingual
filtering method when used to train SMT sys-
tems. Our approach is featherweight, and runs
end-to-end on a standard laptop in three hours.

1 Introduction

The 2018 WMT shared task on parallel corpus fil-
tering (Koehn et al., 2018) required participants to
select subcorpora of 10M and 100M words from
an extremely noisy 1B word German-English par-
allel corpus from Paracrawl (Buck and Koehn,
2016). These subcorpora were then used to train
machine translation systems, and evaluated on
held-out test sets. The best submission (Junczys-
Dowmunt, 2018) comprised:

1. a filter based on language ID

2. a dual conditional cross-entropy filter to de-
termine whether the halves of a sentence pair
were of roughly equal translation probability

3. a cross-entropy difference filter to prioritize
in-domain sentence pairs

The 2019 WMT shared task on parallel corpus
filtering (Koehn et al., 2019) was set for low-
resource conditions, with the goal of translat-
ing Wikipedia texts both Sinhala-to-English and
Nepali-to-English (Guzmán et al., 2019).

We participated only in the Sinhala-English
track, basing our system on that of Junczys-
Dowmunt (2018) but extensively modified for the

2019 low-resource scenario. As compared to their
work, ours comprised: a minor upgrade of their
first element, a relaxation of the second, a mod-
ern replacement for the third, and an additional
length-based filter. The resulting entirely mono-
lingual pipeline to filter noisy parallel data proved
to be competitive with the other multilingual en-
tries when used to train downstream SMT systems.

2 Related Work

We now describe the Junczys-Dowmunt (2018)
system that was the inspiration for ours.

2.1 2018 Language ID Filter
The first feature used the langid Python mod-
ule to classify the language of each half of each
sentence pair to a language. Any sentence pair
where either half was classified as being in an in-
correct language was removed, and sentence pairs
with correctly-classified halves were kept.

2.2 2018 Dual Conditional Cross-Entropy
The dual conditional cross-entropy filtering
method rewards sentence pairs with minimal
symmetric translation disagreement. That is
the difference in average (per-word) conditional
cross-entropy of the sentence pair halves:

|HF→E(sE |sF )−HE→F (sF |sE)|
For a sentence pair (sE , sF ), the per-word con-
ditional cross-entropy HF→E(sE |sF ) of one half
of the sentence pair is computed by a transla-
tion model F → E, and the corresponding
HE→F (sF |sE) of the other half of the sentence
pair is computed by a translation model in the op-
posite direction. The two translation models are
trained in inverse directions on the same parallel
corpus, so they should be equally expressive.

However, the difference in translation scores
does not take into account whether the scores

247



are good or not. A perfectly translated sentence
pair where the translation models agree perfectly
would have the same score as a poorly translated
sentence pair where the translation models also
agree. This same weakness is found in the cross-
entropy difference criterion (Moore and Lewis,
2010) on which the conditional cross-entropy dif-
ference is based. To force the better sentence pair
to have a lower feature score than the other pair,
Junczys-Dowmunt (2018) add a term consisting of
the average per-word conditional cross-entropy of
the two halves. Worse sentences have higher en-
tropy, so a score of 0 remains ideal. The equation
for the dual conditional cross-entropy is thus:

h(sE , sF ) =| H
F→E

(sE |sF )− H
E→F

(sF |sE)|

+
1

2

(
H

F→E
(sE |sF ) + H

E→F
(sF |sE)

)

(1)

The first term is the translation disagreement, and
the second term is the average entropy. The score
is exponentiated so that good sentence pairs have
a feature score of 1, and bad sentence pairs have a
score of 0:

f(sE , sF ) = e−h(sE ,sF )

In describing their approach, Junczys-Dowmunt
(2018) criticize the Moore and Lewis (2010)
cross-entropy difference method for “missing” an
adequacy component. This is misguided, as the
Moore-Lewis method was originally designed for
language modeling and was only later repurposed
for machine translation. In MT, the two halves
of a sentence pair might be fluent but not express
the same thing, and so the notion of adequacy is
used to describe how well the halves correspond in
meaning. In language modeling, there is no such
thing as a sentence pair, and there should not be
much doubt that a sentence rather adequately (and
tautologically) manages to express exactly that
which it does express. It would be more proper
to state that the omission of adequacy is a weak-
ness of the bilingual extension of Moore-Lewis to
machine translation by Axelrod et al. (2011).

2.3 2018 Moore-Lewis Filtering
The third and final feature in the best 2018 system
was a monolingual (English) cross-entropy differ-
ence (Moore and Lewis, 2010) score:

Hin(sE)−Hout(sE) (2)

The cross-entropies H were computed using
language models trained on 1M sentences of
WMT news data as in-domain, and 1M random
Paracrawl sentences as out-of-domain data. This
is an ideal setup for cross-entropy difference, as
Equation 2 fundamentally assumes that the two
corpora are as different as possible.

3 Cynical Data Selection

Both the relaxation of the dual conditional cross-
entropy filter and our replacement of the cross-
entropy difference filter are based on Cynical data
selection (Axelrod, 2017), described below. The
Moore-Lewis cross-entropy difference approach
fundamentally views the training data as being ei-
ther in-domain or out/general-domain. This stark
distinction is not realistic. Cynical data selection
relaxes that assumption, and starts with one corpus
of representative data (REPR), and one of avail-
able data (AVAIL). The representative data is ex-
actly that: representative of what we would like to
be translating. The available data is similarly the
data pool from which one can select a subcorpus.
No relationship is assumed between the represen-
tative and available corpora, nor between the do-
mains they cover.

The algorithm incrementally grows a corpus of
sentences, selecting from AVAIL, in order to bet-
ter model REPR. First, it estimates the perplex-
ity of a language model trained on the already-
selected data and evaluated on the REPR corpus.
Next, for each sentence still available, it estimates
the change in that perplexity (or entropy, ∆H)
that would result from adding it as a new sentence
to the LM training data and re-training the LM
(Sethy et al., 2006). The sentence with the lowest
cross-entropy delta is removed from AVAIL, added
to the selected pile, and the process repeats. Iden-
tifying the next single sentence to add is O(n2)
and not computationally practical, but it is efficient
to find the best word v in the vocabulary VREPR

to add once to the selected data. From there, it
is now practical to pick the best sentence still in
AVAIL that contains that word. The n + 1th itera-
tion, after selecting n sentences, is:

1. Find the single word v ∈ Vrepr that would
most lower the entropy (evaluated on REPR)
of a language model, trained on the n
already-selected sentences plus the one-word
sentence “v”.
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2. Find the single sentence s ∈ AVAIL con-
taining v that would (also) most lower the
entropy (evaluated on REPR) of a language
model trained on the n sentences plus s.

3. Remove s from AVAIL, update the language
model with the count c of all words in s, and
add s to the selected sentences.

The cross-entropy delta ∆H is the change in the
entropy of a language model, evaluated on a con-
stant test set, after adding a new entry to the lan-
guage model’s training corpus. This is straight-
forward to compute, as there is a entropic length
penalty for increasing the size of the training cor-
pus, and an entropy gain for adding new informa-
tion to the training set. This was first formulated
by Sethy et al. (2006) as “relative entropy”, and
clarified by Axelrod (2017) as:

∆H
n→n+1

= Hn+1 −Hn

∆H
n→n+1

= log
Wn + wn+1

Wn︸ ︷︷ ︸
Penalty

+
∑

v∈VREPR

CREPR(v)

WREPR
log

Cn(v)

Cn(v) + cn+1(v)
︸ ︷︷ ︸

Gain

(3)

The penalty term depends on the length wn+1 of
the n + 1th line, and the size in words Wn of the
already-selected data. The gain term depends on
the empirical probability of each word v in the
REPR corpus, and then the count Cn of the word
so far in the n selected lines, and the count cn+1

of the word in the n + 1th line.

4 Sinhala-English Data

The 2019 iteration of the shared task focused ex-
clusively on filtering a noisy parallel corpus for
low-resource language pairs, and had consider-
ably less data than the 2018 German-English task.
Table 1 shows that only 645k lines of parallel
Sinhala-English were provided in total– less than
the small 1M German-English sentence pair sub-
sets used to train the dual NMT engines for the
scoring function of Junczys-Dowmunt (2018).

4.1 Data
The 2019 Si-En parallel data was drawn from con-
versations and technical manuals, unlike the wiki-
based evaluation data. Larger and more relevant,

Corpus Lines Tok (Si) Tok (En)
Open Subtitles 601,164 3.4M 3.6M
Ubuntu 45,617 175k 151k
Total 646,781 3.5M 3.7M

Table 1: Parallel Data for Sinhala-English

yet monolingual, corpora were provided from both
Wikipedia and Common Crawl, detailed in Ta-
ble 2.

Corpus Lines Tokens
Sinhala Wikipedia 156k 4.7M
English Wikipedia 67.8M 1.9B
Sinhala Common Crawl 5.2M 110M
English Common Crawl 380M 8.9B
English Subset Wikipedia 150k 5.5M
English Subset Common Crawl 6M 123M

Table 2: Corpus statistics for provided monolingual
data in Sinhala and English, and an English subset of
comparable size to the Sinhala data.

The provided monolingual English data was
several orders of magnitude larger than the Sinhala
data, which would have made it difficult to create
equally strong (or weak) monolingual models used
in this work. We therefore assembled a monolin-
gual English corpus comparable in size and con-
tent to the Sinhala one by randomly selecting 150k
lines from Wikipedia and 6M lines from Com-
mon Crawl. We used SentencePiece (Kudo and
Richardson, 2018), with model type=word, to
preprocess the Sinhala and English sides sepa-
rately, producing a fairly word-like vocabulary of
100k subwords for each language. Each Sentence-
Piece model was trained on 1M lines of monolin-
gual data: 150k Wiki + 850k Common Crawl.

5 Our Submission

We used the feature framework from Junczys-
Dowmunt (2018) as the basis for ours. For each
sentence pair (sSi, sEn) in the noisy corpus, we
computed a final score f(sSi, sEn) ∈ [0, 1] by
multiplying each of the individual feature scores
for the sentence pair:

f(sSi, sEn) =
∏

i

fi(sSi, sEn) (4)

The feature scores, and therefore the final score,
all had the same range of [0, 1]. For evaluation,
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the lines were sorted from highest to lowest over-
all score, and then selected in that order until
the number of selected English words reached the
evaluation threshold. Any feature score being 0 ef-
fectively removed that sentence pair from consid-
eration. The selected subsets were then submitted
for evaluation by the task organizers. The follow-
ing are the monolingual features we used to score
the noisy parallel data.

5.0 Length Ratio Feature
We added one feature as compared to Junczys-
Dowmunt (2018), based on the length ratio of the
two halves of the sentence pair, penalizing sen-
tence pairs with sides of disparate lengths. The
provided clean, parallel, training data in Table 1
is inconclusive regarding the expected Si-to-En
length ratio, as one of the parallel corpora had
more English tokens than Sinhala, and the other
had the reverse. The ratios were approximately
inverses, so we set the desired ratio to be 1 and
penalized sentence pair scores according to how
divergent the parallel segment’s length ratio was
from 1. A sentence pair with a length ratio within
two orders of magnitude, i.e. e−2 < si

en < e2,
or |ln( si

en)| < 2, received a feature score of 1,
or no penalty. The feature score was set to 0.5
if 2 < |ln( si

en)| < 3. For 3 < |ln( si
en)| the fea-

ture was 0.35. For pairs where both segments con-
tained fewer than six tokens, we applied less strict
penalties as ratios are more likely to vary with
shorter segment lengths. For such pairs, we as-
signed a score of 0.5 if the ratio is greater than 4
orders of magnitude, 0.75 if between 3 and 4, and
0.9 if within 2-3 factors. We also observed that
large numbers of non-parallel Paracrawl sentence
pairs contained mostly numbers on one side. Any
sentence pair where at least 15% of either half was
only numerals received a score of 0.

5.1 Language ID Feature
As with the 2018 task, a considerable quantity of
the provided Paracrawl data was not in the correct
language. Following Junczys-Dowmunt (2018),
we classified the halves of the sentence pair using
the langid Python module and assigned 0 to any
sentence pair with an incorrectly-labeled half. If
the correct languages were selected, then the fea-
ture value was the product of the langid confi-
dence scores. Inspecting the filter output showed
that it was not strong enough. The langid clas-
sification had many false positives, as well as

source-side (Sinhala) sentences that were mixed
with a significant amount of English. The shared
task’s hard limit on the number of selectable words
made it important to minimize the amount of En-
glish on the Sinhala side. The languages have non-
overlapping writing scripts, so it was easy to de-
tect erroneous characters. We therefore multiplied
the lang id score by the proportion of characters
(excluding numerals and punctuation) in each sen-
tence that belong to the correct Unicode block,
resulting in an overall language ID feature that
slightly extends the original.

5.2 Dual Monolingual Cross-Entropy Deltas

Junczys-Dowmunt (2018) trained MT systems on
clean parallel data for the 2018 task, but used
only the translation probability of each to score
the Paracrawl data and not the translation output
itself. The motivation for training the dual NMT
systems on the same parallel corpus was to en-
sure that the models would have similar BLEU
scores and translation probabilities for the halves
of a truly parallel sentence pair.

We did not have enough good parallel data
for Sinhala and English, which ruled out train-
ing models on identical information. However,
perhaps the translation models themselves were
not inherently necessary as long as similar scores
could be obtained. Language models require less
training data than an MT engine to be reliable, and
can also output an average per-word probability
for a sentence– and we were provided with good
monolingual data. We set out to construct lan-
guage models with similar amounts of information
hoping they might have similar perplexities for
the halves of a parallel sentence pair, and differ-
ent perplexities for a non-parallel pair. The result
was a relaxation of the dual conditional translation
cross-entropy feature that only required monolin-
gual data, and used equal relative informativeness
instead of equal translation probability.

5.2.1 Setting Up Language Models
N-gram language models in different languages
are not comparable. Differences in morphology
can lead to significant differences in word counts,
data sparsity, and thus how well a fixed model ar-
chitecture can represent the language. Instead of
multilingual word embeddings using sparse data
(Artetxe and Schwenk, 2019), we simply used
SentencePiece to force the Sinhala and English
corpora to have the same size vocabulary (100k
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subwords). First, we hoped a standard lexicon size
would mitigate the effect of morphology differ-
ences affecting sentence length and word sparsity.
Secondly, we hoped it would encourage language
models trained on similar– but not parallel– En-
glish and Sinhala texts to have similar perplexities
over each half of a parallel test set.

This would mean the two LMs had similar es-
timates of how much information is in each half
of the parallel data. The two halves of the paral-
lel corpus presumably contain the same amount of
actual information, but two LMs would only come
up with the same estimate if they themselves con-
tained comparable amounts of information, even if
they did not the same information.

To test this, we trained 4-gram language mod-
els using KenLM (Heafield, 2011) on the Sin-
hala monolingual data and the restricted-size En-
glish data in Table 2, both unprocessed and af-
ter tokenizing with SentencePiece. The models
were evaluated on the provided parallel valid
and test sets. Table 3 shows that, indeed, forc-
ing English and Sinhala LMs to have identical vo-
cabulary sizes was enough to obtain nearly identi-
cal perplexities on the halves of a parallel corpus,
even though the language models were trained on
similar but not parallel data.

Corpus valid test
Sinhala, untok 1,759.8 1,565.9
English, untok 1,069.2 985.3
Sinhala, tok=SP 320.5 299.2
English, tok=SP 302.5 292.7

Table 3: Using SentencePiece to equalize LM perplex-
ities in different languages on the dev sets.

5.2.2 Parallel Scoring with Monolingual LMs
Wse used the “greedy cross-entropy delta” term
from Cynical data selection in a novel way: to
score each side of the Paracrawl data as a mem-
oryless stream of text. In this setup, we had
a language model trained on the monolingual
Wikipedia data, which is the REPR corpus, and
representative of the kind of data the organizers
will evaluate on. We compute the ∆H of adding
each sentence s in Paracrawl to the REPR corpus,
retraining a LM on REPR+s, and recomputing the
perplexity on REPR corpus. After computing all of
the ∆H scores for the Paracrawl data, cynical data
selection would normally extract the best one, in-

corporate it into the training set, and iterate. In-
stead, we modified the public implementation1 of
Cynical data selection to not update anything, and
the scoring is done in a single pass as done by
Sethy et al. (2006).

The difference between a LM perplexity and the
∆H score is that the LM quantifies the likelihood,
and the ∆H score quantifies informativeness. The
∆H score estimates, for a fixed REPR corpus: does
this next line contain any information at all about
REPR that we do not already know? A negative
score would indicate a estimated decrease in en-
tropy, so adding this line should improve a model
trained on the selected data.

We constructed monolingual Sinhala and En-
glish LMs with similar perplexities on a parallel
test set that resembled the task evaluation, so we
hoped that sentences with equal ∆H scores ac-
cording to these two models could be parallel. Or,
at least, that sentences with disparate ∆H scores
would be deemed not-parallel, and filtered out.

One could simply replace the translation system
conditional cross-entropies in Equation 1 with the
cross-entropies from the two comparable language
models just described. However, that would only
characterize the fluency, without any sense of the
content. It is not clear whether identical perplexi-
ties or identical ∆H scores is a better indicator of
“these sentences are parallel”: being equally likely
and being equally informative are each positive in-
dicators. The goal of the shared task was to as-
semble the parallel corpus that produced the best
downstream MT system for Wikipedia test; prior-
itizing informative sentences seemed more impor-
tant here than prioritizing likely ones. Our version
of Equation 1 thus used Equation 3’s ∆H scores,
dual monolingual cross-entropy deltas, for each
sentence pair (sSi, sEn), instead of dual bilingual
conditional cross-entropies:

|∆HEn(sEn|REPREn)−∆HSi(sSi|REPRSi)|

+
1

2

(
∆HEn(sEn|REPREn) + ∆HSi(sSi|REPRSi)

)

(5)

This was exponentiated to be in the range of [0, 1].

5.3 Dual Monolingual Cynical Data Selection
The final feature from (Junczys-Dowmunt, 2018)
was a monolingual Moore-Lewis score, intended
to bias the filtering towards in-domain news data.

1github.com/amittai/cynical
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However, the Moore-Lewis method for data selec-
tion has some notable flaws, as described in Ax-
elrod (2017). The biggest is that it has no sense
of sufficiency: while it is not helpful to see an
identical sentence pair 10,000 times, the Moore-
Lewis criterion will assign the same score to all
copies. Cynical data selection selects sentences
only if they contribute new information to the set
of sentences already selected, and has previously
been shown to help domain adaptation in SMT
(Santamarı́a and Axelrod, 2017) and NMT (Zhang
et al., 2019), and a variation of it was used for the
2018 corpus filtering task (Erdmann and Gwinnup,
2018). As a side effect, Cynical selection elim-
inates the need for explicit vocabulary coverage
features that were used in the previous shared task
(Lo et al., 2018; Azpeitia et al., 2018).

For each language, we used Cynical data se-
lection to rank the sentences in the noisy cor-
pus. We set the Paracrawl data to be the Avail-
able set, and the clean monolingual Wikipedia
data to be the Representative set. This selects the
subset of Paracrawl that best models monolingual
Wikipedia. The re-ranked Paracrawl corpus was
then scored by converting the Cynical ranking to
a percentage and subtracted from 1. Thus the sen-
tence selected as number 15,000 out of 3M would
have a score of 1 − 15k

3M , and 1 would be the best
score and 0 the worst. The ranking score for a sen-
tence pair was the product of the monolingual rank
scores for each half.

6 Results and Discussion

Our submission was entirely monolingual, and
used parallel data only to sanity-check the lan-
guage models trained in Section 5.2.1. Further-
more, all of the preprocessing, language model-
ing, data selection, and feature computation in this
work was run on a laptop. As such, we had no
expectations for whether our method would be ef-
fective compared against bilingual or multilingual
methods trained for days on GPU machines.

