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Abstract

The transformer is a state-of-the-art neural
translation model that uses attention to iter-
atively refine lexical representations with in-
formation drawn from the surrounding con-
text. Lexical features are fed into the first layer
and propagated through a deep network of hid-
den layers. We argue that the need to rep-
resent and propagate lexical features in each
layer limits the model’s capacity for learn-
ing and representing other information rele-
vant to the task. To alleviate this bottleneck,
we introduce gated shortcut connections be-
tween the embedding layer and each subse-
quent layer within the encoder and decoder.
This enables the model to access relevant lex-
ical content dynamically, without expending
limited resources on storing it within inter-
mediate states. We show that the proposed
modification yields consistent improvements
over a baseline transformer on standard WMT
translation tasks in 5 translation directions (0.9
BLEU on average) and reduces the amount
of lexical information passed along the hid-
den layers. We furthermore evaluate different
ways to integrate lexical connections into the
transformer architecture and present ablation
experiments exploring the effect of proposed
shortcuts on model behavior.1

1 Introduction

Since it was first proposed, the transformer model
(Vaswani et al., 2017) has quickly established it-
self as a popular choice for neural machine trans-
lation, where it has been found to deliver state-of-
the-art results on various translation tasks (Bojar
et al., 2018). Its success can be attributed to the
model’s high parallelizability allowing for signifi-
cantly faster training compared to recurrent neural

1Our code is publicly available to aid the reproduction of
the reported results: https://github.com/demelin/
transformer_lexical_shortcuts

networks (Chen et al., 2018), superior ability to
perform lexical disambiguation, and capacity for
capturing long-distance dependencies on par with
existing alternatives (Tang et al., 2018).

Recently, several studies have investigated the
nature of features encoded within individual layers
of neural translation models (Belinkov et al., 2017,
2018). One central finding reported in this body
of work is that, in recurrent architectures, differ-
ent layers prioritize different information types.
As such, lower layers appear to predominantly
perform morphological and syntactic processing,
whereas semantic features reach their highest con-
centration towards the top of the layer stack. One
necessary consequence of this distributed learn-
ing is that different types of information encoded
within input representations received by the trans-
lation model have to be transported to the layers
specialized in exploiting them.

Within the transformer encoder and decoder
alike, information exchange proceeds in a strictly
sequential manner, whereby each layer attends
over the output of the immediately preceding
layer, complemented by a shallow residual con-
nection. For input features to be successfully
propagated to the uppermost layers, the translation
model must therefore store them in its interme-
diate representations until they can be processed.
By retaining lexical content, the model is unable
to leverage its full representational capacity for
learning new information from other sources, such
as the surrounding sentence context. We refer to
this limitation as the representation bottleneck.

To alleviate this bottleneck, we propose extend-
ing the standard transformer architecture with lex-
ical shortcuts which connect the embedding layer
with each subsequent self-attention sub-layer in
both encoder and decoder. The shortcuts are
defined as gated skip connections, allowing the
model to access relevant lexical information at any

https://github.com/demelin/transformer_lexical_shortcuts
https://github.com/demelin/transformer_lexical_shortcuts
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point, instead of propagating it upwards from the
embedding layer along the hidden states.

We evaluate the resulting model’s performance
on multiple language pairs and varying corpus
sizes, showing a consistent improvement in trans-
lation quality over the unmodified transformer
baseline. Moreover, we examine the distribution
of lexical information across the hidden layers of
the transformer model in its standard configuration
and with added shortcut connections. The pre-
sented experiments provide quantitative evidence
for the presence of a representation bottleneck in
the standard transformer and its reduction follow-
ing the integration of lexical shortcuts.

While our experimental efforts are centered
around the transformer, the proposed components
are compatible with other multi-layer NMT archi-
tectures.

The contributions of our work are as follows:

1. We propose the use of lexical shortcuts as a
simple strategy for alleviating the representa-
tion bottleneck in NMT models.

2. We demonstrate significant improvements in
translation quality across multiple language
pairs as a result of equipping the transformer
with lexical shortcut connections.

3. We conduct a series of ablation studies,
showing that shortcuts are best applied to the
self-attention mechanism in both encoder and
decoder.

4. We report a positive impact of our modifica-
tion on the model’s ability to perform word
sense disambiguation.

2 Proposed Method

2.1 Background: The transformer
As defined in (Vaswani et al., 2017), the trans-
former is comprised of two sub-networks, the en-
coder and the decoder. The encoder converts
the received source language sentence into a se-
quence of continuous representations containing
translation-relevant features. The decoder, on
the other hand, generates the target language se-
quence, whereby each translation step is condi-
tioned on the encoder’s output as well as the trans-
lation prefix produced up to that point.

