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A Dataset Construction

A.1 XML Tag Categorization
The three manually-categorized XML tags are as
follows:
– translatable {title, p, li, shortdesc, index-
term, note, section, entry, dt, dd, fn, cmd, xref,
info, stepresult, stepxmp, example, context, term,
choice, stentry, result, navtitle, linktext, postreq,
prereq, cite, chentry, sli, choption, chdesc, chop-
tionhd, chdeschd, sectiondiv, pd, pt, stepsection,
index-see, conbody, fig, body, ul},
– transparent {ph, uicontrol, b, parmname, i,
u, menucascade, image, userinput, codeph, syste-
moutput, filepath, varname, apiname},
– untranslatable {sup, codeblock}.
Among them, our pre-processed dataset has {ph,
xref, uicontrol, b, codeph, parmname, i, title,
menucascade, varname, userinput, filepath, term,
systemoutput, cite, li, ul, p, note, indexterm, u, fn}
embedded in the text as the actual XML tags.

A.2 URL Normalization
We have noticed that URLs are frequently men-
tioned in our dataset, and they are copied from one
language to another. For simplicity, we replaced
URL-like strings with placeholders. For example,
the following sentence

“http://aclweb.org/anthology/ has been
moved to https://aclanthology.coli.uni-
saarland.de/.”

is changed to

“#URL1# has been moved to #URL2#.”

by keeping the correspondence between the same
URLs in both sides of the paired languages.
The evaluation is performed with the URL-
anonymized form of the text.
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B XML-Constrained Beam Search

Algorithm 1 shows a comprehensive pseudo code
of our XML-constrained beam search. T is the
set of possible XML tag types, B is a beam size,
and L is a maximum length of the generated se-
quences. Following Oda et al. (2017), we use a
length penalty α. The proposed beam search en-
sures a valid XML structure conditioned by its
source information, unless the generated sequence
does not violate the maximum length constraint.
It should be noted that this does not always lead
to exactly the same structure as the structure of its
reference text.

C Detailed Experimental Settings

This section describes more detailed experimental
settings, corresponding to Section 4.

C.1 Tokenization by Sentencepiece

We used the SentencePiece toolkit to learn a joint
sub-word tokenizer for each language pair, and
we set the shared vocabulary size to 8,000 for
all the experiments. In the experiments without
the XML tags, the URL placeholders (#URL1#,
#URL2#, . . ., #URL9#) are registered as user-
defined special symbols when training the tokeniz-
ers. For each of the English-to-{Japanese, Sim-
plified Chinese} and Finnish-to-Japanese experi-
ments, we over-sampled English or Finnish text
for training the joint sub-word tokenizer, because
Japanese and Simplified Chinese have much more
unique characters than other alphabetic languages.

In the experiments with XML, we further added
all the XML tags (e.g. <b>, </b>) to the list
of the user-defined special symbols. We also set
the three tokens &amp;, &lt;, and &gt; as the
special tokens. When computing BLEU scores,
&amp;, &lt;, and &gt; are replaced with &, <,
and >, respectively.



C.2 Model Training
We implemented the transformer model withK =
6 and d = 256 as a competitive baseline model.
The number of the multi-head attention layer in
the transformer model is 8, and the dimensional-
ity of its internal hidden states is 1024. For more
details about the multi-head attention layer and
the internal hidden states, please refer to Vaswani
et al. (2017).

For optimization, we used Adam (Kingma and
Ba, 2015) with a modified weight decay and a co-
sine learning rate annealing (Loshchilov and Hut-
ter, 2017). The mini-batch size was set to 128, and
the weight decay coefficient was set to 1.0×10−4.
A gradient-norm clipping method was used to sta-
bilize the model training, with the clipping size of
1.0. The initial learning rate is 5.0 × 10−4, and
it is linearly increased to 1.0 × 10−3 according to
the number of iterations in the first 10 epochs of
the model training. Then, the learning rate and the
weight decay coefficient are multiplied by the fol-
lowing annealing factor:

ηi = 0.5 + 0.5 cos

(
i− 10

50− 10
π

)
, (1)

where ηi is for the i-th (i ≥ 10) epoch of the
model training, and “50” is the maximum number
of the training epochs. During the model training,
a greedy-generation BLEU score without XML is
evaluated at every half epoch by using the devel-
opment set, and the best-performing checkpoint is
used for evaluation.
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Algorithm 1 XML-constrained beam search
1: function CONSTRAINEDBEAMSEARCH(x, T , B, L, α)
2: C = [] . Candidates in the beam search
3: for i in 1 . . . B do
4: y = [BOS] . Output token sequence
5: s = 0.0 . Score
6: t = [t1, . . . , tT ] . Possible XML tag types in x
7: t′ = [] . History of opened tags
8: C.append({y, s, t, t′})
9: end for

10:
11: while max length < L and C[0].y[−1] is not EOS do
12: for i in 1 . . . B do
13: if C[i].y[−1] is EOS then
14: `i = C[i].s
15: else
16: `i = log p(w|x,C[i].y) ∈ R|V|
17: `i += C[i].s+ α
18: for τ in T do
19: if τ is not in C[i].t then
20: `i(w : <τ>) = − inf
21: end if
22:
23: ifC[i].t′ is [] or τ 6= C[i].t′[−1] then
24: `i(w : </τ>) = − inf
25: end if
26: end for
27:
28: if C[i].t is not [] or C[i].t′ is not [] then
29: `i(w : EOS) = − inf
30: end if
31: end if
32: end for
33:
34: C′ = [] . Updated candidates
35: for i in 1 . . . B do
36: wi, ji = argmax

w,j
(`1, . . . , `j , . . . , `B)

37: if C[ji].y[−1] is EOS then
38: C′.append(C[ji])
39: `ji = 0
40: continue
41: end if
42:
43: y = C[ji].y + [wi]
44: s = `ji(w : wi)
45: C′.append({y, s, C[ji].t, C[ji].t

′})
46:
47: if wi is an XML open tag then
48: C′[−1].t.remove(type of wi)
49: C′[−1].t′.append(type of wi)
50: end if
51:
52: if wi is an XML close tag then
53: C′[−1].t′.pop()
54: end if
55:
56: if the first token then
57: `all(w : wi) = − inf
58: else
59: `ji(w : wi) = − inf
60: end if
61: end for
62: C = C′

63: end while
64:
65: return C[0].y
66: end function


