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Abstract

While neural machine translation (NMT)
achieves remarkable performance on clean, in-
domain text, performance is known to degrade
drastically when facing text which is full of
typos, grammatical errors and other varieties
of noise. In this work, we propose a multi-
task learning algorithm for transformer-based
MT systems that is more resilient to this noise.
We describe our submission to the WMT 2019
Robustness shared task (Li et al., 2019) based
on this method. Our model achieves a BLEU
score of 32.8 on the shared task French to En-
glish dataset, which is 7.1 BLEU points higher
than the baseline vanilla transformer trained
with clean text1.

1 Introduction

Real world data, especially in the realm of social
media, often contains noise such as mis-spellings,
grammar errors, or lexical variations. Even though
humans do not have much difficulty in recognizing
and translating noisy or ungrammatical sentences,
neural machine translation (NMT; Bahdanau et al.
(2015); Vaswani et al. (2017)) systems are known
to degrade drastically when confronted with noisy
data (Belinkov and Bisk, 2017; Khayrallah and
Koehn, 2018; Anastasopoulos et al., 2019). Thus,
there is increasing need to build robust NMT sys-
tems that are resilient to naturally occurring noise.

In this work, we attempt to enhance the ro-
bustness of the NMT system through multi-task
learning. Our model is a transformer-based model
(Vaswani et al., 2017) augmented with two de-
coders, with each decoder bound to different learn-
ing objectives. It has a cascade architecture
(Niehues et al., 2016; Anastasopoulos and Chiang,
2018) where the first decoder reads in the output
of the encoder and the second decoder reads in the

1The code is available at https://github.com/
shuyanzhou/multitask_transformer

output of both encoder and the first decoder. The
objective of the first decoder, namely the denois-
ing decoder, is to recover from the noisy sentence
and generate the corresponding clean sentence.
Given both the noisy and clean sentence, the ob-
jective of the second decoder, namely the transla-
tion decoder, is to correctly translate the sentence
to the target language. This framework should
be beneficial in two ways: 1) Since the model is
trained with noisy text, it should inherently bet-
ter generalize to noisy text. 2) The translation de-
coder could potentially take advantage of the re-
covered clean sentence while maintaining specific
varieties of noise (e.g. emoji) by referring to the
original noisy sentence. This framework requires
triplets of clean and noisy source sentences, along
with target translations, so we also follow Vaibhav
et al. (2019) and design a back-translation strategy
that synthesizes noisy data.

Our proposed model outperforms the baseline
vanilla transformer trained with clean text by
4.6 BLEU points on the WMT 2019 Robust-
ness shared task (Li et al., 2019) French to En-
glish dataset. The fine-tuning process brings an
additional 2.5 points improvement. According
to our analysis, however, the improvements can
mainly be attributed to introducing noisy data dur-
ing training rather than the multi-task learning ob-
jective.

2 Multi-task Transformer

In this section, we describe in detail the architec-
ture of our proposed multi-task transformer. It is a
transformer-based (Vaswani et al., 2017) cascade
multi-task framework (Niehues et al., 2016; Anas-
tasopoulos and Chiang, 2018).

2.1 Detailed Architecture
As illustrated in Figure 1, the model consists of
one transformer encoder and two transformer de-

https://github.com/shuyanzhou/multitask_transformer
https://github.com/shuyanzhou/multitask_transformer
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Figure 1: Multitask transformer architecture. Bold grey
lines represent parts we add on top of the vanilla trans-
former.

coders. The dataset consists of triplets: T =
{tn, tc, tt} where tn is the noisy source sentence,
tc is the clean source sentence and tt is the target
translation. Each t consists of a sequence of words
[w1, w2, ..., wl], where l is the length of the corre-
sponding text. By looking up the word and posi-
tion embedding lookup tables, each t is converted
to a representation matrix x = {e1, e2, ..., el} and
thus result in X = {xn,xc,xt}.

