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Abstract

We describe a new version of MEANT,
which participated in the metrics task of
the Second Conference on Machine Trans-
lation (WMT 2017). MEANT 2.0 uses idf-
weighted distributional ngram accuracy to
determine the phrasal similarity of seman-
tic role fillers and yields better correlations
with human judgments of translation qual-
ity than earlier versions. The improved
phrasal similarity enables a subversion of
MEANT to accurately evaluate translation
adequacy for any output language, even
languages without an automatic semantic
parser. Our results show that MEANT,
which is a non-ensemble and untrained
metric, consistently performs as well as
the top participants in previous years -
including ensemble and trained ones -
across different output languages. We also
present the timing statistics for MEANT
for better estimation of the evaluation cost.
MEANT 2.0 is open source and publicly
available.1

1 Introduction

We introduce a new version of MEANT, which
participated in evaluating MT systems for all lan-
guage pairs in the metrics task of the Second
Conference on Machine Translation (WMT 2017).
MEANT 2.0 is a non-ensemble and untrained met-
ric that only requires a monolingual corpus in the
output language to build the word embeddings and
an automatic shallow semantic parser to obtain the
predicate-argument structure to evaluate MT sys-
tems for a language pair. We have also build a
degraded subversion, MEANT 2.0 - nosrl, to eval-
uate MT systems for any output language by re-

1http://chikiu-jackie-lo.org/home/index.php/meant

moving the dependency on semantic parsers for
semantic role labeling (SRL) the reference and the
machine translations. The correlation of MEANT
with human judgments has been improved by us-
ing both inverse document frequency (idf) and dis-
tributional ngram accuracy within the phrasal sim-
ilarity calculation: the former to weight the impor-
tance of each word for better adequacy, the latter
to to account for word reordering for greater flu-
ency. Our results show that MEANT consistently
performs as well as the top participants in previous
years across different output languages, including
ensemble and trained participants. We also present
the timing statistics that show the relatively low
cost of running MEANT. This highly portable and
open source semantic MT evaluation metric is a
more accurate alternative to BLEU in evaluating
translation quality for low-resource languages.

2 The family of MEANT

MEANT and its variants (Lo et al., 2015, 2014;
Lo and Wu, 2011a) evaluate translation adequacy
by measuring the similarity of the semantic frames
and their role fillers between the human reference
and machine translations. Figure 1 illustrates the
concept of MEANT - the semantic roles and their
fillers of the reference translation match more with
those of the MT2 than with those of the MT1,
therefore MT2 is a more adequate translation than
MT1.

MEANT consistently outperforms the com-
monly used automatic MT evaluation metrics,
BLEU (Papineni et al., 2002), NIST (Doddington,
2002), METEOR (Denkowski and Lavie, 2014),
TER (Snover et al., 2006), CDER (Leusch et al.,
2006) and WER in correlation with human ade-
quacy judgment. It is relatively easy to port to
other languages. In the full version of MEANT,
it required only a monolingual corpus (for eval-
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Figure 1: Example that illustrates the concept of MEANT. The solid role alignments mean the translation
is mostly correct while the dotted role alignments mean the translation is partly correct. The semantic
roles and fillers of the reference match more with those of MT2 than those of MT1, therefore MT2 is a
more adequate translation than MT1.

uating lexical semantic similarity) and an auto-
matic semantic parser (for evaluating frame se-
mantic similarity) of the output language. In sec-
tion 3, we describe a new subversion of MEANT
that can be computed even when a semantic parser
for the output language is unavailable.

MEANT is the weighted f-scores over corre-
sponding semantic frames and role fillers in the
reference and the machine translations. MEANT
is generally computed as follows:

1. Apply a shallow semantic parser to both the
reference and machine translations.

2. Apply the maximum weighted bipartite
matching algorithm to align the semantic

frames between the reference and machine
translations according to the lexical similar-
ities of the predicates.

