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Abstract

This paper describes the statistical
machine translation system developed
at RWTH Aachen University for the
English→German and German→English
translation tasks of the EMNLP 2017
Second Conference on Machine Transla-
tion (WMT 2017). We use ensembles of
attention-based neural machine translation
system for both directions. We use the
provided parallel and synthetic data to
train the models. In addition, we also cre-
ate a phrasal system using joint translation
and reordering models in decoding and
neural models in rescoring.

1 Introduction

We describe the statistical machine transla-
tion (SMT) systems developed by RWTH
Aachen University for the German→English and
English→German language pairs of the WMT
2017 evaluation campaign. After testing multiple
systems and system combinations we submitted
an ensemble of multiple NMT networks since it
outperformed every tested system combination.

This paper is organized as follows. In Section 2
we describe our data preprocessing. Section 3 de-
picts the generation of synthetic data. Our transla-
tion software and baseline setups are explained in
Section 4, including the attention-based recurrent
neural network ensemble in Subsection 4.1 and
phrasal joint translation and reordering (JTR) sys-
tem in Subsection 4.2. Our experiments for each
track are summarized in Section 5.

2 Preprocessing

We compared two different preprocessings for
German→English for the attention-based recur-
rent neural network (NMT) system. The first pre-

processing is similar to the preprocessing used in
our WMT 2015 submission (Peter et al., 2015),
which was optimized for phrase-based translation
(PBT).

Secondly, we utilize a simplified version which
uses tokenization, frequent casing, and simple cat-
egories only. Note, that the changes in prepro-
cessing have a huge negative impact on the PBT
system, while slightly improving the NMT system
(Table 1). We therefore use the simplified version
for all pure NMT experiments and use the old pre-
processing for all other systems.

The phrasal JTR system uses the preprocess-
ing technique that is optimized for PBT, as it re-
lies on phrases as translation candidates. The pre-
processing is similar to the one used in the WMT
2015 submission, but without any pre-ordering of
source words. The English→German NMT sys-
tem utilizes only the simplified preprocessing.

3 Synthetic Source Sentences

To increase the amount of usable parallel train-
ing data for the phrase-based and the neural ma-
chine translation systems, we translate a subset of
the monolingual training data back to English in
a similar way as described by (Bertoldi and Fed-
erico, 2009) and (Sennrich et al., 2016b).

We create a baseline German→English NMT
system as described in 4.1 which is trained with all
parallel data to translate 6.9M English sentences
into German. For the other direction we use this
newly created synthetic data and the parallel cor-
pus to train a baseline English→German system,
which in turn is used to translate additional 4.4M
sentences from English to German.

Further, we append the synthetic data created by
(Sennrich et al., 2016a). This results in additional
4.2M sentences for the German→English system
and 3.6M for the opposite direction.
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newstest2015 newstest2016 newstest2017
Systems PP BLEU TER CTER BEER BLEU TER CTER BEER BLEU TER CTER BEER

PBT WMT15 27.9 52.7 53.9 60.5 33.6 47.8 49.1 63.5 28.9 52.2 54.3 60.8
PBT simple 26.6 54.3 55.3 59.1 31.4 49.4 50.8 62.1 27.1 53.7 56.1 59.4
NMT WMT15 27.3 53.0 52.7 59.7 32.1 48.4 48.4 62.8 27.7 53.0 53.0 59.9
NMT simple 27.7 52.3 52.4 59.8 32.1 47.9 47.8 62.7 27.9 52.3 52.5 60.2

Table 1: Compares the performance of the preprocessing (PP) optimized for phrase-based systems
(WMT15) or a very simple setup (simple), as described in Section 2 on a PBT and a Neural Machine
Translation (NMT) system.

newstest2015 newstest2016 newstest2017
Individual Systems BLEU TER CTER BEER BLEU TER CTER BEER BLEU TER CTER BEER

Baseline 27.7 52.3 52.4 59.8 32.1 47.9 47.8 62.7 27.9 52.3 52.5 60.2
+ fertility 28.2 51.8 51.9 60.2 32.9 47.1 47.3 63.2 28.6 51.5 51.7 60.6

+ synthetic data 29.9 50.1 49.3 61.4 36.7 44.0 44.0 65.2 30.6 49.7 49.6 61.8
+ 2-layers decoder 30.7 49.7 48.3 61.8 37.5 43.6 43.4 65.5 31.8 49.1 49.1 62.3

