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Abstract

This paper describes the University of
Sheffield’s submission to the WMT17
Multimodal Machine Translation shared
task. We participated in Task 1 to de-
velop an MT system to translate an im-
age description from English to German
and French, given its corresponding im-
age. Our proposed systems are based on
the state-of-the-art Neural Machine Trans-
lation approach. We investigate the ef-
fect of replacing the commonly-used im-
age embeddings with an estimated poste-
rior probability prediction for 1,000 object
categories in the images.

1 Introduction

This paper describes the University of Sheffield’s
submission to the second edition of the WMT17
Multimodal Machine Translation shared task. We
participate in Task 1, where the challenge is to de-
velop a Machine Translation (MT) system to au-
tomatically translate image descriptions to a target
language, given an image description in a source
language and its corresponding image. We sub-
mitted systems for translating from English to both
German and French.

Our submission is based on the state-of-the-
art attention-based Neural Machine Translation
(NMT) system, which has shown better perfor-
mance than conventional phrase-based statistical
MT (SMT) systems in the past years. Multimodal
NMT systems have been introduced (Elliott et al.,
2015; Caglayan et al., 2016; Calixto et al., 2016;
Huang et al., 2016) to incorporate visual informa-
tion into NMT approaches, most of which condi-
tion the NMT on an image representation (typi-
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cally a vector extracted from a Convolutional Neu-
ral Network (CNN) layer). However, it has not
been clear thus far whether such image features
actually help in the translation task and more im-
portant, if so it is not clear which aspects of the
image can play a role and how.

Recent approaches to Multimodal NMT have
used low level image features, including dense
fully connected vectors and spatial convolutional
representations from an image classification net-
work (Elliott et al., 2015; Huang et al., 2016).
They also incorporate attention mechanisms (Cal-
ixto et al., 2016). However, the effect of image
features or the efficacy of the representational con-
tribution is still an open research question.

For our submission, we propose replacing im-
age representations used in current Multimodal
NMT systems with a class-based probabilistic dis-
tribution that is estimated directly using a state-
of-the-art image classification network. The core
hypothesis is that such representations offer higher
level semantic information and could be more ben-
eficial to Multimodal NMT systems.

In Section 2 we discuss the motivations be-
hind our proposed system. In Section 3 we de-
scribe our approach, which uses CNN-based im-
age features as input (Section 3.1) to an atten-
tion based neural machine translation system (Sec-
tion 3.2), resulting in a Multimodal NMT system
(Section 3.3). Experimental settings are reported
in Section 4, and results discussed in Section 5.
A brief overview of related work are provided in
Section 6.

2 Motivation

Recent work (Wu et al., 2016; You et al., 2016)
exploits explicit, higher-level semantic represen-
tation of images for the tasks of image captioning
and visual question answering. Instead of feeding
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a lower-level image representation directly to the
model, such work explicitly explores predicting
the occurrence of various concepts (objects, also
referred to as attributes) in the image, and feeding
such predictions to the language generation com-
ponent. Our hypothesis is that such an approach,
when applied to Multimodal NMT, should provide
comparable, if not better results compared to sys-
tems that use image representations directly. This
approach also offers the advantage of being more
interpretable compared to end-to-end systems that
use image representations directly. Finally, since
the image classification network is trained directly
to produce probabilistic class distributions, the
predictions are more stable and encoded in sim-
pler representations when compared with the fully
connected, lower-level representations. This also
presents an opportunity to fine tune the class dis-
tributions for the task using domain-specific data.
In other words, we can tune the image network to
produce better predictions on the classes that ap-
pear in the dataset of interest.

Motivated by these insights, we empirically
evaluate the performance of a Multimodal NMT
system with image features based on predicted
class distributions. In most cases we are able to
outperform the baseline system under similar set-
tings. In the following section we describe our
system in detail.

3 System description

We first describe the image features used in our
system, more specifically, the probability predic-
tion of an object category occurring in the image
(Section 3.1). We then present the NMT system
used (Section 3.2), and how the image features are
combined to produce a Multimodal NMT system
(Section 3.3) for the shared task. Figure 1 illus-
trates the proposed system.