3. For each pair of the aligned frames, apply the
maximum weighted bipartite matching algo-
rithm to align the arguments between the ref-
erence and MT output according to the lexi-
cal similarity of role fillers.

4. Compute the weighted f-score over the
matching role labels of these aligned predi-
cates and role fillers according to the follow-
ing definitions:
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MEANT =
precision · recall

α · precision + (1− α) · recall (8)

where s(e, f) is the lexical similarity computed
using word embeddings (Mikolov et al., 2013). By
aggregating the lexical similarities, we can obtain
the phrasal similarities. ssent is the phrasal simi-
larity of the whole sentence between the reference
and the MT output. si,pred is the phrasal similari-
ties of the predicates between the reference trans-
lations and the MT output and si,j is that of the
role fillers of the arguments of role type j.
wpred is the weight of the lexical similarities of

the aligned predicates in step 2. wj is the weight
of the phrasal similarities of the role fillers of the
arguments of role type j of the aligned frames be-
tween the reference translations and the MT output
in step 3 if their role types are matching. There is
a total of 12 weights for the set of semantic role
labels in MEANT (Lo and Wu, 2011b) estimated
by heuristics (Lo and Wu, 2012).

Finally, the weight α for the precision and re-
call is introduced for different usages of MEANT.
α should be set to 1 so that MEANT is pure recall
when it is used for MT evaluation and α should be

set to 0.5 so that MEANT is the balance of pre-
cision and recall, when it is used for MT system
optimization.

HMEANT (Lo and Wu, 2011a) is the variant
of MEANT for human evaluation, where the se-
mantic roles in the reference and in the MT output
are annotated by humans. XMEANT (Lo et al.,
2014) is the cross-lingual variant of MEANT,
which estimates translation quality of the MT out-
put against the source sentence using automatic se-
mantic parsers for the input and output languages
and alignment probabilities to determine the cross-
lingual lexical semantic similarity.

3 Improvements in MEANT 2.0

We improve the performance of MEANT on eval-
uating translation adequacy by weighing the im-
portance of each word by inverse document fre-
quency when computing phrasal similarity, so
that a higher score will be given to phrases with
more matches for content words than for function
words. We also modify the phrasal similarity cal-
culation so that instead of aggregating lexical sim-
ilarities for the bag of words in the phrase, it ag-
gregates ngram lexical similarities. Thus, the word
order of the semantic role fillers for the whole sen-
tence is taken into account. Our development ex-
periments showed that the optimal value of n is
2.

We also generalize the concept of weighted pre-
cision and recall when computing phrasal similar-
ities for the semantic role fillers. Lastly, we sim-
plify the computation of the frame semantic simi-
larities by introducing a weight β to linearly com-
bine the phrasal similarity of the whole sentence
and the frame semantic similarity of the reference
and the MT output into MEANT. Our develop-
ment experiments show that the optimal value of
β is 0.1. In summary, equations (1) to (8) are re-
placed by equations (9) to (16) as follow:

prece,f ≡ idf-weighted max-aligned distributional ngram precision (9)

rece,f ≡ idf-weighted max-aligned distributional ngram recall (10)
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precei,pred,fi,pred
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α·precei,pred,fi,pred+(1−α)·recei,pred,fi,pred

(11)
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·recei,j ,fi,j
α·precei,j ,fi,j+(1−α)·recei,j ,fi,j

(12)

ssent =
precesent,fsent
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α·precesent,fsent+(1−α)·recesent,fsent

(13)

precision =
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lang. # sent. # tokens # resulted vocab.
cs 67M 1,088M 1,963k
de 184M 3,444M 4,018k
en 331M 6,585M 2,368k
fi 14M 215M 1,405k
fr 38M 1,047M 950k
hi 1M 37M 82k
lv 11M 194M 586k
pl 39M 318M 885k
ro 2M 57M 233k
ru 52M 983M 1,708k
tr 2M 34M 279k
zh 61M 2,227M 911k

Table 1: Statistics of resources used to train the
word embeddings and the resulted vocabulary size
of the model.

