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Abstract 

We describe the Sogou neural machine 
translation systems for the WMT 2017 
Chinese↔English news translation 
tasks. Our systems are based on a multi-
layer encoder-decoder architecture 
with attention mechanism. The best 
translation is obtained with ensemble 
and reranking techniques. We also pro-
pose an approach to improve the named 
entity translation problem. Our Chi-
nese→English system achieved the 
highest cased BLEU among all 20 sub-
mitted systems, and our English→Chi-
nese system ranked the third out of 16 
submitted systems.1 

1 Introduction 

End-to-end neural machine translation (NMT) has 
recently been introduced as a promising paradigm 
with the potential to address many shortcomings 
of traditional statistical machine translation (SMT) 
systems, and has obtained state-of-the-art perfor-
mance for several language pairs (Cho et al., 2014; 
Sutskever et al., 2014; Bahdanau et al., 2015; 
Sennrich et al., 2016a; Wu et al., 2016; Zhou et al., 
2016). In this paper, we describe the Sogou NMT 
systems submissions for the WMT 2017 Chi-
nese→English and English→Chinese translation 
tasks. 

Overview of the systems can be described as fol-
lows: we implement a multi-layer attention-based 
encoder-decoder integrated with recent promising 
techniques in NMT, including that we use subword 
units based on byte pair encoding (BPE) rather than 
words as modelling units (Sennrich et al., 2016b) 
and layer normalization (Ba et al., 2016) to isolated 
layers. And we improve the performance using en-
semble based four systems of the same network 
                                                        
1 Automatic rankings are from http://matrix.statmt.org. 

trained with different random seeds of parameter 
initialization.  

In addition, we improve the performance further 
by reranking the n-best translation lists with some 
effective features, including the target-bidirectional 
models, target-to-source models, and n-gram lan-
guage models. And we use another NMT model to 
translate the recognized person names for the Chi-
nese→English task, in order to improve the perfor-
mance of unknown named entity translation. 

Our Chinese→English system achieved the 
highest cased BLEU among all 20 submitted sys-
tems, and our English→Chinese system ranked the 
third out of 16 submitted systems. 

2 Neural Machine Translation  

Our NMT model follows the common attentional 
encoder-decoder networks (Bahdanau et al., 2015). 
We implement a deep multi-layer Long Short Term 
Memory (LSTM) recurrent neural network for both 
the encoder and decoder. In our setup, the encoder 
has one bi-directional LSTM layer followed by two 
uni-directional LSTM layers. The decoder has 
three uni-directional LSTM layers. Similar to the 
conditional GRU used in DL4MT (Firat and Cho, 
2016), we use conditional LSTM (cLSTM) for the 
top layer of decoder instead of standard LSTM. 
The encoder takes the model’s input sequence as 
input and encodes it into a fixed-size context vector. 
We only use the bottom layer output of the decoder 
to obtain attentional context vector, which is used 
to predict next target word at the top layer of the 
decoder combining with the previous hidden state 
and the previously generated words. 

We utilize layer normalization (Ba et al., 2016) 
to isolated LSTM layers, a method that adaptively 
learns to scale and shift the incoming activations of 
a neuron on a layer-by-layer basis at each time step. 
Layer normalization can stabilize the dynamics of   
hidden layers in the network and accelerate the 
convergence speed of deep neural networks.  
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All the weight parameters are initialized uni-

formly in [-0.02, 0.02], except for the square matrix 
weight parameters are initialized by orthogonal in-
itialization (Henaff et al., 2016). We use dropout for 
the models as suggested by (Zaremba et al., 2015). 
We clip the gradient norm to 1.0 (Pascanu et al., 
2013). Our main NMT decoder with a beam size of 
10 is used in all experiments. We validate the model 
every 10,000 mini-batches via BLEU on the news-
dev2017 data. We use a mini-batch size of 128, a 
hidden layer size 1024, a word embedding layer 
size of 512, filter out sentence pairs whose length 
exceeds 40 words, and reshuffle the training data 
between epochs as we proceed. 

We use Adam (Kingma and Ma, 2014) to train 
the model with a learning rate 0.0001. We use the 
multi-GPUs training framework via asynchronous 
SGD (Dean et al., 2012) and data parallelism (cop-
ies of the full model on each GPU). We train the 
model on a host server with eight NVIDIA Tesla 
M40 GPUs. We train four systems of the same net-
work with different random seeds of parameters in-
itialization, perform early stop for each system, and 
use a widely used, simple ensemble method (pre-
diction averaging) based on the best model of each 
system in order to improve the performance. 

