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Abstract

This paper describes CAiRE’s submission to
the unsupervised machine translation track of
the WMT’19 news shared task from German
to Czech. We leverage a phrase-based sta-
tistical machine translation (PBSMT) model
and a pre-trained language model to combine
word-level neural machine translation (NMT)
and subword-level NMT models without us-
ing any parallel data. We propose to solve
the morphological richness problem of lan-
guages by training byte-pair encoding (BPE)
embeddings for German and Czech separately,
and they are aligned using MUSE (Conneau
et al., 2018). To ensure the fluency and consis-
tency of translations, a rescoring mechanism is
proposed that reuses the pre-trained language
model to select the translation candidates gen-
erated through beam search. Moreover, a se-
ries of pre-processing and post-processing ap-
proaches are applied to improve the quality of
final translations.

1 Introduction

Machine translation (MT) has achieved huge
advances in the past few years (Bahdanau et al.,
2015; Gehring et al., 2017; Vaswani et al., 2017,
2018). However, the need for a large amount of
manual parallel data obstructs its performance un-
der low-resource conditions. Building an effective
model on low resource data or even in an unsuper-
vised way is always an interesting and challeng-
ing research topic (Gu et al., 2018; Radford et al.,
2016; Lee et al., 2019). Recently, unsupervised
MT (Artetxe et al., 2018b,a; Conneau et al., 2018;
Lample et al., 2018b; Wu et al., 2019), which can
immensely reduce the reliance on parallel corpora,
has been gaining more and more interest.

Training cross-lingual word embeddings (Con-
neau et al., 2018; Artetxe et al., 2017) is always the
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first step of the unsupervised MT models which
produce a word-level shared embedding space for
both the source and target, but the lexical cover-
age can be an intractable problem. To tackle this
issue, Sennrich et al. (2016b) provided a subword-
level solution to overcome the out-of-vocabulary
(OOV) problem.

In this work, the systems we implement for
the German-Czech language pair are built based
on the previously proposed unsupervised MT sys-
tems, with some adaptations made to accom-
modate the morphologically rich characteristics
of German and Czech (Tsarfaty et al., 2010).
Both word-level and subword-level neural ma-
chine translation (NMT) models are applied in
this task and further tuned by pseudo-parallel data
generated from a phrase-based statistical machine
translation (PBSMT) model, which is trained fol-
lowing the steps proposed in Lample et al. (2018b)
without using any parallel data. We propose to
train BPE embeddings for German and Czech sep-
arately and align those trained embeddings into a
shared space with MUSE (Conneau et al., 2018) to
reduce the combinatorial explosion of word forms
for both languages. To ensure the fluency and
consistency of translations, an additional Czech
language model is trained to select the transla-
tion candidates generated through beam search by
rescoring them. Besides the above, a series of
post-processing steps are applied to improve the
quality of final translations. Our contribution is
two-fold:

• We propose a method to combine word and
subword (BPE) pre-trained input representa-
tions aligned using MUSE (Conneau et al.,
2018) as an NMT training initialization on
a morphologically-rich language pair such as
German and Czech.

• We study the effectiveness of language model
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rescoring to choose the best sentences and
unknown word replacement (UWR) proce-
dure to reduce the drawback of OOV words.

This paper is organized as follows: in Section
2, we describe our approach to the unsupervised
translation from German to Czech. Section 3 re-
ports the training details and the results for each
steps of our approach. More related work is pro-
vided in Section 4. Finally, we conclude our work
in Section 5.

2 Methodology

In this section, we describe how we built our main
unsupervised machine translation system, which is
illustrated in Figure 1.

2.1 Unsupervised Machine Translation
2.1.1 Word-level Unsupervised NMT
We follow the unsupervised NMT in Lample
et al. (2018b) by leveraging initialization, lan-
guage modeling and back-translation. However,
instead of using BPE, we use MUSE (Conneau
et al., 2018) to align word-level embeddings of
German and Czech, which are trained by FastText
(Bojanowski et al., 2017) separately. We leverage
the aligned word embeddings to initialize our un-
supervised NMT model.