MEANT = β
precision · recall

α · precision + (1− α) · recall + (1− β)ssent (16)

As a result, for languages without an auto-
matic semantic parser or sentences without a valid
predicate-argument structure recognized by an au-
tomatic semantic parser, the MEANT score is the
phrasal similarity of the whole sentence.

4 Setup

We use the monolingual corpora provided for
the WMT translation task (Bojar et al., 2014,
2015, 2016a) to build the word embeddings for
evaluating lexical similarities using word2vec
(Mikolov et al., 2013). Table 1 summarizes the
resources used to train the word embeddings and
the resulting vocabulary size of the distributional
lexical semantic similarity model.

We use mateplus (Roth and Woodsend,
2014) for German and English semantic role label-
ing and mate-tools (Björkelund et al., 2009)
for Chinese semantic role labeling. Instead of
the 12 semantic role types used in (Lo and Wu,
2011b), we merge the semantic role labels of Chi-
nese, English and German into 8 role types (who,
did, what, whom, when, where, why, how) for
more robust performance.

For languages except Chinese, tokenization step
simply involves separating punctuations at the end
of the words in both the reference and the MT out-
put. Chinese does not have clear word boundaries.
Each individual Chinese character usually carries
multiple meanings and relies on surrounding char-
acters to disambiguate it. Naive Chinese character
segmentation would affect the accuracy of the vec-
tor representation and the distributional lexical se-
mantic similarity model. Thus, we use ICTCLAS

(Zhang et al., 2003) to segment the Chinese mono-
lingual corpus into words before building the word
embeddings.

5 Experiments and results

We use the WMT 2014-2016 metrics task evalu-
ation set (Machacek and Bojar, 2014; Stanojević
et al., 2015; Bojar et al., 2016b) for our develop-
ment experiments. The official human judgments
of translation quality were collected using relative
ranking. The annotators were given the original
input and the reference and were asked to order up
to 5 different MT outputs according to the transla-
tion quality.

Two other kinds of human judgments of transla-
tion quality were collected in the WMT 2016 met-
rics task. The direct assessment evaluation proto-
col gave the annotators the reference and one MT
output only and asked them to evaluate the trans-
lation adequacy of the MT output on an absolute
scale. The HUME metric (Birch et al., 2016) is
very similar to HMEANT, which evaluates trans-
lation adequacy via semantic units in the input sen-
tence annotated by humans following the UCCA
(Abend and Rappoport, 2013) guidelines. How-
ever, HUME also takes nominal and adjectival ar-
gument structures into account (instead of only
predicate argument structure as in HMEANT).

Due to space limitations, we only report the re-
sults of MEANT 2.0, MEANT 2.0 - nosrl,
BLEU and the best correlation in each of the in-
dividual language pairs. Since we use exactly the
same protocol for each of the test sets, our reported
results are directly comparable with those reported
in Machacek and Bojar (2014); Stanojević et al.
(2015); Bojar et al. (2016b). We summarize the
observations in the following sections.

5.1 Correlation with human at system-level

5.1.1 On relative ranking judgment
Table 2 shows the Pearson’s correlation with the
WMT 2014-2016 official human relative ranking
scores at system-level. As expected, MEANT 2.0
performs significantly better than MEANT 2.0 -
nosrl in most of the language pairs. Overall,
both MEANT 2.0 and the nosrl variant are very
competitive with other metrics for all test sets.

