
Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 2: Shared Task Papers (Day 1) pages 196–202
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

196

Kingsoft’s Neural Machine Translation System for WMT19

Xinze Guo, Chang Liu, Xiaolong Li, Yiran Wang
Guoliang Li, Feng Wang, Zhitao Xu, Liuyi Yang, Li Ma

Changliang Li∗
Kingsoft AI Lab

{guoxinze,liuchang10,lixiaolong2,wangyiran3,liguoliang,
wangfeng5,xuzhitao,yangliuyi,mali5,lichangliang}@kingsoft.com

Abstract

This paper describes the Kingsoft AI Lab’s
submission to the WMT2019 news transla-
tion shared task. We participated in two
language directions: English→Chinese and
Chinese→English. For both language direc-
tions, we trained several variants of Trans-
former models using the provided parallel
data enlarged with a large quantity of back-
translated monolingual data. The best trans-
lation result was obtained with ensemble and
reranking techniques. According to automatic
metrics (BLEU) our Chinese→English sys-
tem reached the second highest score, and our
English→Chinese system reached the second
highest score for this subtask.

1 Introduction

In recent years, the development of sequence-
to-sequence (seq2seq) models have changed the
field of machine translation a lot. This kind of
models replaced traditional statistical approaches
with neural machine translation (NMT) systems
which is based on the encoder-decoder frame-
work. Two years ago, the Transformer model,
which is based on the multi-head attention mech-
anism and feedforward networks, has further ad-
vanced the field of NMT by improving the trans-
lation quality and speed of convergence (Vaswani
et al., 2017; Ahmed et al., 2017). Until now,
a variety of NMT models and advanced tech-
niques have been proposed, leading to better per-
formance of machine translation. We partici-
pated in the WMT19 shared task: the machine
translation of news on English↔Chinese language
pairs. This paper describes the NMT systems
we submitted for the WMT19 Chinese→English
and English→Chinese machine translation tasks.
For data augmentation, we selected a subset of
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monolingual corpus as additional datasets and ap-
plied back translation to augment our training cor-
pus. The baseline model in our system was based
on the Transformer architecture. In order to im-
prove the single system’s performance, we experi-
mented with some research findings such as Trans-
former with Relative Position Attention (Shaw
et al., 2018) and Dynamic Convolution Networks
(Wu et al., 2019).

We also proposed our own model architectures
and applied them in the tasks. These architec-
tures improve translation quality a lot and will
be described in the next section. For further im-
provement, we tried different multi-system based
techniques, such as model ensembling and model
reranking. These techniques can improve trans-
lation performance on the basis of a very strong
single system. At the same time, we also designed
some specific strategies to deal with problems dur-
ing ensembling, such as the overflow of memory
space and the slow decoding speed. As a result,
our Chinese→English system achieved the second
highest cased BLEU score among all 15 submitted
constrained systems, and our English→Chinese
system ranked the second out of 12 submitted sys-
tems.

2 Model Features

This section describes five different model archi-
tectures applied to translation tasks. Two of them
come from public research works, while the other
three come from our works. The Transformer was
used as our baseline system.

2.1 Transformer with Relative Position
We used relative position representation in self-
attention mechanism (Shaw et al., 2018) of both
the encoder side and decoder side. Originally, the
Transformer only uses the absolute position in-
formation that calculated by sinusoidal functions,
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lacking of considering the relative position repre-
sentation efficiently. Thus, it is an alternative ap-
proach to incorporate relative position representa-
tion in self-attention mechanism. In contrast to
the absolute position, the relative position repre-
sentation is invariant to the sentence length. We
compared the translation results between whether
using this feature or not, and found that model
with relative position representation performs bet-
ter. We conducted an implement in Fairseq1 as an
additional architecture with precise tuning. Exper-
iments showed that this architecture leads to faster
convergence and better performance.

2.2 Dynamic Convolution Network

Different from Transformer based on self-
attention mechanism, Dynamic Convolution Net-
work (Wu et al., 2019) uses a convolution net-
work to replace the self-attention mechanism in
the model framework. It predicts separate con-
volution kernels based solely on the current time-
step in order to determine the importance of con-
text elements. In other word, a Dynamic Convolu-
tion Network has kernels that vary over time as a
learned function of the individual time steps. Ex-
periments showed that Dynamic Convolution Net-
work got better performance and decoded faster
than the original Transformer. This architecture
has already been implemented in Fairseq.