+ filtered 30.8 49.7 48.5 61.8 37.9 43.1 42.8 65.8 31.7 49.1 48.9 62.2
+ anneling scheme 31.1 49.8 48.4 61.9 37.9 43.6 43.1 65.7 32.2 48.9 48.6 62.4

Base system 31.3 49.5 48.2 62.0 37.9 43.6 43.1 65.7 32.1 49.1 48.7 62.4
+ connected all LSTM cells 30.7 49.8 49.0 61.5 37.4 43.9 43.5 65.4 31.7 49.3 48.9 62.2
+ fertility 31.1 49.8 48.4 61.9 37.9 43.6 43.1 65.7 32.2 48.9 48.6 62.4
+ alignment feedback 31.3 49.8 48.3 61.9 37.7 43.6 43.2 65.6 32.2 49.1 48.4 62.4
Ensemble 32.0 48.9 47.5 62.3 38.8 42.7 42.5 66.2 33.1 48.3 47.7 63.0

Table 2: Results of the individual systems for the German→English task. The base system contains
synthetic data, 2-decoder layers, filtered rapid data, and was trained with annealing learning rate instead
of merging. Details are explained in Section 4.1.

4 SMT Systems

For the WMT 2017 evaluation campaign, we have
employed two different translation system archi-
tectures for the German→English direction:

• phrasal joint translation and reordering

• attention-based neural network ensemble

The word alignments required by some models are
obtained with GIZA++ (Och and Ney, 2003). We
use mteval from the Moses toolkit (Koehn et al.,
2007) and TERCom to evaluate our systems on
the BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006) measures. Additional we use BEER

(Stanojević and Sima’an, 2014) and CTER (Wang
et al., 2016). All reported scores are case-sensitive
and normalized.

4.1 Attention-Based Recurrent Neural
Network

The best performing system provided by the
RWTH is an attention-based recurrent neural net-
work (NMT) similar to (Bahdanau et al., 2015).
We use an implementation based on Blocks (van
Merriënboer et al., 2015) and Theano (Bergstra
et al., 2010; Bastien et al., 2012).

The encoder and decoder word embeddings are
of size 620. The encoder consists of a bidi-
rectional layer with 1000 LSTMs with peephole
connections (Hochreiter and Schmidhuber, 1997a)
to encode the source side. Additionally we ran
experiments with two layers using 1000 LSTM
nodes each where we optionally connect all inter-
nal states of the first LSTM layer to the second.
The data is converted into subword units using
byte pair encoding with 20000 operations (Sen-
nrich et al., 2016c).

During training a batch size of 50 is used. The
applied gradient algorithm is Adam (Kingma and
Ba, 2014) with a learning rate of 0.001 and the four
best models are averaged as described in the be-
ginning of (Junczys-Dowmunt et al., 2016). Later
experiments are done using Adam followed by an
annealing scheme for learning rate reduction for
SGD, as described in (Bahar et al., 2017).

The network is trained with 30% dropout for up
to 500K iterations and evaluated every 10000 iter-
ations on newstest2015. Decoding is done using a
beam search with a beam size of 12.

If the neural network creates a special num-
ber token, the corresponding source number with
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the highest attention weight is copied to the tar-
get side. The synthetic training data is created and
used as described in Section 3.

In addition, we tested methods to provide the
alignment computation with supplementary infor-
mation comparable with (Tu et al., 2016; Cohn
et al., 2016). We model the word fertility and feed-
back the information of the last alignment points
using a conventional layer with a window size of 5.

The final system was an ensemble of multiple
systems each trained with slightly different set-
tings as shown in Table 2 and 4.

4.2 Phrasal Joint Translation and
Reordering System

The phrasal Joint Translation and Reordering
(JTR) decoder is based on the implementation of
the source cardinality synchronous search (SCSS)
procedure described in (Zens and Ney, 2008).
The system combines the flexibility of word-level
models with the search accuracy of phrase can-
didates. It incorporates the JTR model (Guta
et al., 2015), a language model (LM), a word class
language model (wcLM) (Wuebker et al., 2013),
phrasal translation probabilities, conditional JTR
probabilities on phrase level and additional lexical
models for smoothing purposes. The phrases are
annotated with word alignments to allow for the
application of word-level models.