For the WMT14 test set, MEANT 2.0 is the
best metric among all participants in that year
in the de-en and en-de direction. On aver-
age over from-English directions, MEANT 2.0
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input language cs de fr hi ru en en en en en
output language en en en en en ave. cs fr hi ru ave. de

WMT14 MEANT 2.0 .990 .960 .979 .791 .843 .913 – – – – – .482
RRsys MEANT 2.0 - nosrl .983 .957 .979 .761 .830 .902 .978 .941 .986 .938 .961 .236

individual best .993 .943 .981 .976 .870 .944 .988 .960 .990 .941 .959 .357
BLEU .909 .832 .952 .956 .789 .888 .976 .937 .973 .915 .950 .216
input language cs de fi fr ru en en en en en
output language en en en en en ave. cs de fi fr ru ave.

WMT15 MEANT 2.0 .974 .965 .946 .994 .970 .970 – .764 – – – –
RRsys MEANT 2.0 - nosrl .972 .956 .939 .995 .969 .966 .984 .676 .833 .961 .937 .878

individual best .993 .981 .977 .997 .981 .978 .977 .879 .878 .964 .970 .916
BLEU .957 .865 .929 .975 .851 .915 .936 .573 .602 .948 .841 .780
input language cs de fi ro ru tr en en en en en en
output language en en en en en en cs de fi ro ru tr

WMT16 MEANT 2.0 .989 .947 .953 .940 .990 .980 – .540 – – – –
RRsys MEANT 2.0 - nosrl .985 .928 .969 .917 .984 .978 .967 .541 .902 .868 .925 .933

individual best .997 .985 .974 .970 .990 .981 .975 .915 .974 .959 .954 .956
BLEU .992 .905 .858 .899 .962 .899 .968 .752 .868 .897 .835 .745

Table 2: Pearson’s correlation of the metric scores with the WMT 2014-2016 official human relative
ranking scores at system-level. For consistency with the task overview paper, en-de results are not
included into out-of-English system average in WMT 2014 results (Machacek and Bojar, 2014); system
average are not reported in WMT 2016 results (Bojar et al., 2016b).

input language cs de fi ro ru tr en
output language en en en en en en ru

WMT16 MEANT 2.0 .990 .950 .966 .946 .959 .990 –
DAsys MEANT 2.0 - nosrl .988 .942 .979 .930 .958 .987 .946

individual best .995 .985 .980 .957 .976 .982 .966
BLEU .989 .808 .864 .940 .837 .895 .838

Table 3: Pearson’s correlation of metric scores with the WMT 2016 direct assessment of translation
adequacy at system-level.

- nosrl is the best metric among all the partici-
pants in that year. On average over into-English
directions, MEANT 2.0 ties with the 4th-place
participant in that year while MEANT 2.0 -
nosrl is in 7th place. Both variants of MEANT
lose only to ensemble and trained metrics in that
year.

For the WMT15 test set, MEANT 2.0 -
nosrl is the best metric among all the partici-
pants in that year in the en-cs direction. On av-
erage over into-English directions, MEANT 2.0
is in 6th place while the nosrl variant is in 9th
place. Both variants of MEANT lose only to en-
semble and trained metrics in that year.

For the WMT16 test set, MEANT 2.0 ties for
1st place with the best metric in the ru-en direction
in that year. Both variants of MEANT perform as
well as the leading metrics in all other directions,
except en-de.

5.1.2 On direct assessment judgment

Table 3 shows the Pearson’s correlation with the
WMT 2016 direct assessment of translation ade-
quacy at system-level.

Both MEANT 2.0 and MEANT 2.0 -
nosrl beat all the other metrics that year in the
tr-en direction and perform very competitively
when compared to the leading pack in other
directions. MEANT 2.0 performs better than the
nosrl variant in all directions, except fi-en.

5.2 Correlation with human judgment at
segment-level

5.2.1 On relative ranking judgment
Table 4 shows the Kendall’s correlation with the
WMT 2014-2016 official human relative ranking
judgments at segment-level. Similar to the corre-
lation at the system-level, MEANT 2.0 performs
significantly better than MEANT 2.0 - nosrl
for most language pairs.

