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Introduction

The Fourth Conference on Machine Translation (WMT 2019) took place on Thursday, August 1 and
Friday, August 2, 2019 in Florence, Italy, immediately following the 57th Annual Meeting of the
Association for Computational Linguistics (ACL 2019).

This is the fourth time WMT has been held as a conference. The first time WMT was held as a conference
was at ACL 2016 in Berlin, Germany, the second time at EMNLP 2017 in Copenhagen, Denmark, and the
third time at EMNLP 2028 in Brussels, Belgium. Prior to being a conference, WMT was held 10 times
as a workshop. WMT was held for the first time at HLT-NAACL 2006 in New York City, USA. In the
following years the Workshop on Statistical Machine Translation was held at ACL 2007 in Prague, Czech
Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens, Greece, ACL 2010 in Uppsala,
Sweden, EMNLP 2011 in Edinburgh, Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia,
Bulgaria, ACL 2014 in Baltimore, USA, and EMNLP 2015 in Lisbon, Portugal.

The focus of our conference is to bring together researchers from the area of machine translation and
invite selected research papers to be presented at the conference.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 8 shared tasks. This consisted of four translation tasks: Machine Translation of News,
Biomedical Translation, Robust Machine Translation, and Similar Language Translation, two evaluation
tasks: Metrics and Quality Estimation, as well as the Automatic Post-Editing and Parallel Corpus
Filtering tasks.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. WMT 2019 has received 48 full research paper submissions (not counting withdrawn
submissions). In total, WMT 2019 featured 12 full research paper oral presentations and 102 shared task
poster presentations.

The invited talk was given by Marine Carpuat from the University of Maryland, College Park, USA. It
was titled “Semantic, Style & Other Data Divergences in Neural Machine Translation".

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Christof Monz, Matteo Negri,
Aurélie Névéol, Mariana Neves, Matt Post, Marco Turchi, and Karin Verspoor
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CUNI Systems for the Unsupervised News Translation Task in WMT 2019
Ivana Kvapilíková, Dominik Macháček and Ondřej Bojar

A Comparison on Fine-grained Pre-trained Embeddings for the WMT19Chinese-
English News Translation Task
Zhenhao Li and Lucia Specia

The NiuTrans Machine Translation Systems for WMT19
Bei Li, Yinqiao Li, Chen Xu, Ye Lin, Jiqiang Liu, Hui Liu, Ziyang Wang, Yuhao
Zhang, Nuo Xu, Zeyang Wang, Kai Feng, Hexuan Chen, Tengbo Liu, Yanyang Li,
Qiang Wang, Tong Xiao and Jingbo Zhu

Multi-Source Transformer for Kazakh-Russian-English Neural Machine Transla-
tion
Patrick Littell, Chi-kiu Lo, Samuel Larkin and Darlene Stewart

Incorporating Word and Subword Units in Unsupervised Machine Translation Us-
ing Language Model Rescoring
Zihan Liu, Yan Xu, Genta Indra Winata and Pascale Fung

JUMT at WMT2019 News Translation Task: A Hybrid Approach to Machine Trans-
lation for Lithuanian to English
Sainik Kumar Mahata, Avishek Garain, Adityar Rayala, Dipankar Das and Sivaji
Bandyopadhyay

Johns Hopkins University Submission for WMT News Translation Task
Kelly Marchisio, Yash Kumar Lal and Philipp Koehn

NICT’s Unsupervised Neural and Statistical Machine Translation Systems for the
WMT19 News Translation Task
Benjamin Marie, Haipeng Sun, Rui Wang, Kehai Chen, Atsushi Fujita, Masao
Utiyama and Eiichiro Sumita

xiii



Thursday, August 1, 2019 (continued)

PROMT Systems for WMT 2019 Shared Translation Task
Alexander Molchanov

JU-Saarland Submission to the WMT2019 English–Gujarati Translation Shared
Task
Riktim Mondal, Shankha Raj Nayek, Aditya Chowdhury, Santanu Pal, Sudip Kumar
Naskar and Josef van Genabith

Facebook FAIR’s WMT19 News Translation Task Submission
Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli and Sergey Edunov

eTranslation’s Submissions to the WMT 2019 News Translation Task
Csaba Oravecz, Katina Bontcheva, Adrien Lardilleux, László Tihanyi and Andreas
Eisele

Tilde’s Machine Translation Systems for WMT 2019
Marcis Pinnis, Rihards Krišlauks and Matiss Rikters

Apertium-fin-eng–Rule-based Shallow Machine Translation for WMT 2019 Shared
Task
Tommi Pirinen

English-Czech Systems in WMT19: Document-Level Transformer
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xv



Thursday, August 1, 2019 (continued)

The MuCoW Test Suite at WMT 2019: Automatically Harvested Multilingual Con-
trastive Word Sense Disambiguation Test Sets for Machine Translation
Alessandro Raganato, Yves Scherrer and Jörg Tiedemann

SAO WMT19 Test Suite: Machine Translation of Audit Reports
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Abstract

Despite their original goal to jointly learn to
align and translate, Neural Machine Transla-
tion (NMT) models, especially Transformer,
are often perceived as not learning inter-
pretable word alignments. In this paper, we
show that NMT models do learn interpretable
word alignments, which could only be re-
vealed with proper interpretation methods. We
propose a series of such methods that are
model-agnostic, are able to be applied either
offline or online, and do not require parame-
ter update or architectural change. We show
that under the force decoding setup, the align-
ments induced by our interpretation method
are of better quality than fast-align for some
systems, and when performing free decoding,
they agree well with the alignments induced by
automatic alignment tools.

1 Introduction

Neural Machine Translation (NMT) has made lots
of advancements since its inception. One of the
key innovations that led to the largest improve-
ments is the introduction of the attention mecha-
nism (Bahdanau et al., 2014; Luong et al., 2015),
which jointly learns word alignment and transla-
tion. Since then, the attention mechanism has
gradually become a general technique in various
NLP tasks, including summarization (Rush et al.,
2015; See et al., 2017), natural language infer-
ence (Parikh et al., 2016) and speech recognition
(Chorowski et al., 2015; Chan et al., 2016).

Although word alignment is no longer a integral
step like the case for Statistical Machine Transla-
tion (SMT) systems (Brown et al., 1993; Koehn
et al., 2003), there is a resurgence of interest in
the community to study word alignment for NMT
models. Even for NMT, word alignments are use-
ful for error analysis, inserting external vocabular-
ies, and providing guidance for human translators
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(c) word saliency (d) word saliency with SmoothGrad

Figure 1: Comparison of our saliency-based word
alignment interpretation of convolutional NMT model
with reference and attention interpretation.

in computer-aided translation. When aiming for
the most accurate alignments, the state-of-the-art
tools include GIZA++ (Brown et al., 1993; Och
and Ney, 2003) and fast-align (Dyer et al., 2013),
which are all external models invented in SMT era
and need to be run as a separate post-processing
step after the full sentence translation is complete.
As a direct result, they are not suitable for analyz-
ing the internal decision processes of the neural
machine translation models. Besides, these mod-
els are hard to apply in the online fashion, i.e. in
the middle of left-to-right translation process, such
as the scenario in certain constrained decoding al-
gorithms (Hasler et al., 2018) and in computer-
aided translation (Bouma and Parmentier, 2014;
Arcan et al., 2014).
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For these cases, the current common practice is
to simply generate word alignments from attention
weights between the encoder and decoder. How-
ever, there are problems with this practice. Koehn
and Knowles (2017) showed that attention-based
word alignment interpretation may be subject to
“off-by-one” errors. Zenkel et al. (2019); Tang
et al. (2018b); Raganato and Tiedemann (2018)
pointed out that the attention-induced alignment is
particularly noisy with Transformer models. Be-
cause of this, some studies, such as Nguyen and
Chiang (2018); Zenkel et al. (2019) proposed ei-
ther to add extra modules to generate higher qual-
ity word alignments, or to use these modules to
further improve the model performance or inter-
pretability.

This paper is a step towards interpreting word
alignments from NMT without relying on exter-
nal models. We argue that using only attention
weights is insufficient for generating clean word
alignment interpretations, which we demonstrate
both conceptually and empirically. We propose to
use the notion of saliency to obtain word align-
ment interpretation of NMT predictions. Dif-
ferent from previous alignment models, our pro-
posal is a pure interpretation method and does
not require any parameter update or architecture
change. Nevertheless, we are able to reduce Align-
ment Error Rate (AER) by 10-20 points over the
attention weight baseline under two evaluation set-
tings we adopt (see Figure 1 for an example), and
beat fast-align (Dyer et al., 2013) by as much as
8.7 points. Not only have we proposed a superior
model interpretation method, but our empirical re-
sults also uncover that, contrary to common be-
liefs, architectures such as convolutional sequence-
to-sequence models (Gehring et al., 2017) have al-
ready implicitly learned highly interpretable word
alignments, which sheds light on how future im-
provement should be made on these architectures.

2 Related Work

We start with work that combines word alignments
with NMT. Research in this area generally falls
into one of three themes: (1) employing the no-
tion of word alignments to interpret the prediction
of NMT; (2) making use of word alignments to im-
prove NMT performance; (3) making use of NMT
to improve word alignments. We mainly focus
on related work in the first theme as this is the
problem we are addressing in this work. Then we

briefly introduce work in the other themes that is
relevant to our study. We conclude by briefly sum-
marizing related work to our proposed interpreta-
tion method.

For the attention in RNN-based sequence-to-
sequence model, the first comprehensive analysis
is conducted by Ghader and Monz (2017). They
argued that the attention in such systems agree
with word alignment to a certain extent by show-
ing that the RNN-based system achieves compara-
ble alignment error rate comparable to that of bi-
directional GIZA++ with symmetrization. How-
ever, they also point out that they are not exactly
the same, as training the attention with alignments
would occasionally cause the model to forget im-
portant information. Lee et al. (2017) presented
a toolkit that facilitates study for the attention in
RNN-based models.

There is also a number of other studies that an-
alyze the attention in Transformer models. Tang
et al. (2018a,b) conducted targeted evaluation of
neural machine translation models in two different
evaluation tasks, namely subject-verb agreement
and word sense disambiguation. During the anal-
ysis, they noted that the pattern in Transformer
model (what they refer to as advanced attention
mechanism) is very different from that of the at-
tention in RNN-based architecture, in that a lot of
the probability mass is focused on the last input to-
ken. They did not dive deeper in this phenomenon
in their analysis. Raganato and Tiedemann (2018)
performed a brief but more refined analysis on
each attention head and each layer, where they no-
ticed several different patterns inside the modules,
and concluded that Transformer tends to focus on
local dependencies in lower layers but finds long
dependencies on higher ones.

Beyond interpretation, in order to improve the
translation of rare words, Nguyen and Chiang
(2018) introduced LexNet, a feed-forward neu-
ral network that directly predicts the target word
from a weighted sum of the source embeddings,
on top of an RNN-based Seq2Seq models. Their
goal was to improve translation output and hence
they did not empirically show AER improvements
on manually-aligned corpora. There are also a
few other studies that inject alignment supervi-
sion during NMT training (Mi et al., 2016; Liu
et al., 2016). In terms of improvements in word
alignment quality, Legrand et al. (2016); Wang
et al. (2018); Alkhouli et al. (2018) proposed neu-
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ral word alignment modules decoupled from NMT
systems, while Zenkel et al. (2019) introduced a
separate module to extract alignment from NMT
decoder states, with which they achieved compara-
ble AER with fast-align with Transformer models.

The saliency method we propose in this work
draws its inspiration from visual saliency proposed
by Simonyan et al. (2013); Springenberg et al.
(2014); Smilkov et al. (2017). It should be noted
that these methods were mostly applied to com-
puter vision tasks. To the best of our knowledge,
Li et al. (2016) presented the only work that di-
rectly employs saliency methods to interpret NLP
models. Most similar to our work in spirit, Ding
et al. (2017) used Layer-wise Relevance Propa-
gation (LRP; Bach et al. 2015), an interpretation
method resembling saliency, to interpret the in-
ternal working mechanisms of RNN-based neural
machine translation systems. Although conceptu-
ally LRP is also a good fit for word alignment inter-
pretation, we have some concerns with the mathe-
matical soundness of LRP when applied to atten-
tion models. Our proposed method is also consid-
erably more flexible and easier to implement than
LRP.

3 The Interpretation Problem

Formally, by interpreting model prediction, we
are referring to the following problem: given
a trained MT model and input tokens S =
{s0, s1, . . . , sI−1}, at a certain time step j when
the models predicts tj , we want to know which
source word in S “contributed” most to this pre-
diction. Note that the prediction tj might not be
arg maxtj p(tj | t1:j−1), as the locally optimal
option may be pruned during beam search and not
end up in the final translation.

Under this framework, we can see an impor-
tant conceptual problem regarding interpreting at-
tention weights as word alignment. Suppose for
the same source sentence, there are two alternative
translations that diverge at target time step j, gen-
erating tj and t′j which respectively correspond to
different source words. Presumably, the source
word that is aligned to tj and t′j should changed
correspondingly. However, this is not possible
with the attention weight interpretation, because
the attention weight is computed before prediction
of tj or t′j . With that, we argue that an ideal inter-
pretation algorithm should be able to adapt the in-
terpretation with the specified output label, regard-

less of whether it is the most likely label predicted
by the model.

As a final note, the term “attention weights”
here refers to the weights of the attention between
encoder and decoder (the “encoder-decoder atten-
tion” in Vaswani et al. (2017)). Specifically, they
do not refer to the weight of self-attention mod-
ules that only exist in the Transformer architec-
ture, which do not establish alignment between the
source and target words.

4 Method

Our proposal is based on the notion of visual
saliency (Simonyan et al., 2013) in computer vi-
sion. In brief, the saliency of an input feature is
defined by the partial gradient of the output score
with regard to the input. We propose to extend this
idea to NMT by drawing analogy between input
pixels and the embedding look-up operation.

4.1 Visual Saliency
Suppose we have an image classification example
(x0, y0), with y0 being a specific image class and
x0 being an |X |-dimensional vector. Each entry
of x0 is an input feature (i.e., a pixel) to the clas-
sifier. Given the input x0, a trained classifier can
generate a prediction score for class y0, denoted
as p(y0 | x0). Consider the first-order Taylor ex-
pansion of a perturbed version of this score at the
neighborhood of input x0:

p(y0 | x) ≈ p(y0 | x0) +
∂p(y0 | x)

∂x

∣∣∣∣
x0

· (x − x0)

(1)

This is essentially re-formulating the perturbed
prediction score p(y0 | x) as an affine approxi-
mation of the input features, while the “contribu-
tion” of each feature to the final prediction being
the partial derivative of the prediction score with
regard to the feature. Assuming a feature that is
deemed as salient for the local perturbation of the
prediction score would also be globally salient, the
saliency of an input feature is defined as follows:

Definition 1 Denoted as Ψ(x, y), the saliency of
feature vector x with regard to output class y is

defined as
∂p(y | x)

∂x
.

Note that Ψ(x, y) is also a vector, with each en-
try corresponding to the saliency of a single input
feature in x. Such formulation has following nice
properties:
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• The saliency of an input feature is related to the
choice of output class y, as model scores of dif-
ferent output classes correspond to a different
set of parameters, and hence resulting in differ-
ent partial gradients for the input features. This
makes up for the aforementioned deficiency of
attention weights in addressing the interpreta-
tion problem.

• The partial gradient could be computed by
back-propagation, which is efficiently imple-
mented in most deep learning frameworks.

• The formulation is agnostic to the model that
generates p(y | x), so it could be applied to
any deep learning architecture.

4.2 Word Saliency

In computer vision, the input feature is a 3D Ten-
sor corresponding to the level in each channel. The
key question to apply such method to NMT is what
constitutes the input feature to a NMT system. Li
et al. (2016) proposed to use the embedding of
of the input words as the input feature to formu-
late saliency score, which results in the saliency
of an input word being a vector of the same di-
mension as embedding vectors. To obtain a scalar
saliency value, they computed the mean of the ab-
solute value of the embedding gradients. We argue
that there is a more mathematically principled way
to approach this.

To start, we treat the word embedding look-up
operation as a dot product between the embedding
weight matrix W and an one-hot vector z. The
size of z is the same as the source vocabulary size.
Similarly, the input sentence could be formulated
as a matrix Z with only 0 and 1 entries. Notice
that z has certain resemblance to the pixels of an
image, with each cell representing the pixel-wise
activation level of the words in the vocabulary. For
the output word tj at time step j, we can similarly
define the saliency of the one-hot vector z as:

Ψ(z, tj) =
∂p(tj | Z)

∂z
(2)

where p(tj | Z) is the probability of word tj gener-
ated by the NMT model given source sentence Z.
Ψ(z, tj) is a vector of the same size as z.

However, note that there is a key difference be-
tween z and pixels. If the pixel level is 0, it means
that the pixel is black, while a 0-entry in z means
that the input word is not the word denoted by
the corresponding cell. While the black region of

an input image may still carry important informa-
tion, we are not interested in the saliency of the
0-entries in z.1 Hence, we only take the 1-entries
of matrix Z as the input to the NMT model. For a
source word si in the source sentence, this means
we only care about the saliency of the 1-entries,
i.e., the entry corresponding to source word si:

ψ(si, tj) =

[
∂p(tj | Z)

∂z

]

si

=

[
∂p(tj | Z)

∂Wsi

· ∂Wsi

∂z

]

si

=

[
∂p(tj | Z)

∂Wsi

· W
]

si

=
∂p(tj | Z)

∂Wsi

· Wsi (3)

where [·]i denotes the i-th row of a matrix or the i-
th element of a vector. In other words, the saliency
ψ(si, tj) is a weighted sum of the word embed-
ding of input word si, with the partial gradient of
each cell as the weight. By comparison, the word
saliency2 in Li et al. (2016) is defined as:

ψ′(si, tj) = mean
(∣∣∣∣
∂p(tj | Z)

∂Wsi

∣∣∣∣
)

(4)

There are two implementation details that we
would like to call for the reader’s attention:

• When the same word occurs multiple times in
the source sentence, multiple copies of embed-
ding for such word need to be made to ensure
that the gradients flowing to different instances
of the same word are not merged;

• Note that ψ(si, tj) is not a probability distribu-
tion, which does not affect word alignment re-
sults because we are taking arg max. For visu-
alizations presented herein, we normalized the
distribution by p(si | tj) ∝ max(0, ψ(si, tj)).
One may also use softmax function for appli-
cations that need more well-formed probability
distribution.

1Although we introduce z to facilitate presentation, note
that word embedding look-up is never implemented as a ma-
trix multiplication. Instead, it is implemented as a table look-
up, so for each input word, only one row of the word em-
bedding is fed into the subsequent computation. As a con-
sequence, during training, since the other rows are not part
of the computation graph, only parameters in the rows cor-
responding to the 1-entries will be updated. This is another
reason why we choose to discard the saliency of 0-entries.

2Li et al. (2016) mostly focused on studying saliency on
the level of word embedding dimensions. This word-level
formulation is proposed as part of the analysis in Section 5.2
and Section 6 of that work.
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4.3 SmoothGrad
There are two scenarios where the naïve gradient-
based saliency may make mistakes:

• For highly non-linear models, the saliency ob-
tained from local perturbation may not be a
good representation of the global saliency.

• If the model fits the distribution nearly per-
fectly, some data points or input features may
become saturated, i.e. having a partial gradient
of 0. This does not necessarily mean they are
not salient with regard to the prediction.

We alleviate these problems with SmoothGrad,
a method proposed by Smilkov et al. (2017). The
idea is to augment the input to the network into n
samples by adding random noise generated by nor-
mal distribution N (0, σ2). The saliency scores of
each augmented sample are then averaged to can-
cel out the noise in the gradients.

We made one small modification to this method
in our experiments: rather than adding noise to the
word inputs that are represented as one-hot vec-
tors, we instead add noise to the queried embed-
ding vectors. This allows us to introduce more
randomness for each word input.

5 Experiments

5.1 Evaluation Method
The best evaluation method would compare pre-
dicted word alignments against manually labeled
word alignments between source sentences and
NMT output sentences, but this is too costly for
our study. Instead, we conduct two automatic eval-
uations for our proposed method using resources
available:

• force decoding: take a human-annotated cor-
pus, run NMT models to force-generate the
target side of the corpus and measure AER
against the human alignment;

• free decoding: take the NMT prediction, ob-
tain reasonably clean reference alignments be-
tween the prediction and the source and mea-
sure AER against this reference.3

Notice that both automatic evaluation methods
have their respective limitation: the force decod-
ing method may force the model to predict some-
thing it deems unlikely, and thus generating noisy

3Our reference alignment construction process is as fol-
lows: we first run automatic alignment on both sides, and
take the intersection of the two outputs as “sure” alignments
and the rest as “possible” alignments.

alignment; whereas the free decoding method
lacks authentic references.

5.2 Setup

We follow Zenkel et al. (2019) in data setup
and use the accompanied scripts of that paper4

for preprocessing. Their training data consists
of 1.9M, 1.1M and 0.4M sentence pairs for
German-English (de-en), English-French (en-fr)
and Romanian-English (ro-en) language pairs, re-
spectively, whereas the manually-aligned test data
contains 508, 447 and 248 sentence pairs for each
language pair. There is no development data pro-
vided in their setup, and it is not clear what they
used for NMT system training, so we set aside the
last 1,000 sentences of the training data for each
language as the development set.

For our NMT systems, we use fairseq5 to
train attention-based RNN systems (LSTM) (Bah-
danau et al., 2014), convolution systems (FConv)
(Gehring et al., 2017), and Transformer systems
(Transformer) (Vaswani et al., 2017). We use
the pre-configured model architectures for IWSLT
German-English experiments6 to build all NMT
systems. Our experiments cover the following in-
terpretation methods:

• Attention: directly take the attention weights as
soft alignment scores. For transformer, we fol-
low the implementation in fairseq and used the
attention weights from the final layer averaged
across all heads;

• Smoothed Attention: obtain multiple version of
attention weights with the same data augmen-
tation procedure as SmoothGrad and average
them. This is to prove that smoothing itself
does not improve the interpretation quality, and
has to be used together with effective interpre-
tation method;

• (Li et al., 2016): applied with normal back-
propagation (Grad) and SmoothGrad;

• Ours: applied with normal back-propagation
(Grad) and SmoothGrad.

For all the methods above, we follow the same pro-
cedure in (Zenkel et al., 2019) to convert soft align-
ment scores to hard alignment.

4https://github.com/lilt/alignment-scripts
5https://github.com/pytorch/fairseq
6The exact model options we used are respec-

tively fconv_iwslt_de_en, lstm_wiseman
_iwslt_de_en, transformer_iwslt_de_en.
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de<>en fr<>en ro<>en
de-en en-de bidir en-fr fr-en bidir ro-en en-ro bidir

FConv
Attention 38.5 40.1 37.5 23.8 27.4 22.0 40.9 38.6 39.1
Smoothed Attention 40.2 43.9 41.2 24.1 27.4 22.5 41.5 39.6 40.4
(Li et al., 2016) Grad 39.0 39.6 35.3 26.8 29.2 21.1 41.9 42.1 38.6
(Li et al., 2016) SmoothGrad 40.7 44.5 39.3 27.3 28.1 21.6 43.5 43.5 40.0
Ours Grad 33.1 40.5 26.8 25.2 22.7 11.9 37.1 39.4 29.8
Ours SmoothGrad 27.3 33.0 22.3 21.2 18.1 8.5 32.4 34.2 27.2
LSTM
Attention 42.8 47.5 36.9 33.7 38.0 25.8 47.1 47.0 40.9
Smoothed Attention 47.3 50.7 40.0 35.4 40.2 27.5 50.7 50.2 43.5
(Li et al., 2016) Grad 41.0 43.9 33.5 32.9 37.1 23.5 44.5 44.9 37.5
(Li et al., 2016) SmoothGrad 39.4 43.1 31.5 32.2 36.2 22.0 45.7 46.8 37.7
Ours Grad 47.5 50.2 38.6 41.1 41.6 30.4 54.2 55.8 42.8
Ours SmoothGrad 31.4 36.8 23.7 27.2 25.0 13.8 40.4 39.9 32.0
Transformer
Attention 53.4 58.6 42.3 48.1 48.7 33.8 51.6 51.1 43.3
Smoothed Attention 55.8 56.1 48.6 42.5 47.5 32.9 57.5 57.6 51.5
(Li et al., 2016) Grad 51.1 56.2 43.7 43.6 47.9 39.9 46.7 48.4 35.5
(Li et al., 2016) SmoothGrad 36.4 45.8 30.3 27.0 25.5 15.6 41.3 39.9 33.7
Ours Grad 77.7 78.2 77.4 69.1 72.5 74.5 74.6 75.2 71.0
Ours SmoothGrad *36.4 43.0 *29.0 29.7 25.9 15.3 41.2 41.4 32.7

fast-align Offline 28.4 32.0 27.0 16.4 15.9 10.5 33.8 35.5 32.1
fast-align Online 30.8 34.4 30.0 18.8 16.8 13.6 37.1 41.1 35.9
(Zenkel et al., 2019) 26.6 30.4 21.2 23.8 20.5 10.0 32.3 34.8 27.6
GIZA++ 21.0 23.1 21.4 8.0 9.8 5.9 28.7 32.2 27.9

Table 1: Alignment Error Rate (AER) with different saliency methods, under force decoding setting. GIZA++
and fast-align Offline results are quoted from Zenkel et al. (2019), whereas fast-align Online stands for our online
alignment result (c.f. Section 5.2). bidir refers to the symmetrized alignment results. Best results for each architec-
ture are marked with underlines, and best interpretation/alignment results are respectively marked with boldface.
Numbers affected by hyper-parameter tuning are marked with *.

For force decoding experiments, we gener-
ate symmetrized alignment results with grow-
diag-final. We also include AER results7 of
fast-align (Dyer et al., 2013), GIZA++8 and the
best model (Add+SGD) from Zenkel et al. (2019)
on the same dataset for comparison. However,
the readers should be aware that there are certain
caveats in this comparison:

• All of these models are specifically designed
and optimized to generate high-quality align-
ments, while our method is an interpretation
method and is not making any architecture
modifications or parameter updates;

• fast-align and GIZA++ usually need to update
model with full sentence to generate optimal
alignments, while our system and Zenkel et al.
(2019) can do so on-the-fly.

7We reproduced the fast-align results as a sanity check
and we were able to perfectly replicate their numbers with
their released scripts.

8https://github.com/moses-smt/giza-pp

Realizing the second caveat, we also run fast-
align under the online alignment scenario, where
we first train a fast-align model and decode on the
test set. This is a real-world scenario in applica-
tions such as computer-aided translation (Bouma
and Parmentier, 2014; Arcan et al., 2014), where
we cannot practically update alignment models on-
the-fly. On the other hand, we believe this is a
slightly better comparison for methods with online
alignment capabilities such as Zenkel et al. (2019)
and this work.

The data used in Zenkel et al. (2019) did not
provide a manually-aligned development set, so
we tune the SmoothGrad hyperparameters (noise
standard deviation σ and sample size n) on a 30-
sentence subset of the German-English test data
with the Transformer model. We ended up using
the recommended σ = 0.15 in the original paper
and a slightly smaller sample size n = 30 for
speed. This hyperparameter setting is applied to
the other SmoothGrad experiments as-is. For com-
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parison with previous work, we do not exclude
these sentences from the reported results, we in-
stead mark the numbers affected to raise caution.

5.3 Force Decoding Results

Table 1 shows the AER results under the force de-
coding setting. First, note that after applying our
saliency method with normal back-propagation,
AER is only reduced for FConv model but instead
increases for LSTM and Transformer. The largest
increase is observed for Transformer, where the
AER increases by about 20 points on average.
However, after applying SmoothGrad on top of
that, we observe a sharp drop in AER, which
ends up with 10-20 points lower than the atten-
tion weight baseline. We can also see that this is
not just an effect introduced by input noise, as the
same smoothing procedure for attention increases
the AER most of the times. To summarize, at
least under force decoding settings, our saliency
method with SmoothGrad obtains word alignment
interpretations of much higher quality than the at-
tention weight baseline.

As for Li et al. (2016), for FConv and LSTM ar-
chitectures, it is not only consistently worse than
our method, but at times also worse than atten-
tion. Besides, the effect of SmoothGrad is also
not as consistent on their saliency formulation as
ours. Although with the Transformer model, the
Li et al. (2016) method obtained better AER than
our method under several settings, it is still pretty
clear overall that the superior mathematical sound-
ness of our method is translated into better inter-
pretation quality.

While the GIZA++ model obtains the best align-
ment result in Table 19, most of our word align-
ment interpretation of FConv model with Smooth-
Grad surpasses the alignment quality of fast-align
(either Online or Offline), sometimes by as much
as 8.7 points (symmetrized ro<>en result). Our
best models are also largely on-par with (Zenkel
et al., 2019). These are notable results as our
method is an interpretation method and no ex-
tra parameter is updated to optimize the quality
of alignment. On the other hand, this also in-
dicates that it is possible to induce high-quality

9While Ghader and Monz (2017) showed that the AER
obtained by LSTM model is close to that of GIZA++, our
experiments yield a much larger difference. We think this
is largely due to the fact that we choose to train our model
with BPE, while Ghader and Monz (2017) explicitly avoided
doing so.

alignments from NMT model without modifying
its parameters, showing that it has acquired such
information in an implicit way. Most interest-
ingly, although NMT is often deemed as perform-
ing poorly under low-resource setting, our inter-
pretation seems to work relatively well on ro<>en
language pair, which happens to be the language
pair that we have least training data for. We think
this is a phenomenon that merits further explo-
ration.

Besides, it can be seen that for all reported meth-
ods, the overall order for the number of alignment
errors is FConv < LSTM < Transformer. To our
best knowledge, this is also a novel insight, as no
one has analyzed attention weights of FConv with
other architectures before. We can also observe
that while our method is not strong enough to fully
bridge the gap of the attention noise level between
different model architecture, it does manage to nar-
row the difference in some cases.

5.4 Free Decoding Results

Table 2 shows the result under free decoding set-
ting. The trend in this group of experiment is sim-
ilar to Table 1, except that Transformer occasion-
ally outperforms LSTM. We think this is mainly
due to the fact that Transformer generates higher
quality translations, but could also be partially at-
tributed to the noise in fast-align reference. Also,
notice that the AER numbers are also generally
lower compared to Table 1 under this setting. One
reason is that our model is aligning output with
which it is most confident, so less noise should be
expected in the model behavior. On the other hand,
by qualitatively comparing the reference transla-
tion in the test set and the NMT output, we find
that it is generally easier to align the translation as
it is often a more literal translation.

6 Analysis

6.1 Comparison with Li et al. (2016)

The main reason why the word saliency formula-
tion in Li et al. (2016) does not work as well for
word alignment is the lack of polarity in the for-
mulation. In other words, it only quantifies how
much the input influences the output, but does not
specify in what way does the input influence. This
is sufficient for error analysis, but does not suit the
purpose of word alignment, as humans will only
align a target word to the input words that consti-
tute a translation pair, i.e. have positive influence.
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de-en en-de en-fr fr-en ro-en en-ro

FConv
Attention 27.4 24.2 20.7 23.6 32.5 25.6
Smoothed Attention 29.4 29.0 21.1 23.6 33.7 26.7
(Li et al., 2016) Grad 29.3 23.5 25.0 23.7 33.9 27.9
(Li et al., 2016) SmoothGrad 31.2 30.4 24.1 24.0 35.6 30.1
Ours Grad 18.2 20.0 20.2 14.3 24.9 22.8
Ours SmoothGrad 13.7 14.2 17.0 10.6 21.4 17.4
LSTM
Attention 33.6 34.6 32.5 32.3 36.5 31.7
Smoothed Attention 38.2 39.5 34.3 35.2 41.2 36.3
(Li et al., 2016) Grad 34.1 32.5 33.6 33.7 36.6 32.1
(Li et al., 2016) SmoothGrad 30.8 29.4 31.8 32.1 38.9 34.8
Ours Grad 35.9 36.7 40.2 36.3 44.1 43.1
Ours SmoothGrad 20.5 21.9 26.0 19.1 32.6 27.5
Transformer
Attention 50.2 53.0 50.4 48.5 44.9 41.9
Smoothed Attention 51.4 49.0 44.5 47.3 49.9 48.9
(Li et al., 2016) Grad 49.9 51.2 49.4 51.5 42.9 40.8
(Li et al., 2016) SmoothGrad 27.8 35.3 28.3 22.3 30.5 26.5
Ours Grad 76.7 76.6 77.1 78.9 71.9 74.0
Ours SmoothGrad *26.6 31.0 30.0 21.4 30.0 28.2

Table 2: Alignment Error Rate (AER) with different saliency models, under free decoding setting. See the caption
of Table 1 for notations.
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(a) Li et al. (b) Ours

Figure 2: Saliency interpretation of FConv de-en model
with the method in Li et al. (2016) and this paper.
SmoothGrad (σ = 0.15, n = 30) is applied for both
interpretations.

Figure 2 shows a case where this problem oc-
curs in our German-English experiments. Note
that in Subfigure (a), the source word nur has
high saliency on several target words, e.g. should,
but the word nur is actually not translated in
the reference. On the other hand, as shown in
Subfigure (b), our method correctly assigns neg-
ative (shown as white) or small positive values at
all time steps for this source word. Specifically,
the saliency value of nur for should is negative
with large magnitude, indicating significant nega-
tive contributions to the prediction of that target
word. Hence, a good word alignment interpreta-

tion should strongly avoid aligning them.

6.2 SmoothGrad
Tables 1 and 2 show that SmoothGrad is a cru-
cial factor to reduce AER, especially for Trans-
former. Figure 3 shows the interpretation of the
same German-English sentence pair by our pro-
posed method, but with Transformer and differ-
ent SmoothGrad noise levels. Specifically, Sub-
figures (a) and (c) corresponds to our Grad and
SmoothGrad experiments in Table 1. By compar-
ing Subfigures (a) and (c), we notice that (1) with-
out SmoothGrad, the word saliency obtained from
the Transformer model is extremely noisy, and (2)
the output of SmoothGrad is not only a smoother
version of the naïve gradient output, but also gains
new information by performing extra forward and
backward evaluations with the noisy input. For
example, compare the alignment point between
source word wir and target word we: in Subfig-
ure (a), this word pair has very low saliency, but
in (c), they become the most likely alignment pair
for that target word.

Referring back to our motivation for using
SmoothGrad in Section 4.3, we think the observa-
tions above verify that the Transformer model is a
case where very high non-linearities occur almost
everywhere in the parameter space, such that the
saliency obtained from local perturbation is a very
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(a) σ = 0 (b) σ = 0.05 (c) σ = 0.15 (d) σ = 0.3

Figure 3: Saliency interpretation of Transformer de-en model with different SmoothGrad noise values σ (n = 30).

att σ = 0 σ = 0.05 σ = 0.15 σ = 0.3

FConv
force 2.09 1.36 1.48 1.89 2.59
free 2.00 1.34 1.43 1.79 2.54

LSTM
force 1.75 1.63 2.02 2.54 2.89
free 1.65 1.57 1.91 2.46 2.88

Transformer
force 1.73 1.91 2.63 2.76 2.85
free 1.69 1.89 2.62 2.74 2.84

Table 3: Alignment distribution entropy for selected de-
en models. att stands for attention in Table 1.

poor representation of the global saliency almost
all the time. On the other hand, this is also why
the Transformer especially relies on SmoothGrad
to work well, as the perturbation will give a better
estimation of the global saliency.

It could also be observed from Subfigures (b)
and (d) that when the noise is too moderate, the
evaluation does not deviate enough from the orig-
inal spot to gain non-local information, and at (d)
it deviates too much and hence the resulting align-
ment is almost random. Intuitively, the noise pa-
rameter σ should be sensitive to the model archi-
tecture or even specific input feature values, but
interestingly we end up finding that a single choice
from the computer vision literature works well
with all of our systems. We encourage future work
to conduct more comprehensive analysis of the ef-
fect of SmoothGrad on more complicated architec-
tures beyond convolutional neural nets.

6.3 Alignment Dispersion
We run German-English alignments under several
different SmoothGrad noise deviation σ and re-
port their dispersion as measured by entropy of the
(soft) alignment distribution averaged by number
of target words. Results are summarized in Ta-

ble 3, where lower entropy indicates more peaky
alignments. First, we observe that dispersion of
word saliency gets higher as we increase σ, which
aligns with the observations in Figure 3. It should
also be noted that the alignment dispersion is con-
sistently lower for free decoding than force decod-
ing. This verifies our conjecture that the force de-
coding setting might introduce more noise in the
model behavior, but judging from this result, that
gap seems to be minimal. Comparing different
architectures, the dispersion of attention weights
does not correlate well with the dispersion of word
saliency. We also notice that, while the Trans-
former attention interpretation consistently results
in higher AER, its dispersion is lower than the
other architectures, indicating that with attention,
a lot of the probability mass might be concentrated
in the wrong place more often. This corroborates
the finding in Raganato and Tiedemann (2018).

7 Discussion And Future Work

There are several extensions to this work that we
would like to discuss in this section. First, in
this paper we only explored two saliency meth-
ods among many others available (Montavon et al.,
2018). In our preliminary study, we also ex-
perimented with guided back-propagation (Sprin-
genberg et al., 2014), a frequently used saliency
method in computer vision, which did not work
well for our problem. We suspect that there is a
gap between applying these methods on mostly-
convolutional architectures in computer vision and
architectures with more non-linearities in NLP. We
hope the future research from the NLP and ma-
chine learning communities could bridge this gap.

Secondly, the alignment errors in our method
comes from three different sources: the limitation
of NMT models on learning word alignments, the
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limitation of interpretation method on recovering
interpretable word alignments, and the ambigu-
ity in word alignments itself. Although we have
shown that high quality alignment could be recov-
ered from NMT systems (thus pushing our under-
standing on the limitation of NMT models), we
are not yet able to separate these sources of errors
in this work. While exploration on this direction
will help us better understand both NMT models
and the capability of saliency methods in NLP, re-
searchers may want to avoid using word alignment
as a benchmark for saliency methods because of its
ambiguity. For such purpose, simpler tasks with
clear ground truth, such as subject-verb agreement,
might be a better choice.

Finally, as mentioned before, we are only con-
ducting approximate evaluation to measure the
ability of our interpretation method. An imme-
diate future work would be evaluating this on
human-annotated translation outputs generated by
the NMT system.

8 Conclusion

We propose to use word saliency and SmoothGrad
to interpret word alignments from NMT predic-
tions. Our proposal is model-agnostic, is able to
be applied either offline or online, and does not
require any parameter updates or architectural
change. Both force decoding and free decoding
evaluations show that our method is capable of
generating word alignment interpretations of
much higher quality compared to its attention-
based counterpart. Our empirical results also
probe into the NMT black-box and reveal that
even without any special architecture or training
algorithm, some NMT models have already
implicitly learned interpretable word alignments
of comparable quality to fast-align. The model
and code for our experiments are available at
https://github.com/shuoyangd/meerkat.
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Abstract

An important concern in training multilin-
gual neural machine translation (NMT) is to
translate between language pairs unseen dur-
ing training, i.e zero-shot translation. Improv-
ing this ability kills two birds with one stone
by providing an alternative to pivot translation
which also allows us to better understand how
the model captures information between lan-
guages.

In this work, we carried out an investigation on
this capability of the multilingual NMT mod-
els. First, we intentionally create an encoder
architecture which is independent with respect
to the source language. Such experiments shed
light on the ability of NMT encoders to learn
multilingual representations, in general. Based
on such proof of concept, we were able to de-
sign regularization methods into the standard
Transformer model, so that the whole archi-
tecture becomes more robust in zero-shot con-
ditions. We investigated the behaviour of such
models on the standard IWSLT 2017 multilin-
gual dataset. We achieved an average improve-
ment of 2.23 BLEU points across 12 language
pairs compared to the zero-shot performance
of a state-of-the-art multilingual system. Ad-
ditionally, we carry out further experiments
in which the effect is confirmed even for lan-
guage pairs with multiple intermediate pivots.

1 Introduction

Neural machine translation (NMT) exploits neu-
ral networks to directly learn to transform sen-
tences from a source language to a target lan-
guage (Sutskever et al., 2014; Bahdanau et al.,
2014). Universal multilingual NMT discovered
that a neural translation system can be trained
on datasets containing source and target sentences
in multiple languages (Firat et al., 2016; Johnson
et al., 2016). Successfully trained models using
this approach can be used to translate arbitrar-

ily between any languages included in the train-
ing data. In low-resource scenarios, multilingual
NMT has proven to be an extremely useful reg-
ularization method since each language direction
benefits from the information of the others (Ha
et al., 2016; Gu et al., 2018).

An important research focus of multilingual
NMT is zero-shot translation (ZS), or translation
between languages included in multilingual data
for which no directly parallel training data exists.
Application-wise, ZS offers a faster and more di-
rect path between languages compared to pivot
translation, which requires translation to one or
many intermediate languages. This can result in
large latency and error propagation, common is-
sues in non-end-to-end pipelines.From a represen-
tation learning point of view, there is evidence
of NMT’s ability to capture language-independent
features, which have proved useful for cross-
lingual transfer learning (Zoph et al., 2016; Kim
et al., 2019) and provide motivation for ZS trans-
lation. However it is still unclear if minimizing the
difference in representations between languages is
beneficial for zero-shot learning.

On the other hand, the current neural archi-
tecture and learning mechanisms of multilingual
NMT is not geared towards having a common
representation. Different languages are likely to
convey the same semantic content with sentences
of different lengths (Kalchbrenner et al., 2016),
which makes the desiderata difficult to achieve.
Moreover, the loss function of the neural transla-
tion model does not favour having sentences en-
coded in the same representation space regardless
of the source language. As a result, if the net-
work capacity is large enough, it may partition
itself into different sub-spaces for different lan-
guage pairs (Arivazhagan et al., 2019).

Our work here focuses on the zero-shot trans-
lation aspect of universal multilingual NMT.
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First, we attempt to investigate the relationship
of encoder representation and ZS performance.
By modifying the Transformer architecture of
Vaswani et al. (2017) to afford a fixed-size rep-
resentation for the encoder output, we found that
we can significantly improve zero-shot perfor-
mance at the cost of a lower performance on
the supervised language pairs. To the best of
our knowledge, this is the first empirical evi-
dence showing that the multilingual model can
capture both language-independent and language-
dependent features, and that the former can be pri-
oritized during training.

This observation leads us to the most important
contribution in this work, which is to propose sev-
eral techniques to learn a joint semantic space for
different languages in multilingual models with-
out any architectural modification. The key idea
is to prefer a source language-independent repre-
sentation in the decoder using an additional loss
function. As a result, the NMT architecture re-
mains untouched and the technique is scalable to
the number of languages in the training data. The
success of this method is shown by significant
gains on zero-shot translation quality in the stan-
dard IWSLT 2017 multilingual benchmark (Cet-
tolo et al., 2017). Finally, we introduce a more
challenging scenario that involves more than one
bridge language between source and target lan-
guages. This challenging setup confirms the con-
sistency of our zero-shot techniques while clarify-
ing the disadvantages of pivot-based translation.

2 Background: Multilingual Neural
Machine Translation

Given an input sequence X and its translation Y ,
neural machine translation (NMT) uses sequence-
to-sequence models (Sutskever et al., 2014) to di-
rectly model the posterior probability of generat-
ing Y from X .

Universal multilingual NMT expands the orig-
inal bilingual setting by combining parallel cor-
pora from multiple language pairs into one single
corpus. By directly training the NMT model on
this combined corpus, the model can be made to
translate sentences from any seen source language
into any seen target language. Notably, this mul-
tilingual framework does not yield any difference
in the training objective, i.e maximizing the like-
lihood of the target sentence Y given the source

sentence X:

Loss(X,Y ) = −P (Y |X) (1)

Previous work on universal NMT proposed dif-
ferent methods to control language generation.
While source language identity may not be the
concern, the decoder requires a target language
signal to generate sentences in any desired lan-
guage. Work from Ha et al. (2016) and John-
son et al. (2016) used the addition of language
identity tokens in order to minimize architec-
tural changes while controlling generation. Subse-
quently, stronger constraints were bestowed upon
the decoder to force the correct language to be
generated through language features or vocabulary
filtering during decoding (Ha et al., 2017).

In practice, the number of language pairs in a
multilingual corpus increases exponentially over
the size of the language set. Therefore, a multilin-
gual corpus rarely covers all of the language pairs
involved, resulting in a need to investigate transla-
tion between the missing directions. The missing
directions are referred as ‘zero-shot translation’ as
the model has no access to any explicit parallel
samples, naturally or artificially.

3 Proof of concept: Fixed-size encoder
representations for
language-independence

As the length of encoder representations depends
on the source language, current architectures are
not ideal to learn language-independent encoder
representations. Therefore, we propose different
architectures with fixed-size encoder representa-
tions. This also allows us to directly compare en-
coder representations of different languages, and
to enforce such similarity through an additional
loss function. This modification comes with the
price of an information bottleneck due to the pro-
cess of removing the length variability. On the
other hand, it adds additional regularization which
would naturally prioritize the features shared be-
tween languages.

Motivated by the literature in sentence embed-
dings (Schwenk and Douze, 2017; Wang et al.,
2017), we take the average over time of the en-
coder states. Specifically, assume that X is the set
of source embeddings input to the encoder:

Hv = Encoder(X)
Hf = mean pooling(Hv)

(2)
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Figure 1: Fixed-size representations using multi-head mean-pooling (left) and attention-pooling (right).

The purpose of this modification is two-fold.
First, this model explicitly opens more possibil-
ities for language-independent representation to
occur, because every sentence is compressed into
a consistent number of states. Second, we can ob-
serve the balance between language-independent
and language-dependent information in the en-
coder; if zero-shot performance is minimally af-
fected, then the encoder is in general able to cap-
ture language-independent information, and this
restricted encoder retains this information.

However, this model naturally has a disadvan-
tage due to the introduced information bottleneck,
similar to non-attention models (Sutskever et al.,
2014; Kalchbrenner and Blunsom, 2013). We al-
leviate this problem by expanding the number of
hidden states of the encoder output. As a result we
investigate two variations of pooling as follows:

Multi-head Mean-Pooling While taking the av-
erage over time significantly reduces the model
capacity, we can allocate more capacity for the
model by linearly projecting the variable-length
representation. By concatenating the pooled val-
ues from different sub-spaces, we obtain a fixed-
size representation with the sizeN×H . However,
instead of learning to pay attention to input tokens
normally, this decoder learns to distribute its focus
into each mean-pooled embedding.