We tried to predict results using NMT systems
after the submission deadline, thanks to the scripts,
code, and standard settings provided by the orga-
nizers, but all of our system BLEU scores (Pap-
ineni et al., 2002) were under 0.20 and worse than
a random baseline. While the evaluation campaign
cutoff was set to be 1M or 5M English words, the
Sinhala sides of our filtered corpus contained only
740k and 3.6M words respectively. Our length ra-

tio feature was overly complicated and not aggres-
sive enough; the Si→En NMT systems tended to
stutter to produce English sentences of appropriate
length. Discarding anything with a length differ-
ence > 20% would probably have been better.

The official evaluation results were a pleasant
surprise. Table 4 shows the top and bottom scores
for each evaluation category, providing context for
our submission. We were in the bottom third of
the SMT systems, yet within 1.8 BLEU of the best
system at 1M, and 1.3 BLEU of the best system at
5M. This is rather competitive for a gratuitously-
monolingual approach to a bilingual task!

Our submitted system, like roughly 30% of the
submissions, was not suitable for filtering data for
a low-resource NMT pipeline. However, the NMT
systems trained on 1M words were several BLEU
points better than systems trained on 5M words, so
training an NMT system on small amounts of data
is unpredictable. Better feature engineering would
certainly help.

1M 1M 5M 5M
System SMT NMT SMT NMT
Rank 1 4.27 6.39 4.94 4.44
DiDi 2.53 0.19 3.70 0.20
Rank 10 0.92 0.03 2.73 0.10

Table 4: Bleu scores on test for systems trained on
subsets with 1M and 5M English words of the noisy
Paracrawl data.

7 Conclusion

We presented a purely monolingual method, based
on cynical data selection (Axelrod, 2017), for fil-
tering noisy parallel data. Our approach is a relax-
ation of the dual conditional cross-entropy method
of Junczys-Dowmunt (2018), that does require any
parallel data. As secondary contributions, we have
used Cynical data selection in a streaming scenario
for the first time, and used relative informativeness
to judge the relationship between the halves of a
sentence pair. While our method does not outper-
form most parallel approaches, it is competitive,
and more suitable for scenarios with little or no
parallel data. Furthermore, our work is also un-
demanding of computational resources, as it ran
end-to-end on a single laptop in a couple hours,
and should integrate well into a feature ensemble
for real-world deployment.
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Abstract

We describe the National Research Council
Canada team’s submissions to the parallel cor-
pus filtering task at the Fourth Conference on
Machine Translation.

1 Introduction

The WMT19 shared task on parallel corpus filter-
ing was essentially the same as last year’s edi-
tion (Koehn et al., 2018b), except under low-
resource conditions: the language pairs were
Nepali-English and Sinhala-English instead of
German-English, and the data participants were al-
lowed to use was constrained. The aim of the chal-
lenge was to identify high-quality sentence pairs
in a noisy corpus crawled from the web using
ParaCrawl (Koehn et al., 2018a), in order to train
machine translation (MT) systems on the clean
data. Specifically, participating systems must pro-
duce a score for each sentence pair in the test
corpora, this score indicating the quality of that
pair. Then samples containing 1M or 5M words
would be used to train MT systems. Participants
were ranked based on the performance of these
MT systems on a test set of Wikipedia transla-
tions (Guzmán et al., 2019), as measured by BLEU
(Papineni et al., 2002). Participants were pro-
vided with a few small sources of parallel data,
covering different domains, for each of the two
low-resource languages, as well as a third, related
language, Hindi (which uses the same script as
Nepali). The provided data also included much
larger monolingual corpora for each of the four
languages (en, hi, ne, si).

Cleanliness or quality of parallel corpora for
MT systems is affected by a wide range of factors,
e.g., the parallelism of the sentence pairs, the flu-
ency of the sentences in the output language, etc.
Previous work (Goutte et al., 2012; Simard, 2014)

showed that different types of errors in the paral-
lel training data degrade MT quality in different
ways.

Intuitively, cross-lingual semantic textual sim-
ilarity is one of the most important properties
of high-quality sentence pairs. Lo et al. (2016)
scored cross-lingual semantic textual similarity in
two ways, either using a semantic MT quality es-
timation metric, or by first translating one of the
sentences using MT, and then comparing the re-
sult to the other sentence, using a semantic MT
evaluation metric. At last year’s edition of the
corpus filtering task, Lo et al. (2018)’s supervised
submissions were developed in the same philoso-
phy using a new semantic MT evaluation metric,
YiSi-1.

This year, the National Research Council
(NRC) Canada team submitted 4 systems to the
corpus filtering task, which use different strategies
to evaluate the parallelism of sentence pairs. Two
of these systems exploit the quality estimation
metric YiSi-2, the third uses a deep Transformer
network (Vaswani et al., 2017), and the fourth is
an ensemble combining these approaches.

In this paper, we describe the 4 systems we
submitted, which have three main components:
pre-filtering rules, sentence pair scoring, and re-
ranking to improve vocabulary coverage. The sys-
tems vary in the way they score sentence pairs. Of-
ficial results indicate our best systems were ranked
3rd or 4th out of over 20 submissions in most test
settings, the ensemble system providing the most
robust results.

2 System architecture

There are a wide range of factors that determine
whether a sentence pair is good for training MT
systems. Some of the more important properties
of a good training corpus include:
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• High parallelism in the sentence pairs, that
constitutes translation adequacy.

• High fluency and grammaticality, especially
for sentences in the output language, that
constitutes translation fluency.

• High vocabulary coverage, especially in the
input language, which should help make the
translation system more robust.

• High variety of sentence lengths, which
should also improve robustness.

The systems developed by the NRC exploit dif-
ferent strategies to identify a set of sentence pairs
that has these properties. The four systems shared
the same pipeline architecture:

1. Initial filtering to remove specific types of
noise

2. Sentence pair scoring

3. Re-ranking to improve vocabulary coverage

The difference between our 4 submissions is
in the way sentence pairs were scored. We used
YiSi-2 for two of our submissions, a deep Trans-
former network exploiting transfer learning for the
third, and an ensemble that combines scores from
YiSi-2 and several deep Transformer networks.

2.1 Initial filtering

The pre-filtering steps of our submissions are
mostly the same as those in Lo et al. (2018). We
remove: 1) duplicates after masking email, web
addresses and numbers, 2) the majority of number
mismatches, 3) sentences in the wrong language
according to the pyCLD2 language detector1 and
4) long sentences (either side has more than 150
tokens).

An additional pre-filtering rule included in this
year’s submissions is the removal of pairs where
over 50% of the Nepali/Sinhalese text is com-
prised of English, numbers or punctuation.

2.2 Sentence pair scoring

We experimented with different strategies to score
sentence pairs. These are described in the follow-
ing subsections.

2.2.1 YiSi-2: cross-lingual semantic MT
evaluation metric

YiSi2 is a unified semantic MT quality evaluation
and estimation metric for languages with different
levels of available resources. YiSi-1 measures the
similarity between a machine translation and hu-
man references by aggregating weighted distribu-
tional (lexical) semantic similarities, and option-
ally incorporating shallow semantic structures.

YiSi-2 is the bilingual, reference-less version,
which uses bilingual word embeddings to evaluate
cross-lingual lexical semantic similarity between
the input and MT output. While YiSi-1 success-
fully served in the WMT2018 parallel corpus fil-
tering task, YiSi-2 showed comparable accuracy
on identifying clean parallel sentences on a hand-
annotated subset of test data in our internal exper-
iments (Lo et al., 2018).

Like YiSi-1, YiSi-2 can exploit shallow seman-
tic structures as well. However, there is no seman-
tic role labeler for Nepali/Sinhalese readily avail-
able off-the-shelf, thus the version of YiSi-2 used
in this work is purely based on cross-lingual lex-
ical semantic similarity. In addition, instead of
evaluating through the bag of trigrams to reward
the same word order between the two sentences as
in YiSi-1, YiSi-2 evaluates through the bag of un-
igrams to allow reordering between the two sen-
tences in the two languages. Here is a simplified
version of YiSi without using shallow semantic
structures and bag of n-grams (it is the same as
the original version of YiSi (Lo, 2019) with the
hyperparameter β set to 0 and n to 1):

v(u) = embedding of unit u
w (u) = idf(u) = log(1 + |U|+1

|U∃u|+1)

s(e, f) = cos(v(e), v(f))

sp(
−→e ,−→f ) =

∑
a

max
b

w(ea)·s(ea,fb)
∑
a
w(ea)

sr(
−→e ,−→f ) =

∑
b

max
a

w(fb)·s(ea,fb)
∑
b

w(fb)

precision = sp(
−−−→esent,

−−−→
fsent)

recall = sr(
−−−→esent,

−−−→
fsent)

YiSi = precision·recall
α·precision+(1−α)·recall

YiSi-2 = YiSi(E=NE/SI, F=EN)

1https://github.com/aboSamoor/pycld2
2YiSi is the romanization of the Cantonese word 意思

(‘meaning’).
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training data dict. size
model lang. domain #sent #word #pair #vocab

supervised

ne
IT and religious 563k

8M

—

34k
en 5M 46k
si

IT and subtitles 647k
6M 43k

en 5M 33k

unsupervised

ne wiki 92k 5M
9k

55k
en news 779M 13B 3M
si wiki 156k 8M

8k
72k

en news 779M 13B 3M

Table 1: Statistics of data used to train the bilingual word embeddings for evaluating cross-lingual lexical semantic
similarity in YiSi-2.

where U is the set of all tested sentences in the
same language of the word unit u; α is the ratio of
precision and recall in the final YiSi score. In this
experiment, we set α to 0.5 for a balanced ratio of
precision and recall.

This year, we experimented with two methods
to build the bilingual word embeddings for eval-
uating cross-lingual lexical semantic similarity in
YiSi-2. The supervised bilingual word embed-
dings are trained on the parallel data provided us-
ing bivec (Luong et al., 2015). The unsuper-
vised (weakly supervised, to be precise) bilingual
word embeddings are built by transforming mono-
lingual w2v (Mikolov et al., 2013) embeddings of
each language into the same vector space using
vecmap (Artetxe et al., 2016). Table 1 shows the
statistics of the data used to train the two bilingual
word embedding models. Common Crawl data
was not used to train the bilingual word embed-
dings.

2.2.2 Deep Transformer Network (XLM)
The other approach we tested to score sentence
pairs exploits self-supervised cross-lingual lan-
guage model pre-training (Lample and Conneau,
2019) of a deep Transformer network, followed
by a fine-tuning stage where we teach the network
to distinguish real (good) parallel sentences from
bad ones. We thereby transfer over knowledge
acquired from a token-level (cross-lingual) lan-
guage modelling task to a sentence-level (cross-
lingual) discourse modelling task, i.e. predict-
ing whether two sentences are translations of each
other. This approach allows us to exploit both
monolingual and parallel text during the unsuper-
vised pre-training phase, therefore allowing us to
profit from the greater availability of monolingual
data.

Our use of XLM for sentence pair scoring is
similar to the Zipporah system (Xu and Koehn,
2017), in that we train a model to discriminate be-
tween positive examples of actual translations and
procedurally generated negative examples, then
use the predicted probability of the positive class
to score sentence pairs. The way we generate neg-
ative examples, which we will explain below, is
also similar, but the model itself is very different.

Lample and Conneau (2019) introduced self-
supervised cross-lingual language model pre-
training of deep Transformer networks, and re-
leased a system called XLM (for cross-lingual lan-
guage model).3 The cross-lingual LM pre-training
task is similar to the masked language model
(MLM) pre-training used in BERT (Devlin et al.,
2018), but the model can exploit cross-lingual con-
text, as we will explain below. The architecture
of XLM is a Transformer network like BERT, but
it incorporates language embeddings in the input
representation layer.

We used XLM to train a model using almost
all the available data, except for the monolingual
English Common Crawl data. This includes both
monolingual and parallel data, and includes the
Hindi datasets. All the data was preprocessed4

using XLM’s preprocessing tools, which include
the Moses tokenizer (which defaults to English for
both Nepali and Sinhala) and a script to remove
accents and convert to lower case.

We then applied byte pair encoding5 (BPE; Sen-

3https://github.com/facebookresearch/
XLM

4The Nepali-English dictionary was first converted to the
same format as the rest of the parallel data (two separate, line-
aligned files).

5We used fastBPE (https://github.com/
glample/fastBPE).
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nrich et al., 2016a,b) to the training and test data,
after learning 80K BPE codes on the concatena-
tion of 3 monolingual corpora (of similar sizes)
representing the 3 languages present in the test set
(selected from sources similar to the benchmark,
comprised of Wikipedia translations):

• Sinhala: all of Sinhala Wikipedia and all of
Sinhala Common Crawl, for a total of 5.3
million sentences

• Nepali: all of Nepali Wikipedia, all of Nepali
Common Crawl, and 1.6M sentences sam-
pled from the monolingual Hindi corpus, for
a total of 5.3 million sentences

• English: 5.3 million sentences sampled from
English Wikipedia

Once BPE was applied to all the training data,
for each language and language pair, we kept 5K
sentence pairs for validation, and used the rest for
training. Statistics on the data used to train the
deep Transformer network are shown in Table 2.
In all, this data contains around 1 billion tokens,
with a vocabulary6 size of 95056 (including BPE
codes and single characters).

The size differences between the training sets of
the 4 languages (between 3.6 and 10 million sen-
tences) and 3 language pairs (between 577K and
642K sentence pairs) were assumed to be unim-
portant, as XLM samples the languages during
training, such that under-represented languages
are sampled more frequently.7

To teach the Transformer network to distinguish
good translations from bad ones, we generated
negative examples based on the positive exam-
ples in the (clean) parallel training data, in a man-
ner similar to that of Xu and Koehn (2017), but
adapted to address one of the types of noise in the
(noisy) test data, that is sentence pairs where ei-
ther side (or both) are not in the right language.
Note that corpus filtering systems often use lan-
guage identification to heuristically filter out this
type of noise, but we found it important to provide
our system this type of negative example to help it
learn to assign them low scores.

6We compute the vocabulary on the data used to learn the
BPE codes, after applying BPE to it.

7We still recommend minding the size differences be-
tween languages, as the sampling function currently imple-
mented in XLM will not behave as intended if the differences
are too great.

For each of the positive examples in the (clean)
parallel training data, we generate negative exam-
ples that are either inadequate or lack fluency (or
both), the idea being that such sentences are not
useful for training MT systems. Specifically, we
generate 4 negative examples using the following
4 procedures:

1. Swap sentence in source or target with a con-
founding sentence randomly drawn from the
test corpora (from either source or target, re-
gardless of which side is being swapped).

2. Shuffle words in source or target. Make sure
the one we shuffle contains at least 2 words.

3. Do both 1 and 2. Do these separately, so
we may corrupt the same side twice, or both
sides, but in different ways.

4. Either copy source as target, copy target as
source or swap source and target. This is
meant to learn to detect noise due to the
source and/or target being in the wrong lan-
guage.

Sampling negative examples from the test cor-
pus (in method 1) was meant to teach the model
something about the language used in the test data.
We feared that this might teach the model that sen-
tences like those in the test corpora are always neg-
ative, so we also tested an alternative source of
confounding sentences, that is to draw them from
the positive examples instead (in any language).

Note that sentence pairs where the target was
identical to the source were removed before gener-
ating the data for fine-tuning. Not translating cer-
tain words does happen in practice (e.g. names,
loan words) but if the whole text is a copy of
the source, it is not very informative on the task
of translating, and in the case of corpus filtering,
it may be confounding, as we know some of the
noise in the test data is comprised of identical or
very similar text segments in the same language.
We also removed pairs where both source and tar-
get contained a single word.

The model was trained using a fork of XLM
which we modified to allow for fine-tuning on pre-
labeled sentence pairs (rather than positive exam-
ples only, from which negative examples are gen-
erated on-the-fly by XLM).

We start by pre-training the model on both
monolingual and cross-lingual (masked) language
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Lang(s) Training data sources Nb training sentences Nb validation sentences
hi IITB (mono) 10M (sampled) 5000
si Wiki, CC 5.2M 2500 each Wiki and CC
ne Wiki, CC 3.6M 2500 each Wiki and CC
en Wiki 10M (sampled) 5000
hi–en IITB (para) 600K (sampled) 5000
si–en Open Subtitles, GNOME/KDE/Ubuntu 642K 2500 each
ne–en Bible, Global Voices, Penn Treebank,

GNOME/KDE/Ubuntu, ne–en
dictionary

577K 500 Treebank and 4500 Bible

Table 2: Data used to train the deep Transformer network. CC means Common Crawl. For more information on
the data sources, see the overview paper on the corpus filtering task.

model tasks. The task can be defined as fol-
lows: given a sequence of words in which cer-
tain words have been masked, predict the masked
words based on the observable ones. The sequence
of words can be one or more sentences in a single
language, or a parallel pair of sentences in two dif-
ferent languages. In the bilingual case, the model
can learn to use cross-lingual context in order to
predict words, that is to use not only the context
in the language the word belongs to, but also the
translation of that context (and the word itself) in
another language. Note that the input representa-
tion layer in XLM includes language embeddings,
which are added to the input representation of each
token. We thus specify the language of the texts
being fed to the (multilingual) encoder.

Then we fine-tune the model on a sentence pair
classification (SPC) task, which can be defined as
follows: given two sentences, a source and a tar-
get, is the target a valid (i.e. adequate and fluent)
translation of the source. This is done only on par-
allel data, and instead of using only real examples
of translations, as during pre-training, we train on
both positive and negative examples (in a ratio of
1:4).

During fine-tuning, we can choose to keep train-
ing the model on the language modeling tasks, to
avoid overfitting the new data or forgetting too
much about the old. We tested this approach, us-
ing only monolingual data for the language model
task during fine-tuning – this was done for practi-
cal reasons, to avoid having the model update its
language model on the negative examples in the
parallel training sets used for fine-tuning.8

To set the hyperparameters, we used the de-
fault values or those used by Lample and Conneau
(2019), with a few exceptions. We reduced the

8Our fork of XLM was created simply to accommodate
fine-tuning on pre-labeled examples, and was not fool-proof
in this respect.

number of layers from 12 to 6 and the embedding
size from 1024 to 512. We reduced the maximum
batch size for pre-training from 64 to 32 (because
of limited GPU memory), with around 4000 to-
kens per batch, and used a learning rate of 2e-4 for
pre-training. For fine-tuning, we used a batch size
of 8 and a learning rate of 1e-5.

It is worth noting that this model was supposed
to be pre-trained for a week or more, but we dis-
covered an issue with our data and had to restart
pre-training the day before the deadline, so we
were only able to pre-train it for 16 hours or so.
Our preliminary experiments suggest we could
have reduced the perplexity of the (monolingual
and cross-lingual) LM by two thirds or more if we
had pre-trained fully, but we do not know what ef-
fect this would have had on the sentence pair scor-
ing task. We also had to foreshorten fine-tuning,
as we only had time to do a few epochs. It is also
worth noting that we only had time to evaluate MT
quality on a 1M-word sample of Sinhala before the
deadline, which may have made our model selec-
tion suboptimal.