2.3 Linear Combination Transformer

For the better use of each layer’s output in the
Transformer, we proposed a new architecture
called Linear Combination. In the original Trans-
former, each encoder layer only transfers its output
to the next layer and the decoder only accepts the
output of the final encoder layer. In this condition,
some grammar or semantics information may be
lost even residual connections are applied in each
layer. Therefore, we collect each layer’s output
and calculate them as the final output of the en-
coder through a weight-sum function. After this
operation, the final output is transferred to the de-
coder. Additionally, it only increases a few pa-
rameters which are the same as the number of en-
coder layers. The experimental results showed that
the linear combination function leads the model to
perform better.

1https://github.com/pytorch/fairseq

2.4 Transformer with Layer Aggregation
For further research of gaining information of each
layers, we used layer aggregation mechanism both
in the encoder side and decoder side, iterative deep
aggregation for the encoder side, hierarchical deep
aggregation for the decoder side (Yu et al., 2018),
and the linear operation for the encoder side and
decoder side. Hierarchical deep aggregation re-
quires the number of layers to be the power of 2,
so the number of layers in decoder was set to be
8. Originally, the Transformer only utilizes the
top layer’output of the encoder and decoder, which
misses the opportunity to exploit the useful infor-
mation in other layers. Some recent studies reveal
that simultaneously exposing all layer representa-
tions performs better for natural language process-
ing tasks (Peters et al., 2018; Shen et al., 2018;
Dou et al., 2018). In our experiments, we com-
pared the translation results about whether using
layer aggregation or not, and found that models
with the layer aggregation performed better.

2.5 Encoder Branches with SE-pre in
Transformer

Increasing the width of network can improve the
model performance effectively and recent works
such as Evolved Transformer (So et al., 2019)
have proved this idea. Inspired by this, we pro-
posed a new architecture using multi branches
mechanism in the encoder side, self-attention for
one branch and depthwise separable convolutions
(Kaiser et al., 2017) for the other. The outputs of
different branches are aggregated by gating unit or
just averaging them. We also tried to use SE-pre
method (Hu et al., 2018) to replace residual con-
nection and gained a better performance. To re-
duce the number of parameters, we shared the pa-
rameter of different layers in depthwise separable
convolutions. In source side, the model has a stack
of 6 layers and each layer contains a self-attention
sub-layer, a depthwise separable convolution sbu-
layer, a gating unit and a FFN sub-layer. In target
side, we used the same structure as vanilla decoder
in Transformer. Compared with vanilla Trans-
former, our novel structure outperformed signifi-
cantly in EN-ZH translation task.

3 Experiment Techniques

3.1 Back Translation
Since Sennrich et al. proposed a method which
can translate target side monolingual corpora into
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source side to add synthetic data and exploit large
corpora, back translation has become a routine op-
eration to build a state-of-art system in translation
tasks. Target-side monolingual data plays an im-
portant role in neural machine translation systems,
so we investigated the use of monolingual data for
NMT. In general, we translated monolingual En-
glish sentences into Chinese sentences using our
English→Chinese baseline system and translated
monolingual Chinese sentences into English sen-
tences using our Chinese→English baseline sys-
tem. To improve the quality of the synthetic cor-
pus, we also conducted a strict data filter which
was also used in data preprocessing to exclude bad
sentences with low sentence score.

To select sentences for back-translation, we
trained unsupervised neural language models with
Transformer architectures on target-side bilingual
corpora and used them to score these monolingual
sentences. We chose News-Discuss corpora 2017
and News-Discuss corpora 2018 which contained
about 0.3B sentences totally as our target-side
monolingual corpora in Chinese→English trans-
lation tasks. We first selected about 80M English
sentences from the target-side monolingual corpus
based on language model scores, which reflected
their similarity to the in-domain corpus. Then
we translated them into Chinese sentences and got
about 80M sentence pairs. After that, we trained
another translation model with Transformer archi-
tecture on original bilingual corpora. To calcu-
late bilingual scores for those synthetic sentence
pairs, we used the model to translate source-side
synthetic sentences and scored their losses with
target-side sentences. Finally, we selected 8M sen-
tence pairs with high LM scores and low transla-
tion losses and added them to the original corpus.

