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Abstract

An important concern in training multilin-
gual neural machine translation (NMT) is to
translate between language pairs unseen dur-
ing training, i.e zero-shot translation. Improv-
ing this ability kills two birds with one stone
by providing an alternative to pivot translation
which also allows us to better understand how
the model captures information between lan-
guages.

In this work, we carried out an investigation on
this capability of the multilingual NMT mod-
els. First, we intentionally create an encoder
architecture which is independent with respect
to the source language. Such experiments shed
light on the ability of NMT encoders to learn
multilingual representations, in general. Based
on such proof of concept, we were able to de-
sign regularization methods into the standard
Transformer model, so that the whole archi-
tecture becomes more robust in zero-shot con-
ditions. We investigated the behaviour of such
models on the standard IWSLT 2017 multilin-
gual dataset. We achieved an average improve-
ment of 2.23 BLEU points across 12 language
pairs compared to the zero-shot performance
of a state-of-the-art multilingual system. Ad-
ditionally, we carry out further experiments
in which the effect is confirmed even for lan-
guage pairs with multiple intermediate pivots.

1 Introduction

Neural machine translation (NMT) exploits neu-
ral networks to directly learn to transform sen-
tences from a source language to a target lan-
guage (Sutskever et al., 2014; Bahdanau et al.,
2014). Universal multilingual NMT discovered
that a neural translation system can be trained
on datasets containing source and target sentences
in multiple languages (Firat et al., 2016; Johnson
et al., 2016). Successfully trained models using
this approach can be used to translate arbitrar-

ily between any languages included in the train-
ing data. In low-resource scenarios, multilingual
NMT has proven to be an extremely useful reg-
ularization method since each language direction
benefits from the information of the others (Ha
et al., 2016; Gu et al., 2018).

An important research focus of multilingual
NMT is zero-shot translation (ZS), or translation
between languages included in multilingual data
for which no directly parallel training data exists.
Application-wise, ZS offers a faster and more di-
rect path between languages compared to pivot
translation, which requires translation to one or
many intermediate languages. This can result in
large latency and error propagation, common is-
sues in non-end-to-end pipelines.From a represen-
tation learning point of view, there is evidence
of NMT’s ability to capture language-independent
features, which have proved useful for cross-
lingual transfer learning (Zoph et al., 2016; Kim
et al., 2019) and provide motivation for ZS trans-
lation. However it is still unclear if minimizing the
difference in representations between languages is
beneficial for zero-shot learning.

On the other hand, the current neural archi-
tecture and learning mechanisms of multilingual
NMT is not geared towards having a common
representation. Different languages are likely to
convey the same semantic content with sentences
of different lengths (Kalchbrenner et al., 2016),
which makes the desiderata difficult to achieve.
Moreover, the loss function of the neural transla-
tion model does not favour having sentences en-
coded in the same representation space regardless
of the source language. As a result, if the net-
work capacity is large enough, it may partition
itself into different sub-spaces for different lan-
guage pairs (Arivazhagan et al., 2019).

Our work here focuses on the zero-shot trans-
lation aspect of universal multilingual NMT.
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First, we attempt to investigate the relationship
of encoder representation and ZS performance.
By modifying the Transformer architecture of
Vaswani et al. (2017) to afford a fixed-size rep-
resentation for the encoder output, we found that
we can significantly improve zero-shot perfor-
mance at the cost of a lower performance on
the supervised language pairs. To the best of
our knowledge, this is the first empirical evi-
dence showing that the multilingual model can
capture both language-independent and language-
dependent features, and that the former can be pri-
oritized during training.

This observation leads us to the most important
contribution in this work, which is to propose sev-
eral techniques to learn a joint semantic space for
different languages in multilingual models with-
out any architectural modification. The key idea
is to prefer a source language-independent repre-
sentation in the decoder using an additional loss
function. As a result, the NMT architecture re-
mains untouched and the technique is scalable to
the number of languages in the training data. The
success of this method is shown by significant
gains on zero-shot translation quality in the stan-
dard IWSLT 2017 multilingual benchmark (Cet-
tolo et al., 2017). Finally, we introduce a more
challenging scenario that involves more than one
bridge language between source and target lan-
guages. This challenging setup confirms the con-
sistency of our zero-shot techniques while clarify-
ing the disadvantages of pivot-based translation.

