
Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 2: Shared Task Papers (Day 1) pages 501–506
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

501

Meteor++ 2.0: Adopt Syntactic Level Paraphrase Knowledge into
Machine Translation Evaluation

Yinuo Guo, Junfeng Hu*

Key Laboratory of Computational Linguistics, School of EECS, Peking University
{gyn0806, hujf}@pku.edu.cn

Abstract
This paper describes Meteor++ 2.0, our sub-
mission to the WMT19 Metric Shared Task.
The well known Meteor metric improves ma-
chine translation evaluation by introducing
paraphrase knowledge. However, it only fo-
cuses on the lexical level and utilizes consec-
utive n-grams paraphrases. In this work, we
take into consideration syntactic level para-
phrase knowledge, which sometimes may be
skip-grams. We describe how such knowledge
can be extracted from Paraphrase Database
(PPDB) and integrated into Meteor-based met-
rics. Experiments on WMT15 and WMT17
evaluation datasets show that the newly pro-
posed metric outperforms all previous versions
of Meteor.

1 Introduction

Accurate evaluation of machine translation (MT)
plays an important role in measuring improvement
in system performance. Since human evaluation
is time-consuming and expensive, automatic met-
rics for MT have received significant attention in
the past few years. A lot of MT evaluation met-
rics from different perspective have been proposed
to measure how close machine-generated transla-
tions are to professional human translations such
as BLEU (Papineni et al., 2002), Meteor (Baner-
jee and Lavie, 2005), TER (Snover et al., 2006)
etc. Because Meteor has the ability to employ
various linguistic language features and resources
easily, a lot of improved versions has been put for-
ward continuously (Lavie and Denkowski, 2009;
Denkowski and Lavie, 2010a,b, 2011, 2014; Guo
et al., 2018). The Meteor-Next (Denkowski and
Lavie, 2010a,b) extends the Meteor to phrase-level
with the support of paraphrase tables. It’s clear
that this knowledge incorporated into matching
procedure do help the metric reach a higher cor-
relation with the human scores.

In previous work, phrases in paraphrase table
are defaulted to be consecutive n-grams which

mainly draw on the lexical level. What’s more,
skip n-gram (Huang et al., 1993) paraphrases
whose components need not be consecutive also
capture many meaning-preserving syntactic trans-
formations. The original Meteor-based metrics
only pay attention to consecutive string matching,
they perform badly when reference-hypothesis
pairs contain skip n-grams. Using the pair (pro-
tect...from, protect...against) for an example, the
two different prepositions from and against will
bring a miss-matching and then have a negative
effect on the Meteor score. Obviously, these
two words are equivalent when appearing simul-
taneously with the verb protect. What’s more,
from and against here mainly support the sen-
tence structure and contribute little on semantic
expression.

In this paper, we seek to directly address
the problem mentioned before by adopting a
syntactic-level language resource into Meteor.
Taking advantage of the large Paraphrase Database
(Ganitkevitch et al., 2013; Pavlick et al., 2015),
we automatically extract a subset of syntax PPDB
which contains skip n-grams. To demonstrate the
efficacy of this knowledge, we raise an improved
version of the Meteor incorporated with that via
an extra parallel syntax stage. Our extended met-
ric, Meteor++ 2.0, shows an improvement in the
correlation with the human scores on most of the
language pairs.

We organize the remainder of the paper as fol-
lows: Section 2 describes the traditional Meteor
scoring. Section 3 presents the syntactic level
paraphrase table acquisition and model details.
Section 4 is devoted to the experiments and results.
The conclusions follow in the final section.

2 Traditional Meteor Scoring

The Meteor metric based on a general concept of
flexible unigram matching, unigram precision and
unigram recall, including the match of words that

502

are simple morphological variants of each other by
the identical stem and words that are synonyms of
each other. For a single hypothesis-reference pair,
the space of possible alignments is constructed by
exhaustively identifying all possible matches be-
tween the sentences according to the following
matchers with different weight.

• Exact: Words are matched if and only if their
surface forms are identical.

• Stem: Words are stemmed using a language
appropriate Snowball Stemmer (Porter,
2001) and matched if the stems are identical.

• Synonym: Words are matched if they are both
members of a synonym set according to the
WordNet (Miller, 1998) database.

• Paraphrase: Phrases are matched if they are
listed as paraphrases in a paraphrase table.

Alignment resolution is conducted as a beam
search using a heuristic based on the specified cri-
teria.The final alignment is then resolved as the
largest subset of all matches to meet the follow-
ing criteria in order of importance:

1. Require each word in each sentence to be
covered by zero or one match.

2. Maximize the number of covered words
across both sentences.

3. Minimize the number of chunks, where a
chunk is defined as a series of matches that
is contiguous and identically ordered in both
sentences.