For English-Chinese translation task, we used
XMU monolingual corpus2 instead of News-
Discuss corpora, because XMU corpus contained
more in-domain and higher-quality Chinese-side
sentences than other monolingual corpora. All
other filter operation was same as Chinese-English
translation task. Finally, We got 3M synthetic data
adding to original corpus.

3.2 Fine-tuning

The Transfer Learning had been used in the field
of Computer Vision for a long time, and it had gen-
erated significant results (Razavian et al., 2014;

2http://nlp.nju.edu.cn/cwmt-wmt/

Shelhamer et al., 2017; He et al., 2016; Huang
et al., 2017). Recent Researches have shown that
transfer learning can be extended to natural lan-
guage processing (NLP) and reinforcement learn-
ing. Several papers have indicated that transfer
learning and fine-tuning has achieved great suc-
cess in NLP. (McCann et al., 2017; Peters et al.,
2017, 2018; Howard and Ruder, 2018)

In our work of the WMT19, the News-
Commentary-v14 was chosen as the in-domain
corpus, and the rest of training dataset and the
monolingual back-translation corpus were used as
the out-domain corpus. In order to enlarge the
in-domain corpus, we exploited the algorithm de-
tailed in Duh et al.; Axelrod et al.. Three methods
were used to select sentence pairs from large out-
domain corpus that are similar to the in-domain
corpus, and these sentence pairs were added into
the in-domain corpus. Then these new in-domain
corpus we got were used to fine-tune the base-
line model by continuing training a few steps.
The three methods to select similar sentence pairs
in our experiments as follows: the KenLM, the
Transformer language model, and the tf-idf algo-
rithm.

N- Language Model: According to the work of
Deng et al., the in-domain corpus was set as I and
the out-domain corpus was set as O. A smaller out-
domain corpus o was got from the out-domain cor-
pus by random sampling, and this corpus has sim-
ilar size with corpus I. Then the KenLM was used
to train 3-gram language models on the source side
and target side of the corpus I and o respectively
(HI−src, HI−tgt, Ho−src and Ho−tgt). After that,
all the sentence pairs s from out-domain corpus
O were passed into these language models, and
scored by using the bilingual cross-entropy differ-
ence:

[HI−src(s) −HI−tgt(s)] + [Ho−src(s) −Ho−tgt(s)]

At last, the top 20 sentence pairs with lowest
scores were add into the in-domain corpus to fine-
tune the translation model.

Transformer Language Model: Similar to the
above method, the language model with Trans-
former architecture from Tensor2tensor3 was used
to train the source side and target side of the corpus
I and o respectively. The bilingual cross-entropy
difference was used to get top 20 similar sentence

3https://github.com/tensorflow/tensor2tensor
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pairs from the out-domain corpus to generate new
in-domain corpus.

TF-IDF Algorithm: The tf-idf algorithm was
chosen to calculate the similarity of the sentences
in the in-domain corpus and out-domain corpus.
Then we got top 20 similar sentence pairs from
out-domain corpus by using the tf-idf scores.

3.3 Ensemble

Ensemble learning, which trains multiple learn-
ers and combines them, is a widely used tech-
nique in many real-world tasks. Model ensemble
has been successfully applied to neural machine
translation system, it combines the full probability
distribution over the target vocabulary of different
models at each step during sequence prediction.
We implemented model ensemble module in Ten-
sor2tensor and Fairseq, obtained an improvement
of up to 1.2 bleu over the highest single model re-
sult. Noticed that simply increasing the size of an
ensemble does not necessarily improve translation
performance, and brute-force search of all models
is unrealistic. As the number of models increases,
the decoding of ensemble will take more time than
single model, and exceed the limits of computer
resource capacity. So we developed an approach
that is capable of verifying model combination fast
and effectively.