2 Background: Multilingual Neural
Machine Translation

Given an input sequence X and its translation Y ,
neural machine translation (NMT) uses sequence-
to-sequence models (Sutskever et al., 2014) to di-
rectly model the posterior probability of generat-
ing Y from X .

Universal multilingual NMT expands the orig-
inal bilingual setting by combining parallel cor-
pora from multiple language pairs into one single
corpus. By directly training the NMT model on
this combined corpus, the model can be made to
translate sentences from any seen source language
into any seen target language. Notably, this mul-
tilingual framework does not yield any difference
in the training objective, i.e maximizing the like-
lihood of the target sentence Y given the source

sentence X:

Loss(X,Y ) = −P (Y |X) (1)

Previous work on universal NMT proposed dif-
ferent methods to control language generation.
While source language identity may not be the
concern, the decoder requires a target language
signal to generate sentences in any desired lan-
guage. Work from Ha et al. (2016) and John-
son et al. (2016) used the addition of language
identity tokens in order to minimize architec-
tural changes while controlling generation. Subse-
quently, stronger constraints were bestowed upon
the decoder to force the correct language to be
generated through language features or vocabulary
filtering during decoding (Ha et al., 2017).

In practice, the number of language pairs in a
multilingual corpus increases exponentially over
the size of the language set. Therefore, a multilin-
gual corpus rarely covers all of the language pairs
involved, resulting in a need to investigate transla-
tion between the missing directions. The missing
directions are referred as ‘zero-shot translation’ as
the model has no access to any explicit parallel
samples, naturally or artificially.

3 Proof of concept: Fixed-size encoder
representations for
language-independence

As the length of encoder representations depends
on the source language, current architectures are
not ideal to learn language-independent encoder
representations. Therefore, we propose different
architectures with fixed-size encoder representa-
tions. This also allows us to directly compare en-
coder representations of different languages, and
to enforce such similarity through an additional
loss function. This modification comes with the
price of an information bottleneck due to the pro-
cess of removing the length variability. On the
other hand, it adds additional regularization which
would naturally prioritize the features shared be-
tween languages.

Motivated by the literature in sentence embed-
dings (Schwenk and Douze, 2017; Wang et al.,
2017), we take the average over time of the en-
coder states. Specifically, assume that X is the set
of source embeddings input to the encoder:

Hv = Encoder(X)
Hf = mean pooling(Hv)

(2)
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Figure 1: Fixed-size representations using multi-head mean-pooling (left) and attention-pooling (right).

The purpose of this modification is two-fold.
First, this model explicitly opens more possibil-
ities for language-independent representation to
occur, because every sentence is compressed into
a consistent number of states. Second, we can ob-
serve the balance between language-independent
and language-dependent information in the en-
coder; if zero-shot performance is minimally af-
fected, then the encoder is in general able to cap-
ture language-independent information, and this
restricted encoder retains this information.

However, this model naturally has a disadvan-
tage due to the introduced information bottleneck,
similar to non-attention models (Sutskever et al.,
2014; Kalchbrenner and Blunsom, 2013). We al-
leviate this problem by expanding the number of
hidden states of the encoder output. As a result we
investigate two variations of pooling as follows:

Multi-head Mean-Pooling While taking the av-
erage over time significantly reduces the model
capacity, we can allocate more capacity for the
model by linearly projecting the variable-length
representation. By concatenating the pooled val-
ues from different sub-spaces, we obtain a fixed-
size representation with the sizeN×H . However,
instead of learning to pay attention to input tokens
normally, this decoder learns to distribute its focus
into each mean-pooled embedding.

Multi-head Attention-Pooling The attention
model is notable for its ability to extract relevant
information from a sequence, which is an alter-
native to using pooling operators. However, self-
attention is not within our architectural choices be-
cause the self-attention output has the same num-
ber of states with the input, while we need to re-
strict to a fixed set. We instead propose to set a
fixed number of queries as learnable parameters
for the model, so it will learn to extract neces-
sary information from the sequence to include in
the limited space. It is possible for this model to

converge to mean-pooling because these parame-
ters are not as informative as either encoder or de-
coder states. However, our experiments later on
have proven this does not occur in practice.