4. Minimize the sum of absolute distances be-
tween match start indices in the two sen-
tences. (Break ties by preferring to align
phrases that occur at similar positions in both
sentences.)

Once the final alignment is selected, the Meteor
calculates weighted precision P and recall R. For
each matcher (mi), it counts the number of con-
tent and function words covered by matches of ith
type in the hypothesis (mi(hc), mi(hf)) and ref-
erence (mi(rc), mi(rf)), |hf | and |rf | mean the
total number of function words in hypothesis and
reference, |hc| and |rc| mean the total number of
content words in hypothesis and reference.

P =

∑
iwi · (δ ·mi(hc) + (1− δ) ·mi(hf))

δ · |hc|+ (1− δ) · |hf |
(1)

R =

∑
iwi · (δ ·mi(rc) + (1− δ) ·mi(rf))

δ · |rc|+ (1− δ) · |rf |
(2)

The parameterized harmonic mean of precision
P and recall R then calculated:

Fmean =
P ·R

α · P + (1− α) ·R
(3)

To account for gaps and differences in word
order, a fragmentation penalty is calculated us-
ing the total number of matched words (m, aver-
aged over hypothesis and reference) and number
of chunks(ch):

Pen = γ · (ch
m

)β (4)

The Meteor score is then calculated:

Score = (1− Pen) · Fmean (5)

The parameters α, β, γ, δ and wi...wn are tuned
to maximize correlation with human judgments.

3 Our Approach

In this section, we firstly present the syntactic level
paraphrase table acquisition in 3.1 and then we in-
troduce how to integrate this knowledge resource
into Meteor in 3.2.

Element A Element B
assist in help to
protect from protect against
the turkish the of turkey
feel is believe that is

administration of management
give provide with
ask to do ask that
depressing of depressing from
issue the number of

Table 1: Some examples of our extracted Syntactic
Level Paraphrase Table. Note that ’ ’ is the placeholder
which can be skipped over.

3.1 Syntactic Level Paraphrase Table
Acquisition

Syntactic paraphrases always capture meaning-
preserving syntactic transformations but gain less
attention than lexical paraphrases in Meteor-based
metrics. In this work, we benefit from the widely

503

Reference
We(0) will(1) get(2) the(3) boys(4) ready(5) to(6) go(7) again(8)
said(9) donnelly(10)

Hypothesis
We(0) will(1) prepare(2) the(3) boy(4) back(5) to(6) action(7) don-
nelly(8) promises(9)

Index Reference Hypothesis Match Type Match Weight
0 we(0) we(0) Exact [1.0]
1 will(1) will(1) Exact [1.0]
2 get(2) ready(5) prepare(2) Syntax [0.4, 0, 0, 0.8]
3 the(3) the(3) Exact [1.0]
4 boys(4) boy(4) Synonym [0.8]
5 - - - -
6 to(6) to(6) Exact [1.0]
7 go(7) - - -
8 again(8) - - -
9 said(9) - - -
10 donnelly(10) donnelly(8) Exact [1.0]

Table 2: An example of alignment result between the reference-hypothesis pair.The weights of Exact, Stem, Syn-
onym, Paraphrase and Syntax are set to be [1.0, 0.6, 0.8, 0.6, 0.4]

used paraphrase resource PPDB2.0 (Pavlick et al.,
2015) and try to bring syntactic level knowledge
into Meteor evaluation. Here we mainly focus on
skip n-gram paraphrases whose components are
not consecutive in appearance such as examples
shown in Table 1. Note that here we filter those
pairs in which both elements are consecutive n-
grams because they will be duplicate with the pairs
in existing paraphrase table of Meteor.

The PPDB divides the database into six sizes for
several languages according to three perspectives,
from S to XXXL on the lexical, phrasal and syntac-
tic level. We build our own syntactic level para-
phrase table using the XXXL syntax PPDB:Eng
which contains over 140 million syntax paraphrase
pairs. Then we use regular expressions to ex-
tract the skip n-gram paraphrases with the follow-
ing criteria and hold out about 27 million pairs.
The paraphrase pair in the following descriptions
means two phrases which are listed as paraphrases
in our syntactic level paraphrase shaped like (Ele-
ment A, Element B) in Table 1.

• Each phrase in one paraphrase pair should be
not consecutive in appearance .

• Each phrase in one paraphrase pair should
contain at least one content word.

• The length difference between the two
phrases in one paraphrase pair should less
than the threshold.

Compared to the prior paraphrase tables, we list
two principal differences between them:

• In appearance, we mainly focus on skip n-
grams whose components need not be con-
secutive in the text. In our table, at least one
element in each paraphrase pair should have
a break by the placeholder ‘ ’ which means
the position can be any word.

• Lots of pairs have duplicate words between
the two elements in ours. For the reason that
some meaning-preserving syntactic transfor-
mations just substitute function words and
still have the same content words.