Multi-head Attention-Pooling The attention
model is notable for its ability to extract relevant
information from a sequence, which is an alter-
native to using pooling operators. However, self-
attention is not within our architectural choices be-
cause the self-attention output has the same num-
ber of states with the input, while we need to re-
strict to a fixed set. We instead propose to set a
fixed number of queries as learnable parameters
for the model, so it will learn to extract neces-
sary information from the sequence to include in
the limited space. It is possible for this model to

converge to mean-pooling because these parame-
ters are not as informative as either encoder or de-
coder states. However, our experiments later on
have proven this does not occur in practice.

These two variations are illustrated in Figure 1.
Here we investigate these models for the purpose
of observing the relationship between encoder rep-
resentations and zero-shot performance. Section 5
shows that, despite the fact that this model falls
short against the baseline Transformer in non-
zero-shot tests, we observed that the retained in-
formation in the bottleneck does not affect the per-
formance of zero-shot translation, our motivation
for the upcoming objectives.

Language-Independent Objective With con-
stant length encoder output, we can now design
an objective function using this advantage for
language-independent representation. Hypothet-
ically, for true multi-parallel data in which sen-
tences from different languages are aligned, we
can force the encoder outputs to be the same for
the aligned sentences (newly enabled by the fixed
state size). In other multilingual frameworks in
which each data sample is bilingual, we exploit
the fact that certain languages are shared between
multiple language pairs (in order to enable zero-
shot translation). As a result, by using such lan-
guages as a bridge, we can simply minimize the
squared root deviation (i.e Min Squared Error -
MSE) of the encoder representations between the
bridge and other languages, and adding the regu-
larization term R(X,Y ) to the loss function:

Loss(X,Y ) = −P (Y |X) + α(R(X,Y ))
R(X,Y ) = −(Encoder(X)− Encoder(Y ))2

(3)
In Equation 3, we ran the encoder on both lan-

guages. Assuming sentence X belongs to the
bridge language, the loss function will lead to
the similar representation of different sentences in
other languages that were aligned with X . The
difficulty lies in optimizing two objectives at once:
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the second acts as a regularization because it pre-
vents language-specific information from being
included in the encoder output. As well, many
multilingual corpora may not contain perfectly
aligned sentences, which is a hindrance for lan-
guage bridging.

4 Source Language-Independent
Decoders

We have so far described our proposed method
to learn language-independent features. We intro-
duce the fixed-size states for the encoder and adds
a regularization term to the NMT loss function to
encourage similarity between encoder states. The
problem with this method is the limiting factor of
the fixed-size representations. With the standard
architecture, while the length of the encoder states
always depends on the source sentence, at each
timestep the decoder only has access to a fixed rep-
resentation of the encoder (context vector from at-
tention). This observation suggests that forcing a
decoder state to be independent of the source lan-
guage and maintaining the variable-size represen-
tation for the encoder is possible. In this section,
we navigate the target NMT architecture back to
the popular variable-length sequential encoder in
which no such compromise was made.

Starting from the above motivation, the key
idea is to force a source language-independent
representation in the decoder using an additional
loss function. We achieve this by operating the
encoder-decoder flow not only from the source
sentence to the target, but also from the source
to itself to recreate the source sentence. While
this resembles an auto-encoder which can be com-
bined with translation (He et al., 2016; Domhan
and Hieber, 2017), it is not necessary to mini-
mize the auto-encoder likelihood as in the multi-
task approach (Niehues and Cho, 2017), but only
the decoder-level similarity between the true target
sentence and the auto-encoded source sentence.
Due to the lack of true parallel data, this method
serves as a bridge between the different languages.

An important feature of the NMT attention
mechanism is that it extracts relevant information
in encoded memory (the keys and queries, in this
case they are the source sentence hidden states)
and compresses them into one single state. More
importantly, in the decoder operation this opera-
tor dynamically repeats every timestep. By us-
ing the encoder to encode both (source and target)

sentences and operate the attentive decoder on top
of both encoded sentences, we obtain two atten-
tive representations of the two sentences which are
equally long. This is the key to enabling forced-
length representations in our model.

Given the described model, the question is
about where in the model we can apply our
representation-forcing from Equation 3. Due to
the nature of many translation models being multi-
layered, it is not as straightforward as in the pooled
encoder models. Hence, we investigate three dif-
ferent locations where this regularization method
can be applied. Their illustration is depicted in
Figure 2.

Attention Forcing We can force each attention
context vector1 to be the same between two de-
coding outputs. As a Transformer has N decoder
layers, we take N attention vectors of each de-
coder and apply MSE element-wise2. This MSE-
Attention method is naturally the most immediate
derivative of forcing encoder states to be similar.
Here we annotate Attn(Yt, X) to be the context
vector from attention of layer n between decoder
state of token Yt and source sentence X .

R(X,Y ) = −
N−1∑

n=0

T−1∑

t=0

(Attn(Yt, X)−Attn(Yt, Y ))2

(4)

Decoder Forcing Instead of optimizing for each
context vector, we can also regularize the final de-
coder layer (before the Softmax layer), because
this state summarizes the information gathered in
the decoder at each timestep. This approach will
be referred as MSE-Decoder. Similar to Equa-
tion 4, we denote the decoder state of the condi-
tional probability at time t as Dec(Yt|X,Y1..t−1).

R(X,Y ) =
T−1∑

t=0

(Dec(Yt|X,Y1..t−1)

−Dec(Yt|Y, Y1..t−1))
2

(5)

Softmax Forcing Similar to our second varia-
tion, the restriction is now put at the final layer.
By running the decoder twice for translation and
auto-encoder, we can force the output distribution
of each step P (Yt|X,Y1..t−1) to be equal using KL

1As in (Luong et al., 2015) the context vector denotes the
weighted sum of the encoder after the attention operation

2For multi-head attention we take the output after con-
catenating the heads.
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Figure 2: Three different constraints for language-independent decoders. The model is run twice as translation
(left) and auto-encoder (right). The KL-Softmax is applied at the very top, while the MSE-Decoder minimizes
difference between the layer-normalized states at the end of the decoder. The MSE-attention operates on non-
normalized attention outputs.

divergence minimization. The purpose of this step
is to enable the decoder to generate the same tar-
get sentence with source sentences in different lan-
guages. We denote this approach as KL-Softmax.

R(X,Y ) =

T−1∑

t=0

KL(P (Yt|X,Y1..t−1),

P (Yt|Y, Y1..t−1))

(6)

These three different strategies have the same
theoretical derivatives from semantically equiva-
lent encoder states, but allow different freedoms
for optimization.

5 Experiments

5.1 Experimental Setup
Our experiments use the standard IWSLT2017
benchmark in multilingual translation (Cettolo
et al., 2017), which established a standard-
ized multilingual corpora in different languages
{English, German, Dutch, Romanian and Italian}.
The data is around 60% true parallel, i.e. the same
sentences translated in multiple languages (Dabre
et al., 2017). With the target of zero-shot trans-
lation in mind, we designed two different setups
which challenge multilingual models but are also
industrially practical.

First, it is typical that English is the most
commonly spoken language in the language set,
leading the multilingual model to use English

as the bridge language participating in all lan-
guage pairs. Our first setup therefore consists of
English←→{German, Dutch, Italian, Romanian}
language pairs, with 8 language pairs in total hav-
ing supervision during training and the remaining
12 dedicated to the ZS setup.3

It is notable that zero-shot (or zero-resource,
if the method used generates artificial data to fill
the language gap) setups which have been car-
ried out in previous works were mostly concerned
language connection with only one bridge (En-
glish). However, more realistically, data between
local languages or dialects (such as Indian or Viet-
namese languages) may more abundant than En-
glish. The connectivity in this case demands more
than one language for bridging, which is simulated
in our second setup by setting a “Chain” of lan-
guages. This setup also contains 8 supervised lan-
guages and 12 for zero-shot. Figure 3 shows the
connections between languages in our setups.

The data is preprocessed using standard
MT procedures including tokenization and true-
casing4 and byte-pair encoding with 40K codes.
For model selection, the checkpoints performing
best on the validation data (dev2010 and tst2010
combined) are averaged, which is then used to
translate the tst2017 test set (including all 20 lan-

3This is different from the ZS setup of the IWSLT evalu-
ation campaign in which only 4 out of 20 directions were not
present during training.

4From the Moses toolkit: https://github.com/moses-
smt/mosesdecoder
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Figure 3: The STAR setup (left) with English as the
sole bridge language, and the CHAIN setup (right) with
3 different bridge languages and more than 2 steps for
zero-shot translation.

guage pairs).

5.2 Model Configuration

Our baseline model is the Transformer following
the Base configuration in (Vaswani et al., 2017).
Empirically, we increased the number of layers to
8 for both encoder and decoder, keeping the layer
sizes at 512 for embedding and 2048 for the in-
ner layers, and combined with word-dropout of
Pdrop = 0.1 (Gal and Ghahramani, 2016) to im-
prove the potency of the baseline for this task.
Layer dropout is also added according to the orig-
inal work with Pdrop = 0.2. The learning rate
follows the adaptive learning rate proposed with
the Transformer; we use the base learning rate 2
and the number of warm-up steps is 8192. The
Transformer is trained for around 60000 steps be-
fore overfitting.

For multilingual functionality, the model uses
language embeddings as a feature5 (Ha et al.,
2017). Our fixed-size models with pooling use 16
heads for the multi-head pooling models and 16
attention heads for the attention-pooling models.

5.3 Training Details

For all three variations of the decoder, the most
important factor is the coefficient α of the second
loss term (as in Equation 3 which decides the im-
portance of this term during the training process.
In the beginning of training, it is more important to
focus on the main translation tasks, while the reg-
ularization term has more effect when the model
is converging. To make training stable, repeat-
able, and reduce the necessity of hyperparameter
tuning, we always take the Transformer baseline
as the pretrained model and then continue training
with the 2nd loss term with constant α. Based on

5We tried the simpler method with the input token as in
(Johnson et al., 2016), but our model could not consistently
produce the correct output language in zero-shot tests, which
is in-line with (Ha et al., 2017)

initial experiments for MSE-Decoder and MSE-
Attention, we set α = 0.2 while it is set to 0.01
for KL-Softmax. As a result, all of our variations
have the same baseline as common ground. Fur-
ther, when models are trained from the baseline
checkpoint, we reset the learning rate and learning
rate on an adaptive schedule and continue training
for around 50000 steps6.

An important detail during training is that, it
is crucial to free the gradient-path in the decoder
from the 2nd loss term for all three variations. In
other words, the encoder only receives gradients
from regularization. While we saw little difference
for the development data with or without this con-
straint, we noticed that zero-shot translation per-
formance can worsen if gradients flow through the
decoder normally7.

Our model is implemented in PyTorch (Paszke
et al., 2017) and is publicly available 8.

5.4 Baseline and Fixed-size Source Language
Representation Results

First, as outlined in Section 3, our goals are to set
a competitive baseline and more importantly ver-
ify the behaviour of the encoder when the output
space is limited to a fixed size instead of variable
states. As shown in Table 1, while the two pooling
models suffered from information bottleneck and
lost 1− 2 BLEU for each language pair compared
to the base Transformer model, the Mean-Pooling
model is surprisingly better than the baseline at
zero-shot tests. The Attention-Pooling model
outperformed the Mean-Pooling at non-zero-shot
tests, yet is worse at zero-shot conditions. Com-
pared to other published works on this dataset
(which are trained on all 20 directions), our su-
pervised directions set the state-of-the-art for these
directions while the zero-shot results approach the
best supervised models in the literature (Dabre
et al., 2017; Platanios et al., 2018)). Furthermore,
by training these two models with a loss func-
tion including MSE-loss for encoder similarity, we
found noticeable gains on zero-shot performance.
More importantly, the zero-shot performance of
our Mean-Pooling model with MSE-encoder not
only outperforms the baseline, but also rivals the

6Prolonging training of the baseline is not beneficial be-
cause it will begin to overfit.

7This can be done in PyTorch by creating a second de-
coder with (frozen) separate parameters from the main model
decoder and then synchronizing them after each update.

8The implementation is available at
https://github.com/quanpn90/NMTGMinor/tree/DbMajor
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Transformer model competitively trained with all
language pairs in Dabre et al. (2017). This gain is
also noticed with the Attention-Pooling model.

These preliminary experiments shed light on
several findings. First, when limited in representa-
tion size, the multilingual NMT models can selec-
tively focus on features shared between languages;
this is our hypothesis for the improvement in zero-
shot translation from the baseline to the Mean-
Pooling model (on average +1.28 BLEU points).
Second, by applying the MSE-loss to both pooling
variations, they significantly improve in zero-shot
performance. This is, to the best of our knowl-
edge, the first empirical proof that a multilingual
model is able to learn a common representation
space.

5.5 Transformer with
Language-Independent Regularization

In Section 4 we showed three different strate-
gies to achieve a decoder that is source language-
independent, which theoretically may have the
same effect to minimize encoded representation
differences: directly equalizing the Softmax out-
puts, the decoder outputs, and the attention output
of each layer. It is important to note that no ar-
chitectural modification was necessary to include
these strategies, thus all of the advantages of the
Transformer model and the overall number of pa-
rameters are maintained.

5.5.1 Results for the STAR Configuration
The results are shown in table 2 for the STAR con-
figuration. Because MSE-attention is the closest
derivative to having the same encoder representa-
tion, we first investigate the effects of this vari-
ation. All zero-shot translation pairs receive no-
ticeable improvement, with the average of 1.71
BLEU points. The most significant gain belongs
to It-Nl pair, which achieves a 2.7 BLEU gain.
More importantly, unlike the pooling models, we
did not have a performance compromise for the
non-zero tests. Specifically, the results in the 8 su-
pervised language pairs are nearly identical to the
baseline (except for the En-Nl direction, which de-
creases by 0.8 points). On average, the benefit for
the zero-shot tests greatly outweighs any potential
compromise.

The MSE-Decoder allows more freedom during
optimization compared to the MSE-attention, as it
only requires the final state of the decoder which
looks at both encoded sentences to be the same.

In this case, we found significant improvement for
zero-shot translation with +2.21 BLEU points on
average. The previously most-improved language
pair, It-Nl, is further improved by 0.4 for a total of
3.1 BLEU. Moreover, we found that this addition
is also helpful for the pooling models, as reflected
in the final column of the Table 2, significantly in-
creasing the averaged BLEU scores from 17.22 to
19.81 points.

Finally, we found that regularizing on Softmax
level is extremely difficult to optimize, and the
resulting model deteriorates in performance for
both zero-shot and normal tests. We found that
the gradient norm is much bigger than the other
two cases, so possibly optimization can be done
with appropriate coefficients. However, this model
is the most computationally expensive among the
three investigated, due to the second Sofmax func-
tion required to be computed, making hyperpa-
rameter tuning expensive.

Even with the significant gain from regulariz-
ing the encoder representation, there is still a dis-
tance (0.4 BLEU point on average) between the
best zero-shot model and pivot translation. While
pivot translation can theoretically suffer from error
cascading, we argue that this is a very strong base-
line because the language-specific information,
which is possibly negated by finding a language-
independent encoder, can be transferred during the
pivot process. On the other hand, pivot transla-
tion is twice as slow because multiple translation
phases are required.

Our results also proved that our approach does
not induce bias toward any language pair, as evi-
denced by the fact that our improvements (or dete-
rioration) is nearly uniform across language pairs.

5.6 Results for the CHAIN configuration

In this particularly challenging setting where we
have multiple bridge languages and different zero-
shot distances, we experience different behavior
from both pivot techniques and our techniques.

For the closest language pairs (with 2-step dis-
tance), the pivot translation method yields bet-
ter results than both standard and our methods.
The exception is the Romanian-English direction,
in which case the pivot language is Italian being
closer to Romanian than English.

It is important to note that most works in the
literature used English as the common bridge lan-
guage; these results indicate that zero-shot per-
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Pair/Model Transformer Mean-Pooling + MSE Attn-Pooling + MSE Transformer
(ours) (Dabre et al., 2017)

en-de 27.51 23.74 25.51 26.04 26.2 23.25
de-en 30.73 27.53 28.44 28.68 29.34 26.45
en-ro 27.45 23.48 25.08 25.37 26.03 24.66
ro-en 33.65 30.25 30.95 32.1 32.02 29.58
en-it 31.84 27.71 29.11 30.14 30.08 30.79
it-en 35.84 32.50 33.75 34.16 34.23 34.73
en-nl 32.15 28.58 29.86 30.9 30.68 28.80
nl-en 34.81 31.00 32.1 32.81 33.02 30.49
de-nl 19.04 19.68 20.46 18.36 19.41 19.64
nl-de 20.46 19.89 21.10 19.48 20.44 20.27
it-ro 18.45 18.16 19.73 17.42 18.74 20.60
ro-it 19.84 19.70 20.96 18.73 19.92 21.89
de-it 16.59 16.40 17.53 15.23 16.59 17.54
it-de 17.55 16.91 18.89 16.89 18.36 19.10
nl-ro 16.89 16.63 17.85 15.77 16.94 17.65
ro-nl 18.12 18.65 19.79 17.41 18.8 20.24
nl-it 18.11 18.31 19.78 17.45 18.54 19.86
it-nl 18.71 19.31 21.08 18.31 19.91 22.32
de-ro 15.33 15.07 16.13 14.56 15.31 16.27
ro-de 17.92 17.19 19.02 17.04 18.16 17.94
Avg. 18.08 18.0 19.36 17.22 18.43
∆ -0.08 +1.28 -0.86 +0.35

Table 1: IWSLT 2017 STAR configuration: Baseline vs (Mean/Attention) Pooling. The top section shows 8
language pairs involved in training, while the bottom section shows the zero-shot results for 12 language pairs. We
also present results for this dataset from previous work for reference.

formance can be more favourable when language
similarity is taken into account.

When the distance increases, zero-shot trans-
lation with forced language-independence using
an additional loss clearly outperforms pivot-based
translation. We see improvements of more than
1 BLEU over pivoting for languages with several
bridge languages. In this case, both of our tech-
niques still bring improvements for every direction
compared to the baseline zero-shot, while poten-
tial disadvantages of pivoting, namely error prop-
agation, become clearer. It is important to note
that our regularization techniques scale to settings
with multiple bridges. We found the performance
enhancement to be most significant for the lan-
guage pairs which are furthest in the chain (4),
with +1.54 BLEU points difference compared to
the baseline. On the other hand, the Nl⇐⇒It lan-
guage pairs were most difficult to improve. This is
also the setting in which pivot suffered the heaviest
loss. To summarize, these multi-steps experiments
showed the drawbacks of pivot while at the same

time confirm the consistency of our approach.

6 Related Work

Zero-shot translation is of considerable concern
among the multilingual translation community.
By sharing network parameters across languages,
ZS was proven feasible for universal multilingual
MT (Ha et al., 2016; Johnson et al., 2016). There
are many variations of multilingual models geared
towards zero-shot translation. Lu et al. (2018) pro-
posed to explicitly define a recurrent layer with a
fixed number of states as “Interlingua” which re-
sembles our attention-pooling models. However,
they compromise the model compactness by hav-
ing separate encoder-decoder per language, which
linearly increases the model size across languages.
On the other hand, Platanios et al. (2018) shares
all parameters, but utilized a parameter generator
to generate specific parameters for the LSTMs in
each language pair using language embeddings.
The closest to our work is probably Arivazhagan
et al. (2019). The authors aimed to regularize
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Pair/Model Transformer +Pivot +MSE +MSE- +KL Mean- Attn-
-Attn dec -Sofmax Pooling Pooling

en-de 27.51 27.44 27.21 25.52 25.64 25.51
de-en 30.73 30.6 30.37 29.32 29.34 28.44
en-ro 27.45 27.32 27.1 25.40 25.84 25.08
ro-en 33.65 33.24 33.62 31.89 32.12 30.95
en-it 31.84 31.61 31.84 29.55 30.03 29.11
it-en 35.84 35.76 35.93 34.34 34.72 33.75
en-nl 32.15 31.85 31.38 29.78 30.46 29.86
nl-en 34.81 34.3 34.52 32.97 33.25 32.1
de-nl 19.04 21.59 20.93 21.47 19.44 20.95 20.46
nl-de 20.46 22.14 21.99 21.9 19.93 21.51 21.1
it-ro 18.45 20.68 20.25 20.56 18.01 20.23 19.73
ro-it 19.84 22.32 21.44 22.19 20.02 21.48 20.96
de-it 16.59 19.08 18.12 18.44 17.01 18.18 17.53
it-de 17.55 20.68 19.09 19.92 18.21 19.47 18.89
nl-ro 16.89 19.25 18.41 18.8 16.97 18.12 17.85
ro-nl 18.12 21.38 20.16 20.8 19.33 20.34 19.79
nl-it 18.11 21.7 20.04 20.91 18.93 20.15 19.78
it-nl 18.71 22.67 21.41 21.8 19.75 21.52 21.08
de-ro 15.33 17.69 16.77 17.12 15.47 16.56 16.13
ro-de 17.92 20.84 19.89 19.84 18.35 19.31 19.02
avg 18.08 20.83 19.88 20.31 18.45 19.36 19.81
∆ +2.64 +1.80 +2.23 +0.37 +1.28 +1.73

Table 2: IWSLT 2017 STAR configuration result. Here we showed the Mean Pooling model that is enhanced with
MSE-Encoder, and the Attn-Pooling model with MSE-Decoder.

Pair/Model Distance Transformer Pivot +MSE-Decoder +MSE-Attn
en-ro 2 21.88 24.38 24.04 23.3
ro-en 2 29.82 29.29 30.79 30.92
de-it 2 17.5 19.45 19.3 18.57
it-de 2 18.22 20.97 19.84 19.02
en-nl 2 25.98 27.07 28.22 27.38
nl-en 2 31.24 29.22 31.65 32.08
nl-it 3 20.51 19.12 20.94 20.64
it-nl 3 20.87 20.39 21.47 21.17
de-ro 3 16.55 16.61 17.06 16.71
ro-de 3 19.35 19.15 20.18 19.65
nl-ro 4 16.37 16.81 17.33 16.92
ro-nl 4 17.55 18.55 19.66 18.88
Avg. all 19.86 20.47 21.06 20.58
Avg. 2 24.10 25.06 25.64 25.21
Avg. 3 19.32 18.81 19.91 19.54
Avg. 4 16.96 17.68 18.50 17.90

Table 3: IWSLT 2017 CHAIN configuration results (12 zero-shot directions).

the model into a common encoding space by tak-
ing the mean-pooling of the encoder states and
minimize the cosine similarity between the source
and the target sentence encodings. In compari-

son, our approach is more generalized because the
decoder is also taken into account during regu-
larization, which is shown by our results on the
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IWSLT benchmark9. Also, we proposed stronger
representation-forcing since the cosine similarity
minimizes the angle between two representational
vectors, while the MSE forces them to be exactly
equal. In addition, zero-resource techniques which
generate artificial data for the missing directions
have been proposed as an alternative to zero-shot
translation (Chen et al., 2018; Al-Shedivat and
Parikh, 2019; Chen et al., 2017). The main disad-
vantage, however, is the requirement of computa-
tionally expensive sampling during training which
makes the algorithm less scalable to the number
of languages. In our work, we focus on minimally
affecting the training paradigm of universal multi-
lingual NMT.

7 Conclusion

This work provides a through investigation of
zero-shot translation in multilingual NMT. We
conduct an analysis of neural architectures for
zero-shot through two three different modifica-
tions showing that a beneficial shared repre-
sentation can be learned for zero-shot transla-
tion. Furthermore, we provide a regulariza-
tion scheme to encourage the model to cap-
ture language-independent features for the Trans-
former model which increases zero-shot perfor-
mance by 2.23 BLEU points, achieving the state-
of-the-art zero-shot performance in the standard
benchmark IWSLT2017 dataset. We also pro-
posed an alternative setting with more than one
language as a bridge. In this challenging setup for
zero-shot translation, we confirmed the consistent
effects of our method by showing that the bene-
fit is still significant when languages are far from
each other in the pivot path. This result also mo-
tivates future works to apply the same strategy for
other end-to-end tasks such as speech translation
where there may be more variability in domains
and modalities.
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Abstract
Transformer-based neural machine transla-
tion (NMT) has recently achieved state-of-
the-art performance on many machine trans-
lation tasks. However, recent work (Ra-
ganato and Tiedemann, 2018; Tang et al.,
2018; Tran et al., 2018) has indicated that
Transformer models may not learn syntac-
tic structures as well as their recurrent neu-
ral network-based counterparts, particularly in
low-resource cases. In this paper, we incor-
porate constituency parse information into a
Transformer NMT model. We leverage lin-
earized parses of the source training sentences
in order to inject syntax into the Transformer
architecture without modifying it.

We introduce two methods: a multi-task ma-
chine translation and parsing model with a sin-
gle encoder and decoder, and a mixed encoder
model that learns to translate directly from
parsed and unparsed source sentences. We
evaluate our methods on low-resource trans-
lation from English into twenty target lan-
guages, showing consistent improvements of
1.3 BLEU on average across diverse target lan-
guages for the multi-task technique. We fur-
ther evaluate the models on full-scale WMT
tasks, finding that the multi-task model aids
low- and medium-resource NMT but degener-
ates high-resource English→German transla-
tion.

1 Introduction

Transformer-based neural machine translation
(NMT) (Vaswani et al., 2017) has recently out-
performed recurrent neural network (RNN)-based
models (Bahdanau et al., 2015; Cho et al., 2014)
in many tasks (Bojar et al., 2018). However, there
is still room for improvement for NMT, partic-
ularly for low- and moderate-resource language
pairs. Enriching NMT with syntactic informa-
tion has the potential to improve generalization

in low-resource scenarios, and adding syntax to
Transformer-based NMT is currently an underex-
plored research area.

Transformer-based NMT may in fact stand to
benefit even more from explicit syntactic annota-
tions than RNN-based NMT, particularly in low-
resource settings. On the one hand, the Trans-
former model already learns some syntax with-
out explicit supervision in high-resource cases.
Vaswani et al. (2017) visualized a few encoder
self-attentions in a trained NMT model and found
that they seemed to capture syntactic structure.
This was formalized by Raganato and Tiedemann
(2018), who found that Transformer encoders
trained on high-resource NMT tasks were able to
perform reasonably well at part-of-speech tagging,
chunking, and other tasks. However, for Trans-
formers trained on low-resource NMT, the results
on these tasks were not as strong. Additionally,
Tran et al. (2018) found that an RNN language
model did better at predicting subject-verb agree-
ment than a Transformer language model; Tang
et al. (2018) saw similar results for Transformer
vs. RNN NMT models.

Thus, the goal of this paper is to improve
Transformer-based NMT using source-side syn-
tactic supervision. We propose two methods that
incorporate source-side linearized constituency
parses into Transformer-based NMT. The first,
multi-task, uses the Transformer to learn to parse
and translate the source sentence simultaneously.
The second, mixed encoder, learns to translate di-
rectly from both parsed and unparsed source sen-
tences. This paper makes the following contribu-
tions:

• This is one of the first attempts at using syn-
tax to improve Transformer-based NMT

• We introduce two methods for adding syntax
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Transformer

<TR> you have not been elected . <TR>

<TR> let me make a comparison . <TR>

<PA> you have not been elected . <PA>

. . .

no ha sido elegido .

permı́tanme utilizar una comparación .

(ROOT (S (NP ) (VP (VP (VP ) ) ) ) )

. . .

(a) Multi-task syntactic NMT model. The system
is trained to translate (<TR>) and parse (<PA>)
source sentences using the same architecture.

Transformer

(ROOT (S (NP you ) (VP have not (VP been (VP elected ) ) ) . ) )

(ROOT (S (NP they ) (VP are (NP important issues ) ) . ) )

you have not been elected .

. . .

no ha sido elegido .

estas cuestiones son importantes .

no ha sido elegido .

. . .

(b) Mixed encoder syntactic NMT model. The system learns to trans-
late directly from both parsed and unparsed source sentences into un-
parsed target sentences.

Figure 1: Illustrations of the two proposed syntactic NMT methods.

to NMT that are straightforward to incorpo-
rate in practice

• We empirically evaluate both methods on
translation from English into 21 diverse tar-
get languages, finding that the multi-task
method improves consistently over a non-
syntactic baseline

2 Transformer-Based NMT with
Linearized Parses

We propose two models for incorporating lin-
earized parses into Transformer-based NMT: a
multi-task model and a mixed encoder model. Fig-
ure 1 summarizes the two proposed methods; they
are discussed in detail in sections 2.2 and 2.3, re-
spectively.

2.1 Linearized Constituency Parses
Both of our proposed methods make use of lin-
earized parses of the source sentences to inject
source syntax into Transformer-based NMT. Lin-
earizing the parses allows us to add syntactic in-
formation without modifying the Transformer ar-
chitecture. Here, we describe how these parses are
created. We generate and format the parsed data
as follows:

1. In order to generate syntactically parsed
training data, we use the Stanford CoreNLP

constituency parser (Manning et al., 2014)
to parse the source side of the parallel cor-
pus. This technique of parsing the parallel
data instead of using gold parses is common
in syntactic NMT (Eriguchi et al., 2016) and
in neural parsing (Vinyals et al., 2015). For
the multi-task model, it would be possible to
incorporate gold parses into training as well,
but we leave this for future work.

2. We linearize the resulting parses similarly
to Vinyals et al. (2015) by using a depth-
first tree traversal. We tokenize the opening
parenthesis of each phrase with its phrase la-
bel.

3. Since neural machine translation already
struggles with long sentences (Bahdanau
et al., 2015), and adding the phrase nodes
has the potential to make the sentences much
longer, we remove part-of-speech tags from
the parses (as was done by Aharoni and Gold-
berg, 2017).

4. For our multi-task model (section 2.2), we re-
move words from the linearized parses. We
do this in order to further shorten the length
of the target sequences. We do not expect that
this will make the parsing task too difficult, as
a similar technique was used for neural pars-
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translation <TR> you have not been elected . <TR>→ no ha sido elegido .
parsing <PA> you have not been elected . <PA>→ (ROOT (S (NP ) (VP (VP (VP ) ) ) ) )

Table 1: Example of English→Spanish training data for parsing and translation tasks in the multi-task system.

(ROOT (S (NP you ) (VP have not (VP been (VP elected ) ) ) . ) ) → no ha sido elegido .
you have not been elected . → no ha sido elegido .

Table 2: Example of English→Spanish training data for the mixed encoder system.

ing by Vinyals et al. (2015).

5. For our mixed encoder model (section 2.3),
we convert the words in the parses into sub-
words using byte pair encoding (Sennrich
et al., 2016). We do not allow the parse la-
bels to be broken into subwords.

Tables 1 and 2 give examples of the resulting
parse formats.

2.2 Multi-Task NMT and Parsing with
Shared Decoder

Our first method for incorporating source-side
syntax into Transformer-based NMT adopts a
multi-task framework. The main task is translat-
ing the source sentence into the target language;
the secondary task is parsing the source sentence.
For the parsing task, we employ the same encoder-
decoder framework as for NMT, with the sequen-
tial source sentence as input and the linearized,
unlexicalized parsed source sentence as output.
Thus, both tasks are trained using a single model
with a shared encoder and decoder. This is similar
to the multi-task framework proposed by Luong
et al. (2016), with three main differences: 1) we do
not use separate decoders for each task, 2) we use
the same source data for both parsing and transla-
tion, and 3) we use a Transformer rather than re-
current neural network-based architecture.

We do not directly use gold parses to train the
parsing task, nor do we split the training data be-
tween the two tasks. The reason for using the same
source data for both tasks is that we expect it to be
difficult to find a sufficiently large amount of in-
domain gold parses for training; additionally, our
main goal is to improve NMT, so we do not expect
the lower quality of the synthetic parses to matter.

In order to generate the training data for this
model, we first create linearized parses of the
source side of the training corpus as described
above. Next, we add a tag at the beginning and
end of each source sentence indicating the desired

task, similar to what was done by Johnson et al.
(2017) for multilingual NMT. Table 1 gives an ex-
ample of the data format. Finally, we shuffle the
parsing and translation training data together and
train the shared encoder and decoder on both tasks,
making no further distinction between the tasks
during training. Since we parse all of the train-
ing data, each source sentence appears twice: once
with a target language sentence and once with a
parse of the source sentence. These copies are
shuffled separately.

2.3 Mixed Encoder Transformer

Our second method for augmenting the NMT
Transformer with syntax is the mixed encoder
model. This model learns to translate both from
unparsed and parsed source sentences into un-
parsed target sentences.

In order to train the mixed encoder model, we
create two copies of the training data, one with
parsed source sentences and the other with un-
parsed source sentences. We then shuffle these
training corpora together into a single corpus and
train a standard Transformer NMT model on the
final data, with a single encoder for both parsed
and unparsed source sentences. The training data
contains (parsed source, unparsed target) and (un-
parsed source, unparsed target) sentence pairs; Ta-
ble 2 gives an example of the two types of train-
ing sentence pairs for the mixed encoder method.
Since the data is shuffled, these two sentence pairs
(with identical target sentences) will not necessar-
ily be seen together during training.

Since the mixed encoder model is trained on
both parsed and unparsed source sentences, during
inference it is able to translate from either source
sentence format. Inference on unparsed source
sentences is slightly faster (since it does not re-
quire parsing of the source sentence) and achieves
slightly higher BLEU scores, so we show results
using unparsed source sentences for our experi-
ments (sections 4.2 and 5.2).
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3 Experimental Setup

We evaluate our multi-task and mixed encoder
models compared to a standard (non-syntactic)
Transformer baseline on translation from English
into 21 target languages. Sections 4.1 and 5.1 con-
tain detailed information on the target languages
and data used. All models are implemented in
Sockeye (Hieber et al., 2017). For hyperparam-
eter settings, we follow the recommendations of
Vaswani et al. (2017).

We preprocess our data for all experiments as
follows. First, we tokenize and truecase the data
using the Moses scripts (Koehn et al., 2007). We
then train separate subword vocabularies (Sen-
nrich et al., 2016) for the source and target lan-
guages, with 30k merge operations per language.
We use the Stanford CoreNLP parser (Manning
et al., 2014) to generate constituency parses of
the source (English) sentences, and linearize and
format the parses as described in section 2.1.
We do not use any monolingual training data;
however, our proposed models are amenable to
adding monolingual data, and we expect that
BLEU scores would strongly increase if monolin-
gual training data were used.

4 Small-Scale Cross-Lingual
Experiments

4.1 Data

We use the Europarl Parallel Corpus (Koehn,
2005) as the basis for our small-scale cross-lingual
experiments. We consider translation from En-
glish (EN) into each of the twenty remaining target
languages; Table 3 contains a full list of the tar-
get languages, as well as their language families
or branches. By using this data set, we are able
to evaluate the usefulness of syntactic information
for several relatively diverse target languages, un-
like most previous work on syntactic NMT (re-
viewed in section 7). However, all the languages in
our experiments are Indo-European or Uralic due
to using Europarl.

In order to facilitate comparison between the
target languages, we follow Cotterell et al. (2018)
by taking only the intersections of the Europarl
training data. This means that the source (EN) data
is identical for all experiments, and the targets are
all translations of each other in the different tar-
get languages. This results in 170k parallel train-
ing sentences for each language pair. We reserve a

Family Language Abbrev.
Baltic Latvian LV

Lithuanian LT
Germanic Danish DA

Dutch NL
German DE
Swedish SV

Hellenic Greek EL
Romance French FR

Italian IT
Portuguese PT
Romanian RO
Spanish ES

Slavic Bulgarian BG
Czech CS
Polish PL
Slovak SK
Slovene SL

Uralic Estonian ET
Finnish FI
Hungarian HU

Table 3: Target languages used in our experiments,
along with their language families or branches and their
abbreviations (abbrev.).

random subset of 10k sentences from the original
data to use as development data and an additional
10k sentences as test data; these development and
test sets are not included in the training data.

4.2 Results

Table 4 displays BLEU scores on the test data
for each target language for the proposed systems.
The multi-task system outperforms the baseline
for all target languages. In addition, for all but four
target languages (SV, EL, SK, and ET), the multi-
task system is at least 1 BLEU point better than the
baseline. Thus, our proposed multi-task method
consistently improves over a non-syntactic base-
line across several diverse target languages in low-
resource scenarios. Additionally, in all cases but
two (EN→LT and EN→ET), multi-task achieves
the highest BLEU score of all models.

The performance of the mixed encoder system
in relation to the baseline is less consistent than
that of the multi-task system. In most cases, the
mixed encoder improves only slightly (less than 1
BLEU) over the baseline, although for LV, LT, RO,
ES, PL, and FI, the improvements are stronger.
However, for four target languages (NL, EL, BG,
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EN→* base mixed enc. multi-task
LV 26.5 28.1 (+1.6) 28.2 (+1.7)
LT 23.5 24.6 (+1.1) 24.8 (+1.3)
DA 39.5 40.1 (+0.6) 40.7 (+1.2)
NL 28.8 28.7 (-0.1) 30.6 (+1.8)
DE 30.5 30.6 (+0.1) 32.1 (+1.6)
SV 35.9 36.4 (+0.5) 36.4 (+0.5)
EL 38.9 38.8 (-0.1) 39.7 (+0.8)
FR 38.3 38.5 (+0.2) 40.4 (+2.1)
IT 31.3 31.3 (==) 32.5 (+1.2)
PT 39.2 39.3 (+0.1) 40.5 (+1.3)
RO 36.3 37.8 (+1.5) 37.8 (+1.5)
ES 41.6 43.0 (+1.4) 43.1 (+1.5)
BG 39.0 38.6 (-0.4) 40.5 (+1.5)
CS 27.5 28.3 (+0.8) 28.8 (+1.3)
PL 23.7 24.8 (+1.1) 25.1 (+1.4)
SK 32.8 32.5 (-0.3) 32.9 (+0.1)
SL 33.3 34.2 (+0.9) 34.9 (+1.6)
ET 20.2 20.9 (+0.7) 20.8 (+0.6)
FI 21.5 22.8 (+1.3) 23.3 (+1.8)

HU 22.3 22.6 (+0.3) 23.4 (+1.1)

Table 4: BLEU scores on the test set for small-
scale cross-lingual experiments for the baseline (base),
mixed encoder (mixed enc.), and multi-task models.
Difference with the baseline is shown in parentheses.

and SK), the mixed encoder system does worse
than the non-syntactic baseline.

Target language family does not seem to have
a noticeable effect on the performance of either
the mixed encoder or the multi-task method; this
could be due to the fact that the syntactic anno-
tations were on the source sentence only. It re-
mains to be seen whether certain source languages
are particularly amenable to incorporating source
syntax in NMT.

5 Full-Scale WMT Experiments

5.1 Data

The main goal of the previous section was to
evaluate our proposed syntactic NMT methods
on a wide range of target languages and com-
pare the effect of target language on performance.
In this section, we run additional experiments
in order to evaluate the proposed methods on a
standard benchmark. We train our models on
the following tasks: English→Turkish (TR) from
the WMT18 news translation shared task (Bojar
et al., 2018), English→Romanian WMT16 (Bojar
et al., 2016), and English→German WMT17 (Bo-

System newstest2017 newstest2018
baseline 9.6 8.8
mixed enc. 9.6 (==) 9.3 (+0.5)
multi-task 10.6 (+1.0) 10.4 (+1.6)

Table 5: BLEU scores (and improvement over the
baseline) for EN→TR on the test (newstest2017) and
held-out (newstest2018) datasets.

jar et al., 2017).
For each experiment, we use all available par-

allel training data from the task, but no monolin-
gual data. This gives us 200k parallel training sen-
tences for EN→TR, 600k for EN→RO, and 5.9M
for EN→DE. Note that the EN→RO and EN→DE
training corpora contain some overlaps with the
training data in section 4.1, although the experi-
ments in this section use significantly more train-
ing data. We validate EN→TR on newstest2016,
EN→RO on newsdev2016, and EN→DE on new-
stest2015.

5.2 Results
The results for the EN→TR experiments are dis-
played in Table 5. These results mirror what was
seen in the previous experiments: the mixed en-
coder method gives modest improvements over
the non-syntactic baseline (0–0.5 BLEU), while
the multi-task method yields the strongest results,
with an improvement of 1.0–1.6 BLEU points over
the baseline. Although Turkish is not related to
any of the target languages studied in section 4,
the amount of training data for EN→TR is similar
to what was used in the previous section, which
might be one explanation for the similar results.

Table 6 shows performance of each model on
the WMT EN→RO experiments. Here, we see
more modest improvements from adding the syn-
tactic data: only 0.5 BLEU over the baseline for
both the mixed encoder and multi-task methods.
It is interesting to compare this with the results for
the Europarl EN→RO experiments (section 4.2);
there, we saw a much larger improvement over the
baseline for both multi-task models (1.5 BLEU).
This indicates that the effectiveness of these mod-
els may depend on amount of data (the WMT
models were trained on about three times as much
training data) rather than on target language fam-
ily.

Finally, we display our WMT EN→DE re-
sults in Table 7. Here, we see that for very
high-resource EN→DE translation, the multi-task
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System newstest2016
baseline 21.5
mixed enc. 22.0 (+0.5)
multi-task 22.0 (+0.5)

Table 6: BLEU scores (and improvement over the
baseline) for EN→RO on the test set (newstest2016).

System newstest2016 newstest2017
baseline 31.7 25.5
mixed enc. 31.9 (+0.2) 26.0 (+0.5)
multi-task 29.6 (-2.1) 23.4 (-2.1)

Table 7: BLEU scores (and difference with the base-
line) for EN→DE on the test (newstest2016) and held-
out (newstest2017) datasets.

method does much worse than the baseline (by
2.1 BLEU points). In addition, the mixed encoder
method achieves comparable BLEU scores to the
baseline (only 0.2–0.5 BLEU higher). Thus, nei-
ther proposed technique is particularly successful
for high-resource EN→DE NMT. Again, we can
contrast this with the Europarl EN→DE experi-
ments, where we saw strong improvements from
the multi-task model (1.6 BLEU). This lends fur-
ther credence to the hypothesis that these NMT
models with linearized source parses are helpful
cross-linguistically in low-resource scenarios, but
not in high-resource setups.

We further investigated the WMT EN→DE
multi-task model to find reasons for the large drop
in performance compared to the baseline. We
found that while the multi-task model was able to
generate reasonable (albeit lower-quality) transla-
tions, it did not successfully learn to parse. Dur-
ing parsing inference, the model always output the
same parse regardless of the input sentence: (ROOT

(S (NP ) (VP (NP (NP ) (PP (NP (NP ) (PP (NP ) ) ) )
) ) ) ) . This was a common parse in the training
data (it occurred 12k times in the data). This issue
is partially due to the fact that validation is only
done on the translation task, not on the parsing
task. However, we do not see this issue with the
other language pairs and experiments. This failure
to learn to parse indicates that the WMT EN→DE
multi-task model is not able to take advantage of
the syntactic annotations.

6 Validity of Parses

The multi-task syntactic NMT models are trained
both to translate and to parse the input sentences.

EN→* % Valid Parses
LV 96.8%
LT 99.2%
DA 70.8%
NL 93.3%
DE 87.2%
SV 95.4%
EL 85.2%
FR 92.3%
IT 78.8%
PT 89.4%
RO 96.3%
ES 86.5%
BG 97.5%
CS 95.9%
PL 98.1%
SK 98.5%
SL 97.3%
ET 98.2%
FI 95.1%

HU 93.6%

Table 8: Percent of valid parses of the parses generated
by the Europarl multi-task systems.

The main goal of these models has been to im-
prove translation; those results were reported in
sections 4.2 and 5.2. In this section, we analyze
the validity of the parses produced by the multi-
task systems. We use a standard parsing bench-
mark, WSJ section 23 of the Penn Treebank (Mar-
cus et al., 1993), as the evaluation dataset in this
section. We preprocess this dataset as described in
section 3 before using it as the source data for the
multi-task systems.

The multi-task models were trained to generate
unlexicalized parses. Since we removed part-of-
speech tags from the parses during preprocessing,
it is not possible to automatically relexicalize the
parses. This is because there is no one-to-one cor-
respondence between the leaves of the parse tree
and the number of words in the sentence. Thus,
rather than evaluating the parses directly, we count
the number of valid parses (i.e. parses with bal-
anced parentheses) per target language.

Table 8 shows the percent of generated parses
that were valid for the Europarl multi-task mod-
els. For most target languages, over 90% of the
generated parses are valid.

Unlike for the translation results, target lan-
guage family does seem to have an effect on the
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EN→* % Valid Parses
TR 86.3%
RO 99.8%
DE 100%

Table 9: Percent of valid parses of the parses generated
by the WMT multi-task systems.

parsing results. Overall, Romance, Germanic,
and Hellenic target language systems generate the
fewest valid parses. This indicates that Baltic,
Slavic, and Uralic target languages are most help-
ful in learning to parse English in a multi-task sys-
tem. Thus, from our cross-lingual experiments, it
seems that the parsing performance of a multi-task
system depends on the target language, whereas
we saw in the previous sections that the transla-
tion success depends more on the amount of train-
ing data. Note, however, some caveats: 1) we did
not perform validation on the parsing task (only
on the translation task), and 2) we are measuring
only parsing validity here, rather than parsing per-
formance.

Table 9 shows the percent of valid parses for the
three WMT multi-task experiments. For EN→DE,
all of the generated parses are valid because they
are all identical (as dicussed in section 5.2). For
EN→RO, nearly all the parses are valid as well.
However, this language pair did not have the same
issue as EN→DE: the parses generated for each
sentence were different, and a manual analysis in-
dicated that the generated EN→RO parses were
reasonable. The EN→TR system generated a
large amount of valid parses, but fewer than the
EN→RO system; it is possible that the EN→TR
system would have done better with more training
data.

7 Related Work

The performance of many RNN-based NMT
paradigms has been improved by adding explicit
syntactic annotations, particularly on the source
side; we review some syntactic NMT models here.
This paper is, along with Wu et al. (2018) and
Zhang et al. (2019), among the first to add explicit
syntax to Transformer-based NMT.

7.1 Linearized Parses in Neural Networks

In this work, we use linearized parse trees to add
syntax into the Transformer. Vinyals et al. (2015)
and Choe and Charniak (2016) introduced the idea

of linearizing parse trees for neural parsing. Lin-
earized parses are advantageous because they can
be used anywhere that standard sequences can be
used; in fact, Vaswani et al. (2017) showed that
they can also be used by the Transformer to learn
constituency parsing. Here, we leverage this idea
by using linearized parses as an additional signal
for the Transformer during NMT training.