A more detailed description of the translation
candidate generation and the search procedure is
given in (Peter et al., 2016). The phrase extrac-
tion and the estimation of the translation mod-
els are performed on all bilingual data excluding
the rapid2016 corpus, the newstest2008-2013 and
newssyscom2009 corpora and the first part of the
synthetic data (Section 3). The non-synthetic data
was filtered to contain only sentences with 4 un-
aligned words at most. In total, this results in
3.57M parallel and 6.94M synthetic sentences.

4.2.1 JTR Model

A JTR sequence (f̃ , ẽ)Ĩ1 is an interpretation of a
bilingual sentence pair (fJ

1 , e
I
1) and its word align-

ment bI1. The joint probability p(fJ
1 , e

I
1, b

I
1) can be

modeled as:

p(fJ
1 , e

I
1, b

I
1) = p((f̃ , ẽ)Ĩ1)

=

Ĩ∏

i=1

p((f̃ , ẽ)i|(f̃ , ẽ)i−1
i−n+1).

The Viterbi alignments for both translation direc-
tions are obtained using GIZA++ (Och and Ney,
2003), merged and then used to convert the bilin-
gual sentence pairs into JTR sequences. A 7-
gram JTR joint model (Guta et al., 2015), which
is responsible for estimating the translation and
reordering probabilities, is trained on those. It is
estimated with interpolated modified Kneser-Ney
smoothing (Chen and Goodman, 1998) using the
KenLM toolkit (Heafield et al., 2013).

4.2.2 Language Models
The phrase-based translation system uses two lan-
guage models (LM) that are estimated with the
KenLM toolkit (Heafield et al., 2013) and inte-
grated into the decoder as separate models in the
log-linear combination: A 5-gram LM and a 7-
gram word-class language model (wcLM). Both
use interpolated modified Kneser-Ney smoothing.
For the word-class LM, we train 200 word classes
on the target side of the bilingual training data us-
ing an in-house tool (Botros et al., 2015) similar
to mkcls (Och, 2000). We have not tuned the
number of word classes, but simply used 200, as it
has proved to work well in previous systems. With
these class definitions, we apply the technique de-
scribed in (Wuebker et al., 2013) to estimate the
wcLM on the same data as the conventional LM.

Both models are trained on all monolingual cor-
pora, except the commoncrawl corpus, and the tar-
get side of the bilingual data (Section 4.2), which
sums up to 365.44M sentences and 7230.15M run-
ning words, respectively.

4.2.3 Log-Linear Features in Decoding
In addition to the JTR model and the language
models, JTR conditional models for both direc-
tions (Peter et al., 2016) are included into the log-
linear framework. They are computed offline on
the phrase level. Moreover, the system incorpo-
rates phrase translation models estimated as rela-
tive frequencies for both directions.

Because the JTR models are trained on Viterbi
aligned word-pairs, they are limited to the context
provided by the aligned word pairs and sensitive to
the quality of the word alignments. To overcome
this issue, we incorporate IBM 1 lexical models
for both directions. The models are trained on all
available bilingual data and the synthetic data, see
Section 3.

The heuristic features used by the decoder are
an enhanced low frequency penalty (Chen et al.,
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2011), a penalty for unaligned source words and
a symmetric word-level distortion penalty. Thus,
different phrasal segmentations have the same re-
ordering costs if they are equal in their word align-
ments. An additional word bonus helps to control
the length of the hypothesized translation by coun-
teracting the language model, which prefers trans-
lations to be rather short.

The decoder also incorporates a gap distance
penalty (Durrani et al., 2011). All parameter
weights are optimized using MERT (Och, 2003)
towards the BLEU metric.

An attention-based recurrent neural model is
applied as an additional feature in rescoring 1000-
best lists, see Section 4.2.4.

4.2.4 Attention-based Recurrent Neural
Network in Re-Ranking

An attention-based recurrent neural network sim-
ilar to those in Subsection 4.1 is used within the
log-linear framework for rescoring 1000-best lists
generated by the phrasal JTR decoder. The model
is trained on 6.96M sentences of the synthetic
data.