3.1 Visual features

Visual features were extracted from the 152-layer
version of ResNet (He et al., 2015), a Deep Con-
volutional Neural Network (CNN) pre-trained on
1,000 object categories (synsets) of the classifi-
cation task of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) (Russakovsky
et al., 2015). We extracted the final layer after ap-
plying the softmax function. This layer is a 1,000-
dimensional vector providing class posterior prob-
ability estimates at image level for the 1,000 object

Figure 1: An illustration of our Multimodal NMT
system. Departing from usual methods, we re-
place the lower-level image CNN representation
with a vector representing the output of a 1,000-
way visual classifier, where each element in the
vector represents the estimated posterior probabil-
ity of an object category occurring in the image.
We experiment with conditioning the image rep-
resentation on either the encoder or the decoder
(dashed lines), and also at each source word (not
shown in the Figure).

categories, each corresponding to a distinct Word-
Net synset.

While ResNet has been reported to perform ex-
tremely well in classification tasks (3.57% top-5
error rate in the ILSVRC2015 challenge1, where
a prediction is considered correct if the gold stan-
dard category is within a system’s top 5 guesses),
it is worth noting that the model is built for and
tuned to the 1,000 categories of ILSVRC, some
of which include very fine-grained classifications
like various dog species. Thus, many of these cat-
egories may not be relevant to the shared task data
which is based on the Flickr30K dataset (Young
et al., 2014). Conversely, many objects depicted in
Flickr30K may also not be covered in the ILSVRC
dataset.

3.2 Neural Machine Translation

We use a standard LSTM-based bidirectional
encoder-decoder architecture with global atten-
tion (Luong et al., 2015). All our NMT models
have the following architecture: the input and out-
put vocabulary are limited to words that appear at
least twice in the training data and the remaining
words are replaced by the < UNK > token. The
hidden layer dimensionality is set to 256 and the

1http://image-net.org/challenges/LSVRC/2015/results
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word dimensionality is set to 128, for both the en-
coder and decoder, as this configuration was found
to lead to faster training times without sacrificing
translation performance. At decoding time, we
perform greedy decoding by outputing the most
probable word at each time step.

3.3 Multimodal Neural Machine Translation
To add visual features, we extend the above men-
tioned architecture in the following ways:

1. Image features initialising the En-
coder (InitEnc): As shown in Figure 1,
we use the predicted class distribution to
initialise only the encoder (i.e. images as
the first token). This can be seen as condi-
tioning the encoder on the predicted class
distribution.

2. Image features initialising the De-
coder (InitDec): As we see in Figure 1,
here we initialize the decoder’s first hidden
state with the predicted class distribution.

3. Image features conditioning each input to-
ken (Proj): In this projected representation
approach, we first perform an affine trans-
formation with a weight matrix W , where
W ∈ Rc×d (c and d are dimensionality of
the class distribution and dimensionality of
the word vectors, respectively). This is fol-
lowed by a non-linearity function to squash
the resulting output. We add this representa-
tion to each source word representation. The
weight matrix W is learned. This can be seen
as composing each source token with the vi-
sual feature at each time step.

4 Experimental settings

We use our own implementation of a multimodal
NMT approach and explore a number of variants
of this model in order to understand the effects
of using the classification layer instead of a lower
level CNN layer as input to the NMT system.

4.1 Data
The shared task is based on the Multi30K (Elliott
et al., 2016) dataset. Each image contains one En-
glish description taken from Flickr30K and pro-
fessional translations into German and French. In
this year’s edition of the shared task, the source
language is English (EN) and the target languages
are German (DE) and French (FR). The dataset

contains 29,000 training and 1,014 development
instances: an image, a description in source lan-
guage, and a description for each target language.
There are two test sets:

1. An in-domain test set (Flickr) with 1,000 im-
ages.

2. An out-of-domain test set (MSCOCO) with
461 images whose captions were selected to
contain ambiguous verbs.

4.2 Visual features
The primary visual feature explored in this
paper is the class posterior probability esti-
mates of ResNet-152 for 1,000 object categories
(Softmax). As a comparison, we also extract the
penultimate layer of ResNet-152 (Pool5).