7.2 Syntactic NMT with Modified Encoder
There have been several recent proposals to incor-
porate source-side syntax into RNN-based NMT
by modifying the encoder architecture; we re-
view some such models here. Eriguchi et al.
(2016) augmented the RNN encoder with a tree-
LSTM (Tai et al., 2015) to read in source-side
HPSG parses, and combined this with a standard
RNN decoder. Similarly, Bastings et al. (2017)
used a graph convolutional encoder in combina-
tion with an RNN decoder to translate from de-
pendency parsed source sentences. Although these
models improved over non-syntactic RNN-based
NMT systems, they relied heavily on parsed data
during both training and inference, whereas our
models are able to translate unparsed data. In ad-
dition, it is not clear how to incorporate such im-
provements into the state-of-the-art Transformer
architecture.

7.3 Linearized Parses in NMT
This work fits with another line of research that
uses linearized parses to incorporate syntax into
neural machine translation without requiring a
specific NMT architecture. Luong et al. (2016)
used a single encoder and different decoders to
train two tasks: parsing the source sentence and
translating from source to target. Kiperwasser
and Ballesteros (2018) also applied multi-task
learning to syntactic NMT; they used a shared
RNN decoder for translation, dependency parsing,
and part-of-speech tagging and evaluated differ-
ent scheduling techniques to combine the tasks.
Our multi-task system builds off these two papers
by training a joint NMT and parsing model us-
ing a single encoder and decoder in a Transformer
framework, and further evaluates the multi-task
framework on several language pairs.

Currey and Heafield (2018) leveraged a multi-
source NMT system to learn to translate from both
unparsed and parsed source sentences. Wu et al.
(2018) similarly combined the standard bidirec-
tional encoder with two additional encoders, one
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that encoded the pre-order traversal of the de-
pendency parse of the sentence and one that en-
coded the post-order traversal. Unlike Currey and
Heafield (2018), they joined the encoders on the
word level and used a Transformer architecture.
Our mixed encoder model is similar to these but
instead uses a single Transformer encoder for both
parsed and unparsed source sentences.

The mixed RNN encoder model of Li et al.
(2017) is also similar to our mixed encoder model;
their model used an RNN to encode a linearized
parse of a source sentence, but attended only to
the words of the parse. Our mixed encoder model
is trained on both linearized parses and unparsed
sentences, but for the linearized parses we attend
to words and to parse labels. Zhang et al. (2019)
used syntax to augment the word representations
in both RNN-based and Transformer-based NMT;
this was done by concatenating the hidden states of
a dependency parser with the NMT word embed-
dings. Their method is complementary to ours and
could be used along with our multi-task or mixed
encoder models to enhance any NMT architecture.

In this work, we have concentrated on source-
side syntax, but linearized parses have also been
popular for incorporating target syntax into neu-
ral machine translation. Aharoni and Goldberg
(2017) and Nadejde et al. (2017) both trained
RNN-based neural machine translation systems to
translate from sequential source sentences into lin-
earized parses of target sentences; this could also
be done using a Transformer.

8 Conclusions

In this paper, we proposed two methods for in-
corporating source-side syntactic annotations into
a Transformer-based neural machine translation
system. The first, multi-task, used a shared en-
coder and decoder to train two tasks: transla-
tion and constituency parsing. The second, mixed
encoder, learned to translate linearized parses of
the source sentences as well as unparsed source
sentences directly into the target language. We
performed experiments from English into twenty
target languages in a low-resource setup; the
multi-task system improved over the non-syntactic
baseline for all target languages. We further
demonstrated the success of this method on the
EN→TR and EN→RO WMT datasets; however,
for the very high-resource EN→DE WMT setup,
the multi-task model performed poorly, while the

mixed encoder model did only marginally better
than the non-syntactic baseline.

In the future, we plan on extending these
techniques to incorporate target-side syntax into
Transformer-based NMT. In addition, we would
like to experiment with different source languages
in order to find out whether adding source-side
syntax has a greater effect on some source lan-
guages than others. It would also be interesting to
experiment with a multi-task, multilingual NMT
framework with multiple target languages.
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Abstract

In this work, we train an Automatic Post-
Editing (APE) model and use it to reveal bi-
ases in standard Machine Translation (MT)
evaluation procedures. The goal of our APE
model is to correct typical errors introduced
by the translation process, and convert the
“translationese” output into natural text. Our
APE model is trained entirely on monolin-
gual data that has been round-trip translated
through English, to mimic errors that are
similar to the ones introduced by NMT. We
apply our model to the output of existing
NMT systems, and demonstrate that, while the
human-judged quality improves in all cases,
BLEU scores drop with forward-translated test
sets. We verify these results for the WMT18
English→German, WMT15 English→French,
and WMT16 English→Romanian tasks. Fur-
thermore, we selectively apply our APE model
on the output of the top submissions of the
most recent WMT evaluation campaigns. We
see quality improvements on all tasks of up to
2.5 BLEU points.

1 Introduction

Neural Machine Translation (NMT) (Bahdanau
et al., 2015; Gehring et al., 2017; Vaswani et al.,
2017) is currently the most popular approach in
Machine Translation leading to state-of-the-art
performance for many tasks. NMT relies mainly
on parallel training data, which can be an expen-
sive and scarce resource. There are several ap-
proaches to leverage monolingual data for NMT:
Language model fusion for both phrase-based
(Brants et al., 2007) and neural MT (Gülçehre
et al., 2015, 2017), back-translation (Sennrich
et al., 2016b), unsupervised NMT (Lample et al.,
2018a; Artetxe et al., 2018a), dual learning (Cheng
et al., 2016; He et al., 2016; Xia et al., 2017), and
multi-task learning (Domhan and Hieber, 2017).

In this paper, we present a different approach to
leverage monolingual data, which can be used as
a post-processor for any existing translation. The
idea is to train an Automatic Post-Editing (APE)
system that is only trained on a large amount
of synthetic data, to fix typical errors introduced
by the translation process. During training, our
model uses a noisy version of each sentence as
input and learns how to reconstruct the origi-
nal sentence. In this work, we model the noise
with round-trip translations (RTT) through En-
glish, translating a sentence in the target language
into English, then translating the result back into
the original language. We train our APE model
with a standard transformer model on the WMT18
English→German, WMT15 English→French and
WMT16 English→Romanian monolingual News
Crawl data and apply this model on the output of
NMT models that are either trained on all avail-
able bitext or trained on a combination of bitext
and back-translated monolingual data. Further-
more, we show that our APE model can be used as
a post-processor for the best output of the recent
WMT evaluation campaigns, where it improves
even the output of these well engineered transla-
tion systems.

In addition to measuring quality in terms of
BLEU scores on the standard WMT test sets,
we split each test set into two subsets based
on whether the source or target is the origi-
nal sentence (each sentence is either originally
written in the source or target language and
human-translated into the other). We call these
the source-language-original and target-language-
original halves, respectively. We find that evaluat-
ing our post-edited output on the source-language-
original half actually decreases the BLEU scores,
whereas the BLEU scores improve for the target-
language-original half. This is in line with results
from Koppel and Ordan (2011), who demonstrate
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that the mere fact of being translated plays a cru-
cial role in the makeup of a translated text, mak-
ing the actual (human) translation a less natural
example of the target language. We hypothesize
that, given these findings, the consistent decreases
in BLEU scores on test sets whose source side are
natural text does not mean that the actual output
is of lower quality. To verify this hypothesis, we
run human evaluations for different outputs with
and without APE. The human ratings demonstrate
that the output of the APE model is both consis-
tently more accurate and consistently more fluent,
regardless of whether the source or the target lan-
guage is the original language, contradicting the
corresponding BLEU scores.

To summarize the contributions of the paper:

• We introduce an APE model trained only on
synthetic data generated with RTT for fixing
typical translation errors from NMT output
and investigate its scalability. To the best of
our knowledge, this paper is the first to study
the effect of an APE system trained at scale
and only on synthetic data.

• We improve the BLEU of top submissions of
the recent WMT evaluation campaigns.

• We show that the BLEU scores of the APE
output only correlate well with human ratings
when they are calculated with target-original
references.

• We propose separately reporting scores on
test sets whose source sentences are trans-
lated and whose target sentences are trans-
lated, and call for higher-quality test sets.

2 APE with RTT

2.1 Definition and Training
We formalize our APE model as a translation
model from synthetic “translationese” (Geller-
stam, 1986) text in one language to natural text
in the same language. For a language pair (X , Y )
and a monolingual corpus MY in language Y , the
training procedure is as follows:

1. Train two translation models on bitext for
X→Y and Y→X

2. Use these models to generate round-trip
translations for every target-language sen-
tence y in MY , resulting in the synthetic
dataset RTT(MY ).

3. Train a translation model on pairs of
(RTT(y), y), that translates from the round-
tripped version of a sentence to its original
form.

This procedure is illustrated in Figure 1.

RoundTrip
Translations
Y→X→Y

APE
Model

Y YRTT(Y )

Figure 1: Training procedure of our APE model with
RTT in language Y .

2.2 Application
Given a trained translation model and a trained
APE model, the procedure is simply to a) trans-
late any source text from language X to language
Y with the translation model, and b) post-edit the
output of the translation by passing it through the
APE model. In this sense, the APE model may
also be viewed as a paraphrasing model to produce
“naturalized” text. This procedure is illustrated in
Figure 2.

NMT
X→Y

APE
Model

X YY

Figure 2: Automatic Post-Editing (APE) as post-
processor of NMT.

3 Experimental Setup

3.1 Architecture
For the translation models, we use the trans-
former implementation in lingvo (Shen et al.,
2019), using the transformer-base model size for
Romanian→English and transformer-big model
size (Vaswani et al., 2017) for German→English
and French→English. The reverse mod-
els, English→Romanian, English→German and
English→French, are all transformer-big. All use
a vocabulary of 32k subword units, and exponen-
tially moving averaging of checkpoints (EMA de-
cay) with the weight decrease parameter set to
α = 0.999 (Buduma and Locascio, 2017).

The APE models are also transformer models
with 32k subword units and EMA decay trained
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with lingvo. For the German and the French APE
models, we use the transformer-big size, whereas
for the Romanian APE model, we use the smaller
transformer-base setup as we have less monolin-
gual data.

3.2 Evaluation
We report BLEU (Papineni et al., 2002) and human
evaluations. All BLEU scores are calculated with
sacreBLEU (Post, 2018)1.

Since 2014, the organizers of the WMT evalua-
tion campaign (Bojar et al., 2017) have created test
sets with the following method: first, they crawled
monolingual data in both English and the target
language from news stories from online sources.
Thereafter they took about 1500 English sentences
and translated them into the target language, and
an additional 1500 sentences from the target lan-
guage and translated them into English. This re-
sults in test sets of about 3000 sentences for each
English-X language pair. The sgm files of each
WMT test set include the original language for
each sentence.

Therefore, in addition to reporting overall
BLEU scores on the different test sets, we also re-
port results on the two subsets (based on the orig-
inal language) of each newstest20XX, which we
call the {German,French,Romanian}-original and
English-original halves of the test set. This is mo-
tivated by Koppel and Ordan (2011), who demon-
strated that they can train a simple classifier to
distinguish human-translated text from natural text
with high accuracy. These text categorization ex-
periments suggest that both the source language
and the mere fact of being translated play a cru-
cial role in the makeup of a translated text. One of
the major goals of our APE model is to rephrase
the NMT output in a more natural way, aiming to
remove undesirable translation artifacts that have
been introduced.

To collect human rankings, we present each out-
put to crowd-workers, who were asked to score
each sentence on a 5-point scale for:

• fluency: How do you judge the overall natu-
ralness of the utterance in terms of its gram-
matical correctness and fluency?

Further, we included the source sentence and
asked the raters to evaluate each sentence on a 2-
point scale (binary decision) for:

1sacreBLEU signatures: BLEU+case.mixed+lang.en-
LANG+numrefs.1+smooth.exp+SET+tok.intl+version.1.2.20

• accuracy: Does the statement factually con-
tradict anything in the reference information?

Each task was given to three different raters.
Consequently, each output has a separate score for
each question that is the average of 3 different rat-
ings.

3.3 Data
For the round-trip experiments we use the mono-
lingual News Crawl data from the WMT evalua-
tion campaign. We remove duplicates and apply a
max-length filter on the source sentences and the
round-trip translations, filtering to the minimum of
500 characters or 70 tokens. For German, we con-
catenate all News Crawl data from 2007 to 2017,
comprising 216.5M sentences after filtering and
removing duplicates. For Romanian, we use News
Crawl ’16, comprising 2.2M sentences after filter-
ing and deduplication. For French, we concatenate
News Crawl data from 2007 to 2014, comprising
34M sentences after filtering.

Our translation models are trained on WMT18
(∼5M sentences for German after filtering),
WMT16 (∼0.5M sentences for Romanian after fil-
tering) and WMT15 (∼41M sentences for French)
bitext. For Romanian and German we filter sen-
tence pairs that have empty source or target, that
have source or target longer than 250 tokens, or
the ratio of whose length is greater than 2.0. For
English→German and English→French, we also
build a system based on noised back-translation,
as in Edunov et al. (2018). We use the same mono-
lingual sentences that we used for the APE model
to generate the noisy back-translation data.

4 Experiments

4.1 English→German
The results of our English→German experiments
are shown in Table 1. We trained the APE
model on RTT produced by English→German
and German→English NMT models that are only
trained on bitext. Applying the APE model on the
output of our NMT model also trained on only bi-
text improves the BLEU scores by up to 1.5 BLEU

points for newstest2014 and 0.7 BLEU points for
newstest2017. Nevertheless, the score drops by
1.4 points on newstest2016. To investigate the dif-
fering impact on the test sets, we split each test set
by its original language (Table 2). The APE model
consistently increases the BLEU on the German-
original half of the test set, but decreases the BLEU
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newstest2014 newstest2015 newstest2016 newstest2017 average
Vaswani et al. (2017) 28.4 - - -
Shaw et al. (2018) 29.2 - - -
our bitext 29.2 31.4 35.0 29.4 31.2
+ RTT APE 30.7 31.2 33.6 30.1 31.4
+ RTT APE de-orig only 31.7 32.9 37.2 31.9 33.4
our NBT 33.5 34.4 38.3 32.5 34.7
+ RTT APE 32.5 32.7 35.2 31.3 32.9
+ RTT APE de-orig only 34.0 34.5 38.7 33.2 35.1

Table 1: BLEU scores for WMT18 English→German. We apply the same APE model (trained on RTT with bitext
models) for both an NMT system based on pure bitext and an NMT system that uses noised back-translation (NBT)
in addition to bitext.

newstest2014 newstest2015 newstest2016 newstest2017 average
orig-de orig-en orig-de orig-en orig-de orig-en orig-de orig-en orig-de orig-en

our bitext 28.4 29.4 26.5 33.3 29.9 38.2 25.9 31.6 27.7 33.1
+ RTT APE 34.1 27.6 31.3 30.9 35.7 32.2 32.1 28.5 33.3 29.8

our NBT 35.6 31.3 32.6 34.7 37.6 38.7 31.7 32.6 34.4 34.3
+ RTT APE 36.9 28.8 33.5 32.0 38.5 32.9 33.8 29.2 35.7 30.7

Table 2: BLEU scores for WMT18 English→German. Test sets are divided by their original source language
(either German or English).

newstest2016 newstest2017
fluency accuracy fluency accuracy

orig-de orig-en orig-de orig-en orig-de orig-en orig-de orig-en
baseline bitext 4.65 4.49 95.6% 94.4% 4.74 4.52 97.2% 94.6%
+ RTT APE 4.77 4.59 98.4% 95.0% 4.84 4.58 98.0% 94.8%
our NBT 4.79 4.64 98.2% 95.8% 4.79 4.65 98.2% 95.4%
+ RTT APE 4.82 4.63 98.0% 96.2% 4.86 4.68 98.0% 96.4%
reference 4.85 4.67 98.6% 98.6% 4.83 4.70 98.0% 99.2%

Table 3: English→German human evaluation results split by original language of the test set.

on the English-original half. Consequentially, we
applied our APE model only on the sentences with
original language in German (+RTT APE de-orig
only in Table 1) and see consistent improvements
over all test sets with an average BLEU improve-
ment of 2.2 points.

To verify that the drop in BLEU score is be-
cause of the unnatural reference translations, we
run a human evaluation (see Section 3.2) for
both fluency/grammatical correctness and accu-
racy. Based on the human ratings (Table 3), our
APE model also improves on the English-original
half of the test set (which is a more realistic use
case).

Without re-training, we use the APE model that
is trained on the bitext RTT and apply it to a
stronger NMT system that also includes all the
available monolingual data in the form of noised
back-translation. We see a very similar pattern
to the previous experiments. Regarding auto-
matic scores, our APE model only improves on
the German-original part of the test sets, with an
average improvement of 1.3 BLEU points. The hu-
man evaluations show the same inconsistency with
the automatic scores for the English-original half.
As with the weaker baseline, humans rate the out-
put of our APE model at least as fluent and accu-
rate as the original output of the NMT model (Ta-
ble 3). Further, we also run a human evaluation on
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the reference sentences and found that the scores
for both fluency and accuracy are only minimally
higher than for our APE NBT output.

Comparing only the BLEU scores from our bi-
text and NBT models in Table 2 reveals that aug-
menting the parallel data with back-translated data
also mostly improves the BLEU scores on the
German-original half of the test set. This is in line
with the results of our APE model and opens the
question of how much of the original bitext data is
natural on the target side.

As our APE model seems agnostic to the model
which produced the RTT, we applied it to the
best submissions of the recent WMT18 evalua-
tion campaign, applying to German-original half
of the test set only. Table 4 shows the results
for the 2 top submissions of Microsoft (Junczys-
Dowmunt, 2018) and Cambridge (Stahlberg et al.,
2018). Both systems improved by up to 0.8 points
in BLEU.

Microsoft Cambridge
WMT18 submission 48.7 47.2
+ APE only de-orig 49.5 47.7

Table 4: BLEU scores for WMT18 English→German
newstest2018. We apply our APE model only on the
German-original half of the test set. BLEU scores are
calculated on the full newstest2018 set and the English-
original half is just copied from the submission.

Finally, we train our APE model on different
random subsets of the available 216.5M monolin-
gual data (see Figure 3). The average BLEU scores
on newstest2014-newstest2017 show that we can
achieve similar performance by using 24 million
training examples only, and that large improve-
ments are seen using as few as 4M training ex-
amples.

4.2 English→Romanian
Experimental results for the WMT16
English→Romanian task are summarized in
Table 5. By applying our APE model on top of
a baseline that is only trained on bitext, we see
improvements of 3.0 BLEU (dev) and 0.3 BLEU

(test) over our baseline system when we automat-
ically post edit only to the Romanian-original half
of the test set. Similar to English→German, we
apply our APE model on the top 2 submissions of
the WMT16 evaluation campaign (Table 6). Both
the QT21 submission (Peter et al., 2016), which
is a system combination of several NMT systems,

27.7

31.8
32.4

33.4 33.4 33.333.1

29.0 29.3 29.5 30.0 29.8

Training data size

26.0

28.0

30.0

32.0

34.0

36.0

Bitext 4M 8M 24M 64M 216.5M

orig-de avg orig-en avg

Figure 3: English→German - Average BLEU scores for
newstest2014-newstest2017: Our APE model is trained
on different subsets of the monolingual data.

and the ensemble of the University of Edinburgh
(Sennrich et al., 2016a) improve, by 0.3 BLEU

and 0.2 BLEU on test, respectively.

dev test
Sennrich et al. (2016a) - 28.8
our bitext 27.0 28.9
+ RTT APE 27.3 29.0
+ RTT APE only ro-orig 30.0 29.2

Table 5: BLEU scores for our models on WMT16
English→Romanian.

QT21 Edinburgh
WMT16 submission 29.4 28.8
+ RTT APE only ro-orig 29.7 29.0

Table 6: BLEU scores for WMT16 English→Romanian
test set. Our APE model was applied on top of the best
WMT16 submissions.

4.3 English→French

Experimental results for English→French are
summarized in Table 7. We see the same ten-
dency as we saw for German and Romanian.
When applying our APE system on the output
of the bitext baseline, we get a small improve-
ment of 0.1 BLEU. By only post-editing the
French-original half, we get an improvement of
1.0 BLEU points. The same effect can be seen
on the English→French system that is trained with
Noised BT. We yield quality improvements of 0.8
BLEU by applying our APE model on the French-
original half of the test set only.

38



newstest2014
our bitext 43.2
+ RTT APE 43.3
+ RTT APE only fr-orig 44.2
our NBT 45.3
+ RTT APE 44.6
+ RTT APE only fr-orig 46.1

Table 7: BLEU scores for WMT15 English→French.

5 Example Output

We would like to highlight a few short exam-
ples where our APE model improves the NMT
translation in German. Although our APE model
is also quite helpful for long sentences, we will
focus on short examples for the sake of sim-
plicity. In Table 8 there are examples from the
English→German noised back-translated (NBT)
setup (see Table 1), with and without automatic
post editing. In the first example, NMT translates
club (i.e. cudgel) incorrectly into Club (i.e. orga-
nization). Based on the context of the sentence,
our APE model learned that club has to be trans-
lated into Schlagstock (i.e. cudgel). The next two
examples are very similar as our APE model im-
proves the word choice of the translations by tak-
ing the context of the sentence into account. The
NMT translations of the last two examples make
little sense and our APE model rephrases the out-
put into a fluent, meaningful sentence.

6 Discussion

In this section, we focus on the results on
target-language-original test sets, like the English-
original subset of newstest2016 (Table 2 and Ta-
ble 3), where the APE model lowered the score by
6 BLEU, yet improved human evaluations. A naı̈ve
take-away from this result would be that evalua-
tion sets whose target side is natural text are inher-
ently superior. However, translating from transla-
tionese also has its own problems, including 1) it
does not represent any real-world translation task,
and 2) translationese sources may be much easier
to translate “correctly”, and reward MT biases like
word-for-word translation. The take-away, there-
fore, must be to report scores both on the source-
language-original and the target-language-original
test sets, rather than lumping two test-sets together
into one as has heretofore been done. This gives
a higher-precision glimpse into the strengths and

weaknesses of different modeling techniques, and
may prevent some effects (like improvements in
naturalness of output) from being hidden.

Going forward, our results should also be seen
as a call for higher-quality test sets. Multi refer-
ence BLEU is one option and less likely to suffer
these biases as acutely, and has previously been
used in the NIST projects. Another option could
be to align sentence pairs from monolingual data
sets in two languages and run human evaluation to
exclude bad sentence pairs.

7 Related Work

Automatic Post-Editing
Probably most similar to our work, Junczys-
Dowmunt and Grundkiewicz (2016, 2018) uses
RTT as additional training data for the automatic
post-editing (APE) task of the WMT evaluation
campaign (Chatterjee et al., 2018). They claimed
that the provided post-editing data is orders of
magnitude too small to train neural models, and
combined the training data with artificial training
data generated with RTT. They found that the addi-
tional artificial data helps against early overfitting
and makes it possible to overcome the problem of
too little training data. In contrast to our work,
they do not report results for models only trained
on the artificial RTT data. Further, their RTT data
is much smaller (10M sentences) compared to ours
(up to 200M sentences) and they only report re-
sults for the APE subtask.

There have been several earlier approaches us-
ing RTT for APE. Hermet and Alain (2009) used
RTT to improve a standard preposition error de-
tection system. Although their evaluation corpus
was limited to 133 prepositions, the hybrid system
outperformed their standard method by roughly
13%. Madnani et al. (2012) combined RTT ob-
tained from Google Translate via 8 different pivot
languages into a lattice for grammatical error cor-
rection. Similar to system combination, their final
output is extracted by the shortest path scored by
different features. They claimed that their prelim-
inary experiments yield fairly satisfactory results
but leave significant room for improvement.

Back-translation
Back-translation (Sennrich et al., 2016b; Ponce-
las et al., 2018) augments relatively scarce par-
allel data with plentiful monolingual data, allow-
ing one to train source-to-target (S2T) models with
the help of target-to-source (T2S) models. Specif-

39



source Using a club, they beat the victim in the face and upper leg.
NBT Mit einem Club schlagen sie das Opfer in Gesicht und Oberschenkel.

+ RTT APE Mit einem Schlagstock schlugen sie dem Opfer ins Gesicht und in den Oberschenkel.
source Müller put another one in with a with a penalty.
NBT Müller setzte einen weiteren mit einer Strafe ein.

+ RTT APE Müller netzte einen weiteren per Elfmeter ein.
source Obama receives Netanyahu
NBT Obama erhält Netanjahu

+ RTT APE Obama empfängt Netanjahu
source At least one Bayern fan was taken injured from the stadium.
NBT Mindestens ein Bayern-Fan wurde vom Stadion verletzt.

+ RTT APE Mindestens ein Bayern-Fan wurde verletzt aus dem Stadion gebracht.
source The archaeologists made a find in the third construction phase of the Rhein Boulevard.
NBT Die Archäologen haben in der dritten Bauphase des Rheinboulevards gefunden.

+ RTT APE Die Archäologen sind im dritten Bauabschnitt des Rheinboulevards fündig geworden.

Table 8: Example output for English→German.

ically, given a set of sentences in the target lan-
guage, a pre-constructed T2S translation system
is used to generate translations to the source lan-
guage. These synthetic sentence pairs are com-
bined with the original bilingual data when train-
ing the S2T NMT model.

Iterative Back-translation
Iterative back-translation (Zhang et al., 2018; Cot-
terell and Kreutzer, 2018; Hoang et al., 2018) is
a joint training algorithm to enhance the effect of
monolingual source and target data by iteratively
boosting the source-to-target and target-to-source
translation models. The joint training method uses
the monolingual data and updates NMT models
through several iterations. A variety of flavors of
iterative back-translation have been proposed, in-
cluding Niu et al. (2018), who simultaneously per-
form iterative S2T and T2S back-translation in a
multilingual model, and He et al. (2016); Xia et al.
(2017), who combine dual learning with phases of
back- and forward-translation.

Artetxe et al. (2018a,b) and Lample et al.
(2018a,b) used iterative back-translation to train
two unsupervised translation systems in both di-
rections (X→Y and Y→X) in parallel. Further,
they used back-translation to generate a synthetic
source to construct a dev set for tuning the parame-
ters of their unsupervised statistical machine trans-
lation system. In a similar formulation, Cheng
et al. (2016) jointly learn a translation system with
a round-trip autoencoder.

Round-tripping and Paraphrasing
Round-trip translation has seen success as a

method to generate paraphrases. Bannard and
Callison-Burch (2005) extracted paraphrases by
using alternative phase translations from bilingual
phrase tables from Statistical Machine Transla-
tion. Mallinson et al. (2017) presented PARANET,
a neural paraphrasing model based on round-trip
translations with NMT. They showed that their
paraphrase model outperforms all traditional para-
phrase models.

Wu et al. (2018) train a paraphrasing model
on (X,RTT(X)) pairs, translating from natural
text into a simplified version. They apply this
sentence-simplifier on the source sentences of the
training data and report quality gains for IWSLT.

Translationese and Artifacts from NMT
The difference between translated sentence pairs
based on whether the source or the target is the
original sentence has long been recognized by the
human translation community, but only partially
investigated by the machine translation commu-
nity. An introduction to the latter is presented
in Koppel and Ordan (2011), who train a high-
accuracy classifier to distinguish human-translated
text from natural text in the Europarl corpus. This
is in line with research from the professional trans-
lation community, which has seen various works
investigating both systematic biases inherent to
translated texts (Baker, 1993; Selinker, 1972), as
well as biases resulting specifically from interfer-
ence from the source text (Toury, 1995). There
has similarly long been a focus on the conflict be-
tween Fidelity (the extent to which the translation
is faithful to the source) and Transparency (the ex-
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tent to which the translation appears to be a natu-
ral sentence in the target language) (Warner, 2018;
Schleiermacher, 1816; Dryden, 1685). To frame
our hypotheses in these terms, the present work
hypothesizes that outputs from NMT systems of-
ten err on the side of disfluent fidelity, or word-by-
word translation.

There are a few papers that discuss the effect of
translationese on MT models. Lembersky et al.
(2012); Stymne (2017) explored how the trans-
lation direction for statistical machine translation
affects the translation result. They found that
using training and tuning data translated in the
same direction as the translation systems tends
to give the best results. Holmqvist et al. (2009)
noted that the original language of the test sen-
tences influences the BLEU score of translations.
They showed that the BLEU scores for target-
original sentences are on average higher than sen-
tences that have their original source in a differ-
ent language. Popel (2018) split the WMT Czech-
English test set based on the original language.
They found that when training on synthetic data,
the model performs much better on the Czech-
original half than on the non Czech-original half.
When trained on authentic data, it is the other way
round. Fomicheva et al. (2017) found that both the
average score and Pearson correlation with human
judgments is substantially higher when both the
MT output and human translation were generated
from the same source language.

8 Ablation

8.1 Iterative APE

We can apply our APE model in an iterative fash-
ion several times on the same output. In Table 9,
we applied our APE model on the already post-
edited output to see if we can further naturalize the
sentences. As a result, 75% of the sentences did
not change. The remaining sentences lowered the
BLEU scores on average by 0.1 points for German-
original half and by 0.7 points for the English-
original half of the test sets.

8.2 Reverse APE

Instead of training an APE model on (RTT(y), y)
sentence pairs (see Section 2), we train in this
section a reverse APE model that flips source
and target and is trained on (y,RTT(y)) sentence
pairs. Experimental results can be seen in Ta-
ble 10. Overall, the performance decreases on

average
orig-de orig-en

our bitext 27.7 33.1
+ APE 33.3 29.8
+ 2xAPE 33.2 29.1

Table 9: Average BLEU scores for WMT18
English→German newstest2014-2017. We run our
APE model a second time on the output of the already
post-editied output.

both the German-original half and the English-
original half. Interestingly, the BLEU scores of the
reverse APE model on the English-original half
are higher than those of the normal APE model.
This demonstrates again that sentences evaluated
on the English-original half prefer output that is
biased by the translation process.

average
orig-de orig-en

our bitext 27.7 33.1
+ RTT APE 33.3 29.8
+ Reverse APE 25.1 30.6

our NBT 34.4 34.3
+ RTT APE 35.7 30.7
+ Reverse APE 27.0 31.3

Table 10: Average BLEU scores for WMT18
English→German newstest2014-2017.

8.3 Inside the black box of RTT

In this subsection we are interested in how much
RTT changes translation outputs. We calculate
the BLEU scores of all English→German test sets
(11,175 sentences in total) by taking the original
German sentences as references and their RTT as
hypotheses. Although the RTT hypotheses are a
less clean (paraphrased) version of the references,
having been forward-translated from an already
noisy back-translated source, the BLEU score is
40.9, with unigram precision of 72.3%, bigram
precision of 48.9%, trigram precision of 35.6%
and 4gram precision of 26.6%.

We further found that the original sentences
use a larger vocabulary than the artificial RTT
data. While the output of the RTT has only
29,635 unique tokens, the original sentences con-
tain 33,814 unique tokens. Even more interest-
ing, the NMT output (from the model trained only
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on bitext) of the same test sets has a vocabulary
size of 30,540, but after running our APE on the
same test sets the vocabulary size increases to
31,471. The NMT output from the NBT model
has a vocabulary size of 32,170 and its post-edited
version increases the number of unique words to
32,283. Overall, we see that both the RTT and
the NMT output have a smaller vocabulary size
than the original or post-edited versions, and that
BLEU score grows directly with increased number
of unique tokens in the target side.

9 Conclusion

We propose an APE model that is only trained on
RTT and increases the quality of NMT transla-
tions, measured both by BLEU and human evalu-
ation. We see improvements both when automati-
cally post editing our model translations and when
automatically post editing outputs from the win-
ning submissions to the WMT competition. Our
APE has the advantage that it is agnostic to the
model which produced the translations, and so can
be used on top of any new advance in the field,
without need for re-training. Further, we demon-
strate that we need only a subset of 24M training
examples to train our APE model. We further-
more use this model as a tool to reveal system-
atic problems with reference translations, and pro-
pose finer-grained BLEU reporting on both source-
language-original test sets and target-language-
original test sets, as well as calling for higher-
quality and multi-reference test sets.
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Çağlar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, and Yoshua Bengio. 2017. On Integrating a
Language Model into Neural Machine Translation.
Comput. Speech Lang., pages 137–148.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tieyan Liu, and Wei-Ying Ma. 2016. Dual Learn-
ing for Machine Translation. In Conference on Ad-
vances in Neural Information Processing Systems
(NeurIPS).

Matthieu Hermet and Désilets Alain. 2009. Using First
and Second Language Models to Correct Preposition
Errors in Second Language Authoring. In Proceed-
ings of the Fourth Workshop on Innovative Use of
NLP for Building Educational Applications, pages
64–72.

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza Haf-
fari, and Trevor Cohn. 2018. Iterative Backtransla-
tion for Neural Machine Translation. In Proceed-
ings of the 2nd Workshop on Neural Machine Trans-
lation and Generation, volume 1, pages 18–24.

Maria Holmqvist, Sara Stymne, Jody Foo, and Lars
Ahrenberg. 2009. Improving Alignment for SMT
by Reordering and Augmenting the Training Cor-
pus. In Proceedings of the Fourth Workshop on Sta-
tistical Machine Translation, pages 120–124. Asso-
ciation for Computational Linguistics.

Marcin Junczys-Dowmunt. 2018. Microsoft’s Submis-
sion to the WMT2018 News Translation Task: How
I Learned to Stop Worrying and Love the Data. In
Proceedings of the Third Conference on Machine
Translation, Volume 2: Shared Task Papers, pages
429–434. Association for Computational Linguis-
tics.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Log-linear Combinations of Monolingual
and Bilingual Neural Machine Translation Models
for Automatic Post-Editing. In Proceedings of the
First Conference on Machine Translation: Volume
2, Shared Task Papers, pages 751–758.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2018. MS-UEdin Submission to the WMT2018
APE Shared Task: Dual-Source Transformer for Au-
tomatic Post-Editing. In Proceedings of the Third
Conference on Machine Translation: Shared Task
Papers, pages 822–826.

Moshe Koppel and Noam Ordan. 2011. Translationese
and Its Dialects. In Proceedings of the 49th Annual

Meeting of the Association for Computational Lin-
guistics: Human Language Technologies - Volume
1, pages 1318–1326.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2018a. Unsupervised
Machine Translation Using Monolingual Corpora
Only. In International Conference on Learning Rep-
resentations.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018b.
Phrase-Based & Neural Unsupervised Machine
Translation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP).

Gennadi Lembersky, Noam Ordan, and Shuly Wintner.
2012. Language Models for Machine Translation:
Original vs. Translated Texts. Computational Lin-
guistics, 38(4).

Nitin Madnani, Joel Tetreault, and Martin Chodorow.
2012. Exploring grammatical error correction with
not-so-crummy machine translation. In Proceedings
of the Seventh Workshop on Building Educational
Applications Using NLP, pages 44–53. Association
for Computational Linguistics.

Jonathan Mallinson, Rico Sennrich, and Mirella Lap-
ata. 2017. Paraphrasing Revisited with Neural Ma-
chine Translation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, volume 1, pages 881–893.

Xing Niu, Michael Denkowski, and Marine Carpuat.
2018. Bi-Directional Neural Machine Translation
with Synthetic Parallel Data. In Proceedings of the
2nd Workshop on Neural Machine Translation and
Generation, pages 84–91.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th annual meeting on association for com-
putational linguistics, pages 311–318. Association
for Computational Linguistics.

Jan-Thorsten Peter, Tamer Alkhouli, Hermann Ney,
Matthias Huck, Fabienne Braune, Alexander Fraser,
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Abstract

Back-translation — data augmentation by
translating target monolingual data — is a
crucial component in modern neural machine
translation (NMT). In this work, we refor-
mulate back-translation in the scope of cross-
entropy optimization of an NMT model, clari-
fying its underlying mathematical assumptions
and approximations beyond its heuristic usage.
Our formulation covers broader synthetic data
generation schemes, including sampling from
a target-to-source NMT model. With this for-
mulation, we point out fundamental problems
of the sampling-based approaches and propose
to remedy them by (i) disabling label smooth-
ing for the target-to-source model and (ii) sam-
pling from a restricted search space. Our state-
ments are investigated on the WMT 2018 Ger-
man↔ English news translation task.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2014; Vaswani et al., 2017) systems make
use of back-translation (Sennrich et al., 2016a)
to leverage monolingual data during the train-
ing. Here an inverse, target-to-source, transla-
tion model generates synthetic source sentences,
by translating a target monolingual corpus, which
are then jointly used as bilingual data.

Sampling-based synthetic data generation
schemes were recently shown to outperform beam
search (Edunov et al., 2018; Imamura et al., 2018).
However, the generated corpora are reported to
stray away from the distribution of natural data
(Edunov et al., 2018). In this work, we focus on
investigating why sampling creates better training
data by re-writing the loss criterion of an NMT
model to include a model-based data generator.

† Now at DeepL GmbH.

By doing so, we obtain a deeper understanding
of synthetic data generation methods, identifying
their desirable properties and clarifying the
practical approximations.

In addition, current state-of-the-art NMT mod-
els suffer from probability smearing issues (Ott
et al., 2018) and are trained using label smoothing
(Pereyra et al., 2017). These result in low-quality
sampled sentences, which influence the synthetic
corpora. We investigate considering only high-
quality hypotheses by restricting the search space
of the model via (i) ignoring words under a prob-
ability threshold during sampling and (ii) N -best
list sampling.

We validate our claims in experiments on a con-
trolled scenario derived from the WMT 2018 Ger-
man ↔ English translation task, which allows us
to directly compare the properties of synthetic and
natural corpora. Further, we present the proposed
sampling techniques on the original WMT Ger-
man ↔ English task. The experiments show that
our restricted sampling techniques work compa-
rable or superior to other generation methods by
imitating human-generated data better. In terms of
translation quality, these do not result in consistent
improvements over the typical beam search strat-
egy.

2 Related Work

Sennrich et al. (2016a) introduce the back-
translation technique for NMT and show that the
quality of the back-translation model, and there-
fore resulting pseudo-corpus, has a positive effect
on the quality of the subsequent source-to-target
model. These findings are further investigated in
(Hoang et al., 2018; Burlot and Yvon, 2018) where
the authors confirm work effect. In our work, we
expand upon this concept by arguing that the qual-
ity of the resulting model not only depends on the
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data fitness of the back-translation model but also
on how sentences are generated from it.

Cotterell and Kreutzer (2018) frame back-
translation as a variational process, with the space
of source sentences as the latent space. Their ap-
proach argues that the distribution of the synthetic
data generator and the true translation probability
should match. Thus it is invaluable to clarify and
investigate the sampling distributions that current
state-of-the-art data generation techniques utilize.
A simple property is that a target sentence must be
allowed to be aligned to multiple source sentences
during the training phase. Several efforts (Hoang
et al., 2018; Edunov et al., 2018; Imamura et al.,
2018) confirm that this is in fact beneficial. Here,
we unify these findings by re-writing the optimiza-
tion criterion of NMT models to depend on a data
generator, which we define for beam search, sam-
pling and N -best list sampling approaches.

3 How Back-Translation Fits in NMT

In NMT, one is interested in translating a source
sentence fJ1 = f1, . . . , fj , . . . , fJ into a target
sentence eI1 = e1, . . . , ei, . . . , eI . For this pur-
pose, the translation process is modelled via a neu-
ral model pθ(ei|fJ1 , ei−11 ) with parameters θ.

The optimal optimization criterion of an NMT
model requires access to the true joint distribution
of source and target sentence pairs Pr(fJ1 , e

I
1).

This is approximated by the empirical distribu-
tion p̂(fJ1 , e

I
1) derived from a bilingual data-set

(fJs1,s, e
Is
1,s)

S
s=1. The model parameters are trained

to minimize the cross-entropy, normalized over
the number of target tokens, over the same.

L(θ) = −
∑

(fJ1 ,e
I
1)

Pr(fJ1 , e
I
1) ·

1

I
log pθ

(
eI1|fJ1 )

(1)

= −
∑

(fJ1 ,e
I
1)

p̂(fJ1 , e
I
1) ·

1

I
log pθ

(
eI1|fJ1 ) (2)

= − 1

S

S∑

s=1

1

Is
log pθ

(
eIs1,s|fJs1,s) (3)

Target monolingual data can be included by
generating a pseudo-parallel source corpus via,
e.g. back-translation or sampling-based methods.
In this section, we describe such generators as a
component of the optimization criterion of NMT
models and discuss approximations made in prac-
tice.

3.1 Derivation of the Generation Criterion

Eq. 1 is the starting point of our derivation in
Eqs. 4-6. Pr(fJ1 , e

I
1) can be decomposed into the

true language probability Pr(eI1) and true transla-
tion probability Pr(fJ1 |eI1). These two probabil-
ities highlight the assumptions in the scenario of
back-translation: we have access to an empirical
target distribution p̂(eI1) with which Pr(eI1) is ap-
proximated, derived from the monolingual corpus
(eIs1,s)

S
s=1. However, one lacks access to p̂(fJ1 |eI1).

Generating synthetic data is essentially the ap-
proximation of the true probability of Pr(fJ1 |eI1).
It can be described as a sampling distribution1

q(fJ1 |eI1; p) parameterized by the target-to-source
model p.

L(θ) = −
∑

(fJ1 ,e
I
1)

Pr(fJ1 , e
I
1) ·

1

I
log pθ

(
eI1|fJ1 ) (4)

= −
∑

eI1

Pr(eI1) ·
1

I

∑

fJ1

Pr(fJ1 |eI1) · log pθ
(
eI1|fJ1 ) (5)

= −
∑

eI1

p̂(eI1) ·
1

I

∑

fJ1

q(fJ1 |eI1; p) · log pθ
(
eI1|fJ1 ) (6)

This derivation highlights an apparent condition
that the generation procedure q(fJ1 |eI1; p) should
result in a distribution of source sentences simi-
lar to the true data distribution Pr(fJ1 |eI1). Cot-
terell and Kreutzer (2018) show a similar deriva-
tion hinting towards an iterative wake-sleep varia-
tional scheme (Hinton et al., 1995), which reaches
similar conclusions.

Following this, we formulate two issues with
the back-translation approach: (i) the choice of
generation procedure q and (ii) the adequacy of the
target-to-source model p. The search method q is
responsible not only for controlling the output of
source sentences but also to offset the deficiencies
of the target-to-source model p.

An implementation for q is, for example, beam
search where q is a deterministic sampling proce-
dure, which returns the highest scoring sentence
according to the search criterion:

qbeam(f
J
1 |eI1; p) =

{
1, fJ1 = argmax

Ĵ ,f Ĵ1

{
1
Ĵ
log p(f Ĵ1 |eI1)

}

0, otherwise

(7)

1The properties of a probability distribution hold for
q(fJ1 |eI1; p).
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Sampling as described by Edunov et al. (2018)
would be simply the equality

qsample(f
J
1 |eI1; p) = p(fJ1 |eI1). (8)

3.2 Approximations

Applications of back-translation and its variants
largely follows the initial approach presented in
(Sennrich et al., 2016a). Each target authentic sen-
tence is aligned to a single synthetic source sen-
tence. This new dataset is then used as if it were
bilingual. This section is dedicated to the clarifica-
tion of the effect of such a strategy in the optimiza-
tion criterion, especially with non-deterministic
sampling approaches (Edunov et al., 2018; Ima-
mura et al., 2018).

Firstly, the sum over all possible source sen-
tences in Eq. 6 is approximated by a restricted
search space of N sentences, with N = 1 being
a common choice. Yet, the cost of generating the
data and training on the same scales linearly with
N and it is unattractive to choose higher values.

Secondly, the pseudo-corpora are static across
training, i.e. the synthetic sentences do not change
across training epochs, which appears to cancel
out the benefits of sampling-based methods. Cor-
recting this behaviour requires an on-the-fly sen-
tence generation, which increases the complex-
ity of the implementation and slows down train-
ing considerably. Back-translation is not affected
by this approximation since the target-to-source
model always generates the same translation.

The approximations are shown in Eq. 9 with a
fixed pseudo-parallel corpus where eIs1,s is aligned
to N source sentences (fJs,n1,s,n)

N
n=1.

L(θ) ≈ −
S∑

s=1

1

N · Is

N∑

n=1

log pθ
(
eIs1,s|fJs,n1,s,n) (9)

We hypothesize that these conditions become
less problematic when large amounts of mono-
lingual data are present due to the law of large
numbers, which states that repeated occurrences
of the same sentence eI1 will lead to a representa-
tive distribution of source sentences fJ1 according
to q(fJ1 |eI1; p). In other words, given a high num-
ber of representative target samples, Eq. 9 matches
Eq. 6 with N = 1. This shifts the focus of the
problem to find an appropriate search method q
and generator p.

4 Improving Synthetic Data

In this section, we discuss how the known gen-
eration methods q(fJ1 |eI1; p) fail in approximating
Pr(fJ1 |eI1) due to modelling issues of model p and
consider how the generation approach q can be
adapted to compensate p.

We base our remaining work on the approxima-
tions presented in Section 3.2 and consider N = 1
synthetic sentences. The reasoning for this is two-
fold: (i) it is the most attractive scenario in terms
of computational costs and (ii) the approximations
lose their influence with large target monolingual
corpora.

4.1 Issues in Translation Modelling

With sampling-based approaches, one does not
only care about whether high-quality sentences
get assigned a high probability, but also that low-
quality sentences are assigned a low probability.

Label smoothing (LS) (Pereyra et al., 2017) is a
common component of state-of-the-art NMT sys-
tems (Ott et al., 2018). This teaches the model to
(partially) fit a uniform word distribution, causing
unrestricted sampling to periodically sample from
the same. Even without LS, NMT models tend to
smear their probability to low-quality hypotheses
(Ott et al., 2018).

To showcase the extent of this effect, we pro-
vide the average cumulative probabilities of top-N
words for NMT models, see Section 5.2, trained
with and without label smoothing in Figure 1. The
distributions are created on the development cor-
pus. We observe that training a model with label
smoothing causes a re-allocation of roughly 7%
probability mass to all except the top-100 words.
This re-allocation is not problematic during beam
search, since this strategy only looks at the top-
scoring candidates. However, when considering
sampling for data generation, there is a high likeli-
hood that one will sample from the space of low
probability words, creating non-parallel outputs,
see Table 4.

4.2 Restricting the Search Space

Changing the search approach q is less arduous
than changing the model p since it does not in-
volve re-training the model. Restricting the search
space to high-probability sentences avoids the is-
sues highlighted in Section 4.1 and provides a
middle-ground between unrestricted sampling and
beam search.
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Figure 1: Cumulative probabilities of the top-N word
candidates as estimated on newstest2015 English →
German with and without label smoothing. See section
5.2 for descriptions of the models.

Edunov et al. (2018) consider top-k sampling to
avoid the aforementioned problem, however, there
is no guarantee that the candidates are confident
predictions. We propose two alternative methods:
(i) restrict the sampling outputs to words with a
minimum probability and (ii) weighted sampling
from the N -best candidates.

