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Abstract

In this paper, we present a two-stage neu-
ral quality estimation model that uses mul-
tilevel task learning for translation quality
estimation (QE) at the sentence, word, and
phrase levels. Our approach is based on
an end-to-end stacked neural model named
Predictor-Estimator, which has two stages
consisting of a neural word prediction
model and neural QE model. To efficiently
train the two-stage model, a stack prop-
agation method is applied, thereby en-
abling us to jointly learn the word pre-
diction model and QE model in a sin-
gle learning mode. In addition, we de-
ploy multilevel task learning with stack
propagation, where the training examples
available for all QE subtasks (i.e., sen-
tence/word/phrase levels) are used to train
a Predictor-Estimator for a specific sub-
task. All of our submissions to the QE
task of WMT17 are ensembles that com-
bine a set of neural models trained under
different settings of varying dimensionali-
ties and shuffling training examples, even-
tually achieving the best performances for
all subtasks at the sentence, word, and
phrase levels.

1 Introduction

In this paper, we describe the two-stage end-to-
end neural models submitted to the Shared Task
on Sentence/Word/Phrase-Level Quality Estima-
tion (QE task) at the 2017 Conference on Ma-
chine Translation (WMT17). The task aims at es-
timating quality scores/categories for an unseen
translation without a reference translation at var-
ious granularities (i.e., sentence/word/phrase lev-
els) (Specia et al., 2013).

Our neural network-based models for
sentence/word/phrase-level QE are based on
Predictor-Estimator architecture (Kim et al.,
2017; Kim and Lee, 2016), which is a two-stage
end-to-end neural QE model. In this submission
to WMT 2017, our Predictor-Estimator model is
further advanced by extensively applying a stack
propagation method (Zhang and Weiss, 2016) in
order to efficiently train the two-stage model.

The Predictor-Estimator architecture (Kim
et al., 2017; Kim and Lee, 2016) is the two-stage
neural QE model (Figure 1) consisting of two
types of stacked neural models: 1) a neural word
prediction model (i.e., word predictor) trained
from additional large-scale parallel corpora and
2) a neural QE model (i.e., quality estimator)
trained from quality-annotated noisy parallel
corpora called QE data. The Predictor-Estimator
architecture uses word prediction as a pre-task
for QE. Kim et al. (2017) showed that word
prediction is helpful for improving the QE per-
formance. In the first stage, the word predictor,
which is based on a bidirectional and bilingual
recurrent neural network (RNN) language model
– the modification of the attention-based RNN
encoder-decoder (Bahdanau et al., 2015; Cho
et al., 2014) – predicts a target word conditioned
with unbounded source and target contexts. QE
feature vectors (QEFVs) are the approximated
knowledge transferred from word prediction to
QE. In the second stage, QEFVs are used as
inputs to the quality estimator for estimating
sentence/word/phrase-level translation quality.

Stack propagation (Zhang and Weiss, 2016) is a
learning method for efficient joint learning that en-
ables backpropagation down the stacked models.
Zhang and Weiss (2016) applied stack propaga-
tion for stacked part-of-speech (POS) tagging and
parsing models by alternating between stochas-
tic updates to POS tagging or parsing objectives,
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Figure 1: Two-stage Predictor-Estimator architec-
ture (Kim et al., 2017).

where continuous hidden layer activations of the
POS tagger network are used as an input to the
parser network.

We applied the Predictor-Estimator architec-
ture to the sentence/word/phrase-level QE task of
WMT17. In the original Predictor-Estimator ar-
chitecture proposed by Kim et al. (2017), the word
predictor and quality estimator are trained individ-
ually. As a result, the backpropagation in train-
ing the quality estimator does not go down for
the word predictor network. Because there ex-
ists a continuous and differentiable link between
the stacked word predictor and quality estimator,
we used stack propagation to jointly learn two-
stage models in the Predictor-Estimator. Further-
more, we deployed multilevel task learning with
stack propagation, where a task-specific Predictor-
Estimator is trained by using not only the task-
specific training examples but also all other train-
ing examples of QE subtasks. Finally, all of our
submissions for the QE task of WMT17 were
ensembles that combine a set of neural models
trained under different settings of varying dimen-
sionalities and shuffled training examples.