3 Experiment Techniques 

This section describes several techniques inte-
grated in our NMT system.  

3.1 Reranking 
In order to get better translation result, we explore 
different NMT variant models and n-gram lan-
guage models as features in the reranking frame-
work. 

Target right-to-left NMT Model: The quality 
of the prefixes of translation hypotheses is much 
higher than that of the suffixes (Liu et al., 2016). In 
order to alleviate this unbalanced output problem, 
a variant right-to-left (R2L) NMT mode is trained 
on the training data, but the target data is inversed. 
We inverse the n-best lists generated by the main 
NMT model and calculate the likelihood which 
represents the conditional probabilities of reversed 
translations given the source sentences. 

Target-to-source NMT Model: Moreover, the 
translation may be inadequate and repeat or miss 
out some words (Tu et al., 2016). In order to cope 
with the inadequateness, we use the target-to-
source (T2S) reconstruction model trained with the 

swapped source and target training data. Because 
we participated in both the Chinese→English and 
English→Chinese tasks, the T2S model of Chi-
nese→English is just the main NMT model of Eng-
lish→Chinese, and vice-versa. 
N-gram language models: There exists a large 

amount of monolingual data for both Chinese and 
English. We train n-gram language models on each 
corpus and select the top k-best n-gram language 
models as reranking features based on perplexity 
(PPL) calculated on the newsdev2017 data. It is 
noted that we use character-level language models 
for English→Chinese task and word-level lan-
guage models for Chinese→English. For English, 
the language model is trained on the "News Crawl: 
articles from 2016" provided by WMT 2016 has 
the lowest PPL, which is even much lower than the 
language model trained on English side of the train-
ing data. 

We first generate an n-best lists with an ensem-
ble model for a source sentence. Then we calculate 
the likelihood score with T2S and R2L models. We 
also use n-gram language models to compute PPL 
for the translation candidates. We treat each model 
score as an individual feature. We use k-batched 
MIRA (Cherry et al. 2012) to tune the weights for 
all the features.  In order to get more diverse n-best 
lists, we also try to increase the beam size to further 
improve reranking.  

3.2 NMT with Tagging Model 
Translating rare words is hard for a conventional 
NMT model with a fixed relatively small vocabu-
lary so that a single unk symbol is used to represent 
the large number of out-of-vocabulary (OOV) 
words.  

Our proposed tagging model is similar to the 
placeholder mechanism (Crego et al., 2016), which 
aims at alleviating the rare words problem. When 
using tagging model to translate a sentence, we first 
use the pre-defined tags to replace the OOV words 
in the source sentence, then translate the source 
sentence with tags using the NMT model, and re-
cover the tags in translation based on the attention 
weights and a bilingual translation dictionary fi-
nally. 

The most significant difference between our tag-
ging model and placeholder mechanism (Crego et 
al., 2016) is that we don’t force beam search to gen-
erate tags, but only try to find exactly the same tag 
in the source side (if exists) when a tag is generated 
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in the translation, and choose the one with the high-
est alignment probability based on attention 
weights. Given this information, we can find the 
source side to which a target tag is aligned, and ob-
tain the translation of source tag via a bilingual dic-
tionary. 

Zhang et al., (2016) incorporated bilingual trans-
lation dictionary by using the dictionary to generate 
training data, where the bilingual dictionary is an ex-
ternal resource. While our work is of higher effi-
ciency and the bilingual dictionary is trained from 
our training data alone. 

In this paper, we use our CRF-based named entity 
recognize (NER) tagger to obtain the tags (place-
holders).  We also build the bilingual translation dic-
tionary from scratch based on the training data. 

Bilingual Translation Dictionary: The bilin-
gual dictionary is generated by the following steps: 
• Data preparation. We label both source-side 

and target-side words in the training data 
with our NER tagger and combine multi-
words labelled with named-entities tags to a 
single word with specific marks so that we 
can recover the word to the original form.  

• Word alignment. The word alignment is gen-
erated by using GIZA++ (Och and Ney, 
2003) given the above data. 