4.2.1 Restricted Sampling
The first approach follows sampling directly from
the model p(·|eI1, f j−11 ) at each position j, but only
taking words with at least τ ∈ [0, 0.5) probability
into account. Afterwards, another softmax activa-
tion2 is performed only over these words by mask-
ing all the remaining ones with large negative val-
ues. If no words have over τ probability, then the
maximum probability word is chosen. Note that a
large τ gets closer to greedy search (τ ≥ 0.5) and
a lower value gets near to unrestricted sampling.

q(f |eI1, f j−11 ; p) = (10)



softmax
(
p(f |eI1, f j−11 ), C

)
, |C| > 0

1, |C| = 0 ∧
f = argmax

f ′

{
p(f ′|eI1, f j−11 )

}

0, otherwise

with C ⊆ Vf being the subset of words of the
source vocabulary Vf with at least τ probability:

C =
{
f | p(f |eI1, f j−11 ) ≥ τ

}
(11)

and softmax
(
p(f |eI1, f j−11 ), C

)
being a soft-max

normalization restricted to the elements in C.
2Alternatively an L1-normalization would be sufficient.

4.2.2 N -best List Sampling
The second approach involves generating a list of
N -best candidates, normalizing the output scores
with a soft-max operation, as in Section 4.2.1, and
finally sampling a hypothesis.

The score of a translation is abbreviated by
s(fJ1 |eI1) = 1

J log p(fJ1 |eI1).

qnbest(f
J
1 |eI1; p) = (12)
{

softmax
(
s(fJ1 |eI1), C

)
, fJ1 ∈ C

0, otherwise

withC ⊆ Dsrc being the set ofN -best translations
found by the target-to-source model and Dsrc be-
ing the set of all source sentences:

C = argmax
D⊂Dsrc:|D|=N

{ ∑

fJ1 ∈D
s(fJ1 |eI1)

}
. (13)

5 Experiments

5.1 Setup
This section makes use of the WMT 2018 Ger-
man ↔ English 3 news translation task, consist-
ing of 5.9M bilingual sentences. The German and
English monolingual data is subsampled from the
deduplicated NewsCrawl2017 corpus. In total 4M
sentences are used for German and English mono-
lingual data. All data is tokenized, true-cased and
then preprocessed with joint byte pair encoding
(Sennrich et al., 2016b)4.

We train Base Transformer (Vaswani et al.,
2017) models using the Sockeye toolkit (Hieber
et al., 2017). Optimization is done with Adam
(Kingma and Ba, 2014) with a learning rate of 3e-
4, multiplied with 0.7 after every third 20k-update
checkpoint without improvements in development
set perplexity. In Sections 5.2 and 5.3, word batch
sizes of 16k and 4k are used respectively. Infer-
ence uses a beam size of 5 and applies hypothesis
length normalization.

Case-sensitive BLEU (Papineni et al., 2002)
is computed using the mteval 13a.pl script
from Moses (Koehn et al., 2007). Model selec-
tion is performed based on the BLEU performance
on newstest2015. All experiments were performed
using the workflow manager Sisyphus (Peter et al.,
2018). We report the statistical significance of

3http://www.statmt.org/wmt18/
translation-task.html

450k merge operations and a vocabulary threshold of 50
are used.
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test2015 test2017 test2018

beam search 30.9∗ 31.9∗ 40.1

sampling 30.4∗ 31.0∗ 37.9∗

w/o LS 30.4∗ 31.3∗ 37.9∗

τ = 10% 31.1∗ 32.1∗ 39.8
50-best sampling 31.1∗ 31.9∗ 39.8

reference 32.6 33.5 40.0

Table 1: BLEU[%] results for the controlled scenario.
∗ denotes a p-value of < 0.01 w.r.t. the reference.

our results with MultEval (Clark et al., 2011). A
low p-value indicates that the performance gap be-
tween two systems is likely to hold given a differ-
ent sample of a random process, e.g. an initializa-
tion seed.

5.2 Controlled Scenario

To compare the performance of each generation
method to natural sentences, we shuffle and split
the German → English bilingual data into 1M
bilingual sentences and 4.9M monolingual sen-
tences. This gives us a reference translation
for each sentence and eliminates domain adapta-
tion effects. The generator model is trained on
the smaller corpus until convergence on BLEU,
roughly 100k updates. The final source-to-target
model is trained from scratch on the concatenated
synthetic and natural corpora until convergence on
BLEU, roughly 250k updates for all variants.

Table 1 showcases the translation quality of the
models trained on different kinds of synthetic cor-
pora. Contrary to the observations in Edunov et al.
(2018), unrestricted sampling does not outperform
beam search and once the search space is restricted
all methods perform similarly well.

To further investigate this, we look at other rel-
evant statistics of a generated corpus and the per-
formance of the subsequent models in Table 2.
These are the perplexities (PPL) of the model on
the training and development data and the entropy
of a target-to-source IBM-1 model (Brown et al.,
1993) trained with GIZA++ (Och and Ney, 2003).
The training set PPL varies strongly with each gen-
eration method since each produces hypotheses of
differing quality. All methods with a restricted
search space have a larger translation entropy and
smaller training PPL than natural data. This is due
to the sentences being less noisy and also the trans-
lation options being less varied. Unrestricted sam-

Entropy PPL

En→ De Train test2015

beam search 2.60 2.74 5.77

sampling 3.13 9.07 5.55
w/o LS 2.93 5.17 5.31
τ = 10% 2.66 3.34 5.61

50-best sampling 2.62 2.84 5.70

reference 2.91 5.18 4.50

Table 2: IBM-1 model entropy and perplexity (PPL)
on the training and development set for the controlled
scenario using different synthetic generation methods.

pling seems to overshoot the statistics of natural
data, attaining higher entropy values.

However, once LS is removed, the best PPL on
the development set is reached and the remain-
ing statistics match the natural data very closely.
Nevertheless, the performance in BLEU lags be-
hind the methods that consider high-quality hy-
potheses as reported in Table 1. Looking further
into the models, we notice that when trained on
corpora with more variability, i.e. larger transla-
tion entropy, the probability distributions are flat-
ter. We explain the better dev perplexities with un-
restricted sampling with the same reason for which
label smoothing is helpful: it makes the model less
biased towards more common events (Ott et al.,
2018). This uncertainty is, however, not beneficial
for translation performance.

5.3 Real-world Scenario

Previously, we applied different synthetic data
generation methods to a controlled scenario for the
purpose of investigation. We extend the experi-
ments to the original WMT 2018 German↔ En-
glish task and showcase the results in Table 3. In
contrast to the experiments of Section 5.2, the dis-
tribution of the monolingual data now differs from
the bilingual data. The models are trained on the
bilingual data for 1M updates and then fine-tuned
for further 1M updates on the concatenated bilin-
gual and synthetic corpora.

The restricted sampling techniques perform
comparable to or better than the other synthetic
data generation methods in all cases. Especially
on English→ German, unrestricted sampling only
produces statistical significant improvements over
beam search when LS is replaced. Furthermore,
restricting the search space via 50-best list sam-
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De→ En En→ De

test2017 test2018 test2017 test2018

beam search 35.7 43.6 28.2 41.3

sampling 35.8 42.3∗ 28.6 41.5
w/o LS 35.9 42.5∗ 29.1∗ 41.7
τ = 10% 35.9 43.0∗ 28.7∗ 41.6

50-best samp. 36.0 43.6 28.6∗ 41.8∗

Table 3: WMT 2018 German↔ English BLEU[%] val-
ues comparing different synthetic data generation
methods.
∗ denotes a p-value of < 0.01 w.r.t. beam search.

pling improves significantly in both test sets.
We observe that on German → English new-

stest2018 particularly, there is a large drop in per-
formance when using unrestricted sampling. This
is slightly alleviated by applying a minimum prob-
ability threshold of τ = 10%, but there is still a
gap to be closed. This behaviour is investigated in
the following section.

5.3.1 Scalability
A benefit of non-deterministic generation methods
is the scalability in contrast to beam search. Under
the assumption of a good fitting translation model,
as argued in Section 3, sampling does appear to be
the best option.

We compare different monolingual corpus sizes
for the German → English task in Figure 2 on
three different test sets. Particularly, newstest2018
shows the exact opposite behaviour from the re-
maining test sets: the amount of data generated
via beam search improves the resulting model,
whereas sampling improves the system by a small
margin. Normal sampling has a general tendency
to perform better with more data, but it saturates
in two test sets (newstest2015 and newstest2018).
Restricted sampling appears to be the most consis-
tent approach, always outperforming unrestricted
sampling and also always scaling with a larger set
of monolingual data.

These observations are strongly linked to the
properties of current state-of-the-art models, see
Section 4.1 and experimental setup via e.g. the
domain of the bilingual, monolingual and test
data. Therefore, the high performance scaling
with beam search in newstest2018 might be due
to its relatedness to the training data as measured
by the high BLEU values attained in inference.

5.4 Synthetic Source Examples
To highlight the issues present in unrestricted sam-
pling, we compare the outputs of different gen-
eration methods in Table 4. The unrestricted
sampling output hypothesizes a second sentence
which is not related at all to the input sentence but
generates a much longer sequence. The restricted
sampling methods and the model trained without
label smoothing provide an accurate translation of
the input sentence. Compared to the beam search
hypothesis, they have a reasonable variation which
is indeed closer to the human-translated reference.

6 Conclusion

In this work, we link the optimization criterion
of an NMT model with a synthetic data genera-
tor defined for both beam search and additional
sampling-based methods. By doing so, we iden-
tify that the search method plays an important
role, as it is responsible for offsetting the short-
comings of the generator model. Specifically,
label smoothing and probability smearing issues
cause sampling-based methods to generate unnat-
ural sentences.

We analyze the performance of our techniques
on a closed- and open-domain of the WMT 2018
German ↔ English news translation task. We
provide qualitative and quantitative evidence of
the detrimental behaviours and show that these
can be influenced by re-training the generator
model without label smoothing or by restricting
the search space to not consider low-probability
outputs. In terms of translation quality, sampling
from 50-best lists outperforms beam search, al-
beit at a higher computational cost. Restricted
sampling or the disabling of label smoothing for
the generator model are shown to be cost-effective
ways of improving upon the unrestricted sampling
approach of Edunov et al. (2018).
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Figure 2: WMT 2018 German→ English BLEU[%] values comparing different synthetic data generation methods
with a differing size of synthetic corpus.

source it is seen as a long sag@@ a full of surprises .

beam search es wird als eine lange Geschichte voller Überraschungen angesehen .

sampling es wird als eine lange S@@ aga voller Überraschungen angesehen . injury
, Skepsis , Feuer ) , Duschen verursach@@ ter Körper , Pal@@ ä@@ ste ,
Gol@@ fen , Flu@@ r und Mu@@ ffen , Diesel@@ - Total Bab@@ ylon
, der durch@@ s Wasser und Wasser@@ kraft fliet .

w/o label smoothing es wurde als eine lange Geschichte voller Überraschungen gesehen .

τ = 10% es wird als lange S@@ age voller Überraschungen angesehen .

50-best sampling es wird als eine lange S@@ age voller Überraschungen gesehen .

reference er wird als eine lange S@@ aga voller Überraschungen angesehen .

Table 4: Random example generated by different methods for the controlled scenario of WMT 2018 German→
English. @@ denotes the subword token delimiter.
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Abstract

Recent work in Neural Machine Translation
(NMT) has shown significant quality gains
from noised-beam decoding during back-
translation, a method to generate synthetic par-
allel data. We show that the main role of such
synthetic noise is not to diversify the source
side, as previously suggested, but simply to
indicate to the model that the given source is
synthetic. We propose a simpler alternative
to noising techniques, consisting of tagging
back-translated source sentences with an ex-
tra token. Our results on WMT outperform
noised back-translation in English-Romanian
and match performance on English-German,
re-defining state-of-the-art in the former.

1 Introduction

Neural Machine Translation (NMT) has made
considerable progress in recent years (Bahdanau
et al., 2015; Gehring et al., 2017; Vaswani et al.,
2017). Traditional NMT has relied solely on par-
allel sentence pairs for training data, which can
be an expensive and scarce resource. This moti-
vates the use of monolingual data, usually more
abundant (Lambert et al., 2011). Approaches
using monolingual data for machine translation
include language model fusion for both phrase-
based (Brants et al., 2007; Koehn, 2009) and
neural MT (Gülçehre et al., 2015, 2017), back-
translation (Sennrich et al., 2016; Poncelas et al.,
2018), unsupervised machine translation (Lample
et al., 2018a; Artetxe et al., 2018), dual learning
(Cheng et al., 2016; Di He and Ma, 2016; Xia
et al., 2017), and multi-task learning (Domhan and
Hieber, 2017).

We focus on back-translation (BT), which, de-
spite its simplicity, has thus far been the most
effective technique (Sennrich et al., 2017; Ha
et al., 2017; Garcı́a-Martı́nez et al., 2017). Back-
translation entails training an intermediate target-

to-source model on genuine bitext, and using this
model to translate a large monolingual corpus
from the target into the source language. This al-
lows training a source-to-target model on a mix-
ture of genuine parallel data and synthetic pairs
from back-translation.

We build upon Edunov et al. (2018) and Ima-
mura et al. (2018), who investigate BT at the
scale of hundreds of millions of sentences. Their
work studies different decoding/generation meth-
ods for back-translation: in addition to regular
beam search, they consider sampling and adding
noise to the one-best hypothesis produced by beam
search. They show that sampled BT and noised-
beam BT significantly outperform standard BT,
and attribute this success to increased source-side
diversity (sections 5.2 and 4.4).

Our work investigates noised-beam BT
(NoisedBT) and questions the role noise is play-
ing. Rather than increasing source diversity, our
work instead suggests that the performance gains
come simply from signaling to the model that the
source side is back-translated, allowing it to treat
the synthetic parallel data differently than the
natural bitext. We hypothesize that BT introduces
both helpful signal (strong target-language signal
and weak cross-lingual signal) and harmful signal
(amplifying the biases of machine translation).
Indicating to the model whether a given training
sentence is back-translated should allow the
model to separate the helpful and harmful signal.

To support this hypothesis, we first demon-
strate that the permutation and word-dropping
noise used by Edunov et al. (2018) do not im-
prove or significantly degrade NMT accuracy,
corroborating that noise might act as an indi-
cator that the source is back-translated, with-
out much loss in mutual information between
the source and target. We then train models
on WMT English-German (EnDe) without BT
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noise, and instead explicitly tag the synthetic data
with a reserved token. We call this technique
“Tagged Back-Translation” (TaggedBT). These
models achieve equal to slightly higher perfor-
mance than the noised variants. We repeat
these experiments with WMT English-Romanian
(EnRo), where NoisedBT underperforms standard
BT and TaggedBT improves over both techniques.
We demonstrate that TaggedBT also allows for
effective iterative back-translation with EnRo, a
technique which saw quality losses when applied
with standard back-translation.

To further our understanding of TaggedBT, we
investigate the biases encoded in models by com-
paring the entropy of their attention matrices, and
look at the attention weight on the tag. We con-
clude by investigating the effects of the back-
translation tag at decoding time.

2 Related Work

This section describes prior work exploiting
target-side monolingual data and discusses related
work tagging NMT training data.

2.1 Leveraging Monolingual Data for NMT

Monolingual data can provide valuable informa-
tion to improve translation quality. Various meth-
ods for using target-side LMs have proven effec-
tive for NMT (He et al., 2016; Gülçehre et al.,
2017), but have tended to be less successful than
back-translation – for example, Gülçehre et al.
(2017) report under +0.5 BLEU over their base-
line on EnDe newstest14, whereas Edunov et al.
(2018) report over +4.0 BLEU on the same test
set. Furthermore, there is no straighforward way
to incorporate source-side monolingual data into a
neural system with a LM.

Back-translation was originally introduced for
phrase-based systems (Bertoldi and Federico,
2009; Bojar and Tamchyna, 2011), but flourished
in NMT after work by Sennrich et al. (2016). Sev-
eral approaches have looked into iterative forward-
and BT experiments (using source-side mono-
lingual data), including Cotterell and Kreutzer
(2018), Vu Cong Duy Hoang and Cohn (2018),
and Niu et al. (2018). Recently, iterative back-
translation in both directions has been devised has
a way to address unsupervised machine transla-
tion (Lample et al., 2018b; Artetxe et al., 2018).

Recent work has focused on the importance
of diversity and complexity in synthetic training

data. Fadaee and Monz (2018) find that BT ben-
efits difficult-to-translate words the most, and se-
lect from the back-translated corpus by oversam-
pling words with high prediction loss. Imamura
et al. (2018) argue that in order for BT to en-
hance the encoder, it must have a more diverse
source side, and sample several back-translated
source sentences for each monolingual target sen-
tence. Our work follows most closely Edunov
et al. (2018), who investigate alternative decoding
schemes for BT. Like Imamura et al. (2018), they
argue that BT through beam or greedy decoding
leads to an overly regular domain on the source
side, which poorly represents the diverse distribu-
tion of natural text.

Beyond the scope of this work, we briefly men-
tion alternative techniques leveraging monolin-
gual data, like forward translation (Ueffing et al.,
2007; Kim and Rush, 2016), or source copy-
ing (Currey et al., 2017).

2.2 Training Data Tagging for NMT

Tags have been used for various purposes in NMT.
Tags on the source sentence can indicate the target
language in multi-lingual models (Johnson et al.,
2016). Yamagishi et al. (2016) use tags in a sim-
ilar fashion to control the formality of a transla-
tion from English to Japanese. Kuczmarski and
Johnson (2018) use tags to control gender in trans-
lation. Most relevant to our work, Kobus et al.
(2016) use tags to mark source sentence domain
in a multi-domain setting.

3 Experimental Setup

This section presents our datasets, evaluation pro-
tocols and model architectures. It also describes
our back-translation procedure, as well as noising
and tagging strategies.

3.1 Data

We perform our experiments on WMT18 EnDe bi-
text, WMT16 EnRo bitext, and WMT15 EnFr bi-
text respectively. We use WMT Newscrawl for
monolingual data (2007-2017 for De, 2016 for
Ro, 2007-2013 for En, and 2007-2014 for Fr).
For bitext, we filter out empty sentences and sen-
tences longer than 250 subwords. We remove pairs
whose whitespace-tokenized length ratio is greater
than 2. This results in about 5.0M pairs for EnDe,
and 0.6M pairs for EnRo. We do not filter the EnFr
bitext, resulting in 41M sentence pairs.
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For monolingual data, we deduplicate and filter
sentences with more than 70 tokens or 500 char-
acters. Furthermore, after back-translation, we re-
move any sentence pairs where the back-translated
source is longer than 75 tokens or 550 characters.
This results in 216.5M sentences for EnDe, 2.2M
for EnRo, 149.9M for RoEn, and 39M for EnFr.
For monolingual data, all tokens are defined by
whitespace tokenization, not wordpieces.

The DeEn model used to generate BT data has
28.6 SacreBLEU on newstest12, the RoEn model
used for BT has a test SacreBLEU of 31.9 (see Ta-
ble 4.b), and the FrEn model used to generate the
BT data has 39.2 SacreBLEU on newstest14.

3.2 Evaluation

We rely on BLEU score (Papineni et al., 2002) as
our evaluation metric.

While well established, any slight difference in
post-processing and BLEU computation can have a
dramatic impact on output values (Post, 2018). For
example, Lample and Conneau (2019) report 33.3
BLEU on EnRo using unsupervised NMT, which
at first seems comparable to our reported 33.4
SacreBLEU from iterative TaggedBT. However,
when we use their preprocessing scripts and eval-
uation protocol, our system achieves 39.2 BLEU

on the same data, which is close to 6 points higher
than the same model evaluated by SacreBLEU.

We therefore report strictly SacreBLEU1, using
the reference implementation from Post (2018),
which aims to standardize BLEU evaluation.

3.3 Architecture

We use the transformer-base and transformer-big
architectures (Vaswani et al., 2017) implemented
in lingvo (Shen et al., 2019). Transformer-base
is used for the bitext noising experiments and the
EnRo experiments, whereas the transformer-big is
used for the EnDe tasks with BT. Both use a vo-
cabulary of 32k subword units. As an alterna-
tive to the checkpoint averaging used in Edunov
et al. (2018), we train with exponentially weighted
moving average (EMA) decay with weight decay
parameter α = 0.999 (Buduma and Locascio,
2017).

Transformer-base models are trained on 16
GPUs with synchronous gradient updates and per-
gpu-batch-size of 4,096 tokens, for an effective

1BLEU + case.mixed + lang.LANGUAGE PAIR + num-
refs.1 + smooth.exp + test.SET + tok.13a + version.1.2.15

batch size of 64k tokens/step. Training lasts 400k
steps, passing over 24B tokens. For the final EnDe
TaggedBT model, we train transformer-big simi-
larly but on 128 GPUs, for an effective batch size
of 512k tokens/step. A training run of 300M steps
therefore sees about 150B tokens. We pick check-
points with newstest2012 for EnDe and news-
dev2016 for EnRo.

3.4 Noising

We focused on noised beam BT, the most effec-
tive noising approach according to Edunov et al.
(2018). Before training, we noised the decoded
data (Lample et al., 2018a) by applying 10% word-
dropout, 10% word blanking, and a 3-constrained
permutation (a permutation such that no token
moves further than 3 tokens from its original
position). We refer to data generated this way
as NoisedBT. Additionally, we experiment using
only the 3-constrained permutation and no word
dropout/blanking, which we abbreviate as P3BT.

3.5 Tagging

We tag our BT training data by prepending a
reserved token to the input sequence, which is
then treated in the same way as any other to-
ken. We also experiment with both noising and
tagging together, which we call Tagged Noised
Back-Translation, or TaggedNoisedBT. This con-
sists simply of prepending the <BT> tag to each
noised training example.

An example training sentence for each of these
set-ups can be seen in Table 1. We do not tag
the bitext, and always train on a mix of back-
translated data and (untagged) bitext unless explic-
itly stated otherwise.

Noise type Example sentence
[no noise] Raise the child, love the child.
P3BT child Raise the, love child the.
NoisedBT Raise child love child, the.
TaggedBT <BT> Raise the child, love the child.
TaggedNoisedBT <BT> Raise, the child the love.

Table 1: Examples of the five noising settings exam-
ined in this paper

4 Results

This section studies the impact of training data
noise on translation quality, and then presents our
results with TaggedBT on EnDe and EnRo.
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4.1 Noising Parallel Bitext
We first show that noising EnDe bitext sources
does not seriously impact the translation quality
of the transformer-base baseline. For each sen-
tence pair in the corpus, we flip a coin and noise
the source sentence with probability p. We then
train a model from scratch on this partially noised
dataset. Table 2 shows results for various values
of p. Specifically, it presents the somewhat unex-
pected finding that even when noising 100% of the
source bitext (so the model has never seen well-
formed English), BLEU on well-formed test data
only drops by 2.5.

This result prompts the following line of rea-
soning about the role of noise in BT: (i) By itself,
noising does not add meaningful signal (or else
it would improve performance); (ii) It also does
not damage the signal much; (iii) In the context of
back-translation, the noise could therefore signal
whether a sentence were back-translated, without
significantly degrading performance.

SacreBLEU
% noised Newstest ’12 Newstest ’17
0% 22.4 28.1
20% 22.4 27.9
80% 21.5 27.0
100% 21.2 25.6

Table 2: SacreBLEU degradation as a function of the
proportion of bitext data that is noised.

4.2 Tagged Back-Translation for EnDe
We compare the results of training on a mix-
ture of bitext and a random sample of 24M back-
translated sentences in Table 3.a, for the various
set-ups of BT described in sections 3.4 and 3.5.
Like Edunov et al. (2018), we confirm that BT
improves over bitext alone, and noised BT im-
proves over standard BT by about the same mar-
gin. All methods of marking the source text as
back-translated (NoisedBT, P3BT, TaggedBT, and
TaggedNoisedBT) perform about equally, with
TaggedBT having the highest average BLEU by
a small margin. Tagging and noising together
(TaggedNoisedBT) does not improve over either
tagging or noising alone, supporting the conclu-
sion that tagging and noising are not orthogonal
signals but rather different means to the same end.

Table 3.b verifies our result at scale applying
TaggedBT on the full BT dataset (216.5M sen-
tences), upsampling the bitext so that each batch
contains an expected 20% of bitext. As in the

smaller scenario, TaggedBT matches or slightly
out-performs NoisedBT, with an advantage on
seven test-sets and a disadvantage on one. We
also compare our results to the best-performing
model from Edunov et al. (2018). Our model
is on par with or slightly superior to their re-
sult2, out-performing it on four test sets and under-
performing it on two, with the largest advantage on
Newstest2018 (+1.4 BLEU).

As a supplementary experiment, we consider
training only on BT data, with no bitext. We
compare this to training only on NoisedBT data.
If noising in fact increases the quality or diver-
sity of the data, one would expect the NoisedBT
data to yield higher performance than training on
unaltered BT data, when in fact it has about 1
BLEU lower performance (Table 3.a, “BT alone”
and “NoisedBT alone”).

We also compare NoisedBT versus Tagged-
NoisedBT in a set-up where the bitext itself is
noised. In this scenario, the noise can no longer
be used by the model as an implicit tag to dif-
ferentiate between bitext and synthetic BT data,
so we expect the TaggedNoisedBT variant to per-
form better than NoisedBT by a similar mar-
gin to NoisedBT’s improvement over BT in the
unnoised-bitext setting. The last sub-section of Ta-
ble 3.a confirms this.

4.3 Tagged Back-Translation for EnRo

We repeat these experiments for WMT EnRo (Ta-
ble 4). This is a much lower-resource task than
EnDe, and thus can benefit more from mono-
lingual data. In this case, NoisedBT is actu-
ally harmful, lagging standard BT by -0.6 BLEU.
TaggedBT closes this gap and passes standard BT
by +0.4 BLEU, for a total gain of +1.0 BLEU over
NoisedBT.

4.4 Tagged Back-Translation for EnFr

We performed a minimal set of experiments on
WMT EnFr, which are summarized in Table 5.
This is a much higher-resource language pair than
either EnRo or EnDe, but Edunov et al. (2018)
demonstrate that noised BT (using sampling) can
still help in this set-up. In this case, we see that BT
alone hurts performance compared to the strong
bitext baseline, but NoisedBT indeed surpasses the
bitext model. TaggedBT out-performs all other

2SacreBLEU for the WMT-18 model at github.com/
pytorch/fairseq
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a. Results on 24M BT Set
Model AVG 13-18 2010 2011 2012 2013 2014 2015 2016 2017 2018
Bitext 32.05 24.8 22.6 23.2 26.8 28.5 31.1 34.7 29.1 42.1
BT 33.12 24.7 22.6 23.5 26.8 30.8 30.9 36.1 30.6 43.5
NoisedBT 34.70 26.2 23.7 24.7 28.5 31.3 33.1 37.7 31.7 45.9
P3BT 34.57 26.1 23.6 24.5 28.1 31.8 33.0 37.4 31.5 45.6
TaggedBT 34.83 26.4 23.6 24.5 28.1 32.1 33.4 37.8 31.7 45.9
TaggedNoisedBT 34.52 26.3 23.4 24.6 27.9 31.4 33.1 37.4 31.7 45.6
BT alone 31.20 23.5 21.2 22.7 25.2 29.3 29.4 33.7 29.1 40.5
NoisedBT alone 30.28 23.2 21.0 22.1 24.6 28.4 28.2 33.0 28.1 39.4
Noised(BT + Bitext) 32.07 24.2 22.1 23.5 26.2 29.7 30.1 35.1 29.4 41.9
+ Tag on BT 33.53 25.5 22.8 24.5 27.6 30.3 31.9 36.9 30.4 44.1

b. Results on 216M BT Set
Model AVG 13-18 2010 2011 2012 2013 2014 2015 2016 2017 2018
Edunov et al. (2018) 35.28 25.0 29.0 33.8 34.4 37.5 32.4 44.6
NoisedBT 35.17 26.7 24.0 25.2 28.6 32.6 33.9 38.0 32.2 45.7
TaggedBT 35.42 26.5 24.2 25.2 28.7 32.8 34.5 38.1 32.4 46.0

Table 3: SacreBLEU on Newstest EnDe for different types of noise, with back-translated data either sampled down
to 24M or using the full set of 216M sentence pairs.

a. Forward models (EnRo)
Model dev test
Gehring et al. (2017) 29.9
Sennrich 2016 (BT) 29.3 28.1
bitext 26.5 28.3
BT 31.6 32.6
NoisedBT 29.9 32.0
TaggedBT 30.5 33.0
It.-3 BT 31.3 32.8
It.-3 NoisedBT 31.2 32.6
It.-3 TaggedBT 31.4 33.4

b. Reverse models (RoEn)
Model dev test
bitext 32.9 31.9
It.-2 BT 39.5 37.3

Table 4: Comparing SacreBLEU scores for differ-
ent flavors of BT for WMT16 EnRo. Previous
works’ scores are reported in italics as they use
detok.multi-bleu instead of SacreBLEU, so are
not guaranteed to be comparable. In this case, how-
ever, we do see identical BLEU on our systems when
we score them with detok.multi-bleu, so we be-
lieve it to be a fair comparison.

methods, beating NoisedBT by an average of +0.3
BLEU over all test sets.

It is worth noting that our numbers are lower
than those reported by Edunov et al. (2018) on the
years they report (36.1, 43.8, and 40.9 on 2013,
2014, and 2015 respectively). We did not inves-
tigate this result. We suspect that this is an er-
ror/inoptimlaity in our set-up, as we did not op-
timize these models, and ran only one experiment
for each of the four set-ups. Alternately, sampling
could outperform noising in the large-data regime.

4.5 Iterative Tagged Back-Translation

We further investigate the effects of TaggedBT
by performing one round of iterative back-
translation (Cotterell and Kreutzer, 2018; Vu Cong
Duy Hoang and Cohn, 2018; Niu et al., 2018),
and find another difference between the different
varieties of BT: NoisedBT and TaggedBT allow
the model to bootstrap improvements from an im-
proved reverse model, whereas standard BT does
not. This is consistent with our argument that data
tagging allows the model to extract information
out of each data set more effectively.

For the purposes of this paper we call a
model trained with standard back-translation
an Iteration-1 BT model, where the back-
translations were generated by a model
trained only on bitext. We inductively de-
fine the Iteration-k BT model as that model
which is trained on BT data generated by an
Iteration-(k-1) BT model, for k > 1. Unless
otherwise specified, any BT model mentioned in
this paper is an Iteration-1 BT model.

We perform these experiments on the English-
Romanian dataset, which is smaller and thus better
suited for this computationally expensive process.
We used the (Iteration-1) TaggedBT model to gen-
erate the RoEn back-translated training data. Us-
ing this we trained a superior RoEn model, mix-
ing 80% BT data with 20% bitext. Using this
Iteration-2 RoEn model, we generated new EnRo
BT data, which we used to train the Iteration-3
EnRo models. SacreBLEU scores for all these
models are displayed in Table 4.

57



Model Avg 2008 2009 2010 2011 2012 2013 2014 2015
Bitext 32.8 26.3 28.8 32.0 32.9 30.1 33.5 40.6 38.4
BT 29.2 22.2 27.3 28.8 29.3 27.9 30.7 32.6 34.8
NoisedBT 33.8 26.8 29.9 33.4 33.9 31.3 34.3 42.3 38.8
TaggedBT 34.1 27.0 30.0 33.6 33.9 31.2 34.4 42.7 39.8

Table 5: Results on WMT15 EnFr, with bitext, BT, NoisedBT, and TaggedBT.

We find that the iteration-3 BT models im-
prove over their Iteration-1 counterparts only
for NoisedBT (+1.0 BLEU, dev+test avg) and
TaggedBT (+0.7 BLEU, dev+test avg), whereas
the Iteration-3 BT model shows no improve-
ment over its Iteration-1 counterpart (-0.1 BLEU,
dev+test avg). In other words, both techniques that
(explicitly or implicitly) tag synthetic data bene-
fit from iterative BT. We speculate that this sep-
aration of the synthetic and natural domains al-
lows the model to bootstrap more effectively from
the increasing quality of the back-translated data
while not being damaged by its quality issues,
whereas the simple BT model cannot make this
distinction, and is equally “confused” by the bi-
ases in higher or lower-quality BT data.

An identical experiment with EnDe did not see
either gains or losses in BLEU from iteration-
3 TaggedBT. This is likely because there is less
room to bootstrap with the larger-capacity model.
This said, we do not wish to read too deeply into
these results, as the effect size is not large, and nei-
ther is the number of experiments. A more thor-
ough suite of experiments is warranted before any
strong conclusions can be made on the implica-
tions of tagging on iterative BT.

5 Analysis

In an attempt to gain further insight into TaggedBT
as it compares with standard BT or NoisedBT, we
examine attention matrices in the presence of the
back translation tag and measure the impact of the
tag at decoding time.

5.1 Attention Entropy and Sink-Ratio

To understand how the model treats the tag and
what biases it learns from the data, we investigate
the entropy of the attention probability distribu-
tion, as well as the attention captured by the tag.

We examine decoder attention (at the top layer)
on the first source token. We define Attention Sink
Ratio for index j (ASRj) as the averaged attention
over the jth token, normalized by uniform atten-

tion, i.e.

ASRj(x, ŷ) =
1

|ŷ|

|ŷ|∑

i=1

αij

α̃

where αij is the attention value for target token i in
hypothesis ŷ over source token j and α̃ = 1

|x| cor-
responds to uniform attention. We examine ASR
on text that has been noised and/or tagged (de-
pending on the model), to understand how BT sen-
tences are treated during training. For the tagged
variants, there is heavy attention on the tag when
it is present (Table 6), indicating that the model
relies on the information signalled by the tag.

Our second analysis probes word-for-word
translation bias through the average source-token
entropy of the attention probability model when
decoding natural text. Table 6 reports the average
length-normalized Shannon entropy:

H̃(x, ŷ) = − 1

|ŷ|

|ŷ|∑

i=1

1

log |x|

|x|∑

j=1

αij log(αij)

The entropy of the attention probabilities from the
model trained on BT data is the clear outlier. This
low entropy corresponds to a concentrated atten-
tion matrix, which we observed to be concentrated
on the diagonal (See Figure 1a and 1d). This could
indicate the presence of word-by-word translation,
a consequence of the harmful part of the signal
from back-translated data. The entropy on paral-
lel data from the NoisedBT model is much higher,
corresponding to more diffuse attention, which we
see in Figure 1b and 1e. In other words, the word-
for-word translation biases in BT data, that were
incorporated into the BT model, have been man-
ually undone by the noise, so the model’s under-
standing of how to decode parallel text is not cor-
rupted. We see that TaggedBT leads to a similarly
high entropy, indicating the model has learnt this
without needing to manually “break” the literal-
translation bias. As a sanity check, we see that the
entropy of the P3BT model’s attention is also high,
but is lower than that of the NoisedBT model, be-
cause P3 noise is less destructive. The one sur-
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(a) EnDe BT

(b) EnDe NoisedBT

(c) EnDe TaggedBT

(d) EnRo BT

(e) EnRo NoisedBT

(f) EnRo TaggedBT

Figure 1: Comparison of attention maps at the first encoder layer for a random training example for BT (row 1),
NoisedBT (row 2), and TaggedBT (row 3), for both EnDe (col 1) and EnRo (col 2). Note the heavy attention on
the tag (position 0 in row 3), and the diffuse attention map learned by the NoiseBT models. These are the models
from Table 3.a

prising entry on this table is probably the low en-
tropy of the TaggedNoisedBT. Our best explana-
tion is that TaggedNoisedBT puts disproportion-
ately high attention on the sentence-end token,
with 1.4x the ASR|x| that TaggedBT has, naturally
leading to lower entropy.

Model ASR0 ASR|x| H̃
Bitext baseline 0.31 10.21 0.504
BT 0.28 10.98 0.455
P3BT 0.37 7.66 0.558
NoisedBT 1.01 3.96 0.619
TaggedBT 5.31 5.31 0.597
TaggedNoisedBT 7.33 7.33 0.491

Table 6: Attention sink ratio on the first and last to-
ken and entropy (at decoder layer 5) for the models in
Table 3.a, averaged over all sentences in newstest14.
For ASR, data is treated as if it were BT (noised and/or
tagged, resp.), whereas for entropy the natural text is
used. Outliers discussed in the text are bolded.

5.2 Decoding with and without a tag

In this section we look at what happens when
we decode with a model on newstest data as if
it were back-translated. This means that for the
TaggedBT model we tag the true source, and for
the NoisedBT model, we noise the true source.
These “as-if-BT” decodings contrast with “stan-
dard decode”, or decoding with the true source.
An example sentence from newstest2015 is shown
in Table 8, decoded by both models both in the
standard fashion and in the “as-if-BT” fashion.
The BLEU scores of each decoding method are
presented in Table 7.

The noised decode – decoding newstest sen-
tences with the NoisedBT model after noising the
source – yields poor performance. This is unsur-
prising given the severity of the noise model used
(recall Table 1). The tagged decode, however,
yields only somewhat lower performance than the
standard decode on the same model (-2.9BLEU on
average). There are no clear reasons for this qual-
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Model Decode type AVG 13-17 2010 2011 2012 2013 2014 2015 2016 2017
TaggedBT standard 33.24 26.5 24.2 25.2 28.7 32.8 34.5 38.1 32.4

as BT (tagged) 30.30 24.3 22.2 23.4 26.6 30.0 30.5 34.2 30.2
NoisedBT standard 33.06 26.7 24.0 25.2 28.6 32.6 33.9 38.0 32.2

as BT (noised) 10.66 8.1 6.5 7.5 8.2 11.1 10.0 12.7 11.3

Table 7: Comparing standard decoding with decoding as if the input were back-translated data, meaning that it is
tagged (for the TaggedBT model) or noised (for the NoisedBT model) .

Model Decode type Example
TaggedBT standard Wie der Reverend Martin Luther King Jr. vor fünfzig Jahren sagte:

as-if-BT (tagged) Wie sagte der Reverend Martin Luther King jr. Vor fünfzig Jahren:
NoisedBT standard Wie der Reverend Martin Luther King Jr. vor fünfzig Jahren sagte:

as-if-BT (noised) Als Luther King Reverend Jr. vor fünfzig Jahren:
Source As the Reverend Martin Luther King Jr. said fifty years ago:
Reference Wie Pastor Martin Luther King Jr. vor fünfzig Jahren sagte:

Table 8: Example decodes from newstest2015 for decoding in standard and “as-if-BT” varieties. Here, NoisedBT
and TaggedBT produce equivalent outputs with standard decoding; TaggedBT produces less natural output with
tagged input; and NoisedBT produces a low-quality output with noised input.

ity drop – the model correctly omits the tag in the
outputs, but simply produces slightly lower qual-
ity hypotheses. The only noticeable difference in
decoding outputs between the two systems is that
the tagged decoding produces about double the
quantity of English outputs (2.7% vs. 1.2%, over
newstest2010-newstest2017, using a language ID
classifier).

That the tagged-decode BLEU is still quite
reasonable tells us that the model has not sim-
ply learned to ignore the source sentence when
it encounters the input tag, suggesting that the
p(y|BT(x)) signal is still useful to the model, as
Sennrich et al. (2016) also demonstrated. The tag
might then be functioning as a domain tag, causing
the model to emulate the domain of the BT data –
including both the desirable target-side news do-
main and the MT biases inherent in BT data.

To poke at the intuition that the quality drop
comes in part from emulating the NMT biases in
the synthetic training data, we probe a particu-
lar shortcoming of NMT: copy rate. We quantify
the copy rate with the unigram overlap between
source and target as a percentage of tokens in the
target side, and compare those statistics to the bi-
text and the back-translated data (Table 9). We
notice that the increase in unigram overlap with
the tagged decode corresponds to the increased
copy rate for the back-translated data (reaching
the same value of 11%), supporting the hypothesis
that the tag helps the model separate the domain of
the parallel versus the back-translated data. Under
this lens, quality gains from TaggedBT/NoisedBT
could be re-framed as transfer learning from a

multi-task set-up, where one task is to translate
simpler “translationese” (Gellerstam, 1986; Fre-
itag et al., 2019) source text, and the other is to
translate true bitext.

Data src-tgt unigram overlap
TaggedBT (standard decode) 8.9%
TaggedBT (tagged decode) 10.7%
Bitext 5.9%
BT Data 11.4 %

Table 9: Source-target overlap for both back-translated
data with decoding newstest as if it were bitext or BT
data. Model decodes are averaged over newstest2010-
newstest2017.

6 Negative Results

In addition to tagged back-translation, we tried
several tagging-related experiments that did not
work as well. We experimented with tagged
forward-translation (TaggedFT), and found that
the tag made no substantial difference, often lag-
ging behind untagged forward-translation (FT)
by a small margin (∼ 0.2 BLEU). For EnDe,
(Tagged)FT underperformed the bitext baseline;
for EnRo, (Tagged)FT performed about the same
as BT. Combining BT and FT had additive effects,
yielding results slightly higher than iteration-3
TaggedBT (Table 4), at 33.9 SacreBLEU on test;
but tagging did not help in this set-up. We fur-
thermore experimented with year-specific tags on
the BT data, using a different tag for each of
the ten years of newscrawl. The model trained
on these data performed identically to the nor-
mal TaggedBT model. Using this model we repli-
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cated the “as-if-bt” experiments from Table 8 us-
ing year-specific tags, and although there was a
slight correlation between year tag and that year’s
dataset, the standard-decode still resulted in the
highest BLEU.

7 Conclusion

In this work we develop TaggedBT, a novel tech-
nique for using back-translation in the context of
NMT, which improves over the current state-of-
the-art method of Noised Back-Translation, while
also being simpler and more robust. We demon-
strate that while Noised Back-Translation and
standard Back-Translation are more or less effec-
tive depending on the task (low-resource, mid-
resource, iterative BT), TaggedBT performs well
on all tasks.

On WMT16 EnRo, TaggedBT improves on
vanilla BT by 0.4 BLEU. Our best BLEU score
of 33.4 BLEU, obtained using Iterative TaggedBT,
shows a gain of +3.5 BLEU over the highest previ-
ously published result on this test-set that we are
aware of. We furthermore match or out-perform
the highest published results we are aware of on
WMT EnDe that use only back-translation, with
higher or equal BLEU on five of seven test sets.

In addition, we conclude that noising in the con-
text of back-translation acts merely as an indicator
to the model that the source is back-translated, al-
lowing the model to treat it as a different domain
and separate the helpful signal from the harmful
signal. We support this hypothesis with experi-
mental results showing that heuristic noising tech-
niques like those discussed here, although they
produce text that may seem like a nigh unintelli-
gible mangling to humans, have a relatively small
impact on the cross-lingual signal. Our analysis
of attention and tagged decoding provides further
supporting evidence for these conclusions.

8 Future Work

A natural extension of this work is to investi-
gate a more fine-grained application of tags to
both natural and synthetic data, for both back-
translation and forward-translation, using quality
and domain tags as well as synth-data tags. Sim-
ilarly, tagging could be investigated as an alter-
native to data selection, as in van der Wees et al.
(2017); Axelrod et al. (2011), or curriculum learn-
ing approaches like fine-tuning on in-domain data
(Thompson et al., 2018; Hassan Sajjad and Nadir

Durrani and Fahim Dalvi and Yonatan Belinkov
and Stephan Vogel, 2017; Freitag and Al-Onaizan,
2016). Finally, the token-tagging method should
be contrasted with more sophisticated versions of
tagging, like concatenating a trainable domain em-
bedding with all token embeddings, as in Kobus
et al. (2016).
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Abstract

We explore using multilingual document em-
beddings for nearest neighbor mining of par-
allel data. Three document-level representa-
tions are investigated: (i) document embed-
dings generated by simply averaging multilin-
gual sentence embeddings; (ii) a neural bag-
of-words (BoW) document encoding model;
(iii) a hierarchical multilingual document en-
coder (HiDE) that builds on our sentence-level
model. The results show document embed-
dings derived from sentence-level averaging
are surprisingly effective for clean datasets,
but suggest models trained hierarchically at
the document-level are more effective on noisy
data. Analysis experiments demonstrate our
hierarchical models are very robust to vari-
ations in the underlying sentence embedding
quality. Using document embeddings trained
with HiDE achieves state-of-the-art perfor-
mance on United Nations (UN) parallel doc-
ument mining, 94.9% P@11 for en-fr and
97.3% P@1 for en-es.

1 Introduction

Obtaining a high-quality parallel training corpus
is one of the most critical issues in machine trans-
lation. Previous work on parallel document min-
ing using large distributed systems has proven
effective (Uszkoreit et al., 2010; Antonova and
Misyurev, 2011), but these systems are often heav-
ily engineered and computationally intensive. Re-
cent work on parallel data mining has focused
on sentence-level embeddings (Guo et al., 2018;
Artetxe and Schwenk, 2018; Yang et al., 2019).
However, these sentence embedding methods have
had limited success when applied to document-
level mining tasks (Guo et al., 2018). A re-
cent study from Yang et al. (2019) shows that

1We use evaluation metrics precision at N, here P@1
means precision at 1

document embeddings obtained from averaging
sentence embeddings can achieve state-of-the-art
performance in document retrieval on the United
Nation (UN) corpus. This simple averaging ap-
proach, however, heavily relies on high quality
sentence embeddings and the cleanliness of doc-
uments in the application domain.

In our work, we explore using three variants of
document-level embeddings for parallel document
mining: (i) simple averaging of embeddings from
a multilingual sentence embedding model (Yang
et al., 2019); (ii) trained document-level embed-
dings based on document unigrams; (iii) a simple
hierarchical document encoder (HiDE) trained on
documents pairs using the output of our sentence-
level model.

The results show document embeddings are
able to achieve strong performance on parallel
document mining. On a test set mined from the
web, all models achieve strong retrieval perfor-
mance, the best being 91.4% P@1 for en-fr and
81.8% for en-es from the hierarchical document
models. On the United Nations (UN) document
mining task (Ziemski et al., 2016), our best model
achieves 96.7% P@1 for en-fr and 97.3% P@1
for en-es, a 3%+ absolute improvement over the
prior state-of-the-art (Guo et al., 2018; Uszkoreit
et al., 2010). We also evaluate on a noisier ver-
sion of the UN task where we do not have the
ground truth sentence alignments from the orig-
inal corpus. An off-the-shelf sentence splitter is
used to split the document into sentences.2 The
results shows that the HiDE model is robust to
the noisy sentence segmentations, while the aver-
aging of sentence embeddings approach is more
sensitive. We further perform analysis on the ro-
bustness of our models based on different qual-
ity sentence-level embeddings, and show that the

2To introduce noise in sentence alignment, which is often
seen in the real applications, in the parallel documents
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HiDE model performs well even when the under-
lying sentence-level model is relatively weak.