2 Improving Predictor-Estimator with
Stack Propagation

In this section, we describe the three types of
Predictor-Estimators using stack propagation: 1)
the base model (PredictorEstimator), 2) Predictor-
Estimator using stack propagation for a single-
level task (PredictorEstimator + (SingleLevel) Stackprop),

and 3) Predictor-Estimator using multilevel task
learning with stack propagation (PredictorEstimator

+ MultiLevel Stackprop).

2.1 Base Model
Our base model is the original Predictor-
Estimator, where a word predictor and qual-
ity estimator are trained individually. We
used the Pre&Post-QEFV/Bi-RNN model, which
showed the best performance among the Predictor-
Estimator models presented by Kim et al. (2017).
The Pre&Post-QEFV/Bi-RNN model is a two-
stage model that uses Pre&Post-QEFV extracted
from the word predictor and Bi-RNN applied in
the quality estimator. Pre&Post-QEFV is the sum-
mary representation in the word predictor net-
works and involves approximating the transferred
knowledge from each target word prediction. This
consists of the word prediction-based weight-
inclusive indirect representation (i.e., Pre-QEFV)
and direct hidden state (i.e., Post-QEFV).

2.2 Using Stack Propagation
Because the Predictor-Estimator architecture has
a continuous and differentiable link between the
stacked word predictor and quality estimator, al-
lowing backpropagation from the quality estima-
tor to the word predictor is a valuable approach. To
jointly learn the two-stage models in the Predictor-
Estimator, stack propagation is applied by alter-
nating between stochastic updates to word predic-
tion or QE objectives, thus performing backpropa-
gation down from the quality estimator to the word
predictor (Figure 2).

2.3 Using Multilevel Task Learning with
Stack Propagation

We implemented multilevel task learning with
stack propagation that uses the training ex-
amples available for all QE subtasks (sen-
tence/word/phrase level) to train a task-specific
Predictor-Estimator. There are mutual com-
mon parts in the Predictor-Estimator networks for
sentence/word/phrase-level QE: 1) all of the word
predictor networks and 2) input parts and hidden
states of the quality estimator networks, except for
the output parts at each level. In multilevel task
learning with stack propagation, these common
parts of the task-specific Predictor-Estimator net-
works are trained by using not only task-specific
training examples but also all of the other training
examples of QE subtasks.
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⋯ 

:  𝐏𝐏𝐖𝐖𝐏𝐏𝐖𝐖𝐏𝐏𝐏𝐏𝐏𝐏𝐖𝐖𝐖𝐖 𝐐𝐐𝐏𝐏𝐖𝐖𝐐𝐐𝐏𝐏𝐏𝐏𝐄𝐄 
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Figure 2: Applied stack propagation (Zhang and Weiss, 2016) to Predictor-Estimator architecture by
alternating stochastic updates.

This approach is based on the idea that QE
at all levels has a common origin because qual-
ity annotations at each level of QE data1 are ob-
tained by comparing the same post-edited tar-
get references with the same target translations
to calculate the human-targeted translation edit
rate (HTER) (Snover et al., 2006). By using
multilevel task learning with stack propagation,
mutually beneficial relationships can be learned
between each level. We alternate not only be-
tween stochastic updates to word prediction or
QE objectives but also between stochastic up-
dates to sentence/word/phrase-level QE objectives
for jointly learning mutual common parts of the
Predictor-Estimator network2.

3 Experimental Results

3.1 Experimental settings
We evaluated our models for the WMT17
QE task of sentence/word/phrase-level English-
German and German-English. To train our two-
stage models, we used QE data for the WMT17
QE task (Specia and Logacheva, 2017) and par-

1QE data consist of source sentences, target translations
(not references), and their target quality annotations for sen-
tence/word/phrase levels.

2An original phrase-level Predictor-Estimator and orig-
inal word-level Predictor-Estimator have different architec-
tures in that the input of the former is phrase-level QEFV,
which is the average of its constituent word-level QEFVs.
However, in multilevel task learning with stack propaga-
tion for phrase-level QE, we use a word-level Predictor-
Estimator architecture. In the word-level Predictor-Estimator
for phrase-level QE, if any word in the phrase boundary
is tagged as ‘BAD,’ the output of the phrase level has a
‘BAD’ tag, which exactly corresponds with the purpose of
the phrase-level QE.

allel corpora including the Europarl corpus, com-
mon crawl corpus, news commentary, rapid cor-
pus of EU press releases for the WMT17 transla-
tion task3, and src-pe (source sentences-their tar-
get post-editions) pairs for the WMT17 QE task.
All Predictor-Estimator models were initialized
with a word predictor and quality estimator that
were pre-trained individually.