Both encoder and decoder are composed of a
series of identical layers. Each encoder layer con-
tains two sub-layers: A self-attention mechanism

Figure 1: Integration of lexical shortcut connections
into the overall transformer architecture.

and a position-wise fully connected feed-forward
network. Within the decoder, each layer is ex-
tended with a third sub-layer responsible for at-
tending over the encoder’s output. In each case,
the attention mechanism is implemented as multi-
head, scaled dot-product attention, which allows
the model to simultaneously consider different
context sub-spaces. Additionally, residual con-
nections between layer inputs and outputs are em-
ployed to aid with signal propagation.

In order for the dot-product attention mecha-
nism to be effective, its inputs first have to be pro-
jected into a common representation sub-space.
This is accomplished by multiplying the input ar-
rays HS and HT by one of the three weight matri-
ces K, V , and Q, as shown in Eqn. 1-3, producing
attention keys, values, and queries, respectively. In
case of multi-head attention, each head is assigned
its own set of keys, values, and queries with the as-
sociated learned projection weights.

Q = WQHS (1)

K = WKHT (2)

V = W V HT (3)

In case of encoder-to-decoder attention, HT
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corresponds to the final encoder states, whereas
HS is the context vector generated by the preced-
ing self-attention sub-layer. For self-attention, on
the other hand, all three operations are given the
output of the preceding layer as their input. Eqn.
4 defines attention as a function over the projected
representations.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (4)

To prevent the magnitude of the pre-softmax
dot-product from becoming too large, it is divided
by the square root of the total key dimensional-
ity dk. Finally, the translated sequence is obtained
by feeding the output of the decoder through a
softmax activation function and sampling from the
produced distribution over target language tokens.

2.2 Lexical shortcuts
Given that the attention mechanism represents the
primary means of establishing parameterized con-
nections between the different layers within the
transformer, it is well suited for the re-introduction
of lexical content. We achieve this by adding gated
connections between the embedding layer and
each subsequent self-attention sub-layer within the
encoder and the decoder, as shown in Figure 1.

To ensure that lexical features are compatible
with the learned hidden representations, the re-
trieved embeddings are projected into the appro-
priate latent space, by multiplying them with the
layer-specific weight matrices WKSC

l and W V SC

l .
We account for the potentially variable importance
of lexical features by equipping each added con-
nection with a binary gate inspired by the Gated
Recurrent Unit (Cho et al., 2014). Functionally,
our lexical shortcuts are equivalent to highway
connections of (Srivastava et al., 2015) that span
an arbitrary number of intermediate layers.

KSC
l = WKSC

l E (5)

V SC
l = W V SC

l E (6)

Kl = WK
l Hl−1 (7)

Vl = W V
l Hl−1 (8)

rKl = sigmoid(KSC
l +Kl + bKl ) (9)

rVl = sigmoid(V SC
l + Vl + bVl ) (10)

K ′l = rKl �KSC
l + (1− rKl )�Kl (11)

V ′l = rVl � V SC
l + (1− rVl )� Vl (12)

Figure 2: Modified attention inputs. Top: lexical
shortcuts, bottom: lexical shortcuts + feature-fusion.
Dashed lines denote splits along the feature dimension.

After situating the outputs of the immediately
preceding layer Hl−1 and the embeddings E
within a shared representation space (Eqn. 5-8),
the relevance of lexical information for the cur-
rent attention step is estimated by comparing lexi-
cal and latent features, followed by the addition of
a bias term b (Eqn. 9-10). The respective atten-
tion key arrays are denoted as KSC

l and Kl, while
V SC
l and Vl represent the corresponding value ar-

rays. The result is fed through a sigmoid function
to obtain the lexical relevance weight r, used to
calculate the weighted sum of the two sets of fea-
tures (Eqn. 11-12), where� denotes element-wise
multiplication. Next, the key and value arrays K ′l
and V ′l are passed to the multi-head attention func-
tion as defined in Eqn. 4, replacing the original Kl

and Vl.
In an alternative formulation of the model, re-

ferred to as ‘feature-fusion’ from here on, we con-
catenate E and Hl−1 before the initial linear pro-
jection, splitting the result in two halves along the
feature dimension and leaving the rest of the short-
cut definition unchanged2. This reduces Eqn. 5-
8 to Eqn. 13-14, and enables the model to se-
lect relevant information by directly inter-relating
lexical and hidden features. As such, both KSC