We summarize our contributions as follows:

• We introduce and explore different ap-
proaches for using document embeddings in
parallel document mining.

• We adapt the previous work on hierarchical
networks to introduce a simple hierarchical
document encoder trained on document pairs
for this task.

• Empirical results show our best document
embedding model leads to state-of-the-art re-
sults on the document-level bitext retrieval
task on two different datasets. The proposed
hierarchical models are very robust to varia-
tions in sentence splitting and the underlying
sentence embedding quality.

2 Related Work

Parallel document mining has been extensively
studied. One standard approach is to identify
bitexts using metadata, such as document titles
(Yang and Li, 2002), publication dates (Munteanu
and Marcu, 2005, 2006), or document structure
(Chen and Nie, 2000; Resnik and Smith, 2003;
Shi et al., 2006). However, the metadata re-
lated to the documents can often be sparse or
unreliable (Uszkoreit et al., 2010). More re-
cent research has focused on embedding-based ap-
proaches, where texts are mapped to an embed-
ding space to calculate their similarity distance
and determine whether they are parallel (Grégoire
and Langlais, 2017; Hassan et al., 2018; Schwenk,
2018). Guo et al. (2018) has studied document-
level mining from sentence embeddings using a
hyperparameter tuned similarity function, but had
limited success compared to the heavily engi-
neered system proposed by Uszkoreit et al. (2010).

An extensive amount of work has also been
done on learning document embeddings. Le and
Mikolov (2014); Li et al. (2015); Dai et al. (2015)
explored Paragraph Vector with various lengths
(sentence, paragraph, document) trained on next
word/n-gram prediction given context sampled
from the paragraph. The work from Roy et al.
(2016); Chen (2017); Wu et al. (2018) obtained
document embeddings from word-level embed-
dings. More recent work has been focused on
learning document embeddings through hierarchi-
cal training. The work from Yang et al. (2016);

[x0, ..., xn] [y0, ..., ym]

Encoder Encoder

Dot Product

Figure 1: Dual encoder for parallel corpus mining,
where (x, y) represents translation pairs.

Miculicich et al. (2018) approached Document
Classification and Neural Machine Translation us-
ing Hierarchical Attention Networks, and Wang
et al. (2017) proposed using a hierarchy of Recur-
rent Neural Networks (RNNs) to summarize the
cross-sentence context. However, the amount of
work applying document embeddings to the trans-
lation pair mining task has been limited.

Yang et al. (2019) recently showed strong paral-
lel document retrieval results using document em-
beddings obtained by averaging sentence embed-
dings. Our paper extends this work to explore dif-
ferent variants of document-level embeddings for
parallel document mining, including using an end-
to-end hierarchical encoder model.

3 Model

This section introduces our document embedding
models and training procedure.

3.1 Translation Candidate Ranking Task
using a Dual Encoder

All models use the dual encoder architecture in
Figure 1, allowing candidate translation pairs to
be scored using an efficient dot-product opera-
tion. The embeddings that feed the dot-product
are trained by modeling parallel corpus mining as
a translation ranking task (Guo et al., 2018). Given
translation pair (x, y), we learn to rank true trans-
lation y over other candidates, Y . We use batch
negatives, with sentence yi of the pair (xi, yi)
serving as a random negative for all source xj in a
training batch such that j 6= i. Following Artetxe
and Schwenk (2018), a shared multilingual en-
coder is used to map both x and y to their em-
bedding space representations x′ and y′. Within a
batch, all pairwise dot-products can be computed
using a single matrix multiplication. We train us-
ing additive margin softmax (Yang et al., 2019),
subtracting a margin term m from the dot-product
scores for true translation pairs. For batch size K
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Figure 2: Illustration of the DNN→ pooling version of the Hierarchical Document Encoder (HiDE). Each sentence
is processed by our Transformer based encoding model with the final sentence-level embedding being produced
by pooling across the last layer’s positional heads. Document-level embeddings are composed by pooling across
the sentence-level embeddings after each sentence embedding has been adapted by additional feed-forward layers.

and margin m, the log-likelihood loss function is
given by Eq. 1.

J = − 1

K

K∑

i=1

log
ex

′
i·y′>i −m

ex
′
i·y′>i −m +

∑K
k=1 e

x′
k,k 6=i·y′>k

(1)
Models are trained with a bidirectional rank-

ing objective (Yang et al., 2019). Given source
and target pair (x, y), forward translation rank-
ing, Jforward, maximizes p(y|x), while back-
ward translation ranking, Jbackward, maximizes
p(x|y). Bidirectional loss J sums the two direc-
tional losses:

J = Jforward + Jbackward (2)

3.1.1 Sentence-Level Embeddings

Sentence embeddings are produced by a Trans-
former model (Vaswani et al., 2017) with pool-
ing over the last block.3 Semantically similar hard
negatives are included to augment batch negatives
(Guo et al., 2018; Chidambaram et al., 2018; Yang
et al., 2019). We denote document embeddings
derived from averaged sentence embeddings as
Sentence-Avg.

3.1.2 Bag-of-words Document Embeddings

Our bag-of-words (BoW) document embeddings,
Document BoW, are constructed by feeding doc-
ument unigrams into a deep averaging network
(DAN) (Iyyer et al., 2015) trained on the parallel
document ranking task.4

3For pooling, we concatenate the combination of min,
max and attentional pooling.

4The model uses feed-forward hidden layers of size 320,
320, 500, and 500.

3.2 Hierarchical Document Encoder (HiDE)

As illustrated in Figure 2, our hierarchical model
is also trained on the parallel document ranking
task, but taking as input embeddings from our
sentence-level model. For HiDEDNN→pooling, sen-
tence embeddings are adapted to the document-
level task by applying a feed-forward DNN to
each sentence embedding. Average pooling ag-
gregates the adapted sentence representations into
the final fixed-length document embedding. We
contrast performance with a variant of the model,
HiDEpooling→DNN, that performs average pooling
first followed by a feed-forward DNN to adapt the
representation to document-level mining.

4 Experiments

This section describes our training data, model
configurations, and retrieval results for our em-
bedding models: Sentence-Avg, Document BoW,
HiDEDNN→pooling, and HiDEpooling→DNN.

4.1 Data

We focus on two language pairs: English-French
(en-fr) and English-Spanish (en-es). Two corpora
are used for training and evaluation.

The first corpus is obtained from web
(WebData) using a parallel document min-
ing system and automatic sentence alignments,
both following an approach similar to Uszkoreit
et al. (2010). Parallel documents number 13M for
en-fr and 6M for en-es, with 400M sentence pairs
for each language pair. We split this corpus into
training (80%), development (10%), and test set
(10%).

We also evaluate the trained models on a sec-
ond corpus, the United Nations (UN) Parallel Cor-
pus (Ziemski et al., 2016), as an out-of-domain test
set. The UN corpus contains a fully aligned sub-
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Corpus Document Pairs
English - French

WebData

(s1) Specs Toshiba Coverside FL not categorized (4407839940), (s2) Search by brand, (s3) Icecat: syndi-
cator of product information via global Open catalog with more than 4578703 data-sheets & 19844 brands
– Register (free)

(s1) Fiche produit Toshiba Coverside FL non classé (4407839940), (s2) Partenaires en ligne, (s3) Edit my
products

Clean UN

(s1) 1 July 2011, (s2) Original: English, (s3) Tenth meeting, (s4) Cartagena, Colombia, 17 - 21 October
2011, (s5) Item 4 of the provisional agenda

(s1) 1er juillet 2011, (s2) Original : anglais, (s3) Dixième réunion, (s4) Cartagena (Colombie), 17-21
octobre 2011, (s5) Point 4 de l’ordre du jour provisoire*

Noisy UN

(s1) 6–7 May 1999 Non-governmental organizations New York, 14 to 18 December 1998 Corrigendum 1.,
(s2) Paragraph 1, draft decision I, under “Special consultative status” 2., (s3) Paragraph 48 Add Japan to
the list of States Members of the United Nations represented by observers.

(s1) 6 et 7 mai 1999 Organisations non gouvernementales New York, 14-18 décembre 1998 Rectificatif
Paragraphe 1, projet de décision I, sous la rubrique “Statut consultatif spécial” Paragraphe 48 Ajouter le
Japon à la liste des États Membres de l’Organisation des Nations Unies représentés par des observateurs.

English - Spanish

WebData

(s1) Alcudia travel Guide & Map - android apps on Google play, (s2) Travel & Local, (s3) Alcudia travel
Guide & Map, (s4) Maps, GPS Navigation Travel & Local, (s5) Offers in-app purchases”

(s1) Beirut Travel Guide & map - aplicaciones Android en Google play, (s2) Todavı́a más ”, (s3) Seleccin
de los editores, (s4) Libros de texto, (s5) Comprar tarjeta de regalo

Clean UN

(s1) [Original: English], (s2) Monthly report to the United Nations on the operations of the Kosovo Force,
(s3) 1. Over the reporting period (1-28 February 2003) there were just over 26,600 troops of the Kosovo
Force (KFOR) in theatre.

(s1) [Original: inglés], (s2) Informe mensual de las Naciones Unidas sobre las operaciones de la Fuerza
Internacional de Seguridad en Kosovo, (s3) En el perı́odo sobre el que se informa (1 a 28 de febrero 2003)
habı́a en el teatro de operaciones algo más de 26.600 efectivos de la Fuerza Internacional de Seguridad en
Kosovo (KFOR).

Noisy UN

(s1) (Original: English) Monthly report to the United Nations on the operations of the Kosovo Force 1.,
(s2) Over the reporting period (1-28 February 2003) there were just over 26,600 troops of the Kosovo Force
(KFOR) in theatre.

(s1) (Original: inglés) Informe mensual de las Naciones Unidas sobre las operaciones de la Fuerza Inter-
nacional de Seguridad en Kosovo En el perı́odo sobre el que se informa (1 a 28 de febrero 2003) habı́a en
el teatro de operaciones algo más de 26.600 efectivos de la Fuerza Internacional de Seguridad en Kosovo
(KFOR).

Table 1: Example document snippets from the WebData, original UN corpus, UN corpus with noisy sentence
segmentation. We only show the starting sentences for each document, the original documents can go very long.
Symbol (sn) means sentence n in the document to show sentence segmentation.

corpus of ∼86k document pairs for the six official
UN languages.5 As this corpus is small, it is only
used for evaluation.

The sentence segmentation in the fully aligned
subcorpus is particularly good due to the process
used to construct the dataset. While automatic
sentence splitting is performed using the Eserix
spltter, documents are only included in the fully
aligned subcorpus if sentences are consistently
aligned across all six languages. This implicitly
filters documents with noisy sentence segmenta-
tions. Exceptions are errors in the sentence seg-
mentation that are systematically replicated across
the documents in all six languages.

5Arabic, Chinese, English, French, Russian, and Spanish.

We create a noisier version of the UN dataset
that makes use of an robust off-the-shelf sentence
splitter, but which necessarily introduces noise
compare to sentences that were split by consen-
sus across all six languages within the original UN
dataset. Models are evaluated on this noisy UN
corpus, as any real application of our models will
almost certainly need to contend with noisy auto-
matic sentence splits.

Table 1 shows examples from each dataset. The
WebData dataset is very noisy and contains a
large amount of template-like queries from web.
In this dataset, sentence alignments can be also
very noisy, and sometimes sentences are not di-
rect translations of each other. The original UN
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is translated sentence by sentence by human anno-
tators, so it is perfectly aligned at the sentence-
level with ground truth translations. The noisy
UN, however, could have incorrect sentence-level
mappings, but these could still be correct transla-
tions on the document-level. The sentence split-
ter used to generate the noisy UN dataset could
also perform differently in different languages for
the parallel content, resulting in mismatches at the
sentence-level. As seen in the Noisy UN exam-
ples shown in Table 1, the English text is split
into 3 sentences, while the corresponding French
or Spanish texts are only split into 1 sentence.

4.2 Configuration
Our sentence-level encoder follows a similar setup
as Yang et al. (2019). The sentence encoder
has a shared 200k token multilingual vocabulary
with 10K OOV buckets. Vocabulary items and
OOV buckets map to 320 dim. word embeddings.
For each token, we also extract character n-grams
(n = [3, 6]) hashed to 200k buckets mapped to 320
dim. character embeddings. Word and character n-
gram representations are summed together to pro-
duce the final input token representation. Updates
to the word and character embeddings are scaled
by a gradient multiplier of 25 (Chidambaram et al.,
2018). The encoder uses 3 transformer blocks
with hidden size of 512, filter size of 2048, and
8 attention heads. Additive margin softmax uses
m = 0.3. We train for 40M steps for both lan-
guage pairs using an SGD optimizer with batch
size K=100 and learning rate 0.003.

During document-level training, sentence em-
beddings are fixed due to the computational cost
of dynamically encoding all of the sentences in a
document. Sentence embeddings are adapted us-
ing a four-layer DNN model with residual connec-
tions and hidden sizes 320, 320, 500, and 500.
The first three layers use ReLU activations with
the final layer using Tanh. Document embed-
dings are trained with an SGD optimizer, batch
size K = 200, learning rate 0.0001, and additive
margin softmax m = 0.5 for en-fr, and m = 0.6
for en-es. We train for 5M steps for en-fr and 2M
steps for en-es. Light hyperparameter tuning uses
our development set from WebData.

4.3 Mining Translations and Evaluation
Translation candidates are mined with approxi-
mate nearest neighbor (ANN) (Vanderkam et al.,
2013) search over our multilingual embed-

dings (Guo et al., 2018; Artetxe and Schwenk,
2018).6 The evaluation metric is precision at N
(P@N), which evaluates if the true translation is
in the top N candidates returned by the model.

4.3.1 Results on WebData Test Set
Table 2 presents document embedding P@N re-
trieval performance using our WebData test set,
for N = 1, 3, 10. The evaluation uses 1M candi-
date documents for en-fr and 0.6M for en-es. We
obtain the best performance from our hierarchical
models, HiDE∗. Adapting the sentence embed-
dings prior to pooling, HiDEDNN→pooling performs
better than attempting to adapt the representation
after pooling, HiDEpooling→DNN. Document BoW
embeddings outperform Sentence-Avg, showing
training a simple model for document-level repre-
sentations (DAN) outperforms pooling of sentence
embeddings from a complex model (Transformer).

4.3.2 Results on UN Corpus
Table 3 shows document matching P@1 for our
models on both the original UN dataset sentence
segmentation and on the noisier sentence segmen-
tation. P@1 is evaluated using all of the UN doc-
uments in a target language as translation can-
didates. The prior state-of-the-art is Uszkoreit
et al. (2010).7 Using both the official and noisy
sentence segmentations, HiDEDNN→pooling outper-
forms Uszkoreit et al. (2010), a heavily engineered
system that incorporates both MT and monolin-
gual duplicated document detection.

Guo et al. (2018) uses sentence-to-sentence
alignments to heuristically identify document
pairs. Alignments were computed using sentence
embeddings generated over the UN corpus an-
notated sentence splits. With corpus annotated
splits, Sentence-Avg performs better than Guo
et al. (2018). Furthermore, even with noisy sen-
tence splits HiDE∗ outperforms Guo et al. (2018).

The performance of all our document embed-
dings methods that build on sentence-level repre-
sentations is remarkably strong when we use the
sentence boundaries annotated in the UN corpus.
Surprisingly, Sentence-Avg performed poorly on
the WebData test data but is very competitive with
both variants of HiDE when using the original
UN corpus sentence splits.8 However, on the UN

6Prior work only used ANN over sentence embeddings.
7Uszkoreit et al. (2010) was applied to the UN dataset by

Guo et al. (2018).
8We use similar sentence-level encoder setup as Yang
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Document Embedding
en-fr (1M) en-es (0.6M)

P@1 P@3 P@10 P@1 P@3 P@10
HiDEDNN→pooling 91.40 94.13 95.67 81.83 87.85 91.45
HiDEpooling→DNN 90.63 93.50 95.11 78.84 85.04 88.88
Document BoW 83.83 90.47 94.18 78.09 85.04 91.03
Sentence-Avg 78.07 83.53 87.06 67.49 74.22 79.01

Table 2: Precision at N (P@N) of target document retrieval on the WebData test set. Models attempt to select the
true translation target for a source document from the entire corpus (1 million parallel documents for en-fr, and 0.6
million for en-es).

Model en-fr en-es
UN Corpus Sentence Segmentation

HiDEDNN→pooling 96.6 97.3
HiDEpooling→DNN 96.5 96.1
Sentence-Avg 96.7 97.3

Noisy Sentence Segmentation
HiDEDNN→pooling 94.9 96.0
HiDEpooling→DNN 91.0 94.4
Sentence-Avg 86.8 95.7

No sentence splitting
Document BoW 74.3 71.9

Prior work
Uszkoreit et al. (2010) 93.4 94.4
Guo et al. (2018) 89.0 90.4

Table 3: Document matching on the UN corpus eval-
uated using P@1. For methods that require sentence
splitting, we report results using both the UN sentence
annotations and an off-the-shelf sentence splitter.

data with noisy sentence splits, HiDE∗ once again
significantly outperforms Sentence-Avg. Averag-
ing sentence embeddings appears to be a strong
baseline for clean datasets, but the hierarchical
model helps when composing document embed-
dings from noisier input representations.9 Simi-
lar to the WebData test set, on the noisy UN data,
HiDEDNN→pooling outperforms HiDEpooling→DNN.
We note that while Document BoW performed
well on the in-domain test set, it performs poorly
on the UN data. Preliminary analysis suggests this
is due in part to differences in length between the
WebData and UN documents.

We also observe that the performance of
Sentence-Avg model dropped significantly in en-
fr when transitioning from the Clean UN to the
Noisy UN, but in en-es, the performance drop is

et al. (2019), we are able to obtain matching results on the
original UN corpus

9We note that in practice parallel document mining will
tend to operate over noisy datasets.

Figure 3: Histogram of document length differences
w.r.t. # of sentences in each parallel document pair.

much less. We compute the histogram of the doc-
ument length differences in each document pair
w.r.t. the # of sentences in each document on
the noisy UN corpus. As shown in figure 3, the
en-es dataset indeed has better agreement on the
sentence split comparing with en-fr, which indi-
cates the Sentence-Avg model is sensitive to the
sentence segmentation quality of the parallel doc-
ument pairs.

5 Analysis

In this section, we first analyze the errors produced
by the document embedding models. We then ex-
plore how the performance of sentence-level mod-
els affect the performance of document-level mod-
els that incorporate sentence-embeddings.

5.1 Errors

We first look at the false positive examples re-
trieved by HiDEDNN→pooling model on en-es Web-
Doc development set. We observe that the actual
error results often have similar sentence structure
and meaning comparing to the expected result.

Table 4 list two typical example snippets for
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Example 1

Source Audio-technica mb 3k b-stock - Thomann ireland, Dynamic Microphones finder, 40 e– 60, 60 e– 100, 100
e– 120, 120 e– 160, 160 e– 200, 200 e– 280, 280 e– 460, in stock items

Expected Result
Beyerdynamic tg-x58 b-stock - Thomann españa, Micrófonos dinámicos de voz encontrar ..., Gama de
precios, 40 e– 60, 60 e– 100, 100 e– 120, 120 e– 160, 160 e– 200, 200 e– 280, 280 e– 460, Reajustar
todos los filtros

Actual Result
Audio-technica atm63 u - Thomann españa, Micrófonos dinámicos de voz encontrar ..., Gama de precios,
40 e– 60, 60 e– 100, 100 e– 120, 120 e– 160, 160 e– 200, 200 e– 280, 280 e– 400, Reajustar todos los
filtros

Example 2

Source
Casual man suit photo - android apps on google play, Casual man suit photo, Casual shirt Photo suit is
photography application to make your face in nice fashionable man suit., This is so easy and free to make
your photo into nice looking suit without any hard work and it’s all free.

Expected Result
Casual fotos - aplicaciones de android en Google play, Todavı́a más ”, Selección de nuestros expertos, Libros
de texto, Comprar tarjeta regalo, Mi lista de deseos, Mi actividad de Play, Guı́a para padres, Arte y Diseño,
Bibliotecas y demos, Casa y hogar

Actual Result
Traje de la foto de la camisa formal de los hombre - aplicaciones de android en Google play, Todavı́a más ”,
Selección de nuestros expertos, Libros de texto, Comprar tarjeta regalo, Mi lista de deseos, Mi actividad de
Play, Guı́a para padres, Arte y Diseño, Bibliotecas y demos, Casa y hogar

Table 4: Example document snippets of source, expected result, and actual result retrieved by HiDEDNN→pooling
model on the en-es development sets.

HiDEDNN→pooling. In the first example, our model
matches the translation of ”Audio-technica” to
”Audio-technica” instead of ”Beyerdynamic”. We
observe that in multiple cases, HiDE model is able
to retrieve a more accurate translation pair than
the labeled expected result. As shown in Table 1,
the WebData automatically mined from the web
is noisy and may contains non-translation pairs.
This results indicates the proposed model is robust
to the training data noise. The second example
shows another typical error where the documents
are template-like. The actual results retrieved by
HiDEDNN→pooling still largely match the expected
text.

We also look at the actual results retrieved
from Sentence-Avg model. The Sentence-Avg
model also suffers from the template-like docu-
ments (e.g. Example 2 in Table 4) similar to the
HiDEDNN→pooling model. Other than that, though
some correctly translated words can be found, the
retrieved error documents differ much more in
sentence structure and meaning from the expected
results. For example, the expected and actual re-
sults can both be documents about the same sub-
ject, but from entirely different perspectives. We
also found that some of the WebData target docu-
ments are in English instead of Spanish. In these
cases, the Sentence-Avg model is more likely to
retrieve a document in the same language as the
source document instead of retrieving a translated
document.

5.2 HiDE performance on Coarse
Sentence-level Models

We further explore how the performance of
sentence-level models affect the performance of
document-level models that incorporate sentence-
embeddings. We use different encoder configura-
tions to produce sentence embeddings of varying
quality as expressed by P@1 results for sentence-
level retrieval on the UN dataset.10 Table 5 shows
the P@1 of target document retrieval on both the
WebData test set and the noisy UN corpus for
HiDEDNN→pooling and Sentence-Avg. While sen-
tence encoding quality does impact document-
level performance, the HiDE model is surprisingly
robust once the sentence encoder reaches around
66% P@1, whereas the Sentence-Avg model re-
quires much higher quality sentence-level embed-
dings (around 85% for en-fr, and 80% for en-es).
The robustness of HiDE model provides a means
for obtaining high-quality document embeddings
without high-quality sentence embeddings, and
thus provides the option to trade-off sentence-level
embedding quality for speed and memory perfor-
mance.

6 Conclusion

In this paper, we explore parallel document min-
ing using several document embedding methods.

10Model sentence-level model performance was varied by
generating models with hyperparameters selected to degrade
performance (e.g., fewer training sets, no margin softmax).
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Languages P@1 at Sentence Level
P@1 on WebDoc test P@1 on Noisy UN

HiDEDNN→pooling Sentence-Avg HiDEDNN→pooling Sentence-Avg

en-fr

48.9 66.6 0.6 70.3 4.4
66.9 89.2 54.3 92.6 63.9
81.3 90.5 72.9 92.1 76.9
86.1 91.3 78.1 94.9 86.9

en-es

54.9 59.0 1.2 81.3 4.7
67.0 79.1 54.2 93.2 82.9
80.6 79.8 60.1 91.2 88.9
89.0 81.9 67.4 96.0 95.7

Table 5: P@1 of target document retrieval on WebData test set and noisy UN corpus for HiDEDNN→pooling and
Sentence-Avg models with different sentence-level P@1 performance . The sentence-level peroformance is mea-
sured on the sentence-level UN retrieval task from the entire corpus (11.3 million sentence candidates).

Mining using document embeddings achieves a
new state-of-the-art perfomance on the UN par-
allel document mining task (en-fr, en-es). Docu-
ment embeddings computed by simply averaging
sentence embeddings provide a very strong base-
line for clean datasets, while hierarchical embed-
ding models perform best on noisier data. Finally,
we show document embeddings based on aggrega-
tions of sentence embeddings are surprisingly ro-
bust to variations in sentence embedding quality,
particularly for our hierarchical models.
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Abstract

The effect of translationese has been studied in
the field of machine translation (MT), mostly
with respect to training data. We study in
depth the effect of translationese on test data,
using the test sets from the last three editions
of WMT’s news shared task, containing 17
translation directions. We show evidence that
(i) the use of translationese in test sets results
in inflated human evaluation scores for MT
systems; (ii) in some cases system rankings
do change and (iii) the impact translationese
has on a translation direction is inversely cor-
related to the translation quality attainable by
state-of-the-art MT systems for that direction.

1 Introduction

Translated texts in a human language exhibit
unique characteristics that set them apart from
texts originally written in that language. It is
common then to refer to translated texts with the
term translationese. The characteristics of trans-
lationese can be grouped along the so-called uni-
versal features of translation or translation univer-
sals (Baker, 1993), namely simplification, normal-
isation and explicitation. In addition to these three,
interference is recognised as a fundamental law of
translation (Toury, 2012): “phenomena pertaining
to the make-up of the source text tend to be trans-
ferred to the target text”. In a nutshell, compared
to original texts, translations tend to be simpler,
more standardised, and more explicit and they re-
tain some characteristics that pertain to the source
language.

The effect of translationese has been studied in
machine translation (MT), mainly with respect to
the training data, during the last decade. Previous
work has found that an MT system performs better
when trained on parallel data whose source side
is original and whose target side is translationese,

rather than the opposite (Kurokawa et al., 2009;
Lembersky, 2013).

A recent paper has studied the effect of transla-
tionese on test sets (Toral et al., 2018), in the con-
text of assessing the claim of human parity made
on Chinese-to-English WMT’s 2017 test set (Has-
san et al., 2018). The source side of this test set,
as it is common in WMT (Bojar et al., 2016, 2017,
2018), was half original and half translationese. It
was found out that the translationese part was ar-
tificially easier to translate, which resulted in in-
flated scores for MT systems.

Noting that this finding was based on one test
set for a single translation direction, we explore
this topic in more depth, studying the effect of
translationese in all the language pairs of the news
shared task of WMT 2016 to 2018. Our research
questions (RQs) are the following:

• RQ1. Does the use of translationese in the
source side of MT test sets unfairly favour
MT systems in general or is this just an ar-
tifact of the Chinese-to-English test set from
WMT 2017?

• RQ2. If the answer to RQ1 is yes, does
this effect of translationese have an impact
on WMT’s system rankings? In other words,
would removing the part of the test set whose
source side is translationese result in any
change in the rankings?

• RQ3. If the answer to RQ1 is yes, would
some language pairs be more affected than
others? E.g. based on the level of the related-
ness between the two languages involved.

The remainder of the paper will be organized as
follows. Section 2 provides an overview of pre-
vious work about the effect of translationese in
MT. Next, Section 3 describes the data sets used in
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our research. This is followed by Section 4, Sec-
tion 5 and Section 6, where we conduct the exper-
iments for RQ1, RQ2 and RQ3, respectively. Fi-
nally, Section 7 outlines our conclusions and lines
of future work.

2 Related Work

There is previous research in the field of MT that
has looked at the impact of translationese, mostly
on training data, but there are works that have fo-
cused also on tuning and testing data sets.

The pioneering work on this topic by Kurokawa
et al. (2009) showed that French-to-English sta-
tistical MT systems trained on human translations
from French to English (original source and trans-
lationese target, henceforth referred to as O→T)
outperformed systems trained on human transla-
tions in the opposite direction (i.e. translationese
source and original target, henceforth referred
to as T→O). These findings were corroborated
by Lembersky (2013), who also adapted phrase
tables to translationese, which resulted in further
improvements. Lembersky et al. (2012) focused
on the monolingual data used to train the language
model of a statistical MT system and found that
using translated texts led to better translation qual-
ity than relying on original texts.

Stymne (2017) investigated the effect of trans-
lationese on tuning for statistical MT, using data
from the WMT 2008–2013 (Bojar et al., 2013) for
three language pairs. The results using O→T and
T→O tuning texts were compared; the former led
to a better length ratio and a better translation, in
terms of automatic evaluation metrics.

Finally, Toral et al. (2018) investigated the ef-
fect of translationese on the Chinese→English
(ZH→EN) test set from WMT’s 2017 news shared
task. They hypothesized that the sentences orig-
inally written in EN are easier to translate than
those originally written in ZH, due to the sim-
plification principle of translationese, namely that
translated sentences tend to be simpler than their
original counterparts (Laviosa-Braithwaite, 1998).
Two additional universal principles of translation,
explicitation and normalisation, would also indi-
cate that a ZH text originally written in EN would
be easier to translate. In fact, they looked at a hu-
man translation and the translation by an MT sys-
tem (Hassan et al., 2018) and observed that the hu-
man translation outperforms the MT system when
the input text is written in the original language

(ZH), but the difference between the two is not
significant when the original language is transla-
tionese (ZH input originally written EN). There-
fore, they concluded that the use of translationese
as the source language in test sets distorts the re-
sults in favour of MT systems.

3 Data Sets

We use the test data from WMT16, WMT17, and
WMT18 news translation tasks (newstest2016,
newstest2017, and newstest2018) exclusively, be-
cause they provide results using the direct as-
sessment (DA) score (Graham et al., 2013, 2014,
2017), which is the metric we will use in our ex-
periments. DA is a crowd-sourced human eval-
uation metric to determine MT quality. To elab-
orate, after participants submit their translations
produced by their MT systems, a human evalua-
tion campaign is run. This is to assess the trans-
lation quality of the systems, and to rank them
accordingly. Human evaluation scores are pro-
vided via crowdsourcing and/or by participants,
using Appraise (Federmann, 2012). Human asses-
sors are asked to rate a given candidate translation
by how adequately it expresses the meaning of the
corresponding reference translation, thus avoiding
the use of the source texts and therefore not requir-
ing bilingual speakers. The rating is done on an
analogue scale, which corresponds to an absolute
0-100 scale.

To prevent differences in scoring strategies of
distinct human assessors, the human assessment
scores for translations are standardized according
to each individual human assessor’s overall mean
and standard deviation score, which is indicated as
the z-score in WMT finding papers. Average stan-
dardized scores for individual segments belonging
to a given system are then computed, before the
final overall DA score for that system is computed
as the average of its standardized segment scores.

Finally, systems are ranked to produce the
shared task results. There is of course the pos-
sibility that some systems score similarly in the
shared task. If that is the case, those systems are
clustered together. Specifically, clusters are deter-
mined by grouping systems together, and compar-
ing the scores they obtained. According to the
Wilcoxon rank-sum test, if systems do not sig-
nificantly outperform others, they are in the same
cluster, the opposite is the case if they do outper-
form each other (Bojar et al., 2016, 2017, 2018).
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Language Direction WMT16 WMT17 WMT18
# sys. # seg. # assess. # sys. # seg. # assess. # sys. # seg. # assess.

Chinese→English 16 32,016 38,736 14 55,734 32,919
English→Chinese 11 22,011 16,253 14 55,734 32,411
Czech→English 12 30,000 16,800 4 12,020 21,992 5 14,915 12,209
English→Czech 14 42,070 32,564 5 14,915 10,080
Estonian→English 14 28,000 28,868
English→Estonian 14 28,000 15,800
Finnish→English 9 63,040 30,080 6 18,012 27,545 9 27,000 18,868
English→Finnish 12 36,024 8,289 12 36,000 9,995
German→English 10 68,800 33,760 11 33,044 36,189 16 47,968 48,469
English→German 16 48,064 10,229 16 47,968 13,754
Latvian→English 9 18,009 30,321
English→Latvian 17 34,017 6,882
Romanian→English 7 27,920 16,000
Russian→English 10 64,960 37,040 9 27,009 24,837 8 24,000 17,711
English→Russian 9 27,009 25,798 9 27,000 27,977
Turkish→English 9 48,640 18,400 10 30,070 25,853 6 18,000 29,784
English→Turkish 8 24,056 2,219 8 24,000 3,644

Table 1: Datasets used in this study (DA scores from WMT16–18 news translation task). Columns contain (from
left to right) the number of submitted systems (# sys.), total number of segments prior to quality control (# seg.),
and total number of assessments human assessors carried out (# assess.)

Table 1 provides an overview of the number of sys-
tems, segments, and assessments in the previously
mentioned editions of WMT for all available lan-
guage directions. These are the datasets that we
use in this work.

4 Effect of Translationese on Direct
Assessment Scores

The test sets used by Bojar et al. (2016, 2017,
2018) are bilingual, thus having two sides: source
text and reference translation. The source is writ-
ten in the language that is to be translated from
(original language), while the reference is written
in the language into which the source text is to
be translated (target language). In all the test sets
used in our experiments English is one of the two
languages involved, being either the source or the
target.

Taking as an example of WMT test set the
one for Chinese-to-English from 2017, this con-
tains 2,001 sentence pairs. Out of these, 1,000
sentences were originally written in Chinese and
translated by a human translator into English,
hence the target text is translationese. The other
half consists of 1,001 sentences that were origi-
nally written in English and translated by a human
translator into Chinese, hence the source text is
translationese in this subset. A graphical depic-
tion of this can be found in Figure 1. The advan-

tage of this procedure is that the same test set can
be used for the English-to-Chinese direction, thus
reducing the costs involved in creating test sets in
half.

ZHZH ENZH

ZHEN ENEN
WMT

ORG

TRS

Source (ZH) Reference (EN)

Figure 1: Example of a WMT test set for English (EN)
→ Chinese (ZH) translation direction, where English is
translated into Chinese, and Chinese into English. Indi-
cated as a subscript is which the original language was,
red means original language and blue translationese.

Source and reference files contain documents,
each of which is provided with a label indicating
in which language it was originally written. In our
experiments we compute the DA scores for each
test set (i) on the whole test set, which corresponds
to the results reported in WMT, (ii) on the sub-
set for which the source text was originally writ-
ten in the source language (referred to as ORG in
our experiments) and (iii) on the remaining subset,
for which the source text was originally written in
the target language, and is thus translationese (re-
ferred to as TRS in our experiments).

Table 2 shows the absolute difference in DA
score for the ORG and TRS subsets, taking the
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Language Direction WMT16 WMT17 WMT18
WMT ORG TRS WMT ORG TRS WMT ORG TRS

Chinese→English 73.2 -1.5 +3.9 78.8 -1.3 +2.0
English→Chinese 73.2 -4.1 +5.0 80.7 -4.0 +2.3
Czech→English 75.4 -5.8 +5.7 74.6 -4.3 +4.2 71.8 -1.6 +1.6
English→Czech 62.0 -5.8 +7.4 67.2 -6.6 +7.2
Estonian→English 73.3 -4.0 +4.0
English→Estonian 64.9 -4.1 +3.9
Finnish→English 66.9 -3.2 +3.0 73.8 -2.1 +2.2 75.2 -2.4 +2.3
English→Finnish 59.6 -5.1 +5.6 64.7 -7.7 +8.0
German→English 75.8 -4.1 +4.1 78.2 -2.4 +2.2 79.9 -3.8 +4.3
English→German 72.9 -5.1 +4.4 85.5 -1.9 +1.9
Latvian→English 76.2 -0.4 +0.6
English→Latvian 54.4 -11.2 +11.7
Romanian→English 73.9 -0.4 +0.5
Russian→English 74.2 -1.2 +1.8 82.0 -0.7 +0.6 81.0 -0.1 0.0
English→Russian 75.4 -5.8 +5.8 72.0 -7.4 +7.4
Turkish→English 57.1 -1.6 +1.6 68.8 -3.8 +3.9 74.3 -3.2 +3.9
English→Turkish 53.4 -13.4 +11.8 66.3 -4.1 +5.5

Table 2: DA scores for the best MT system for each translation direction of WMT’s 2016–2018 news translation
shared task. Columns ORG and TRS show the absolute difference of the DA scores in those subsets compared to
the whole test set (WMT).

whole test set (WMT) as starting point for the
comparison. We observe a clear and common
trend: using original input results in a lower DA
score, while using translationese input increases
the DA score. This trend is consistent for all the
17 translation directions considered and for all the
3 years of WMT studied, thus providing enough
evidence to answer RQ1: the use of translationese
as input of test sets results in higher DA scores for
MT systems.

5 Effect of Translationese on Rankings

We compute Kendall’s τ to give an overview of to
what degree rankings change for each translation
direction. The τ coefficient is obtained by com-
paring WMT rankings to the resulting rankings if
only the ORG subset is used as input. Since sys-
tems can share the same cluster, and thus the same
ranking, we compute Kendall’s τ both with and
without ties. With ties, all systems in the same
cluster are considered to occupy the same rank,
hence the correlation with ties is sensitive only to
changes that go beyond clusters. E.g. if a system
moves from the second cluster to the first one. In
contrast, without ties all the ranking changes are
considered, even if a system changes position but
remains within the same cluster.

Table 3 shows the Kendall’s τ correlations for
all translation directions between the rankings on
the whole test set (WMT) and on the ORG sub-
set. We do see that some of the translation di-
rections have a τ coefficient of 1, which means
that the agreement between the two rankings is
perfect, i.e. the rankings in WMT and ORG are
exactly the same. However, we observe that there
were few systems submitted to such translation di-
rections (e.g. τ = 1 for Romanian→English in
2017, for which 7 systems were submitted, see Ta-
ble 1). Apart from those, other language directions
show that there are at least slight rank changes
between the WMT rankings and ORG rankings.
Looking at the low ranked translation directions,
we observe that some are close to a τ coefficient
of 0, especially in correlations without ties, such
as German→English in WMT 2017 (τ = 0.345).
This means that some rankings have only a weak
correlation.

Probably related to the differences in DA scores
between WMT and ORG (RQ1), we also find that
systems’ rankings change for most language pairs
when comparing WMT and ORG rankings. We
see that there is no perfect correlation between
rankings, apart from a few language directions for
which only a few systems were submitted. This
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With Ties Mean Without Ties
Language Direction WMT16 WMT17 WMT18 WMT16 WMT17 WMT18 Language Direction
Romanian→ English† 1.000* - - 1.000 1.000 1.000* - - Romanian→ English †
Turkish→ English 0.983* 0.948* 1.000* 0.977 1.000 1.000* 1.000* 1.000* Czech→ English
Finnish→ English 0.943* 0.966* 1.000* 0.970 0.978 - - 0.978* English→ Estonian †
Czech→ English 0.929* 1.000* 0.949* 0.959 0.956 - - 0.956* Estonian→ English †
German→ English 0.979* 0.939* 0.906* 0.941 0.944 - 0.944* - Latvian→ English †
English→ Czech - 0.904* 0.949* 0.927 0.929 - 0.929* 0.929* English→ Turkish
Latvian→ English† - 0.921* - 0.921 0.917 - 0.889* 0.944* English→ Russian
English→ Finnish - 0.868* 0.968* 0.918 0.898 - 0.927* 0.868* English→ Chinese
English→ Russian - 0.873* 0.935* 0.904 0.882 - 0.882* - English→ Latvian †
Chinese→ English - 0.923* 0.882* 0.903 0.869 0.733* 0.944* 0.929* Russian→ English
English→ German - 0.863* 0.856* 0.860 0.852 1.000* 1.000* 0.556* Finnish→ English
English→ Estonian† - - 0.845* 0.845 0.848 0.833* 0.911* 0.800* Turkish→ English
Estonian→ English† - - 0.830* 0.830 0.784 - 0.633* 0.934* Chinese→ English
English→ Chinese - 0.847* 0.789* 0.818 0.726 - 0.451* 1.000* English→ Czech
English→ Turkish - 0.890* 0.734* 0.812 0.713 0.911* 0.345 0.883* German→ English
Russian→ English 0.557 0.845* 0.890* 0.764 0.675 - 0.817* 0.533* English→ German
English→ Latvian † - 0.718* - 0.718 0.637 - 0.970* 0.303 English→ Finnish

Table 3: Kendall’s τ coefficient for each translation direction and year. The coefficient is obtained by comparing
WMT’s ranking with the ranking if only original language is used as input (subset ORG), with and without ties. A
(*) indicates the significance level at p-level p≤0.05. Furthermore, language directions are sorted by the computed
mean Kendall’s τ . A † indicates that the mean is computed over one year.

Chinese→English

# SYSTEM RAW.WMT Z.WMT # ↑↓ SYSTEM RAW.ORG Z.ORG # ↑↓ SYSTEM RAW.TRS Z.TRS
1 SogouKnowing-nmt 73.2 0.209 1 2↑ xmunmt 71.7 0.167 1 1↑ uedin-nmt 77.1 0.316

uedin-nmt 73.8 0.208 1↓ SogouKnowing-nmt 71.9 0.161 1↓ SogouKnowing-nmt 74.4 0.257
xmunmt 72.3 0.184 1↓ uedin-nmt 70.5 0.101 3 2↑ online-A 73.6 0.208

4 online-B 69.9 0.113 − online-B 68.7 0.081 1↓ xmunmt 72.9 0.202
online-A 70.4 0.109 1↑ NRC 69.1 0.064 5 1↓ online-B 71.1 0.145
NRC 69.8 0.079 6 1↓ online-A 67.4 0.012 1↑ jhu-nmt 70.0 0.110

w
m

t1
7 7 jhu-nmt 67.9 0.023 7 − jhu-nmt 65.8 -0.062 1↓ NRC 70.4 0.093

8 afrl-mitll-opennmt 66.9 -0.016 1↑ CASICT-cons 65.4 -0.087 − afrl-mitll-opennmt 69.2 0.063
CASICT-cons 67.1 -0.026 1↓ afrl-mitll-opennmt 64.5 -0.095 − CASICT-cons 68.9 0.036
ROCMT 65.4 -0.058 − ROCMT 63.4 -0.108 − ROCMT 67.4 -0.006

11 Oregon-State-Uni-S 64.3 -0.107 − Oregon-State-Uni-S 62.7 -0.162 − Oregon-State-Uni-S 65.9 -0.054
12 PROMT-SMT 61.7 -0.209 12 3↑ online-F 60.0 -0.261 12 − PROMT-SMT 64.0 -0.137

NMT-Ave-Multi-Cs 61.2 -0.265 1↓ PROMT-SMT 59.4 -0.282 − NMT-Ave-Multi-Cs 63.3 -0.193
UU-HNMT 60.0 -0.276 − UU-HNMT 58.8 -0.301 14 2↑ online-G 61.1 -0.245
online-F 59.6 -0.279 2↓ NMT-Ave-Multi-Cs 59.2 -0.337 1↓ UU-HNMT 61.1 -0.251
online-G 59.3 -0.305 − online-G 57.4 -0.363 1↓ online-F 59.2 -0.296

1 NiuTrans 78.8 0.140 1 − NiuTrans 77.5 0.091 1 8↑ UMD 80.8 0.239
online-B 77.7 0.111 − online-B 77.4 0.089 6↑ NICT 80.5 0.232
UCAM 77.9 0.109 2↑ Tencent-ensemble 77.0 0.067 2↓ NiuTrans 81.1 0.222
Unisound-A 78.0 0.108 1↓ UCAM 76.3 0.048 − Unisound-A 80.9 0.222
Tencent-ensemble 77.5 0.099 1↓ Unisound-A 76.4 0.041 2↑ Li-Muze 80.7 0.214
Unisound-B 77.5 0.094 − Unisound-B 75.8 0.029 3↓ UCAM 80.5 0.211

w
m

t1
8 Li-Muze 77.9 0.091 − Li-Muze 76.2 0.016 1↓ Unisound-B 80.5 0.206

NICT 77.0 0.089 − NICT 75.0 0.004 3↑ uedin 79.6 0.180
UMD 76.7 0.078 − UMD 74.3 -0.021 4↓ Tencent-ensemble 78.1 0.149

10 online-Y 75.0 -0.005 − online-Y 73.8 -0.047 8↓ online-B 78.1 0.147
uedin 74.5 -0.017 11 − uedin 71.5 -0.137 11 1↑ online-A 77.1 0.068

12 online-A 73.6 -0.061 − online-A 71.4 -0.140 2↓ online-Y 76.8 0.061
13 online-G 65.9 -0.327 13 1↑ online-F 65.2 -0.353 13 − online-G 67.8 -0.262
14 online-F 64.4 -0.377 1↓ online-G 64.9 -0.364 14 − online-F 63.1 -0.417

Table 4: Results of the Chinese→English language direction with WMT, ORG, and TRS input. Systems are
ordered by standardized mean DA score. If a system does not contain a rank, this means that it shares the same
cluster as the system above it. Clusters are obtained according to Wilcoxon rank-sum test at p-level p ≤ 0.05.
Indicated in the [↑↓] column are the changes in absolute ranking (i.e. how many positions a system goes up or
down).

77



indicates that the rankings do change to a cer-
tain degree. Computing Kendall’s τ with ties re-
sults in higher correlation coefficients than with-
out ties, implying that systems do shift, but tend
to stay in the same cluster they occupied in the
WMT ranking. In some editions of WMT, the
rankings for certain language pairs change con-
siderably. The biggest change in terms of rank-
ing takes place for PROMT’s rule-based system
RU→EN for WMT16. This system advances four
positions in the ranking when only original source
text is considered, going from rank 5 to rank 1 (al-
though tied with several other systems). It is worth
noting that while the DA score for the majority of
systems decreases when using original source text,
the opposite happens for PROMT’s system.

Thus far we have looked at a single result per
translation direction and year, based on the best
system in Table 2, and on the correlation between
systems in Table 3. Now we zoom in on a transla-
tion direction: Chinese→English. Table 4 shows
how DA scores change between the whole test
set (WMT) and the subsets ORG and TRS, both
in terms of raw and standarized scores. In addi-
tion, the table depicts how many positions a sys-
tem goes up or down in the ranking.

In the table we observe consistently that the DA
score for ORG input is lower than that for WMT,
while that for TRS is higher than that for WMT.
It is also worth noting that most top scoring sys-
tems change in rankings, and that system clusters
shift. Due to limited space we provide equivalent
tables to Table 4 for the remaining 16 translation
directions as an appendix.

6 Effect of Translationese on Different
Language Pairs

We aim to find out not only whether translationese
has an effect on test sets (RQ1 and RQ2), but also
to study whether some language pairs are more
affected than others (RQ3). Two hypotheses in
this regard are as follows: (i) the degree of trans-
lationese’s impact has to do with the translation
quality attainable for a translation direction, as
represented by the DA score of the best MT sys-
tem submitted; (ii) the degree of translationese’s
impact has to do with how related are the two lan-
guages involved.

