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Abstract
This paper describes our submission to the
WMT 2019 Chinese-English (zh-en) news
translation shared task. Our systems are
based on RNN architectures with pre-trained
embeddings which utilize character and sub-
character information. We compare models
with these different granularity levels using
different evaluating metics. We find that a finer
granularity embeddings can help the model ac-
cording to character level evaluation and that
the pre-trained embeddings can also be bene-
ficial for model performance marginally when
the training data is limited.

1 Introduction

Neural Machine Translation (NMT) systems are
mostly based on an encoder-decoder architecture
with attention. Given a sentence x in source lan-
guage, the model predicts a corresponding output
sentence y in target language, which maximizes
the conditional probability p(y|x). The attention-
based Recurrent Neural Network (RNN) version
of this architecture has been a very popular ap-
proach to NMT (Bahdanau et al., 2015; Luong
et al., 2015). Despite the success of these mod-
els, they still suffer from problems such as out-
of-vocabulary (OOV) words, i.e. words that have
not been seen at training. To alleviate the OOV
problem, we follow the methods used in word rep-
resentation and segment words into smaller units.
In some morphorlogically rich languages such as
Chinese, a word can be divided into characters
and then the characters can be further divided into
smaller components called glyphs. Both character
and glyph might contain semantic information and
therefore utilizing such information might help al-
leviate the OOV problem.

Based on the RNN attention-based model (Bah-
danau et al., 2015), we experiment with different
granularity levels on the WMT19 Chinese-English

(zh-en) news translation shared task. This pa-
per describes our submitted systems with embed-
dings pre-trained on monolingual corpora. The
two submitted systems use pre-trained embed-
dings enhanced by character and sub-character in-
formation respectively. The preprocessing meth-
ods include Chinese word segmentation, tokeniza-
tion, data filtering based on rules and Byte Pair
Encoding (BPE). Our baseline model is based
on RNNSearch (Bahdanau et al., 2015) operat-
ing on word level and we use Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) as encoder and decoder. For character
level word embeddings, we use the Character-
Enhanced Word Embedding (CWE) proposed by
Chen et al. (2015). For the sub-character level em-
beddings, we use the Joint Learning Word Embed-
ding (JWE) proposed by Yu et al. (2017). We use
various metrics, namely BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2011),
TER (Snover et al., 2006) and CharacTER (Wang
et al., 2016) for evaluation.

When compared with our baseline model, the
models with pre-trained sub-character level em-
beddings on monolingual corpus show better per-
formance, achieving an increase of +0.53 BLEU
score with the sub-character level embeddings.
We ran additional experiments on the charac-
ter and subcharacter level pre-trained embeddings
and found that the use of these embeddings can
benefit the model when the training corpus size is
limited.

This paper is structured as follows: Section 2 in-
troduces the related work including the model ar-
chitecture and pre-trained embeddings used in our
experiment. In Section 3, data selection and pre-
processing methods are described. Section 4 intro-
duces the model architectures and hyperparameter
settings. Section 5 shows the evaluation results on
models with different granularity levels. Section 6
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shows additional experiments to better understand
our models.

2 Related Work

NMT has been an important task in Natural
Language Processing. A translation system
aims to find the corresponding target sentence
y = {y1, y2, ..., ym} given a sentence x =
{x1, x2, ..., xn} in source language, in a prob-
abilistic manner, represented as maxy P (y|x).
Most NMT models are based on the sequence-to-
sequence approach, and the RNN-based architec-
ture (Sutskever et al., 2014) with attention (Bah-
danau et al., 2015) is a popular version of such an
approach. The attention mechanism functions as a
dynamic calculation of the context vector. At each
decoding step, a probability distribution is calcu-
lated based on the current decoder hidden state and
all encoder hidden states. This distribution is de-
fined as the attention score, representing the im-
portance of each input token at current decoding
time step. The context vector is calculated as a
weighted average of all encoder hidden state vec-
tor, where the attention score is the weight. With
the introduction of attention, the model does not
need to rely on a single context vector to represent
the whole sentence and thus can better handle long
sentences.