These two variations are illustrated in Figure 1.
Here we investigate these models for the purpose
of observing the relationship between encoder rep-
resentations and zero-shot performance. Section 5
shows that, despite the fact that this model falls
short against the baseline Transformer in non-
zero-shot tests, we observed that the retained in-
formation in the bottleneck does not affect the per-
formance of zero-shot translation, our motivation
for the upcoming objectives.

Language-Independent Objective With con-
stant length encoder output, we can now design
an objective function using this advantage for
language-independent representation. Hypothet-
ically, for true multi-parallel data in which sen-
tences from different languages are aligned, we
can force the encoder outputs to be the same for
the aligned sentences (newly enabled by the fixed
state size). In other multilingual frameworks in
which each data sample is bilingual, we exploit
the fact that certain languages are shared between
multiple language pairs (in order to enable zero-
shot translation). As a result, by using such lan-
guages as a bridge, we can simply minimize the
squared root deviation (i.e Min Squared Error -
MSE) of the encoder representations between the
bridge and other languages, and adding the regu-
larization term R(X,Y ) to the loss function:

Loss(X,Y ) = −P (Y |X) + α(R(X,Y ))
R(X,Y ) = −(Encoder(X)− Encoder(Y ))2

(3)
In Equation 3, we ran the encoder on both lan-

guages. Assuming sentence X belongs to the
bridge language, the loss function will lead to
the similar representation of different sentences in
other languages that were aligned with X . The
difficulty lies in optimizing two objectives at once:
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the second acts as a regularization because it pre-
vents language-specific information from being
included in the encoder output. As well, many
multilingual corpora may not contain perfectly
aligned sentences, which is a hindrance for lan-
guage bridging.

4 Source Language-Independent
Decoders

We have so far described our proposed method
to learn language-independent features. We intro-
duce the fixed-size states for the encoder and adds
a regularization term to the NMT loss function to
encourage similarity between encoder states. The
problem with this method is the limiting factor of
the fixed-size representations. With the standard
architecture, while the length of the encoder states
always depends on the source sentence, at each
timestep the decoder only has access to a fixed rep-
resentation of the encoder (context vector from at-
tention). This observation suggests that forcing a
decoder state to be independent of the source lan-
guage and maintaining the variable-size represen-
tation for the encoder is possible. In this section,
we navigate the target NMT architecture back to
the popular variable-length sequential encoder in
which no such compromise was made.

Starting from the above motivation, the key
idea is to force a source language-independent
representation in the decoder using an additional
loss function. We achieve this by operating the
encoder-decoder flow not only from the source
sentence to the target, but also from the source
to itself to recreate the source sentence. While
this resembles an auto-encoder which can be com-
bined with translation (He et al., 2016; Domhan
and Hieber, 2017), it is not necessary to mini-
mize the auto-encoder likelihood as in the multi-
task approach (Niehues and Cho, 2017), but only
the decoder-level similarity between the true target
sentence and the auto-encoded source sentence.
Due to the lack of true parallel data, this method
serves as a bridge between the different languages.

An important feature of the NMT attention
mechanism is that it extracts relevant information
in encoded memory (the keys and queries, in this
case they are the source sentence hidden states)
and compresses them into one single state. More
importantly, in the decoder operation this opera-
tor dynamically repeats every timestep. By us-
ing the encoder to encode both (source and target)

sentences and operate the attentive decoder on top
of both encoded sentences, we obtain two atten-
tive representations of the two sentences which are
equally long. This is the key to enabling forced-
length representations in our model.

Given the described model, the question is
about where in the model we can apply our
representation-forcing from Equation 3. Due to
the nature of many translation models being multi-
layered, it is not as straightforward as in the pooled
encoder models. Hence, we investigate three dif-
ferent locations where this regularization method
can be applied. Their illustration is depicted in
Figure 2.