The language model is a denoising auto-
encoder, which is trained by reconstructing orig-
inal sentences from noisy sentences. The process
of language modeling can be expressed as mini-
mizing the following loss:

Llm = λ ∗ {Ex∼S [−logPs→s(x|N(x))]+

Ey∼T [−logPt→t(x|N(y))]}, (1)

where N is a noise model to drop and swap some
words with a certain probability in the sentence x,
Ps→s and Pt→t operate on the source and target
sides separately, and λ acts as a weight to control
the loss function of the language model. a Back-
translation turns the unsupervised problem into a
supervised learning task by leveraging the gener-
ated pseudo-parallel data. The process of back-
translation can be expressed as minimizing the fol-
lowing loss:

Lbt =Ex∼S [−logPt→s(x|v∗(x))]+
Ey∼T [−logPs→t(y|u∗(y))], (2)

where v∗(x) denotes sentences in the target lan-
guage translated from source language sentences

S, u∗(y) similarly denotes sentences in the source
language translated from the target language sen-
tences T and Pt→s, and Ps→t denote the trans-
lation direction from target to source and from
source to target respectively.

2.1.2 Subword-level Unsupervised NMT
We note that both German and Czech (Tsarfaty
et al., 2010) are morphologically rich languages,
which leads to a very large vocabulary size for
both languages, but especially for Czech (more
than one million unique words for German, but
three million unique words for Czech). To over-
come OOV issues, we leverage subword informa-
tion, which can lead to better performance.

We employ subword units (Sennrich et al.,
2016a) to tackle the morphological richness prob-
lem. There are two advantages of using the
subword-level. First, we can alleviate the OOV is-
sue by zeroing out the number of unknown words.
Second, we can leverage the semantics of sub-
word units from these languages. However, Ger-
man and Czech are distant languages that originate
from different roots, so they only share a small
fraction of subword units. To tackle this problem,
we train FastText word vectors (Bojanowski et al.,
2017) separately for German and Czech, and ap-
ply MUSE (Conneau et al., 2018) to align these
embeddings.

2.1.3 Unsupervised PBSMT
PBSMT models can outperform neural models in
low-resource conditions. A PBSMT model uti-
lizes a pre-trained language model and a phrase
table with phrase-to-phrase translations from the
source language to target languages, which pro-
vide a good initialization. The phrase table stores
the probabilities of the possible target phrase
translations corresponding to the source phrases,
which can be referred to as P (s|t), with s and t
representing the source and target phrases. The
source and target phrases are mapped accord-
ing to inferred cross-lingual word embeddings,
which are trained with monolingual corpora and
aligned into a shared space without any parallel
data (Artetxe et al., 2017; Conneau et al., 2018).

We use a pre-trained n-gram language model to
score the phrase translation candidates by provid-
ing the relative likelihood estimation P (t), so that
the translation of a source phrase is derived from:
argmaxtP (t|s) = argmaxtP (s|t)P (t).

Back-translation enables the PBSMT models
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Figure 1: The illustration of our system. The translation procedure can be divided into five steps: (a) pre-
processing, (b) translation generation (§2.1) from word-level NMT, subword-level NMT, and PBSMT. In the train-
ing, we fine-tune word-level and subword-level NMT models with pseudo-parallel data from NMT models and
the best PBSMT model. Moreover, an unknown word replacement mechanism (§2.2) is applied to the translations
generated from the word-level NMT model, (c) translation candidate rescoring, (d) construction of an ensemble of
the translations from NMT models, and (e) post-processing.

to be trained in a supervised way by providing
pseudo-parallel data from the translation in the re-
verse direction, which indicates that the PBSMT
models need to be trained in dual directions so that
the two models trained in the opposite directions
can promote each other’s performance.