In recent years model architectures based on
convolutional neural networks (Gehring et al.,
2017) and transformers (Vaswani et al., 2017) have
shown competitive or better performance than
RNN-based architectures. In addition, strategies
such as back translation (Sennrich et al., 2016a),
reranking (Neubig et al., 2015) and model ensem-
bling have led to improvements in translation qual-
ity. In our experiments, we only experiment with
RNN architectures and focus on the effect of using
character and sub-character level embeddings and
only use ensembling for comparison purposes.

We use the CWE model proposed by Chen et al.
(2015) and the JWE model proposed by Yu et al.
(2017) for pre-trained embeddings training. Both
models are based on the word2vec proposed by
Mikolov et al. (2013). Based on Continuous-Bag-
of-Word (CBOW), the CWE model construct a
new word representation by summing the word
embeddings with character embeddings (see Eq
1). Chen et al. also proposed a multi-prototype
character embeddings where characters are tagged
with additional factors, such as position and con-

text cluster, for character disambiguation.

xj = wj ⊕
1

Nj

Nj∑
k=1

ck (1)

where wj is the word embeddings and ck is the
embeddings of the k-th character in xj . ⊕ is the
composition operator (either addition or concate-
nation).

The JWE model proposed by Yu et al. (2017)
is also based on CBOW and it utilizes character
and sub-character level information. They con-
struct a dictionary that maps each Chinese char-
acter to its sub-character components. As Figure
1 shows, words together with the characters and
sub-character components within the context win-
dow are all used to predict the target word. The
additional semantic information provided by char-
acter and subcharacters are shown to improve over
word representation, especially in addressing out-
of-vocabulary words.

Figure 1: Illustration of JWE embedding taken from
(Yu et al., 2017). wi−1 and wi+1 are context words.
ci−1 and ci+1 represent characters in context words.
si−1 and si+1 represent sub-characters of context char-
acters and si is the sub-character of target word wi.

3 Data and Preprocessing

We use all the parallel data provided by WMT
for the zh-en translation task, including the News
Commentary v14, UN Parallel Corpus V1.0 and
the CWMT corpora. In addition, the Common
Crawl Corpus from WMT is used as monolin-
gual data to pre-train the embeddings. We use the
newsdev2018 and newsdev2017 as validation set



251

and the newstest2019 as our test data. We tok-
enize English sentences with the Moses tokenizer
(Koehn et al., 2007). On the Chinese side we use
Jieba for Chinese word segmentation.1 The data
preprocessing consists of filtering sentences to be
added to the parallel training corpus by rules and
by alignment score. Following the preprocessing
criteria from submissions in previous years (Xu
and Carpuat, 2018; Stahlberg et al., 2018; Haddow
et al., 2018), we filter the training data based on the
following criteria:

• The length of sentences in both languages
must be between 4 and 50.

• The maximum length ratio of sentence pairs
is 1.3.

• Chinese sentences with no Chinese character
are filtered out.

• English sentences with no English character
are filtered out.

• Same source and target sentences are re-
moved.

• Sentences should not contains HTML tags.

• Sentence pairs with alignment score above -
65 are removed.2

The fast_align toolkit3 is used to calculate the
alignment score for the parallel data. After the fil-
tering, 10.38M sentence pairs are used as training
data. We apply Byte-pair Encoding (BPE) (Sen-
nrich et al., 2016b) with 30,000 merge operations
on the English sentences. For Chinese sentences,
we segment them into different granularity levels,
including words, subwords via BPE and charac-
ters. In the character level setting, only Chinese
words are separated and each character is treated
as a single token. The training texts for models
with pre-trained embeddings is the same as base-
line, which use words as basic units.