Attention Forcing We can force each attention
context vector1 to be the same between two de-
coding outputs. As a Transformer has N decoder
layers, we take N attention vectors of each de-
coder and apply MSE element-wise2. This MSE-
Attention method is naturally the most immediate
derivative of forcing encoder states to be similar.
Here we annotate Attn(Yt, X) to be the context
vector from attention of layer n between decoder
state of token Yt and source sentence X .

R(X,Y ) = −
N−1∑
n=0

T−1∑
t=0

(Attn(Yt, X)−Attn(Yt, Y ))2

(4)

Decoder Forcing Instead of optimizing for each
context vector, we can also regularize the final de-
coder layer (before the Softmax layer), because
this state summarizes the information gathered in
the decoder at each timestep. This approach will
be referred as MSE-Decoder. Similar to Equa-
tion 4, we denote the decoder state of the condi-
tional probability at time t as Dec(Yt|X,Y1..t−1).

R(X,Y ) =
T−1∑
t=0

(Dec(Yt|X,Y1..t−1)

−Dec(Yt|Y, Y1..t−1))
2

(5)

Softmax Forcing Similar to our second varia-
tion, the restriction is now put at the final layer.
By running the decoder twice for translation and
auto-encoder, we can force the output distribution
of each step P (Yt|X,Y1..t−1) to be equal using KL

1As in (Luong et al., 2015) the context vector denotes the
weighted sum of the encoder after the attention operation

2For multi-head attention we take the output after con-
catenating the heads.
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Figure 2: Three different constraints for language-independent decoders. The model is run twice as translation
(left) and auto-encoder (right). The KL-Softmax is applied at the very top, while the MSE-Decoder minimizes
difference between the layer-normalized states at the end of the decoder. The MSE-attention operates on non-
normalized attention outputs.

divergence minimization. The purpose of this step
is to enable the decoder to generate the same tar-
get sentence with source sentences in different lan-
guages. We denote this approach as KL-Softmax.

R(X,Y ) =

T−1∑
t=0

KL(P (Yt|X,Y1..t−1),

P (Yt|Y, Y1..t−1))

(6)

These three different strategies have the same
theoretical derivatives from semantically equiva-
lent encoder states, but allow different freedoms
for optimization.

5 Experiments

5.1 Experimental Setup
Our experiments use the standard IWSLT2017
benchmark in multilingual translation (Cettolo
et al., 2017), which established a standard-
ized multilingual corpora in different languages
{English, German, Dutch, Romanian and Italian}.
The data is around 60% true parallel, i.e. the same
sentences translated in multiple languages (Dabre
et al., 2017). With the target of zero-shot trans-
lation in mind, we designed two different setups
which challenge multilingual models but are also
industrially practical.

First, it is typical that English is the most
commonly spoken language in the language set,
leading the multilingual model to use English

as the bridge language participating in all lan-
guage pairs. Our first setup therefore consists of
English←→{German, Dutch, Italian, Romanian}
language pairs, with 8 language pairs in total hav-
ing supervision during training and the remaining
12 dedicated to the ZS setup.3

It is notable that zero-shot (or zero-resource,
if the method used generates artificial data to fill
the language gap) setups which have been car-
ried out in previous works were mostly concerned
language connection with only one bridge (En-
glish). However, more realistically, data between
local languages or dialects (such as Indian or Viet-
namese languages) may more abundant than En-
glish. The connectivity in this case demands more
than one language for bridging, which is simulated
in our second setup by setting a “Chain” of lan-
guages. This setup also contains 8 supervised lan-
guages and 12 for zero-shot. Figure 3 shows the
connections between languages in our setups.

The data is preprocessed using standard
MT procedures including tokenization and true-
casing4 and byte-pair encoding with 40K codes.
For model selection, the checkpoints performing
best on the validation data (dev2010 and tst2010
combined) are averaged, which is then used to
translate the tst2017 test set (including all 20 lan-

3This is different from the ZS setup of the IWSLT evalu-
ation campaign in which only 4 out of 20 directions were not
present during training.