In our algorithm, all the ensemble models are
firstly sorted by performance with beam size = 4.
At the first iteration, we selected the best N mod-
els and combined them. While it is known that
enlarging beam size can improve decoding per-
formance, in order to verify model combination
speedily, beam size was chosen as 1. After that,
we selected the M best model combinations, and
decoding them with beam size = 4 again to fur-
ther reduce the combination size. Once the first
iteration was finished, we added two or four new
models to the existed model combination, and then
put them into a standard ensemble process de-
scribed above in the second iteration. The itera-
tion loop will continue until all the models have
joined ensemble process. If the number of models
is too large, decoding with CPU can be an alter-
native. Finally, we chose the optimal model com-
binations, and then increased beam size and mod-
ified the length penalty to gain better translation
performance.

Model and data diversity are important factors
for ensemble system, so we trained diverse mod-

els depending on different parameters, different
model architectures, and different training data
sets. In order to boost the ensemble performance,
all the models have been fine-tuned. For model en-
semble strategy, it seems intuitive to employ NMT
ensembles by assigning same weights to different
models or simply selecting the maximum output
probability distributions. In this competition, we
adopted a log-avg model ensemble strategy. Both
of the max and avg strategy described above we
have tried, there was no better result observed.

3.4 Rerank

Reranking is a technique to improve translation
quality by choosing potentially better results from
the N-Best list. In order to avoid an N-Best list
with too many noises, we used strong ensemble
systems to generate it. We got an N-Best list with
a size of 200+. Then we used 30+ models to
score the N-Best list. The models details will be
described below. These scores make up several
features to represent a sentence in an N-Best list.
These features we used including:

Word-alignment feature: These features are
generated by using fast-align tools4 to score the
N-Best list and their source sentence.

Language model features: These features are
generated by using KenLM and neural language
model to score the N-Best list.

Translation models features: Translation
model can generate sentences from left to right
(L2R) and right to left (R2L), and both source
to target (S2T) and target to source (T2S) models
can be used to get features. Therefore, there are
four kinds (S2T-L2R, T2S-L2R, S2T-R2L, T2S-
R2L) of translation model features. In order to
get features that can represent the N-Best list
more comprehensively, we used translation mod-
els that trained with three kinds of frameworks
(Tensor2tensor, Fairseq and Sockeye5) to generate
features.

After getting these features, K-batched MIRA
algorithm(Cherry and Foster, 2012) which was
implemented in Moses was introduced to the de-
velopment dataset to get a set of weights. At last,
we used these weights to rescore the N-Best list
and got final translation results.

4https://github.com/clab/fast align
5https://github.com/awslabs/sockeye
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4 Experiments Settings and Results

4.1 Data
The WMT18 English↔Chinese translation task
contains 24.22M raw data, and the WMT19
English↔Chinese translation task contains
26.17M raw data. There are three high-quality
development set: newstest2017, newsdev2017
and newstest2018.

4.2 Pre-processing and Post-processing
Firstly, we tokenized the English sentences by us-
ing NLTK6 toolkit and segmented the Chinese
sentences with Pkuseg7 which was produced by
Peking University. As a routine operation, we ap-
plied BPE (Sennrich et al., 2016b) using Sentence-
piece 8 to enable an open vocabulary which con-
tained about 50k words and subwords. For the data
selection, we removed duplications in the training
data, and designed a filter to exclude bad sentences
according to the sentence score obtained by lan-
guage models and translation models. The final
amount of our training data is about 24M bilin-
gual sentence pairs for EN-ZH tasks, and about
22M bilingual sentence pairs for ZH-EN tasks.

We applied post-processing on the outputs of
these translation tasks. For EN-ZH translation
task, we normalized the punctuations of outputs
through converting the single byte character to
double byte character and removed the space be-
tween Chinese characters. For ZH-EN transla-
tion task, we de-tokenized the outputs by Moses
toolkit.