4 Models

4.1 Baseline
The baseline model is based on the bidirectional
RNN architecture with attention (Bahdanau et al.,

1https://github.com/fxsjy/jieba
2We tried different filter strategies and found this criterion

gives a better performance than others.
3https://github.com/clab/fast_align

2015). Our models are built with OpenNMT-py
(Klein et al., 2017). We follow the hyperparameter
setting of Deep RNN from Xu and Carpuat (2018)
and use a four-layer LSTM for both the encoder
and decoder. The embeddings and hidden layer
size are limited to 512. We use the Adam opti-
mizer (Kingma and Ba, 2015) with initial learn-
ing rate of 0.0005. We apply label smoothing
(Szegedy et al., 2016) and dropout (Srivastava
et al., 2014) of 0.1 to avoid overfitting. We use the
multi-layer perception (mlp) attention as in (Bah-
danau et al., 2015). The batch size is 4096 to-
kens per batch and the models are selected based
on best performance on the validation set. All our
models are trained on a GTX 1080Ti GPU.

4.2 Pre-trained Embeddings

We apply pre-trained embeddings to the two sub-
mitted systems. The character level and sub-
character level pre-trained embeddings are trained
with CWE (Chen et al., 2015) and JWE (Yu et al.,
2017) respectively. We trained the embeddings on
the Common Crawl Corpus provided by WMT19
and fine-tuned them on the task data when training
the RNN. The preprocessing for monolingual data
includes Chinese word segmentation and removal
of non-Chinese characters. Apart from the pre-
trained embeddings, the hyperparameters of the
two submissions are the same as in the baseline
system.

5 Result and Analysis

We use the CharacTER.py4 script for Charac-
TER score calculation and multeval5 (Clark
et al., 2011) to calculate BLEU, METEOR and
TER scores. The evaluation results for models on
word, subword and character level are presented
in Table 1.

The model with BPE applied on both source
and target languages (bpe2bpe) achieves higher
score than other single models, with an increase
of +1.18 BLEU score over the baseline system.
The two models (baseline+cwe, baseline+jwe) uti-
lizing character and sub-character information are
based on pre-trained embeddings with CWE and
JWE as described in Section 2. We use the source
training text for the pre-trained embeddings to pre-
vent the introduction of noise. As we can see
from the BLEU scores, the model with JWE pre-

4https://github.com/rwth-i6/CharacTER
5https://github.com/jhclark/multeval

https://github.com/fxsjy/jieba
https://github.com/clab/fast_align
https://github.com/rwth-i6/CharacTER
https://github.com/jhclark/multeval
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Granularity Model BLEU METEOR TER CharacTER

word
baseline 16.90 23.0 64.0 0.717
baseline+cwe 16.59 22.8 64.4 0.716
baseline+jwe 16.91 23.0 64.0 0.712

subword
bpe2bpe 18.08 24.2 62.1 0.678
bpe2bpe+cwe 17.97 24.2 62.4 0.677

char char2bpe 15.80 22.5 64.9 0.705

word

apprentice-c* 16.94 23.0 63.7 0.713
apprentice-g* 16.54 23.0 63.7 0.717
apprentice-g(best) 17.43 23.2 63.4 0.710
ensemble(jwe) 18.16 23.5 62.9 0.702

Table 1: Model performance on different granularity levels. The two models with a star are the official systems
submitted to the WMT19 zh-en news translation shared task, where the pre-trained embeddings is trained on extra
monolingual data.

trained embeddings shows similar performance to
the baseline system while the model with CWE
embeddings on character level shows a marginal
decrease. The METEOR and TER score presents
similar trends to BLEU, whereas from the eval-
uation of CharacTER scores the introduction of
pre-trained embeddings on both character and sub-
character levels shows better performance than the
baseline.

It can also be seen from the comparison on
BPE-based models that the model with CWE
embeddings performs slightly worse than the
bpe2bpe model, which operates on BPE on both
source and target languages. The results accord-
ing to CharacTER show that finer granularity em-
beddings can benefit the model in character level
evaluations. The char2bpe model shows the worst
performance according to BLEU scores, whereas
the CharacTER score of this model is higher than
that of other word level models. Finally, when we
ensemble the baseline and four models with JWE
embeddings pre-trained on different iterations, the
BLEU score shows an increase of +1.26 BLEU
over the baseline.