l

and Kl encode a mixture of embedding and hid-

2The feature-fusion mechanism is therefore based on the
same principle as the Gated Linear Unit (Dauphin et al.,
2017), while utilizing a more expressive gating function.
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den features, as do the corresponding value arrays.
While this arguably diminishes the contribution of
the gating mechanism towards feature selection,
preliminary experiments have shown that replac-
ing gated shortcuts with gate-less residual connec-
tions (He et al., 2016) produces models that fail to
converge, characterized by poor training and vali-
dation performance. For illustration purposes, fig-
ure 2 depicts the modified computation path of the
lexically-enriched attention key and value vectors.

KSC
l ,Kl = WK

l [E;Hl−1] (13)

V SC
l , Vl = W V

l [E;Hl−1] (14)

Other than the immediate accessibility of lexi-
cal information, one potential benefit afforded by
the introduced shortcuts is the improved gradi-
ent flow during back-propagation. As noted in
(Huang et al., 2017), the addition of skip connec-
tions between individual layers of a deep neural
network results in an implicit ‘deep supervision’
effect (Lee et al., 2015), which aids the training
process. In case of our modified transformer, this
corresponds to the embedding layer receiving its
learning signal from the model’s overall optimiza-
tion objective as well as from each layer it is con-
nected to, making the model easier to train.

3 Experiments

3.1 Training

To evaluate the efficacy of the proposed approach,
we re-implement the transformer model and ex-
tend it by applying lexical shortcuts to each self-
attention layer in the encoder and decoder. A de-
tailed account of our model configurations, data
pre-processing steps, and training setup is given in
the appendix (A.1-A.2).

3.2 Data

We investigate the potential benefits of lexical
shortcuts on 5 WMT translation tasks: Ger-
man → English (DE→EN), English → German
(EN→DE), English → Russian (EN→RU), En-
glish→ Czech (EN→CS), and English→ Finnish
(EN→FI). Our choice is motivated by the differ-
ences in size of the training corpora as well as by
the typological diversity of the target languages.

To make our findings comparable to related
work, we train EN↔DE models on the WMT14
news translation data which encompasses ∼4.5M
sentence pairs. EN→RU models are trained on the

WMT17 version of the news translation task, con-
sisting of ∼24.8M sentence pairs. For EN→CS
and EN→FI, we use the respective WMT18 par-
allel training corpora, with the former containing
∼50.4M and the latter ∼3.2M sentence pairs. We
do not employ backtranslated data in any of our
experiments to further facilitate comparisons to
existing work.

Throughout training, model performance is
validated on newstest2013 for EN↔DE, new-
stest2016 for EN→RU, and on newstest2017 for
EN→CS and EN→FI. Final model performance is
reported on multiple tests sets from the news do-
main for each direction.

3.3 Translation performance
The results of our translation experiments are sum-
marized in Tables 1-2. To ensure their compara-
bility, we evaluate translation quality using sacre-
BLEU (Post, 2018). As such, our baseline per-
formance diverges from that reported in (Vaswani
et al., 2017). We address this by evaluating our
EN→DE models using the scoring script from the
tensor2tensor toolkit3 (Vaswani et al., 2018) on the
tokenized model output, and list the corresponding
BLEU scores in the first column of Table 1.

Our evaluation shows that the introduction of
lexical shortcuts consistently improves transla-
tion quality of the transformer model across dif-
ferent test-sets and language pairs, outperform-
ing transformer-BASE by 0.5 BLEU on aver-
age. With feature-fusion, we see even stronger
improvements, yielding total performance gains
over transformer-BASE of up to 1.4 BLEU for
EN→DE (averaging to 1.0), and 0.8 BLEU on av-
erage for the other 4 translation directions. We fur-
thermore observe that the relative improvements
from the addition of lexical shortcuts are substan-
tially smaller for transformer-BIG compared to
transformer-BASE. One potential explanation for
this drop in efficacy is the increased size of latent
representations the wider model is able to learn,
which we discuss in section 4.1.