3.2 Results of the Single Predictor-Estimator
Models

For a single Predictor-Estimator model, we used
one type of dimensionality settings4.

Table 1 presents the experimental results for
the single Predictor-Estimator models with the
English-German QE development set at the sen-
tence, word, and phrase levels. Among the three
types of models, the Predictor-Estimator using
multilevel task learning with stack propagation
consistently exhibited the best performance in all
of our runs. Because this was the most sophis-
ticated among our three types of models, we be-
lieve that applying more advanced approaches to
Predictor-Estimator brings further improvements.
The base model, which was the simplest Predictor-
Estimator model, exhibited somewhat lower per-
formance than others. The models using stack
propagation for sentence/word/phrase-level QE
consistently performed better than the base mod-
els without stack propagation. This result means

3http://www.statmt.org/wmt17/translation-task.html
4The vocabulary size was 70,000, the word embedding

dimensionality was 500, the size of the hidden units of the
word predictor was 700, and the size of the hidden units of
the quality estimator was 100.
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Sentence Level Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑ DeltaAvg ↑
PredictorEstimator 0.6436 0.1125 0.1582 0.6851 0.1190
+ (SingleLevel) Stackprop 0.6476 0.1122 0.1567 0.6957 0.1209
+ MultiLevel Stackprop 0.6785 0.1047 0.1502 0.7267 0.1234

Word Level F1-mult ↑ F1-BAD ↑ F1-OK ↑
PredictorEstimator 0.5104 0.5747 0.8881
+ (SingleLevel) Stackprop 0.5335 0.5906 0.9034
+ MultiLevel Stackprop 0.5374 0.6018 0.8930

Phrase Level F1-mult ↑ F1-BAD ↑ F1-OK ↑
PredictorEstimator 0.5262 0.6367 0.8264
+ (SingleLevel) Stackprop 0.5631 0.6674 0.8438
+ MultiLevel Stackprop 0.5664 0.6697 0.8457

Table 1: Results of the single Predictor-Estimator models on the WMT17 En-De dev set.

Sentence Level Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑ DeltaAvg ↑
PredictorEstimator 0.6375 0.1094 0.1480 0.6665 0.1138
+ (SingleLevel) Stackprop 0.6377 0.1092 0.1473 0.6698 0.1149
+ MultiLevel Stackprop 0.6599 0.1057 0.1450 0.6914 0.1188

Word Level F1-mult ↑ F1-BAD ↑ F1-OK ↑
PredictorEstimator 0.5086 0.5768 0.8818
+ (SingleLevel) Stackprop 0.5203 0.5898 0.8822
+ MultiLevel Stackprop 0.5287 0.5951 0.8883

Phrase Level F1-mult ↑ F1-BAD ↑ F1-OK ↑
PredictorEstimator 0.5116 0.6227 0.8216
+ (SingleLevel) Stackprop 0.5512 0.6522 0.8452
+ MultiLevel Stackprop 0.5527 0.6523 0.8473

Table 2: Results of the single Predictor-Estimator models on the WMT17 En-De test set.

that stack propagation is advantageous for efficient
joint learning. The use of multilevel task learning
with stack propagation for sentence-level QE sig-
nificantly improved the QE performance. The use
of single-level stack propagation for word/phrase-
level QE also significantly improved the QE per-
formance.

Tables 2-3 present the experimental results
of the single Predictor-Estimator models for the
English-German and German-English QE test set
at the different levels.

3.3 Results of Ensembles of Multiple
Instances

To develop ensemble-based submissions for the
WMT17 QE task, we used two types of single
models: the simplest (base model) and most so-
phisticated (Predictor-Estimator using multilevel
task learning with stack propagation).

Martins et al. (2016) combined 15 instances of
neural models to make ensembles; they used three
types of neural models and trained five instances
for each type by using different data shuffles.