The two models with stars (apprentice-c and
apprentice-g) are our official shared task submis-
sions, with the first one operating on character
level and the second, on glyph (sub-character)
level. The apprentice-c model uses the CWE pre-
trained embeddings while the apprentice-g uses
JWE embeddings. For the first, we train the
pre-trained embeddings on the monolingual data
(Common Crawl) and then fine-tune it on filtered
parallel data during the training of RNN models.
Note that we did not use back-translation to aug-

ment the training data and due to time limit we ap-
ply a relatively larger learning rate than previous
work to boost training speed, therefore our sys-
tems achieve relatively lower score than the pre-
vious work (Xu and Carpuat, 2018). The CWE-
based model shows a better BLEU score than
the baseline model. The lower performance for
the apprentice-g model might have resulted from
insufficient training epochs for the JWE embed-
dings. Due to time restrictions, we did not sub-
mit the system with the best word embeddings. In
the additional experiments after the task deadline,
we fine-tuned the models on the best word embed-
dings version and achieve a higher BLEU score of
17.43 for the apprentice-g(best) model. The Char-
acTER score for the fine-tuned model is lower than
other models except the two with BPE. Generally,
the sub-character level models perform better than
the word level and character level models.

6 Additional Experiments

6.1 Evaluating Embeddings
We have tried additional experiments to evaluate
the effect of character and subcharacter level pre-
trained embeddings. Table 2 presents the model
performance with respect to the embeddings per-
formance in traditional word similarity and anal-
ogy tasks. We use the wordsim-240 and wordsim-
297 dataset and the analogy dataset from Chen
et al. (2015) for word similarity and analogy eval-
uation respectively. We use the evaluation script
in JWE6 for both evaluations.

From Table 2, we can see that among all models
with JWE pre-trained embeddings, the one with

6https://github.com/HKUST-KnowComp/JWE

https://github.com/HKUST-KnowComp/JWE
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Model BLEU wordsim-240 wordsim-297 analogy
baseline 16.90 / / /
baseline+jwe5 16.43 0.4880 0.5833 0.4680
baseline+jwe10 16.91 0.5099 0.5985 0.5293
baseline+jwe20 16.82 0.5152 0.6037 0.5205
baseline+jwe50 16.37 0.5048 0.6075 0.4786
baseline+cwe5 16.59 0.4569 0.5769 0.2820
baseline+cwe10 16.47 0.4593 0.5742 0.3585
baseline+cwe20 16.52 0.4610 0.5764 0.3754
baseline+cwe50 16.49 0.4528 0.5765 0.3443

Table 2: Comparison of model performance and word embeddings performance. The evaluation on wordsim-240
and wordsim-297 test set shows Spearman correlation between the pre-trained embedding and human judgements.
The performance on analogy indicates accuracy on analogy reasoning in ”a:b::c:?” format. The number after the
embeddings type represents number of training iterations.

10 iterations performs the best. When the em-
beddings are trained over 20 iterations, the BLEU
score starts to decrease. The same pattern can
be found on the CWE-based models. However,
the model with 5-iteration embeddings achieves
the highest BLEU score among all CWE-based
models. From the embeddings performance on
the analogy task, excluding the cwe5 model, we
find that the embeddings performance correlates
with BLEU scores. When comparing the CWE-
based models with the JWE-based models, we see
that on both translation quality and word embed-
dings evaluations, the model on finer granularity
performs best.

6.2 Effect of Corpus Size

Another experiment was done to compare the ef-
fect of pre-trained embeddings on different cor-
pora sizes. We train the word embeddings with
best iteration setting and train the RNN model on
different corpora sizes. Smaller corpora are cre-
ated by taking 25% and 50% of the original cor-
pus. Table 3 presents the BLEU scores for models
on smaller corpora.