The encoder reads in noisy text xn and gener-
ates the encoded representation Mn. The layers
of the first decoder (denoising decoder) first at-
tends to xc (self-attention) and then attends to Mn
from the encoder. After N layers, this decoder
generates another representation Mc which repre-
sents the clean rather than the noisy source text.
Now, the layers of the second decoder (translation
decoder) first perform self-attention as usual, and
then attend to both Mn and Mc simultaneously.
After repeating this process N times, the transla-
tion decoder generates Mt which is then passed on
to a position-wise feed-forward network followed
by a softmax layer. The output of the model is
a probability matrix P ∈ Rl×V , where V is the
vocabulary size and l is the length of translated
sentence.

As the description above, the denoising decoder
is exactly the same as the decoder of the vanilla
transformer. The only difference is that for the
translation decoder each layer needs to attend to

both encoder outputs Mn and denoising decoder
outputs Mc after self-attention. Therefore, the
translation decoder receives two contexts, namely
from the encoder attention An and the denoising
decoder attention Ac. In our model, we design the
final attention context as the linear transformation
of the concatenation of these two attention states:

At = W [An;Ac] + b

Where W ∈ Rd×2d and b ∈ Rd.
Following Tu et al. (2017); Anastasopoulos and

Chiang (2018), the first objective is to maximize
the log likelihood of the clean text tc and the sec-
ond objective is to maximize that of the translated
text tt. The importance of these two objectives are
controlled by a hyper-parameter λ:

L(θ) =λ logP (tc|tn; θ)+ (1)

(1− λ) logP (tt|tn, tc; θ)

2.2 Two Phase Beam Search

Following Anastasopoulos and Chiang (2018), we
use two separate beam search processes to de-
code the final translation. Let Nbeam be the size
of the beam-search. The process is outlined here
for clarity. Given a sentence tn, the denoising
decoder produces a Nbeam outputs, each consist-
ing of a denoised hypothesis t̂c, the probability
of the hypothesis P (t̂c|xn; θ), and corresponding
hidden state matrix M̂c. For each hypothesis from
this first decoder, the second decoder also pro-
duces Nbeam tuples, each including a translation
hypothesis t̂t and its probability P (t̂t|tn, t̂c; θ).
At the end of the second phase, we will have
Nbeam×Nbeam translation hypotheses. We rank the
these hypothesis by their scores defined in Equa-
tion 1.

3 Training Triple Generation

As mentioned in Section 2, the desired training
data for our multi-task transformer is a collection
of triples T = {tn, tc, tt}. However, datasets of
this kind are very rare; the available amounts of
data are less than enough to train such a model
with enormous number of parameters. Inspired
by Vaibhav et al. (2019), we instead use a back-
translation strategy to synthesize these triples. Our
proposed strategy is flexible and it could be used
as long as we have at least one element of the T
triple.
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Figure 2: Training data synthesis. Blocks rounded by dash rectangle are synthetic while others are real.

Depending on which part of triple is available,
we select the proper NMT model and synthesize
the missing ones. In Figure 2, we show 3 ways
that we did this in this work. Note that because
we focus on the translation from French to English
where the French text mostly consists of MTNT-
style noise (Michel and Neubig, 2018), we specify
the source language as fr, the target language as
en and the noise style as MTNT; however, our ap-
proach could be used for all other language pairs
with different noise distributions.

Clean fr & Clean en: This is the most com-
mon parallel corpus that could be obtained from
many existing resources. The only missing text
is the noisy French text. In this case, we syn-
thesize the noisy text with the help of the NMT
model trained with both TED and MTNT training
data. During training, we add a tag showing the
source of this pair at the beginning of each En-
glish sentence (Kobus et al., 2017; Vaibhav et al.,
2019). By adding this tag, the model could po-
tentially better distinguish TED data and MTNT
data. To generate the noisy French text, we add an
MTNT tag at the beginning of each sentence and
feed them to this NMT model. Ideally, besides the
inherent noise as a result of imperfect translations,
the translated French sentences could also possess
a similar noise distribution as MTNT.

Noisy fr & Clean en: This kind of parallel text
can be found in the MTNT training data. Note that
even though the manually translated English sen-
tences contain some level of “noise” (e.g. emoji),
we treat them as clean English text. In this sce-
nario, we leverage a pre-trained NMT system pro-
vided by fairseq (Ott et al., 2019) to translate
English sentences back to French. Considering
its good performance over other benchmarks (e.g.
WMT newstest datasets) we assume that the trans-

lated French sentences are of high quality and thus
treat them as clean French text.