In our experiments, we made ensembles of
multiple instances trained under different set-

tings of varying dimensionalities and shuffled
training examples for the two selected models
(i.e., the simplest and the most sophisticated
single models). We averaged the predicted scores
from each instance for producing the ensemble
results. The ensembles for the simplest single
model were made by averaging 15 predictions
from each single model with five types of di-
mensionality settings5 to produce three trained
instances with the different shuffling training
examples, called PredictorEstimator-Ensemble6.

51) The vocabulary size was 70,000 words, the word em-
bedding dimensionality was 500, the size of the hidden units
of the word predictor was 700, and the size of the hidden units
of the quality estimator was 100. 2) The vocabulary size was
70,000 words, the word embedding dimensionality was 500,
the size of the hidden units of the word predictor was 700,
and the size of the hidden units of the quality estimator was
150. 3) The vocabulary size was 100,000 words, the word
embedding dimensionality was 700, the size of the hidden
units of the word predictor was 1000, and the size of the hid-
den units of the quality estimator was 100. 4) The vocabulary
size was 100,000 words, the word embedding dimensionality
was 700, the size of the hidden units of the word predictor
was 1000, and the size of the hidden units of the quality es-
timator was 150. 5) The vocabulary size was 100,000 words,
the word embedding dimensionality was 700, the size of the
hidden units of the word predictor was 1000, and the size of
the hidden units of the quality estimator was 200.

6In the submissions for WMT17 QE task,
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Sentence Level Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑ DeltaAvg ↑
PredictorEstimator 0.6826 0.0987 0.1428 0.6065 0.1010
+ (SingleLevel) Stackprop 0.6888 0.0977 0.1458 0.6202 0.1026
+ MultiLevel Stackprop 0.6985 0.0952 0.1461 0.6408 0.1039

Word Level F1-mult ↑ F1-BAD ↑ F1-OK ↑
PredictorEstimator 0.4864 0.5259 0.9249
+ (SingleLevel) Stackprop 0.5008 0.5361 0.9342
+ MultiLevel Stackprop 0.5051 0.5411 0.9334

Phrase Level F1-mult ↑ F1-BAD ↑ F1-OK ↑
PredictorEstimator 0.5069 0.5674 0.8934
+ (SingleLevel) Stackprop 0.5143 0.5671 0.9068
+ MultiLevel Stackprop 0.5246 0.5829 0.8999

Table 3: Results of the single Predictor-Estimator models on the WMT17 De-En test set.

Sentence Level (Scoring Variant) Pearson’s r ↑ MAE ↓ RMSE ↓ Rank

PredictorEstimator-Ensemble 0.6731 0.1067 0.1412 2
PredictorEstimator-MultiLevel-Ensemble 0.6891 0.1016 0.1390
PredictorEstimator-Combined-MultiLevel-Ensemble 0.6954 0.1019 0.1371 1
BASELINE 0.397 0.136 0.175

Sentence Level (Ranking Variant) Spearman’s ρ ↑ DeltaAvg ↑ Rank

PredictorEstimator-Ensemble 0.7029 0.1198 2
PredictorEstimator-MultiLevel-Ensemble 0.7194 0.1221
PredictorEstimator-Combined-MultiLevel-Ensemble 0.7253 0.1232 1
BASELINE 0.425 0.0745

Word Level F1-mult ↑ F1-BAD ↑ F1-OK ↑ Rank

PredictorEstimator-Ensemble 0.5429 0.6069 0.8945 5
PredictorEstimator-MultiLevel-Ensemble 0.5602 0.6210 0.9021
PredictorEstimator-Combined-MultiLevel-Ensemble 0.5679 0.6283 0.9039 1
BASELINE 0.361 0.407 0.886

Phrase Level F1-mult ↑ F1-BAD ↑ F1-OK ↑ Rank

PredictorEstimator-Ensemble 0.5492 0.6518 0.8426 2
PredictorEstimator-MultiLevel-Ensemble 0.5808 0.6728 0.8633
PredictorEstimator-Combined-MultiLevel-Ensemble 0.5859 0.6787 0.8633 1
BASELINE 0.327 0.402 0.814

Table 4: Results of ensembles of multi-instance Predictor-Estimator models on the WMT17 En-De test
set.