Furthermore, it is worth noting that transformer-
BASE equipped with lexical connections performs
comparably to the standard transformer-BIG, de-
spite containing fewer than half of its parameters
and being only marginally slower to train than
our unmodified transformer-BASE implementa-

3https://github.com/tensorflow/
tensor2tensor/blob/master/
\tensor2tensor/utils/get_ende_bleu.sh

https://github.com/tensorflow/tensor2tensor/blob/master/\tensor2tensor/utils/get_ende_bleu.sh
https://github.com/tensorflow/tensor2tensor/blob/master/\tensor2tensor/utils/get_ende_bleu.sh
https://github.com/tensorflow/tensor2tensor/blob/master/\tensor2tensor/utils/get_ende_bleu.sh
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sacreBLEU

Model newstest2014
(tokenized BLEU)

newstest
2014

newstest
2015

newstest
2016

newstest
2017

newstest
2018

test
mean

transformer-BASE 27.3 25.8 28.5 33.2 27.3 40.4 31.0

+ lexical shortcuts 27.6 26.1 29.5 33.3 27.5 41.1 31.5

+ feature-fusion 28.3 26.8 29.9 34.0 27.7 41.6 32.0

transformer-BIG 28.7 27.2 30.1 34.0 28.1 41.3 32.1

+ lexical shortcuts
+ feature-fusion 29.4 27.8 30.3 33.2 28.4 41.3 32.2

Table 1: BLEU scores for the EN→DE news translation task.

DE→EN EN→RU EN→CS EN→FI

Model newstest
2014

newstest
2017

newstest
2017

newstest
2018

newstest
2015

newstest
2018

newstest
2015

newstest
2018

transformer-BASE 31.1 32.3 27.9 24.2 23.4 21.1 18.7 14.0

+ lexical shortcuts 31.3 32.3 28.4 24.9 24.1 21.4 19.5 14.5

+ feature-fusion 31.7 32.9 28.9 25.3 24.3 21.6 19.8 14.8

Table 2: Effect of lexical shortcuts on translation quality for different language pairs, as measured by sacreBLEU.

tion. A detailed overview of model sizes and train-
ing speed is provided in the supplementary mate-
rial (A.1).

Concerning the examined language pairs, the
average increase in BLEU is highest for EN→RU
(1.1 BLEU) and lowest for DE→EN (0.6 BLEU).
A potential explanation for why this is the case
could be the difference in language topology. Of
all target languages we consider, English has the
least complex morphological system where indi-
vidual words carry little inflectional information,
which stands in stark contrast to a highly inflec-
tional language with a flexible word order such
as Russian. It is plausible that lexical shortcuts
are especially important for translation directions
where the target language is morphologically rich
and where the surrounding context is essential to
accurately predicting a word’s case and agree-
ment. With the proposed shortcuts in place, the
transformer has more capacity for modeling such
context information.

To investigate the role of lexical connections
within the transformer, we conduct a thorough ex-
amination of our models’ internal representations
and learning behaviour. The following analysis is
based on models utilizing lexical shortcuts with
feature-fusion, due to its superior performance.

4 Analysis

4.1 Representation bottleneck

The proposed approach is motivated by the hy-
pothesis that the transformer retains lexical fea-
tures within its individual layers, which limits its
capacity for learning and representing other types
of relevant information. Direct connections to the
embedding layer alleviate this by providing the
model with access to lexical features at each pro-
cessing step, reducing the need for propagating
them along hidden states. To investigate whether
this is indeed the case, we perform a probing study,
where we estimate the amount of lexical content
present within each encoder and decoder state.

We examine the internal representations learned
by our models by modifying the probing technique
introduced in (Belinkov et al., 2017). Specifically,
we train a separate lexical classifier for each layer
of a frozen translation model. Each classifier re-
ceives hidden states extracted from the respective
transformer layer4 and is tasked with reconstruct-
ing the sub-word corresponding to the position
of each hidden state. Encoder-specific classifiers
learn to reconstruct sub-words in the source sen-

4We treat the output of the feed-forward sub-layer as that
layer’s hidden state.
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Figure 3: Layer-wise lexical probe accuracy measured
on transformer-BASE for EN→DE (newstest2014).

tence, whereas classifiers trained on decoder states
are trained to reconstruct target sub-words.

The accuracy of each layer-specific classifier on
a withheld test set is assumed to be indicative of
the lexical content encoded by the corresponding
transformer layer. We expect classification accu-
racy to be high if the evaluated representations pre-
dominantly store information propagated upwards
from the embeddings at the same position and to
decrease proportionally to the amount of informa-
tion drawn from the surrounding sentence context.
Figures 3 and 4 offer a side-by-side comparison
of the accuracy scores obtained for each layer of
the base transformer and its variant equipped with
lexical shortcut connections.