For the WMT14 test set, MEANT 2.0 beats
all the participants in the en-de direction while
the nosrl variant beats all the participants in all
other from-English directions (and their average)
in that year. On the average of all the to-English
directions, MEANT 2.0 and the nosrl variant
are in 2nd and 3rd place respectively and only lose
to an ensemble and trained metric in that year.

593



input language cs de fr hi ru en en en en en
output language en en en en en ave. cs de fr hi ru ave.

WMT14 MEANT 2.0 .325 .353 .421 .421 .348 .374 – .279 – – – –
RRseg MEANT 2.0 - nosrl .312 .354 .426 .410 .341 .367 .355 .254 .314 .294 .472 .338

individual best .328 .380 .433 .438 .355 .386 .344 .268 .293 .286 .440 .319
sentBLEU .213 .271 .378 .300 .263 .285 .290 .191 .256 .227 .381 .269
input language cs de fi fr ru en en en en en
output language en en en en en ave. cs de fi fr ru ave.

WMT15 MEANT 2.0 .463 .465 .424 .402 .400 .431 – .398 – – – –
RRseg MEANT 2.0 - nosrl .463 .454 .421 .406 .401 .429 .472 .386 .344 .365 .442 .402

individual best .495 .482 .445 .398 .418 .447 .446 .399 .380 .366 .439 .400
sentBLEU .391 .360 .308 .358 .329 .349 .290 .191 .256 .227 .381 .269
input language cs de fi ro ru tr en en en en en en
output language en en en en en en cs de fi ro ru tr

WMT16 MEANT 2.0 .355 .453 .414 .345 .401 .373 – .360 – – – –
RRseg MEANT 2.0 - nosrl .347 .438 .411 .338 .400 .364 .436 .360 .329 .271 .428 .325

individual best .388 .420 .481 .383 .420 .424 .422 .334 .364 .307 .405 .337
sentBLEU .284 .265 .368 .272 .330 .245 .359 .236 .306 .233 .328 .222

Table 4: Kendall’s correlation of metric scores with the WMT 2014-2016 official human relative ranking
judgments at segment-level. For consistency with the task overview paper, system averages are not
reported in WMT 2016 results (Bojar et al., 2016b).

input language cs de fi ro ru tr en
output language en en en en en en ru

WMT16 MEANT 2.0 .674 .510 .539 .607 .535 .588 –
DAseg MEANT 2.0 - nosrl .672 .484 .522 .587 .540 .577 .664

individual best .713 .601 .598 .661 .618 .663 .666
sentBLEU .557 .448 .484 .499 .502 .532 .550

Table 5: Pearson’s correlation of metric scores with the WMT 2016 direct assessment of absolute trans-
lation adequacy at segment-level.

For the WMT15 test set, both MEANT 2.0 and
MEANT 2.0 - nosrl beat all the participating
metrics in that year in the fr-en direction. MEANT
2.0 - nosrl also has the highest correlation
with human in the en-cs and en-ru directions and
the overall average of the from-English directions.
Again, on the average of all the to-English direc-
tions, MEANT 2.0 and the nosrl variant are in
2nd and 3rd place respectively and only lose to an
ensemble and trained metric.

For the WMT16 test set, both MEANT 2.0
and MEANT 2.0 - nosrl beat all other partic-
ipants in that year in the de-en, en-de directions
while MEANT 2.0 - nosrl is also the cham-
pion in the en-cs and the en-ru directions. Both
variants perform very competitively when com-
pared to the leading metrics in all other directions.

5.2.2 On direct assessment judgment

Table 5 shows the Pearson’s correlation of
MEANT with the WMT 2016 direct assessment
of absolute translation adequacy at segment-level.
Both variants of MEANT perform very competi-
tively when compared to the leading pack in other
directions. MEANT 2.0 performs better than the

HUME

input language en en en en
output language cs de pl ro
MEANT 2.0 – .522 – –
MEANT 2.0 - nosrl .508 .522 .619 .479
individual best .544 .480 .639 .435
sentBLEU .349 .377 .550 .328

Table 6: Pearson’s correlation of metric scores
with the WMT 2016 HUME human assessment at
segment-level.

nosrl variant in all directions, except ru-en.

