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Abstract

Despite their original goal to jointly learn to
align and translate, Neural Machine Transla-
tion (NMT) models, especially Transformer,
are often perceived as not learning inter-
pretable word alignments. In this paper, we
show that NMT models do learn interpretable
word alignments, which could only be re-
vealed with proper interpretation methods. We
propose a series of such methods that are
model-agnostic, are able to be applied either
offline or online, and do not require parame-
ter update or architectural change. We show
that under the force decoding setup, the align-
ments induced by our interpretation method
are of better quality than fast-align for some
systems, and when performing free decoding,
they agree well with the alignments induced by
automatic alignment tools.

1 Introduction

Neural Machine Translation (NMT) has made lots
of advancements since its inception. One of the
key innovations that led to the largest improve-
ments is the introduction of the attention mecha-
nism (Bahdanau et al., 2014; Luong et al., 2015),
which jointly learns word alignment and transla-
tion. Since then, the attention mechanism has
gradually become a general technique in various
NLP tasks, including summarization (Rush et al.,
2015; See et al., 2017), natural language infer-
ence (Parikh et al., 2016) and speech recognition
(Chorowski et al., 2015; Chan et al., 2016).

Although word alignment is no longer a integral
step like the case for Statistical Machine Transla-
tion (SMT) systems (Brown et al., 1993; Koehn
et al., 2003), there is a resurgence of interest in
the community to study word alignment for NMT
models. Even for NMT, word alignments are use-
ful for error analysis, inserting external vocabular-
ies, and providing guidance for human translators
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(c) word saliency (d) word saliency with SmoothGrad

Figure 1: Comparison of our saliency-based word
alignment interpretation of convolutional NMT model
with reference and attention interpretation.

in computer-aided translation. When aiming for
the most accurate alignments, the state-of-the-art
tools include GIZA++ (Brown et al., 1993; Och
and Ney, 2003) and fast-align (Dyer et al., 2013),
which are all external models invented in SMT era
and need to be run as a separate post-processing
step after the full sentence translation is complete.
As a direct result, they are not suitable for analyz-
ing the internal decision processes of the neural
machine translation models. Besides, these mod-
els are hard to apply in the online fashion, i.e. in
the middle of left-to-right translation process, such
as the scenario in certain constrained decoding al-
gorithms (Hasler et al., 2018) and in computer-
aided translation (Bouma and Parmentier, 2014;
Arcan et al., 2014).
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For these cases, the current common practice is
to simply generate word alignments from attention
weights between the encoder and decoder. How-
ever, there are problems with this practice. Koehn
and Knowles (2017) showed that attention-based
word alignment interpretation may be subject to
“off-by-one” errors. Zenkel et al. (2019); Tang
et al. (2018b); Raganato and Tiedemann (2018)
pointed out that the attention-induced alignment is
particularly noisy with Transformer models. Be-
cause of this, some studies, such as Nguyen and
Chiang (2018); Zenkel et al. (2019) proposed ei-
ther to add extra modules to generate higher qual-
ity word alignments, or to use these modules to
further improve the model performance or inter-
pretability.

This paper is a step towards interpreting word
alignments from NMT without relying on exter-
nal models. We argue that using only attention
weights is insufficient for generating clean word
alignment interpretations, which we demonstrate
both conceptually and empirically. We propose to
use the notion of saliency to obtain word align-
ment interpretation of NMT predictions. Dif-
ferent from previous alignment models, our pro-
posal is a pure interpretation method and does
not require any parameter update or architecture
change. Nevertheless, we are able to reduce Align-
ment Error Rate (AER) by 10-20 points over the
attention weight baseline under two evaluation set-
tings we adopt (see Figure 1 for an example), and
beat fast-align (Dyer et al., 2013) by as much as
8.7 points. Not only have we proposed a superior
model interpretation method, but our empirical re-
sults also uncover that, contrary to common be-
liefs, architectures such as convolutional sequence-
to-sequence models (Gehring et al., 2017) have al-
ready implicitly learned highly interpretable word
alignments, which sheds light on how future im-
provement should be made on these architectures.

2 Related Work

We start with work that combines word alignments
with NMT. Research in this area generally falls
into one of three themes: (1) employing the no-
tion of word alignments to interpret the prediction
of NMT; (2) making use of word alignments to im-
prove NMT performance; (3) making use of NMT
to improve word alignments. We mainly focus
on related work in the first theme as this is the
problem we are addressing in this work. Then we

briefly introduce work in the other themes that is
relevant to our study. We conclude by briefly sum-
marizing related work to our proposed interpreta-
tion method.