Model/data size 25% 50% 100%
baseline 15.95 15.95 16.90
baseline+cwe5 16.00 15.82 16.59
baseline+jwe10 16.04 15.95 16.91

Table 3: BLEU score with different training data sizes.

It can be seen from Table 3 that with smaller
parallel training corpora the introduction of the
pre-trained word embeddings has a more marked
positive influence. When the dataset is reduced to

half, all the three models show a decrease in BLEU
score. However, the gap between the baseline and
the cwe-based model is smaller. When the dataset
is further limited to 25%, both models with pre-
trained embeddings perform better than the base-
line, whose score does not change. Although it
seems that the pre-trained embeddings, even with
sub-character level semantic information involved,
could only benefit marginally on the whole train-
ing data, the introduction of extra semantic infor-
mation might play a more important role when the
parallel training resources are limited.

6.3 Effect of Sentence Length

Figure 2: BLEU score of models w.r.t sentence length.

Here we measure the performance of models
with varying sentence lengths, as shown in Fig-
ure 2. The test set is seperated into 8 subsets
based on the sentence lengths and models are eval-
uated on each subset, the x-axis in Figure 2 repre-
sents sentence length intervals. We see that the
two models with embeddings trained on a larger



254

monolingual corpus perform better than the other
models in medium-length sentences (between 30
and 50). The apprentice-c model, which uses
CWE embeddings operating on character level,
greatly outperforms the other models on short sen-
tences with length less than 10. Since the sen-
tence length is short, the tokens in the sentence are
mostly composed of one or two characters, thus
the model with character-based embeddings has
an advantage. Regarding the two models with em-
beddings trained without extra monolingual data,
both models show good performance on medium
length sentences but perform poorly on long sen-
tences. The introduction of pre-trained embed-
dings can increase the models’ preference to gen-
erate shorter sentences, resulting in the model
achieving lower BLEU score on long sentences.

6.4 Analysis of Model Perplexity

In order to understand the effect of pre-trained em-
bedding on target language model, we calculate
the model perplexity on the test data with mod-
els on different corpus size. The result is rep-
resented in Table 4. The model with JWE pre-
trained embeddings performs better on all corpus
sizes, having a lower perplexity, though the differ-
ence is marginal. Similar result as the BLEU eval-
uation shows that the pre-trained embeddings ben-
efit model performance on smaller corpus sizes.

Model Perplexity Corpus size
baseline 2.947

100%+cwe 3.005
+jwe 2.932

baseline 3.049
50%+cwe 3.046

+jwe 3.023
baseline 2.860

25%+cwe 2.847
+jwe 2.836

Table 4: Model perplexity on test set.

6.5 Transformer Models

Besides the RNN model, we also experimented
with pre-trained embeddings and the transformer
architecture. We follow the hyperparameter set-
ting from Vaswani et al. (2017), limiting the em-
beddings to 512 dimensions. We compare the
transformer models with and without pre-trained
embeddings. The results are presented in Table 5.

From the evaluation results on BLEU and Charac-
TER, the transformer models without pre-trained
embeddings show better performance. We find
it interesting that the embedding pre-trained with
CWE decrease the performance severely, lead-
ing to a reduction of -3.85 BLEU score from the
model without it. The introduction of finer gran-
ularity embeddings might not benefit the trans-
former performance. We hypothesize that the pre-
trained embedding enhanced by character and sub-
character infomation might conflict with the fixed
positional encoding used in transformer.

Model BLEU CharacTER
transformer 17.82 0.692
transformer+cwe 13.97 0.754
transformer+jwe 17.59 0.695

Table 5: BLEU and CharacTER for transformer mod-
els.

7 Conclusion

This paper describes our NMT models with pre-
trained embeddings operating on character and
sub-character levels. We participated in the
WMT19 zh-en news translation shared task and
submitted two systems with embeddings trained
on monolingual corpus. We experimented with
the effect of using fine-grained pre-trained embed-
dings and showed the potential benefit of using
them. In additional experiments, we find that us-
ing pre-trained embeddings can better benefit the
translation models when the parallel training data
is limited.
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