Clean fr: To make our back-translation strategy
more generalized to settings where the above par-
allel data is not enough to train the model, we
also design a pipeline to utilize monolingual data
which is likely to be available most of the time. In
this case, we first translate these sentences to En-
glish and then translate them back to French. Both
NMT models are trained with TED and MTNT
data as we describe above. Similarly, in both di-
rections, we add the MTNT tag in the beginning
of the sentences. Note that alternatively one could
use an off-the-shelf NMT model to generate clean
English text.2

4 Experiments

In this section, we first describe in detail our data
pre-processing scheme, as well as the choice of
hyperparameters. Then we compare our system
with the baseline model (a vanilla transformer
trained on clean French and clean English parallel
data). Finally, we carry out a case study by com-
paring the output of our model with the baseline
model.

4.1 Data Pre-processing

Because of time limitations, we did not use all
three kinds of training triples. We only used the
first two triples introduced in Section 3.

Clean fr & Clean en: The clean data consists of
europarl-v73 and news-commentary-v10 copora.4

We filter out sentences whose length is greater

2We did not attempt this due to time restrictions.
3http://www.statmt.org/europarl/v7/

fr-en.tgz
4http://www.statmt.org/wmt15/

training-parallel-nc-v10.tgz

http://www.statmt.org/europarl/v7/fr-en.tgz
http://www.statmt.org/europarl/v7/fr-en.tgz
http://www.statmt.org/wmt15/training-parallel-nc-v10.tgz
http://www.statmt.org/wmt15/training-parallel-nc-v10.tgz
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than 50. We apply a pretrained Byte Pair Encod-
ing (BPE, Gage (1994)) model with 16k subword
units to both source and target sentences. The pro-
cess of synthesizing noisy French sentences is de-
scribed in the corresponding paragraph of Section
3. We denote this set of triples as Teuroparl.

Noisy fr & Clean en: As mentioned in the cor-
responding paragraph of Section 3, both noisy
French and clean English come from MTNT train-
ing data and we create clean French through back-
translation. This set of triples is denoted as Tmtnt.

4.2 Hyperparameters

We follow the transformer-base setting of Vaswani
et al. (2017), using N = 6 layers for both en-
coder and decoder, h = 8 heads for self-attention,
and dk, dv are both set to 64. The hidden size of
the model dmodel is set to 512 and the hidden size
of the feed forward network is set to 2048. The
smoothing rate ε is set to 0.1 and the dropout rate
is set to 0.1. For our multi-task transformer specif-
ically, the weight λ in Equation 1 is set to 0.5. The
implementation of the model is based on fairseq
(Ott et al., 2019)5.

4.3 Results

The baseline model is the vanilla transformer
trained with clean French and clean English. In
our experiment, it contains pairs T1 = {tc, tt}
that are extracted from Xeuroparl. On the other
hand, our model is the multitask transformer
trained with Xeuroparl. The same number of pairs
and triples are used during training. We evaluate
these two models on two MTNT datasets, one of
them comes from the original paper (Michel and
Neubig, 2018) while the other one is provided by
WMT Robustness shared task (Li et al., 2019).
The BLEU score of these two models are shown
in the first and the third column of Table 1.

Compared to the vanilla transformer, our
proposed multi-task transformer yields 2.5 and
4.6 BLEU points improvement on two MTNT
datasets. However, the component that leads to the
success of this model is unclear as there are mainly
two differences: 1) our proposed model utilizes an
auxiliary decoder to recover from the noisy text,
it could potentially benefit the translation process
with cleaner data 2) our model is further trained on

5https://github.com/pytorch/fairseq/
tree/master/fairseq

Model BLEU

Vanilla Transformer 22.0 25.7
+FT w/ synthetic noise 24.6 27.1

+FT w/ MTNT 34.1 36.0

Our Model 24.5 30.3
+FT w/ MTNT 31.7 32.8

Table 1: BLEU score of different models. The second
column shows the score in MTNT test dataset intro-
duced in Michel and Neubig (2018) and the third col-
umn shows the score in the MTNT test dataset provided
by WMT Robustness share task (Li et al., 2019).

noisy data, presumably overcoming any domain-
adaptation issues.