2.3 Re-ranking to improve vocabulary
coverage

Our scoring mechanisms process each sentence
pair independently, therefore we sometimes ob-
serve redundancy in the top-ranking sentences, as
well as a somewhat limited coverage of the words
of the source language. To mitigate this issue, we
applied a form of re-ranking to improve source
token coverage. Going down the ranked list of
(previously scored) sentence pairs, we applied a
penalty to the pair’s score if it did not contain
at least one “new” source-language word bigram,
i.e., a pair of consecutive source-language tokens
not observed in previous (higher-scoring) sentence
pairs. The penalty was simply a 20% score dis-
count. This had the effect of down-ranking sen-
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Source of
confounders

Fine-tuning
tasks

Acc
(hi–en)

Acc
(ne–en)

Acc
(si–en)

Acc
(avg)

Test set SPC only 96.3 99.3 94.8 96.8
Test set SPC+MLM 92.8 98.2 88.3 93.1
Train set SPC only 95.6 95.7 93.2 94.8
Train set SPC+MLM 93.7 93.4 91.1 92.8

Table 3: Sentence pair classification accuracy of XLM model on dev sets. Confounders are sentences that we draw
at random to create inadequate translations.

ne-en si-en
system 1M-word 5M-word 1M-word 5M-word
Zipporah* 3.40 4.22 4.16 4.77
random 1.30 3.01 1.43 3.33
Zipporah 4.14 4.42 4.12 4.96
YiSi-2-sup 3.86 3.76 4.85 4.71
YiSi-2-unsup 4.42 3.91 3.97 4.56
XLM-v2-spc 4.14 4.09 4.52 4.72
XLM-v2-spc-mlm 3.96 3.69 4.37 4.68
XLM-v3-spc-mlm 3.89 3.91 4.12 4.66
ensemble 3.94 3.95 4.89 4.85

Table 4: Uncased BLEU scores on the official dev (“dev-test”) sets achieved by the SMT systems trained on the
1M- and 5M-word corpora subselected by the scoring systems. For XLM, v2 is the version that selects confounders
from the test corpora, whereas v3 selects them from the training data, and spc-mlm means that both SPC and MLM
were used for fine-tuning. *These results for the Zipporah baseline were reported by the task organizers, and the
SMT architecture was different from our systems. We obtained Zipporah’s score lists and trained our own SMT
systems using the data selected from those lists, and results are shown in the third row.

tences that were too similar to a previously se-
lected sentence.

2.4 Ensembling

To combine the output of different sentence pair
scoring methods, we use the following, rank-based
function:

s∗(e, f) = 1− 1

|S| ×N
∑

s∈S
r(s(e, f))

where N is the number of sentence pairs, S is the
set of scoring functions, and r(s(e, f)) returns the
rank of the pair of sentences (e, f) according to
score s.

3 Experiments and results

3.1 Intrinsic evaluation of XLM

To evaluate the deep Transformer model intrinsi-
cally, we can look at its accuracy on the sentence
pair classification task used to fine-tune it. Ta-
ble 3 shows the accuracy on the dev sets for all
three language pairs. The table shows the results

obtained using 4 different configurations for train-
ing, with the confounding sentences being drawn
either from the training data or test data, and us-
ing either sentence pair classification (SPC) only
or both SPC and the (monolingual) masked lan-
guage model (MLM) for fine-tuning. First, we see
that the accuracy scores are high,9 so the model is
good at discriminating real translations from pro-
cedurally generated bad ones.

The results also suggest that including the
(monolingual) MLM task during fine-tuning is a
hindrance, since the model achieves lower accu-
racy. However, it is important to note that we did
no hyperparameter tuning, had to use a smaller
model because of time and resource limitations,
and did not have time to fully train any of the
models tested. More extensive testing would be
required to assess the usefulness of multi-task fine-
tuning.

If we analyze the scores output by the model
on the test data (i.e. the predicted probability of

9Picking the most frequent class would achieve 80% ac-
curacy, as 80% of the examples are negative.
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SMT NMT
langs system 1M-word 5M-word 1M-word 5M-word

ne–en

YiSi-2-sup 3.55 (10) 4.07 (T-14) 3.06 (12) 1.34 (10)
YiSi-2-unsup 4.04 (T-4) 4.14 (T-12) 3.74 (8) 0.98 (16)
XLM-v2-spc 3.92 (7) 4.51 (4) 4.03 (7) 1.40 (9)
ensemble 4.10 (3) 4.30 (8) 4.58 (5) 1.10 (14)

si–en

YiSi-2-sup 3.87 (6) 4.39 (9) 4.97 (3) 1.58 (9)
YiSi-2-unsup 3.14 (13) 4.29 (10) 2.41 (12) 0.68 (15)
XLM-v2-spc 3.80 (T-8) 4.42 (T-7) 1.63 (15) 0.91 (13)
ensemble 4.19 (3) 4.54 (4) 4.06 (4) 1.39 (11)

Table 5: BLEU scores (and ranking, out of 21 submissions for ne–en and 23 for si–en) of NRC’s submissions on
the test sets. The best of our submissions in each test setting is bolded.

the positive class), we see that the model predicts
that a vast majority of sentences pairs are not valid
translations of each other, their score being be-
low 0.5. We briefly inspected the top-scoring sen-
tences in the test set,10 and in the case of ne–en,
these seem to contain a lot of biblical texts, which
suggests a domain bias, as the ne–en fine-tuning
data included biblical texts.

3.2 MT quality check

We used the software provided by the task organiz-
ers to extract the 1M-word and 5M-word samples
from the original test corpora, using the scores of
each of our 4 systems in turn. We then trained
SMT systems using the extracted data. The SMT
systems were trained using Portage (Larkin et al.,
2010) with components and parameters similar
to the German-English SMT system in Williams
et al. (2016). The MT systems were then evaluated
on the official dev set (“dev-test”). Table 4 shows
their BLEU scores. We have also included the re-
sults of a random scoring baseline (with initial fil-
tering and token coverage re-ranking), as well as
those of Zipporah.

These results show that all our BLEU scores are
above the random baseline, and some of our sys-
tems outperform Zipporah when using a 1M-word
sample (for both ne–en and si–en), but not when
using a larger, 5M-word sample. We also see that
our ensembling method produced good results on
si–en, but not on ne–en, where individual systems
fared better.

It is also interesting to note that in some cases,
the 5M-word sample produced poorer MT results
than the 1M-word sample. In fact, we see that

10We used the XLM model’s scores directly for this, and
did not apply re-ranking.

the 1M-word samples selected by our best sys-
tems produce similar MT quality than the 5M-
word samples selected by Zipporah.

Based on these results, we decided to submit
the Transformer model that was fine-tuned on v2
of the fine-tuning data (where confounders were
drawn from the test corpora), using SPC only, as
well as both YiSi models and an ensemble of these
three models.

4 Official Results

Table 5 presents the BLEU scores of our 4 systems
on the test sets, using either 1M-word or 5M-word
samples. Our best systems were ranked 3rd or 4th
out of over 20 submissions in most test settings,
except when using NMT on a 5M-word sample.
It is worth noting that we were not able to con-
duct any NMT tests during development due to re-
source limitations, and were thus unable to tune
any of our systems for this test setting.

If we compare the results of our 4 systems, the
ensemble system performed best in 4 of 8 test set-
tings, whereas XLM and YiSi (supervised) were
best in 2 settings each. The ensemble system was
most robust with an average score of 3.53 over all
8 test settings.

In the case of NMT, BLEU scores are much
lower when using 5M-word rather than 1M-word
samples, and this was true for other top systems,
which suggests there is less that 5M words worth
of parallel data in the test corpora that are useful
(i.e. not too noisy) for NMT training. In the case
of SMT, BLEU scores are slightly higher when
using the larger samples, which suggests SMT is
more robust to noise in the training data. Finally,
it is worth noting that our best scores and rankings
are similar for both language pairs.
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5 Conclusion

In this paper, we presented the NRC’s submissions
to the WMT19 parallel corpus filtering task. Offi-
cial results indicate our best systems were ranked
3rd or 4th out of over 20 submissions in most test
settings, except when using NMT on a 5M-word
sample, and that the ensemble system provided the
most robust results. Further experimentation is re-
quired to understand why the sentence pair rank-
ings produced by our systems work well for NMT
if we take a small sample of top-ranked pairs, but
less well if we take larger samples. A better way
of re-ranking the pairs to optimize vocabulary cov-
erage may lead to improved MT performance. Fu-
ture work could also include using self-training
to adapt the Transformer network to the test data,
by iteratively selecting the most likely good ex-
amples in the test data and updating the language
model and/or sentence pair classification model
using these examples.
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2016. Edinburgh’s statistical machine translation
systems for wmt16. In Proceedings of the First
Conference on Machine Translation, pages 399–
410, Berlin, Germany. Association for Computa-
tional Linguistics.

Hainan Xu and Philipp Koehn. 2017. Zipporah: a fast
and scalable data cleaning system for noisy web-
crawled parallel corpora. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2945–2950, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

262



Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 3: Shared Task Papers (Day 2) pages 263–268
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

Low-Resource Corpus Filtering using Multilingual Sentence Embeddings

Vishrav Chaudhary� Yuqing Tang� Francisco Guzmán� Holger Schwenk� Philipp Koehn�
�Facebook AI �Johns Hopkins University

{vishrav,yuqtang,fguzman,schwenk}@fb.com phi@jhu.edu

Abstract

In this paper, we describe our submission to
the WMT19 low-resource parallel corpus fil-
tering shared task. Our main approach is based
on the LASER toolkit (Language-Agnostic
SEntence Representations), which uses an
encoder-decoder architecture trained on a par-
allel corpus to obtain multilingual sentence
representations. We then use the representa-
tions directly to score and filter the noisy par-
allel sentences without additionally training a
scoring function. We contrast our approach
to other promising methods and show that
LASER yields strong results. Finally, we pro-
duce an ensemble of different scoring methods
and obtain additional gains. Our submission
achieved the best overall performance for both
the Nepali–English and Sinhala–English 1M
tasks by a margin of 1.3 and 1.4 BLEU re-
spectively, as compared to the second best sys-
tems. Moreover, our experiments show that
this technique is promising for low and even
no-resource scenarios.

1 Introduction

The availability of high-quality parallel training
data is critical for obtaining good translation per-
formance, as neural machine translation (NMT)
systems are less robust against noisy parallel data
than statistical machine translation (SMT) systems
(Khayrallah and Koehn, 2018). Recently, there is
an increased interest in the filtering of noisy par-
allel corpora (such as Paracrawl1) to increase the
amount of data that can be used to train translation
systems (Koehn et al., 2018).

While the state-of-the-art methods that use
NMT models have proven effective in mining

1http://www.paracrawl.eu/

parallel sentences (Junczys-Dowmunt, 2018) for
high-resource languages, their effectiveness has
not been tested in low-resource languages. The
implications of low availability of training data for
parallel-scoring methods is not known yet.

For the task of low-resource filtering (Koehn
et al., 2019), we are provided with a very noisy
40.6 million-word (English token count) Nepali–
English corpus and a 59.6 million-word Sinhala–
English corpus crawled from the web as part of the
Paracrawl project. The challenge consists of pro-
viding scores for each sentence pair in both noisy
parallel sets. The scores will be used to subsam-
ple sentence pairs that amount to 1 million and 5
million English words. The quality of the result-
ing subsets is determined by the quality of a sta-
tistical machine translation (Moses, phrase-based
(Koehn et al., 2007)) and the neural machine trans-
lation system fairseq (Ott et al., 2019) trained
on this data. The quality of the machine transla-
tion system will be measured by BLEU score us-
ing SacreBLEU (Post, 2018) on a held-out test set
of Wikipedia translations for Sinhala–English and
Nepali–English from the flores dataset (Guzmán
et al., 2019).

In our submission for this shared task, we use of
multilingual sentence embeddings obtained from
LASER2 which uses an encoder-decoder architec-
ture to train a multilingual sentence representa-
tion model using a relatively small parallel corpus.
Our experiments demonstrate that the proposed
approach outperforms other existing approaches.
Moreover we make use of an ensemble of multi-
ple scoring functions to further boost the filtering
performance.

2https://github.com/facebookresearch/LASER
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2 Methodology

The WMT 2018 shared task for parallel corpus
filtering (Koehn et al., 2018)3 introduced sev-
eral methods to tackle a high-resource German-
English data condition.While many of these meth-
ods were successful to filter out noisy transla-
tions, few have been tried under low-resource con-
ditions. In this paper, we address the problem
of low-resource sentence filtering using sentence-
level representations and compare them to other
popular methods used in high-resource conditions.

The LASER model (Artetxe and Schwenk,
2018a) makes use of multilingual sentence rep-
resentations to gauge the similarity between the
source and the target sentence. It has provided
state-of-the-art performance on the BUCC corpus
mining task and has also been effective in filter-
ing WMT Paracrawl data (Artetxe and Schwenk,
2018a). However, these tasks only considered
high-resource languages, namely French, German,
Russian and Chinese. Fortunately, this technique
has also been effective on zero-shot cross-lingual
natural language inference in the XNLI dataset
(Artetxe and Schwenk, 2018b) which makes it
promising for the low resource scenario being fo-
cused in this shared task. In this paper, we propose
to use an adaptation of LASER to low-resource
conditions to compute the similarity scores to fil-
ter out noisy sentences.
For comparison to LASER, we also establish ini-
tial benchmarks using Bicleaner and Zipporah,
two popular baselines which have been used in
the Paracrawl project; and dual conditional cross-
entropy, which has proven to be state-of-the-art
for the high-resource corpus filtering task (Koehn
et al., 2018). We explore the performance of
the techniques under similar pre-processing con-
ditions regarding language identification filtering
and lexical overlap. We observe that LASER
scores provide a clear advantage for this task. Fi-
nally, we perform ensembling of the scores com-
ing from different methods. We observe that when
LASER scores are included in the mix, the boost
in performance is relatively minor. In the rest of
this section we discuss the settings for each of the
methods applied.

3http://statmt.org/wmt18/
parallel-corpus-filtering.html

2.1 LASER Multilingual Representations

The underlying idea is to use the distances
between two multilingual representations as a
notion of parallelism between the two embedded
sentences (Schwenk, 2018). To do this, we
first train an encoder that learns to produce a
multilingual, fixed-size sentence representa-
tion; and then compute a distance between two
sentences in the learned embedding space. In
addition, we use a margin criterion, which uses
a k nearest neighbors approach to normalize the
similarity scores given that cosine similarity is not
globally consistent (Artetxe and Schwenk, 2018a).

Encoder The multilingual encoder consists
of a bidirectional LSTM, and our sentence em-
beddings are obtained by applying max-pooling
over its output. We use a single encoder and
decoder in our system, which are shared by all
languages involved. For this purpose, we trained
multilingual sentence embeddings on the provided
parallel data only (see Section 3.2 for details).

Margin We follow the definition of ratio4 from
(Artetxe and Schwenk, 2018a). Using this, the
similarity score between two sentences (x, y) can
be computed as

2k cos(x, y)∑
y′∈NNk(x)

cos(x, y′) +
∑

x′∈NNk(y)
cos(x′, y))

where NNk(x) denotes the k nearest neighbors
of x in the other language, and analogously for
NNk(y). Note that this list of nearest neighbors
does not include duplicates, so even if a given sen-
tence has multiple occurrences in the corpus, it
would have (at most) one entry in the list.

Neighborhood Additionally, we explored two
ways of sampling k nearest neighbors. First a
global method, in which we used the neighbor-
hood comprised of the noisy data along with the
clean data. Second a local method, in which we
only scored the noisy data using the noisy neigh-
borhood, or the clean data using the clean neigh-
borhood.5

4We explored the absolute, distance and ratio margin cri-
teria, but the latter worked best

5this last part was only done for training an ensemble
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2.2 Other Similarity Methods
Zipporah (Xu and Koehn, 2017; Khayrallah
et al., 2018), which is often used as a baseline
comparison, uses language model and word trans-
lation scores, with weights optimized to separate
clean and synthetic noise data. In our setup,
we trained Zipporah models for both language
pairs Sinhala–English and Nepali–English. We
used the open source release6 of the Zipporah
tool without modifications. All components of
the Zipporah model (probabilistic translation dic-
tionaries and language models) were trained on
the provided clean data (excluding the dictionar-
ies). Language models were trained using KenLM
(Heafield et al., 2013) over the clean parallel data.
We are not using the provided monolingual data,
as per default setting. We used the development
set from the flores dataset for weight training.

Bicleaner (Sánchez-Cartagena et al., 2018) uses
lexical translation and language model scores, and
several shallow features such as: respective length,
matching numbers and punctuation. As with Zip-
porah, we used the open source Bicleaner7 toolkit
unmodified out-of-the-box. Only the provided
clean parallel data was used to train this model.
Bicleaner uses a rule-based component to identify
noisier examples in the parallel data and trains a
classifier to learn how to separate them from the
rest of the training data. The use of language
model features is optional. We only used models
without a language model scoring component.8

Dual Conditional Cross-Entropy One of the
best performing methods on this task was
dual conditional cross-entropy filtering (Junczys-
Dowmunt, 2018), which uses a combination of
forward and backward models to compute a cross-
lingual similarity score. In our experiments, for
each language pair, we used the provided clean
training data to train neural machine translation
models in both translation directions: source-to-
target and target-to-source. Given such a trans-
lation model M , we force-decode sentence pairs
(x, y) from the noisy parallel corpus and obtain
the cross-entropy score

HM (y|x) = 1

|y|

|y|∑

t=1

log pM (yt|y[1,t−1], x) (1)

6https://github.com/hainan-xv/zipporah
7https://github.com/bitextor/bicleaner
8We found that including a LM as a feature resulted in

almost all sentence pairs receiving a score of 0.

Forward and backward cross entropy scores,
HF (y|x) and HB(x|y) respectively, are then av-
eraged with an additional penalty on a large
difference between the two scores |HF (y|x) −
HB(x|y)|.

score(x, y) =
HF (y|x) +HB(x|y)

2
(2)

− |HF (y|x)−HB(x|y)|
The forward and backward models are five-

layer encoder/decoder transformers trained using
fairseq with parameters identical to the ones
used in the baseline flores model 9. The mod-
els were trained on the clean parallel data for
100 epochs. For the Nepali-English task, we also
explored using Hindi-English data without major
differences in results. We used the flores de-
velopment set to pick the model that maximizes
BLEU scores.

2.3 Ensemble
To leverage over the strengths and weaknesses of
different scoring systems, we explored the use of
a binary classifier to build an ensemble. While it’s
trivial to obtain positives (e.g. the clean training
data), mining negatives can be a daunting task.
Hence, we use positive-unlabeled (PU) learning
(Mordelet and Vert, 2014), which allows us to ob-
tain classifiers without having to curate a dataset of
explicit positive and negatives. In this setting our
positive labels come from the clean parallel data
while the unlabeled data comes from the noisy set.

To achieve this, we apply bagging of 100 weak,
biased classifiers (i.e. with a 2:1 bias for unlabeled
data vs. positive label data). We use support vector
machines (SVM) with a radial basis kernel, and we
randomly sub-sample the set of features for train-
ing each base classifier, helping keep them diverse
and low-capacity.

We ran two iterations of training of this ensem-
ble. In the first iteration we used the original pos-
itive and unlabeled data described above. For the
second iteration, we used the learned classifier to
re-label the training data. We explored several re-
labeling approaches (e.g. setting a threshold that
maximizes F1 score). However, we found that
setting a class boundary to preserve the original
positives-to-unlabeled ratio worked best. We also
observed that the performance deteriorated after
two iterations.

9https://github.com/facebookresearch/
flores#train-a-baseline-transformer-model
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3 Experimental Setup

We experimented with various methods using a
setup that closely mirrors the official scoring of
the shared task. All methods are trained on the
provided clean parallel data (see Table 1). We did
not use the given monolingual data. For develop-
ment purposes, we used the provided flores dev
set. For evaluation, we trained machine translation
systems on the selected subsets (1M, 5M) of the
noisy parallel training data using fairseq with
the default flores training parameter configura-
tion. We report SacreBLEU scores on the flores
devtest set. We selected our main system based on
the best scores on the devtest set for the 1M con-
dition.

si-en ne-en hi-en

Sentences 646k 573k 1.5M
English words 3.7M 3.7M 20.7M

Table 1: Available bitexts to train the filtering ap-
proaches.

3.1 Preprocessing
We applied a set of filtering techniques similar to
the ones used in LASER (Artetxe and Schwenk,
2018a) and assigned a score of −1 to the noisy
sentences based on incorrect language on either
the source or the target side or having an overlap
of at least 60% between the source and the target
tokens. We used fastText10 for language id filter-
ing. Since LASER computes similarity scores for
a sentence pair using these filtering techniques, we
experimented by adding these to the other models
we used for this shared task.