In order to test the second hypothesis, the de-
gree of similarity between languages has to be
quantified. We make use of the lang2vec tool (Lit-

tell et al., 2017) using the URIEL Typological
Database (Littell et al., 2016) to compute the sim-
ilarity between pairs of languages. Similar to the
approach of Berzak et al. (2017), all the 103 avail-
able morphosyntactic features in URIEL are ob-
tained; these are derived from the World Atlas of
Language Structures (WALS) (Dryer and Haspel-
math, 2013), Syntactic Structures of the Worlds
Languages (SSWL) (Collins and Kayne, 2009)
and Ethnologue (Lewis et al., 2009). Missing
feature values are filled with a prediction from
a k-nearest neighbors classifier. We also ex-
tract URIEL’s 3,718 language family features de-
rived from Glottolog (Hammarström et al., 2019).
Each of these features represents membership in a
branch of Glottolog’s world language tree. Trun-
cating features with the same value for all the lan-
guages present in our study, 87 features remain,
consisting of 60 syntactic features and 27 family
tree features. We then measure the level of relat-
edness between two languages using the linguis-
tic similarity (LS) by Berzak et al. (2017) (Equa-
tion 1), i.e. the cosine similarity between the
URIEL feature vectors for two languages vy and
v′y.

LSy,y′ =
vy · vy′
‖vy‖

∥∥vy′
∥∥ (1)

Together with the LS for a language direction,
we take the best system of the most recent year
in our data set, WMT18, for that language direc-
tion. The motivation behind is that a top perform-
ing system from the most recent campaign should
be representative of the current state-of-the-art in
machine translation for the translation direction it
was submitted to.

To look into the effect of translationese across
different language pairs, we present two ap-
proaches, following the hypotheses put forward at
the beginning of this section: (i) compare the DA
score of the best system for each translation direc-
tion on subset ORG to the relative or absolute dif-
ference in DA score for that system between sub-
set ORG and the whole set (WMT); (ii) compare
the LS of the two languages in each translation di-
rection to the relative or absolute difference in DA
scores for the best system between subset ORG
and the whole set (WMT);

Figure 2 shows the Pearson correlation and 95%
confidence region of the DA score of the best scor-
ing system for each language direction on subset
ORG against the absolute and relative difference
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Figure 2: Pearson correlation between the DA scores of the best system for each translation direction at WMT18
and the relative (left) and absolute (right) difference in DA score (%) of comparing WMT input and ORG input.
The languages are abbreviated into ISO 639-1 codes (Byrum, 1999).
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Figure 3: Pearson correlation between Linguistic Similarity for each language direction and the relative (left)
and absolute (right) difference (%) in DA score of comparing WMT input and ORG input. The languages are
abbreviated into ISO 639-1 codes (Byrum, 1999).

of the DA scores of those systems between WMT
input and ORG input. We observe an interesting
trend; higher scoring systems tend to have lower
differences in score, which indicates that trans-
lationese has less effect. Considering either rel-
ative or absolute differences, the correlations are
in both cases significant and strong (p < 0.001,
|R| > 0.75).

Figure 3 shows the Pearson correlation and 95%

confidence region of the LS of a language pair
(English compared to another language in our data
sets) against the absolute and relative difference of
the DA scores of the best system for each trans-
lation direction between WMT input and ORG
input. Here, we see a less obvious trend, and
in fact both correlations are very weak and non-
significant. However, just as in the previous figure
we can see that most of the out-of-English systems
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tend to have a higher relative and absolute differ-
ence than systems that translate into English.

On a side note, we created different feature
combinations from the earlier mentioned features
for LS. Apart from syntactic and family tree fea-
tures, phonological features are also present in
URIEL. However, other combinations did not
seem to alter the LS difference score, compared to
using the mentioned features in the experimental
setup.

7 Conclusion and Future Work

This paper has looked in depth at the effect of
translationese in bidirectional test sets, commonly
used in machine translation shared tasks, by con-
ducting a series of experiments on data sets for
17 translation directions in the three last edi-
tions of the news shared task from WMT. Specif-
ically, we have recomputed the direct assess-
ment (DA) scores separately for the whole test
set (WMT), and for the subsets whose source
side contains original language (ORG) and trans-
lationese (TRS). Results show that using origi-
nal language input lowers the DA scores, and
translationese input increases the scores (RQ1),
and perhaps more importantly, system rankings
do change (RQ2). We have also investigated the
degree to which these rankings change, by mea-
suring the correlation between the rankings with
a non-parametric correlation metric that supports
ties (Kendall’s τ ). Results show that systems do
change in absolute ranking, but tend to stay more
in the same cluster as they were before.

Last, we looked at whether the effect of trans-
lationese correlates with certain characteristics of
translation directions. We did not find a correla-
tion between the effect of translationese and the
level of relatedness of the two languages involved
but we did find a correlation between the effect
of translationese and the translation quality attain-
able for translation directions (RQ3). In other
words, human evaluation for better performing
systems would seem to be less affected by trans-
lationese. Related, we observe that translation di-
rections that contain an under-resourced language
tend to obtain low DA scores. Hence, we could
say that the effect of translationese tends to be
high specially when an under-resourced language
is present, which could distort (inflate) the expec-
tations in terms of translation quality for these lan-
guages.

As for future work, we plan to focus on studying
what the characteristics of translationese are. I.e.
what are the traits that set apart the language used
in original test sets from translationese test sets.

All the code and data used in our experiments
are available on GitHub1.
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Ondřej Bojar, Mark Fishel, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Philipp Koehn, Christof Monz, et al. 2018. Find-
ings of the 2018 conference on machine translation
(wmt18). In Proceedings of the Third Conference
on Machine Translation, pages 272–303.

Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 Work-
shop on Statistical Machine Translation. In Pro-
ceedings of the Eighth Workshop on Statistical Ma-
chine Translation, pages 1–44, Sofia, Bulgaria. As-
sociation for Computational Linguistics.

John D Byrum. 1999. Iso 639-1 and iso 639-2: In-
ternational standards for language codes. iso 15924:
International standard for names of scripts. In Pro-
ceedings of the 65th International Federation of Li-
brary Associations and Institutions (IFLA) Council
and General Conference, Bangkok, Thailand. ERIC.

Chris Collins and Richard Kayne. 2009. Syntactic
structures of the worlds languages.

1https://github.com/jjzha/translationese

80



Matthew S. Dryer and Martin Haspelmath. 2013. Wals
online. max planck institute for evolutionary anthro-
pology, leipzig.

Christian Federmann. 2012. Appraise: an open-source
toolkit for manual evaluation of mt output. The
Prague Bulletin of Mathematical Linguistics, 98:25–
35.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2013. Continuous measurement scales
in human evaluation of machine translation. In Pro-
ceedings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse, pages 33–41.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2014. Is machine translation getting
better over time? In Proceedings of the 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics, pages 443–451.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2017. Can machine translation sys-
tems be evaluated by the crowd alone. Natural Lan-
guage Engineering, 23(1):3–30.

Harald Hammarström, Robert Forkel, and Martin
Haspelmath. 2019. Glottolog 3.4. jena: Max planck
institute for the science of human history. Online v.:
http://glottolog. org.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, et al. 2018. Achieving hu-
man parity on automatic chinese to english news
translation. arXiv preprint arXiv:1803.05567.

David Kurokawa, Cyril Goutte, Pierre Isabelle, et al.
2009. Automatic detection of translated text and its
impact on machine translation. Proceedings of MT-
Summit XII, pages 81–88.

Sara Laviosa-Braithwaite. 1998. Universals of transla-
tion. Routledge Encyclopedia of Translation Stud-
ies. London: Routledge, pages 288–291.

Gennadi Lembersky. 2013. The Effect of Transla-
tionese on Statistical Machine Translation. Univer-
sity of Haifa, Faculty of Social Sciences, Depart-
ment of Computer Science.

Gennadi Lembersky, Noam Ordan, and Shuly Wint-
ner. 2012. Language models for machine transla-
tion: Original vs. translated texts. Computational
Linguistics, 38(4):799–825.

M. Paul Lewis, Gary F. Simons, and Charles D. Fen-
nig. 2009. Ethnologue: languages of the world, dal-
las: Sil international. Online version: http://www.
ethnologue. com.

Patrick Littell, David R Mortensen, and Lori Levin.
2016. Uriel typological database. Pittsburgh:
CMU.

Patrick Littell, David R Mortensen, Ke Lin, Kather-
ine Kairis, Carlisle Turner, and Lori Levin. 2017.
Uriel and lang2vec: Representing languages as ty-
pological, geographical, and phylogenetic vectors.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 8–14.

Sara Stymne. 2017. The effect of translationese on
tuning for statistical machine translation. In The
21st Nordic Conference on Computational Linguis-
tics, pages 241–246.

Antonio Toral, Sheila Castilho, Ke Hu, and Andy
Way. 2018. Attaining the unattainable? reassessing
claims of human parity in neural machine transla-
tion. arXiv preprint arXiv:1808.10432.

Gideon Toury. 2012. Descriptive translation studies
and beyond: Revised edition, volume 100. John
Benjamins Publishing.

81



Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 82–93
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

Customizing Neural Machine Translation for Subtitling

Evgeny Matusov∗, Patrick Wilken∗, Panayota Georgakopoulou∗

AppTek
Aachen, Germany

ematusov@apptek.com pwilken@apptek.com yota@athenaconsultancy.eu

Abstract

In this work, we customized a neural machine
translation system for translation of subtitles
in the domain of entertainment. The neural
translation model was adapted to the subti-
tling content and style and extended by a sim-
ple, yet effective technique for utilizing inter-
sentence context for short sentences such as
dialog turns. The main contribution of the pa-
per is a novel subtitle segmentation algorithm
that predicts the end of a subtitle line given
the previous word-level context using a recur-
rent neural network learned from human seg-
mentation decisions. This model is combined
with subtitle length and duration constraints
established in the subtitling industry. We con-
ducted a thorough human evaluation with two
post-editors (English-to-Spanish translation of
a documentary and a sitcom). It showed a no-
table productivity increase of up to 37% as
compared to translating from scratch and sig-
nificant reductions in human translation edit
rate in comparison with the post-editing of the
baseline non-adapted system without a learned
segmentation model.

1 Introduction

In recent years, significant progress was observed
in neural machine translation (NMT), with its
quality increasing dramatically as compared to the
previous generation of statistical phrase-based MT
systems. However, user acceptance in the subti-
tling community has so far been rare. The rea-
son for this, in our opinion, is that the state-of-the-
art off-the-shelf NMT systems do not address the
issues and challenges of the subtitling process in
full.

In this paper, we present a customized NMT
system for subtitling, with focus on the entertain-

∗equal contribution

ment domain. From the user perspective, we show
how the quality of translation and subtitle seg-
mentation can improve in such a way that sig-
nificantly reduced post-editing is required. We
believe that such customized systems would lead
to greater user acceptance in the subtitling indus-
try and would contribute to the wider adoption of
NMT technology with the subsequent benefits the
latter brings in terms of productivity gain and time
efficiency in subtitling workflows.

The paper is structured as follows. We start with
the review of related research in Section 2. Sec-
tion 3 describes the details of our baseline NMT
system and how it compares to NMT systems from
previous research. Section 4 presents the details
of the changes to the MT system that were nec-
essary to boost its performance on the subtitling
tasks for entertainment domain, with a focus on
Latin American Spanish as the target language.
In Section 5, we present a novel algorithm for
automatic subtitle segmentation that is combined
with rule-based constraints which are necessary
for correct subtitle representation on the screen.
Finally, Section 6 describes the automatic and hu-
man evaluation of the proposed system, including
post-editing experiments and feedback from pro-
fessional translators.

2 Related Work

Evaluation of post-editing time and efficiency
gain was presented by Etchegoyhen et al. (2014)
on multiple language pairs and with many post-
editors. However, that work only evaluated sta-
tistical MT systems, whereas here we evaluate a
neural MT system. Also, the aspect of subtitle
segmentation was not explicitly considered there;
it was not clear what segmentation was used, if at
all. Interesting findings on evaluation of statisti-
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cal MT for subtitling in production can be found
in the work of Volk et al. (2010), who perform
an extensive subjective error analysis of the MT
output. Aspects of customizing MT, again sta-
tistical, using existing subtitle collections are dis-
cussed in (Müller and Volk, 2013).

There is little work on subtitle segmentation,
and to the best of our knowledge, no research
which targets segmentation of MT output. The
work by Álvarez et al. (2017) uses conditional ran-
dom fields and support vector machines to predict
segment boundaries, whereas in this paper we rely
on recurrent neural networks. That algorithm is
evaluated in terms of monolingual post-editing ef-
fort in the work of Álvarez Muniain et al. (2016).
Lison and Meena (2016) predict dialog turns in
subtitles, which is related to subtitle segmentation,
but was beyond the scope of our work. The latest
research of Song et al. (2019) deals with predicting
sentence-final punctuation within non-punctuated
subtitles using a long-short-term memory network
(LSTM); that model, and also the punctuation pre-
diction LSTM of Tilk and Alumäe (2015) is re-
lated to what we use in our work, but we deal
with subtitle segmentation that is more complex
and less well-defined than prediction of punctua-
tion, as we show in Section 5.

3 Baseline NMT Architecture

We trained our NMT models using an open-source
toolkit (Zeyer et al., 2018) that is based on Ten-
sorFlow (Abadi et al., 2015). We trained an
attention-based RNN model similar to Bahdanau
et al. (2015) with additive attention.

The attention model projects both the source
and the target words into a 620-dimensional em-
bedding space. The bidirectional encoder con-
sists of 4 layers, each of which uses LSTM cells
with 1000 units. We used a unidirectional de-
coder with the same number of units. In the ini-
tial (sub)epochs, we employed a layer-wise pre-
training scheme that resulted in better convergence
and faster overall training speed (Zeyer et al.,
2018). We also enhanced the computation of at-
tention weights using fertility feedback similar to
Tu et al. (2016); Bahar et al. (2017).

The training data was preprocessed using Sen-
tencepiece (Kudo and Richardson, 2018), with
20K and 30K subword units estimated separately
for English and Spanish, respectively, without any
other tokenization. In training, all our models

relied on the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 0.001. We applied a
learning rate scheduling according to the Newbob
scheme based on the perplexity on the validation
set for a few consecutive evaluation checkpoints.
We also employed label smoothing of 0.1 (Pereyra
et al., 2017). The dropout rate ranged from 0.1 to
0.3.

Our baseline general-domain NMT system is a
competitive single system that obtains the case-
sensitive BLEU score of 34.4% on the WMT
newstest 2013 En-Es set1.

4 NMT Adaptation

4.1 Domain and style adaptation

Film content covers a large variety of genres, thus
it is not easy to characterize the domain of these
type of data. However, subtitles typically have
shorter sentences than general texts (e.g. news ar-
ticles), and brief utterances abound in many films.
To create a customized system for subtitles, we
used the OpenSubtitles parallel data2, downloaded
from the OPUS collection (Lison and Tiedemann,
2016), as the main training corpus. The cor-
pus was filtered by running FastText based lan-
guage identification (Joulin et al., 2016) and other
heuristics (e.g. based on source/target lengths and
length ratios in tokens and characters). In addi-
tion, we used other conversational corpora, such as
GlobalVoices, transcribed TED talks and in-house
crawled English-Spanish transcripts of the EU TV
as parallel training data. We also added Europarl
and News Commentary data to the main training
corpus as sources of clean and well-aligned sen-
tence pairs.

Neural MT systems often have problems trans-
lating rare words. To mitigate this problem,
we developed a novel data augmentation tech-
nique. First, we computed word frequency statis-
tics for the main training corpus described above.
Then, we defined auxiliary out-of-domain train-
ing data from which we wanted to extract only
specific sentence pairs. These data included all
other publicly available training data, including
ParaCrawl, CommonCrawl, EUbookshop, JRC-
Acquis, EMEA, and other corpora from the OPUS
collection. We computed word frequencies for
each of these auxiliary corpora individually. Next,

1The BLEU score of a top online MT provider on this set
was 35.0% as of July 2018.

2http://www.opensubtitles.org/
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for each sentence pair in each auxiliary corpus we
checked that:

• either the source or the target sentence has at
least one word that is rare in the main corpus,
and

• neither the source sentence, nor the target
sentence includes any word that is out-of-
vocabulary for the main training corpus and
at the same time is rare in the auxiliary cor-
pus.

We defined a word to be rare if its frequency is less
than 50. Finally, we limited the total number of
running words we add (counted on the source side)
to 100M per auxiliary corpus. This was done to
avoid oversampling from large, but noisy corpora
such as CommonCrawl.

In practice, for the En-Es training data, 145M
words of auxiliary data were added, which is
ca. 17% of the auxiliary training data that was
available. Overall, we used ca. 39M lines of par-
allel training data for training, with 447M running
words on the English and 453M running words on
the Spanish side.

Additional domain adaptation may include fine-
tuning of the trained model with a reduced learn-
ing rate on in-domain data, as e.g. in the work
of Luong and Manning (2015). Since we were
aiming at covering all possible film genres, we did
not perform this additional fine-tuning in our ex-
periments. We also did not use any back-translated
target language monolingual data.

4.2 Handling language variety
Most MT systems do not differentiate between
European and Latin American (LA) Spanish as
the target language, providing a single system for
translation into Spanish. However, significant dif-
ferences between the two language varieties re-
quire the creation of separate subtitles for audi-
ences in Latin America and Spain.

Almost no parallel corpora are available for
training NMT systems, in which the target lan-
guage is explicitly marked as Latin American
Spanish, and the majority of the public corpora
represent European Spanish (such as proceedings
of the European Parliament). However, large por-
tions of the in-domain OpenSubtitles corpus con-
tain Latin American Spanish subtitles. We fol-
low a rule-based approach to label those docu-
ments/movies from the OpenSubtitles corpus as

translations into LA Spanish. If the plural form of
the word “you” is “ustedes” that is used in Latin
American Spanish, then we mark the whole docu-
ment as belonging to this language variety. Since
this word is used frequently in movie dialogues,
we can label a significant number of documents
as belonging to LA Spanish (a total of 192M run-
ning words when counted on the Spanish side of
the parallel data).

We then train a multilingual system similarly
to Firat et al. (2016). We do not change the neu-
ral architecture, but add a special token at the be-
ginning of the source sentence to signal LA Span-
ish output for all training sentence pairs which we
labeled as translations into LA Spanish with the
rule-based method described above. This is also
similar to using tokens for domain control as in
the work of Kobus et al. (2016). We used a devel-
opment set labeled as having translations into LA
Spanish to track convergence and for selection of
the final training epoch.

An alternative approach that was applied to low-
resource language pairs by Neubig and Hu (2018)
would have been to pre-train the model on all
English-Spanish data, and then continue training
on sentence pairs with LA Spanish targets. How-
ever, we did not follow this approach to avoid
overfitting to the style of the OpenSubtitles corpus
instead of adapting to the LA Spanish language
variety.

4.3 Towards document-level translation

Subtitles often contain short sentences which,
when translated by NMT individually, provide
very little context for correct translation of cer-
tain words and phrases, such as pronouns. Yet this
context is available in preceding sentences. As a
step towards document-level translation, we cre-
ated a training corpus of OpenSubtitles in which
we spliced two or more consecutive subtitles from
the same film, as well as their translations, until a
maximum length of K tokens was reached on the
source side. We inserted a special separator sym-
bol between each pair of spliced sentences both
on the source and the target side. The idea was
that the NMT system can learn to produce these
separator symbols and learn not to re-order words
across them, so that the original sentence segmen-
tation can be restored. At the same time, because
of the nature of the recurrent model, the context
of the previous sentences would also be memo-
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rized by the system and would affect the transla-
tion quality of the current sentence3.

We created two copies of OpenSubtitles corpus
of only spliced sentence pairs with K = 20 and
K = 30, respectively, and used this corpus in
training together with all the other data described
in Section 4.1. During inference, we also spliced
consecutive short sentences from the same film
until a threshold of K = 20 tokens was reached
and then translated the resulting test set. Thus,
each sentence was translated only once, either as
part of a spliced sentence sequence or as an indi-
vidual (long) sentence. A possibly better, but more
redundant approach would have been to cut out the
translation of only the last sentence in a spliced se-
quence, and then re-send the corresponding source
sentence as context for translating the next sen-
tence. However, for time reasons we did not test
this approach. In the future, we also plan to ex-
pand on the existing research on document-level
translation (Miculicich et al., 2018; Wang et al.,
2017) and encode the previous inter-sentence con-
text in a separate neural component. Even the first
step towards expanding context beyond a single
sentence described above led to some improve-
ments in translation, and in particular pronoun dis-
ambiguation, as will be seen in Section 6.

5 Subtitle Segmentation

The output of the NMT system has to be format-
ted in an appropriate way when displayed on the
screen. Typically, there exists a fixed character
limit per subtitle line, the number of lines should
not exceed two, and the text in a subtitle has to
be as long as needed to match the user’s reading
speed, so that it is possible for viewers to read the
subtitle and also watch the film at the same time.
Beyond that, we want line and subtitle boundaries
to occur in places where the flow of reading is
harmed as little as possible. While the first two
requirements can be implemented as hard rules,
optimizing boundaries for readability is more sub-
tle and a lack thereof can easily expose the subtitle
as being machine generated, especially when com-
pared to a professionally created one. Punctuation
and part-of-speech information can indicate possi-
ble segmentation points. However, in general find-
ing good boundaries is not straight-forward and

3We came up with this approach on our own, but later
found it to be similar to the work of Tiedemann and Scherrer
(2017), who include a single previous translation unit with a
separator symbol as additional context.

depends on syntax and semantics.
We therefore employ a neural model to pre-

dict segment boundaries. It consists of a 128-
dimensional word embedding layer and two 256-
dimensional bi-directional LSTM layers, followed
by a softmax. The output is a binary decision, i.e.
we generate two probabilities per input word wi:
the probability pB,i of inserting a segment bound-
ary after position i, and the probability 1− pB,i of
the complementary event.

We train the model on the Spanish OpenSub-
titles 2018 corpora of the OPUS Project (Lison
and Tiedemann, 2016), which we tokenize and
convert to lower-case. The data comes in XML
format, including annotated sentence boundaries
and timestamps for the subtitle units. We use all
subtitle boundaries occurring in between words
of a sentence as ground truth labels. Training
is performed on all sentences containing at least
one subtitle boundary, leading to a corpus size of
16.7M sentences.

To enforce the additional requirements men-
tioned above, we integrate the neural segmenta-
tion model into a beam search decoder. The search
happens synchronous to the word positions of the
input. At each step there are three possible ex-
pansions of a partial hypothesis: no boundary,
line boundary, or subtitle boundary after the cur-
rent word. The natural logarithm of the segmenta-
tion model probability is used as score (making no
distinction between line and subtitle boundaries).
Penalties for the following auxiliary features are
subtracted:

1. character limit: penalty q1 = ∞ if a line is
longer than allowed;

2. number of lines: penalty q2 for every line ex-
ceeding two in a given subtitle;

3. similar line lengths: penalty q3 per difference
in length of subsequent lines within a subtitle,
measured in characters;

4. expected subtitle lengths: penalty q4 per
deviation from expected subtitle lengths,
measured in characters; we expect subtitle
lengths to be as in the source language, only
scaled according to the difference in sentence
length between the source sentence and its
translation.

The third feature is supposed to lead to geomet-
rically pleasing line lengths. In particular, it avoids
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orphans, i.e. lines with very few words in them.
The forth feature attempts to keep the translation
in sync with the video by keeping the number of
characters in a subtitle similar to the source lan-
guage. This also means that the subtitle duration
will be suited for a similar reading speed as the one
set in the source file. As a side effect, this feature
ensures that we predict the right number of subtitle
boundaries for a given sentence.

We use a beam size of 100. The penalties are
set to q2 = 10, q3 = 0.1 and q4 = 1. Furthermore,
we use a margin of 20% and 30% of the line and
subtitle lengths for features 3 and 4, respectively,
in which no penalty is applied.

For the baseline approach, we do the segmen-
tation using the four heuristics only, i.e. without
the neural segmentation model. This is similar
to algorithms used in existing subtitling tools and
makes a direct analysis of the effect of the segmen-
tation model possible.

6 Experimental Results

6.1 User experience
To confirm the improvement in quality described
in Sections 3 and 4 and the usability of the ensu-
ing output we sought the feedback of professional
translators. We selected the language pair US En-
glish into LA Spanish for our case study and used
video materials of two different genres:

• Home4, a documentary about Earth, com-
posed of aerial shots of our planet and nar-
rated by a single voice over narrator, in
a paced manner with well-structured sen-
tences;

• Lucy: The Bean Queen5, an all-time classic
sitcom, full of puns and idiomatic language.

We asked an experienced English subtitler to cre-
ate subtitle files to be used as input for machine
translation purposes, with 6.6K running words
for Home and 2.7K running words for Lucy, fol-
lowing well-established subtitling conventions in
the source audio language (English). These sub-
title files were subsequently machine translated
into LA Spanish using both the baseline and the
adapted MT systems described in previous sec-
tions, the latter including the inter-sentence con-
text for short sentences and the proposed novel
subtitle segmentation algorithm.

4https://archive.org/details/HOME English
5https://archive.org/details/TLS Lucy The Bean Queen

We asked two translators to perform a post-
editing evaluation of the two MT outputs. Both
have between 11-20 years of experience each in all
types of subtitling work. PE1 comes from Colom-
bia and PE2 from Argentina. Both have experi-
ence with MT of general texts and PE1 had limited
prior experience with the use of MT in subtitling.
We split the two source files in three roughly equal
sections and asked the translators to perform the
following tasks:

• Translate Part 1 straight from the template
file, without deviating from the set timings,
subtitle number and segmentation;

• Post-edit Part 2 using output from the base-
line MT system;

• Post-edit Part 3 using output from the adapted
MT system.

The translators did not know the output of which
system they were post-editing. We asked the
translators to work consecutively, as they nor-
mally would, taking as few breaks as possible and
recording their actual work time to the nearest
minute. We asked them to include the time for
research they would normally perform as part of
their translation task in this measurement and re-
view their work one final time before submitting
it, as they would under live working conditions in
order to submit a file of publishable quality level.
We then asked the translators to answer a survey,
which included answers to the demographic infor-
mation mentioned above, plus a qualitative sur-
vey of the machine translation output and the post-
editing experience, using a combination of ranking
scale scores and free-text questions.

6.2 Translation speed benchmarking

Both translators were asked to translate “from
scratch” Part 1 of each of the two template files,
totaling 24 minutes/220 subtitles for Home and
8 minutes/118 subtitles for Lucy, in order to ob-
tain their benchmark speed for each type of ma-
terial. PE1 with 2.08/2.0 subtitles per minute for
Home and Lucy, respectively, turned out to be sig-
nificantly faster than PE2 (1.18/1.44 subtitles per
minute) and maintained similar speed irrespective
of the film genre. Their translated files for Part 1 of
the templates were used as gold reference for per-
forming automatic MT evaluation, with its results
shown in the next section.
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Mode BLEU TER charTER
System [%] [%] [%]

W baseline 52.3 50.3 42.8
adapted 53.6 49.2 41.2

S baseline 49.9 58.5 51.8
adapted 54.7 49.3 41.9

base segm. 50.8 57.8 52.4
L baseline 37.2 60.1 53.4

adapted 44.0 49.3 42.1
base segm. 38.2 59.4 53.4

Table 1: Case-sensitive MT error measures on part 1 of
the Home documentary computed in 3 different modes:
using full sentences with real words only (W), on the
level of subtitles (S), or on the level of subtitles with
line breaks within a subtitle marked with a special to-
ken BR both in MT output and reference translation.
The BLEU scores are computed against two human ref-
erence translations created “from scratch”, other mea-
sures against the translation of PE1.

6.3 Automatic evaluation

We computed automatic MT metrics BLEU (Pap-
ineni et al., 2002), TER (Snover et al., 2006), and
CharacTER (Wang et al., 2016) on the first part
of each template for which we now had two inde-
pendent human reference translations. We com-
puted the scores three times using different evalu-
ation modes. In the mode (W), we computed the
scores and error rates on the full sentences; thus,
pure MT quality is evaluated, and any segmenta-
tion decisions are ignored. In the (S) mode, we
compared the subtitles with each other. Thus, any
words and phrases wrongly placed in a different
(e.g. previous or next) subtitle would count as er-
rors. Finally, in the (L) mode we additionally add
a special symbol to represent a line break (in rare
cases, two breaks) within a subtitle. Thus, an in-
correct line break is an extra token error that di-
rectly affects all error metrics. To summarize, the
(S) and (L) evaluation modes jointly judge the MT
and segmentation quality, whereas the (W) mode
only judges the MT quality.

Table 1 shows these results for the Home video.
We observe an improvement in BLEU from 52.3
to 53.6%, as computed with two reference trans-
lations, when comparing the baseline system with
the adapted one that uses previous sentence con-
text. This improvement becomes much larger in
the (S) and (L) evaluation modes, which confirms
the quality of the segmentation algorithm as com-
pared with the baseline heuristics-only segmenta-

Mode BLEU TER charTER
System [%] [%] [%]

W baseline 26.3 68.4 61.3
adapted 30.3 61.5 56.8

sent-level 30.2 62.8 54.8
S baseline 26.6 85.6 60.4

adapted 31.1 76.1 56.4
sent-level 30.5 77.3 54.9
base segm. 31.0 78.2 58.8

L baseline 21.8 85.7 61.6
adapted 30.4 75.6 56.6

base segm. 25.7 79.4 59.4

Table 2: Case-sensitive MT error measures on part 1 of
the Lucy: The Bean Queen documentary computed as
in Table 1.

tion. The other error measures improve similarly
with the adapted MT output and the proposed seg-
mentation algorithm. We also show the result of
the adapted system, but with the baseline segmen-
tation. The result for this system is slightly bet-
ter than for the baseline due to the generally better
MT quality, but because of the incorrect segmenta-
tion it is very far from human references when the
evaluation is performed on the level of subtitles.

On part 1 of the Lucy sitcom (Table 2), the im-
provements with the adapted system are more sig-
nificant when the MT quality alone is evaluated.
This is expected, since the style of the input is
further away from the general-domain (news) data
that was used to train the baseline system. On the
other hand, the improvements with the new seg-
mentation algorithm w.r.t baseline segmentation
seem to be significant, but less pronounced, since
here we are dealing with generally shorter subti-
tles, many of them one-liners. Nevertheless, the
improvement in the (L) evaluation mode, where
incorrect line breaks within a subtitle are consid-
ered as errors, is as large as 8 BLEU percent-
age points absolute, from 21.8 to 30.4%. Ta-
ble 2 also shows the results for the adapted system,
but when translating individual sentences without
inter-sentence context (lines sent-level). We ob-
served only insignificant reduction of the pure MT
quality in BLEU and TER; the CharacTER even
improved. The test sample was too small to make
any conclusions here. Nevertheless, we observed
cases where the translation of some words (e.g.,
pronouns) was better when consecutive short sen-
tences were translated as a single unit as described
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Test set/system HTER [%] SER [%]
PE1 PE2 PE1 PE2

p. 2 baseline 36.7 51.4 88.0 99.0
p. 3 adapted 27.8 44.2 67.2 79.6
p. 2 adapted∗ 36.2 46.5 83.6 88.7

Table 3: Case-sensitive Human Translation Edit Rate
(HTER) and Subtitle Edit Rate (SER) on the post-
edited parts 2 and 3 of the Home documentary. ∗The
comparison of the adapted NMT on section 2 is against
the human post-editing of the baseline NMT output.

in Section 4.3, and the improvement could only be
explained by the additional context.

6.4 Evaluation of human post-editing effort

We computed the HTER scores (TER against the
post-edited MT output) for the parts 2 and 3 of
both files. We also computed the subtitle error rate
(SER), that we defined as the percentage of subti-
tles which were changed by the post-editor (not
counting possible corrections of the line breaks
within a subtitle). Table 3 shows the HTER and
SER results for the Home documentary. We see
that the HTER is consistently better for both post-
editors when the adapted MT output is used. PE1
especially finds the adapted MT output acceptable
and keeps approximately 1/3 of the subtitles com-
pletely unchanged. The second post-editor makes
more corrections in general, but also for him the
number of corrections made on the adapted MT
output is significantly lower. The numbers above
have to be taken with a grain of salt, since there
was no other way but to compare the post-editing
effort on different parts of the file. However, even
when we compare the adapted MT output on part
2 against the post-edited baseline MT output, we
obtain lower HTER and SER scores than for the
baseline MT output itself. This again underlines
the high quality of the adapted MT output with
proper subtitle segmentation.

Similar conclusions can be made from the
HTER and SER results in Table 4 for the Lucy sit-
com. Here, the number of corrections is generally
higher, but the reduction of the post-editing effort
when post-editing the adapted vs. baseline MT is
very significant, e.g. from 73.8 to 44.0% HTER
for PE1 (as measured on different parts of the file
with similar translation difficulty).

Test set/system HTER [%] SER [%]
PE1 PE2 PE1 PE2

p. 2 baseline 73.8 82.7 89.4 91.7
p. 3 adapted 44.0 59.5 71.9 80.5
p. 2 adapted∗ 60.6 72.0 87.9 90.9

Table 4: Case-sensitive Human Translation Edit Rate
(HTER) and Subtitle Edit Rate (SER) on the post-
edited parts 2 and 3 of the Lucy: The Bean Queen
documentary. ∗The comparison of the adapted NMT on
part 2 is against the human post-editing of the baseline
NMT output.

File Post- PE speed Gain (%)
editor subs/min Product. Time

Home PE1 1.36 15.98 13.78
baseline PE2 2.00 -3.64 -3.77
Lucy PE1 1.43 -0.29 -0.30
baseline PE2 2.28 13.79 12.12
Home PE1 1.87 58.70 36.99
adapted PE2 2.15 3.75 3.62
Lucy PE1 1.86 28.91 22.43
adapted PE2 3.12 56.10 35.94

Table 5: Productivity and time gain by using base-
line/adapted MT output as compared to translating
“from scratch”.

6.5 Post-editing efficiency

We also performed an analysis of productivity gain
and time efficiency by comparing translator speeds
when post-editing the baseline and adapted MT
outputs against their benchmark speed (Section
6.2). The results are presented in Table 5.

Productivity gain is the estimated percentage of
additional work a translator would be able to com-
plete when performing an MTPE task versus trans-
lating the same text from scratch. Time efficiency
is the estimated percentage of time a translator
would save when performing an MTPE task ver-
sus translating the same material from scratch.

As we can see, both productivity gain and
time efficiency were achieved for both post-editors
overall. The average productivity gain was 6.46%
on the baseline MT output and 36.87% on the
adapted MT output, the time efficiency increased
by 5.46% and 24.74%, respectively. There were
borderline productivity losses in one file per trans-
lator when working on the baseline output, but
more than significant productivity increases on the
adapted output. The same trend is observed with
time efficiency as well, verifying our initial hy-
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pothesis regarding the usability of the adapted MT
output.

Though no conclusion may be drawn from the
results of two post-editors only, but given that their
overall profiles are quite similar with a marked dif-
ference in their translation speed, it is interesting
to note that the slower of the two benefits more
overall in an MTPE workflow. It should be pointed
out, however, that PE1 did have some experience
with MT in subtitles, whereas PE2 did not, which
might indicate that PE2 had to go through a learn-
ing curve and, hence, explain his slow speed on
Home and the large increase in his post-editing
speed on Lucy.

The % of subtitles changed (SER) is analyzed
in Section 6.4. 100-SER is the percentage of sub-
titles that were left unchanged after post-editing,
including both punctuation and capitalization as-
pects. This metric does not take into account the
pertinence or complexity of the changes made by
a post-editor to the rest of the subtitle file. As a re-
sult, from a time efficiency perspective, it does not
necessarily indicate the effort a post-editor needs
to invest when post-editing the entire file. It is still
expected though that with lower SER, a transla-
tor’s time efficiency is likely to increase. The re-
sults above corroborate this assumption, and we
note that where translators saved more time when
performing an MTPE task, they were also us-
ing more of the MT output without making any
changes to it. A marked increase in the usage
of MT output with zero edits was noted in the
adapted MT output with the average overall sub-
titles unchanged at 25% across all files and both
post-editors versus 8% for the baseline MT output.

6.6 User survey
A qualitative evaluation with the two translators
that were involved in the MTPE task was also
performed, in the form of a survey. The MQM6

framework was used to define the dimensions
of MT output quality the translators were asked
about, and the following definitions were provided
to them:

• Accuracy: Meaning, e.g. mistranslations,
omissions, additions, untranslated words

• Fluency: Well-formedness of text, e.g.
spelling, grammar, word order, consistency,
typography, style

6http://www.qt21.eu/mqm-definition/definition-2014-06-
06.html

• Design: Physical presentation of text, e.g.
line length, readability, line and subtitle
breaks

The translators were asked to rank the MT out-
puts they worked on with respect to each of the
three quality dimensions above, as well as on the
basis of the overall MT quality and regarding the
post-editing experience itself. A ranking scale of
1-5 was used in this survey (5 being best). All re-
sults were consistent, with translators ranking both
quality and post-editing experience for the base-
line MT output as a 2 on average, i.e. poor, and
for the adapted MT output as 3, i.e. fair.

The translators confirmed the improvement in
quality in the adapted MT output, which corrob-
orates previous findings and our initial hypothesis
for this case study. When asked additional ques-
tions regarding the perceived MT impact on their
productivity and on the quality of the final prod-
uct, PE2 confirmed he “felt” the increase in pro-
ductivity he witnessed on Lucy and explained that
his experience with Home would have been similar
had it not been for a particularly difficult section in
the source text in the last part of Home that slowed
him down substantially. Yet PE2 felt it was only
the easier parts of Lucy, the simpler sentences, on
which the MT was perfect, while it still translated
most of the slang and puns (i.e. the creative part)
wrongly.

PE1 noted the difficulty in finding his own writ-
ing style when post-editing, but also explained that
he became much faster once he understood what
to expect from the MT and found a rhythm. He
was impressed by the correct terminology in the
MT output of Home, one of the main reasons why
both translators reported they would consider us-
ing output such as that of the adapted MT on doc-
umentary genres like Home in their daily work.

Both subtitlers raised concerns about the influ-
ence the MT has on their productivity (PE1) and
on the quality of the final product (PE2) as uncom-
mon but correct translations in the target language
would not be corrected in a post-editing workflow,
potentially affecting the overall result7. Finally,
both translators said that there were only few cases
in the baseline MT output where expressions from
European Spanish were used and had to be cor-
rected; they reported only one such case in the
adapted MT output (see Section 4.2 on why).

7Cf. also the findings of Farrell (2018) on this matter.
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6.7 Discussion

Both the automatic measures as well as the pro-
ductivity/time gain evaluation with independent
subtitlers indicate that the adapted MT output sig-
nificantly outperformed the baseline MT in terms
of quality. All of the metrics, whether on Part 1
against a gold reference file, or on Parts 2 and
3, against the post-edited files correlate and ver-
ify the conclusion above. A ranking scale quali-
tative evaluation by the translators also confirmed
the above findings, and translators provided fur-
ther insights as to the post-editing process itself.

7 Conclusions

In this paper, we described how a state-of-the-art
NMT system can be effectively customized for
subtitling. We proposed a simple way to integrate
inter-sentence context for translation of short ut-
terances and dialog turns, adapted the NMT sys-
tem to language variation (Latin American Span-
ish) and subtitling style and domain. We intro-
duced a novel algorithm for subtitle segmentation
that combines a recurrent neural network model
with hard and soft subtitle length and duration
constraints in a beam search. We performed an
extensive automatic and human evaluation, which
showed notable improvements in quality of the
adapted MT output segmented into subtitles with
our proposed algorithm as compared to the base-
line MT system output with heuristics-based line
breaks. This quality improvement led to signifi-
cant productivity and time gains when the adapted
MT output was post-edited by independent pro-
fessional translators, compared both to translation
from scratch and post-editing the translations of
the baseline MT system. Finally, we received pos-
itive qualitative feedback on the adapted MT out-
put from the post-editors involved in our study.

In the future, we plan to use more sophisti-
cated document-level features for better consis-
tency of the translations. We also started to ex-
pand the language coverage and trained similar
adapted systems with learned segmentation for the
language pairs Spanish-to-English and English-to-
Russian. Examples of automatic subtitles created
by these systems when using or ignoring inter-
sentence context are shown in Figure 1 and ex-
amples of heuristics-based vs. model-based seg-
mentation for En→Es, Es→En, and En→Ru NMT
output are shown in Figure 2 in the Appendix.
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Source	text:	 MT	without	context:	 Document-level	MT:	

18	
00:05:43,751	-->	00:05:45,083	
¿Y	por	qué	lo	aceptaste?	
	
19	
00:05:45,125	-->	00:05:47,792	
Porque	hablé	con	él.	
Creo	que	es	inocente.	
	
20	
00:05:47,876	-->	00:05:49,250	
No,	yo	no	estoy	tan	segura.	
	
21	
00:05:49,292	-->	00:05:50,959	
Todas	las	pruebas	están	en	su	contra.	
	
22	
00:05:51,083	-->	00:05:53,417	
Pasó	la	noche	con	ella.	
Fue	el	último	que	la	vio	con	vida.	
	
23	
00:05:53,542	-->	00:05:54,501	
De	acuerdo.	
	
27	
00:06:02,501	-->	00:06:07,626	
Sin	embargo,	Carlos	conoció	a	esa	mujer	
esa	misma	noche.	
	
28	
00:06:08,584	-->	00:06:10,626	
Al	día	siguiente,	
se	iba	a	casar	con	Alejandra.	
	
29	
00:06:10,667	-->	00:06:12,542	
¿Qué	motivos	tendría	para	matarla?	
	
30	
00:06:12,667	-->	00:06:14,417	
-Yo	no	lo	sé.	
-Ninguno.	

18	
00:05:43,751	-->	00:05:45,083	
And	why	did	you	accept	it?	
	
19	
00:05:45,125	-->	00:05:47,792	
Because	I	talked	to	him.	
I	think	he's	innocent.	
	
20	
00:05:47,876	-->	00:05:49,250	
No,	I'm	not	so	sure.	
	
21	
00:05:49,292	-->	00:05:50,959	
All	the	evidence	is	against	you.	
	
22	
00:05:51,083	-->	00:05:53,417	
She	spent	the	night	with	her.	
He	was	the	last	one	to	see	her	alive.	
	
23	
00:05:53,542	-->	00:05:54,501	
Okay.	
	
27	
00:06:02,501	-->	00:06:07,626	
However,	Carlos	met	that	woman	
that	same	night.	
	
28	
00:06:08,584	-->	00:06:10,626	
The	next	day,	he	was	going	to	
marry	Alejandra.	
	
29	
00:06:10,667	-->	00:06:12,542	
What's	the	point	of	killing	her?	
	
30	
00:06:12,667	-->	00:06:14,417	
-	I	don't	know.	
-	None.	
	

18	
00:05:43,751	-->	00:05:45,083	
Then	why	did	you	accept	it?	
	
19	
00:05:45,125	-->	00:05:47,792	
Because	I	talked	to	him.	
I	think	he's	innocent.	
	
20	
00:05:47,876	-->	00:05:49,250	
No,	I'm	not	so	sure.	
	
21	
00:05:49,292	-->	00:05:50,959	
All	the	evidence	is	against	him.	
	
22	
00:05:51,083	-->	00:05:53,417	
He	spent	the	night	with	her.	
He	was	the	last	one	to	see	her	alive.	
	
23	
00:05:53,542	-->	00:05:54,501	
Agreed.	
	
27	
00:06:02,501	-->	00:06:07,626	
However,	Carlos	met	that	woman	
that	same	night.	
	
28	
00:06:08,584	-->	00:06:10,626	
The	next	day,	she	was	marrying	
Alejandra.	
	
29	
00:06:10,667	-->	00:06:12,542	
What	motive	would	she	have	to	kill	
her?	
	
30	
00:06:12,667	-->	00:06:14,417	
-I	don't	know.	
-None.	
	

	
Figure 1: Examples of Spanish-to-English subtitle translation with and without inter-sentence context available to
the NMT system.
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Source	text:	 MT	without	
segmentation	algorithm:	

MT	with	segmentation	
algorithm:	

17	
00:01:39,160	-->	00:01:42,400	
You	can	skip	the	eulogy,	
I'm	not	gone	yet.	

17	
00:01:39,160	-->	00:01:42,400	
Можешь	пропустить	надгробную	
речь,	я	еще	не	ушел.	
	

17	
00:01:39,160	-->	00:01:42,400	
Можешь	пропустить	надгробную	речь,	
я	еще	не	ушел.	

35	
00:02:48,400	-->	00:02:51,480	
That	proves	that	you	have	
confidence	in	my	work.	

35	
00:02:48,400	-->	00:02:51,480	
Это	доказывает,	что	
ты	уверен	в	моей	работе.	
	

35	
00:02:48,400	-->	00:02:51,480	
Это	доказывает,	что	ты	уверен	
в	моей	работе.	

42	
00:03:11,440	-->	00:03:16,480	
A	contract	with	the	
Royal	Furniture	Company	for	$1,500?	

42	
00:03:11,440	-->	00:03:16,480	
Контракт	с	Королевской	
мебельной	компанией	за	$1500?	

42	
00:03:11,440	-->	00:03:16,480	
Контракт	с	Королевской	мебельной	
компанией	за	$1500?	

45	
00:07:29,040	-->	00:07:32,800	
Thanks	to	them,	the	carbon	drained	
from	the	atmosphere	
	
46	
00:07:32,920	-->	00:07:35,400	
and	other	life	forms	could	develop.	

45	
00:07:29,040	-->	00:07:32,800	
Gracias	a	ellos,	el	carbono	drenado	
de	la	atmósfera	y	otras	formas	de	vida	
	
46	
00:07:32,920	-->	00:07:35,400	
podrían	desarrollarse.	
	

45	
00:07:29,040	-->	00:07:32,800	
Gracias	a	ellos,	el	carbono	drenado	
de	la	atmósfera	
	
46	
00:07:32,920	-->	00:07:35,400	
y	otras	formas	de	vida	
podrían	desarrollarse.	
	

49	
00:07:47,240	-->	00:07:50,200	
which	enabled	it	to	break	apart	
the	water	molecule	
	
50	
00:07:50,320	-->	00:07:52,240	
and	take	the	oxygen.	

49	
00:07:47,240	-->	00:07:50,200	
lo	que	le	permitió	romper	
	
50	
00:07:50,320	-->	00:07:52,240	
la	molécula	de	agua	y	tomar	el	
oxígeno.	

49	
00:07:47,240	-->	00:07:50,200	
lo	que	le	permitió	romper	
la	molécula	de	agua	
	
50	
00:07:50,320	-->	00:07:52,240	
y	tomar	el	oxígeno.	
	