We investigate this issue by fine-tuning the
baseline model with another set of pairs T2 =
{tn, tt} that are extracted from Teuroparl. We load
the pre-trained model and continue training for an
extra epoch. With this fine-tuning process, the
baseline model sees exact the same number of data
as our proposed model. The fine-tuning result is
shown in the second row of Table 1.

The performance of the fine-tuned baseline sys-
tem is very close to that of our proposed model
on the original MTNT test data and is 3.2 BLEU
points lower on the shared task dataset. This result
suggest that while the inclusion of synthetic noisy
sentences is generalizable among datasets, using
the denoising decoder might be beneficial only in
specific settings.

Further, to investigate model’s potential when in
possession of in-domain training data, we fine tune
both models with MTNT parallel training data.
The data we use here is the same as the MTNT
data we use to train auxiliary NMT systems to gen-
erate triples (Section 3). During the fine-tuning
process, hence, we do not introduce new parallel
data. The performance of the fine-tuned systems
are shown in the third and the last row of Table 1
respectively.

Even vanilla transformer could not beat the
multi-task transformer on both datasets before
fine-tuned with in-domain data, it performs sig-
nificantly better and outperforms our proposed
model on both datasets after the fine-tuning pro-
cess. The results suggest the potential of vanilla
transformer in fitting in-domain data. It is no-
table, of course, that the fine-tuning process leads
to a 9.5/8.9 BLEU points improvement for the
vanilla transformer and 7.2/1.5 points for our pro-

https://github.com/pytorch/fairseq/tree/master/fairseq
https://github.com/pytorch/fairseq/tree/master/fairseq
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posed model respectively. This again shows the
power of domain adaptation for building a robust
NMT system.

4.4 Case Study

Table 2 shows example outputs of original MTNT
test dataset from different models. The denoised
source is the sentence generated by the denoising
decoder in our proposed model.

The first example contains special characters
‘>’ and the word ‘xQc’. All models fail to cor-
rectly copy the special character > and generate a
replacement. On the other hand, the word ‘xQc’
confuses the two baseline models and they fail to
correctly copy this word. Our model, however,
correctly copies the word and generates a reason-
able translation. The denoised sentence seems to
not bring benefit and, in fact, it attempts to denoise
‘xQc’ to ‘XVC’. The translation decoder then
seems to combine the two versions, copying the
word from the source noisy sentence but upper-
casing it just like the denoised version.

The second example contains the acronym
‘PC’ and our model does not produce a correct
translation. It is interesting that the translated
word ‘pellets’ is also not the corresponding
translation of ‘peloton’ in the denoised sen-
tence. Somewhat similar to the first example, this
suggests that the translation decoder mostly ig-
nores the context from the denoisy decoder. In
terms of performance of vanilla transformer, al-
though the baseline model also fails, the fine-tuned
model deals with ‘PC’ correctly and procures
a good translation. This indicates that explicitly
having attention to both noisy and clean sentences
does not always lead to better translation quality.

In the last example, the noise lies in a typo in the
phrase corresponding to the phrase ‘‘double
negative’’. None of the models produces a
good translation of this phrase. Similar to the
first case, the denoised sentence has a negative
effect as it falsely “corrects” ‘‘ngation’’ to
‘‘voie’’ (“way” in English), which changes
the meaning of the word and results in the bad
translation ‘track’. This demonstrates that all
models still need to address issues regarding rare
and misspelled words.

The main takeaway from a manual inspection
of the outputs, is that the first (denoising) decoder
does not really properly deal with noise in the de-
sired way, and the translation decoder generally

ignores its output. We suspect that this issue is
caused by the data synthesis process which re-
sults in low quality triples. Other further improve-
ments could be possibly achieved by constrain-
ing the output of the denoising decoder, such that
it produces minimal, non-meaning-altering edits.
We leave these investigations as future work.

5 Related Work

Here, we discuss how the MT community handles
the noise problem. In general, there are mainly
two kinds of approaches: the first attempts to de-
noise text, and the second proposes training with
noisy texts.