For the attention in RNN-based sequence-to-
sequence model, the first comprehensive analysis
is conducted by Ghader and Monz (2017). They
argued that the attention in such systems agree
with word alignment to a certain extent by show-
ing that the RNN-based system achieves compara-
ble alignment error rate comparable to that of bi-
directional GIZA++ with symmetrization. How-
ever, they also point out that they are not exactly
the same, as training the attention with alignments
would occasionally cause the model to forget im-
portant information. Lee et al. (2017) presented
a toolkit that facilitates study for the attention in
RNN-based models.

There is also a number of other studies that an-
alyze the attention in Transformer models. Tang
et al. (2018a,b) conducted targeted evaluation of
neural machine translation models in two different
evaluation tasks, namely subject-verb agreement
and word sense disambiguation. During the anal-
ysis, they noted that the pattern in Transformer
model (what they refer to as advanced attention
mechanism) is very different from that of the at-
tention in RNN-based architecture, in that a lot of
the probability mass is focused on the last input to-
ken. They did not dive deeper in this phenomenon
in their analysis. Raganato and Tiedemann (2018)
performed a brief but more refined analysis on
each attention head and each layer, where they no-
ticed several different patterns inside the modules,
and concluded that Transformer tends to focus on
local dependencies in lower layers but finds long
dependencies on higher ones.

Beyond interpretation, in order to improve the
translation of rare words, Nguyen and Chiang
(2018) introduced LexNet, a feed-forward neu-
ral network that directly predicts the target word
from a weighted sum of the source embeddings,
on top of an RNN-based Seq2Seq models. Their
goal was to improve translation output and hence
they did not empirically show AER improvements
on manually-aligned corpora. There are also a
few other studies that inject alignment supervi-
sion during NMT training (Mi et al., 2016; Liu
et al., 2016). In terms of improvements in word
alignment quality, Legrand et al. (2016); Wang
et al. (2018); Alkhouli et al. (2018) proposed neu-
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ral word alignment modules decoupled from NMT
systems, while Zenkel et al. (2019) introduced a
separate module to extract alignment from NMT
decoder states, with which they achieved compara-
ble AER with fast-align with Transformer models.

The saliency method we propose in this work
draws its inspiration from visual saliency proposed
by Simonyan et al. (2013); Springenberg et al.
(2014); Smilkov et al. (2017). It should be noted
that these methods were mostly applied to com-
puter vision tasks. To the best of our knowledge,
Li et al. (2016) presented the only work that di-
rectly employs saliency methods to interpret NLP
models. Most similar to our work in spirit, Ding
et al. (2017) used Layer-wise Relevance Propa-
gation (LRP; Bach et al. 2015), an interpretation
method resembling saliency, to interpret the in-
ternal working mechanisms of RNN-based neural
machine translation systems. Although conceptu-
ally LRP is also a good fit for word alignment inter-
pretation, we have some concerns with the mathe-
matical soundness of LRP when applied to atten-
tion models. Our proposed method is also consid-
erably more flexible and easier to implement than
LRP.

3 The Interpretation Problem

Formally, by interpreting model prediction, we
are referring to the following problem: given
a trained MT model and input tokens S =
{s0, s1, . . . , sI−1}, at a certain time step j when
the models predicts tj , we want to know which
source word in S “contributed” most to this pre-
diction. Note that the prediction tj might not be
argmaxtj p(tj | t1:j−1), as the locally optimal
option may be pruned during beam search and not
end up in the final translation.

Under this framework, we can see an impor-
tant conceptual problem regarding interpreting at-
tention weights as word alignment. Suppose for
the same source sentence, there are two alternative
translations that diverge at target time step j, gen-
erating tj and t′j which respectively correspond to
different source words. Presumably, the source
word that is aligned to tj and t′j should changed
correspondingly. However, this is not possible
with the attention weight interpretation, because
the attention weight is computed before prediction
of tj or t′j . With that, we argue that an ideal inter-
pretation algorithm should be able to adapt the in-
terpretation with the specified output label, regard-

less of whether it is the most likely label predicted
by the model.

As a final note, the term “attention weights”
here refers to the weights of the attention between
encoder and decoder (the “encoder-decoder atten-
tion” in Vaswani et al. (2017)). Specifically, they
do not refer to the weight of self-attention mod-
ules that only exist in the Transformer architec-
ture, which do not establish alignment between the
source and target words.