Based on the observed classification results, it
appears that immediate access to lexical infor-
mation does indeed alleviate the representation
bottleneck by reducing the extent to which (sub-
)word-level content is retained across encoder and
decoder layers. By introducing shortcut connec-
tions, we effectively reduce the amount of lexical
information the model retains within its interme-
diate states, thereby increasing its capacity for ex-
ploiting sentence context. The effect is consistent
across multiple language pairs, supporting its gen-
erality. Additionally, to examine whether lexical
retention depends on the specific properties of the
input tokens, we track classification accuracy con-
ditioned on part-of-speech tags and sub-word fre-
quencies. While we do not discover a pronounced
effect of either category on classification accuracy,
we present a summary of our findings as part of the
supplementary material for future reference (A.3).

Another observation arising from the probing

Figure 4: Layer-wise lexical probe accuracy measured
on transformer-BASE for EN→RU (newstest2017).

analysis is that the decoder retains fewer lexical
features beyond its initial layers than the encoder.
This may be due to the decoder having to rep-
resent information it receives from the encoder
in addition to target-side content, necessitating a
lower rate of lexical feature retention. Even so,
by adding shortcut connections we can increase
the dissimilarity between the embedding layer and
the subsequent layers of the decoder, indicating a
noticeable reduction in the retention and propaga-
tion of lexical features along the decoder’s hidden
states.

A similar trend can be observed when evaluat-
ing layer similarity directly, which we accomplish
by calculating the cosine similarity between the
embeddings and the hidden states of each trans-
former layer. Echoing our findings so far, the ad-
dition of lexical shortcuts reduces layer similarity
relative to the baseline transformer for both en-
coder and decoder. The corresponding visualiza-
tions are also provided in the appendix (A.3).

Overall, the presented analysis supports the ex-
istence of a representation bottleneck in NMT
models as one potential explanation for the effi-
cacy of the proposed lexical shortcut connections.

Model newstest
2017

newstest
2018

test
mean

transformer-SMALL 25.2 37.0 28.6

+ lexical shortcuts 25.7 38.0 29.3

+ feature-fusion 25.7 38.5 29.6

Table 3: sacreBLEU scores for small EN→DE models;
‘test mean’ denotes the average of test-sets in table (1).
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4.2 Model size

Next, we investigate the interaction between the
number of model parameters and improvements in
translation quality afforded by the proposed lex-
ical connections. Following up on findings pre-
sented in section 3.1, we hypothesize that the
benefit of lexical shortcuts diminishes once the
model’s capacity is sufficiently large. To estab-
lish whether this decline in effectiveness is grad-
ual, we scale down the standard transformer, halv-
ing the size of its embeddings, hidden states, and
feed-forward sub-layers. Table 3 shows that, on
average, quality improvements are comparable for
the small and standard transformer (1.0 BLEU for
both), which is in contrast to our observations for
transformer-BIG. One explanation is that given
sufficient capacity, the model is capable of ac-
commodating the upward propagation of lexical
features without having to neglect other sources
of information. However, as long as the model’s
representational capacity is within certain limits,
the effect of lexical shortcuts remains comparable
across a range of model sizes. With this in mind,
the exact interaction between model scale and the
types of information encoded in its hidden states
remains to be fully explored. We leave a more
fine-grained examination of this relationship to fu-
ture research.

4.3 Shortcut variants

Until now, we focused on applying shortcuts to
self-attention as a natural re-entry point for lexical
content. However, previous studies suggest that
providing the decoder with direct access to source
sentences can improve translation adequacy, by
conditioning decoding on relevant source tokens
(Kuang et al., 2017; Nguyen and Chiang, 2017).

To investigate whether the proposed method can
confer a similar benefit to the transformer, we ap-
ply lexical shortcuts to decoder-to-encoder atten-
tion, replacing or adding to shortcuts feeding into
self-attention. Formally, this equates to fixing E
to Eenc in Eqn. 5-6 and can be regarded as a vari-
ant of source-side bridging proposed by (Kuang
et al., 2017). As Table 4 shows, while integrating
shortcut connections into the decoder-to-encoder
attention improves upon the base transformer, the
improvement is smaller than when we modify self-
attention. Interestingly, combining both methods
yields worse translation quality than either one
does in isolation, indicating that the decoder is un-

Model newstest
2017

newstest
2018

test
mean

transformer-BASE 27.3 40.4 31.0

+ self-attn. shortcuts 27.7 41.6 32.0

dec-to-enc shortcuts 27.6 40.7 31.5

+ self-attn. shortcuts 27.7 40.5 31.4

non-lexical shortcuts 27.1 40.6 31.3

Table 4: sacreBLEU for shortcut variants of EN→DE
models; ‘test mean’ averages over test-sets in table (1).