The network uses the 30K most frequent words
as source and target vocabulary, respectively. The
decoder and encoder word embeddings are of
size 500, the encoder uses a bidirectional LSTM
layer with 1K units (Hochreiter and Schmidhuber,
1997b) to encode the source side. An LSTM layer
with 1K units is used by the decoder.

Training is performed for up to 300K iterations
with a batch size of 50 and Adam (Kingma and
Ba, 2014) is used as the optimization algorithm.
The parameters of the best four networks on news-
test2015 with regards to BLEU score are averaged
to produce the final model used in reranking.

4.2.5 Alignment-based Recurrent Neural
Network in Re-Ranking

Besides the attention-based model, we apply re-
current alignment-based neural networks in 1000-
best rescoring. These networks are similar to the
ones used in rescoring in (Alkhouli et al., 2016).

We use a bidirectional alignment model that has
a bidirectional encoder (2 LSTM layers), a uni-
directional target encoder (1 LSTM layer), and
an additional decoder LSTM layer. The model
pairs each target state computed at target posi-
tion i − 1 with its aligned bidirectional source
state. The alignment information is obtain using
GIZA++ in training, and from the 1000-best lists

during rescoring. The paired states are fed into
the decoder layer. The model predicts the discrete
jump from the previous to the current source po-
sition. The model is described in (Alkhouli and
Ney, 2017).

We also use a bidirectional lexical model to
score word translation. It uses an architecture sim-
ilar to that of the alignment model, with the ex-
ception that pairing is done using the source states
aligned to the target position i instead of i−1. We
also add weighted residual connections connecting
the target states and the decoder states in the lex-
ical model. We train two variants of this model,
one including the target state, and one dropping it
completely.

All models use four 200-node LSTM layers
with the exception of the lexical model that in-
cludes the target state, which uses 350 nodes per
layer. We use a class-factored output layer of 2000
classes, where 1000 classes are dedicated to the
most frequent words, while the remaining 1000
classes are shared. This enables handling large
vocabularies. The target vocabulary is reduced to
269K words, while the source vocabulary is re-
duced to 317K words

4.3 System Combination

System combination is applied to produce consen-
sus translations from multiple hypotheses obtained
from different translation approaches. The con-
sensus translations typically outperform the indi-
vidual hypotheses in terms of translation quality.
A system combination implementation developed
at RWTH Aachen University (Freitag et al., 2014)
is used to combine the outputs of the different en-
gines.

The first step in system combination is the
generation of confusion networks (CN) from I
input translation hypotheses. We need pair-
wise alignments between the input hypothe-
ses. The alignments are obtained by METEOR
(Banerjee and Lavie, 2005). The hypotheses are
then reordered to match a selected skeleton hy-
pothesis regarding the order of words. We gen-
erate I different CNs, each having one of the input
systems as the skeleton hypothesis. The final lat-
tice is the union of all I-many generated CNs.

The decoding of a confusion network consists
of finding the shortest path in the network. Each
arc is assigned a score of a linear model combi-
nation of M different models, which includes a
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newstest2015 newstest2016 newstest2017
Individual Systems BLEU TER CTER BEER BLEU TER CTER BEER BLEU TER CTER BEER

Phrasal JTR + LM 29.7 52.5 50.5 61.3 33.9 48.0 46.5 64.2 29.4 53.1 51.6 61.2
+ wcLM 30.3 51.9 50.4 61.5 34.2 47.3 46.3 64.4 30.0 52.2 51.2 61.4

+ attention NMT 31.3 51.1 49.3 61.9 35.3 46.5 45.3 64.6 31.0 51.3 50.4 61.7
+ attention NMT 31.0 51.2 49.5 61.8 35.0 46.7 45.3 64.7 30.6 51.7 50.5 61.7
+ alignment NMT (x3) 30.9 51.0 49.6 61.8 35.3 46.5 45.6 64.8 30.7 51.6 50.7 61.7

+ attention NMT 31.3 50.9 49.3 61.9 35.3 46.4 45.3 64.8 30.9 51.2 50.2 61.8
NMT ensemble 32.0 48.9 47.5 62.3 38.8 42.7 42.5 66.2 33.1 48.3 47.7 63.0
System Combination 31.9 49.4 48.0 62.1 38.0 43.5 43.1 65.8 32.7 48.6 48.1 62.7

Table 3: Results of the individual systems for the German→English task. The system combination
contains the system in line 3, 6, and 7.

word penalty, a 3-gram LM trained on the input
hypotheses, a binary primary system feature that
marks the primary hypothesis and a binary voting
feature for each system. The binary voting feature
for the system outputs 1 if the decoded word ori-
gins from that system and 0 otherwise.