4 Method

Our proposal is based on the notion of visual
saliency (Simonyan et al., 2013) in computer vi-
sion. In brief, the saliency of an input feature is
defined by the partial gradient of the output score
with regard to the input. We propose to extend this
idea to NMT by drawing analogy between input
pixels and the embedding look-up operation.

4.1 Visual Saliency
Suppose we have an image classification example
(x0, y0), with y0 being a specific image class and
x0 being an |X |-dimensional vector. Each entry
of x0 is an input feature (i.e., a pixel) to the clas-
sifier. Given the input x0, a trained classifier can
generate a prediction score for class y0, denoted
as p(y0 | x0). Consider the first-order Taylor ex-
pansion of a perturbed version of this score at the
neighborhood of input x0:

p(y0 | x) ≈ p(y0 | x0) +
∂p(y0 | x)

∂x

∣∣∣∣
x0

· (x− x0)

(1)

This is essentially re-formulating the perturbed
prediction score p(y0 | x) as an affine approxi-
mation of the input features, while the “contribu-
tion” of each feature to the final prediction being
the partial derivative of the prediction score with
regard to the feature. Assuming a feature that is
deemed as salient for the local perturbation of the
prediction score would also be globally salient, the
saliency of an input feature is defined as follows:

Definition 1 Denoted as Ψ(x, y), the saliency of
feature vector x with regard to output class y is

defined as
∂p(y | x)

∂x
.

Note that Ψ(x, y) is also a vector, with each en-
try corresponding to the saliency of a single input
feature in x. Such formulation has following nice
properties:
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• The saliency of an input feature is related to the
choice of output class y, as model scores of dif-
ferent output classes correspond to a different
set of parameters, and hence resulting in differ-
ent partial gradients for the input features. This
makes up for the aforementioned deficiency of
attention weights in addressing the interpreta-
tion problem.

• The partial gradient could be computed by
back-propagation, which is efficiently imple-
mented in most deep learning frameworks.

• The formulation is agnostic to the model that
generates p(y | x), so it could be applied to
any deep learning architecture.

4.2 Word Saliency

In computer vision, the input feature is a 3D Ten-
sor corresponding to the level in each channel. The
key question to apply such method to NMT is what
constitutes the input feature to a NMT system. Li
et al. (2016) proposed to use the embedding of
of the input words as the input feature to formu-
late saliency score, which results in the saliency
of an input word being a vector of the same di-
mension as embedding vectors. To obtain a scalar
saliency value, they computed the mean of the ab-
solute value of the embedding gradients. We argue
that there is a more mathematically principled way
to approach this.

To start, we treat the word embedding look-up
operation as a dot product between the embedding
weight matrix W and an one-hot vector z. The
size of z is the same as the source vocabulary size.
Similarly, the input sentence could be formulated
as a matrix Z with only 0 and 1 entries. Notice
that z has certain resemblance to the pixels of an
image, with each cell representing the pixel-wise
activation level of the words in the vocabulary. For
the output word tj at time step j, we can similarly
define the saliency of the one-hot vector z as:

Ψ(z, tj) =
∂p(tj | Z)

∂z
(2)

where p(tj | Z) is the probability of word tj gener-
ated by the NMT model given source sentence Z.
Ψ(z, tj) is a vector of the same size as z.

However, note that there is a key difference be-
tween z and pixels. If the pixel level is 0, it means
that the pixel is black, while a 0-entry in z means
that the input word is not the word denoted by
the corresponding cell. While the black region of

an input image may still carry important informa-
tion, we are not interested in the saliency of the
0-entries in z.1 Hence, we only take the 1-entries
of matrix Z as the input to the NMT model. For a
source word si in the source sentence, this means
we only care about the saliency of the 1-entries,
i.e., the entry corresponding to source word si:

ψ(si, tj) =

[
∂p(tj | Z)

∂z

]
si

=

[
∂p(tj | Z)
∂Wsi

· ∂Wsi

∂z

]
si

=

[
∂p(tj | Z)
∂Wsi

·W
]
si

=
∂p(tj | Z)
∂Wsi

·Wsi (3)

where [·]i denotes the i-th row of a matrix or the i-
th element of a vector. In other words, the saliency
ψ(si, tj) is a weighted sum of the word embed-
ding of input word si, with the partial gradient of
each cell as the weight. By comparison, the word
saliency2 in Li et al. (2016) is defined as:

ψ′(si, tj) = mean
(∣∣∣∣∂p(tj | Z)∂Wsi

∣∣∣∣) (4)

There are two implementation details that we
would like to call for the reader’s attention:

• When the same word occurs multiple times in
the source sentence, multiple copies of embed-
ding for such word need to be made to ensure
that the gradients flowing to different instances
of the same word are not merged;

• Note that ψ(si, tj) is not a probability distribu-
tion, which does not affect word alignment re-
sults because we are taking argmax. For visu-
alizations presented herein, we normalized the
distribution by p(si | tj) ∝ max(0, ψ(si, tj)).
One may also use softmax function for appli-
cations that need more well-formed probability
distribution.

1Although we introduce z to facilitate presentation, note
that word embedding look-up is never implemented as a ma-
trix multiplication. Instead, it is implemented as a table look-
up, so for each input word, only one row of the word em-
bedding is fed into the subsequent computation. As a con-
sequence, during training, since the other rows are not part
of the computation graph, only parameters in the rows cor-
responding to the 1-entries will be updated. This is another
reason why we choose to discard the saliency of 0-entries.

2Li et al. (2016) mostly focused on studying saliency on
the level of word embedding dimensions. This word-level
formulation is proposed as part of the analysis in Section 5.2
and Section 6 of that work.
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4.3 SmoothGrad
There are two scenarios where the naïve gradient-
based saliency may make mistakes:

• For highly non-linear models, the saliency ob-
tained from local perturbation may not be a
good representation of the global saliency.

• If the model fits the distribution nearly per-
fectly, some data points or input features may
become saturated, i.e. having a partial gradient
of 0. This does not necessarily mean they are
not salient with regard to the prediction.

We alleviate these problems with SmoothGrad,
a method proposed by Smilkov et al. (2017). The
idea is to augment the input to the network into n
samples by adding random noise generated by nor-
mal distribution N (0, σ2). The saliency scores of
each augmented sample are then averaged to can-
cel out the noise in the gradients.

We made one small modification to this method
in our experiments: rather than adding noise to the
word inputs that are represented as one-hot vec-
tors, we instead add noise to the queried embed-
ding vectors. This allows us to introduce more
randomness for each word input.

5 Experiments

5.1 Evaluation Method
The best evaluation method would compare pre-
dicted word alignments against manually labeled
word alignments between source sentences and
NMT output sentences, but this is too costly for
our study. Instead, we conduct two automatic eval-
uations for our proposed method using resources
available:

• force decoding: take a human-annotated cor-
pus, run NMT models to force-generate the
target side of the corpus and measure AER
against the human alignment;

• free decoding: take the NMT prediction, ob-
tain reasonably clean reference alignments be-
tween the prediction and the source and mea-
sure AER against this reference.3

Notice that both automatic evaluation methods
have their respective limitation: the force decod-
ing method may force the model to predict some-
thing it deems unlikely, and thus generating noisy

3Our reference alignment construction process is as fol-
lows: we first run automatic alignment on both sides, and
take the intersection of the two outputs as “sure” alignments
and the rest as “possible” alignments.

alignment; whereas the free decoding method
lacks authentic references.

5.2 Setup

We follow Zenkel et al. (2019) in data setup
and use the accompanied scripts of that paper4

for preprocessing. Their training data consists
of 1.9M, 1.1M and 0.4M sentence pairs for
German-English (de-en), English-French (en-fr)
and Romanian-English (ro-en) language pairs, re-
spectively, whereas the manually-aligned test data
contains 508, 447 and 248 sentence pairs for each
language pair. There is no development data pro-
vided in their setup, and it is not clear what they
used for NMT system training, so we set aside the
last 1,000 sentences of the training data for each
language as the development set.

For our NMT systems, we use fairseq5 to
train attention-based RNN systems (LSTM) (Bah-
danau et al., 2014), convolution systems (FConv)
(Gehring et al., 2017), and Transformer systems
(Transformer) (Vaswani et al., 2017). We use
the pre-configured model architectures for IWSLT
German-English experiments6 to build all NMT
systems. Our experiments cover the following in-
terpretation methods:

• Attention: directly take the attention weights as
soft alignment scores. For transformer, we fol-
low the implementation in fairseq and used the
attention weights from the final layer averaged
across all heads;

• Smoothed Attention: obtain multiple version of
attention weights with the same data augmen-
tation procedure as SmoothGrad and average
them. This is to prove that smoothing itself
does not improve the interpretation quality, and
has to be used together with effective interpre-
tation method;

• (Li et al., 2016): applied with normal back-
propagation (Grad) and SmoothGrad;

• Ours: applied with normal back-propagation
(Grad) and SmoothGrad.