The visual features are combined with the NMT
model using the three configurations described in
Section 3.3 (InitEnc, InitDec, Proj). We also
compare our systems to a text-only baseline (Sec-
tion 3.2).

4.3 NMT model
We implemented our NMT system (Section 3.2)
in PyTorch. We use a single layer bidirectional
LSTM based encoder-decoder model. We used
ReLU as the projection non-linearity and used
dropout with probability of 0.2. We used the
Adadelta optimizer (Zeiler, 2012) with the default
learning rate (0.01). The batch size was set to
20. We trained it for 50 epochs and selected the
model that performs best on the validation set us-
ing BLEU as the metric.

We normalised punctuations, lowercased and
tokenised the input text using the script provided
in Moses (Koehn et al., 2007). Our experiments
were performed with the vocabulary size of 6,000
English words, 6,500 French words and 8,000
German words after removing words that appeared
only once in the training set (these words were
replaced with < UNK >, as described in Sec-
tion 3.2). At decoding time, we post-processed the
output translations by replacing < UNK > with
an empty string.

5 Results and discussion

We present our results on the Flickr test dataset
in Table 1, for both EN–DE and EN–FR. We ob-
serve that for the Softmax feature, InitDec consis-
tently outperformed InitEnc and Proj. It also per-
formed better than the text-only baseline for both
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Flickr Feature Model Meteor BLEU

E
N

–D
E

- Baseline 43.7 24.4

Pool5
Proj – –
InitEnc 43.0 23.5
InitDec 44.3 24.6

Softmax
Proj 43.4 24.2
InitEnc 42.4 23.3
InitDec 44.5 25.0

E
N

–F
R

- Baseline 62.2 44.2

Pool5
Proj – –
InitEnc 61.1 43.5
InitDec 61.0 43.4

Softmax
Proj 61.5 43.6
InitEnc 61.0 43.3
InitDec 62.8 45.0

Table 1: Results on the Flickr test data, for both
English–German (EN–DE) and English–French
(EN–FR). Proj was not evaluated for Pool5 as its
performance is very poor on the development set.

languages. In the case of Pool5, InitDec seemed
to perform slightly better than InitEnc for Ger-
man, but both yielded similar scores for French.
We also observed that by using the Pool5 feature
in the Proj configuration, the NMT system failed
to learn any useful information with extremely low
BLEU scores on the development set, even with an
increased number of epochs. Thus we do not eval-
uate these on the test sets.

Table 2 displays the empirical results on the
MSCOCO test dataset. Similar trends are ob-
served here for Softmax: InitDec outperformed
Proj and InitEnc. For this test set, InitDec out-
performed the baseline for EN–DE and performed
comparably to the baseline for EN–FR. Interest-
ingly, the variant with Pool5 as a feature did not
seem to perform as well, producing slightly lower
scores than the baseline on this test set. Further
investigation is needed to determine the reason for
this phenomenon.

Overall, we observed better results for Softmax
compared to Pool5 with the settings used in our
submission. However, more experiments need to
be performed to confirm the usefulness of the pos-
terior probabilities for the task.

Figure 2 shows example output translations
from English to German and French for the test
sets, for our best performing variant InitDec con-
ditioned on Softmax class posterior predictions.
We compare the output against a text-only base-
line. In the first example from the Flickr test set,

MSCOCO Feature Model Meteor BLEU

E
N

–D
E

– Baseline 39.6 20.7

Pool5
Proj – –
InitEnc 39.1 20.4
InitDec 39.5 20.4

Softmax
Proj 40.0 21.0
InitEnc 37.5 18.8
InitDec 40.7 21.4

E
N

–F
R

- Baseline 57.4 37.2

Pool5
Proj – –
InitEnc 56.7 36.5
InitDec 56.7 36.9

Softmax
Proj 57.0 36.8
InitEnc 55.5 35.5
InitDec 57.3 37.2

Table 2: Results on the MSCOCO test data,
for both English–German (EN–DE) and English–
French (EN–FR). Again, Proj was not evaluated
for Pool5 as its performance was very poor on the
development set.