4From the Moses toolkit: https://github.com/moses-
smt/mosesdecoder
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Figure 3: The STAR setup (left) with English as the
sole bridge language, and the CHAIN setup (right) with
3 different bridge languages and more than 2 steps for
zero-shot translation.

guage pairs).

5.2 Model Configuration

Our baseline model is the Transformer following
the Base configuration in (Vaswani et al., 2017).
Empirically, we increased the number of layers to
8 for both encoder and decoder, keeping the layer
sizes at 512 for embedding and 2048 for the in-
ner layers, and combined with word-dropout of
Pdrop = 0.1 (Gal and Ghahramani, 2016) to im-
prove the potency of the baseline for this task.
Layer dropout is also added according to the orig-
inal work with Pdrop = 0.2. The learning rate
follows the adaptive learning rate proposed with
the Transformer; we use the base learning rate 2
and the number of warm-up steps is 8192. The
Transformer is trained for around 60000 steps be-
fore overfitting.

For multilingual functionality, the model uses
language embeddings as a feature5 (Ha et al.,
2017). Our fixed-size models with pooling use 16
heads for the multi-head pooling models and 16
attention heads for the attention-pooling models.

5.3 Training Details

For all three variations of the decoder, the most
important factor is the coefficient α of the second
loss term (as in Equation 3 which decides the im-
portance of this term during the training process.
In the beginning of training, it is more important to
focus on the main translation tasks, while the reg-
ularization term has more effect when the model
is converging. To make training stable, repeat-
able, and reduce the necessity of hyperparameter
tuning, we always take the Transformer baseline
as the pretrained model and then continue training
with the 2nd loss term with constant α. Based on

5We tried the simpler method with the input token as in
(Johnson et al., 2016), but our model could not consistently
produce the correct output language in zero-shot tests, which
is in-line with (Ha et al., 2017)

initial experiments for MSE-Decoder and MSE-
Attention, we set α = 0.2 while it is set to 0.01
for KL-Softmax. As a result, all of our variations
have the same baseline as common ground. Fur-
ther, when models are trained from the baseline
checkpoint, we reset the learning rate and learning
rate on an adaptive schedule and continue training
for around 50000 steps6.

An important detail during training is that, it
is crucial to free the gradient-path in the decoder
from the 2nd loss term for all three variations. In
other words, the encoder only receives gradients
from regularization. While we saw little difference
for the development data with or without this con-
straint, we noticed that zero-shot translation per-
formance can worsen if gradients flow through the
decoder normally7.

Our model is implemented in PyTorch (Paszke
et al., 2017) and is publicly available 8.

5.4 Baseline and Fixed-size Source Language
Representation Results

First, as outlined in Section 3, our goals are to set
a competitive baseline and more importantly ver-
ify the behaviour of the encoder when the output
space is limited to a fixed size instead of variable
states. As shown in Table 1, while the two pooling
models suffered from information bottleneck and
lost 1− 2 BLEU for each language pair compared
to the base Transformer model, the Mean-Pooling
model is surprisingly better than the baseline at
zero-shot tests. The Attention-Pooling model
outperformed the Mean-Pooling at non-zero-shot
tests, yet is worse at zero-shot conditions. Com-
pared to other published works on this dataset
(which are trained on all 20 directions), our su-
pervised directions set the state-of-the-art for these
directions while the zero-shot results approach the
best supervised models in the literature (Dabre
et al., 2017; Platanios et al., 2018)). Furthermore,
by training these two models with a loss func-
tion including MSE-loss for encoder similarity, we
found noticeable gains on zero-shot performance.
More importantly, the zero-shot performance of
our Mean-Pooling model with MSE-encoder not
only outperforms the baseline, but also rivals the

6Prolonging training of the baseline is not beneficial be-
cause it will begin to overfit.

7This can be done in PyTorch by creating a second de-
coder with (frozen) separate parameters from the main model
decoder and then synchronizing them after each update.

8The implementation is available at
https://github.com/quanpn90/NMTGMinor/tree/DbMajor
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Transformer model competitively trained with all
language pairs in Dabre et al. (2017). This gain is
also noticed with the Attention-Pooling model.