For all the methods above, we follow the same pro-
cedure in (Zenkel et al., 2019) to convert soft align-
ment scores to hard alignment.

4https://github.com/lilt/alignment-scripts
5https://github.com/pytorch/fairseq
6The exact model options we used are respec-

tively fconv_iwslt_de_en, lstm_wiseman
_iwslt_de_en, transformer_iwslt_de_en.
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de<>en fr<>en ro<>en
de-en en-de bidir en-fr fr-en bidir ro-en en-ro bidir

FConv
Attention 38.5 40.1 37.5 23.8 27.4 22.0 40.9 38.6 39.1
Smoothed Attention 40.2 43.9 41.2 24.1 27.4 22.5 41.5 39.6 40.4
(Li et al., 2016) Grad 39.0 39.6 35.3 26.8 29.2 21.1 41.9 42.1 38.6
(Li et al., 2016) SmoothGrad 40.7 44.5 39.3 27.3 28.1 21.6 43.5 43.5 40.0
Ours Grad 33.1 40.5 26.8 25.2 22.7 11.9 37.1 39.4 29.8
Ours SmoothGrad 27.3 33.0 22.3 21.2 18.1 8.5 32.4 34.2 27.2
LSTM
Attention 42.8 47.5 36.9 33.7 38.0 25.8 47.1 47.0 40.9
Smoothed Attention 47.3 50.7 40.0 35.4 40.2 27.5 50.7 50.2 43.5
(Li et al., 2016) Grad 41.0 43.9 33.5 32.9 37.1 23.5 44.5 44.9 37.5
(Li et al., 2016) SmoothGrad 39.4 43.1 31.5 32.2 36.2 22.0 45.7 46.8 37.7
Ours Grad 47.5 50.2 38.6 41.1 41.6 30.4 54.2 55.8 42.8
Ours SmoothGrad 31.4 36.8 23.7 27.2 25.0 13.8 40.4 39.9 32.0
Transformer
Attention 53.4 58.6 42.3 48.1 48.7 33.8 51.6 51.1 43.3
Smoothed Attention 55.8 56.1 48.6 42.5 47.5 32.9 57.5 57.6 51.5
(Li et al., 2016) Grad 51.1 56.2 43.7 43.6 47.9 39.9 46.7 48.4 35.5
(Li et al., 2016) SmoothGrad 36.4 45.8 30.3 27.0 25.5 15.6 41.3 39.9 33.7
Ours Grad 77.7 78.2 77.4 69.1 72.5 74.5 74.6 75.2 71.0
Ours SmoothGrad *36.4 43.0 *29.0 29.7 25.9 15.3 41.2 41.4 32.7

fast-align Offline 28.4 32.0 27.0 16.4 15.9 10.5 33.8 35.5 32.1
fast-align Online 30.8 34.4 30.0 18.8 16.8 13.6 37.1 41.1 35.9
(Zenkel et al., 2019) 26.6 30.4 21.2 23.8 20.5 10.0 32.3 34.8 27.6
GIZA++ 21.0 23.1 21.4 8.0 9.8 5.9 28.7 32.2 27.9

Table 1: Alignment Error Rate (AER) with different saliency methods, under force decoding setting. GIZA++
and fast-align Offline results are quoted from Zenkel et al. (2019), whereas fast-align Online stands for our online
alignment result (c.f. Section 5.2). bidir refers to the symmetrized alignment results. Best results for each architec-
ture are marked with underlines, and best interpretation/alignment results are respectively marked with boldface.
Numbers affected by hyper-parameter tuning are marked with *.

For force decoding experiments, we gener-
ate symmetrized alignment results with grow-
diag-final. We also include AER results7 of
fast-align (Dyer et al., 2013), GIZA++8 and the
best model (Add+SGD) from Zenkel et al. (2019)
on the same dataset for comparison. However,
the readers should be aware that there are certain
caveats in this comparison:

• All of these models are specifically designed
and optimized to generate high-quality align-
ments, while our method is an interpretation
method and is not making any architecture
modifications or parameter updates;

• fast-align and GIZA++ usually need to update
model with full sentence to generate optimal
alignments, while our system and Zenkel et al.
(2019) can do so on-the-fly.