Figure 5: Effect of disabling shortcuts in either sub-
network on validation BLEU.

able to effectively consolidate information from
both source and target embeddings, which neg-
atively impacts its learned latent representations.
We therefore conclude that lexical shortcuts are
most beneficial to self-attention.

A related question is whether the encoder and
decoder benefit from the addition of lexical short-
cuts to self-attention equally. We explore this by
disabling shortcuts in either sub-network and com-
paring the so obtained translation models to one
with intact connections. Figure 5 illustrates that
best translation performance is obtained by en-
abling shortcuts in both encoder and decoder. This
also improves training stability, as compared to the
decoder-only ablated model. The latter may be ex-
plained by our use of tied embeddings which re-
ceive a stronger training signal from shortcut con-
nections due to ‘deep supervision’, as this may
bias learned embeddings against the sub-network
lacking improved lexical connectivity.

While adding shortcuts improves translation
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quality, it is not obvious whether this is pre-
dominantly due to improved accessibility of lex-
ical content, rather than increased connectivity be-
tween network layers, as suggested in (Dou et al.,
2018). To isolate the importance of lexical in-
formation, we equip the transformer with non-
lexical shortcuts connecting each layer n to layer
n − 2, e.g. layer 6 to layer 4.5 As a result, the
number of added connections and parameters is
kept identical to lexical shortcuts, whereas lex-
ical accessibility is disabled, allowing for mini-
mal comparison between the two configurations.
Test-BLEU reported in Table 4 suggests that while
non-lexical shortcuts improve over the baseline
model, they perform noticeably worse than lexi-
cal connections. Therefore, the increase in trans-
lation quality associated with lexical shortcuts is
not solely attributable to a better signal flow or the
increased number of trainable parameters.

4.4 Word-sense disambiguation

Beyond the effects of lexical shortcuts on the
transformer’s learning dynamics, we are interested
in how widening the representation bottleneck af-
fects the properties of the produced translations.
One challenging problem in translation which in-
tuitively should benefit from the model’s increased
capacity for learning information drawn from sen-
tence context is word-sense disambiguation.

We examine whether the addition of lexical
shortcuts aids disambiguation by evaluating our
trained DE→EN models on the ContraWSD cor-
pus (Rios et al., 2017). The contrastive dataset is
constructed by paring source sentences with mul-
tiple translations, varying the translated sense of
selected source nouns between translation candi-
dates. A competent model is expected to assign
a higher probability to the translation hypothesis
containing the appropriate word-sense.

While the standard transformer offers a strong
baseline for the disambiguation task, we nonethe-
less observe improvements after adding direct
connections to the embedding layers. Specifically,
our baseline model reaches an accuracy of 88.8%,
which improves to 89.5% with lexical shortcuts.

5 Related Work

Within recent literature, several strategies for alter-
ing the flow of information within the transformer

5The first layer is connected to the embedding layer, as
there is no further antecedent.

have been proposed, including adaptive model
depth (Dehghani et al., 2018), layer-wise trans-
parent attention (Bapna et al., 2018), and dense
inter-layer connections (Dou et al., 2018). Our in-
vestigation bears strongest resemblance to the lat-
ter work, by introducing additional connectivity
to the model. However, rather than establishing
new connections between layers indiscriminately,
we explicitly seek to facilitate the accessibility of
lexical features across network layers. As a result,
our proposed shortcuts remain sparse, while per-
forming comparably to their best, more elaborate
strategies that rely on multi-layer attention and hi-
erarchical state aggregation.

Likewise, studies investigating the role of lex-
ical features in NMT are highly relevant to our
work. Among them, (Nguyen and Chiang, 2017)
note that improving accessibility of source words
in the decoder benefits translation quality for
low-resource settings. In a similar vein, (Wu
et al., 2018) attend both encoder hidden states and
source embeddings as part of decoder-to-encoder
attention, while (Kuang et al., 2017) provide the
decoder-to-encoder attention mechanism with im-
proved access to source word representations. We
have found a variant of the latter method, which
we adapted to the Transformer architecture, to be
less effective than applying lexical shortcuts to
self-attention, as discussed in section 4.3.