Denoising text: Sakaguchi et al. (2017) pro-
poses semi-character level recurrent neural net-
work (scRNN) to correct words with scrambling
characters. Each word is represented as a vector
with elements corresponding to the characters’ po-
sition. Heigold et al. (2018) investigates the ro-
bustness of character-based word embeddings in
machine translation against word scrambling and
random noise. The experiments show that the
noise has a larger influence on character-based
models than BPE-based models. To minimize the
influence of word structure, Belinkov and Bisk
(2017) proposes to represent word as its average
character embeddings, which is invariant to these
kinds of noise. The proposed method enables the
MT system to be more robust to scrambling noise
even training the model with clean text. Instead of
handling noise at the word level, we try to recover
the clean text from the noisy one at the sentence
level. Besides noise like word scrambling, the sen-
tence level denoising could potentially better deal
with more complex noise like grammatical errors.

Training with noisy data: Li et al. (2017) de-
signs methods to generate noise in the text, mainly
focusing on syntactic noise and semantic noise.
(Sperber et al., 2017) proposes a noise model
based on automatic speech recognizer (ASR) er-
ror types, which consists of substitutions, dele-
tions and insertions. Their noise model samples
the positions of words that should be altered in
the source sentence. Even training with synthetic
noise data brings a large improvement in translat-
ing noisy data, Belinkov and Bisk (2017) shows
that models mainly perform well on the same kind
of noise that is introduced at training time, and
they mostly fail to generalize to text with other
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Source > Tu veux dire comme xQc?
Target > Do you mean like xQc?
Baseline ’You want to call it al-Qc?’
Baseline FT − Do you mean asylum-seekers?

Denoised Source − Avez-vous lintention de parler de XVC?
Our model − Do you intend to refer to as XQC?
Source Si tu joues sur pc, a-t-il t bien adapt?
Target If you play on PC, has it been well adapted?
Baseline If you are playing on a pile, has it been adequate?
Baseline FT If you play on pc, has it been properly adapted?

Denoised Source Si vous jouez au peloton, a-t-il t bien adapt?
Our model If you play on pellets, has you been well adapted?
Source Les franais sont les champions de la double-ngation.
Target French people are the champions of the double negative.
Baseline The French are the champions of dual-nation.
Baseline FT The French are the champions of double-nutrition.

Denoised Source Les Franais sont les champions de la double voie.
Our model The French are the champions of the double-track.

Table 2: Comparison of baseline, baseline FT w/ synthetic noise and our model in MTNT fr-en.

kinds of noise. Similar findings were outlined in
Anastasopoulos et al. (2019) and Anastasopoulos
(2019), which evaluated MT systems on natural
and natural-like grammatical noise, specifically on
English produced by non-native speakers. Natural
noise appears to be richer and more complex com-
pared to synthetic noise, making it challenging to
manually design a comprehensive set of noise to
approximate real world settings. In our work, we
follow (Vaibhav et al., 2019) and synthesize the
noisy text through back-translation. There is no
need to manually control the distribution of noise.

In terms of multi-task learning for machine
translation, Tu et al. (2017) proposes to add a
reconstructor on top of the decoder. The aux-
iliary objective is to reconstruct the source sen-
tence from the hidden layers of the translation de-
coder. This encourages the decoder to embed com-
plete source information, which helps improve the
translation performance. This approach was found
to be helpful in low-resource MT scenarios also
by Niu et al. (2019). Anastasopoulos and Chiang
(2018) proposes a tied multitask learning model
architecture to improve the speech translation task.
The intuition is that, speech transcription as an in-
termediate task, should improve the performance
of speech translation if the speech translation is
based on both the input speech and its transcrip-
tion.

6 Conclusion

In this work, we propose a multi-task transformer
architecture that tries to not only denoisy the noisy

source text but also translate it. We design a strat-
egy for synthesizing data triplets for this architec-
ture. Our model could be viewed as a combina-
tion of denoising source text and domain adap-
tation, both of which are popular approaches for
designing robust NMT systems. Compared to
the baseline vanilla transformer that is trained on
clean data only, our proposed model with fine tun-
ing enjoys 7.1 BLEU points improvement on the
WMT Robustness shared task French to English
dataset. However, this improvement is most likely
attributed to the noisy text we add to the training
process (hence, due to better domain adaptation),
and not due to the denoising multi-task strategy.
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