Therefore, treated this knowledge the same way
with the previous is unreasonable, and we will dis-
cuss the details on how to leverage this language
resources under the Meteor framework in the next
section.

3.2 Meteor++ 2.0

Under the Meteor framework, Meteor++ 2.0 adds
a parallel Syntax stage for possible syntactic level
paraphrases matching. Due to its difference men-
tioned in 3.1, we discuss the following modified
steps during the matching process.

3.2.1 Possible Alignment Construction
In the extended Syntax stage, phrases are matched
if they are listed as a pair in our syntactic para-

504

Figure 1: An example of the modified beam search.

phrase table (3.1). The position of the place-
holder ’ ’ can be any word which will be skipped
over in this phrase matching. And we only keep
those matching pairs with the absolute distances
between match start indices in the reference and
hypothesis less than the threshold.

In prior paraphrase stage, all words in both Ele-
ment A and B are set with the same value. While
in the Syntax stage, we set the different word with
a different value in one element of the paraphrase
pair. More generally, we set 1.0 as the weight
of Exact stage and 0.4 as the weight of Syntax
stage. Consider about the paraphrase pair (protect

from, protect against), we suppose the two
elements appear in the reference and hypothesis
separately. If we assign the weight 0.4 for all the
words in this paraphrase pair, there will be a bias
with the other Exact matching pairs. Because the
two protect would be an exact matching with the
weight 1.0 if Syntax stage doesn’t exist. In a word,
as for the weight assignment in Sytax stage , we
set the word exact weight if it appears in both el-
ements, and set the word synonym weight if the
other element includes its synonym and so on.

Table 2 shows a matching example in a
reference-hypothesis pair. The weights of Exact,
Stem, Synonym, Paraphrase and Syntax are set to
be [1.0, 0.6, 0.8, 0.6, 0.4]. The (get ready, pre-
pare) pair is matched in Syntax stage, the weight
for words ready and prepare is 0.8, for the reason
that they are synonym each other, in other word, it

would be matched in an Synonym stage if no Syn-
tax stage here. And for the word get, only matched
in the syntax stage, set with the Syntax weight 0.4.

3.2.2 Incorporate Syntactic knowledge into
Beam Search

The incorporation of the syntactic level para-
phrases will bring much more possible matches,
therefore it requires a larger beam size which leads
a low efficiency. Consider the trade-off between
performance and efficiency, we add the syntac-
tic matching pair into the current path until the
last word appears during the beam search proce-
dure. Then we look backward to check the state of
the other words in this pair, if they are all free to
match, we add it into our path.

Figure 1 shows an example in the modified
beam search process. At step 4, get is an un-
matched word in the reference. When comes to the
word ready in next step, (get ready, prepare)
is a syntax matching pair between the reference-
hypothesis. Then we look backward and find that
get hasn’t been matched by others words before,
finally, we add the paths with or without (get
ready, prepare) into the current path queue.

4 Experiments

4.1 Setups

To evaluate the impact of our syntactic level para-
phrase knowledge, We carry out experiments to
compare the performance of Meteor++ 2.0 and

505

lang-pair de-en fi-en ru-en cs-en tr-en lv-en zh-en

WMT2015
Meteor .615 .638 .629 .595 - - -
Meteor++ 2.0 (syntax) .621 .633 .631 .606 - - -

WMT2017
Meteor .532 .719 .621 .555 .628 .555 .639
Meteor++ 2.0 (syntax) .535 .722 .621 .561 .628 .556 .646

Table 3: Comparison of segment-level Pearson correlation between Meteor and Meteor++ 2.0 (syntax) on WMT15
and WMT17 evaluation datasets. The weight of Syntax stage in Meteor++ 2.0 is set to be 0.4, other parameters are
consistent with the Meteor Universal.

lang-pair de-en fi-en ru-en cs-en tr-en lv-en zh-en

WMT2015
Meteor++ (copy) .630 .652 .625 .595 - - –
Meteor++ 2.0 (copy + syntax) .634 .647 .628 .606 - - -

WMT2017
Meteor++ (copy) .525 .717 .625 .557 .623 .562 .644
Meteor++ 2.0 (copy + syntax) .527 .721 .626 .563 .621 .565 .652

Table 4: Comparison of segment-level Pearson correlation between Meteor++ (copy) and Meteor++ 2.0 (copy +
syntax) on WMT15 and WMT17 evaluation datasets. The weight of Syntax stage in Meteor++ 2.0 is set to be 0.4,
other parameters are consistent with the Meteor Universal.

other prior Meteor-based metrics using the evalu-
ation datasets on WMT15 and WMT17 to-English
pairs. And we tune the weight of Syntax stage
to maximize the Pearson correlation with human
scores on all WMT16 to-English datasets, other
parameters are consist of the Meteor Universal.
Table 5 shows statistics for each language-pair in
WMT15-17, each dataset contains the source sen-
tence, MT output, reference, and human score.
And we calculate the Pearson correlation between
metric scores and human scores for each language
pair.

lang-pair WMT15 WMT16 WMT17
de-en 500 560 561
fi-en 500 560 561
ru-en 500 560 561
ro-en - 560 -
cs-en 500 560 561
tr-en - 560 561
lv-en - - 561
zh-en - - 561

Table 5: Number of sentences for each language pairs
in WMT15-17 evaluation sets.