These preliminary experiments shed light on
several findings. First, when limited in representa-
tion size, the multilingual NMT models can selec-
tively focus on features shared between languages;
this is our hypothesis for the improvement in zero-
shot translation from the baseline to the Mean-
Pooling model (on average +1.28 BLEU points).
Second, by applying the MSE-loss to both pooling
variations, they significantly improve in zero-shot
performance. This is, to the best of our knowl-
edge, the first empirical proof that a multilingual
model is able to learn a common representation
space.

5.5 Transformer with
Language-Independent Regularization

In Section 4 we showed three different strate-
gies to achieve a decoder that is source language-
independent, which theoretically may have the
same effect to minimize encoded representation
differences: directly equalizing the Softmax out-
puts, the decoder outputs, and the attention output
of each layer. It is important to note that no ar-
chitectural modification was necessary to include
these strategies, thus all of the advantages of the
Transformer model and the overall number of pa-
rameters are maintained.

5.5.1 Results for the STAR Configuration
The results are shown in table 2 for the STAR con-
figuration. Because MSE-attention is the closest
derivative to having the same encoder representa-
tion, we first investigate the effects of this vari-
ation. All zero-shot translation pairs receive no-
ticeable improvement, with the average of 1.71
BLEU points. The most significant gain belongs
to It-Nl pair, which achieves a 2.7 BLEU gain.
More importantly, unlike the pooling models, we
did not have a performance compromise for the
non-zero tests. Specifically, the results in the 8 su-
pervised language pairs are nearly identical to the
baseline (except for the En-Nl direction, which de-
creases by 0.8 points). On average, the benefit for
the zero-shot tests greatly outweighs any potential
compromise.

The MSE-Decoder allows more freedom during
optimization compared to the MSE-attention, as it
only requires the final state of the decoder which
looks at both encoded sentences to be the same.

In this case, we found significant improvement for
zero-shot translation with +2.21 BLEU points on
average. The previously most-improved language
pair, It-Nl, is further improved by 0.4 for a total of
3.1 BLEU. Moreover, we found that this addition
is also helpful for the pooling models, as reflected
in the final column of the Table 2, significantly in-
creasing the averaged BLEU scores from 17.22 to
19.81 points.

Finally, we found that regularizing on Softmax
level is extremely difficult to optimize, and the
resulting model deteriorates in performance for
both zero-shot and normal tests. We found that
the gradient norm is much bigger than the other
two cases, so possibly optimization can be done
with appropriate coefficients. However, this model
is the most computationally expensive among the
three investigated, due to the second Sofmax func-
tion required to be computed, making hyperpa-
rameter tuning expensive.

Even with the significant gain from regulariz-
ing the encoder representation, there is still a dis-
tance (0.4 BLEU point on average) between the
best zero-shot model and pivot translation. While
pivot translation can theoretically suffer from error
cascading, we argue that this is a very strong base-
line because the language-specific information,
which is possibly negated by finding a language-
independent encoder, can be transferred during the
pivot process. On the other hand, pivot transla-
tion is twice as slow because multiple translation
phases are required.

Our results also proved that our approach does
not induce bias toward any language pair, as evi-
denced by the fact that our improvements (or dete-
rioration) is nearly uniform across language pairs.

5.6 Results for the CHAIN configuration

In this particularly challenging setting where we
have multiple bridge languages and different zero-
shot distances, we experience different behavior
from both pivot techniques and our techniques.

For the closest language pairs (with 2-step dis-
tance), the pivot translation method yields bet-
ter results than both standard and our methods.
The exception is the Romanian-English direction,
in which case the pivot language is Italian being
closer to Romanian than English.