3.2 LASER Encoder Training
For our experiments and the official submission,
we trained a multilingual sentence encoder us-
ing the permitted resources in Table 1. We
trained a single encoder using all the parallel data
for Sinhala–English, Nepali–English and Hindi-
English. Since Hindi and Nepali share the same
script, we concatenated their corpora into a single
parallel corpus. To account for the difference in
size of the parallel training data, we over-sampled
the Sinhala–English and Nepali/Hindi-English bi-
texts in a ratio of 5:3. This resulted in roughly
3.2M training sentences for each language direc-
tion, i.e. Sinhala and combined Nepali-Hindi.

109https://fasttext.cc/docs/en/
language-identification.html

The models were trained using the same setting
as the public LASER encoder which involves nor-
malizing texts and tokenization with Moses tools
(falling back to the English mode). We first learn
a joint 50k BPE vocabulary on the concatenated
training data using fastBPE11. The encoder sees
Sinhala, Nepali, Hindi and English sentences at
the input, without having any information about
the current language. This input is always trans-
lated into English.12 We experimented with var-
ious techniques to add noise to the English input
sentences, similar to what is used in unsupervised
neural machine translation, e.g. (Artetxe et al.,
2018; Lample et al., 2018), but this did not im-
prove the results.

The encoder is a five-layer BLSTM with 512
dimensional layers. The LSTM decoder has one
hidden layer of size 2048, trained with the Adam
optimizer. For development, we calculate similar-
ity error on the concatenation of the flores dev
sets for Sinhala–English and Nepali–English. Our
models were trained for seven epochs for about 2.5
hours on 8 Nvidia GPUs.

4 Results

From the results in Table 2, we observe several
trends: (i) the scores for the 5M condition are gen-
erally lower than for the 1M condition. This con-
dition appears to be exacerbated by the application
of language id and overlap filtering. (ii) LASER
shows consistently good performance. The local
neighborhood works better than the global one.
In that setting, LASER is on average 0.71 BLEU
above the best non-LASER system. These gaps
are higher for the 1M condition (0.94 BLEU).
(iii) The best ensemble configuration provides
small improvements over the best LASER config-
uration. For Sinhala–English the best configura-
tion includes every other scoring method (ALL).
For Nepali–English the best configuration is an
ensemble of LASER scores. (iv) Dual cross en-
tropy shows mixed results. For Sinhala–English,
it only works once the language id filtering is
enabled which is consistent with previous obser-
vations (Junczys-Dowmunt, 2018). For Nepali–
English, it provides scores well below the rest of
the scoring methods. Note that we did not perform
an architecture exploration.

11https://github.com/glample/fastBPE
12This means that we have to train an English auto-

encoder. This didn’t seem to hurt, since the same encoder
also handles the three other languages
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Method ne-en si-en

1M 5M 1M 5M

Zipporah
base 5.03 2.09 4.86 4.53

+ LID 5.30 1.53 5.53 3.16
+ Overlap 5.35 1.34 5.18 3.14

Dual X-Ent.
base 2.83 1.88 0.33 4.63+

+ LID 2.19 0.82 6.42 3.68
+ Overlap 2.23 0.91 6.65 4.31

Bicleaner
base 5.91 2.54+ 6.20 4.25

+ LID 5.88 2.09 6.36 3.95
+ Overlap 6.12+ 2.14 6.66+ 3.26

LASER
local 7.37* 3.15 7.49* 5.01
global 6.98 2.98* 7.27 4.76

Ensemble
ALL 6.17 2.53 7.64 5.12
LASER glob. + loc. 7.49 2.76 7.27 5.08*

Table 2: SacreBLEU scores on the flores devtest set.
In bold, we highlight the best scores for each condition.
In italics*, we highlight the runner up. We also signal
the best non-LASER method with +.

Submission For the official submission, we used
the ALL ensemble for the Sinhala–English task
and the LASER global + local ensemble for
the Nepali–English task. We also submitted the
LASER local as a contrastive system. As we can
see in Table 3, the results from the main and con-
trastive submissions are very close. In one case,
the contrastive solution (a single LASER) model
yields better results than the ensemble. These
results placed our 1M submissions 1.3 and 1.4
BLEU points above the runner ups for the Nepali–
English and Sinhala–English tasks, respectively.
As noted before, our systems perform worse on
the 5M condition. We also noted that the numbers
in Table 2 differ slightly from the ones reported in
(Koehn et al., 2019). We attribute this difference to
the effect of training in 4 (ours) gpus vs. 1 (theirs).

Method ne-en si-en

1M 5M 1M 5M

Main - Ensemble 6.8 2.8 6.4 4.0
Constr. - LASER local 6.9 2.5 6.2 3.8
Best (other) 5.5 3.4 5.0 4.4

Table 3: Official results of the main and secondary
submissions on the flores test set evaluated with the
NMT configuration. For comparison, we include the
best scores by another system.

4.1 Discussion
One natural question to explore is how would the
LASER method benefit if it had access to addi-
tional data. To explore this, we used the LASER
open-source toolkit, which provides a trained en-
coder covering 93 languages, but does not in-
clude Nepali. In Table 4, we observe that the pre-
trained LASER model outperforms the LASER lo-
cal model by 0.4 BLEU. For Nepali–English the
situation reverses: LASER local provides much
better results. However, the results of the pre-
trained LASER are only slightly worse that those
of Bicleaner (6.12) which is the best non-LASER
method. This suggests that LASER can function
well in zero-shot scenarios (i.e. Nepali–English),
but it works even better when it has additional su-
pervision for the languages it is being tested on.

Method ne-en si-en

1M 5M 1M 5M

Pre-trained LASER 6.06 1.49 7.82 5.56
LASER local 7.37 3.15 7.49 5.01

Table 4: Comparison of results on the flores devtest
set using the constrained and the pre-trained vesions of
LASER.

5 Conclusions and Future Work

In this paper, we describe our submission to the
WMT low-resource parallel corpus filtering task.
We use of multilingual sentence embeddings from
LASER to filter noisy sentences. We observe that
LASER can obtain better results than the base-
lines by a wide margin. Incorporating scores from
other techniques and creating an ensemble pro-
vides additional gains. Our main submission to
the shared task is based on the best of the ensem-
ble configuration and our contrastive submission is
based on the best LASER configuration. Our sys-
tems perform the best on the 1M condition for the
Nepali–English and Sinhala–English tasks. We
analyze the performance of a pre-trained version
of LASER and observe that it can perform the fil-
tering task well even in zero-resource scenarios,
which is very promising.

In the future, we want to evaluate this technique
for high-resource scenarios and observe whether
the same results transfer to that condition. More-
over we plan to investigate how the size of training
data (parallel, monolingual) impact low-resource
sentence filtering task.
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Abstract

The WMT19 Parallel Corpus Filtering For
Low-Resource Conditions Task aims to test
various methods of filtering noisy parallel cor-
pora, to make them useful for training ma-
chine translation systems. This year the noisy
corpora are from the relatively low-resource
language pairs of English-Nepali and English-
Sinhala. This papers describes the Air Force
Research Laboratory (AFRL) submissions, in-
cluding preprocessing methods and scoring
metrics. Numerical results indicate a benefit
over baseline and the relative effects of differ-
ent options.

1 Introduction

For this task the participants were provided with
a corpus of parallel data in English-Nepali (en-
ne) and English-Sinhala (en-si). Both parallel and
monolingual training datasets were provided in
these languages. The task organizers built statisti-
cal machine translation (SMT) and neural machine
translation (NMT) systems from the scores pro-
duced, based on parallel training sets of 1M (one
million) and 5M English words.

Subset selection techniques often strive to re-
duce a set to the most useful. For the shared task
one should avoid selecting:

• A line with undue repetition of content of
other selected lines. This repetition can ex-
tend training times and/or skew the transla-
tion system to favor this type of line.

• Long lines, which will be ignored in training
the MT systems.

In addition to adapting the corpus to the build-
ing of a general-purpose MT system, we must also
deal with significant noise. The main types of
noise present in the given data are:

• Not natural language

• One or both languages are incorrect

• Lines are not translations of each other

In contrast to our WMT18 submission (Erd-
mann and Gwinnup, 2018), we include a text
quality metric in the subcorpus-building process,
rather than combining it afterward.

2 Preprocessing

As a first step, a rough preprocessing filter is ap-
plied to the data.

We remove lines where either language text
contains more than 80 words, since the test sys-
tems use a maximum of 80 words per line. We
also remove lines where the language ID probabil-
ities from fastText (Joulin et al., 2016b,a) do not
match the expected languages (using the pre-built
language ID models of the authors).

This preprocessed text is used to generate the
scores that determine a line’s usefulness. We
note that there are many fewer preprocessing steps
than our previous system (Erdmann and Gwinnup,
2018). We can simplify preprocessing because in-
clusion of a text quality metric during subcorpus-
building will avoid other forms of noise in the pro-
cess.

3 Coverage Metric

Our metric for subcorpus-building uses both a
coverage metric and a text quality metric.

We first give our coverage metric (Gwinnup
et al., 2016). Let us select a subcorpus S from
a larger corpus C to maximize its similarity to a
representative corpus T . Let our preferred subs-
elected subcorpus size be τ times the size of T .
Let V be a set of vocabulary elements of interest.
Defining cv(X) to be the count of the occurrence
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of feature v ∈ V in a given corpusX , the coverage
g is given by

g(S, T, τ) =

∑
v∈V f(min(cv(S), c

τ
v(T )))∑

v∈V f(cτv(T )) + pv(S, T, τ)
(1)

where the oversaturation penalty pv(S, T, τ) is

max(0, cv(S)−cτv(T )) [f(cτv(T ) + 1)− f(cτv(T ))] .

Here f can be any submodular function, but we
choose exclusively f(x) = log(1+x). The scaled
count cτv(T ) = τcv(T ) accounts for the preferred
size of the selected subcorpus differing from the
size of T .

4 Text Quality Metric

To create a text quality metric, we use the given
clean parallel data to create a MT system. We use
the MT system to translate both pre-filtered noisy
parallel corpora into English.

This allows us to compute the Meteor
(Denkowski and Lavie, 2014) score of the
given English lines, using the translated English
as a reference. The Meteor metric was chosen
due to its using deeper linguistic information than
BLEU. The text quality metric of a subcorpus is
given by its average:

h(S) =

∑
s∈Sm(s)∑
s∈S 1

(2)

where m(s) is the text quality metric (e.g., Me-
teor) score of line s. This corpus metric is defined
to be zero for the empty corpus: h(∅) = 0.

The overall score of a subcorpus is given by the
product of the coverage metric (1) and the quality
metric (2):

F (S, T, τ) = g(S, T, τ)h(S) (3)

5 Subcorpus-Building Algorithm

To build a subcorpus, we iterate the following two
steps until the selected subcorpus is large enough:

1. Add the line that has the best effect on the
overall score F from (3).

2. If removal of any line would improve F , find
the line with the largest improvement. Re-
move it, unless infinite cycling would result.

This is a greedy algorithm, with review after each
selection.

6 Application

This section outlines the particulars of the method
applied to the given data for this task. Pre-filtering
removed a significant percentage of the noisy par-
allel corpora prior to scoring. The thresholds for
language identification were set empirically. For
en-ne we used 40% for English and 1% for Nepali.
For en-si we used 10% for both English and Sin-
hala. After filtering for language identification and
a maximum of 80 words, 0.9M of the 2.2M lines
remained for en-ne and 1.2M of the 3.4M lines re-
mained for en-si.

We trained phrase-based Moses (Koehn et al.,
2007) systems with the small amount of “clean”
training data provided by the organizers. These
training corpora were normalized as necesssary to
remove systematic representation oddities, mostly
in punctuation. The Moses systems employ a hi-
erarchical reordering model (Galley and Manning,
2008) and 5-gram operation sequence model (Dur-
rani et al., 2011). The 5-gram English language
model used by both systems was trained with the
constrained monolingual corpus from our WMT15
(Gwinnup et al., 2015) efforts.

These Moses MT systems were used to trans-
late the pre-filtered datasets. The Meteor score of
the given English lines was computed, using the
translated English as a reference.

The pre-filtered parallel corpora were low-
ercased and tokenized with tools from Moses.
We built a 2000-word-vocabulary SentencePiece
(Kudo and Richardson, 2018) model on the given
monolingual corpora for each language. The pre-
filtered parallel corpora were processed with these
models prior to subcorpus-building.

Our subcorpus-building procedure was fol-
lowed, producing a subcorpus that we ranked by
the order a line was added to the subcorpus. This
can produce too few scored lines for the 1M-word
or 5M-word subcorpora, so we order the scores
of the remaining lines by their text quality metric
(i.e., Meteor) scores alone. We submitted scores
generated by two values of τ for each language
pair. The smaller value of τ produced a 50k-
line subcorpus, and the larger value of τ produced
150k lines. Our expectation was that the smaller
subcorpus would be best in the 1M-word case, and
the larger subcorpus in the 5M-word case. For
these cases the selected corpora were roughly the
same size as the training sets.
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7 Numerical Results

The official results of the WMT19 Parallel Filter-
ing Task are given by Bojar et al. (2019).

Here we give some general findings by using
the given Moses-EMS configuration for the task.
Tables 1–2 give numerical results of this test.
BLEU scores are uncased and produced during the
Moses-EMS run. We see that the parallel filtering
methods we expected to be best do in fact improve
on the Zipporah (Xu and Koehn, 2017) baseline.

The smaller, 50k-line subcorpus shows in-
creases of by 0.24 BLEU for 1M en-ne and 0.15
BLEU for 1M en-si. The larger, 150k-line sub-
corpus shows increases of by 0.11 BLEU for 5M
en-ne and 0.32 BLEU for 5M en-si. Picking the
best results over all our experiments shows greater
improvements over baseline: 0.48 BLEU for 1M
en-ne, 0.46 BLEU for 1M en-si, 0.11 BLEU for
5M en-ne, and 0.44 BLEU for 5M en-si.

The tables show that the subcorpus-building
process normally improves over scoring by the
text quality metric score alone (the row labelled
“quality”, which is equivalent to either building
an empty subcorpus or choosing F = h in (3)).
These improvements are largest and most consis-
tent in the 1M-word tests. We expect that the
larger sets might be struggling to find helpful data
in the noisy corpora, essentially converging to the
text-quality-metric-only score.

We tested excluding the text quality metric from
the selection process (i.e., choosing F = g in (3)),
and these tests are given in the table rows labelled
“coverage”. As in (Erdmann and Gwinnup, 2018),
we saw great benefit from including the text qual-
ity using an MT system, even in this low-resource
setting.

Varying the number of grams considered in
the subcorpus-building algorithm’s vocabulary
yielded small and inconsistent changes over un-
igram selection. We have no insight into which
linguistic or corporeal features make it beneficial
to consider 2-grams in English-Nepali but slightly
detrimental in English-Sinhala.

8 Conclusions

We have presented the techniques we used in our
submissions to the WMT19 Parallel Corpus Filter-
ing For Low-Resource Conditions Task. Numeri-
cal results show our method to be a fraction of a
BLEU point better than the Zipporah baseline for
training the SMT system.

Table 1: Results for English-Nepali. Line counts are in
thousands and (English) word counts in millions. The
two bolded rows are the official AFRL submissions.

Type Lines Words 1M SMT 5M SMT
selected selected BLEU BLEU

quality N/A N/A 2.91 4.26
coverage 50 1.4 1.79 4.17
1-gram 50 1.0 3.64 4.14
2-gram 50 1.1 3.88 4.21
3-gram 50 1.2 3.84 4.17
4-gram 50 1.2 3.78 4.23
1-gram 75 1.4 3.50 4.25
1-gram 100 1.9 3.47 4.12

coverage 150 3.8 1.24 3.84
1-gram 150 3.1 3.55 4.33
1-gram 225 4.8 3.53 4.12

Zipporah N/A N/A 3.40 4.22

Table 2: Results for English-Sinhala. Line counts are in
thousands and (English) word counts in millions. The
two bolded rows are the official AFRL submissions.

Type Lines Words 1M SMT 5M SMT
selected selected BLEU BLEU

quality N/A N/A 3.26 5.07
coverage 50 1.4 1.98 5.17
1-gram 50 0.8 4.31 5.16
2-gram 50 1.0 4.26 5.15
3-gram 50 1.0 4.22 4.98
4-gram 50 1.1 4.30 5.04
1-gram 75 1.2 4.54 5.21
1-gram 100 1.6 4.49 5.19

coverage 150 4.0 1.40 3.43
1-gram 150 2.6 4.62 5.09
1-gram 225 4.3 4.57 4.91

Zipporah N/A N/A 4.16 4.77

We expect the optimal choices in our method
to vary significantly with language pairs and noisy
corpora. This might be in parameters (language ID
thresholds, τ , n-gram levels, etc.) or the combina-
tion of coverage and metric metrics (product, sum,
etc.), the design of the MT system(s) used for the
text quality metric (e.g., phrase-based or neural,
with their myriad design choices) or the text qual-
ity metric itself (Meteor, BEER (Stanojević and
Sima’an, 2015), chrF (Popović, 2015), etc.).

Building a machine translation system in each
direction would provide us with two text quality
metric scores to incorporate into the overall score.
We expect this would decrease dependence on the
language ID thresholds and produce a somewhat
better subcorpus.

Opinions, interpretations, conclusions and recommen-
dations are those of the authors and are not necessarily en-
dorsed by the United States Government. Cleared for public
release on 12 Jun 2019. Originator reference number RH-19-
119920. Case number 88ABW-2019-2964.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proc. of the 45th Annual Meeting of the ACL on In-
teractive Poster and Demonstration Sessions, ACL
’07, pages 177–180.

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.
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Abstract

This document describes the participation of
Webinterpret in the shared task on parallel cor-
pus filtering at the Fourth Conference on Ma-
chine Translation (WMT 2019). Here, we de-
scribe the main characteristics of our approach
and discuss the results obtained on the data
sets published for the shared task.

1 Task Description

Parallel corpus filtering task at WMT19 tackles
the problem of cleaning noisy parallel corpora.
Given a noisy parallel corpus (crawled from the
web), participants develop methods to filter it to a
smaller size of high quality sentence pairs.

In comparison to the German-English task last
year, the organizers now pose the problem under
more challenging low-resource conditions includ-
ing Nepali and Sinhala languages. The organiz-
ers provide very noisy 40.6 million-word (English
token count) Nepali-English and a 59.6 million-
word Sinhala-English corpora. Both raw cor-
pora were crawled from the web as part of the
Paracrawl project1. Participants are asked to se-
lect a subset of sentence pairs that amount to (a)
5 million, and (b) 1 million English words. The
quality of the resulting subsets is determined by
the quality of a statistical and a neural Machine
Translation (MT) systems trained on the selected
data. The quality of the translation systems is mea-
sured on a held-out test set of Wikipedia transla-
tions. Despite the known origin of the test set, the
organizers make explicit that the task addresses
the challenge of data quality and not domain-
relatedness of the data for a particular use case.

For our submission, we propose a variation
of coverage augmentation ranking (Haffari et al.,
2009; Gascó et al., 2012; González-Rubio, 2014).
The main idea underlying our approach is to min-
imize the amount of unseen events for the model.
In MT, these unseen events are words or sequences
thereof. These unseen events result in a loss

1https://paracrawl.eu/

of model coverage and, ultimately, of translation
quality. The main difference of our submission
respect to previous approaches is that we do not
rely on an in-domain corpus to identify underrep-
resented events. Instead, we look for the subset
of sentences that provide the most coherent cov-
erage among themselves. One of the advantages
of this approach is that it does not rely on pre-
trained models requiring additional data to train.
This characteristic fits perfectly with the focus on
low-resource languages of this year’s task.

The rest of this document is organized as fol-
lows. First, we describe the details of our ap-
proach. Next, we present the results of our sub-
mission. Finally, we close with the conclusions
and some ideas for future developments.

2 Sentence Pairs Ranking

Our goal is to rank the sentence pairs in the raw
corpora such that the pairs in the top of the rank-
ing are better candidates for training data. As
pre-processing, we only apply tokenization via the
TokTok tokenizer in the NLTK python package.