In this task, we follow the method proposed by
Lample et al. (2018b) to initialize the phrase ta-
ble, train the KenLM language models (Heafield,
2011)1 and train a PBSMT model, but we make
two changes. First, we only initialize a uni-gram
phrase table because of the large vocabulary size
of German and Czech and the limitation of com-
putational resources. Second, instead of training
the model in the truecase mode, we maintain the
same pre-processing step (see more details in §3.1)
as the NMT models.

2.1.4 Fine-tuning NMT

We further fine-tune the NMT models mentioned
above on the pseudo-parallel data generated by
a PBSMT model. We choose the best PBSMT
model and mix the pseudo-parallel data from the
NMT models and the PBSMT model, which are
used for back-translation. The intuition is that we
can use the pseudo-parallel data produced by the
PBSMT model as the supplementary translations
in our NMT model, and these can potentially boost
the robustness of the NMT model by increasing
the variety of back-translation data.

1The code can be found at https://github.com/kpu/kenlm

2.2 Unknown Word Replacement
Around 10% of words found in our NMT train-
ing data are unknown words (<UNK>), which
immensely limits the potential of the word-level
NMT model. In this case, replacing unknown
words with reasonable words can be a good rem-
edy. Then, assuming the translations from the
word-level NMT model and PBSMT model are
roughly aligned in order, we can replace the un-
known words in the NMT translations with the
corresponding words in the PBSMT translations.
Compared to the word-level NMT model, the PB-
SMT model ensures that every phrase will be
translated without omitting any pieces from the
sentences. We search for the word replacement
by the following steps, which are also illustrated
in Figure 2:

Step 1 For every unknown word, we can get the
context words with a context window size of two.

Step 2 Each context word is searched for in the
corresponding PBSMT translation. From our ob-
servation, the meanings of the words in Czech are
highly likely to be the same if only the last few
characters are different. Therefore, we allow the
last two characters to be different between the con-
text words and the words they match.

Step 3 If several words in the PBSMT transla-
tion match a context word, the word that is closest
to the position of the context word in the PBSMT
translation will be selected and put into the can-
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Figure 2: The illustration of the unknown word replacement (UWR) procedure for word-level NMT. The words
of the PBSMT model translation in the pink boxes match the context words of the unknown word <UNK> in the
word-level NMT model translation in the blue boxes. Finally, we choose a possible target word, in the yellow box,
from the PBSMT model translation to replace the unknown word in the green box.

didate list to replace the corresponding <UNK> in
the translation from the word-level NMT model.

Step 4 Step 2 and Step 3 are repeated until all
the context words have been searched. After re-
moving all the punctuation and the context words
in the candidate list, the replacement word is the
one that most frequently appears in the candidate
list. If no candidate word is found, we just remove
the <UNK> without adding a word.

2.3 Language Model Rescoring

Instead of direct translation with NMT models, we
generate several translation candidates using beam
search with a beam size of five. We build the lan-
guage model proposed by Merity et al. (2018b,a)
trained using a monolingual Czech dataset to
rescore the generated translations. The scores are
determined by the perplexity (PPL) of the gener-
ated sentences and the translation candidate with
the lowest PPL will be selected as the final trans-
lation.

2.4 Model Ensemble

Ensemble methods have been shown very effective
in many natural language processing tasks (Park
et al., 2018; Winata et al., 2019). We apply an
ensemble method by taking the top five transla-
tions from word-level and subword-level NMT,
and rescore all translations using our pre-trained
Czech language model mentioned in §2.3. Then,
we select the best translation with the lowest per-
plexity.

3 Experiments

3.1 Data Pre-processing

We note that in the corpus, there are tokens rep-
resenting quantity or date. Therefore, we delex-

icalize the tokens using two special tokens: (1)
<NUMBER> to replace all the numbers that express
a specific quantity, and (2) <DATE> to replace all
the numbers that express a date. Then, we retrieve
these numbers in the post-processing. There are
two advantages of data pre-processing. First, re-
placing numbers with special tokens can reduce
vocabulary size. Second, the special tokens are
more easily processed by the model.