• Translation pairs extraction. The translation 
pairs are extracted according to the word align-
ment. We only extract those pairs whose both 
source and target side words are person name 
tags (labeled by our NER tagger), and represent 
the tag as a $TERM symbol in this paper. 

The bilingual translation dictionary can not only 
be used as a lookup dictionary for tagging model, 
but also as the training data for the neural person 
name translation model in Sec. 3.3. 

3.3 Named Entity Translation 
Due to most of rare words in news data are person 
named entities, we propose an approach to translate 
the person named entities with an external charac-
ter-based encoder-decoder model trained on the ex-
tracted parallel person names from the training data 
for the Chinese→English task individually, in or-
der to improve the performance of rare words trans-
lation. 

 For the person named entity translation model, 
the size of the Chinese vocabulary is 3000 charac-
ters, the size of the English vocabulary is 30 char-
acters, the size of hidden layers is 512, the size of 

embedding is 256, the size of mini-batch is 128, the 
sentence pairs whose length exceeds 30 characters 
are filtered out, and the training data is re-shuffled 
between epochs as we proceed. We validate the 
model every 1000 mini-batches via BLEU on the 
sample validation data (100 Chinese-English per-
son names pairs). We only train the model on a sin-
gle GPU and perform early stop. 

 Because many person names can be translated 
by the model, we only focus on the remaining per-
son names aligned to the unk symbols in the target 
side according to the attention weights. Given an 
input sentence, we first recognize the person named 
entities with our NER tagger, then generate BPE 
segmentation for the plain sentence, and mark each 
subword unit which is part of a person named entity 
with a single name-aware symbol finally. During 
decoding, the text with BPE marker is first trans-
lated by our NMT model. We mark the source to-
kens to which each target unk symbol is most 
aligned with the method of Luong et al. (2015). If 
the marked source token is also a part of person 
named, the original person name is recovered via 
the BPE marker. Then we replace the recovered 
person names with a single $TERM symbol. Finally, 
we translate the text with $TERM symbols and 
BPE marker again, and replace the target $TERM 
symbols with the translation of original person 
names generated by our neural person named entity 
translation model. 

 
Our proposed method is similar to Li et al. 

(2016), but we only use the extracted parallel per-
son names from training data instead of Wikipedia 
data. Although our method brings no significant 
improvement on BLEU, we find that it is useful for 
human evaluation especially when the source data 
contains person names. The translation of person 
names in Table 1 seems like the transliteration of 
Chinese person names. 

In addition, we also replace all the number 
named entities greater than 5000 of source sen-
tences with a single number-aware symbol. Then 

Chinese Person Name Translation 
史婧琳 

(Shǐ jìng lín) 
Shi Jinglin 

安东·瓦伊诺 
(Ān dōng • wǎ yī nuò) 

Anton Vaino 

法土拉·葛兰 
(Fǎ tǔ lā • gě lán) 

Fethullah Gulen 

Table 1: Examples of neural person named en-
tity translation. 
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the number-aware symbols of translation are re-
covered to their original number named entities 
based the attention weights. Finally, the recovered 
number named entities are translated with human 
rules. By this mean, nearly most of number named 
entities can be translated correctly.  

4 Experiments Settings and Results 

4.1 Data Processing 
The training data for the two translation tasks con-
sists of 12 million sentences pairs, including all the 
CWMT 2017 training data and 3 million sentences 
selected from the UN corpus by calculating the 
PPL with an English language model trained on the 
News Crawl: articles from 2016. We used the offi-
cial newsdev2017 as validation set for both Chi-
nese→English and English→Chinese systems. 

We first segmented the Chinese sentences with 
our Chinese word segmentation tool and tokenized 
English sentences with the scripts provided in Mo-
ses2 (Koehn et al., 2007). Then we used BPE seg-
mentation to process both source and target data. 
300K subword symbols are used for the source side 
and 150K subword symbols are used for target side. 
For both Chinese→English and English→Chinese 
systems, the size of the source vocabulary and tar-
get vocabulary is 300K and 150K respectively. We 
created about 250K translation pairs for the bilin-
gual dictionary described in Sec. 3.2. 

4.2 Chinese→English Systems 
Table 2 shows the Chinese→English translation re-
sults on validation set. We reported cased BLEU 
scores calculated with Moses’ multi-bleu.pl3 script. 
The baseline model is a conventional single-layer 
encoder-decoder model where we used a bi-LSTM 
layer for encoder and a cLSTM layer for decoder. 
Other settings are the same as our deep NMT 
model. 