First, we filtered out some of the pairs (x,y)
in the raw corpus according to several heuristic
rules (Section 2.1). Then, for the remaining pairs,
we computed a ranking value r(x,y) for each of
them. This ranking, was the result of the combina-
tion of several different ranking functions aiming
at capturing the ”value” of the sentence pair ac-
cording to different criteria (Section 2.2 and Sec-
tion 2.3). Finally, we used the final ranking of
each pair to compute its corresponding score as
required for the shared task (Section 2.4).

2.1 Initial Rule-based Filtering

We start by describing the set of filtering rules im-
plemented to reduce the amount of candidates to
be ranked by the more sophisticated methods Sec-
tions 2.2, and 2.3. These rules have been pre-
viously proposed and successfully implemented
in the literature, for instance (Junczys-Dowmunt,
2018; Rossenbach et al., 2018).
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Nepali-English (2.2M) Sinhala-English (3.4M)
Method Sent. pairs Ratio Sent. pairs Ratio
Language Identification 1.65M 74.0% 2.27M 67.7%
Length Ratio 0.86M 38.6% 1.13M 33.8%
Max. Sentence Length 0.24M 10.9% 0.27M 8.1%
Combined 2.11M 94.4% 2.92M 86.8%

Table 1: Amount of sentence pairs (in Millions) filtered out by each filtering method. ”Combined” denotes the
final amount of sentence pairs filtered out after applying the three methods in sequence.

The filtering rules we implemented for our sub-
mission are not language specific, and moreover,
they only place very mild assumption on what con-
stitutes a ”good” sentence pair. In particular, maxi-
mum sentence length is a technical restrictions im-
plemented by many MT systems. Given that the
translation system is most probably going to ig-
nore them in any case, it makes no sense for us to
even rank them. Table 1 displays the amount of
sentences pairs filtered out by each method.

Language Identification
We implemented a very straightforward language
identification using the Python LangID package.
Specifically, we filtered out all those pairs not
belonging to the desired pair of languages. For
example, each pair (x,y) in the Nepali-English
corpus should satisfy: LangID(x) = ”ne” and
LangID(y) = ”en”, otherwise the sentence pair is
filtered out. For Sinhala-English, we require Sin-
hala as source language: LangID(x)=”si”.

Length Ratio
As our second heuristic filtering, we chose the ra-
tio between the number of tokens of x and y. This
is a very simple criterion, but efficient to identify
mispaired sentences. We limited this ratio to be
under 1.7 and smoothed the counts by adding 1 to
them. That is, we rejected the sentence pair if:

|x|+ 1

|y|+ 1
or
|y|+ 1

|x|+ 1

where |x| and |y| are the number of tokens of x
and y respectively.

Maximum Sentence Length
Most translation systems have an upper bound for
the sentence length. These sentences will be ig-
nored in any case during training so we decided
to filter them out directly. If either the source (x)
or destination (y) sentence in a pair was over 50
tokens, we filtered out the pair.

2.2 Coverage Ranking
Sparse data problems are ubiquitous in MT (Zipf,
1935). In a learning scenario, this means that
some rare events will be missing completely from
a training set, even when it is very large. Miss-
ing events result in a loss of coverage, a situa-
tion where the structure of the model is not rich
enough to cover all types of input. An extreme
case of this are out-of-vocabulary words for which
the MT system will have no information on how
to translate them. Therefore, words (or sequences
thereof) that do not appear in the training set can-
not be adequately translated (Haddow and Koehn,
2012; Sennrich et al., 2016).

According to these considerations, we propose
to explicitly measure how well represented are the
different words on a potential training corpus T as
a proxy of the actual ”value” of such corpus. We
define this corpus ”value”, V (T ), as:

V (T ) =
∑

s∈tokens(T )

min(N, c(s, T ))
N

(1)

where function tokens(T ) returns the set of to-
kens that appear in T , c(s, T ) counts how many
times a token s appears in T , and N denotes a
count above which we consider a token to be ad-
equately represented. After some initial experi-
ments, we used N=50 in our submission.

In order to rank the different sentences in the
raw corpora, we implemented a greedy algorithm
to create a training corpus T by iteratively adding
sentences to it taken from a given pool. At start,
T = ∅ and the pool is equal to the sentences that
passed the filtering rules in the previous section.
The sentence to be added at each step is the one
that resulted in a new T with the highest value as
measured by Equation 1. This selected sentence is
then removed from the pool and definitely added
to T . This process repeats until the pool is empty.

This algorithm has a complexity of O(R2)
where R is the number of sentences initially in the
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pool. In Section 3, we describe how we modify
this algorithm for the final submission in order to
improve its time performance.

In our submission, we considered as tokens n-
grams of sizes from one up to four, and com-
puted them for both the source and destination
sentences. This resulted in a total of eight ranks
per sentence pair. We denote each of them as
rc(s, n) where s ∈ {x,y}, and 1 ≤ n ≤ 4.

The main shortcoming of this ranking scheme
is that it ignores how the source and destination
sentences in a pair relate to each other. Long sen-
tences with multiple tokens will most surely rank
high even when the other sentence in the pair carry
completely different meaning. In order to counter-
balance these undesired effects, we implement a
secondary adequacy ranking to measure such cor-
respondence between the sentences on each pair.

2.3 Adequacy Ranking

This ranking function measures how much of the
original meaning is expressed in the translation
and vice versa. Specifically, we estimate to which
extent the words in the original and translated sen-
tences correspond to each other.

We compute this ranking from a simple (but
fast) word-to-word translation model (Brown
et al., 1993). Given a sentence pair (x,y), we
compute a source-given-target score according to
the geometric average probability over the words
for the IBM model 1 formulation:

PM1(x,y) =
|x|

√√√√
∏|x|

i=1

∑|y|
j=0 P (xi | yj)

(|y|+ 1)|x|
(2)

where P (xi | yj) is the lexical probability of the
ith source word in x given the jth target word in
y. For the target-given-source direction, source
and target sentences swap their roles. We denote
these two rankings as rM1

a (x,y) and rM1
a (y,x).

Additionally, we compute another two rankings
based on a Viterbi implementation of Equation 2:

PMv(x,y) =
|x|

√√√√
∏|x|

i=1max
|y|
j=0 P (xi | yj)

(|y|+ 1)|x|
(3)

where we replace the summation (
∑|y|

j=0) in Equa-
tion 2 by a maximization. Again, we calculate
both source-given-target and target-given-source
directions: rMv

a (x,y) and rMv
a (y,x) respectively.

2.4 Ranking Aggregation
Finally, we combined the different rankings de-
scribed in previous sections to obtain the final
ranking of our submission.

Aggregation of Coverage Rankings
We start combining the eight coverage rankings
described in Section 2.2. First, we average the
four rankings for x into a source coverage rank-
ing. Then, we repeat the process for the four des-
tination rankings. Finally, we got the final cover-
age ranking rC(x,y) as the average between the
source and destination coverage rankings:

rc(x,y) =

4∑

n=1

rc(x, n)

4
+

4∑

n=1

rc(y, n)

4
2

(4)

where rc(x, n) denotes the ranking of sentence x
using n-grams of size n as tokens.

Aggregation of Adequacy Rankings
First, we averaged the two (source-to-destination
and destination-to-source) rankings computed
with Equation 2. Then, we repeated the process
for the two rankings computed with Equation 3.
The final adequacy ranking ra(x,y) was then ob-
tained as the average of these two rankings:

ra(x,y) =

(
rM1
a (x,y) + rM1

a (y,x)

2
+

rMv
a (x,y) + rMv

a (y,x)

2

)
/2 (5)

Final Submission Scores
Once we had computed for each sentence pair
(x, y) its coverage (rc(x,y)) and adequacy
(ra(x,y)) rankings, we averaged these two to ob-
tain the final ranking r(x,y) of the pair:

r(x,y) =
rc(x,y) + ra(x,y)

2
(6)

For the final submission however, the organiz-
ers ask to provide a score for each pair. Scores
do not have to be meaningful, except that higher
scores indicate better quality. To do this, we take
the simple solution of computing the score s(x,y)
as the number of sentences in the raw corpus (R)2

divided by the final ranking of the sentence pair.
2R=2235512 for Nepali-English, and R=3357018 for

Sinhala-English.
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Additionally, in order to break potential ties, and
to provide a smoothing score for filtered out sen-
tences (see Section 2.1), we added to the score
the average word probability as described in Equa-
tion 2. The final scores in our submission were:

s(x,y) =
R

r(x,y)
+ PM1(x,y) (7)

Note that filtered pairs were considered to have
an ”infinite” ranking which results in R

r(x,y) = 0;
for unfiltered pairs the value of this fraction is as-
sured to be greater than one.

3 Submission

We submitted three different score files to the
shared task. All employ the same score function
Equation 7 but use different ranking functions:

• PRIMARY: computed using as ranking func-
tion the combination of coverage and ade-
quacy rankings in Equation 6.

• SECONDARYCOV: computed using only the
aggregated coverage ranking in Equation 4.

• SECONDARYADE: computed using only the
aggregated adequacy ranking in Equation 5.

3.1 Coverage Rankings Computation

As described in Section 2.2, we implemented a
greedy algorithm to compute coverage ranking. At
each step, the algorithm selects the sentences that
provide a largest increase of ”value” (Equation 1)
to a iteratively increasing training corpus.

The computational cost of this approach is
O(R2) where R is the number of sentences under
consideration. The initial filtering partially allevi-
ates this cost by drastically reducing the amount
of sentences to rank. However, it is still a slow
process that took about one second per iteration
with our Python implementation3. To further re-
duce the computational time of the algorithm, we
implemented a batch approach where at each step
we selected not a single sentence but a batch of the
most ”valuable” ones. After some experiments,
we chose to select 1000 sentences at each step as
a good compromise; running time was reduced by
a factor of 1000 while the ”value” of the selected
training corpus was barely affected.

3After filtering about 176k pairs remained for Nepali-
English, and 442k pairs remained for Sinhala-English.

Ne–En Si–En
1M 5M 1M 5M

PRIMARY 3.4 3.1 3.3 2.6 3.7 2.1 4.1 1.7
SECONDARYCOV 2.9 0.5 4.2 2.4 2.6 0.1 4.0 1.2
SECONDARYADE 3.5 3.6 4.3 2.4 3.9 2.9 4.1 1.4

Table 2: Results of our submissions, in BLEU [%].
SMT figures are in blue while NMT is in red. Best
results are in bold.

3.2 Adequacy Rankings Computation

The cornerstone of the adequacy ranking de-
scribed in Section 2.3 is the probabilistic lexicons
in Equations 2 and 3. In our submissions, we used
the probabilistic lexicons that can be obtained as
a sub-product of the training of full statistical MT
models. For this end, we used Moses (Koehn et al.,
2007) with its default configuration and the paral-
lel data provided by the organizers as training data.

3.3 Evaluation and Results

Participants in the shared task were asked to sub-
mit a file with quality scores, one per line, cor-
responding to the sentence pairs on the Nepali-
English and Sinhala-English corpora. The per-
formance of the submissions is evaluated by sub-
sampling 1 million and 5 million word corpora
based on these scores, training statistical (Koehn
et al., 2007) and neural 4 MT systems with these
corpora, and assessing translation quality on blind
tests using BLEU (Papineni et al., 2002).

Table 2 shows the scores of our three submis-
sions for each language pair and condition. Of
the three, the one based on coverage rankings
(SECONDARYCOV) showed a lower performance
consistently being outperformed, particularly in
the 1 million condition, by both our PRIMARY and
SECONDARYADE submissions.

We were surprised by the ”poor” performance
of coverage ranking. Previous works (Haffari
et al., 2009; Gascó et al., 2012) showed quite
promised results. However, in contrast to our case,
all these assume the availability of a sample of the
domain to be translated. We hypothesize that the
lack of this in-domain data in conjunction with the
eclectic domains of the data to be filtered are the
causes of the poor results of this approach. More-
over, the greedy selection implemented may ag-
gravate this issue by taking not-optimal initial de-
cisions from which the algorithm cannot recover.

Another interesting observation is the unintu-

4https://github.com/facebookresearch/flores
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Figure 1: Best results for each team in the competition. We display the participants by increasing sum of BLEU
scores for neural and statistical MT models.

itive results for NMT. While SMT results tend to
go up as more data is selected, results for NMT
tend to show the opposite trend. A fact to consider
is that actual BLEU figures are quite low so the
actual relevance of these trends are not clear. Ad-
ditionally, given that this observation is valid other
submissions as we will see next, we think this is an
issue worthy of further investigation.

After discussing the performance of our sub-
missions, we will compare our best submission on
each condition to the rest of participants. Figure 1
summarizes the results of the shared task as re-
ported by the organizers of the task (Bojar et al.,
2019). Each sub-figure displays the best submis-
sion of each individual participant institution for
a particular task and condition. Plots in the up-
per row show results for Nepalese-English while
the bottom row does the same for Sinhala-English.
Plots in the left column are for the 1 million con-
dition while results for the 5 million condition are
shown in the right column. Stacked bars displayed
in the plots denote the BLEU scores for the statis-
tical (blue) and neural (red) systems. We sort them
in increasing order according to each system’s sum
of SMT and NMT scores.

The organizers do not provide confidence in-
tervals for the reported scores so compare results
is somehow difficult. Still, as we mention previ-
ously, it is surprising the degradation in transla-
tion quality for NMT when comparing the 5 mil-
lion condition to the 1 million condition. Usu-
ally, a larger amount of data correlates with an in-
crease in translation quality. In this case, however,
scores for SMT barely changed while NMT results
went down. This seems to indicate that our meth-
ods were not sophisticated enough to find adequate
data, or that the really adequate data in the noise
corpora amount for less than 5 million words.

Our submission (WI) lays in the upper half
among the best submission of the different par-
ticipants. Regarding Nepalese-English, it scored
an aggregated of 7.1 and 6.7 BLEU points for the
1 million and 5 million conditions respectively.
This represent respectively about a 64% of the best
result submitted for the 1 million condition, and
about a 85% of the best result for the 5 million
condition. As for the Sinhala–English condition,
we scored 6.8 and 5.8 BLEU points which repre-
sent a 64% of the best results respectively.
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4 Conclusions

We have presented our submission to the WMT19
shared task on parallel corpus filtering. We have
mostly explored the application of coverage aug-
mentation ranking techniques with the aim at se-
lecting the subset of sentence pairs that provide the
best coherent coverage for the raw sentences.

Results have shown that our proposed coverage
approach is not well suited for this particular task.
Our secondary submission based on lexical scor-
ing works better in all conditions, and even outper-
forms our primary submission that combines both
coverage and lexical rankings.

One interesting effect seen in the results of the
task is the reduced performance on NMT in the
presence of more data that can be observed for all
participants. Given this, we think that exploring
methods able to decide when adding more data
will be harmful for performance it is a good re-
search direction to explore.
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Abstract

We present a very simple method for parallel
text cleaning of low-resource languages, based
on projection of word embeddings trained on
large monolingual corpora in high-resource
languages. In spite of its simplicity, we ap-
proach the strong baseline system in the down-
stream machine translation evaluation.

1 Introduction

With the advent of web-scale parallel text min-
ing, quality estimation and filtering is becom-
ing an increasingly important step in multilingual
NLP. Existing methods focus on languages with
relatively large amounts of parallel text available
(Schwenk, 2018; Artetxe and Schwenk, 2018), but
scaling down to languages with limited amounts
of parallel text poses new challenges. We present
a method based on projecting word embeddings
learned from a monolingual corpus in a high-
resource language, to the target low-resource lan-
guage through whatever parallel text is available.

The goal of participants in the WMT 2019 par-
allel corpus filtering shared task is to select the 5
million words of parallel sentences producing the
highest-quality machine translation system, given
a set of automatically crawled sentence candidates
of varying quality. It is the continuation of the last
year’s task (Koehn et al., 2018), except that this
year two low-resource languages are used: Nepali
and Sinhalese.

2 Related Work

We refer readers to Koehn et al. (2018) for a more
thorough review of the methods used in the WMT
2018 parallel corpus filtering shared task, and here
review only a few studies of particular relevance to
our model.

∗ Authors contributed equally.

The Zipporah model of Xu and Koehn (2017)
is used as a (strong) baseline in this year’s shared
task. It aims to find sentences pairs with high ade-
quacy, according to dictionaries generated from an
aligned corpora, and fluency modeled by n-gram
language models.

Zariņa et al. (2015) use existing parallel cor-
pora to learn word alignments and identify parallel
sentences on the assumption that non-parallel sen-
tences have few or none word alignments. In pre-
liminary experiments we also evaluated a variant
of this method, but found the resulting machine
translation system to produce worse results than
the simple approach described below.

Similar to the our model, Bouamor and Sajjad
(2018) perform parallel sentence mining through
sentence representations obtained by averaging
bilingual word embeddings. Based on the cosine
similarity, they create a candidate translation list
for each sentence on the source side. Then, find-
ing the correct translation is modelled as either a
machine translation or binary classification task.

3 Data

In this section, we summarize the target noisy data
and the allowed third-party resources where we
train our model.

3.1 Target Noisy Corpora

The target noisy parallel corpora provided by the
WMT 2019 organizers come from the Paracrawl
project1, and is provided before the standard fil-
tering step to ensure high-recall, low-precision re-
trieval of parallel sentences.

The noisy corpora have 40.6 million words on
the English side (English-Nepali) and 59.6 million
words (English-Sinhala). The task is thus to se-

1https://paracrawl.eu/
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Language Word Count Sentence Count
Sinhala 3,745,282 646,781
Nepali 3,738,058 581,297

Table 1: Word and sentences counts of the ”clean” par-
allel text

lect the approximately 10% highest-quality paral-
lel text.

3.2 Training Data

Participants are allowed to use only the re-
sources provided by the organizers to train sys-
tems. The permissible resources include suppos-
edly clean parallel data, consisting of bible trans-
lations, Ubuntu localization files as well as movie
subtitles. Larger monolingual corpora based on
Wikipedia and common crawl data were also pro-
vided.2

To train our model, we use all the parallel
data available for the English-Sinhala and English-
Nepali pairs (summarized in Table 1) and the En-
glish Wikipedia dump which contains about 2 bil-
lion words. We modified the Nepali-English dic-
tionary so that multiple translations were split into
separate lines. As manual inspection revealed
some problems in this data as well, we ran the
same pre-filtering pipeline on it as we used for the
noisy evaluation data (see Section 4.1)

4 Method

In this section, we present the components our
model used to score the nosiy parallel data.

4.1 Pre-filtering Methods

As many types of poor sentence pairs are easy to
detect with simple heuristics, we begin by apply-
ing a series of pre-filters. Before pre-filtering, the
corpus is normalized through punctuation removal
and lowercasing. We pre-filter all parallel data,
both the (supposedly) clean and the noisy evalu-
ation sets, using a set of heuristics based heavily
on the work of Pinnis (2018):

• Empty sentence filter: Remove pairs where
either sentence is empty after normalization.

• Numeral filter: Remove pairs where either
sentence contains 25% or more numerals.

2http://www.statmt.org/wmt19/parallel-corpus-
filtering.html

• Sentence length filter: Remove pairs where
sentence lengths differ by 15 or more words.

• Foreign writing filter: Remove pairs where
either sentence contains 10% or more words
written in the wrong writing system.

• Long string filter: Remove pairs containing
any token longer than 30 characters.

• Word length filter: Remove pairs where ei-
ther sentence has an average word length of
less than 2.

The statistics of each individual filter on the
training data and the noisy data are provided in
Table 2 and Table 3. In total, the pre-filtering step
removed 2,790,557 pairs for the English–Sinhala
data and 1,778,339 pairs for English–Nepali. Of
all filters, foreign writing and numeral filter seem
to be the most useful ones in terms of removing
poor data.

Although almost 150 thousand sentence pairs
are filtered out in the training data, the rate is con-
siderably less than that of the raw noisy data sug-
gesting that our pre-filters have a low rate of false
positives. We further tested our pre-filters on the
development data for the MT system evaluation
(discarding the result), and found that less than 3%
is removed.