3.2 Data Post-processing
Special Token Replacement In the pre-
processing, we use the special tokens <NUMBER>
and <DATE> to replace numbers that express a
specific quantity and date respectively. There-
fore, in the post-processing, we need to restore
those numbers. We simply detect the pattern
<NUMBER> and <DATE> in the original source
sentences and then replace the special tokens in
the translated sentences with the corresponding
numbers detected in the source sentences. In order
to make the replacement more accurate, we will
detect more complicated patterns like <NUMBER>
/ <NUMBER> in the original source sentences. If
the translated sentences also have the pattern, we
replace this pattern <NUMBER> / <NUMBER>
with the corresponding numbers in the original
source sentences.

Quotes Fixing The quotes are fixed to keep
them the same as the source sentences.

Recaser For all the models mentioned above
that work under a lower-case setting, a recaser im-
plemented with Moses (Koehn et al., 2007) is ap-
plied to convert the translations to the real cases.

Patch-up From our observation, the ensemble
NMT model lacks the ability to translate name en-
tities correctly. We find that words with capital
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characters are named entities, and those named en-
tities in the source language may have the same
form in the target language. Hence, we capture
and copy these entities at the end of the translation
if they does not exist in our translation.

3.3 Training

Unsupervised NMT The settings of the word-
level NMT and subword-level NMT are the same,
except the vocabulary size. We use a vocabulary
size of 50k in the word-level NMT setting and 40k
in the subword-level NMT setting for both Ger-
man and Czech. In the encoder and decoder, we
use a transformer (Vaswani et al., 2017) with four
layers and a hidden size of 512. We share all en-
coder parameters and only share the first decoder
layer across two languages to ensure that the la-
tent representation of the source sentence is robust
to the source language. We train auto-encoding
and back-translation during each iteration. As the
training goes on, the importance of language mod-
eling become a less important compared to back-
translation. Therefore the weight of auto-encoding
(λ in equation (1)) is decreasing during training.

Unsupervised PBSMT The PBSMT is imple-
mented with Moses using the same settings as
those in Lample et al. (2018b). The PBSMT model
is trained iteratively. Both monolingual datasets
for the source and target languages consist of 12
million sentences, which are taken from the latest
parts of the WMT monolingual dataset. At each
iteration, two out of 12 million sentences are ran-
domly selected from the the monolingual dataset.

Language Model According to the findings in
Cotterell et al. (2018), the morphological richness
of a language is closely related to the performance
of the model, which indicates that the language
models will be extremely hard to train for Czech,
as it is one of the most complex languages. We
train the QRNN model with 12 million sentences
randomly sampled from the original WMT Czech
monolingual dataset, 2 which is also pre-processed
in the way mentioned in §3.1. To maintain the
quality of the language model, we enlarge the vo-
cabulary size to three million by including all the
words that appear more than 15 times. Finally, the
PPL of the language model on the test set achieves
93.54.

2http://www.statmt.org/wmt19/

Recaser We use the recaser model provided in
Moses and train the model with the two million
latest sentences in the Czech monolingual dataset.
After the training procedure, the recaser can re-
store words to the form in which the maximum
probability occurs.

3.4 PBSMT Model Selection
The BLEU (cased) score of the initialized phrase
table and models after training at different itera-
tions are shown in Table 1. From comparing the
results, we observe that back-translation can im-
prove the quality of the phrase table significantly,
but after five iterations, the phrase table has hardly
improved. The PBSMT model at the sixth itera-
tion is selected as the final PBSMT model.