InitDec produced an exact match against the ref-
erence for German, and an equally correct transla-
tion for French (differing only in the translation for
‘bank’). In the second image from the MSCOCO
test set, the German translation is much closer to
the reference than the baseline. In the case of
the French translation, the difference between the
baseline and InitDec is much smaller, reflecting
the quantitative results.

We conjecture that further hyperparameter
search (increasing LSTM layers, dimensionality
of the embeddings and hidden layers, etc.) and
increasing the vocabulary size or using BPE could
potentially improve the performance of our system
on the task.

6 Related work

There has been interest in recent years in the task
of generating image descriptions (also known as
image captioning). Bernardi et al. (2016) provide
a detailed discussion on various image description
generation approaches that have been developed.

Currently, the two largest image description
datasets are Flickr30K (Young et al., 2014) and
MS COCO (Lin et al., 2014). These datasets are
constructed in English and are aimed at advancing
research on the generation of image descriptions
in English. Recent attempts have been made to
incorporate multilinguality into both these large-
scale datasets, with the datasets being extended to
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EN A duck on the bank of a river

DE (Baseline) eine ente an der kste eines flusses .
DE (InitDec) eine ente am ufer eines flusses
DE (Reference) eine ente am ufer eines flusses

FR (Baseline) un canard sur l’ eau , dans une rivière
FR (InitDec) un canard sur la rive d’ une rivière
FR (Reference) un canard sur la berge d’ une rivière

EN A tennis player is moving to the side
and is gripping his racquet with both hands.

DE (Baseline) ein tennisspieler fhrt zur seite und greift nach
seinem schlger .

DE (InitDec) ein tennisspieler bewegt sich zur seite , whrend
sein schlger mit beiden hnden .

DE (Reference) ein tennisspieler bewegt sich zur seite und hlt
den schlger mit beiden hnden .

FR (Baseline) un joueur de tennis se déplaçant de côte et sa
raquette avec les deux mains .

FR (InitDec) un joueur de tennis se déplaçant côté et se met
sa raquette avec les deux mains .

FR (Reference) un joueur de tennis se déplace sur le cté et tient
sa raquette avec ses deux mains .

Figure 2: Example output translations from English to German (DE) and French (FR), for the Flickr test
set (top) and the MSCOCO test set (bottom). We show the results of InitDec using Softmax as the visual
feature.

other languages such as German and Japanese (El-
liott et al., 2016; Hitschler et al., 2016; Miyazaki
and Shimizu, 2016; Yoshikawa et al., 2017).

The first known attempt at using NMT for ma-
chine translation of image descriptions is by El-
liott et al. (2015), who conditioned an NMT sys-
tem with a CNN image embedding (the penulti-
mate layer of VGG-16 (Simonyan and Zisserman,
2014)) at the beginning of either the encoder or the
decoder. The WMT16 shared task on Multimodal
Machine Translation (Specia et al., 2016) has fur-
ther encouraged research in this area. At the time,
phrase-based SMT systems (Shah et al., 2016; Li-
bovický et al., 2016; Hitschler et al., 2016) per-
formed better than NMT systems (Calixto et al.,
2016; Huang et al., 2016; Caglayan et al., 2016).
Participants used either the penultimate fully con-

nected layer or a convolutional layer of a CNN as
image representation, with the exception of Shah
et al. (2016) who used the classification output of
VGG-16 as features to a phrase-based SMT sys-
tem. In all cases, image information were found
to provide only marginal improvements.

7 Conclusions and future work

We presented our approach that uses predicted
class distribution as image features for the task
of multimodal machine translation. We described
three configurations for incorporating the visual
representation and observed that the three meth-
ods perform differently. For our submission
with the settings described in the paper, using
ResNet-152’s class posterior probability distribu-
tion seems to result in better scores than using
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the same network’s pool5 features. Future exper-
iments will aim at dissecting the type of informa-
tion the image features are adding to the NMT and
understand deeply the contribution of predicted
class based representations.
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