4.2 Multilingual word vectors
We first train 300-dimensional FASTTEXT vectors
(Bojanowski et al., 2017) with its default parame-
ters using the provided English Wikipedia data.

Our first goal is now to create word vectors for
the low-resource languages Sinhala and Nepali, in
the same space as the English vectors.

After pre-filtering, we perform word alignment
of the provided parallel text using the EFLOMAL

tool (Östling and Tiedemann, 2016) with default
parameters. Alignment is performed in both di-
rections, and the intersection of both alignments is
used. The vector vfi for word i in the non-English
language f is computed as

vfi =
∑

j

c(i, j)vej

that is, the weighted sum of the vectors vej of all
aligned English word types j, which have been
aligned to the non-English type i with frequency
c(i, j). Word types which are aligned less than
20% of the most commonly aligned type are not
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SINHALA NEPALI
Count Percentage Count Percentage

Before filtering 646,781 100 581,297 100
Word length filter 3,149 -0.49 4,133 -0.71
Long string filter 90 -0.01 77 -0.01
Numeral filter 4,803 -0.74 11,981 -2.06
Empty sentence filter 1,859 -0.29 410 -0.07
Sentence length filter 1,140 -0.18 4,501 -0.77
Foreign writing filter 38,965 -6.02 96,161 -16.54
Remaining 596,775 92.27 464,034 79.83

Table 2: Result of pre-filtering the ”clean” parallel data.

SINHALA NEPALI
Count Percentage Count Percentage

Before filtering 3,357,018 100.0 2,235,512 100.0
Word length filter -7,981 -0.2 -3,015 -0.1
Long string filter -2,782 -0.1 -4,848 -0.2
Numeral filter -1,202,438 -35.8 -556,491 -24.9
Empty sentence filter -7,672 -0.2 -4,378 -0.2
Sentence length filter -216,486 -6.4 -272,567 -12.2
Foreign writing filter -1,353,198 -40.3 -937,040 -41.9
Remaining 566,461 16.87 457,173 20.45

Table 3: Result of pre-filtering the noisy data.

counted, to compensate for potentially noisy word
alignments. In other words, we let c(i, j) = 0 if
the actual count is less than 0.2maxj′ c(i, j

′). On
average, the vector of each Sinhala word type is
projected from 1.66 English word types, and each
Nepali word from 1.83 English words types.

4.3 Sentence similarity

Given a sentence pair x and y, our task is to as-
sign a score of translation equivalence. The mul-
tilingual word vectors learned in Section 4.2 pro-
vide a measure of word-level translational equiv-
alence, by using the cosine similarity between
the vectors of two words. Since sentence-level
equivalence correlates strongly with word-level
equivalence, we can approximate the former by
looking at pairwise cosine similarity between the
words in the sentence pair: cos(vei , v

f
j ). A good

translation should tend to have a high value of
maxj cos(v

e
i , v

f
j ) since most English words we

i

(with vector vei ) should have a translationally
equivalent word wf

j (with vector vfj ) in the other
language, and these vectors should be similar.

However, this naive approach suffers from the
so-called hubness problem in high-dimensional

1 Million 5 Million
Sinhala 3.59 (4.65) 0.53 (3.74)
Nepali 4.55 (5.23) 1.21 (1.85)

Table 4: BLEU scores of the NMT system trained on
the released development sets. Numbers within paren-
thesis refer to the baseline scores

spaces (Radovanović et al., 2010), where some
words tend to have high similarity to a large num-
ber of other words. This can be compensated for
by taking the distribution of vector similarities for
each word into account (as done in similar con-
texts by e.g. Conneau et al., 2017; Artetxe and
Schwenk, 2018). We use this information in two
ways. First, all words which have an average co-
sine similarity higher than 0.6 to the words in the
English sentence are removed since they are un-
likely to be informative. We then use as our score
the ratio between the highest and the second high-
est similarity within the sentence, averaged over
all remaining words in the sentence.3

3Sentences with vectors for less than half of their words
are removed, since we are unable to make a reliable estimate.
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Nepali Sinhala
Sentence Count Word Count Sentence Count Word Count

1 Million 46,529 793,233 55,293 897,198
5 Million 272,605 (248,765) 3,737,250 (3,456,614) 250,767 (279,503) 4,119,591 (3,327,811)

Table 5: Word and sentence counts in the 1 million and 5 million sub-samples according to our model. Numbers
in parenthesis refer to the counts of the baseline system (Xu and Koehn, 2017) which is only available only for 5
million sub-sample

5 Results

The quality of the sub-sampled data is assessed
according to the BLEU scores of the statistical
and neural machine translation systems trained on
them.

Here, we present the BLEU scores of the NMT
system (Guzmán et al., 2019) which will be used
in the official evaluation on the released develop-
ment set. We evaluate our model via two different
sub-samples, one with 1 million and one with 5
million words on the English side. See Table 5 for
statistics on the filtered data.

Table 4 presents our results using the NMT sys-
tem. For Nepali, the performance of our model
approaches the strong baseline on both the 1 mil-
lion and 5 million sub-samples, whereas the NMT
system fails completely using the 5 million word
Sinhala sub-sample. All BLEU scores are below
6, for our system as well as for the baseline, indi-
cating that there is insufficient data for the NMT
system to learn a useful translation model.

6 Conclusion

We have described our submission to the WMT
2019 parallel corpus filtering shared task. Our
submission explored the use of multilingual word
embeddings for the task of parallel corpus fil-
tering. The embeddings were projected from a
high-resource language, to a low-resource lan-
guage without sufficiently large monolingual cor-
pora, making the approach suitable for a wide
range of languages.
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Abstract

The filtering task of noisy parallel corpora in
WMT2019 aims to challenge participants to
create filtering methods to be useful for train-
ing machine translation systems. In this work,
we introduce a noisy parallel corpora filter-
ing system based on generating hypotheses by
means of a translation model. We train trans-
lation models in both language pairs: Nepali–
English and Sinhala–English using provided
parallel corpora. To create the best possible
translation model, we first join all provided
parallel corpora (Nepali, Sinhala and Hindi to
English) and after that, we applied bilingual
cross-entropy selection for both language pairs
(Nepali–English and Sinhala–English). Once
the translation models are trained, we trans-
late the noisy corpora and generate a hypoth-
esis for each sentence pair. We compute the
smoothed BLEU score between the target sen-
tence and generated hypothesis. In addition,
we apply several rules to discard very noisy
or inadequate sentences which can lower the
translation score. These heuristics are based
on sentence length, source and target similar-
ity and source language detection. We com-
pare our results with the baseline published on
the shared task website, which uses the Zip-
porah model, over which we achieve signifi-
cant improvements in one of the conditions in
the shared task. The designed filtering system
is domain independent and all experiments are
conducted using neural machine translation.

1 Introduction

A large amount of parallel corpora can be ex-
tracted using web-crawling. This technique of
data acquisition is very useful to increase the train-
ing set for low-resourced languages. Unfortu-
nately, the extracted data can include noisy sen-
tence pairs, such as unaligned sentences, partially
translated pairs, or sentences containing different
languages than those intended. For these reasons

the creation of systems for filtering of noisy paral-
lel corpora are needed.
In this paper, we introduce a filtering method for
noisy parallel corpora based mainly on generating
hypotheses for each sentence pair from noisy data
and scoring based on hypothesis and target sen-
tence similarity. This technique consists of build-
ing the best possible translation engine for each
language pair and generating a translation hypoth-
esis for each sentence of the noisy data. Once the
hypotheses are generated, we compute the BLEU
(Papineni et al., 2002), smoothed by adding one
to both numerator and denominator from (Lin and
Och, 2004), between each target and hypothesis.
To create a translation engine, which will be used
for generating hypothesis for each sentence from
noisy corpus, we select sentence pairs using bilin-
gual cross-entropy selection (Axelrod et al., 2011)
from all parallel corpora provided (Nepali, Sin-
hala, Hindi to English) jointly. To apply bilingual
cross-entropy, we first train language models using
the provided monolingual corpora in Nepali, Sin-
hala and English. In addition, we use some rules
to discard useless sentences by filtering according
to sentence length, Nepali and Sinhala characters
detection, and BLEU scoring between source and
target sentences. The last rule is used to discard
highly similar sentence pairs.
The paper is structured as follows: Section 2 de-
scribes the shared task, the provided data, the sub-
sampling process and the evaluation system. In
Section 3 we describe the developed method for
filtering noisy data. We describe the experiments
conducted and the results. Conclusions and future
work are drawn in Section 4.

284



2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

2 WMT 2019 shared task on parallel
corpus filtering for low-resource
conditions

The task “Parallel Corpus Filtering for Low-
Resource Conditions”1 tackles the problem of
cleaning noisy parallel corpora for low-resourced
language pairs. Given a noisy parallel corpus, par-
ticipants are required to develop methods to fil-
ter it down to a smaller size with a high qual-
ity subset. This year there are two language
pairs: Nepali–English and Sinhala–English. Par-
ticipants are asked to provide score files for each
sentence in each of the noisy parallel sets. The
scores will be used to subsample sentence pairs
into two different training set sizes: 1 million
and 5 million English words. For this task, very
noisy corpora of 40.6 million English words in
Nepali–English and 59.6 million English words
in Sinhala–English are provided. The data were
crawled from the web as part of the Paracrawl
project2. The quality of the resulting subsets is
determined by the quality of a statistical machine
translation (SMT) and neural machine translation
(NMT) systems trained on this data. The qual-
ity of the machine translation system is measured
with the sacreBLEU score (Post, 2018) on a held-
out test set of Wikipedia translations for Nepali-
English (ne–en) and Sinhala-English (si–en). The
organisers provide development and test sets for
each pair of languages but due to the fact that the
task addresses the challenge of data quality and
not domain-relatedness of the data for a particular
use case, the test sets may be very different from
the final official test set in terms of topics.

2.1 Data provided

Organisers provide noisy corpora for the Nepali–
English and Sinhala–English language pairs. The
main figures of both corpora are shown in Table 1.

In addition, organisers provide links to the
permissible third-party sources of bilingual data
to be used in the competition. Parallel cor-
pora for the Nepali–English language pair comes
from the Bible, Global Voices, Penn Tree Bank,
GNOME/KDE/Ubuntu and Nepali Dictionary cor-
pora. For the Sinhala–English language pair, the
Open Subtitles and GNOME/KDE/Ubuntu paral-
lel corpora are provided. The main figures of the

1http://www.statmt.org/wmt19/parallel-corpus-
filtering.html

2https://paracrawl.eu/

Table 1: Main figures of the noisy corpora for the
Nepali–English and Sinhala–English language pairs. k
denotes thousands of elements and M denotes millions
of elements. |S| stands for number of sentences, |W |
for number of running words, and |V | for vocabulary
size. Figures computed on tokenised and lowercased
corpora.

corpus language |S| |W | |V |

ne–en
Nepali

2.2M
52.3M 925.3k

English 56.0M 782.9k

si–en
Sinhala

3.6M
61.2M 822.6k

English 62.6M 803.0k

parallel corpora are shown in Table 2.

Table 2: Allowed parallel corpora for Nepali–English
and Sinhala–English main figures. k denotes thousands
of elements and M denotes millions of elements. |S|
stands for number of sentences, |W | for number of run-
ning words, and |V | for vocabulary size. Figures com-
puted on tokenised and lowercased corpora.

corpus language |S| |W | |V |

ne–en
Nepali

573k
4.2M 141.3k

English 4.5M 64.5k

si–en
Sinhala

692k
4.5M 178.5k

English 5.0M 69.9k

In addition to the parallel data above, mono-
lingual corpora are also provided. The main fig-
ures of the monolingual corpora for Nepali, Sin-
hala and English are shown in Table 3.

Table 3: Main figures of the monolingual data for
Nepali, Sinhala and English languages. k denotes thou-
sands of elements and M denotes millions of elements.
|S| stands for number of sentences, |W | for number of
running words, and |V | for vocabulary size. Figures
computed on tokenised and lowercased corpora.

language |S| |W | |V |
Nepali 3.7M 116.1M 1.4M
Sinhala 5.3M 43.2M 766.7k
English 448.2M 760.2M 9.6M

Additional resources provided in the shared task
were a Hindi–English (hi–en) parallel corpus and
Hindi monolingual data. The main figures of these
two corpora are shown in Table 4.

Finally, development and development test sets
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Table 4: Main figures of the monolingual (mono.) data
for Hindi and bilingual data for Hindi–English (hi–en).
k denotes thousands of elements and M denotes mil-
lions of elements. |S| stands for number of sentences,
|W | for number of running words, and |V | for vocab-
ulary size. Figures computed on tokenised and lower-
cased corpora.

corpus lang. |S| |W | |V |
mono. Hindi 45.1M 838.8k 4.0M

hi–en
Hindi

1.6M
22.4M 333.3k

English 20.7M 192.5k

are provided in the shared task. Both sets are
drawn from Wikipedia articles. These may be very
different from the final official test set in terms
of topics due to the fact that the task addresses
the challenge of data quality and not domain-
relatedness of the data. Main figures of develop-
ment sets are shown in Table 5.

Table 5: Development sets main figures. k denotes
thousands of elements. |S| stands for number of sen-
tences, |W | for number of running words, and |V | for
vocabulary size. Figures computed on tokenised and
lowercased corpora.

Validation sets
corpus lang. |S| |W | |V |

ne–en
Nepali

2.6k
10.2k 37.1k

English 37.1k 10.2k

si–en
Sinhala

2.9k
48.7k 103.3k

English 53.5k 6.2k
Test sets

corpus lang. |S| |W | |V |

ne–en
Nepali

2.8k
43.2k 10.9k

English 51.5k 6.4k

si–en
Sinhala

2.8k
46.4k 9.6k

English 51.0k 6.1k

2.2 Sub-sampling of noisy data
Participants submit files with numerical scores,
giving one score per line for the original unfiltered
parallel corpus. A tool provided by the organisers
takes as input the scores and the noisy parallel cor-
pus. The tool then selects sentences with higher
scores to complete the desired 1M and 5M words
in target. Systems trained on these data sets are
used for evaluation by the organisers.

2.3 Translation evaluation
As specified in the shared task, the evaluation of
a selected subset of sentences is done using SMT
and NMT. The SMT system is implemented using
Moses (Koehn et al., 2007) and the NMT system is
built using the FAIRseq (Ott et al., 2019) toolkit.
Organisers provided scripts which allow for im-
plementing the same translation system which will
be used in the final evaluation. However, we only
conducted experiments using NMT. The FAIRseq
system tokenises source and target sentences and
applies BPE (Sennrich et al., 2016). The tokeni-
sation of Nepali, Sinhala and Hindi sentences is
done using the Indic NLP Library3. The system
(Guzmán et al., 2019) uses a Transformer archi-
tecture with 5 encoder and 5 decoder layers, where
the number of attention heads, embedding dimen-
sion and inner-layer dimension are 2, 512 and
2048, respectively. The model is regularised with
dropout, label smoothing and weight decay. The
model is optimised with Adam (Kingma and Ba,
2014) using β1 = 0.9, β2 = 0.98, and ε = 1e− 8.
The learning rate is fixed to lr = 1e3, as described
in (Ott et al., 2019). The NMT system from the
shared task is trained for 100 epochs and mod-
els are saved every 10 epochs. The best model
is chosen according to validation set loss function
value. The script which allowed us to reproduce
the network used in the shared task can be found
at https://github.com/facebookresearch/flores. All
experiments were performed using NVidia Titan
Xp GPUs.

3 System description

In this section, the entire process of sentence scor-
ing is detailed.

Our process for scoring noisy corpora is as fol-
lows:

1. We apply bilingual cross-entropy selection
(described in 3.1.1) to select the best set of
sentences from Nepali, Sinhala and Hindi
to English jointly for each language pair:
Nepali–English and Sinhala–English.

2. We train an NMT engine using the above se-
lected data for each language pair.

3. Once the NMT engine is trained, we generate
a hypothesis for each sentence in the noisy
corpus.

3https://anoopkunchukuttan.github.io/indic nlp library/
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4. We then compute smoothed BLEU for each
target sentence in the noisy corpus, along
with its corresponding hypothesis. These
computed BLEU scores will be used for the
selection of the required subsets of 1M and
5M words of English tokens for the final eval-
uation.

5. Additionally, we apply a few rules (described
in 3.3) to discard some sentences which
are considered useless, by replacing their
smoothed BLEU score to zero, effectively
avoiding that the selection algorithm includes
such sentences into the selected subsets.

3.1 Translation engine
The main core of the scoring process is hypothesis
generation using a well-trained translation model.
To create the translation model we used the NMT
system from the shared task and we selected sen-
tences from all provided bilingual corpora in all
three language pairs jointly: Nepali, Sinhala and
Hindi to English. To select the subset of sentences
to train the translation model we used the bilin-
gual cross-entropy selection method (Moore and
Lewis, 2010) described in the next subsection.

3.1.1 Bilingual Cross-Entropy selection
We ranked sentences from all bilingual corpora
by their perplexity score according to a language
model trained on the monolingual corpora in
Nepali, Sinhala and English. The perplexity ppl
of a string s with empirical ngram distribution p
given a language model q is:

ppl(s) = 2−
∑

x∈s p(x)log q(x) = 2H(p,q) (1)

where H(p, q) is the cross-entropy between p and
q. Selecting the sentences with the lowest per-
plexity is therefore equivalent to choosing the sen-
tences with the lowest cross-entropy according to
the language model trained on monolingual data.
To compute bilingual cross-entropy score X (s) of
a sentence s, we sum the cross-entropy difference
over each side of the corpus, both source and tar-
get:

X (s) = [HM−src(s)−HN−src(s)]+

[HM−tgt(s)−HN−tgt(s)]
(2)

where HM−src(s) and HM−trg(s) are the cross-
entropy of a source/target sentence, respectively,
according to a language model trained on the

monolingual data provided, and HN−src(s) and
HN−trg(s) are the cross-entropy of a source/target
sentence, respectively, according to a language
model trained on the noisy corpora. Lower scores
are presumed to be better.

3.2 Filtering by hypothesis

Here, the purpose is to filter the noisy data accord-
ing to the potential smoothed BLEU score of the
sentence pair and the generated hypothesis. With
the purpose of building a translation system for ob-
taining this probability, we trained an NMT sys-
tem with different training set sizes selected us-
ing the bilingual cross-entropy technique above.
The system was trained for 200 epochs, which was
enough to achieve convergence. As development
set, and for selecting the best model for comput-
ing the BLEU score of the hypothesis associated
to a sentence pair, we used the same development
set as provided in the shared task. We selected the
best epoch according to validation set loss func-
tion value. In Table 6 we show sacreBLEU scores
for models trained with different number of sen-
tences.

Table 6: Validation sacreBLEU scores for bilin-
gual cross-entropy selection results depending on the
number of training sentences for Nepali–English and
Sinhala–English. M denotes millions of elements. Best
system marked in bold.

Nepali–English
Training size Validation

1.0M 11.7
1.5M 12.3
2.0M 12.2
2.5M 12.2
3.0M 14.9
3.5M 13.5

Sinhala–English
Training size Validation

1.0M 8.3
1.5M 8.8
2.0M 9.8
2.5M 9.5
3.0M 9.9
3.5M 9.5

In both language pairs, Nepali–English and
Sinhala–English, the best model was achieved us-
ing 3M sentences. Once the best models were se-
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lected, we translated the noisy corpora and we ob-
tained the hypothesis for each sentence, which al-
lowed us to compute the corresponding smoothed
BLEU score. This is the final score provided as
competition result. However, and before providing
the score, we also applied other filtering strategies,
as described in the following subsections.