7We reproduced the fast-align results as a sanity check
and we were able to perfectly replicate their numbers with
their released scripts.

8https://github.com/moses-smt/giza-pp

Realizing the second caveat, we also run fast-
align under the online alignment scenario, where
we first train a fast-align model and decode on the
test set. This is a real-world scenario in applica-
tions such as computer-aided translation (Bouma
and Parmentier, 2014; Arcan et al., 2014), where
we cannot practically update alignment models on-
the-fly. On the other hand, we believe this is a
slightly better comparison for methods with online
alignment capabilities such as Zenkel et al. (2019)
and this work.

The data used in Zenkel et al. (2019) did not
provide a manually-aligned development set, so
we tune the SmoothGrad hyperparameters (noise
standard deviation σ and sample size n) on a 30-
sentence subset of the German-English test data
with the Transformer model. We ended up using
the recommended σ = 0.15 in the original paper
and a slightly smaller sample size n = 30 for
speed. This hyperparameter setting is applied to
the other SmoothGrad experiments as-is. For com-
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parison with previous work, we do not exclude
these sentences from the reported results, we in-
stead mark the numbers affected to raise caution.

5.3 Force Decoding Results

Table 1 shows the AER results under the force de-
coding setting. First, note that after applying our
saliency method with normal back-propagation,
AER is only reduced for FConv model but instead
increases for LSTM and Transformer. The largest
increase is observed for Transformer, where the
AER increases by about 20 points on average.
However, after applying SmoothGrad on top of
that, we observe a sharp drop in AER, which
ends up with 10-20 points lower than the atten-
tion weight baseline. We can also see that this is
not just an effect introduced by input noise, as the
same smoothing procedure for attention increases
the AER most of the times. To summarize, at
least under force decoding settings, our saliency
method with SmoothGrad obtains word alignment
interpretations of much higher quality than the at-
tention weight baseline.

As for Li et al. (2016), for FConv and LSTM ar-
chitectures, it is not only consistently worse than
our method, but at times also worse than atten-
tion. Besides, the effect of SmoothGrad is also
not as consistent on their saliency formulation as
ours. Although with the Transformer model, the
Li et al. (2016) method obtained better AER than
our method under several settings, it is still pretty
clear overall that the superior mathematical sound-
ness of our method is translated into better inter-
pretation quality.

While the GIZA++ model obtains the best align-
ment result in Table 19, most of our word align-
ment interpretation of FConv model with Smooth-
Grad surpasses the alignment quality of fast-align
(either Online or Offline), sometimes by as much
as 8.7 points (symmetrized ro<>en result). Our
best models are also largely on-par with (Zenkel
et al., 2019). These are notable results as our
method is an interpretation method and no ex-
tra parameter is updated to optimize the quality
of alignment. On the other hand, this also in-
dicates that it is possible to induce high-quality

9While Ghader and Monz (2017) showed that the AER
obtained by LSTM model is close to that of GIZA++, our
experiments yield a much larger difference. We think this
is largely due to the fact that we choose to train our model
with BPE, while Ghader and Monz (2017) explicitly avoided
doing so.

alignments from NMT model without modifying
its parameters, showing that it has acquired such
information in an implicit way. Most interest-
ingly, although NMT is often deemed as perform-
ing poorly under low-resource setting, our inter-
pretation seems to work relatively well on ro<>en
language pair, which happens to be the language
pair that we have least training data for. We think
this is a phenomenon that merits further explo-
ration.

Besides, it can be seen that for all reported meth-
ods, the overall order for the number of alignment
errors is FConv < LSTM < Transformer. To our
best knowledge, this is also a novel insight, as no
one has analyzed attention weights of FConv with
other architectures before. We can also observe
that while our method is not strong enough to fully
bridge the gap of the attention noise level between
different model architecture, it does manage to nar-
row the difference in some cases.

5.4 Free Decoding Results

Table 2 shows the result under free decoding set-
ting. The trend in this group of experiment is sim-
ilar to Table 1, except that Transformer occasion-
ally outperforms LSTM. We think this is mainly
due to the fact that Transformer generates higher
quality translations, but could also be partially at-
tributed to the noise in fast-align reference. Also,
notice that the AER numbers are also generally
lower compared to Table 1 under this setting. One
reason is that our model is aligning output with
which it is most confident, so less noise should be
expected in the model behavior. On the other hand,
by qualitatively comparing the reference transla-
tion in the test set and the NMT output, we find
that it is generally easier to align the translation as
it is often a more literal translation.