10	
00:05:24,000	-->	00:05:27,125	
No,	bueno,	es	que	todos	fueron	a	comer	
	
11	
00:05:27,375	-->	00:05:29,918	
y	te	quería	decir	que,	si	quieres,	
podemos	salir	a	comer	juntos.	

10	
00:05:24,000	-->	00:05:27,125	
No,	well,	they	all	went	to	eat	
and	I	wanted	to	tell	you,	if	you	want,	
	
11	
00:05:27,375	-->	00:05:29,918	
we	can	go	out	and	eat	together.	
	
	

10	
00:05:24,000	-->	00:05:27,125	
No,	well,	they	all	went	to	eat	
	
11	
00:05:27,375	-->	00:05:29,918	
and	I	wanted	to	tell	you,	if	you	want,	
we	can	go	out	and	eat	together.	
	

13	
00:05:32,000	-->	00:05:34,083	
Tengo	mucho	trabajo.	
Y	con	esto	del	caso	de	Ibarra,	
	
14	
00:05:34,209	-->	00:05:35,876	
estoy	saturado,	Olivia.	

13	
00:05:32,000	-->	00:05:34,083	
I	have	a	lot	of	work.	
	
14	
00:05:32,000	-->	00:05:34,083	
And	with	this	Ibarra	case,	
	
15	
00:05:34,209	-->	00:05:35,876	
I'm	saturated,	Olivia.	
	

13	
00:05:32,000	-->	00:05:34,083	
I	have	a	lot	of	work.	
And	with	this	Ibarra	case,	
	
14	
00:05:34,209	-->	00:05:35,876	
I'm	saturated,	Olivia.	

	
Figure 2: Examples of subtitle segmentation using model-based approach vs. heuristics-based approach (English-
to-Russian, English-to-Spanish, and Spanish-to-English translation).
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Abstract

Translation systems aim to perform a meaning-
preserving conversion of linguistic material
(typically text but also speech) from a source
to a target language (and, to a lesser degree, the
corresponding socio-cultural contexts). Dub-
bing, i. e., the lip-synchronous translation and
revoicing of speech adds to this constraints
about the close matching of phonetic and re-
sulting visemic synchrony characteristics of
source and target material. There is an inher-
ent conflict between a translation’s meaning
preservation and its ‘dubbability’ and the re-
sulting trade-off can be controlled by weigh-
ing the synchrony constraints. We introduce
our work, which to the best of our knowl-
edge is the first of its kind, on integrating syn-
chrony constraints into the machine translation
paradigm. We present first results for the inte-
gration of synchrony constraints into encoder
decoder-based neural machine translation and
show that considerably more ‘dubbable’ trans-
lations can be achieved with only a small im-
pact on BLEU score, and dubbability improves
more steeply than BLEU degrades.

1 Introduction

Dubbing, the lip-synchronous translation and re-
voicing of audio-visual media, is essential for the
full-fledged reception of foreign movies, TV shows,
instructional videos, advertisements, or short so-
cial media clips. Dubbing does not contend for the
viewers’ visual attention like subtitles (Dı́az-Cintas
and Remael, 2014) do, and unlike voice-over or
asynchronous speech there is no (or only little) mis-
match of visual and auditory impression where the
resulting cognitive dissonance would otherwise in-
crease the viewers’ cognitive load, or even lead
to understanding errors (McGurk and Macdonald,

∗*This work was performed during an internship at Uni-
versität Hamburg, Germany.

1976). Dubbing is still primarily studied in audio-
visual translation (Orero, 2004; Chaume, 2012)
and performed manually, unlike textual translation,
which is largely being automated or supported by
computer-aided translation (Koehn, 2009).

Recent break-throughs in speech-to-speech trans-
lation (Jia et al., 2019), do not yield translations
that systematically observe dubbing constraints, i. e.
do not match phonetically (or rather: visemically)
the original source (we call this ‘dubbability’). It
is our goal to create MT systems where the dub-
bability of the translation can be controlled so as
to optimize the trade-off between translation qual-
ity and lip-synchrony of the dubbed speech. We
hope that more widely available dubbing across
languages will help to stimulate access to foreign
media and foster inter-cultural exchange.

We argue that dubbable MT will not simply
emerge from training on dubbed audio-visual cor-
pora, i. e. implicitly. By comparison, audio-visual
corpora will always remain smaller than pure text-
to-text translation corpora. As a result, merely rely-
ing on training a conventional MT system on large
amounts of dubbing texts is bound to severely limit
performance. What’s more, the task of dubbing
combines the constraints of several areas (meaning-
preserving as well as prosodically similar transla-
tion) which have different properties. For example,
for speech from the off or without the speaker’s face
visible, there are no limitations on prosodic simi-
larity while it may be critical in close-up scenes;
the translation system would thus need to consider
video as well (but only very selectively so). Thus,
we are looking for a flexible weighing of these two
aspects which we achieve by introducing phonetic
synchrony constraints that describe the ‘dubbabil-
ity’ of a proposed translation, i. e., how well it is
expected to allow for lip-synchronous revoicing in
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source (en): No, no. Each individual’s blood chemistry is unique, like fingerprints.
dubbed (es): No, no. La sangre de cada individuo es única, como una huella.

faithful: No, no. La quı́mica de la sangre de cada individuo es única,
como las huellas dactilares.

Figure 1: Example dubbing in the show “Heroes” (season 3, episode 1, starting at 29’15”, from Öktem et al.
(2018)); ‘faithful’ meaning-preserving translation based on Google Translate.

the target language.1

An example of the weighing of lip synchrony
and faithful translation in dubbing is shown in Fig-
ure 1 which shows an example utterance in the
HEROes corpus2 (Öktem et al., 2018) in its En-
glish original and Spanish dubbed revoicing, as
well as a meaning-preserving translation. The lat-
ter results in about 70 % too many syllables (32 vs.
19 in the source), and would be next to impossible
to revoice in a lip-synchronous manner. The human
translator (and dubbing expert) resolved the issue
by sacrificing some detail in the translation: two
terms, “blood chemistry” and “fingerprints” can
easily be translated slightly differently (leaving out
the “chemistry” and “finger” aspects, as well as
singularizing “prints”) which reduces the syllable
difference down to 20 % without sacrificing the
overall meaning conveyed by the utterance.

We describe how synchrony constraints can be
included in the MT process, in particular in the
search/decoding process of neural MT, in the fol-
lowing section and then describe our implemented
system in Section 3 and present results of our exper-
imentation in Section 5. We conclude in Section 6
where we also present our plans for future work.

1In this paper, we use the relative difference of syllable
count estimates between source and target material as the sim-
ilarity constraint. We expect that more elaborate constraints,
e. g. based on accentuation, stress marks, expected speech du-
rations, articulatory and prosodic features, visemes, etc. will
be needed to match human dubbing performance.

2http://hdl.handle.net/10230/35572

2 Integration of Dubbing Constraints

Given a source language sentence S, both statistical
MT and neural MT perform a search among many
different possible candidate utterances C in the
target language, wrt. constraints that represent the
faithfulness of the translation, scoret(C, S), with
the best scoring candidate picked as the result.

Given the source sentence and a candidate trans-
lation, we can compute a phonetic (or visemic) syn-
chrony scorep(C, S). Then, for dubbing-optimized
machine translation, we simply compute a dubbing-
optimal scored that combines both sub-scores using
a weight α that indicates the relative importance of
phonetic synchrony vs. translation faithfulness:
scoreαd (C, S) =

(1− α) ∗ scoret(C, S) + α ∗ scorep(C, S).
In application, α can be varied, e. g. according to
whether the speaker’s face is visible on screen.

MT systems gradually construct and prune the
search space as their scoring functions work well
locally, i. e., already do well for partial transla-
tions.3 In contrast, synchrony scoring requires a
global perspective, in particular for a constraint
such as the relative deviation in syllable num-
ber between a candidate and the source, i. e. for
scorep(C, S) = abs(syll(C) − syll(S))/syll(S).
It is not easy to compute this for only a prefix of C
as it is typically unclear which words in the source
have already been accounted for and as syllables
can be shifted between words (only the total mat-
ters).

To integrate phonetic constraints into the search
3However, He et al. (2017) use a similar technique as

outlined below for BLEU-optimal decoding for NMT.
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Figure 2: Integration of dubbing constraints into the MT decoder: the beam is re-scored by a combined score of
the phonetic similarity of the decoded prefix as well as a heuristic estimate for what remains in the search state.

process, we propose a heuristic dubbing estimator
that breaks down the task of phonetic similarity
scoring into (a) the known phonetic score for the
prefix that has already been generated, and (b) a
heuristic ̂scorep based on the internal state of the de-
coder for how well the yet untranslated part of the
utterance will score. Different prefixes correspond
to different decoder states and states are known
to capture the remaining length of the translation
(Shi et al., 2016). Our method extends over that of
Chatterjee et al. (2017), which scores constraints
only once all necessary information is available in
the decoded prefix. The resulting beam search then
performs similarly to A* (Hart et al., 1968).

Figure 2 depicts our method, without loss of gen-
erality, for NMT. In the example, the decoding of
an utterance at decoding stage i is shown. At i,
the decoder may consider to add a word to faith-
fully translate the phrase “blood chemistry”, and
as an alternate hypothesis consider translating just
“blood” as a shorter form of conveying the same
message. All alternatives are placed in the MT sys-
tem’s beam which is then re-scored by the dubbing
estimator which takes each word sequence in the
beam to compute the phonetic score of the prefix,
as well as the decoder’s hidden state hi to estimate
the score for what will still have to be translated.
In this case, we can imagine that “sangre” will
re-score to a higher position as its brevity is pre-
ferred (whereas the alternatives would still need to
add “sangre” in a later decoding stage, thus their
states will be estimated as containing more material
to come yielding an overall higher estimate and a
lower score).

The integration of synchrony constraints into
the decoder enables a dubbing-optimal search with
very little decoding overhead, however with some
implementation effort. In addition, the heuristics
̂scorep could turn out to be be problematic given

little training material or domain mismatches (see
below). A similar result at low code complexity
but potentially longer run time can be achieved by
post-hoc rescoring based on a relatively large beam
size from a standard NMT decoder. This approach
is implemented in our first prototype which will be
described in the next section.

3 Implemented System

We first describe our NMT model and training
setup in detail, which yields an MT system that
is competitive with the state of the art. Overall, our
goal is not to create a heavily optimized system that
gives us the highest possible performance in our do-
main but merely to yield a plausible baseline. We
then describe our amendments for dubbing-optimal
decoding.

We implement a convolutional encoder-decoder
NMT model (Gehring et al., 2017). Given the rel-
atively lesser training data (see below), we use a
smaller model than Gehring et al. (2017), inspired
by Edunov et al. (2018) and hence adapt certain
hyperparameter values as described in Table 1.

We pre-process textual data as follows: we
perform tokenization using the scripts from the
open-source package Moses4 (Koehn et al., 2007)

4https://github.com/moses-smt/
mosesdecoder
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followed by a byte-pair encoding compression
algorithm to reduce the vocabulary size (Sen-
nrich et al., 2016) using the open-source package
subword-nmt5. We denote words not included
in the vocabulary as <UNK>. We do not apply any
lowercasing or stemming.

We train our model with fairseq6 (Ott et al.,
2019) for the default 34 epochs with training objec-
tives and search settings as found to be optimal by
Edunov et al. (2018) for a similar MT task.

Our standard decoder uses a beam-size of 50
(which is larger than typically used, but see next
section for results).

For dubbing-optimal decoding, we rescore the
N-best list from standard decoding Bt by the
method outlined in Section 2: We estimate the num-
ber of syllables in each candidate and the source
sentence and take the difference (sylldiff(C, S) =
abs(syll(C) − syll(S))) and convert this to a
scorep(C, S) = 1/(1+sylldiff(C, S)) that is high-
est for identical syllable counts. We then reweigh
the sub-scores for translation and synchrony with
a weight α, yielding a rescored beam Bd of which
we take the best-ranked translation as being the
dubbing-optimal translation. The full algorithm
for rescoring is described in Algorithm 1. We use
Pyphen7 for estimating the syllable count for both
English (source language) and Spanish (target lan-
guage).

5https://github.com/rsennrich/
subword-nmt

6https://github.com/pytorch/fairseq
7https://pyphen.org/

Table 1: Custom hyperparameters of our convolutional
encoder-decoder model; all other hyperparameters are
set as by Gehring et al. (2017).

Hyperparameter Value

Encoder embedding dimension 256
Encoder hidden units in each layer 256
Kernel size for each encoder layer 3
Encoder layers 4
Dropout rate 0.2
Decoder embedding dimension 256
Decoder hidden units in each layer 256
Kernel size for each decoder layer 3
Decoder layers 3

Algorithm 1 N-Best Rescoring with Dubbing Con-
straints

1: Input: Translation model P (y|x), Test Batch
Input T , Rescoring Factor α

2: Bt ← ∀e∈TStandardBeamSearch(e)
3: for all candidate C in Bt do
4: scoret(C)← C.score
5: scorep(C)← 1/(1+ sylldiff(C, S))
6: scored(C) ← (1 − α) ∗ scoret(C) + α ∗

scorep(C)

7: Output: Rescored Beam Output Bd

8: Select: Best-ranked candidate from Bd

4 Setup and Evaluation Method

Ideally, a dubbing-optimal translation system
should be evaluated on dubbed material. We use
the HEROes dubbing corpus (Öktem et al., 2018)
a corpus of the TV show with the same name with
the source (English) and dubbing into Spanish. The
corpus contains a total of 7000 manually aligned
utterance pairs in 9.5 hours of speech and based
on forced alignment of video subtitles to the au-
dio tracks. The audio material (in both English and
Spanish) is not yet used in the experiments reported
below.

We find that the HEROes corpus contains 85,767
(resp. 83,561) syllables for English (resp. dubbed
Spanish), as computed with Pyphen. The average
number of syllables per utterance is 12.25 for En-
glish and 11.94 for Spanish. We conclude that, on
average, both languages use almost the same num-
ber of syllables and hence our phonetic similarity
measure based on syllables should be useful. (It
would be possible, for other language pairs where
the notion of syllable differs, e. g. when consider-
ing the mora-driven Japanese, to compute some
sort of correction factor between the languages. In
our case, we simply ignore the relative difference
in syllables of < 3 % between the languages.)

Although large for a dubbing corpus, the 7,000
utterances are far too little to train an NMT model
on. We hence use the English → Spanish paral-
lel data in the Europarl corpus (Koehn, 2005) for
training and will evaluate on both the dubbing cor-
pus and a test set based on the Europarl corpus.
The genre of science fiction TV shows may differ
radically from parliament proceedings. However,
this merely results in lower BLEU performance
on the out-of-domain data. We believe that model
adaptation (e.g. Chu and Wang, 2018) or relatively
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more in-domain training material (e.g. Lison and
Tiedemann, 2016) would work orthogonal to the
dubbing-specific improvements in our paper. Text
pre-processing is identical for both corpora.

We measure the translation performance in terms
of BLEU (Papineni et al., 2002) as computed with
the SacreBLEU software8 (Post, 2018). Dubbing-
optimality of translations in the test-set T is deter-
mined by micro-averaging the dubbing-scores as
follows: by synchrony-score for test-set T defined
as:
synchrony-score(T ) =∑

e∈T abs(syll(NMT(e))− syll(e))∑
e∈T syll(e))

where NMT(e) is the target translation given by
the NMT model P (y|x) (with or without dubbing
constraints applied) for English source text e.

As is evident, the lower the synchrony score
the better is the dubbing optimality. We run our
experiment to analyze the variation of BLEU vs.
synchrony score for different rescoring factors α.

We use the trained NMT model as described in
the above section. Our decoding algorithm is as
described in Algorithm 1, which we use to compute
the relation between translation performance and
dubbing-optimality of translations.

5 Experiment and Results

It has previously been pointed out that NMT per-
formance suffers from a beam search size beyond
5 or 10 (Koehn and Knowles, 2017; Tu et al., 2017)
and numerous methods have been proposed to cir-
cumvent this (Huang et al., 2017; Ott et al., 2018;
Yang et al., 2018). However, for our present way
of dubbing-optimization based on N-best rescor-
ing, high beam sizes are essential for the dubbing-
rescoring described in Algorithm 1 to have some
material to work with. With only few candidates
to be rescored, it might not necessarily give us the
most ‘dubbable’ result.

We experimented with various beam sizes and
found no BLEU degradation for a beam size of 50.
Larger beams may eventually lead to a degradation
and run time would become overly long as it lin-
early increases with the beam size. Owing to the
best of both worlds, we resort to a beam size of 50
for the experiments reported below.

8https://github.com/mjpost/sacreBLEU

Figure 3: Evaluation results for the HEROes corpus.

5.1 Evaluation on Dubbing Material

Figure 3 shows BLEU scores (left scale, higher is
better) and synchrony score (right scale, lower is
better) of our proposed system for a range of α
between 0 and 1. Notice that α = 0 corresponds to
no rescoring, i. e. the baseline system.

The relatively low BLEU score of 13.67 for the
baseline system reflects the domain-mismatch be-
tween HEROes and Europarl.9 We find that BLEU
score is impacted only moderately for relatively
low values of α, with a relative decrease of 2 %
for α = .3. At the same time, we find the syn-
chrony score to improve drastically already with
small values of α: while the difference in syllables
between source and target is almost one quarter in
the baseline system, this is almost halved, down to
14 % for α = .3.

Figure 3 also contains the synchrony score of the
proposed translations vs. the actual gold-standard
dubbed texts (dotted line in the figure). As can
be seen, the similarity increases up to about α =
.3 and then flattens out. This is in line with our
observation that, while source and target number
of syllables correlate highly, there is no perfect
match, indicating that our synchrony constraint
has only limited value. However, it also points
to the fact that a human dubbing expert needs to
find the middle ground between faithful translation
and perfect synchrony. Given that two differing
linguistic systems are involved, a perfect synchrony
is simply impossible if the meaning is to remain
approximately correct.

9To the great relief of the authors, the European parlia-
ment does not speak like supernatural figures in a mystery TV
show that was scrapped after only 4 seasons due to the harsh
criticism on its ludicrous nature.
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Figure 4: In-domain evaluation results for Europarl.

5.2 In-Domain Evaluation
We also evaluate our method in-domain, on test
data sampled from Europarl (excluded from train-
ing). In particular, we use those source sentences
for which multiple reference translations are con-
tained in the corpus (about 18k instances). Eu-
roparl translations, of course, are not transcripts
of lip-synchronously dubbed speech. Thus, our
expectations for synchrony constraints are some-
what lower. However, testing in-domain still helps
greatly to validate our out-of-domain results above.

As can be seen in Figure 4, we see a similar de-
crease in BLEU scores (and only very gradually for
small α values) and more strongly improving syn-
chrony scores. This again points towards a useful
trade-off when combining synchrony constraints
with the requirement of meaning-preserving trans-
lations. There is a range of possible reasons why
our method does not work as well for Europarl as
for the HEROes corpus. In particular, Europarl
is not transcribed speech and hence may be less
‘dubbable’ by nature; many phrases in Europarl
may translate to phrases with a different number
of syllables in the target language, yet the model is
reluctant to give up this translation in the in-domain
condition; the proxy-target of syllables may work
less well for longer, more specific words as found
in legal texts, where a focus on only accentuated
syllables may be more useful.

6 Conclusion and Future Work

We have explored the task of dubbing-optimal ma-
chine translation, i. e. machine translation that uni-
fies the constraints of faithfulness in translation
with the constraint of lip-synchrony for revoicing
of audio-visual media. We have, so far, limited our
synchrony constraint to counting syllables (which

acts as a proxy to jaw openings that would be a
major factor in visemic characteristics of speech).

We have outlined how one can integrate syn-
chrony constraints into to the search during decod-
ing by estimating the amount of syllables that are
still remaining in the hidden state of the encoder-
decoder model. We have implemented a simpler
prototype system that instead rescores a conven-
tional system’s final N-best list.

Using the (as far as we know) largest corpus
of dubbed speech available, the HEROes corpus
(Öktem et al., 2018), we have shown our method
to yield much more ‘dubbable’ translations than
those that result from a standard MT system. In
fact, while the manual dubbing for the sentence in
Figure 1 abbreviates the phrase “blood chemistry”
to plain “sangre”, our model instead chooses “la
quı́mica de cada persona es única” which is still
a reasonable translation of “blood chemistry” and
comes very close in terms of syllable count.

In the future, we intend to implement the fully
integrated search as described in Section 2, as well
as implement more powerful synchrony metrics
that could also ground in the source audio (e. g.
to find out what syllables were stressed) or the
source video (e. g. to find out how well the face is
visible), and could also consider detailed aspects
of the target speech (e. g. via speech synthesis cost
estimates for forcing the target text on the observed
visemes).

One interesting and relevant aspect of teaching
humans interpreting is the task of rewording mate-
rial in the target language (Gile, 2005). A model
that can be trained towards an ability of coming
up with alternate wordings for the same concept
(but with different synchrony-related properties)
would potentially yield much better candidates for
‘dubbability’ assessment.
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Abstract

The transformer is a state-of-the-art neural
translation model that uses attention to iter-
atively refine lexical representations with in-
formation drawn from the surrounding con-
text. Lexical features are fed into the first layer
and propagated through a deep network of hid-
den layers. We argue that the need to rep-
resent and propagate lexical features in each
layer limits the model’s capacity for learn-
ing and representing other information rele-
vant to the task. To alleviate this bottleneck,
we introduce gated shortcut connections be-
tween the embedding layer and each subse-
quent layer within the encoder and decoder.
This enables the model to access relevant lex-
ical content dynamically, without expending
limited resources on storing it within inter-
mediate states. We show that the proposed
modification yields consistent improvements
over a baseline transformer on standard WMT
translation tasks in 5 translation directions (0.9
BLEU on average) and reduces the amount
of lexical information passed along the hid-
den layers. We furthermore evaluate different
ways to integrate lexical connections into the
transformer architecture and present ablation
experiments exploring the effect of proposed
shortcuts on model behavior.1

1 Introduction

Since it was first proposed, the transformer model
(Vaswani et al., 2017) has quickly established it-
self as a popular choice for neural machine trans-
lation, where it has been found to deliver state-of-
the-art results on various translation tasks (Bojar
et al., 2018). Its success can be attributed to the
model’s high parallelizability allowing for signifi-
cantly faster training compared to recurrent neural

1Our code is publicly available to aid the reproduction of
the reported results: https://github.com/demelin/
transformer_lexical_shortcuts

networks (Chen et al., 2018), superior ability to
perform lexical disambiguation, and capacity for
capturing long-distance dependencies on par with
existing alternatives (Tang et al., 2018).

Recently, several studies have investigated the
nature of features encoded within individual layers
of neural translation models (Belinkov et al., 2017,
2018). One central finding reported in this body
of work is that, in recurrent architectures, differ-
ent layers prioritize different information types.
As such, lower layers appear to predominantly
perform morphological and syntactic processing,
whereas semantic features reach their highest con-
centration towards the top of the layer stack. One
necessary consequence of this distributed learn-
ing is that different types of information encoded
within input representations received by the trans-
lation model have to be transported to the layers
specialized in exploiting them.

Within the transformer encoder and decoder
alike, information exchange proceeds in a strictly
sequential manner, whereby each layer attends
over the output of the immediately preceding
layer, complemented by a shallow residual con-
nection. For input features to be successfully
propagated to the uppermost layers, the translation
model must therefore store them in its interme-
diate representations until they can be processed.
By retaining lexical content, the model is unable
to leverage its full representational capacity for
learning new information from other sources, such
as the surrounding sentence context. We refer to
this limitation as the representation bottleneck.

To alleviate this bottleneck, we propose extend-
ing the standard transformer architecture with lex-
ical shortcuts which connect the embedding layer
with each subsequent self-attention sub-layer in
both encoder and decoder. The shortcuts are
defined as gated skip connections, allowing the
model to access relevant lexical information at any
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point, instead of propagating it upwards from the
embedding layer along the hidden states.

We evaluate the resulting model’s performance
on multiple language pairs and varying corpus
sizes, showing a consistent improvement in trans-
lation quality over the unmodified transformer
baseline. Moreover, we examine the distribution
of lexical information across the hidden layers of
the transformer model in its standard configuration
and with added shortcut connections. The pre-
sented experiments provide quantitative evidence
for the presence of a representation bottleneck in
the standard transformer and its reduction follow-
ing the integration of lexical shortcuts.

While our experimental efforts are centered
around the transformer, the proposed components
are compatible with other multi-layer NMT archi-
tectures.

The contributions of our work are as follows:

1. We propose the use of lexical shortcuts as a
simple strategy for alleviating the representa-
tion bottleneck in NMT models.

2. We demonstrate significant improvements in
translation quality across multiple language
pairs as a result of equipping the transformer
with lexical shortcut connections.

3. We conduct a series of ablation studies,
showing that shortcuts are best applied to the
self-attention mechanism in both encoder and
decoder.

4. We report a positive impact of our modifica-
tion on the model’s ability to perform word
sense disambiguation.

2 Proposed Method

2.1 Background: The transformer
As defined in (Vaswani et al., 2017), the trans-
former is comprised of two sub-networks, the en-
coder and the decoder. The encoder converts
the received source language sentence into a se-
quence of continuous representations containing
translation-relevant features. The decoder, on
the other hand, generates the target language se-
quence, whereby each translation step is condi-
tioned on the encoder’s output as well as the trans-
lation prefix produced up to that point.

Both encoder and decoder are composed of a
series of identical layers. Each encoder layer con-
tains two sub-layers: A self-attention mechanism

Figure 1: Integration of lexical shortcut connections
into the overall transformer architecture.

and a position-wise fully connected feed-forward
network. Within the decoder, each layer is ex-
tended with a third sub-layer responsible for at-
tending over the encoder’s output. In each case,
the attention mechanism is implemented as multi-
head, scaled dot-product attention, which allows
the model to simultaneously consider different
context sub-spaces. Additionally, residual con-
nections between layer inputs and outputs are em-
ployed to aid with signal propagation.

In order for the dot-product attention mecha-
nism to be effective, its inputs first have to be pro-
jected into a common representation sub-space.
This is accomplished by multiplying the input ar-
rays HS and HT by one of the three weight matri-
ces K, V , and Q, as shown in Eqn. 1-3, producing
attention keys, values, and queries, respectively. In
case of multi-head attention, each head is assigned
its own set of keys, values, and queries with the as-
sociated learned projection weights.

Q = WQHS (1)

K = WKHT (2)

V = W V HT (3)

In case of encoder-to-decoder attention, HT
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corresponds to the final encoder states, whereas
HS is the context vector generated by the preced-
ing self-attention sub-layer. For self-attention, on
the other hand, all three operations are given the
output of the preceding layer as their input. Eqn.
4 defines attention as a function over the projected
representations.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (4)

To prevent the magnitude of the pre-softmax
dot-product from becoming too large, it is divided
by the square root of the total key dimensional-
ity dk. Finally, the translated sequence is obtained
by feeding the output of the decoder through a
softmax activation function and sampling from the
produced distribution over target language tokens.

2.2 Lexical shortcuts
Given that the attention mechanism represents the
primary means of establishing parameterized con-
nections between the different layers within the
transformer, it is well suited for the re-introduction
of lexical content. We achieve this by adding gated
connections between the embedding layer and
each subsequent self-attention sub-layer within the
encoder and the decoder, as shown in Figure 1.

To ensure that lexical features are compatible
with the learned hidden representations, the re-
trieved embeddings are projected into the appro-
priate latent space, by multiplying them with the
layer-specific weight matrices WKSC

l and W V SC

l .
We account for the potentially variable importance
of lexical features by equipping each added con-
nection with a binary gate inspired by the Gated
Recurrent Unit (Cho et al., 2014). Functionally,
our lexical shortcuts are equivalent to highway
connections of (Srivastava et al., 2015) that span
an arbitrary number of intermediate layers.

KSC
l = WKSC

l E (5)

V SC
l = W V SC

l E (6)

Kl = WK
l Hl−1 (7)

Vl = W V
l Hl−1 (8)

rKl = sigmoid(KSC
l +Kl + bKl ) (9)

rVl = sigmoid(V SC
l + Vl + bVl ) (10)

K ′l = rKl �KSC
l + (1− rKl )�Kl (11)

V ′l = rVl � V SC
l + (1− rVl )� Vl (12)

Figure 2: Modified attention inputs. Top: lexical
shortcuts, bottom: lexical shortcuts + feature-fusion.
Dashed lines denote splits along the feature dimension.

After situating the outputs of the immediately
preceding layer Hl−1 and the embeddings E
within a shared representation space (Eqn. 5-8),
the relevance of lexical information for the cur-
rent attention step is estimated by comparing lexi-
cal and latent features, followed by the addition of
a bias term b (Eqn. 9-10). The respective atten-
tion key arrays are denoted as KSC

l and Kl, while
V SC
l and Vl represent the corresponding value ar-

rays. The result is fed through a sigmoid function
to obtain the lexical relevance weight r, used to
calculate the weighted sum of the two sets of fea-
tures (Eqn. 11-12), where� denotes element-wise
multiplication. Next, the key and value arrays K ′l
and V ′l are passed to the multi-head attention func-
tion as defined in Eqn. 4, replacing the original Kl

and Vl.
In an alternative formulation of the model, re-

ferred to as ‘feature-fusion’ from here on, we con-
catenate E and Hl−1 before the initial linear pro-
jection, splitting the result in two halves along the
feature dimension and leaving the rest of the short-
cut definition unchanged2. This reduces Eqn. 5-
8 to Eqn. 13-14, and enables the model to se-
lect relevant information by directly inter-relating
lexical and hidden features. As such, both KSC

l

and Kl encode a mixture of embedding and hid-

2The feature-fusion mechanism is therefore based on the
same principle as the Gated Linear Unit (Dauphin et al.,
2017), while utilizing a more expressive gating function.
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den features, as do the corresponding value arrays.
While this arguably diminishes the contribution of
the gating mechanism towards feature selection,
preliminary experiments have shown that replac-
ing gated shortcuts with gate-less residual connec-
tions (He et al., 2016) produces models that fail to
converge, characterized by poor training and vali-
dation performance. For illustration purposes, fig-
ure 2 depicts the modified computation path of the
lexically-enriched attention key and value vectors.

KSC
l ,Kl = WK

l [E;Hl−1] (13)

V SC
l , Vl = W V

l [E;Hl−1] (14)

Other than the immediate accessibility of lexi-
cal information, one potential benefit afforded by
the introduced shortcuts is the improved gradi-
ent flow during back-propagation. As noted in
(Huang et al., 2017), the addition of skip connec-
tions between individual layers of a deep neural
network results in an implicit ‘deep supervision’
effect (Lee et al., 2015), which aids the training
process. In case of our modified transformer, this
corresponds to the embedding layer receiving its
learning signal from the model’s overall optimiza-
tion objective as well as from each layer it is con-
nected to, making the model easier to train.

3 Experiments

3.1 Training

To evaluate the efficacy of the proposed approach,
we re-implement the transformer model and ex-
tend it by applying lexical shortcuts to each self-
attention layer in the encoder and decoder. A de-
tailed account of our model configurations, data
pre-processing steps, and training setup is given in
the appendix (A.1-A.2).

3.2 Data

We investigate the potential benefits of lexical
shortcuts on 5 WMT translation tasks: Ger-
man → English (DE→EN), English → German
(EN→DE), English → Russian (EN→RU), En-
glish→ Czech (EN→CS), and English→ Finnish
(EN→FI). Our choice is motivated by the differ-
ences in size of the training corpora as well as by
the typological diversity of the target languages.

To make our findings comparable to related
work, we train EN↔DE models on the WMT14
news translation data which encompasses ∼4.5M
sentence pairs. EN→RU models are trained on the

WMT17 version of the news translation task, con-
sisting of ∼24.8M sentence pairs. For EN→CS
and EN→FI, we use the respective WMT18 par-
allel training corpora, with the former containing
∼50.4M and the latter ∼3.2M sentence pairs. We
do not employ backtranslated data in any of our
experiments to further facilitate comparisons to
existing work.

Throughout training, model performance is
validated on newstest2013 for EN↔DE, new-
stest2016 for EN→RU, and on newstest2017 for
EN→CS and EN→FI. Final model performance is
reported on multiple tests sets from the news do-
main for each direction.

3.3 Translation performance
The results of our translation experiments are sum-
marized in Tables 1-2. To ensure their compara-
bility, we evaluate translation quality using sacre-
BLEU (Post, 2018). As such, our baseline per-
formance diverges from that reported in (Vaswani
et al., 2017). We address this by evaluating our
EN→DE models using the scoring script from the
tensor2tensor toolkit3 (Vaswani et al., 2018) on the
tokenized model output, and list the corresponding
BLEU scores in the first column of Table 1.

Our evaluation shows that the introduction of
lexical shortcuts consistently improves transla-
tion quality of the transformer model across dif-
ferent test-sets and language pairs, outperform-
ing transformer-BASE by 0.5 BLEU on aver-
age. With feature-fusion, we see even stronger
improvements, yielding total performance gains
over transformer-BASE of up to 1.4 BLEU for
EN→DE (averaging to 1.0), and 0.8 BLEU on av-
erage for the other 4 translation directions. We fur-
thermore observe that the relative improvements
from the addition of lexical shortcuts are substan-
tially smaller for transformer-BIG compared to
transformer-BASE. One potential explanation for
this drop in efficacy is the increased size of latent
representations the wider model is able to learn,
which we discuss in section 4.1.

Furthermore, it is worth noting that transformer-
BASE equipped with lexical connections performs
comparably to the standard transformer-BIG, de-
spite containing fewer than half of its parameters
and being only marginally slower to train than
our unmodified transformer-BASE implementa-

3https://github.com/tensorflow/
tensor2tensor/blob/master/
\tensor2tensor/utils/get_ende_bleu.sh
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sacreBLEU

Model newstest2014
(tokenized BLEU)

newstest
2014

newstest
2015

newstest
2016

newstest
2017

newstest
2018

test
mean

transformer-BASE 27.3 25.8 28.5 33.2 27.3 40.4 31.0

+ lexical shortcuts 27.6 26.1 29.5 33.3 27.5 41.1 31.5

+ feature-fusion 28.3 26.8 29.9 34.0 27.7 41.6 32.0

transformer-BIG 28.7 27.2 30.1 34.0 28.1 41.3 32.1

+ lexical shortcuts
+ feature-fusion 29.4 27.8 30.3 33.2 28.4 41.3 32.2

Table 1: BLEU scores for the EN→DE news translation task.

DE→EN EN→RU EN→CS EN→FI

Model newstest
2014

newstest
2017

newstest
2017

newstest
2018

newstest
2015

newstest
2018

newstest
2015

newstest
2018

transformer-BASE 31.1 32.3 27.9 24.2 23.4 21.1 18.7 14.0

+ lexical shortcuts 31.3 32.3 28.4 24.9 24.1 21.4 19.5 14.5

+ feature-fusion 31.7 32.9 28.9 25.3 24.3 21.6 19.8 14.8

Table 2: Effect of lexical shortcuts on translation quality for different language pairs, as measured by sacreBLEU.

tion. A detailed overview of model sizes and train-
ing speed is provided in the supplementary mate-
rial (A.1).

Concerning the examined language pairs, the
average increase in BLEU is highest for EN→RU
(1.1 BLEU) and lowest for DE→EN (0.6 BLEU).
A potential explanation for why this is the case
could be the difference in language topology. Of
all target languages we consider, English has the
least complex morphological system where indi-
vidual words carry little inflectional information,
which stands in stark contrast to a highly inflec-
tional language with a flexible word order such
as Russian. It is plausible that lexical shortcuts
are especially important for translation directions
where the target language is morphologically rich
and where the surrounding context is essential to
accurately predicting a word’s case and agree-
ment. With the proposed shortcuts in place, the
transformer has more capacity for modeling such
context information.

To investigate the role of lexical connections
within the transformer, we conduct a thorough ex-
amination of our models’ internal representations
and learning behaviour. The following analysis is
based on models utilizing lexical shortcuts with
feature-fusion, due to its superior performance.

4 Analysis

4.1 Representation bottleneck

The proposed approach is motivated by the hy-
pothesis that the transformer retains lexical fea-
tures within its individual layers, which limits its
capacity for learning and representing other types
of relevant information. Direct connections to the
embedding layer alleviate this by providing the
model with access to lexical features at each pro-
cessing step, reducing the need for propagating
them along hidden states. To investigate whether
this is indeed the case, we perform a probing study,
where we estimate the amount of lexical content
present within each encoder and decoder state.

We examine the internal representations learned
by our models by modifying the probing technique
introduced in (Belinkov et al., 2017). Specifically,
we train a separate lexical classifier for each layer
of a frozen translation model. Each classifier re-
ceives hidden states extracted from the respective
transformer layer4 and is tasked with reconstruct-
ing the sub-word corresponding to the position
of each hidden state. Encoder-specific classifiers
learn to reconstruct sub-words in the source sen-

4We treat the output of the feed-forward sub-layer as that
layer’s hidden state.
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Figure 3: Layer-wise lexical probe accuracy measured
on transformer-BASE for EN→DE (newstest2014).

tence, whereas classifiers trained on decoder states
are trained to reconstruct target sub-words.

The accuracy of each layer-specific classifier on
a withheld test set is assumed to be indicative of
the lexical content encoded by the corresponding
transformer layer. We expect classification accu-
racy to be high if the evaluated representations pre-
dominantly store information propagated upwards
from the embeddings at the same position and to
decrease proportionally to the amount of informa-
tion drawn from the surrounding sentence context.
Figures 3 and 4 offer a side-by-side comparison
of the accuracy scores obtained for each layer of
the base transformer and its variant equipped with
lexical shortcut connections.

Based on the observed classification results, it
appears that immediate access to lexical infor-
mation does indeed alleviate the representation
bottleneck by reducing the extent to which (sub-
)word-level content is retained across encoder and
decoder layers. By introducing shortcut connec-
tions, we effectively reduce the amount of lexical
information the model retains within its interme-
diate states, thereby increasing its capacity for ex-
ploiting sentence context. The effect is consistent
across multiple language pairs, supporting its gen-
erality. Additionally, to examine whether lexical
retention depends on the specific properties of the
input tokens, we track classification accuracy con-
ditioned on part-of-speech tags and sub-word fre-
quencies. While we do not discover a pronounced
effect of either category on classification accuracy,
we present a summary of our findings as part of the
supplementary material for future reference (A.3).

Another observation arising from the probing

Figure 4: Layer-wise lexical probe accuracy measured
on transformer-BASE for EN→RU (newstest2017).

analysis is that the decoder retains fewer lexical
features beyond its initial layers than the encoder.
This may be due to the decoder having to rep-
resent information it receives from the encoder
in addition to target-side content, necessitating a
lower rate of lexical feature retention. Even so,
by adding shortcut connections we can increase
the dissimilarity between the embedding layer and
the subsequent layers of the decoder, indicating a
noticeable reduction in the retention and propaga-
tion of lexical features along the decoder’s hidden
states.

A similar trend can be observed when evaluat-
ing layer similarity directly, which we accomplish
by calculating the cosine similarity between the
embeddings and the hidden states of each trans-
former layer. Echoing our findings so far, the ad-
dition of lexical shortcuts reduces layer similarity
relative to the baseline transformer for both en-
coder and decoder. The corresponding visualiza-
tions are also provided in the appendix (A.3).

Overall, the presented analysis supports the ex-
istence of a representation bottleneck in NMT
models as one potential explanation for the effi-
cacy of the proposed lexical shortcut connections.

Model newstest
2017

newstest
2018

test
mean

transformer-SMALL 25.2 37.0 28.6

+ lexical shortcuts 25.7 38.0 29.3

+ feature-fusion 25.7 38.5 29.6

Table 3: sacreBLEU scores for small EN→DE models;
‘test mean’ denotes the average of test-sets in table (1).
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4.2 Model size

Next, we investigate the interaction between the
number of model parameters and improvements in
translation quality afforded by the proposed lex-
ical connections. Following up on findings pre-
sented in section 3.1, we hypothesize that the
benefit of lexical shortcuts diminishes once the
model’s capacity is sufficiently large. To estab-
lish whether this decline in effectiveness is grad-
ual, we scale down the standard transformer, halv-
ing the size of its embeddings, hidden states, and
feed-forward sub-layers. Table 3 shows that, on
average, quality improvements are comparable for
the small and standard transformer (1.0 BLEU for
both), which is in contrast to our observations for
transformer-BIG. One explanation is that given
sufficient capacity, the model is capable of ac-
commodating the upward propagation of lexical
features without having to neglect other sources
of information. However, as long as the model’s
representational capacity is within certain limits,
the effect of lexical shortcuts remains comparable
across a range of model sizes. With this in mind,
the exact interaction between model scale and the
types of information encoded in its hidden states
remains to be fully explored. We leave a more
fine-grained examination of this relationship to fu-
ture research.

4.3 Shortcut variants

Until now, we focused on applying shortcuts to
self-attention as a natural re-entry point for lexical
content. However, previous studies suggest that
providing the decoder with direct access to source
sentences can improve translation adequacy, by
conditioning decoding on relevant source tokens
(Kuang et al., 2017; Nguyen and Chiang, 2017).

To investigate whether the proposed method can
confer a similar benefit to the transformer, we ap-
ply lexical shortcuts to decoder-to-encoder atten-
tion, replacing or adding to shortcuts feeding into
self-attention. Formally, this equates to fixing E
to Eenc in Eqn. 5-6 and can be regarded as a vari-
ant of source-side bridging proposed by (Kuang
et al., 2017). As Table 4 shows, while integrating
shortcut connections into the decoder-to-encoder
attention improves upon the base transformer, the
improvement is smaller than when we modify self-
attention. Interestingly, combining both methods
yields worse translation quality than either one
does in isolation, indicating that the decoder is un-

Model newstest
2017

newstest
2018

test
mean

transformer-BASE 27.3 40.4 31.0

+ self-attn. shortcuts 27.7 41.6 32.0

dec-to-enc shortcuts 27.6 40.7 31.5

+ self-attn. shortcuts 27.7 40.5 31.4

non-lexical shortcuts 27.1 40.6 31.3

Table 4: sacreBLEU for shortcut variants of EN→DE
models; ‘test mean’ averages over test-sets in table (1).

Figure 5: Effect of disabling shortcuts in either sub-
network on validation BLEU.

able to effectively consolidate information from
both source and target embeddings, which neg-
atively impacts its learned latent representations.
We therefore conclude that lexical shortcuts are
most beneficial to self-attention.

A related question is whether the encoder and
decoder benefit from the addition of lexical short-
cuts to self-attention equally. We explore this by
disabling shortcuts in either sub-network and com-
paring the so obtained translation models to one
with intact connections. Figure 5 illustrates that
best translation performance is obtained by en-
abling shortcuts in both encoder and decoder. This
also improves training stability, as compared to the
decoder-only ablated model. The latter may be ex-
plained by our use of tied embeddings which re-
ceive a stronger training signal from shortcut con-
nections due to ‘deep supervision’, as this may
bias learned embeddings against the sub-network
lacking improved lexical connectivity.

While adding shortcuts improves translation
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quality, it is not obvious whether this is pre-
dominantly due to improved accessibility of lex-
ical content, rather than increased connectivity be-
tween network layers, as suggested in (Dou et al.,
2018). To isolate the importance of lexical in-
formation, we equip the transformer with non-
lexical shortcuts connecting each layer n to layer
n − 2, e.g. layer 6 to layer 4.5 As a result, the
number of added connections and parameters is
kept identical to lexical shortcuts, whereas lex-
ical accessibility is disabled, allowing for mini-
mal comparison between the two configurations.
Test-BLEU reported in Table 4 suggests that while
non-lexical shortcuts improve over the baseline
model, they perform noticeably worse than lexi-
cal connections. Therefore, the increase in trans-
lation quality associated with lexical shortcuts is
not solely attributable to a better signal flow or the
increased number of trainable parameters.

4.4 Word-sense disambiguation

Beyond the effects of lexical shortcuts on the
transformer’s learning dynamics, we are interested
in how widening the representation bottleneck af-
fects the properties of the produced translations.
One challenging problem in translation which in-
tuitively should benefit from the model’s increased
capacity for learning information drawn from sen-
tence context is word-sense disambiguation.

We examine whether the addition of lexical
shortcuts aids disambiguation by evaluating our
trained DE→EN models on the ContraWSD cor-
pus (Rios et al., 2017). The contrastive dataset is
constructed by paring source sentences with mul-
tiple translations, varying the translated sense of
selected source nouns between translation candi-
dates. A competent model is expected to assign
a higher probability to the translation hypothesis
containing the appropriate word-sense.

While the standard transformer offers a strong
baseline for the disambiguation task, we nonethe-
less observe improvements after adding direct
connections to the embedding layers. Specifically,
our baseline model reaches an accuracy of 88.8%,
which improves to 89.5% with lexical shortcuts.

5 Related Work

Within recent literature, several strategies for alter-
ing the flow of information within the transformer

5The first layer is connected to the embedding layer, as
there is no further antecedent.

have been proposed, including adaptive model
depth (Dehghani et al., 2018), layer-wise trans-
parent attention (Bapna et al., 2018), and dense
inter-layer connections (Dou et al., 2018). Our in-
vestigation bears strongest resemblance to the lat-
ter work, by introducing additional connectivity
to the model. However, rather than establishing
new connections between layers indiscriminately,
we explicitly seek to facilitate the accessibility of
lexical features across network layers. As a result,
our proposed shortcuts remain sparse, while per-
forming comparably to their best, more elaborate
strategies that rely on multi-layer attention and hi-
erarchical state aggregation.

Likewise, studies investigating the role of lex-
ical features in NMT are highly relevant to our
work. Among them, (Nguyen and Chiang, 2017)
note that improving accessibility of source words
in the decoder benefits translation quality for
low-resource settings. In a similar vein, (Wu
et al., 2018) attend both encoder hidden states and
source embeddings as part of decoder-to-encoder
attention, while (Kuang et al., 2017) provide the
decoder-to-encoder attention mechanism with im-
proved access to source word representations. We
have found a variant of the latter method, which
we adapted to the Transformer architecture, to be
less effective than applying lexical shortcuts to
self-attention, as discussed in section 4.3.

Another line of research from which we draw
inspiration concerns itself with the analysis of
the internal dynamics and learned representations
within deep neural networks (Karpathy et al.,
2015; Shi et al., 2016; Qian et al., 2016). Here,
(Belinkov et al., 2017) and (Belinkov et al., 2018)
serve as our primary points of reference by offer-
ing a thorough and principled investigation of the
extent to which neural translation models are capa-
ble of learning linguistic properties from raw text.