Another line of research from which we draw
inspiration concerns itself with the analysis of
the internal dynamics and learned representations
within deep neural networks (Karpathy et al.,
2015; Shi et al., 2016; Qian et al., 2016). Here,
(Belinkov et al., 2017) and (Belinkov et al., 2018)
serve as our primary points of reference by offer-
ing a thorough and principled investigation of the
extent to which neural translation models are capa-
ble of learning linguistic properties from raw text.

Our view of the transformer as a model learn-
ing to refine input representations through the re-
peated application of attention is consistent with
the iterative estimation paradigm introduced in
(Greff et al., 2016). According to this interpreta-
tion, given a stack of connected layers sharing the
same dimensionality and interlinked through high-
way or residual connections, the initial layer gen-
erates a rough version of the stack’s final output,
which is iteratively refined by successive layers,
e.g. by enriching localized features with informa-
tion drawn from the surrounding context. The re-
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sults of our probing studies support this analysis,
further suggesting that different layers not only re-
fine input features but also learn entirely new in-
formation given sufficient capacity, as evidenced
by the decrease in similarity between embeddings
and hidden states with increasing model depth.

6 Conclusion

In this paper, we have proposed a simple yet effec-
tive method for widening the representation bot-
tleneck in the transformer by introducing lexical
shortcuts. Our modified models achieve up to 1.4
BLEU (0.9 BLEU on average) improvement on 5
standard WMT datasets, at a small cost in com-
puting time and model size. Our analysis sug-
gests that lexical connections are useful to both
encoder and decoder, and remain effective when
included in smaller models. Moreover, the addi-
tion of shortcuts noticeably reduces the similarity
of hidden states to the initial embeddings, indicat-
ing that dynamic lexical access aids the network in
learning novel, diverse information. We also per-
formed ablation studies comparing different short-
cut variants and demonstrated that one effect of
lexical shortcuts is an improved WSD capability.

The presented findings offer new insights into
the nature of information encoded by the trans-
former layers, supporting the iterative refinement
view of feature learning. In future work, we intend
to explore other ways to better our understanding
of the refinement process and to help translation
models learn more diverse and meaningful inter-
nal representations.
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A Supplementary Material

A.1 Training details
The majority of our experiments is conducted us-
ing the transformer-BASE configuration, with the
number of encoder and decoder layers set to 6
each, embedding and attention dimensionality to
512, number of attention heads to 8, and feed-
forward sub-layer dimensionality to 2048. We
tie the encoder embedding table with the decoder
embedding table and the pre-softmax projection
matrix to speed up training, following (Press and
Wolf, 2016). All trained models are optimized
using Adam (Kingma and Ba, 2014) adhering to
the learning rate schedule described in (Vaswani
et al., 2017). We set the number of warm-up steps
to 4000 for the baseline model, increasing it to
6000 and 8000 when adding lexical shortcuts and
feature-fusion, respectively, so as to accommodate
the increase in parameter size.

We also evaluate the effect of lexical short-
cuts on the larger transformer-BIG model, limiting
this set of experiments to EN→DE due to com-
putational constraints. Here, the baseline model
employs 16 attention heads, with attention, em-
bedding, and feed-forward dimensions doubled to
1024, 1024, and 4096. Warm-up period for all big
models is 16,000 steps. For our probing experi-
ments, the classifiers used are simple feed-forward
networks with a single hidden layer consisting of
512 units, dropout (Srivastava et al., 2014) with p
= 0.5, and a ReLU non-linearity. In all presented
experiments, we employ beam search during de-
coding, with beam size set to 16.

Model # Parameters Words / sec.

transformer-BASE 65,166K 29,698

+ lexical shortcuts 71,470K 26,423

+ feature-fusion 84,053K 23,601

transformer-BIG 218,413K 10,215

+ feature-fusion 293,935K 6,769

Table 5: Model size and training speed of the compared
transformer variants.

All models are trained concurrently on four
Nvidia P100 Tesla GPUs using synchronous data
parallelization. Delayed optimization (Saunders
et al., 2018) is employed to simulate batch sizes
of 25,000 tokens, to be consistent with (Vaswani
et al., 2017). Each transformer-BASE model

is trained for a total of 150,000 updates, while
our transformer-BIG experiments are stopped af-
ter 300,000 updates. Validation is performed ev-
ery 4000 steps, as is check-pointing. Training
base models takes ∼43 hours, while the addition
of shortcut connections increases training time up
to∼46 hours (∼50 hours with feature-fusion). Ta-
ble 5 details the differences in parameter size and
training speed for the different transformer config-
urations. Parameters are given in thousands, while
speed is averaged over the entire training duration.