6 Analysis

6.1 Comparison with Li et al. (2016)

The main reason why the word saliency formula-
tion in Li et al. (2016) does not work as well for
word alignment is the lack of polarity in the for-
mulation. In other words, it only quantifies how
much the input influences the output, but does not
specify in what way does the input influence. This
is sufficient for error analysis, but does not suit the
purpose of word alignment, as humans will only
align a target word to the input words that consti-
tute a translation pair, i.e. have positive influence.
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de-en en-de en-fr fr-en ro-en en-ro

FConv
Attention 27.4 24.2 20.7 23.6 32.5 25.6
Smoothed Attention 29.4 29.0 21.1 23.6 33.7 26.7
(Li et al., 2016) Grad 29.3 23.5 25.0 23.7 33.9 27.9
(Li et al., 2016) SmoothGrad 31.2 30.4 24.1 24.0 35.6 30.1
Ours Grad 18.2 20.0 20.2 14.3 24.9 22.8
Ours SmoothGrad 13.7 14.2 17.0 10.6 21.4 17.4
LSTM
Attention 33.6 34.6 32.5 32.3 36.5 31.7
Smoothed Attention 38.2 39.5 34.3 35.2 41.2 36.3
(Li et al., 2016) Grad 34.1 32.5 33.6 33.7 36.6 32.1
(Li et al., 2016) SmoothGrad 30.8 29.4 31.8 32.1 38.9 34.8
Ours Grad 35.9 36.7 40.2 36.3 44.1 43.1
Ours SmoothGrad 20.5 21.9 26.0 19.1 32.6 27.5
Transformer
Attention 50.2 53.0 50.4 48.5 44.9 41.9
Smoothed Attention 51.4 49.0 44.5 47.3 49.9 48.9
(Li et al., 2016) Grad 49.9 51.2 49.4 51.5 42.9 40.8
(Li et al., 2016) SmoothGrad 27.8 35.3 28.3 22.3 30.5 26.5
Ours Grad 76.7 76.6 77.1 78.9 71.9 74.0
Ours SmoothGrad *26.6 31.0 30.0 21.4 30.0 28.2

Table 2: Alignment Error Rate (AER) with different saliency models, under free decoding setting. See the caption
of Table 1 for notations.
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(a) Li et al. (b) Ours

Figure 2: Saliency interpretation of FConv de-en model
with the method in Li et al. (2016) and this paper.
SmoothGrad (σ = 0.15, n = 30) is applied for both
interpretations.

Figure 2 shows a case where this problem oc-
curs in our German-English experiments. Note
that in Subfigure (a), the source word nur has
high saliency on several target words, e.g. should,
but the word nur is actually not translated in
the reference. On the other hand, as shown in
Subfigure (b), our method correctly assigns neg-
ative (shown as white) or small positive values at
all time steps for this source word. Specifically,
the saliency value of nur for should is negative
with large magnitude, indicating significant nega-
tive contributions to the prediction of that target
word. Hence, a good word alignment interpreta-

tion should strongly avoid aligning them.

6.2 SmoothGrad
Tables 1 and 2 show that SmoothGrad is a cru-
cial factor to reduce AER, especially for Trans-
former. Figure 3 shows the interpretation of the
same German-English sentence pair by our pro-
posed method, but with Transformer and differ-
ent SmoothGrad noise levels. Specifically, Sub-
figures (a) and (c) corresponds to our Grad and
SmoothGrad experiments in Table 1. By compar-
ing Subfigures (a) and (c), we notice that (1) with-
out SmoothGrad, the word saliency obtained from
the Transformer model is extremely noisy, and (2)
the output of SmoothGrad is not only a smoother
version of the naïve gradient output, but also gains
new information by performing extra forward and
backward evaluations with the noisy input. For
example, compare the alignment point between
source word wir and target word we: in Subfig-
ure (a), this word pair has very low saliency, but
in (c), they become the most likely alignment pair
for that target word.