It is important to note that most works in the
literature used English as the common bridge lan-
guage; these results indicate that zero-shot per-
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Pair/Model Transformer Mean-Pooling + MSE Attn-Pooling + MSE Transformer
(ours) (Dabre et al., 2017)

en-de 27.51 23.74 25.51 26.04 26.2 23.25
de-en 30.73 27.53 28.44 28.68 29.34 26.45
en-ro 27.45 23.48 25.08 25.37 26.03 24.66
ro-en 33.65 30.25 30.95 32.1 32.02 29.58
en-it 31.84 27.71 29.11 30.14 30.08 30.79
it-en 35.84 32.50 33.75 34.16 34.23 34.73
en-nl 32.15 28.58 29.86 30.9 30.68 28.80
nl-en 34.81 31.00 32.1 32.81 33.02 30.49
de-nl 19.04 19.68 20.46 18.36 19.41 19.64
nl-de 20.46 19.89 21.10 19.48 20.44 20.27
it-ro 18.45 18.16 19.73 17.42 18.74 20.60
ro-it 19.84 19.70 20.96 18.73 19.92 21.89
de-it 16.59 16.40 17.53 15.23 16.59 17.54
it-de 17.55 16.91 18.89 16.89 18.36 19.10
nl-ro 16.89 16.63 17.85 15.77 16.94 17.65
ro-nl 18.12 18.65 19.79 17.41 18.8 20.24
nl-it 18.11 18.31 19.78 17.45 18.54 19.86
it-nl 18.71 19.31 21.08 18.31 19.91 22.32
de-ro 15.33 15.07 16.13 14.56 15.31 16.27
ro-de 17.92 17.19 19.02 17.04 18.16 17.94
Avg. 18.08 18.0 19.36 17.22 18.43
∆ -0.08 +1.28 -0.86 +0.35

Table 1: IWSLT 2017 STAR configuration: Baseline vs (Mean/Attention) Pooling. The top section shows 8
language pairs involved in training, while the bottom section shows the zero-shot results for 12 language pairs. We
also present results for this dataset from previous work for reference.

formance can be more favourable when language
similarity is taken into account.

When the distance increases, zero-shot trans-
lation with forced language-independence using
an additional loss clearly outperforms pivot-based
translation. We see improvements of more than
1 BLEU over pivoting for languages with several
bridge languages. In this case, both of our tech-
niques still bring improvements for every direction
compared to the baseline zero-shot, while poten-
tial disadvantages of pivoting, namely error prop-
agation, become clearer. It is important to note
that our regularization techniques scale to settings
with multiple bridges. We found the performance
enhancement to be most significant for the lan-
guage pairs which are furthest in the chain (4),
with +1.54 BLEU points difference compared to
the baseline. On the other hand, the Nl⇐⇒It lan-
guage pairs were most difficult to improve. This is
also the setting in which pivot suffered the heaviest
loss. To summarize, these multi-steps experiments
showed the drawbacks of pivot while at the same

time confirm the consistency of our approach.

6 Related Work

Zero-shot translation is of considerable concern
among the multilingual translation community.
By sharing network parameters across languages,
ZS was proven feasible for universal multilingual
MT (Ha et al., 2016; Johnson et al., 2016). There
are many variations of multilingual models geared
towards zero-shot translation. Lu et al. (2018) pro-
posed to explicitly define a recurrent layer with a
fixed number of states as “Interlingua” which re-
sembles our attention-pooling models. However,
they compromise the model compactness by hav-
ing separate encoder-decoder per language, which
linearly increases the model size across languages.
On the other hand, Platanios et al. (2018) shares
all parameters, but utilized a parameter generator
to generate specific parameters for the LSTMs in
each language pair using language embeddings.
The closest to our work is probably Arivazhagan
et al. (2019). The authors aimed to regularize
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Pair/Model Transformer +Pivot +MSE +MSE- +KL Mean- Attn-
-Attn dec -Sofmax Pooling Pooling