3.3 Rule based Filtering

After obtaining the hypothesis for each sentence
from the noisy corpora, we applied a few rules to
filter the sentence pairs. These rules are the fol-
lowing:

1. Remove sentence pairs where the source or
target sentence contains more than 250 BPE
segments.

2. Remove sentences where the lower-cased
source sentence is equal to the lower-cased
target sentence.

3. Remove sentence pairs which do not contain
any Nepali/Sinhala characters in the source
sentence.

4. Remove sentences where the smoothed
BLEU score between the source and the tar-
get sentence is higher than a fixed thresh-
old µ. We explored different values for this
threshold µ = {0.20, 0.25, 0.30, 0.35, 1.0}.
Note that the space between 0.35 and 1.0 was
not explored because values of µ only slightly
above 0.35 already implied that no sentences
were filtered.

The order in which the rules are applied is impor-
tant, since sentences that are filtered out with zero
score assigned by one rule will not be a candidate
for selection in subsequent rules. After applying
different threshold values we used the provided
script to subsample sentence pairs to amount to 1
million and 5 million English words. The results
of training the final NMT system by applying dif-
ferent thresholds µ are shown in Tables 7 and 8.

Finally, we selected thresholds µ = 0.35 for the
Nepali–English corpus, and µ = 1.00 (no thresh-
old, all BLEU values between source and target
sentences accepted) for the Sinhala–English lan-
guage pair. In Table 9, the number of removed
sentences by each rule are shown.

In total, we discarded 1.2M from Nepali noisy
corpus and 1.9M sentences from Sinhala noisy

Table 7: SacreBLEU scores for final NMT system
trained using sentences selected with different values
of threshold µ for Nepali–English.

Nepali–English
Eng. words µ Valid Test

1M

0.20 0.1 0.2
0.25 3.3 4.1
0.30 3.4 4.2
0.35 3.4 4.3
1.00 2.4 3.0

5M

0.20 0.2 0.2
0.25 2.6 3.0
0.30 2.8 3.2
0.35 3.0 3.4
1.00 3.0 3.3

Table 8: SacreBLEU scores for final NMT system
trained using sentences selected with different values
of threshold µ for Sinhala–English.

Sinhala–English
Eng. words µ Valid Test

1M

0.20 2.0 2.4
0.25 2.2 2.2
0.30 2.3 3.1
0.35 2.3 2.4
1.00 2.4 2.3

5M

0.20 2.6 2.8
0.25 3.1 3.0
0.30 3.6 3.4
0.35 3.3 3.4
1.00 4.2 4.3

corpus. The rest of sentences from noisy cor-
pus were scored using target-hypothesis smoothed
BLEU described previously.

3.4 Baseline comparision

Once we selected the best models, we compared
the obtained sacreBLEU scores with the Zipporah
model results published on wmt2019 website. The
Zipporah model extracts a bag-of-words transla-
tion feature, and trains logistic regression models
to classify good data and synthetic noisy data in
the proposed feature space. The trained model is
used to score parallel sentences in the data pool
for selection. In Table 10 we show our result com-
pared to the Zipporah model.
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Table 9: Statistics of how many sentences of noisy cor-
pus were set their final score as zero after applying dif-
ferent rules. The number in parenthesis indicates the
rule described in the enumerated list above. k denotes
thousands of elements and M denotes millions of ele-
ments.

Nepali–English
Rule Removed sentences

(1) BPE >250 89.4k
(2) src=trg 186.8k
(3) No Nepali symbols 722.7k
(4) src-trg BLEU > 0.35 207.2k

Sinhala–English
Rule Removed sentences

(1) BPE >250 76.7k
(2) src=trg 78.3k
(3) No Sinhala symbols 1.7M
(4) src-trg BLEU > 1.00 None

Table 10: SacreBLEU scores for NMT system compar-
ison with the Zipporah model.

Nepali–English
Eng. words Model Test

1M
Sciling 4.3
Zipporah 5.2

5M
Sciling 3.4
Zipporah 1.9

Sinhala–English
Eng. words Model Test

1M
Sciling 2.3
Zipporah 4.7

5M
Sciling 4.3
Zipporah 3.7

4 Conclusions and future work

We introduced filtering of noisy parallel corpora
based on hypothesis generation and combined this
filtering with several filtering rules. We submitted
only the best set of scores for each language pair
to the shared task. In both language pairs, Nepali–
English and Sinhala–English, we achieved results
that performed better than the Zipporah baseline
with corpora containing 5M English words. Our
conclusion is that the designed filtering method is
able to reach better performance when confronted

with larger amounts of data.
Future work should concentrate on further im-

proving of our filtering method. We would train
a logistic model to combine the BLEU score be-
tween the generated hypothesis and target with
the BLEU score between source and target in-
stead of threshold values. Also, we would ap-
ply data selection techniques such as infrequent
n-gram selection (Parcheta et al., 2018) or con-
tinuous vector-space representation of sentences
(Chinea-Rios et al., 2019).

Acknowledgments

Work partially supported by MINECO under grant
DI-15-08169 and by Sciling under its R+D pro-
gramme. The authors would like to thank NVIDIA
for their donation of Titan Xp GPU that allowed to
conduct this research.

References
Amittai Axelrod, Xiaodong He, and Jianfeng Gao.

2011. Domain adaptation via pseudo in-domain data
selection. In Proc. of EMNLP, pages 355–362.

Mara Chinea-Rios, Germán Sanchis-Trilles, and Fran-
cisco Casacuberta. 2019. Vector sentences represen-
tation for data selection in statistical machine trans-
lation. Computer Speech & Language, 56:1–16.

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan
Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’Aurelio Ranzato. 2019. Two
new evaluation datasets for low-resource machine
translation: Nepali-english and sinhala-english.
arXiv preprint arXiv:1902.01382.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Proc.
of ACL, pages 177–180.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality us-
ing longest common subsequence and skip-bigram
statistics. In Proc. of ACL, pages 605–615.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Proc.
of ACL, pages 220–224.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and

289



7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

ACL 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Michael Auli. 2019. fairseq: A fast, extensi-
ble toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proc. of ACL,
pages 311–318.

Zuzanna Parcheta, Germán Sanchis-Trilles, and Fran-
cisco Casacuberta. 2018. Data selection for nmt us-
ing infrequent n-gram recovery. pages 219–228.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proc. of WMT, pages 186–191.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proc. of ACL, volume 1, pages
1715–1725.

290



Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 3: Shared Task Papers (Day 2) pages 291–295
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

Parallel Corpus Filtering based on Fuzzy String Matching

Sukanta Sen, Asif Ekbal, Pushpak Bhattacharyya
Department of Computer Science and Engineering

Indian Institute of Technology Patna
{sukanta.pcs15,asif,pb}@iitp.ac.in

Abstract

In this paper, we describe the IIT Patna’s sub-
mission to WMT 2019 shared task on paral-
lel corpus filtering. This shared task asks the
participants to develop methods for scoring
each parallel sentence from a given noisy par-
allel corpus. Quality of the scoring method is
judged based on the quality of SMT and NMT
systems trained on smaller set of high-quality
parallel sentences sub-sampled from the orig-
inal noisy corpus. This task has two language
pairs. We submit for both the Nepali-English
and Sinhala-English language pairs. We de-
fine fuzzy string matching score between En-
glish and the translated (into English) source
based on Levenshtein distance. Based on the
scores, we sub-sample two sets (having 1 mil-
lion and 5 millions English tokens) of paral-
lel sentences from each parallel corpus, and
train SMT systems for development purpose
only. The organizers publish the official eval-
uation using both SMT and NMT on the final
official test set. Total 10 teams participated in
the shared task and according the official eval-
uation, our scoring method obtains 2nd posi-
tion in the team ranking for 1-million Nepali-
English NMT and 5-million Sinhala-English
NMT categories.

1 Introduction

In this paper, we describe our submission to the
WMT 20191 parallel corpus filtering task (Koehn
et al., 2019). The aim of this shared task is to ex-
tract two smaller sets of high-quality parallel sen-
tences from a very noisy parallel corpus. This par-
allel corpus is crawled from the web as part of the
Paracrawl project and contains all kinds of noise
(wrong language in source and target, sentence
pairs that are not translations of each other, bad
language, incomplete or bad translations, etc.).

1http://www.statmt.org/wmt19/
parallel-corpus-filtering.html

This task provides the participants two sets of such
noisy parallel corpora: one is for Nepali-English
with English token count of 40.6 million and an-
other is for Sinhala-English with English token
count of 59.6 million. The participants are asked
to submit score for each sentence in each of these
two parallel corpora (Nepali-English and Sinhala-
English). Based on the scores, two smaller sets of
parallel sentences that amount to 1 million and 5
millions are extracted from each of those two par-
allel corpora. The quality of the scoring method is
judged based on the quality of the neural machine
translation (NMT) and statistical machine trans-
lation (SMT) systems trained on these smaller
corpora. We participated in both language pair:
Nepali-English and Sinhala-English.

Building machine translation (MT) systems,
specifically NMT (Kalchbrenner and Blunsom,
2013; Cho et al., 2014; Sutskever et al., 2014;
Bahdanau et al., 2015) systems, require supervi-
sion of huge amount of high-quality parallel train-
ing data. Though recently emerged unsupervised
NMT (Artetxe et al., 2018; Lample et al., 2018)
has shown promising results on related language
pairs, it does not work for distant language pairs
like Nepali-English and Sinhala-English (Guzmán
et al., 2019). Also, a vast majority of languages
in the world fall in the category of low-resource
languages as they have too little, if any, parallel
data. However, getting parallel training data is not
easy as it takes time, money and expert transla-
tors. Though we can have parallel data compiled
from online sources, it is not reliable as it is often
very noisy and poor in quality. It has been found
that MT systems are sensitive to noise (Khayral-
lah and Koehn, 2018). This necessitates to filter
out noisy sentences from a large pool of parallel
parallel sentences.

Parallel corpus filtering task of WMT 2019 fo-
cuses on two new low-resource languages pairs:
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Nepali-English and Sinhala-English for which
we have very little amount of publicly avail-
able parallel corpora. We use these parallel
corpora for building our scoring scheme based
on fuzzy string matching. Total 10 teams par-
ticipated in the shared task. According the
official evaluation, our scoring method obtains
2nd position in the team ranking in two cate-
gories: 1-million Nepali-English NMT and 5-
million Sinhala-English NMT.

2 Our Approach

The raw parallel corpus is very noisy and main
contributing to that is the wrong language. We
study both the parallel corpora (Nepali-English
and Sinhala-English) and find that there are many
parallel sentences which have wrong language at
source, target, or both sides. We use language
identifier to remove these sentences. The block
diagrammatic representation of our approach has
been shown in figure 1.

In our scoring scheme, 0 is the lowest score of a
parallel sentence. We set score 0 in the following
scenarios:

• Wrong source or target: we detect the lan-
guage of a sentence pair using langid2 and
if any of the source or target has wrong lan-
guage id, we set 0 score to that sentence pair.
This helps in filtering out many wrong paral-
lel sentences.

• As official evaluation is done using MT sys-
tems trained on sub-sampled sentences hav-
ing maximum 80 tokens, we set score 0 to all
the sentence pairs that have a source or target
length more than 80 tokens.

For further scoring, we translate the Nepali (or
Sinhala) sentences from remaining parallel sen-
tences into English and find the lexical matching
between a English sentence E and translated En-
glish E

′
. To score each pair XX-English (XX is

Nepali or Sinhala), we consider four fuzzy string
matching scores based on Levenshtein distance
(Levenshtein, 1966) between target (English) and
source (translated into English). These score
are implemented in fuzzywuzzy3, a python-based
string matching package, as:

2https://github.com/saffsd/langid.py
3https://github.com/seatgeek/

fuzzywuzzy

• Ratio (R1): ratio between E and E
′

defined
as:

|E|+ |E′ | − L

|E|+ |E′ | (1)

where |E| and |E′ | are the lengths of E and
E

′
, and L is the Levenshtein distance be-

tween E and E
′
.

• Partial ratio (R2): same as R1 but based on
sub-string matching. It first finds the best
matching sub-string between the two input
strings E and E

′
. Then it finds R1 between

the sub-string and shorter string among the
two input strings.

• Token sort ratio (R3): E and E
′

are sorted
and then R1 is calculated between the sorted
E and E

′
.

• Token set ratio (R4): It first removes the du-
plicate tokens in E and E

′
and then calculates

R1.

We combine these four scores (R1, R2, R3, R4)
in two different ways (taking arithmetic mean or
geometric mean):

ScoreAM =
1

4

4∑

i=1

Ri (2)

ScoreGM =

(
4∏

i=1

Ri

) 1
4

(3)

3 Datasets

Source #Sents #Tokens
Nepali-English

Bible 61,645 1,507,905
Global Voices 2,892 75,197
Penn Tree Bank 4,199 88,758
GNOME/KDE/Ubuntu 494,994 2,018,631
Total 563,640

Sinhala-English
Open Subtitles 601,164 3,594,769
GNOME/KDE/Ubuntu 45,617 150,513
Total 646,781

Table 1: Training data sources and number of sen-
tences. These corpora are used to train SMT sys-
tems used for fuzzy string matching. #Sents: Sentence
counts; #Tokens: English token counts.
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Figure 1: Block diagrammatic representation of our approach. We first apply language identification and set
maximum sentence length of up to 80 to get partially filtered corpus from original corpus. Then translate non-
English (Nepali / Hindi) sentence into English. Finally, we apply fuzzy string matching between original English
and translated English to get filtered corpus.

Set Nepali-English Sinhala-English
dev 2,559 2,898
devtest 2,835 2,766

Table 2: Number of sentences in dev and devtest.

This filtering task is focused on two language
pairs: Nepali-English with a 40.6 million-word
(English token count) and Sinhala-English with
a 59.6 million-word for which we develop our
method to score each pair of sentences. These par-
allel corpora are compiled from the web. Apart
these two parallel corpora, some other publicly
available data are provided for development pur-
pose. Nepali and Sinhala have very little pub-
licly available parallel data. Most of the parallel
data for Nepali-English originate from GNOME
and Ubuntu handbooks, and rest of the par-
allel sentences are compiled from Bible cor-
pus (Christodouloupoulos and Steedman, 2015),
Global Voices, Penn Tree Bank. For Sinhala-
English, we have only two sources of parallel data:
OpenSubtitles (Lison et al., 2018), and GNOME
and Ubuntu handbooks.

We use only above mentioned, shown in Ta-
ble 1, parallel data for training phrase-based SMT
(Koehn et al., 2003) systems to translate non-
English (Nepali and Sinhala) into English for cal-
culating fuzzy string matching scores. Apart from
those parallel data, participants are provided with
development (dev) and development test (devtest)
sets having parallel sentence counts 2559 and
2835 for Nepali-English, and 2898 and 2766 for

Sinhala-English, respectively. The details of the
data are shown in the Table 1 and 2. We tokenize
the training, development and test sets in prepro-
cessing stage. For tokenizing Nepali and Sinhala,
we use Indic NLP library4, and for tokenizing En-
glish sentences, we use the Moses tokenizer5.

4 Experiments

For our fuzzy string matching as well as evaluating
the quality of the sub-sampled sets, we build XX-
English (XX is Nepali or Sinhala) phrase-based
SMT (Koehn et al., 2003) system using the Moses
tool (Koehn et al., 2007). For training the SMT
system we keep the following settings: grow-
diag-final-and heuristics for word alignment, msd-
bidirectional-fe for reordering model, and 5-
gram language model with modified Kneser-Ney
smoothing (Kneser and Ney, 1995) using KenLM
(Heafield, 2011). The BLEU6 (Papineni et al.,
2002) scores for these SMT systems are 3.7 and
4.6 for Nepali-English and Sinhala-English, re-
spectively.

5 Results

Crude filtering based on language identification
and sentence length filtered out almost 77% and
70% parallel sentences from Nepali-English and
Sinhala-English corpora, respectively. However,

4https://bitbucket.org/anoopk/indic_
nlp_library

5https://github.com/moses-smt/
mosesdecoder/blob/RELEASE-3.0/scripts/
tokenizer/tokenizer.perl

6We use sacreBLEU (Post, 2018).
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1 million 5 million

Scoring Scheme SMT NMT SMT NMT
test devtest test devtest test devtest test devtest

Nepali-English
Arithmetic Mean 3.84 3.64 5.48 5.94 4.34 4.03 1.29 1.25
Geometric Mean 3.89 3.57 5.28 5.57 4.27 4.01 1.32 1.25

Sinhala-English
Arithmetic Mean 3.07 3.63 3.16 3.70 4.44 5.12 3.87 4.54
Geometric Mean 3.03 3.52 3.01 3.36 4.42 5.17 4.28 5.08

Table 3: Official BLEU scores for 1-million and 5-million sub-sampled sets.

we observe that the language identifier is not ef-
ficient in identifying Nepali or Sinhala sentences
and misclassifies many sentences. For example,
many Nepali sentences are classified as Hindi or
Marathi.

Corpus Before After
Nepali-English 2,235,512 509,750
Sinhala-English 3,357,018 1,015,504

Table 4: Number of parallel sentences in the raw paral-
lel corpora before and after applying language identifi-
cation and sentence length based filtering.

Then using the SMT systems as described in
Section 4, we translate the Nepali (or Sinhala)
sentences from partially filtered parallel corpora
into English, and apply fuzzy string matching
to score each pair of sentences. We sub-sample
sets with 1 million and 5 million English tokens.
The size of the sub-sampled sets are shown in the
Table 5. To judge the quality of the sub-sampled
sets, we train SMT systems following the settings
described in 4. We measure the quality of theses
sub-samples using BLEU scores shown in Table 6.

Official Evaluation Total 10 teams participated
in the shared task. The organizers (Koehn et al.,
2019) publish the BLEU scores of the 1-million
and 5-million sub-sampled sets on the final official
test sets. Official BLEU scores for our systems are
shown in the Table 3.

6 Conclusion

In this paper, we report our submission to WMT
2019 shared task on parallel corpus filtering. The
aim of this task is to score each parallel sentence
from two very noisy parallel corpora: Nepali-
English and Sinhala-English. We develop a fuzzy
string matching scoring scheme based on Leven-

Scoring Scheme 1 million 5 million
Nepali-English

Arithmetic Mean 56,868 200,725
Geometric Mean 53,821 185,978

Sinhala-English
Arithmetic Mean 70,114 264,271
Geometric Mean 67,888 249,275

Table 5: Number of sentences for 1-million and 5-
million sub-sampled sets for two scoring schemes.

Scoring Scheme 1 million 5 million
Nepali-English

Baseline 3.40 4.22
Arithmetic Mean 4.20 3.50
Geometric Mean 4.30 3.80

Sinhala-English
Baseline 4.16 4.77
Arithmetic Mean 4.20 5.10
Geometric Mean 4.00 5.30

Table 6: BLEU scores on devtest for SMT systems
trained on two sub-sampled sets. Baseline is the of-
ficial baseline as reported in shared task page. We use
sacreBLEU (Post, 2018).

shtein distance between and English and translated
English sentences. Quality of the scoring tech-
nique is judged by the quality of SMT and NMT
systems. For development purpose, we train only
SMT systems to check the quality of the scoring
method. Total 10 teams participated in the shared
task. The organizers publish the official evalua-
tion using both SMT and NMT on the final official
test set. In the team ranking, our scoring method
obtains 2nd position in 1-million Nepali-English
NMT and 5-million Sinhala-English NMT cate-
gories.
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Abstract
This paper describes the University of Helsinki
Language Technology group’s participation in
the WMT 2019 parallel corpus filtering task.
Our scores were produced using a two-step
strategy. First, we individually applied a series
of filters to remove the ‘bad’ quality sentences.
Then, we produced scores for each sentence
by weighting these features with a classifica-
tion model. This methodology allowed us to
build a simple and reliable system that is eas-
ily adaptable to other language pairs.

1 Introduction

Data-driven methodologies define the state of the
art in a wide variety of language processing tasks.
The availability of well-formed, clean data varies
from language to language, and finding such
data in sufficient amounts can prove challenging
for some of the lower-resourced languages. In
particular, the increasingly common neural ma-
chine translation systems are highly sensitive to
the quality as well as the quantity of training
data (Khayrallah and Koehn, 2018), which creates
an impediment to achieving good-quality transla-
tions in a low-resource scenario.