4.2 Results
Table 3-4 show the Pearson correlation with
direct assessment (DA) (Graham et al., 2013)
on WMT15 and WMT17 evaluation sets at
segment-level. Meteor++ is the previous work in
WMT2018 (Guo et al., 2018) integrated with copy

knowledge, i.e. words that are likely to be pre-
served across all paraphrases of a sentence in a
given language. Meteor++ 2.0 is the newly pro-
posed one in this paper. In Table 3, we give
the comparison between Meteor and Meteor++
2.0, and Table 4 gives the comparison between
Meteor++ and Meteor++ 2.0. For both prior
Meteor-based metrics, the incorporation of the
syntactic paraphrase table has a positive influ-
ence on almost every to-English language pairs.
Apparently, Meteor++ 2.0 (copy + syntax), the
combination with Guo et al. (2018) achieve the
best performance in almost every language pair.
Hence, we submit Meteor++ 2.0 (copy + syntax)
to WMT19 Metric task to-English language pairs.

5 Conclusion

In this paper, we describe the submission of our
proposed metric Meteor++ 2.0 for WMT19 Met-
rics task. Firstly, we extract a syntactic level para-
phrase table from the syntax PPDB and list the
principle differences between the two paraphrase
tables. Secondly, we propose Meteor++ 2.0 incor-
porated with this language resource. Finally, our
metric outperforms all prior Meteor-based metrics
on almost every WMT15 and WMT17 to-English
language pairs.

6 Future Work

According to the observation of the phrase
matches contributed by syntactic level para-
phrases, though we benefit a lot from this knowl-

506

edge resource, some noises are brought at the
meantime.

Firstly, in the perspective of the knowledge
quality, despite filtering techniques, there are
still some unusual, inaccurate or highly context-
dependent paraphrases. High-frequency usage al-
ways indicates high confidence, so hope our met-
ric can play a role of a quality estimator for para-
phrase tables in the future.

Secondly, since the syntax-level knowledge pay
more attention on sentence structure, mismatch
can not always be avoid. With the help of syn-
tactic tools such as parsing may help take better
usage of this knowledge.

7 Acknowledgments

This paper is supported by the National Nat-
ural Science Foundation of China (Grant No.
61472017)

References
Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An

automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Michael Denkowski and Alon Lavie. 2010a. Extending
the meteor machine translation evaluation metric to
the phrase level. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 250–253. Association for Computa-
tional Linguistics.

Michael Denkowski and Alon Lavie. 2010b. Meteor-
next and the meteor paraphrase tables: Improved
evaluation support for five target languages. In Pro-
ceedings of the Joint Fifth Workshop on Statistical
Machine Translation and MetricsMATR, pages 339–
342.

Michael Denkowski and Alon Lavie. 2011. Me-
teor 1.3: Automatic metric for reliable optimiza-
tion and evaluation of machine translation systems.
In Proceedings of the sixth workshop on statistical
machine translation, pages 85–91. Association for
Computational Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the ninth
workshop on statistical machine translation, pages
376–380.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase

database. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 758–764.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2013. Continuous measurement scales
in human evaluation of machine translation. In Pro-
ceedings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse, pages 33–41.

Yinuo Guo, Chong Ruan, and Junfeng Hu. 2018. Me-
teor++: Incorporating copy knowledge into machine
translation evaluation. In Proceedings of the Third
Conference on Machine Translation: Shared Task
Papers, pages 740–745.

Xuedong Huang, Fileno Alleva, Hsiao-Wuen Hon,
Mei-Yuh Hwang, Kai-Fu Lee, and Ronald Rosen-
feld. 1993. The sphinx-ii speech recognition sys-
tem: an overview. Computer Speech & Language,
7(2):137–148.

Alon Lavie and Michael J Denkowski. 2009. The
meteor metric for automatic evaluation of machine
translation. Machine translation, 23(2-3):105–115.

George Miller. 1998. WordNet: An electronic lexical
database. MIT press.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. Ppdb 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), volume 2, pages 425–430.

Martin F Porter. 2001. Snowball: A language for stem-
ming algorithms.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of association for machine transla-
tion in the Americas, volume 200.