Sentence Level (Scoring Variant) Pearson’s r ↑ MAE ↓ RMSE ↓ Rank

PredictorEstimator-Ensemble 0.7146 0.0942 0.1359 2
PredictorEstimator-MultiLevel-Ensemble 0.7170 0.0907 0.1359
PredictorEstimator-Combined-MultiLevel-Ensemble 0.7280 0.0911 0.1332 1
BASELINE 0.441 0.128 0.175

Sentence Level (Ranking Variant) Spearman’s ρ ↑ DeltaAvg ↑ Rank

PredictorEstimator-Ensemble 0.6327 0.1044 2
PredictorEstimator-MultiLevel-Ensemble 0.6550 0.1061
PredictorEstimator-Combined-MultiLevel-Ensemble 0.6542 0.1064 1
BASELINE 0.45 0.0681

Word Level F1-mult ↑ F1-BAD ↑ F1-OK ↑ Rank

PredictorEstimator-Ensemble 0.5160 0.5516 0.9356 3
PredictorEstimator-MultiLevel-Ensemble 0.5271 0.5609 0.9398
PredictorEstimator-Combined-MultiLevel-Ensemble 0.5347 0.5687 0.9402 1
BASELINE 0.342 0.365 0.939

Phrase Level F1-mult ↑ F1-BAD ↑ F1-OK ↑ Rank

PredictorEstimator-Ensemble 0.5428 0.5990 0.9062 2
PredictorEstimator-MultiLevel-Ensemble 0.5490 0.6032 0.9101
PredictorEstimator-Combined-MultiLevel-Ensemble 0.5611 0.6150 0.9122 1
BASELINE 0.360 0.397 0.907

Table 5: Results of ensembles of multi-instance Predictor-Estimator models on WMT17 De-En test set.
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Ensembles for the most sophisticated single
model were made by averaging 15 predictions
yielded from each single model with three
types of dimensionality settings7 to produce five
trained instances with different shuffling training
examples, called PredictorEstimator-MultiLevel-
Ensemble. We also created an ensemble that
combines both PredictorEstimator-Ensemble
and PredictorEstimator-MultiLevel-Ensemble,
called PredictorEstimator-Combined-MultiLevel-
Ensemble.

Tables 4-5 present the experimental re-
sults for the ensembles of multi-instance
Predictor-Estimator models with the English-
German/German-English test set for sentence-
/word-/phrase-level QE8. In all of our runs,
PredictorEstimator-Combined-MultiLevel-
Ensemble exhibited the best performance and was
ranked first for all subtasks at the different levels
for the WMT17 QE task.

4 Conclusion

We presented a two-stage end-to-end neural QE
model that uses multilevel task learning with
stack propagation for sentence/word/phrase-level
QE. We used the Predictor-Estimator architec-
ture (Kim et al., 2017; Kim and Lee, 2016)
for sentence/word/phrase-level QE. We applied
stack propagation (Zhang and Weiss, 2016) to
the Predictor-Estimator architecture for efficient
joint learning. Finally, we deployed multilevel
task learning with stack propagation to use the
training examples available for all QE subtasks to
train a task-specific Predictor-Estimator. We de-
veloped ensembles by combining a set of neural
models trained under different settings of vary-
ing dimensionalities and shuffling training exam-
ples. Our ensemble-based submissions achieved

PredictorEstimator-Ensemble was denoted as
PredictorEstimator-SingleLevel-Ensemble.

71) The vocabulary size was 70,000 words, the word em-
bedding dimensionality was 500, the size of the hidden units
of the word predictor was 700, and the size of the hidden units
of the quality estimator was 100. 2) The vocabulary size was
70,000 words, the word embedding dimensionality was 500,
the size of the hidden units of the word predictor was 700, and
the size of the hidden units of the quality estimator was 150.
3) The vocabulary size was 70,000 words, the word embed-
ding dimensionality was 500, the size of the hidden units of
the word predictor was 700, and the size of the hidden units
of the quality estimator was 200.

8PredictorEstimator-Combined-MultiLevel-Ensemble
and PredictorEstimator-Ensemble were our two submissions
for the WMT17 QE task.

the best performances for all subtasks at the vari-
ous levels for the WMT17 QE task.
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