Referring back to our motivation for using
SmoothGrad in Section 4.3, we think the observa-
tions above verify that the Transformer model is a
case where very high non-linearities occur almost
everywhere in the parameter space, such that the
saliency obtained from local perturbation is a very
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(a) σ = 0 (b) σ = 0.05 (c) σ = 0.15 (d) σ = 0.3

Figure 3: Saliency interpretation of Transformer de-en model with different SmoothGrad noise values σ (n = 30).

att σ = 0 σ = 0.05 σ = 0.15 σ = 0.3

FConv
force 2.09 1.36 1.48 1.89 2.59
free 2.00 1.34 1.43 1.79 2.54

LSTM
force 1.75 1.63 2.02 2.54 2.89
free 1.65 1.57 1.91 2.46 2.88

Transformer
force 1.73 1.91 2.63 2.76 2.85
free 1.69 1.89 2.62 2.74 2.84

Table 3: Alignment distribution entropy for selected de-
en models. att stands for attention in Table 1.

poor representation of the global saliency almost
all the time. On the other hand, this is also why
the Transformer especially relies on SmoothGrad
to work well, as the perturbation will give a better
estimation of the global saliency.

It could also be observed from Subfigures (b)
and (d) that when the noise is too moderate, the
evaluation does not deviate enough from the orig-
inal spot to gain non-local information, and at (d)
it deviates too much and hence the resulting align-
ment is almost random. Intuitively, the noise pa-
rameter σ should be sensitive to the model archi-
tecture or even specific input feature values, but
interestingly we end up finding that a single choice
from the computer vision literature works well
with all of our systems. We encourage future work
to conduct more comprehensive analysis of the ef-
fect of SmoothGrad on more complicated architec-
tures beyond convolutional neural nets.

6.3 Alignment Dispersion
We run German-English alignments under several
different SmoothGrad noise deviation σ and re-
port their dispersion as measured by entropy of the
(soft) alignment distribution averaged by number
of target words. Results are summarized in Ta-

ble 3, where lower entropy indicates more peaky
alignments. First, we observe that dispersion of
word saliency gets higher as we increase σ, which
aligns with the observations in Figure 3. It should
also be noted that the alignment dispersion is con-
sistently lower for free decoding than force decod-
ing. This verifies our conjecture that the force de-
coding setting might introduce more noise in the
model behavior, but judging from this result, that
gap seems to be minimal. Comparing different
architectures, the dispersion of attention weights
does not correlate well with the dispersion of word
saliency. We also notice that, while the Trans-
former attention interpretation consistently results
in higher AER, its dispersion is lower than the
other architectures, indicating that with attention,
a lot of the probability mass might be concentrated
in the wrong place more often. This corroborates
the finding in Raganato and Tiedemann (2018).

7 Discussion And Future Work

There are several extensions to this work that we
would like to discuss in this section. First, in
this paper we only explored two saliency meth-
ods among many others available (Montavon et al.,
2018). In our preliminary study, we also ex-
perimented with guided back-propagation (Sprin-
genberg et al., 2014), a frequently used saliency
method in computer vision, which did not work
well for our problem. We suspect that there is a
gap between applying these methods on mostly-
convolutional architectures in computer vision and
architectures with more non-linearities in NLP. We
hope the future research from the NLP and ma-
chine learning communities could bridge this gap.

Secondly, the alignment errors in our method
comes from three different sources: the limitation
of NMT models on learning word alignments, the
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limitation of interpretation method on recovering
interpretable word alignments, and the ambigu-
ity in word alignments itself. Although we have
shown that high quality alignment could be recov-
ered from NMT systems (thus pushing our under-
standing on the limitation of NMT models), we
are not yet able to separate these sources of errors
in this work. While exploration on this direction
will help us better understand both NMT models
and the capability of saliency methods in NLP, re-
searchers may want to avoid using word alignment
as a benchmark for saliency methods because of its
ambiguity. For such purpose, simpler tasks with
clear ground truth, such as subject-verb agreement,
might be a better choice.

Finally, as mentioned before, we are only con-
ducting approximate evaluation to measure the
ability of our interpretation method. An imme-
diate future work would be evaluating this on
human-annotated translation outputs generated by
the NMT system.

8 Conclusion

We propose to use word saliency and SmoothGrad
to interpret word alignments from NMT predic-
tions. Our proposal is model-agnostic, is able to
be applied either offline or online, and does not
require any parameter updates or architectural
change. Both force decoding and free decoding
evaluations show that our method is capable of
generating word alignment interpretations of
much higher quality compared to its attention-
based counterpart. Our empirical results also
probe into the NMT black-box and reveal that
even without any special architecture or training
algorithm, some NMT models have already
implicitly learned interpretable word alignments
of comparable quality to fast-align. The model
and code for our experiments are available at
https://github.com/shuoyangd/meerkat.
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