The web is a massive resource for text data in
a wide array of languages. However, it is costly
to manually extract high-quality parallel samples
from the web, and automatically-crawled datasets
such as the ParaCrawl Corpus1 are typically quite
noisy. Designing automatic methods to select
high-quality aligned samples from noisy parallel
corpora can therefore make crawling the web a
more viable option for compiling useful training
data.

To emphasize this untapped potential, Koehn
et al. (2018) proposed the Shared Task on Paral-
lel Corpus Filtering as part of WMT in 2018. We

1ParaCrawl can be downloaded from https:
//paracrawl.eu/

participated in this year’s task with three sets of
quality scores. Each score is a different aggrega-
tion of a shared set of features, with each feature
representing a local quality estimate focusing on
a different aspect. Section 2 contains a brief dis-
cussion of this year’s shared task. We present our
scoring system in Section 3, discussing the filters
we used for feature extraction in Section 3.2, and
the aggregate scorers in Section 3.3. Finally, we
report our contrastive results in Section 4.

2 Task Description

This year, the corpus filtering task organizers de-
cided to pose the problem under more challeng-
ing conditions by focusing on low-resource sce-
narios, as opposed to previous year German–
English (Koehn et al., 2018). In particular, two
parallel corpora are to be scored for filtering:
Nepali–English and Sinhala–English. The task
for each participating team is to provide a quality
score for each sentence pair in either or both of the
corpora. The scores do not have to be meaning-
ful, except that higher scores indicate better qual-
ity. The computed scores are then evaluated un-
der four scenarios: training SMT and NMT sys-
tems, on samples of 5 million and 1 million words
each, where the samples are obtained from the cor-
responding corpus using the quality scores.

Participants are provided with raw corpora to
score, which were crawled using the ParaCrawl
pipeline, and consist of 40.6 million (English)
words for Nepali–English, and 59.6 million for
Sinhala–English. Additionally, some parallel and
monolingual corpora were provided for each lan-
guage pair. We used the parallel datasets to train
some of our scoring systems2. Some descriptive

2En–Si: OpenSubtitles and GNOME/KDE/Ubuntu; En–
Ne: Bible (two translations), Global Voices, Penn Treebank,
GNOME/KDE/Ubuntu, and Nepali Dictionary.
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corpus lang. pair sent. pairs en words
ParaCrawl en–ne 2.2M 40.6M
additional en–ne 543K 2.9M
ParaCrawl en–si 3.4M 45.5M
additional en–si 647K 3.7M

Table 1: Statistics on the ParaCrawl data and the used
parallel data. Only English word counts reported.

statistics of the data we have used can be found in
Table 1.

3 Scoring system

We first independently applied a series of filters
to the data and computed relevant numerical fea-
tures with them. We have previously corroborated
the filters’ effectiveness, since we have used them
to clean the noisy datasets provided for this year’s
news translation task at WMT with satisfactory re-
sults. Then, we selected a cut-off value for each fil-
ter and trained a classifier over the features to com-
pute a global score for each sentence pair, which
we used to rank them.

3.1 Cleaning up the clean training data
Some of our filters require clean data for training.
We observed that the provided parallel data still
contained quite a lot of noise, and therefore, we
applied some additional heuristic filters to clean
it further. In particular, we used the following
heuristics to remove pairs with characteristics that
indicate likely problems in the data:

• Removing all sentence pairs with a length ra-
tio above 3 between the source and the target.

• Removing pairs with very long sentences
containing more than 100 words.

• Removing sentences with extremely long
words, i.e. excluding all sentence pairs with
words of 40 or more characters.

• Removing sentence pairs that include HTML
or XML tags.

• Removing sentence pairs that include charac-
ters outside of the decoding table of Devana-
gari (for Nepalese) and Sinhala characters be-
sides punctuation and whitespace.

• Removing sentence pairs that include De-
vanagari or Sinhala characters in English.

The procedure above discarded around 23% of
the data for Nepali–English, and we kept around
440k parallel sentences from the original data. For
Sinhala–English, we removed about 19% of the
data and kept 522k sentence pairs for training.

3.2 Filters

Word alignment. Our first filter applies statisti-
cal word alignment models to rank sentence pairs.
Word alignment models implement a straightfor-
ward way of estimating the likelihood of paral-
lel sentences. In particular, IBM-style alignment
models estimate the probability p( f |a, e) of a for-
eign sentence f given an ”emitted” sentence e and
an alignment a between them.

We used eflomal 3 (Östling and Tiedemann,
2016) for word-level alignment, as it provides sig-
nificant benefits. First, it is an efficient algo-
rithm based on Gibbs sampling, as opposed to the
slower expectation maximization methods com-
monly used for training. This method is thus able
to train and align large quantities of data in a small
amount of time. Second, this software allows us to
load model priors, a feature we use to initialize the
aligner with previously stored model parameters.
This is handy for our filtering needs, as we can
now train a model on clean parallel data and apply
that model to estimate alignment probabilities of
noisy data sets.

For obtaining model priors, we use the cleaned
training data described above, tokenized with the
generic tokenizer from the Moses toolkit (Koehn
et al., 2007). We cut all words at 10 characters
to improve statistics and training efficiency. With
this, we train for both language pairs a Bayesian
HMM alignment model with fertilities in both di-
rections, and estimate the model priors from the
symmetrized alignment. We then use those pri-
ors to run the alignment of the noisy datasets us-
ing only a single iteration of the final model to
avoid a strong influence of the noisy data on align-
ment parameters. As it is intractable to estimate a
fully normalized conditional probability of a sen-
tence pair under the given higher-level word align-
ment model, eflomal estimates a score based on the
maximum unnormalized log-probability of links
in the last sampling iteration. In practice, this
seems to work well, and we take that value to rank
sentence pairs by their alignment quality.

3Software available from https://github.com/
robertostling/eflomal
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Language model filter. The second filter ap-
plies language models for source and target lan-
guages. In our approach, we opt for a combination
of source and target language models, and focus
on the comparison between scores coming from
both models. The idea with this filter is to pre-
fer sentence pairs for which the cross-entropy with
the clean monolingual language models is low for
both languages, and that the absolute difference
between the cross-entropy of aligned sentences
is low as well. The intuition is that both mod-
els should be roughly similarly surprised when
observing sentences that are translations of each
other. In order to make the values comparable, we
trained our language models on parallel data sets.

As both training data sets are rather small,
and as we aim for an efficient and cheap filter,
we chose a traditional n-gram language model.
To further avoid data sparseness and to improve
comparability between source and target lan-
guages, we also base our language models on
BPE-segmented texts (Sennrich et al., 2016) us-
ing a BPE model trained on the cleaned paral-
lel data set with 37k merge operations per lan-
guage. VariKN 4 (Siivola et al., 2007b,a) is the per-
fect toolkit for the purpose of estimating n-gram
language models with subword units. It imple-
ments Kneser-Ney growing and revised Kneser-
Ney pruning methods with the support of n-grams
of varying size and the estimation of word like-
lihoods from text segmented into subword units.
In our case, we set the maximum n-gram size
to 20, and a pruning threshold of 0.002. Fi-
nally, we compute cross-entropies for each sen-
tence in the noisy parallel training data, and
store five values as potential features for filter-
ing: the source and target language cross-entropy,
H(S , qs) and H(T, qt), as well ad the average,
max and absolute difference between them, i.e.,
avg(H(S , qs),H(T, qt)), abs(H(S , qs)−(T, qt)) and
max(H(S , qs),H(T, qt)).

Language identifiers. A third filter applies off-
the-shelf language identifiers. In particular, we use
the Python interface of the Compact Language De-
tector5 version 2 (CLD2) from the Google Chrome
project, and the widely used langid.py pack-
age (Lui and Baldwin, 2012), to classify each sen-

4VariKN is available from https://vsiivola.
github.io/variKN/

5The Python implementation of CLD2 is available at
https://github.com/aboSamoor/pycld2

tence in the datasets.
We generate 4 features from these classifiers.

For each language, we use the reliability score by
CLD2 only if the predicted language was correct,
and zero otherwise; and we use the detection prob-
ability of langid.py only if the language was
classified correctly, and zero otherwise.

Character scores. Another simple filter com-
putes the proportion of Devanagari, Sinhala and
Latin–1 characters in Nepali, Sinhala and English
sentences, respectively. For this computation, we
ignore all whitespace and punctuation characters
using common Unicode character classes.

Terminal punctuation. This heuristic filter gen-
erates a penalty score with respect to the co-
occurrence of terminal punctuation marks (‘.’,
‘. . . ’, ‘?’, ‘!’) in a pair of sentences. In order
to have a finer granularity than {0, 1}, we penal-
ize both asymmetry (to catch many-to-one align-
ments) and large numbers of terminal punctua-
tion (to cover very long sentences, URLs and
code). For a given source and target sentence
pair, we initialize a score as the absolute differ-
ence between source and target terminal punctua-
tion counts. Then, we increment this score by the
number of terminal punctuation beyond the first
occurrence in both source and target sentences.

The intended effect is for the ideal sentence pair
to contain either no terminal punctuation or a sin-
gle terminal punctuation on either side (score =

0). In practice, many sentences are very far from
the ideal (score � 100), and it is counter-intuitive
to use a larger positive value to represent a higher
penalty. To address both problems, we finally
make the following update:

score = −log(score + 1)

Non-zero numerals. This filter assumes that nu-
merals used to represent quantities and dates will
be typically translated in the same format, and pe-
nalizes sentence pairs where numerals do not have
a one-to-one correspondence or do not occur in the
same sequence.

Sinhala uses the same Western Arabic numerals
used in the Latin alphabet. Nepali uses Devana-
gari numerals, following the same decimal sys-
tem as Western Arabic numerals. This filter takes
that into account, and first converts those to dig-
its between [0, 9]. After numeric normalization,
the filter extracts sequences of numerals from each
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pair of sentences, preserving their relative order.
Considering that a leading zero can be omitted
in some numeric sequences such as in dates and
numbered lists, the digit ‘0’ is ignored. Finally, the
score is calculated as a similarity measure between
the extracted sequences in the range [0, 1] us-
ing SequenceMatcher.ratio() from Python’s
difflib.

Clean-corpus filter Finally, we use the well-
proven clean-corpus-n script from Moses to pro-
duce a binary feature augmented by a feature that
marks sentences including HTML or XML tags.

All in all, we obtain 15 potential features from
these filters. However, some of them are to be con-
sidered redundant and the information they pro-
vide is already encoded in some other variable.
For instance, using the reliability score produced
by CLD2 together with the prediction probability
from langid.py would not provide crucial addi-
tional information to a model. Table 2 summarizes
the filters we used to train our scoring models.

№ Feature Definition

1 word-align ∼ p( f |a, e)

2
lang-model

H(S , qs)
3 H(T, qt)

4
lang-id

src reliability score
5 tgt reliability score

6
char-score

English chars %
7 Ne/Si chars %

8 term-punct
penalty for asymmetric

& excessive term. punct.

9 non-zero
similarity between
non-zero digit seq.

10 clean-corpus
1, if kept
0, otherwise

Table 2: List of features extracted from the filters.

3.3 Scorers
We trained a logistic regression classifier and a
random forest classifier to score each sentence pair
using the features presented in Section 3.2. We
trained three independent binary classifiers under
the following settings:
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 feature1: word-align-stem10

Figure 1: Distribution and cutoff value of feature 1
(word alignment) in the English–Nepali ParaCrawl cor-
pus.

1. Applying all filters to the additional parallel
corpora, and using filtered data as positive
examples, and filtered-out data as negative
examples.

2. Applying all filters to the corresponding
ParaCrawl corpus, and using filtered data
as positive examples, and a sample of 600k
filtered-out examples as negative examples.

3. Applying all filters to both the ParaCrawl
and the additional parallel corpora, and us-
ing these as positive examples, and a sample
of 1M filtered-out examples as negative ex-
amples.

lang. RF LR
pair AIC BIC AIC BIC

PC en-ne 17.8 -1.0e+7 -1.3 -2.5e+6
PC+BIC en-ne 16.8 -1.1e+7 -0.9 -2.9e+6

PC en-si 15.4 -9.4e+6 -1.5 -2.3e+6
PC+BIC en-si 15.6 -1.1e+7 -1.4 -2.9e+6

Table 3: AIC and BIC obtained with random forest
(RF) and logistic regression (LR) models. Compari-
son between the first chosen thresholds for ParaCrawl
(PC) data and the model that optimizes the information
criteria (PC+BIC).

For each filter under the first two scenarios,
we adjusted thresholds based on score distribu-
tions, attempting to keep a balance between hav-
ing restrictive thresholds that limited the amount
of positive examples, and having lax thresholds

299



data langpair word
-al

ign

lan
g-m

od
el

(sr
c)

lan
g-m

od
el

(tg
t)

lan
g-i

d (sr
c)

lan
g-i

d (tg
t)

ch
ar-

sco
re

(%
En)

ch
ar-

sco
re

(%
Ne/S

i)

ter
m-pu

nc
t

no
n-z

ero

cle
an

-co
rpu

s

additional clean ne-en 1 5 0 — 0 0 0 –2 0.5 0
ParaCrawl ne-en 4 10 9 0 0 0 0 –2 0.5 0
ParaCrawl bestBIC ne-en — — — 0 0 0 0 –2 0.5 0

additional clean ne-si 2 6 5 0 0 0 0 –1.5 0.5 0
ParaCrawl ne-si 3 10 10 0 0 0 0 –1 0.5 0
ParaCrawl bestBIC ne-si — 10 10 0 0 0 0 –2 0.5 0

Table 4: Selected threshold value for each feature.

that classified many low-quality examples as pos-
itive. In some cases the score distributions were
clearly bi-modal, making it easy to determine cut-
off values (e.g. see Figure 1); while in other
cases, we had to opt for a more empirical ap-
proach. For this reason, we have a second model
that optimizes the Akaike Information Criterion
(AIC) (Akaike, 1974) and the Bayes Information
Criterion (BIC) (Schwarz et al., 1978) under sce-
nario 2. This model was chosen from among 7
models trained with different reasonable combina-
tions of the features. In Table 3, we compare the
information criteria for both models. Finally, un-
der the third scenario we chose to combine the data
using the defined cutoff values from the previous
two to include a significant amount of examples
from both data sets.

Table 4 summarizes the threshold values used
for each feature. After applying the filters, we
kept 240k sentences (≈ 11% of the total) from
the ParaCrawl en–ne, 230k sentences (≈ 7%) from
ParaCrawl en–si; 239k (≈ 44%) from the addi-
tional clean en–ne data, and 231k (≈ 36%) from
the additional clean en–si data. This means that,
when combining them for scenario 3, we get 419k
sentences (≈ 15%) for en–ne, and 537k for en–
si (≈ 14%). In order to avoid overfitting to the
negative examples in scenarios 2 and 3, which
vastly outnumber the positive ones, we performed
stratified sampling of the negative examples where
we selected 600K and 1M negative examples, re-
spectively. We then randomly split the data into
train (70%) and test (30%) sets.

4 Results

We report the accuracy on the test set achieved by
the aforementioned models in Table 5. We do not

report the accuracy of the random forest classifiers
since they are all ≈ 99.99%. This is likely be-
cause the algorithm “cuts” through the variables
in a similar way to how we chose the threshold
values. For the same reason, they are unsuitable
for the scoring task at hand. The output produced
is a sharp classification that does not help rank the
sentences. In contrast, the logarithmic regression
model softens the output probabilities, emulating
the creation of a composite index when used in
combination without the threshold selection pro-
cedure.

lang. pair accuracy

additional en-ne 78.21%
ParaCrawl en-ne 96.09%
ParaCrawl+BIC en-ne 96.46%
All data en-ne 86.55%

additional en-si 78.82%
ParaCrawl en-si 95.26%
ParaCrawl+BIC en-si 95.26%
All data en-si 91.14%

Table 5: Accuracy values on the test data for the trained
logistic regression models. Additional refers to the ad-
ditional parallel clean data provided, ParaCrawl+BIC
to the model that optimized the BIC, and All data to
scenario 3.

In a final step, we also combined the score given
by the regression model with two heuristic fea-
tures that we deemed to be important for the rank-
ing. One of them is the character score that we in-
troduced earlier, which computes the proportion of
language-specific characters in the string ignoring
punctuation and whitespace. With this factor, we
heavily penalize sentence pairs that contain large
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portions of foreign text. The second factor is based
on the heuristics that translated sentences should
exhibit similar lengths in terms of characters. This
feature is proven to be efficient for common sen-
tence alignment algorithms, and hence, we add the
character length ratio as another factor in the final
score. For simplicity, we just multiply the three
values without any extra weights to obtain the fi-
nal ranking score. The system that applies those
additional factors is marked with char-length in
Table 6 with the SMT results on the development
test set.

model ne–en si–en

baseline 4.22 4.77
logreg 4.91 5.06
+char-length 4.82 5.32
bestBIC 4.63 4.91

Table 6: BLEU scores using SMT on 5 million sampled
training examples. The baseline refers to the Zipporah
model reported by the organizers of the shared task.

We only ran experiments with the provided
SMT model. We do not present results from the
NMT model, since we encountered complications
while running the pre-processing script in the pro-
vided development pack for the task. We believe
it might be due to character encoding and noise in
the data. However, we did not further investigate
the source of said problem. The SMT scores are
listed in Table 6. We can see that we indeed out-
perform the baseline model, but the scores are still
so low that we deem the resulting models to be es-
sentially useless. The performance for our three
attempts are rather similar, with the plain logistic
regression model having a slight advantage, and
a small improvement provided by the char-length
filter for the case of Sinhala–English. For that rea-
son, we selected that model as our final submis-
sion, with the plain logreg model as a contrastive
run to be evaluated.

By inspecting the provided data we draw the
conclusion that the low quality of the final MT
models is mainly due to the overall poor quality
of the data, rather than solely an issue of the scor-
ing algorithms. The final results of the shared task
suggest that it has not been possible to squeeze
much more out of the data. As seen in Table 7,
submissions for this year demonstrate a narrow
range of scores, and our primary submissions rank
above average despite their poor performance.

model 1M 5M 10M

e
n
–n
e

best 4.21 4.62 4.74
UHel (1) 3.19 3.87 4.31

average 3.03 ± 1.22 3.60 ± 1.12 3.96 ± 0.89
UHel (2) 1.29 2.05 3.83

e
n
–s
i

best 4.27 4.76 4.94
UHel (1) 3.26 3.84 4.12

average 3.00 ± 1.13 3.43 ± 1.09 3.92 ± 0.87
UHel (2) 2.28 3.24 3.96

Table 7: An overview of the relative performance (in
BLEU scores) of our (1) primary and (2) contrastive
SMT models trained on 1, 5, and 10 million samples.
The best and average rows represent the highest score
and the mean ± standard deviation among this year’s
submissions, respectively.

5 Conclusions

In this paper, we presented our rescoring system
for the WMT 2019 Shared Task on Parallel Cor-
pus Filtering. Our system is based on contrastive
scoring models using features extracted from dif-
ferent kinds of data-driven and heuristic filters.
We used these models to assign quality scores to
each sentence pair. This methodology allowed
us to build a simple and reliable system that is
easily adapted to other language pairs. The ma-
chine translation quality indeed improves, how-
ever, BLEU scores remain particularly low. This
raises questions about the general quality of the
data. More detailed analyses of the data sets seem
to be necessary to draw further conclusions.

Acknowledgments

This work is part of the FoTran project,
funded by the European Research Council
(ERC) under the European Union’s Hori-
zon 2020 research and innovation pro-
gramme (grant agreement№ 771113).

,

as well as the MeMAD project, funded by the Eu-
ropean Union’s Horizon 2020 Research and Inno-
vation Programme (grant№ 780069).

References
Hirotugu Akaike. 1974. A new look at the statistical

model identification. In Selected Papers of Hirotugu
Akaike, pages 215–222. Springer.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In Proceedings of the 2nd Workshop on
Neural Machine Translation and Generation, pages

301



74–83, Melbourne, Australia. Association for Com-
putational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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