en-de 27.51 27.44 27.21 25.52 25.64 25.51
de-en 30.73 30.6 30.37 29.32 29.34 28.44
en-ro 27.45 27.32 27.1 25.40 25.84 25.08
ro-en 33.65 33.24 33.62 31.89 32.12 30.95
en-it 31.84 31.61 31.84 29.55 30.03 29.11
it-en 35.84 35.76 35.93 34.34 34.72 33.75
en-nl 32.15 31.85 31.38 29.78 30.46 29.86
nl-en 34.81 34.3 34.52 32.97 33.25 32.1
de-nl 19.04 21.59 20.93 21.47 19.44 20.95 20.46
nl-de 20.46 22.14 21.99 21.9 19.93 21.51 21.1
it-ro 18.45 20.68 20.25 20.56 18.01 20.23 19.73
ro-it 19.84 22.32 21.44 22.19 20.02 21.48 20.96
de-it 16.59 19.08 18.12 18.44 17.01 18.18 17.53
it-de 17.55 20.68 19.09 19.92 18.21 19.47 18.89
nl-ro 16.89 19.25 18.41 18.8 16.97 18.12 17.85
ro-nl 18.12 21.38 20.16 20.8 19.33 20.34 19.79
nl-it 18.11 21.7 20.04 20.91 18.93 20.15 19.78
it-nl 18.71 22.67 21.41 21.8 19.75 21.52 21.08
de-ro 15.33 17.69 16.77 17.12 15.47 16.56 16.13
ro-de 17.92 20.84 19.89 19.84 18.35 19.31 19.02
avg 18.08 20.83 19.88 20.31 18.45 19.36 19.81
∆ +2.64 +1.80 +2.23 +0.37 +1.28 +1.73

Table 2: IWSLT 2017 STAR configuration result. Here we showed the Mean Pooling model that is enhanced with
MSE-Encoder, and the Attn-Pooling model with MSE-Decoder.

Pair/Model Distance Transformer Pivot +MSE-Decoder +MSE-Attn
en-ro 2 21.88 24.38 24.04 23.3
ro-en 2 29.82 29.29 30.79 30.92
de-it 2 17.5 19.45 19.3 18.57
it-de 2 18.22 20.97 19.84 19.02
en-nl 2 25.98 27.07 28.22 27.38
nl-en 2 31.24 29.22 31.65 32.08
nl-it 3 20.51 19.12 20.94 20.64
it-nl 3 20.87 20.39 21.47 21.17
de-ro 3 16.55 16.61 17.06 16.71
ro-de 3 19.35 19.15 20.18 19.65
nl-ro 4 16.37 16.81 17.33 16.92
ro-nl 4 17.55 18.55 19.66 18.88
Avg. all 19.86 20.47 21.06 20.58
Avg. 2 24.10 25.06 25.64 25.21
Avg. 3 19.32 18.81 19.91 19.54
Avg. 4 16.96 17.68 18.50 17.90

Table 3: IWSLT 2017 CHAIN configuration results (12 zero-shot directions).

the model into a common encoding space by tak-
ing the mean-pooling of the encoder states and
minimize the cosine similarity between the source
and the target sentence encodings. In compari-

son, our approach is more generalized because the
decoder is also taken into account during regu-
larization, which is shown by our results on the
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IWSLT benchmark9. Also, we proposed stronger
representation-forcing since the cosine similarity
minimizes the angle between two representational
vectors, while the MSE forces them to be exactly
equal. In addition, zero-resource techniques which
generate artificial data for the missing directions
have been proposed as an alternative to zero-shot
translation (Chen et al., 2018; Al-Shedivat and
Parikh, 2019; Chen et al., 2017). The main disad-
vantage, however, is the requirement of computa-
tionally expensive sampling during training which
makes the algorithm less scalable to the number
of languages. In our work, we focus on minimally
affecting the training paradigm of universal multi-
lingual NMT.

7 Conclusion

This work provides a through investigation of
zero-shot translation in multilingual NMT. We
conduct an analysis of neural architectures for
zero-shot through two three different modifica-
tions showing that a beneficial shared repre-
sentation can be learned for zero-shot transla-
tion. Furthermore, we provide a regulariza-
tion scheme to encourage the model to cap-
ture language-independent features for the Trans-
former model which increases zero-shot perfor-
mance by 2.23 BLEU points, achieving the state-
of-the-art zero-shot performance in the standard
benchmark IWSLT2017 dataset. We also pro-
posed an alternative setting with more than one
language as a bridge. In this challenging setup for
zero-shot translation, we confirmed the consistent
effects of our method by showing that the bene-
fit is still significant when languages are far from
each other in the pivot path. This result also mo-
tivates future works to apply the same strategy for
other end-to-end tasks such as speech translation
where there may be more variability in domains
and modalities.
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