Our deep encoder-decoder model improves the 
baseline by 0.8 BLEU. In order to get more diverse 
models and better ensemble results, we trained four 
deep models independently with different random 
initializations. Then we selected the best model 
based on validation set from four systems for 

                                                        
2 https://github.com/moses-smt/mosesdecoder/blob/mas-
ter/scripts/tokenizer/tokenizer.perl 
3 https://github.com/moses-smt/mosesdecoder/blob/mas-
ter/scripts/generic/multi-bleu.perl 

model ensemble. The ensemble result gives an ad-
ditional improvement of 1.1 BLEU over the best 
single deep NMT system.  

To evaluate the influence of person named entity 
translation on the performance of our NMT sys-
tems, we made an experiment on the newsdev2017 
data. As a result, a little improvement by 0.1 BLEU 
is achieved. One reason for such little improvement 
is that the performance is calculated on word level, 
the translation of person name is regarded wrong 
even when there is only one letter difference. On 
the other hand, the amount of training data with 
$TERM symbols is insufficient, so that the model 
is incapable to learn as good as the plain data. 

Additionally, to recover the case information, a 
SMT-based recaser is trained on the English corpus 
with Moses toolkit4. And we also use a few simple 
uppercase rules, for example capitalizing the word 
at the beginning of a sentence. 

According to the experiments in (Liu et al., 
2016), a left-right/right-left reranking may also 
help increase diversity. Hereafter, we used one T2L 
model and four T2S models for reranking, resulting 
in a 0.3 BLEU improvement. Due to the limitation 
of beam search for NMT, we observed that most of 
n-best lists are very similar. By increasing the beam 
size from 10 to 100, we achieved another 0.7 BLEU 
improvement. We also evaluated the influence of n-
gram language models for reranking. We trained 
several 5-gram language models and selected top 
ten best language models based on their PPL on 
validation set. We achieved another improvement 
by 0.5 BLEU. The last best system is our final sub-
mitted system. 

4 https://github.com/moses-smt/mosesdecoder/blob/mas-
ter/scripts/recaser/train-recaser.perl 

System BLEU 
baseline 19.4 
 +deep model 20.2 
 +ensemble (4 deep models) 21.3 
 +named entity translation 21.4 
 +reranking (1 R2L, 4 T2S) 21.7 
 +reranking (beam size 100) 22.4 
 +reranking (10 language models) 22.9 

Table 2: Chinese→English BLEU results on 
development set. Submitted system is the last 
system. 
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4.3 English→Chinese Systems 
Table 3 shows the English→Chinese translation re-
sults on validation set. All results are evaluated by 
character-level BLEU. Similar to the Chi-
nese→English systems, a shallow model and four 
deep models are trained independently. The deep 
model brings a 0.4 BLEU improvement over the 
shallow model baseline. The ensemble system im-
proves by 1.1 BLEU over single best deep model. 
The NE replacement improves by 0.1 BLEU. We 
also trained one R2L model and four T2S models 
for reranking. These variant models improve the 
system by 0.8 BLEU.  We observed a 0.2 BLEU im-
provement by increasing the beam size from 10 to 
100. Finally, we trained five Chinese language 
models for reranking, including three word-level 5-
gram language models and two character-level 5-
gram language models, for re-scoring the n-best 
lists, resulting in a 0.5 BLEU improvement. The last 
system is our final submitted English→Chinese 
system. 

For English→Chinese translation task, if a target 
unk symbol cannot be recovered by named entity 
tagging and translation model, we directly replace 
the target unk symbol with its aligned English word 
according to the attention weights. 

 

5 Conclusion 

We present the Sogou NMT systems for WMT 
2017 Chinese↔English news translation tasks. For 
both translation directions, our final systems are 
improved by 3.1~3.5 BLEU over baseline systems 
by using the following techniques: 1) a deep NMT 
model; 2) ensemble of diverse deep NMT models; 
3) reranking n-best lists with NMT variant models 
and n-gram language models; 4) named entity tag-
ging and translation model. Our submitted Chi-
nese→English system achieved the highest cased 
BLEU among all 20 submitted systems, and our 

English→Chinese system ranked third out of 16 
submitted system. 
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