5.2.3 On HUME evaluation
Table 6 shows the Pearson’s correlation of
MEANT with the HUME human assessment on
the himltest test set at segment-level.

Both MEANT 2.0 and MEANT 2.0 -
nosrl beat all other participating metrics in
that year in the en-de direction. MEANT 2.0
- nosrl also has the highest correlation with
HUME among all the participants in that year in
the en-pl direction.

5.3 Evaluation speed

Table 7 shows the average time (in seconds) for
each step of a typical WMT system evaluation

594



lang. # pairs tok. load srl score
cs 2.8k 3 158 – 56
de 2.6k 2 333 1010 41
en 2.8k 2 195 1120 46
fi 2.3k 2 114 – 24
fr 3.0k 4 77 – 61
hi 2.5k 4 7 – 35
lv 2.0k 2 47 – 13
pl 0.3k 1 72 – 4
ro 2.0k 1 19 – 10
ru 2.9k 5 142 – 27
tr 3.0k 4 23 – 17
zh 2.0k 501 75 1175 16

Table 7: Average time in seconds for each step of
evaluating a typical WMT system using MEANT:
tokenizing both the reference and the MT output;
loading the distributional lexical semantic similar-
ity model; semantic role labeling the reference and
the MT output; and scoring the MT output.

on different output languages using MEANT. The
time taken for punctuation tokenization is almost
negligible. This is because in common practice for
MT system development, the validation and eval-
uation set are reused frequently, so the process-
ing of the reference translation is typically pre-
computed. Furthermore, the MT system is trained
to output tokenized translations, so it is not neces-
sary to run the tokenization step on the MT out-
put. Therefore, the tokenization step does not af-
fect the time cost of MEANT in practical appli-
cations (even in the case of Chinese, where word
segmentation takes significantly longer).

The loading time of the word embedding model
is proportional to the vocabulary size of the model
reported in table 1; it takes less than a second to
load 10k vocabularies into memory.

Automatic semantic role labeling (SRL) is the
most time consuming step in running MEANT.
The time reported in table 7 includes parsing both
the reference and the MT output. However, as
pointed out above, common practice for MT sys-
tem development is to frequently reuse the valida-
tion and evaluation sets. Thus, semantic role la-
beling of the reference translation could be pre-
computed to reduce the time taken for the SRL
step in the development cycle.

Finally, the time used in computing the
MEANT score is proportional to the size of the
evaluation set and the word embedding model.
The scoring step processes around 50 to 100 sen-
tences each second.

6 Conclusion

We present a new version of MEANT that partici-
pated in evaluating MT systems for all language
pairs in the metrics task of the Second Confer-
ence on Machine Translation (WMT 2017). The
correlation of MEANT with human judgment has
been improved by better addressing translation ad-
equacy via weighing the importance of each word
in the phrasal similarity computation by inverse
document frequency, and better addressing trans-
lation fluency via using distributional ngram accu-
racy to account for word reordering in the compu-
tation. Our results show that MEANT consistently
performs well across different output languages in
the previous year’s test set at both system-level and
segment-level.

MEANT 2.0 - nosrl is a non-ensemble and un-
trained metric that requires only a monolingual
corpus in the output language for building the
word embeddings to evaluate MT systems for a
new language pair. Although there is an overhead
time cost in semantic role labeling sentence pairs
in MEANT 2.0 and loading the word embedding
model in both MEANT 2.0 and its nosrl subver-
sion, the time cost can be reduced almost by half
in real applications. This highly portable and open
source semantic MT evaluation metric is a more
accurate alternative to BLEU in evaluating trans-
lation quality for low-resource languages.
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