The model weights for the system combination
are trained with MERT.

5 Experimental Evaluation

We have mainly focused on building a strong
German→English system and run most experi-
ments on this task. We used newstest2015 as the
development set.

After switching the preprocessing as described
in Section 2, we have added the word fertil-
ity, which improves the baseline system by about
0.8 BLEU on newstest2016 as shown in Table 2.
Adding the synthetic data as described in Section 3
gives a gain of 3.8 BLEU on newstest2016. Chang-
ing the number of layers in the decoder from one
to two improves the performance by additional 0.8
BLEU. Filtering the rapid data corpus by scor-
ing all bilingual sentences with an NMT system
trained on all parallel data and removing the sen-
tences with the worst scores improves the sys-
tem on newstest2016 by 0.4 BLEU, but yield only
in a small improvement on newstest2015. Sur-
prisingly, it even decreases the performance on
newstest2017, as observed at a later point in time.
Switching from merging the 4 best networks in
a training run to continuing the training with an
annealing scheme for learning rate reduction for
SGD, as described in (Bahar et al., 2017), has
barely changed the performance on newstest2016.
Nevertheless, we have decided to keep on using it,
since it slightly helped on newstest2015.

We have used this, without the word fertility, as

a base setup to train multiple systems with slightly
different settings for an ensemble. In the first set-
ting we use all LSTM states of the first decoder
layer as input for the second decoder layer. This
actually hurts the performance. Adding the word
fertility or the alignment feedback as additional in-
formation does not have a large impact. Note, that
the word fertility helpes when it is added to the
baseline system - we are not sure why the effect
disappears. Combining systems in one ensemble
improves the system again by 1.1 BLEU on news-
test2016.

We also combined the NMT system with the
strongest phrasal JTR system and a few other com-
binations as well, but none of them has been able
to improve over the NMT ensemble (Table 3). We
therefore used the NMT system as our final sub-
mission. In the table, we can see that using three
alignment-based models is comparable to using
a single attention-based model. Note, however,
that these models have relatively small LSTM lay-
ers of 200 and 350 nodes per layer. Meanwhile,
the attention model uses 1000-node LSTM layers.
When added on top of the alignment-based mix,
the attention model only improves the mix slightly.

For the English→German system we have sim-
ply used the three best working NMT systems
from the German→English setup and combined
them in an ensemble. The word fertility and align-
ment feedback extensions also did not improve the
performance, but the ensemble increased the over-
all performance by 1 BLEU on newstest2016. Due
to computation time limitations, we did not suc-
ceed in building a phrasal JTR system on time.

6 Conclusion

The RWTH Aachen University has participated
with a neural machine translation ensemble for the
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newstest2015 newstest2016 newstest2017
Individual Systems BLEU TER CTER BEER BLEU TER CTER BEER BLEU TER CTER BEER

NMT 26.7 54.7 50.9 60.0 31.8 48.4 46.6 63.6 25.4 56.2 52.8 59.5
+ fertility 26.8 54.8 50.5 60.1 31.5 48.6 46.7 63.4 25.3 56.2 52.9 59.5
+ alignment feedback 26.3 55.5 51.5 59.7 31.3 48.8 47.0 63.3 25.1 56.7 53.1 59.3
Ensemble 27.4 54.1 50.2 60.4 32.8 47.4 45.7 64.1 26.0 55.5 51.9 59.9

Table 4: Results of the individual systems for the English→German task.

German→English and English→German WMT
2017 evaluation campaign. All networks are
trained using all given parallel data, back-
translated synthetic data, two LSTM layers in the
decoder. The rapid corpus has been filtered to
remove the most unlikely sentences. Adam fol-
lowed by annealing scheme of learning rate reduc-
tion is used for optimization. Four networks are
combined for the German→English ensemble and
three for the English→German ensemble. In ad-
dition, we have submitted a phrasal JTR system,
which has come close to the performance of a sin-
gle neural machine translation network for news-
test2017. Using system combination has not im-
proved the performance of the best neural ensem-
ble.
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