4.3 Training Details
All models were trained on 8 GPUs using float-
ing point 16 precision and gradients accumulat-
ing (Ott et al., 2018) to employ a bigger batch
size as large as 128 GPUs’. We batched sentence
pairs by approximate length, limited the number
of input and output tokens per batch to 3584 per
GPU and re-shuffled the training corpus between
epochs. Each training batch contained approxi-
mately 450K source tokens and 450K target to-
kens. We also applied a cosine learning rate sched-
ule (Kingma and Ba, 2015; Loshchilov and Hut-
ter, 2017) where the learning rate is first linearly
warmed up for 10K steps from 10−7 to 10−3 and
then annealed following a cosine rate with a single

6https://github.com/nltk/nltk
7https://github.com/lancopku/pkuseg-python
8https://github.com/google/sentencepiece

System Newsdev2017 Newstest2018
baseline 35.32
+Data filtering 36.62
+Back translation 40.23 42.52
+Model enhancement 40.73 42.98
+fine-tuning 41.33 44.10
+ensemble 41.93 46.10
+rerank 42.20 46.40

Table 1: English→Chinese Systems BLEU results on
newsdev2017 and newstest2018. As for newsdev2017
ensemble step, we only mannually selected two models
for ensembling test but for newstest2018, we applied
our ensemble algorithm on all models.

cycle. During training, the label smoothing was
employed with εls = 0.1 and the dropout rate was
set from 0.1 to 0.3 (Hinton et al., 2012; Pereyra
et al., 2017). The baseline system was trained for
about 25 epochs and saved the last 15 epochs to
perform checkpoint averaging. At last, we vali-
dated the model every 1000 mini-batches against
BLEU on the WMT 17 news translation test set.

4.4 English→Chinese Systems

Table 1 shows the English→Chinese translation
results on the validation set (WMT18 testset).
We reported character-level BLEU scores calcu-
lated with Moses mteval-v13a.pl script 9. For the
baseline system with data filtering, it gained 1.3
BLEU scores compared to the result without fil-
tering. After applying back translation, a single
baseline model can improve by about 3.6 BLEU
scores. That means synthetic data plays an im-
portant role in the success of our system. When
it comes to model enhancement, Table 3 shows
that each advanced model architecture got a bet-
ter performance compared to the baseline model.
After applying different combinations of the tech-
niques described in Section 2 and 3, we got 11
systems. Thanks to these varieties of model archi-
tectures and different data selection strategies, our
ensemble system gained a lot and improved about
2 points in term of BLEU. Then we rescored 200+
n-best lists decoding from different single and en-
semble systems and finally achieved an improve-
ment of 0.3 BLEU score.

4.5 Chinese→English Systems

Table 2 shows the Chinese→English translation
results on the validation set. All results are re-

9https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/mteval-
v13a.pl
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System Newstest2017
baseline
+Data filtering
+Back translation 26.41
+Model enhancement 27.00
+fine-tuning 28.49
+ensemble 29.62
+rerank 29.92

Table 2: Chinese→English Systems BLEU results on
newstest2017.

Models EN-ZH ZH-EN
dev17 test17

Baseline model(Transformer) 40.23 26.41
Relative Transformer 40.73 26.60
Dynamic Convolution Networks 40.10 26.51
Linear Combination Transformer 40.70 27.00
Layer Aggregation Transformer 40.73 26.93
SE-pre in Transformer 40.51 26.72

Table 3: BLEU results for different model architec-
tures. For EN-ZH, It represents the results on news-
dev2017 and for ZH-EN, it represents the results on
newstest2017. All models are trained with synthetic
data after back translation.

ported with cased BLEU scores. We followed ex-
actly the same settings with the English→Chinese
translation system. In this case, the fine-tuning
method brought a substantial improvement about
1.4 BLEU scores, showing the advantages of using
high-quality in-domain data. For model enhance-
ment, each model architecture got nearly the same
BLEU score improvement. Finally, we applied en-
semble and reranking techniques, which provided
1.5 BLEU improvements totally over the best sin-
gle model.

5 Conclusion

We present our NMT systems for WMT19
Chinese↔English news translation tasks. For both
translation directions, our final systems achieved
substantial improvements up by 4∼ 5 BLEU score
over baseline systems by integrating the following
technique:

1. Data filtering and model enhancements
2. Back translate the target monolingual data set
3. Fine-tuning with in-domain data
4. System combination and reranking.
As a result, our submitted Chinese→English

system achieved the second highest cased BLEU
score among all 15 submitted constrained systems
and our English→Chinese system ranked the sec-
ond out of 12 submitted systems.
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