Our view of the transformer as a model learn-
ing to refine input representations through the re-
peated application of attention is consistent with
the iterative estimation paradigm introduced in
(Greff et al., 2016). According to this interpreta-
tion, given a stack of connected layers sharing the
same dimensionality and interlinked through high-
way or residual connections, the initial layer gen-
erates a rough version of the stack’s final output,
which is iteratively refined by successive layers,
e.g. by enriching localized features with informa-
tion drawn from the surrounding context. The re-
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sults of our probing studies support this analysis,
further suggesting that different layers not only re-
fine input features but also learn entirely new in-
formation given sufficient capacity, as evidenced
by the decrease in similarity between embeddings
and hidden states with increasing model depth.

6 Conclusion

In this paper, we have proposed a simple yet effec-
tive method for widening the representation bot-
tleneck in the transformer by introducing lexical
shortcuts. Our modified models achieve up to 1.4
BLEU (0.9 BLEU on average) improvement on 5
standard WMT datasets, at a small cost in com-
puting time and model size. Our analysis sug-
gests that lexical connections are useful to both
encoder and decoder, and remain effective when
included in smaller models. Moreover, the addi-
tion of shortcuts noticeably reduces the similarity
of hidden states to the initial embeddings, indicat-
ing that dynamic lexical access aids the network in
learning novel, diverse information. We also per-
formed ablation studies comparing different short-
cut variants and demonstrated that one effect of
lexical shortcuts is an improved WSD capability.

The presented findings offer new insights into
the nature of information encoded by the trans-
former layers, supporting the iterative refinement
view of feature learning. In future work, we intend
to explore other ways to better our understanding
of the refinement process and to help translation
models learn more diverse and meaningful inter-
nal representations.
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A Supplementary Material

A.1 Training details
The majority of our experiments is conducted us-
ing the transformer-BASE configuration, with the
number of encoder and decoder layers set to 6
each, embedding and attention dimensionality to
512, number of attention heads to 8, and feed-
forward sub-layer dimensionality to 2048. We
tie the encoder embedding table with the decoder
embedding table and the pre-softmax projection
matrix to speed up training, following (Press and
Wolf, 2016). All trained models are optimized
using Adam (Kingma and Ba, 2014) adhering to
the learning rate schedule described in (Vaswani
et al., 2017). We set the number of warm-up steps
to 4000 for the baseline model, increasing it to
6000 and 8000 when adding lexical shortcuts and
feature-fusion, respectively, so as to accommodate
the increase in parameter size.

We also evaluate the effect of lexical short-
cuts on the larger transformer-BIG model, limiting
this set of experiments to EN→DE due to com-
putational constraints. Here, the baseline model
employs 16 attention heads, with attention, em-
bedding, and feed-forward dimensions doubled to
1024, 1024, and 4096. Warm-up period for all big
models is 16,000 steps. For our probing experi-
ments, the classifiers used are simple feed-forward
networks with a single hidden layer consisting of
512 units, dropout (Srivastava et al., 2014) with p
= 0.5, and a ReLU non-linearity. In all presented
experiments, we employ beam search during de-
coding, with beam size set to 16.

Model # Parameters Words / sec.

transformer-BASE 65,166K 29,698

+ lexical shortcuts 71,470K 26,423

+ feature-fusion 84,053K 23,601

transformer-BIG 218,413K 10,215

+ feature-fusion 293,935K 6,769

Table 5: Model size and training speed of the compared
transformer variants.

All models are trained concurrently on four
Nvidia P100 Tesla GPUs using synchronous data
parallelization. Delayed optimization (Saunders
et al., 2018) is employed to simulate batch sizes
of 25,000 tokens, to be consistent with (Vaswani
et al., 2017). Each transformer-BASE model

is trained for a total of 150,000 updates, while
our transformer-BIG experiments are stopped af-
ter 300,000 updates. Validation is performed ev-
ery 4000 steps, as is check-pointing. Training
base models takes ∼43 hours, while the addition
of shortcut connections increases training time up
to∼46 hours (∼50 hours with feature-fusion). Ta-
ble 5 details the differences in parameter size and
training speed for the different transformer config-
urations. Parameters are given in thousands, while
speed is averaged over the entire training duration.

Validation-BLEU is calculated using multi-
bleu-detok.pl6 on a reference which we pre- and
post-process following the same steps as for the
models’ inputs and outputs. All reported test-
BLEU scores were obtained by averaging the final
5 checkpoints for transformer-BASE and final 16
for transformer-BIG.

A.2 Data pre-processing

We tokenize, clean, and truecase each training cor-
pus using scripts from the Moses toolkit7, and ap-
ply byte-pair encoding (Sennrich et al., 2015) to
counteract the open vocabulary issue. Cleaning is
skipped for validation and test sets. For EN↔DE
and EN→RU we limit the number of BPE merge
operations to 32,000 and set the vocabulary thresh-
old to 50. For EN→CS and EN→FI, the num-
ber of merge operations is set to 89,500 with a
vocabulary threshold of 50, following (Haddow
et al., 2018)8. In each case, the BPE vocabulary
is learned jointly over the source and target lan-
guage, which necessitated an additional transliter-
ation step for the pre-processing of Russian data9.

A.3 Probing studies

Cosine similarity scores between the embedding
layer and each successive layer in transformer-
BASE and its variant equipped with lexical short-
cuts are summarized in Figures 6-7.

For our fine-grained probing studies, we eval-
uated classification accuracy conditioned of part-
of-speech tags and sub-word frequencies. For the
former, we first parse our test-sets with TreeTag-

6https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu-detok.perl

7https://github.com/moses-smt/
mosesdecoder

8We do not use synthetic data, which makes our results
not directly comparable to theirs.

9We used ‘Lingua Translit’ for this purpose: https://
metacpan.org/release/Lingua-Translit
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ger (Schmid, 1999), projecting tags onto the con-
stituent sub-words of each annotated word. For
frequency-based evaluation, we divide sub-words
into ten equally-sized frequency bins, with bin 1
containing the least frequent sub-words and bin
10 containing the most frequent ones. We do
not observe any immediately obvious, significant
effects of either POS or frequency on the reten-
tion of lexical features. While classification accu-
racy is notably low for infrequent sub-words, this
can be attributed to the limited occurrence of the
corresponding transformer states in the classifier’s
training data. Evaluation for EN→DE models is
done on newstest2014, while newstest2017 is used
for EN→RU models. Figures 8-15 present results
for the frequency-based classification. Accuracy
scores conditioned on POS tags are visualized in
Figures 16-23.

Figure 6: Cosine similarity measured on transformer-
BASE for EN→DE (newstest2014).

Figure 7: Cosine similarity measured on transformer-
BASE for EN→RU (newstest2017).

We also investigated the activation patterns of
the lexical shortcut gates. However, despite their
essential status for the successful training of trans-
former variants equipped with lexical connections,
we were unable to discern any distinct patterns
in the activations of the individual gates, which

tend to prioritize lexical and hidden features to
an equal degree regardless of training progress or
(sub-)word characteristics.
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Figure 8: Frequency-based classification accuracy on
states from the EN→DE encoder.

Figure 9: Frequency-based classification accuracy on
states from the EN→DE encoder + lexical shortcuts.

Figure 10: Frequency-based classification accuracy on
states from the EN→DE decoder.

Figure 11: Frequency-based classification accuracy on
states from the EN→DE decoder + lexical shortcuts.

Figure 12: Frequency-based classification accuracy on
states from the EN→RU encoder.

Figure 13: Frequency-based classification accuracy on
states from the EN→RU encoder + lexical shortcuts.

Figure 14: Frequency-based classification accuracy on
states from the EN→RU decoder.

Figure 15: Frequency-based classification accuracy on
states from the EN→RU decoder + lexical shortcuts.
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Figure 16: POS-based classification accuracy on states
from the EN→DE encoder.

Figure 17: POS-based classification accuracy on states
from the EN→DE encoder + lexical shortcuts.

Figure 18: POS-based classification accuracy on states
from the EN→DE decoder.

Figure 19: POS-based classification accuracy on states
from the EN→DE decoder + lexical shortcuts.

Figure 20: POS-based classification accuracy on states
from the EN→RU encoder.

Figure 21: POS-based classification accuracy on states
from the EN→RU encoder + lexical shortcuts.

Figure 22: POS-based classification accuracy on states
from the EN→RU decoder.

Figure 23: POS-based classification accuracy on states
from the EN→RU decoder + lexical shortcuts.
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Abstract

This paper presents a high-quality multilingual
dataset for the documentation domain to ad-
vance research on localization of structured
text. Unlike widely-used datasets for transla-
tion of plain text, we collect XML-structured
parallel text segments from the online doc-
umentation for an enterprise software plat-
form. These Web pages have been profession-
ally translated from English into 16 languages
and maintained by domain experts, and around
100,000 text segments are available for each
language pair. We build and evaluate transla-
tion models for seven target languages from
English, with several different copy mecha-
nisms and an XML-constrained beam search.
We also experiment with a non-English pair
to show that our dataset has the potential to
explicitly enable 17 × 16 translation settings.
Our experiments show that learning to trans-
late with the XML tags improves translation
accuracy, and the beam search accurately gen-
erates XML structures. We also discuss trade-
offs of using the copy mechanisms by focusing
on translation of numerical words and named
entities. We further provide a detailed human
analysis of gaps between the model output
and human translations for real-world applica-
tions, including suitability for post-editing.

1 Introduction

Machine translation is a fundamental research
area in the field of natural language processing
(NLP). To build a machine learning-based trans-
lation system, we usually need a large amount
of bilingually-aligned text segments. Exam-
ples of widely-used datasets are those included
in WMT (Bojar et al., 2018) and LDC1, while
new evaluation datasets are being actively cre-
ated (Michel and Neubig, 2018; Bawden et al.,

∗Now at Google Brain.
1https://www.ldc.upenn.edu/

- Example (a)
English:
You can use this report on your Community Management Home 
dashboard or in <ph>Community Workspaces</ph> under 
<menucascade><uicontrol>Dashboards</uicontrol><uicontrol>Home
</uicontrol></menucascade>.
Japanese:
このレポートは、 [コミュニティ管理 ] のホームのダッシュボード、または
<ph>コミュニティワークスペース </ph>の 
<menucascade><uicontrol>[ダッシュボード ]</uicontrol>
<uicontrol>[ホーム]</uicontrol></menucascade> で使用できます。

- Example (b)
English:
Results with <b>both</b><i>beach</i> and <i>house</i> in the 
searchable fields of the record.
Japanese:
レコードの検索可能な項目に  <i>beach</i> と <i>house</i> の
<b>両方</b>が含まれている結果。

- Example (c)
English:
You can only predefine this field to an email address. You can predefine 
it using either T (used to define email addresses) or To Recipients (used 
to define contact, lead, and user IDs).
Japanese:
この項目はメールアドレスに対してのみ事前に定義できます。
この項目は [宛先] (メールアドレスを定義するために使用 ) または [宛
先受信者] (取引先責任者、リード、ユーザ  ID を定義するために使用 ) 
のいずれかを使用して事前に定義できます。

Figure 1: English-Japanese examples in our dataset.

2018; Müller et al., 2018). These existing datasets
have mainly focused on translating plain text.

On the other hand, text data, especially on the
Web, is not always stored as plain text, but of-
ten wrapped with markup languages to incorpo-
rate document structure and metadata such as for-
matting information. Many companies and soft-
ware platforms provide online help as Web doc-
uments, often translated into different languages
to deliver useful information to people in different
countries. Translating such Web-structured text is
a major component of the process by which com-
panies localize their software or services for new
markets, and human professionals typically per-
form the translation with the help of a translation
memory (Silvestre Baquero and Mitkov, 2017) to
increase efficiency and maintain consistent termi-
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nology. Explicitly handling such structured text
can help bring the benefits of state-of-the-art ma-
chine translation models to additional real-world
applications. For example, structure-sensitive ma-
chine translation models may help human transla-
tors accelerate the localization process.

To encourage and advance research on transla-
tion of structured text, we collect parallel text seg-
ments from the public online documentation of a
major enterprise software platform, while preserv-
ing the original XML structures.

In experiments, we provide baseline results for
seven translation pairs from English, and one non-
English pair. We use standard neural machine
translation (NMT) models, and additionally pro-
pose an XML-constrained beam search and sev-
eral discrete copy mechanisms to provide solid
baselines for our new dataset. The constrained
beam search contributes to accurately generating
source-conditioned XML structures. Besides the
widely-used BLEU (Papineni et al., 2002) scores,
we also investigate more focused evaluation met-
rics to measure the effectiveness of our proposed
methods. In particular, we discuss trade-offs of
using the copy mechanisms by focusing on trans-
lation of named entities and numerical words. We
further report detailed human evaluation and anal-
ysis to understand what is already achieved and
what needs to be improved for the purpose of help-
ing the human translators (a post-editing context).
As our dataset represents a single, well-defined
domain, it can also serve as a corpus for domain
adaptation research (either as a source or target
domain). We will release our dataset publicly, and
discuss potential for future expansion in Section 6.

2 Collecting Data from Online Help

This section describes how we constructed our
new dataset for XML-structured text translation.

Why high quality? We start from the publicly-
available online help of a major international
enterprise software-as-a-service (SaaS) platform.
The software is provided in many different lan-
guages, and its multilingual online documentation
has been localized and maintained for 15 years
by the same localization service provider and in-
house localization program managers. Since the
beginning they have been storing translations in a
translation memory (i.e. computer-assisted trans-
lation tool) to increase quality and terminology
consistency. The documentation makes frequent

use of structured formatting (using XML) to con-
vey information to readers, so the translators have
aimed to ensure consistency of formatting and
markup structure, not just text content, between
languages.

How many languages? The web documenta-
tion currently covers 16 non-English languages
translated from English. These 16 languages
are Brazilian Portuguese, Danish, Dutch, Finnish,
French, German, Italian, Japanese, Korean, Mexi-
can Spanish, Norwegian, Russian, Simplified Chi-
nese, Spanish, Swedish, and Traditional Chinese.
In practice, the human translation has been done
from English to the other languages, but all the
languages could be potentially considered as both
source and target because they contain the same
tagging structure.

2.1 Bilingual Web Page Alignments

In this paper, we focus on each language pair sep-
arately, as an initial construction of our dataset.
Each page of the online documentation in the dif-
ferent languages is already aligned in the follow-
ing two ways:
– first, the same page has the same file
name between languages; for example,
if we have a page about “WMT”, there
would be /English/wmt.xml and
/Japanese/wmt.xml, and
– second, most of the high-level XML elements
are already aligned, because the original English
files have been translated by preserving the same
XML structures as much as possible in the local-
ization process, to show the same content with the
same formatting. Figure 2 shows a typical pair of
files and the alignment of their high-level XML el-
ements.

Our dataset contains about 7,000 pairs of XML
files for each language pair; for example, there are
7,336 aligned files for English-{French, German,
Japanese}, 7,160 for English-{Finnish, Russian},
and 7,927 for Finnish-Japanese.2

2.2 Extracting Parallel Text Segments

XML parsing and alignment For each lan-
guage pair, we extract parallel text segments from
XML structures. We use the etree module in
a Python library called lxml3 to process XML

2Some documents are not present, or not aligned, in all
languages.

3https://lxml.de/
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Figure 2: An aligned pair of English and Japanese XML files.

strings in the XML files. Since the XML elements
are well formed and translators keep the same tag-
ging structure as much as their languages allow
it, as described in Section 2.1, we first linearize
an XML-parsed file into a sequence of XML ele-
ments. We then use a pairwise sequence alignment
algorithm for each bilingually-aligned file, based
on XML tag matching. As a result, we have a set
of aligned XML elements for the language pair.

Tag categorization Next, we manually define
which XML elements should be translated, based
on the following three categories:
– Translatable:
A translatable tag (e.g. p, xref, note) requires
us to translate text inside the tag, and we extract
translation pairs from this category. In general,
the translatable tags correspond to standalone text,
and are thus easy to align in the sequence align-
ment step.
– Transparent:
By contrast, a transparent tag (e.g. b, ph) is a for-
matting directive embedded as a child element in a
translatable tag, and is not always well aligned due
to grammatical differences among languages. We
keep the transparent tags embedded in the translat-
able tags.
– Untranslatable:
In the case of untranslatable tags (e.g. sup), we
remove the elements. The complete list of tag
categorizations can be found in the supplementary
material.

Text alignment Figure 3 shows how to extract
parallel text segments based on the tag categoriza-
tion. There are three aligned translatable tags, and
they result in three separate translation pairs. The
note tag is translatable, so the entire element is

This is an <xref>international conference</xref> called <b>WMT</b>.
これは <b>WMT</b> という<xref>国際会議</xref>です。

international conference
国際会議

It is held for machine translation.
機械翻訳のために開催されます。

<p>This is an <xref>international conference</xref> 
called <b>WMT</b>. <note>It is held for machine 
translation.</note></p>

<p>これは  <b>WMT</b> という<xref>国際会議
</xref>です。<note>機械翻訳のために開催されま
す。</note></p>

En

Ja

Figure 3: Extracting parallel text segments from
aligned XML elements.

removed when extracting the translation pair of the
p tag. However, we do not remove nested trans-
latable tags (like the xref tag in this figure) when
their tail4 has text, to avoid missing phrases within
sentences. Next, we remove the root tag from
each translation pair, because the correspondence
is obvious. We also remove fine-grained informa-
tion such as attributes in the XML tags for the
dataset; from the viewpoint of real-world usage,
we can recover (or copy) the missing information
as a post-processing step. As a result of this pro-
cess, a translation pair can consist of multiple sen-
tences as shown in Example (c) of Figure 1. We do
not split them into single sentences, considering
a recent trend of context-sensitive machine trans-
lation (Bawden et al., 2018; Müller et al., 2018;
Zhang et al., 2018; Miculicich et al., 2018). One
can use split sentences for training a model, but an
important note is that there is no guarantee that all
the internal sentences are perfectly aligned. We
note that this structure-based alignment process
means we do not rely on statistical alignment mod-
els to construct our parallel datasets.

4For example, the tail of the xref tag in the English ex-
ample corresponds to the word “called.”
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Language pair Training data Aligned files
English-

Dutch 100,756 7,160
Finnish 99,759 7,160
French 103,533 7,336
German 103,247 7,336
Japanese 101,480 7,336
Russian 100,332 7,160
Simplified Chinese 99,021 7,160

Finnish-Japanese 101,527 7,927

Table 1: The number of the translation examples in the
training data used in our experiments.

Filtering We only keep translation pairs whose
XML tag sets are consistent in both language
sides, but we do not constrain the order of the
tags to allow grammatical differences that result
in tag reordering. We remove duplicate translation
pairs based on exact matching, and separate two
sets of 2,000 examples each for development and
test sets. There are many possible experimental
settings, and in this paper we report experimental
results for seven English-based pairs, English-to-
{Dutch, Finnish, French, German, Japanese, Rus-
sian, Simplified Chinese}, and one non-English
pair, Finnish-to-Japanese. The dataset thus pro-
vides opportunities to focus on arbitrary pairs of
the 17 languages. For each of the possible pairs,
the number of training examples (aligned seg-
ments) is around 100,000.

2.3 Detailed Dataset Statistics
Table 1 and Figure 4, 5, 6 show more details about
the dataset statistics. We take our English-French
dataset to show some detailed statistics, but the
others also have the consistent statistics because
all the pairs are grounded in the same English files.

Text lengths Due to the XML tag-based extrac-
tion, our dataset includes word- and phrase-level
translations as well as sentence- and paragraph-
level translations, and we can see in Figure 4 that
there are many short text segments. This is, for ex-
ample, different from the statistics of the widely-
used News Commentary dataset. The text length
is defined based on the number of subword tokens,
following our experimental setting described be-
low.

Sentence counts Another characteristic of our
dataset is that the translation pairs can consist of
multiple sentences, and Figure 5 shows the statis-
tics of the number of English sentences in the
English-French translation pairs. The number of
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Figure 6: The statistics of the number of XML tags
inside the English-French translation pairs.

sentences is determined with the sentence split-
ter from the Stanford CoreNLP toolkit (Manning
et al., 2014).

XML-tag counts As we remove the root tags
from the XML elements in our dataset construc-
tion process, not all the text segments have XML
tags inside them. More concretely, about 25.5%
of the translation pairs have at least one internal
XML tag, and Figure 6 shows the statistics. For
example, Example (a) in Figure 1 has four XML
tags, and Example (b) has three.

2.4 Evaluation Metrics

We consider multiple evaluation metrics for the
new dataset. For evaluation, we use the true-cased
and detokenized text, because our dataset is de-
signed for an end-user, raw-document setting.

BLEU without XML We include the most
widely-used metric, BLEU, without XML tags.
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That is, we remove all the XML tags covered by
our dataset and then evaluate BLEU. The metric is
compatible with the case where we use the dataset
for plain text translation without XML. To com-
pute the BLEU scores, we use language-specific
tokenizers; for example, we use Kytea (Neubig
et al., 2011) for Simplified Chinese and Japanese,
and the Moses (Koehn et al., 2007) tokenizer for
English, Dutch, Finnish, French, German, and
Russian.

Named entities and numbers The online help
frequently mentions named entities such as prod-
uct names and numbers, and accurate translations
of them are crucial for users. Frequently, they are
not translated but simply copied as English forms.
We evaluate corpus-level precision and recall for
translation of the named entities and numerical to-
kens. To extract the named entities and numerical
words, we use a rule-based regex script, based on
our manual analysis on our dataset. The numerical
words are extracted by

“[0-9.,\’/:]*[0-9]+[0-9.,\’/:]*”.

The named entities are defined as

“[.,\’/:a-zA-Z$]*[A-Z]+[.,\’/:a-zA-Z$]*”

appearing in a non-alphabetic language, Japanese,
because in our dataset we observe that the alpha-
betic words in such non-alphabetic languages cor-
respond to product names, country names, func-
tion names, etc.

XML accuracy, matching, and BLEU For
each output text segment, we use the etree mod-
ule to check if it is a valid XML structure by wrap-
ping it with a dummy root node. Then the XML
accuracy score is the number of the valid outputs,
divided by the number of the total evaluation ex-
amples. We further evaluate how many transla-
tion outputs have exactly the same XML structures
as their corresponding reference text (an XML
matching score). If a translation output matches its
reference XML structure, both the translation and
reference are split by the XML tags. We then eval-
uate corpus-level BLEU by comparing each split
segment one by one. If an output does not match
its reference XML structure, the output is treated
as empty to penalize the irrelevant outputs.

3 Machine Translation with XML Tags

We use NMT models to provide competitive base-
lines for our dataset. This section first describes

how to handle our dataset with a sequential NMT
model. We then propose a simple constrained
beam search for accurately generating XML struc-
tures conditioned by source information. We
further incorporate multiple copy mechanisms to
strengthen the baselines.

3.1 Sequence-to-Sequence NMT
The task in our dataset is to translate text with
structured information, and therefore we consider
using syntax-based NMT models. A possible ap-
proach is incorporating parse trees or parsing al-
gorithms into NMT models (Eriguchi et al., 2016,
2017), and another is using sequential models
on linearized structures (Aharoni and Goldberg,
2017). We employ the latter approach to incorpo-
rate source-side and target-side XML structures,
and note that this allows using standard sequence-
to-sequence models without modification.

We have a set of parallel text segments for a lan-
guage pair (X ,Y), and the task is translating a text
segment x ∈ X to another y ∈ Y . Each x in the
dataset is represented with a sequence of tokens
including some XML tags: x = [x1, x2, . . . , xN ],
where N is the length of the sequence. Its corre-
sponding reference y is also represented with a se-
quence of tokens: y = [y1, y2, . . . , yM ], where M
is the sequence length. Any tokenization method
can be used, except that the XML tags should be
individual tokens.

To learn translation from x to y, we use a trans-
former model (Vaswani et al., 2017). In our K-
layer transformer model, each source token xi in
the k-th (k ∈ [1,K]) layer is represented with

hxk(xi) = f(i, hxk−1) ∈ Rd, (1)

where i is the position information, d is the
dimensionality of the model, and hxk−1 =
[hxk−1(x1), h

x
k−1(x2), . . . , h

x
k−1(xN )] is the se-

quence of the vector representations in the pre-
vious layer. hx0(xi) is computed as hx0(xi) =√
d · v(xi) + e(i), where v(xi) ∈ Rd is a token

embedding, and e(i) ∈ Rd is a positional embed-
ding.

Each target-side token yj is also represented in
a similar way:

hyk(yj) = g(j, hxk, h
y
k−1) ∈ Rd, (2)

where only [hyk−1(y1), h
y
k−1(y2), . . . , h

y
k−1(yj)] is

used from hyk−1. In the same way as the source-
side embeddings, hy0(yj) is computed as hy0(yj) =
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√
d · v(yj) + e(j). For more details about the pa-

rameterized functions f and g, and the positional
embeddings, please refer to Vaswani et al. (2017).

Then hyK(yj) is used to predict the next to-
ken w by a softmax layer: pg(w|x, y≤j) =
softmax(WhyK(yj) + b), where W ∈ R|V|×d is
a weight matrix, b ∈ R|V| is a bias vector, and V
is the vocabulary. The loss function is defined as
follows:

L(x, y) = −
M−1∑

j=1

log pg(w = yj+1|x, y≤j), (3)

where we assume that y1 is a special token BOS

to indicate the beginning of the sequence, and yM
is an end-of-sequence token EOS. Following Inan
et al. (2017) and Press and Wolf (2017), we useW
as an embedding matrix, and we share the single
vocabulary V for both X and Y . That is, each of
v(xi) or v(yj) is equivalent to a row vector in W .

3.2 XML-Constrained Beam Search

At test time, standard sequence-to-sequence gen-
eration methods do not always output valid XML
structures, and even if an output is a valid XML
structure, it does not always match the tag set
of its source-side XML structure. To generate
source-conditioned XML structures as accurately
as possible, we propose a simple constrained beam
search method. We add three constrains to a stan-
dard beam search method. First, we keep track of
possible tags based on the source input, and allow
the model to open only a tag that is present in the
input and has not yet been covered. Second, we
keep track of the most recently opened tag, and al-
low the model to close the tag. Third, we do not
allow the model to output EOS before opening and
closing all the tags used in the source sentence.
Algorithm 1 in the supplementary material shows
a comprehensive pseudo code.

3.3 Reformulating a Pointer Mechanism

We consider how to further improve our NMT sys-
tem, by using multiple discrete copy mechanisms.
Since our dataset is based on XML-structured
technical documents, we want our NMT system
to copy (A) relevant text segments in the target
language if there are very similar segments in the
training data, and (B) named entities (e.g. prod-
uct names), XML tags, and numbers directly from
the source. For the copy mechanisms, we follow

the general idea of the pointer used in See et al.
(2017).

For the sake of discrete decisions, we re-
formulate the pointer method. Following the
previous work, we have a sequence of tokens
which are targets of our pointer method: c =
[c(z1), c(z2), . . . , c(zU )], where c(zi) ∈ Rd is a
vector representation of the i-th token zi, and U is
the sequence length. As in Section 3.1, we have
hyK(yj) to predict the (j + 1)-th token. Before
defining an attention mechanism between hyK(yj)
and c, we append a parameterized vector c(z0) =
c′ to c. We expect c′ to be responsible for decisions
of “not copying” tokens, and the idea is inspired
by adding a “null” token in natural language infer-
ence (Parikh et al., 2016).

We then define attention scores between
hyK(yj) and the expanded c: a(j, i) =
score(hyK(yj), ci, c), where the normalized scor-
ing function score is implemented as a single-
head attention model proposed in Vaswani et al.
(2017). If the next reference token yj+1 is not in-
cluded in the copy target sequence, the loss func-
tion is defined as follows:

L(x, y≤j , c) = − log a(j, 0), (4)

and otherwise the loss function is as follows:

L(x, y≤j , c) = − log
∑

i, s.t. zi=yj+1

a(j, i), (5)

and then the total loss function is L(x, y) +∑M−1
j=1 L(x, y≤j , c). The loss function solely re-

lies on the cross-entropy loss for single probabil-
ity distributions, whereas the pointer mechanism
in See et al. (2017) defines the cross-entropy loss
for weighted summation of multiple distributions.

At test time, we employ a discrete decision
strategy for copying tokens or not. More con-
cretely, the output distribution is computed as

δ · pg(w|x, y≤j) + (1− δ) · pc(w|x, y≤j), (6)

where pc(w|x, y≤j) is computed by aggregating
[a(j, 1), . . . , a(j, U)]. δ is 1 if a(j, 0) is the largest
among [a(j, 0), . . . , a(j, U)], and otherwise δ is 0.

Copy from Retrieved Translation Pairs Gu
et al. (2018) presented a retrieval-based NMT
model, based on the idea of translation mem-
ory (Silvestre Baquero and Mitkov, 2017). Fol-
lowing Gu et al. (2018), we retrieve the most rele-
vant translation pair (x′, y′) for each source text x
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in the dataset. In this case, we set [z1, . . . , zU ] =
[y′2, . . . , y

′
M ′ ] and c = [hyK(y′1), . . . , h

y
K(y′M ′−1)],

where M ′ is the length of y′, and each vector in
c is computed by the same transformer model in
Section 3.1. For this retrieval copy mechanism,
we denote pc and δ as pr and δr, respectively.

Copy from Source Text To allow our NMT
model to directly copy certain tokens from the
source text x when necessary, we follow See et al.
(2017). We set [z1, . . . , zU ] = [x1, . . . , xN ] and
c = [hxK(x1), . . . , h

x
K(xN )], and we denote pc and

δ as ps and δs, respectively.
We have the single vocabulary V to handle all

the tokens in both languages X and Y , and we can
combine the three output distributions at each time
step in the text generation process:

(1− δs)ps + δs(δrpg + (1− δr)pr). (7)

The copy mechanism is similar to the multi-
pointer-generator method in McCann et al. (2018),
but our method employs rule-based discrete deci-
sions. Equation (7) first decides whether the NMT
model copies a source token. If not, our method
then decides whether the model copies a retrieved
token.

4 Experimental Settings

This section describes our experimental settings.
We will release the preprocessing scripts and the
training code (implemented with PyTorch) upon
publication. More details are described in the sup-
plementary material.

4.1 Tokenization and Detokenization

We used the SentencePiece toolkit (Kudo and
Richardson, 2018) for sub-word tokenization and
detokenization for the NMT outputs.

Without XML tags If we remove all the XML
tags from our dataset, the task becomes a plain MT
task. We carried out our baseline experiments for
the plain text translation task, and for each lan-
guage pair we trained a joint SentencePiece model
to obtain its shared sub-word vocabulary. For
training each NMT model, we used training ex-
amples whose maximum token length is 100.

With XML tags For our XML-based exper-
iments, we also trained a joint SentencePiece
model for each language pair, where one impor-
tant note is that all the XML tags are treated as

user-defined special tokens in the toolkit. This al-
lows us to easily implement the XML-constrained
beam search. We also set the three tokens &amp;,
&lt;, and &gt; as special tokens.

4.2 Model Configurations
We implemented the transformer model withK =
6 and d = 256 as a competitive baseline model.
We trained three models for each language pair:

“OT” (trained only with text without XML),

“X” (trained with XML), and

“Xrs” (XML and the copy mechanisms).

For each setting, we tuned the model on the de-
velopment set and selected the best-performing
model in terms of BLEU scores without XML, to
make the tuning process consistent across all the
settings.

5 Results

Table 2 and 4 show the detailed results on our
development set, and for the Xrs model, we also
show the results (X(T)

rs ) on our test set to show our
baseline scores for future comparisons. Simplified
Chinese is written as “Chinese” in this section.

5.1 Evaluation without XML
We first focus on the two evaluation metrics:
BLEU without XML, and named entities and
numbers (NE&NUM). In Table 2, a general ob-
servation from the comparison of OT and X is that
including segment-internal XML tags tends to im-
prove the BLEU scores. This is not surprising be-
cause the XML tags provide information about ex-
plicit or implicit alignments of phrases. However,
the BLEU score of the English-to-Finnish task sig-
nificantly drops, which indicates that for some lan-
guages it is not easy to handle tags within the text.

Another observation is that Xrs achieves the
best BLEU scores, except for English-to-French.
In our experiments, we have found that the im-
provement of BLEU comes from the retrieval
method, but it degrades the NE&NUM scores, es-
pecially the precision. Then copying from the
source tends to recover the NE&NUM scores, es-
pecially for the recall. We have also observed that
using beam search, which improves BLEU scores,
degrades the NE&NUM scores. A lesson learned
from these results is that work to improve BLEU
scores can sometimes lead to degradation of other
important metrics.
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NE&NUM NE&NUM NE&NUM NE&NUM
BLEU Precision, Recall BLEU Precision, Recall BLEU Precision, Recall BLEU Precision, Recall

English-to-Japanese English-to-Chinese English-to-French English-to-German
OT 61.61 89.84, 89.84 58.06 94.91, 93.62 64.07 88.64, 85.64 50.51 88.40, 86.55
X 62.00 92.54, 90.51 58.61 94.56, 93.44 63.98 87.48, 86.98 50.96 88.79, 86.43
Xrs 64.25 91.64, 90.98 60.05 94.44, 94.27 63.51 88.42, 85.64 52.91 88.00, 86.78
X(T)

rs 64.34 93.39, 91.75 59.86 93.49, 93.11 65.04 88.98, 88.31 52.69 88.22, 88.45
English-to-Finnish English-to-Dutch English-to-Russian Finnish-to-Japanese

OT 43.97 87.58, 84.99 59.54 90.89, 88.59 43.28 89.67, 85.26 54.55 90.45, 89.69
X 42.84 83.17, 85.55 60.18 90.41, 90.26 43.44 87.96, 88.35 54.69 93.47, 89.29
Xrs 45.10 86.41, 86.49 60.58 88.76, 90.11 46.73 88.65, 89.55 57.92 93.02, 89.03
X(T)

rs 45.71 87.38, 88.91 61.01 87.66, 90.84 46.44 86.90, 89.59 57.06 93.39, 89.38

Table 2: Automatic evaluation results without XML on the development set, and the test set for Xrs.

Training data Our dev set newstest2014
Our dataset (no XML) 64.07 7.35
w/ 10K news 63.66 14.02
w/ 20K news 64.31 16.30
Only 10K news 0.90 2.66
Only 20K news 2.35 6.72

Table 3: Domain adaptation results (BLEU). The mod-
els are tuned on our development set.

Compatibility with other domains Our dataset
is limited to the domain of online help, but we can
use it as a seed corpus for domain adaptation if our
dataset contains enough information to learn basic
grammar translation. We conducted a simple do-
main adaptation experiment in English-to-French
by adding 10,000 or 20,000 training examples of
the widely-used News Commentary corpus. We
used the newstest2014 dataset for evaluation in
the news domain. From Table 3, we can see that
a small amount of the news-domain data signif-
icantly improves the target-domain score, and we
expect that our dataset plays a good role in domain
adaptation for all the covered 17 languages.

5.2 Evaluation with XML

Table 4 shows the evaluation results with XML.
Again, we can see that Xrs performs the best in
terms of the XML-based BLEU scores, but the ab-
solute values are lower than those in Table 2 due to
the more rigid segment-by-segment comparisons.
This table also shows that the XML accuracy and
matching scores are higher than 99% in most of
the cases. Ideally, the scores could be 100%, but
in reality, we set the maximum length of the trans-
lations; as a result, sometimes the model cannot
find a good path within the length limitation. Ta-
ble 5 shows how effective our method is, based on
the English-to-Japanese result, and we observed
the consistent trend across the different languages.

These results show that our method can accurately
generate the relevant XML structures.

How to recover XML attributes? As described
in Section 2.2, we removed all the attributes from
the original XML elements for simplicity. How-
ever, we need to recover the attributes when we
use our NMT model in the real-world application.
We consider recovering the XML attributes by the
copy mechanism from the source; that is, we can
copy the attributes from the XML elements in the
original source text, if the XML tags are copied
from the source. Table 6 summarizes how our
model generates the XML tags on the English-
Japanese development set. We can see in the ta-
ble that most of the XML tags are actually copied
from the source.

Figure 7 shows an example of the output of the
Xrs model. For this visualization, we merged all
the subword tokens to form the standard words.
The tokens in blue are explicitly copied from the
source, and we can see that the time expression
“12:57 AM” and the XML tags are copied as ex-
pected. The output also copies some relevant text
segments (in red) from the retrieved translation.
Like this, we can explicitly know which words are
copied from which parts, by using our multiple
discrete copy mechanisms. One surprising obser-
vation is that the underlined phrase “for example”
is missing in the translation result, even though the
BLEU scores are higher than those on other stan-
dard public datasets. This is a typical error called
under translation. Therefore, no matter how large
the BLEU scores are, we definitely need human
corrections (or post editing) before providing the
translation results to customers.
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XML XML XML XML
BLEU Acc., Match BLEU Acc., Match BLEU Acc., Match BLEU Acc., Match
English-to-Japanese English-to-Chinese English-to-French English-to-German

X 59.77 99.80, 99.55 57.01 99.95, 99.70 61.81 99.60, 99.30 48.91 99.85, 99.25
Xrs 62.06 99.80, 99.40 58.43 99.90, 99.60 61.87 99.80, 99.50 51.16 99.75, 99.30
X(T)

rs 62.27 99.95, 99.60 57.92 99.75, 99.40 63.19 99.80, 99.35 50.47 99.80, 99.20
English-to-Finnish English-to-Dutch English-to-Russian Finnish-to-Japanese

X 41.98 99.65, 99.25 57.86 99.60, 99.25 40.72 99.60, 98.95 52.14 99.90, 99.30
Xrs 43.57 99.50, 99.25 58.51 99.70, 99.30 44.42 99.75, 99.25 55.20 99.65, 98.90
X(T)

rs 44.22 99.90, 99.65 60.19 99.90, 99.85 44.25 99.80, 99.35 54.05 99.60, 98.75

Table 4: Automatic evaluation results with XML on the development set, and the test set for Xrs.

- Source to be translated (English)
<xref>View a single feed update</xref> by clicking the timestamp below the update, for example, <uicontrol>Yesterday at 12:57 AM</uicontrol>.

- Retrieved source (English)
In a feed, click the timestamp that appears below the post, for example, <uicontrol>Yesterday at 12:57 AM</uicontrol>.
- Retrieved reference (Japanese)
フィード内で、たとえば、<uicontrol>[昨日の 12:57 AM]</uicontrol> のように、投稿の下に表示されるタイムスタンプをクリックします。

- Output of the X𝑟𝑠 model (Japanese)
<uicontrol> [昨日の 12:57 AM] </uicontrol> のように、更新の下にタイムスタンプをクリックして、 <xref> 1 つのフィード更新を表示</xref>します。

Figure 7: An example of the translation results of the Xrs model on the English-Japanese test set.

XML
BLEU Acc., Match

w/ XML constraint 59.77 99.80, 99.55
w/o XML constraint 58.02 98.70, 98.10

Table 5: Effects of the XML-constrained beam search.

Count
Copied from source text 1,638
Copied from retrieved translation 24
Generated from vocabulary 11

Table 6: Statistics of the generated XML tags.

5.3 Human Evaluation by Professionals
One important application of our NMT models is
to help human translators; translating online help
has to be precise, and thus any incomplete trans-
lations need post-editing. We asked professional
translators at a vendor to evaluate our test set
results (with XML) for the English-to-{Finnish,
French, German, Japanese} tasks. For each lan-
guage pair, we randomly selected 500 test exam-
ples, and every example is given an integer score
in [1, 4]. A translation result is rated as “4” if it can
be used without any modifications, “3” if it needs
simple post-edits, “2” if it needs more post-edits
but is better than nothing, and “1” if using it is not
better than translating from scratch.

Figure 8 shows the summary of the evaluation
to see the ratio of each score, and the average
scores are also shown. A positive observation for
all the four languages is that more than 50% of

the translation results are evaluated as complete
or useful in post-editing. However, there are still
many low-quality translation results; for example,
around 30% of the Finnish and German results are
evaluated as useless. Moreover, the German re-
sults have fewer scores of “4”, and it took 12 hours
for the translators to evaluate the German results,
whereas it took 10 hours for the other three lan-
guages. To further make our NMT models useful
for post-editing, we have to improve the transla-
tions scored as “1”.

Detailed error analysis We also asked the
translators to note what kinds of errors exist for
each of the evaluated examples. All the errors
are classified into the six types shown in Table 7,
and each example can have multiple errors. The
“Formatting” type is our task-specific one to eval-
uate whether the XML tags are correctly inserted.
We can see that the Finnish results have signifi-
cantly more XML-formatting errors, and this re-
sult agrees with our finding that handling the XML
tags in Finnish is harder than in other languages,
as discussed in Section 5.1. It is worth further in-
vestigating such language-specific problems.

The “Accuracy” type covers major issues of
NMT, such as adding irrelevant words, skip-
ping important words, and mistranslating phrases.
As discussed in previous work (Malaviya et al.,
2018), reducing the typical errors covered by the
“Accuracy” type is crucial. We have also noticed
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[%]

 2.71         2.97       2.43          3.09

Score

Figure 8: Human evaluation results for the Xrs model.
“4” is the best score, and “1” is the worst.

Finnish French German Japanese
Accuracy 30.0 32.8 37.4 37.4
Readability 20.6 20.4 0.8 17.4
Formatting 10.6 0.0 0.8 1.0
Grammar 20.2 10.0 11.4 5.8
Structure 10.2 2.8 2.0 1.2
Terminology 12.0 3.0 2.4 0.6

Table 7: Ratio [%] of six error types.

that the NMT-specific errors would slow down the
human evaluation process, because the NMT er-
rors are different from translation errors made by
humans. The other types of errors would be re-
duced by improving language models, if we have
access to in-domain monolingual corpora.

Can MT help the localization process? In gen-
eral, it is encouraging to observe many “4” scores
in Figure 8. However, one important note is that
it takes significant amount of time for the transla-
tors to verify the NMT outputs are good enough.
That is, having better scored NMT outputs does
not necessarily lead to improving the productivity
of the translators; in other words, we need to take
into account the time for the quality verification
when we consider using our NMT system for that
purpose. Previous work has investigated the effec-
tiveness of NMT models for post-editing (Skad-
ina and Pinnis, 2017), but it has not yet been in-
vestigated whether using NMT models can im-
prove the translators’ productivity alongside the
use of a well-constructed translation memory (Sil-
vestre Baquero and Mitkov, 2017). Therefore, our
future work is investigating the effectiveness of us-
ing the NMT models in the real-world localization
process where a translation memory is available.

6 Related Work and Discussions

Automatic extraction of parallel sentences has a
long history (Varga et al., 2005), and usually sta-
tistical methods and dictionaries are used. By

contrast, our data collection solely relies on the
XML structure, because the original data have
been well structured and aligned. Recently, col-
lecting training corpora is the most important in
training NLP models, and thus it is recommended
to maintain well-aligned documents and structures
when building multilingual online services. That
will significantly contribute to the research of lan-
guage technologies.

We followed the syntax-based NMT mod-
els (Eriguchi et al., 2016, 2017; Aharoni and Gold-
berg, 2017) to handle the XML structures. One
significant difference between the syntax-based
NMT and our task is that we need to output source-
conditioned structures that are able to be parsed as
XML, whereas the syntax-based NMT models do
not always need to follow formal rules for their
output structures. In that sense, it would be in-
teresting to relate our task to source code genera-
tion (Oda et al., 2015) in future work.

Our dataset has significant potential to be fur-
ther expanded. Following the context-sensitive
translation (Bawden et al., 2018; Müller et al.,
2018; Zhang et al., 2018; Miculicich et al., 2018),
our dataset includes translations of multiple sen-
tences. However, the translatable XML tags are
separated, so the page-level global information is
missing. One promising direction is thus to create
page-level translation examples. Finally, consid-
ering the recent focus on multilingual NMT mod-
els (Johnson et al., 2017), multilingually aligning
the text will enrich our dataset.

7 Conclusion

We have presented our new dataset for XML-
structured text translation. Our dataset covers 17
languages each of which can be either source or
target of machine translation. The dataset is of
high quality because it consists of professional
translations for an online help domain. Our ex-
periments provide baseline results for the new task
by using NMT models with an XML-constrained
beam search and discrete copy mechanisms. We
further show detailed human analysis to encourage
future research focusing on how to apply machine
translation to help human translators in practice.
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Kornai, Viktor Trón, and Victor Nagy. 2005. Par-
allel corpora for medium density languages. In Pro-
ceedings of the International Conference Recent Ad-
vances in Natural Language Processing.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008.

Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei
Zhai, Jingfang Xu, Min Zhang, and Yang Liu. 2018.
Improving the Transformer Translation Model with
Document-Level Context. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 533–542.

127





Author Index

Baumann, Timo, 94
Bradbury, James, 116
Buschiazzo, Raffaella, 116

Caswell, Isaac, 34, 53
Cer, Daniel, 64
Chelba, Ciprian, 53
Currey, Anna, 24

Ding, Shuoyang, 1

Emelin, Denis, 102

Freitag, Markus, 34

Ge, Heming, 64
Georgakopoulou, Yota, 82
Graça, Miguel, 45
Grangier, David, 53
Guo, Mandy, 64

Ha, Thanh-Le, 13
Hashimoto, Kazuma, 116
Heafield, Kenneth, 24

Khadivi, Shahram, 45
Kim, Yunsu, 45
Koehn, Philipp, 1
Kurzweil, Ray, 64

Marshall, Teresa, 116
Matusov, Evgeny, 82

Ney, Hermann, 45
Niehues, Jan, 13

Pham, Ngoc-Quan, 13

Roy, Scott, 34

Saboo, Ashutosh, 94
Schamper, Julian, 45
Sennrich, Rico, 102
Socher, Richard, 116
Stevens, Keith, 64
Strope, Brian, 64
Sung, Yun-hsuan, 64

Titov, Ivan, 102
Toral, Antonio, 73

Waibel, Alexander, 13
Wilken, Patrick, 82

Xiong, Caiming, 116
Xu, Hainan, 1

Yang, Yinfei, 64

Zhang, Mike, 73

129


	Program
	Saliency-driven Word Alignment Interpretation for Neural Machine Translation
	Improving Zero-shot Translation with Language-Independent Constraints
	Incorporating Source Syntax into Transformer-Based Neural Machine Translation
	APE at Scale and Its Implications on MT Evaluation Biases
	Generalizing Back-Translation in Neural Machine Translation
	Tagged Back-Translation
	Hierarchical Document Encoder for Parallel Corpus Mining
	The Effect of Translationese in Machine Translation Test Sets
	Customizing Neural Machine Translation for Subtitling
	Integration of Dubbing Constraints into Machine Translation
	Widening the Representation Bottleneck in Neural Machine Translation with Lexical Shortcuts
	A High-Quality Multilingual Dataset for Structured Documentation Translation