Model BLEU Cased
Unsupervised PBSMT
Unsupervised Phrase Table 3.8

+ Back-translation Iter. 1 6.6
+ Back-translation Iter. 2 7.3
+ Back-translation Iter. 3 7.5
+ Back-translation Iter. 4 7.6
+ Back-translation Iter. 5 7.7
+ Back-translation Iter. 6 7.7

Table 1: Results of PBSMT at different iterations

3.5 Results
The performances of our final model and other
baseline models are illustrated in Table 2. In
the baseline unsupervised NMT models, subword-
level NMT outperforms word-level NMT by
around a 1.5 BLEU score. Although the unsuper-
vised PBSMT model is worse than the subword-
level NMT model, leveraging generated pseudo-
parallel data from the PBSMT model to fine-
tune the subword-level NMT model can still boost
its performance. However, this pseudo-parallel
data from the PBSMT model can not improve the
word-level NMT model since the large percentage
of OOV words limits its performance. After ap-
plying unknown words replacement to the word-
level NMT model, the performance improves by
a BLEU score of around 2. Using the Czech
language model to re-score helps the model im-
prove by around a 0.3 BLEU score each time. We
also use this language model to create an ensem-
ble of the best word-level and subword-level NMT
model and achieve the best performance.
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Model BLEU BLEU Cased TER BEER 2.0 CharacterTER
Unsupervised PBSMT
Unsupervised phrase table 4 3.8 - 0.384 0.773

+ Back-translation Iter. 6 8.3 7.7 0.887 0.429 0.743
Unsupervised NMT
Subword-level NMT 9.4 9.1 - 0.419 0.756

+ fine-tuning 9.8 9.5 0.832 0.424 0.756
+ fine-tuning + rescoring 10.3 10 0.833 0.426 0.749

Word-level NMT 7.9 7.6 - 0.412 0.823
+ fine-tuning 7.9 7.7 - 0.413 0.819
+ fine-tuning + UWR 10.1 9.6 0.829 0.432 0.766
+ fine-tuning + UWR + rescoring 10.4 9.9 0.829 0.432 0.764

Model Ensemble
Best Word-level + Subword-level 10.6 10.2 0.829 0.429 0.755

+ patch-up 10.6 10.2 0.833 0.430 0.757

Table 2: Unsupervised translation results. We report the scores of several evaluation methods for every step of our
approach. Except the result that is listed on the last line, all results are under the condition that the translations are
post-processed without patch-up.

4 Related Work

4.1 Unsupervised Cross-lingual Embeddings
Cross-lingual word embeddings can provide a
good initialization for both the NMT and SMT
models. In the unsupervised senario, Artetxe et al.
(2017) independently trained embeddings in dif-
ferent languages using monolingual corpora, and
then learned a linear mapping to align them in a
shared space based on a bilingual dictionary of
a negligibly small size. Conneau et al. (2018)
proposed a fully unsupervised learning method
to build a bilingual dictionary without using any
foregone word pairs, but by considering words
from two languages that are near each other as
pseudo word pairs. Lample and Conneau (2019)
showed that cross-lingual language model pre-
training can learn a better cross-lingual embed-
dings to initialize an unsupervised machine trans-
lation model.

4.2 Unsupervised Machine Translation
In Artetxe et al. (2018b) and Lample et al. (2018a),
the authors proposed the first unsupervised ma-
chine translation models which combines an auto-
encoding language model and back-translation in
the training procedure. Lample et al. (2018b)
illustrated that initialization, language modeling,
and back-translation are key for both unsuper-
vised neural and statistical machine translation.
Artetxe et al. (2018a) combined back-translation

and MERT (Och, 2003) to iteratively refine the
SMT model. Wu et al. (2019) proposed to dis-
card back-translation. Instead, they extracted and
edited the nearest sentences in the target language
to construct pseudo-parallel data, which was used
as a supervision signal.

5 Conclusion

In this paper, we propose to combine word-level
and subword-level input representation in unsu-
pervised NMT training on a morphologically rich
language pair, German-Czech, without using any
parallel data. Our results show the effectiveness
of using language model rescoring to choose more
fluent translation candidates. A series of pre-
processing and post-processing approaches im-
prove the quality of final translations, particularly
to replace unknown words with possible relevant
target words.
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