Validation-BLEU is calculated using multi-
bleu-detok.pl6 on a reference which we pre- and
post-process following the same steps as for the
models’ inputs and outputs. All reported test-
BLEU scores were obtained by averaging the final
5 checkpoints for transformer-BASE and final 16
for transformer-BIG.

A.2 Data pre-processing

We tokenize, clean, and truecase each training cor-
pus using scripts from the Moses toolkit7, and ap-
ply byte-pair encoding (Sennrich et al., 2015) to
counteract the open vocabulary issue. Cleaning is
skipped for validation and test sets. For EN↔DE
and EN→RU we limit the number of BPE merge
operations to 32,000 and set the vocabulary thresh-
old to 50. For EN→CS and EN→FI, the num-
ber of merge operations is set to 89,500 with a
vocabulary threshold of 50, following (Haddow
et al., 2018)8. In each case, the BPE vocabulary
is learned jointly over the source and target lan-
guage, which necessitated an additional transliter-
ation step for the pre-processing of Russian data9.

A.3 Probing studies

Cosine similarity scores between the embedding
layer and each successive layer in transformer-
BASE and its variant equipped with lexical short-
cuts are summarized in Figures 6-7.

For our fine-grained probing studies, we eval-
uated classification accuracy conditioned of part-
of-speech tags and sub-word frequencies. For the
former, we first parse our test-sets with TreeTag-

6https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu-detok.perl

7https://github.com/moses-smt/
mosesdecoder

8We do not use synthetic data, which makes our results
not directly comparable to theirs.

9We used ‘Lingua Translit’ for this purpose: https://
metacpan.org/release/Lingua-Translit

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu-detok.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu-detok.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu-detok.perl
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://metacpan.org/release/Lingua-Translit
https://metacpan.org/release/Lingua-Translit
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ger (Schmid, 1999), projecting tags onto the con-
stituent sub-words of each annotated word. For
frequency-based evaluation, we divide sub-words
into ten equally-sized frequency bins, with bin 1
containing the least frequent sub-words and bin
10 containing the most frequent ones. We do
not observe any immediately obvious, significant
effects of either POS or frequency on the reten-
tion of lexical features. While classification accu-
racy is notably low for infrequent sub-words, this
can be attributed to the limited occurrence of the
corresponding transformer states in the classifier’s
training data. Evaluation for EN→DE models is
done on newstest2014, while newstest2017 is used
for EN→RU models. Figures 8-15 present results
for the frequency-based classification. Accuracy
scores conditioned on POS tags are visualized in
Figures 16-23.

Figure 6: Cosine similarity measured on transformer-
BASE for EN→DE (newstest2014).

Figure 7: Cosine similarity measured on transformer-
BASE for EN→RU (newstest2017).

We also investigated the activation patterns of
the lexical shortcut gates. However, despite their
essential status for the successful training of trans-
former variants equipped with lexical connections,
we were unable to discern any distinct patterns
in the activations of the individual gates, which

tend to prioritize lexical and hidden features to
an equal degree regardless of training progress or
(sub-)word characteristics.
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Figure 8: Frequency-based classification accuracy on
states from the EN→DE encoder.

Figure 9: Frequency-based classification accuracy on
states from the EN→DE encoder + lexical shortcuts.

Figure 10: Frequency-based classification accuracy on
states from the EN→DE decoder.

Figure 11: Frequency-based classification accuracy on
states from the EN→DE decoder + lexical shortcuts.

Figure 12: Frequency-based classification accuracy on
states from the EN→RU encoder.

Figure 13: Frequency-based classification accuracy on
states from the EN→RU encoder + lexical shortcuts.

Figure 14: Frequency-based classification accuracy on
states from the EN→RU decoder.

Figure 15: Frequency-based classification accuracy on
states from the EN→RU decoder + lexical shortcuts.
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Figure 16: POS-based classification accuracy on states
from the EN→DE encoder.

Figure 17: POS-based classification accuracy on states
from the EN→DE encoder + lexical shortcuts.

Figure 18: POS-based classification accuracy on states
from the EN→DE decoder.

Figure 19: POS-based classification accuracy on states
from the EN→DE decoder + lexical shortcuts.

Figure 20: POS-based classification accuracy on states
from the EN→RU encoder.

Figure 21: POS-based classification accuracy on states
from the EN→RU encoder + lexical shortcuts.

Figure 22: POS-based classification accuracy on states
from the EN→RU decoder.

Figure 23: POS-based classification accuracy on states
from the EN→RU decoder + lexical shortcuts.


