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Abstract

This paper describes LIMSI’s submissions
to the news shared task at WMT’17 for
English into Czech and Latvian, as well
as related experiments. This year’s novel-
ties consist in the use of a neural machine
translation system with a factored output
predicting simultaneously a lemma deco-
rated with morphological information and
a fine-grained part-of-speech. Such a type
of system drew our attention to the spe-
cific step of reinflection, where lemmas
and parts-of-speech are transformed into
fully inflected words. Finally, we ran ex-
periments showing an efficient strategy for
parameter initialization, as well as data fil-
tering procedures.

1 Introduction

The contribution of LIMSI laboratory to the WMT
2017 News shared task consisted in the submis-
sion of different systems for English-to-Czech, as
well as with this year’s “guest” language pair:
English-to-Latvian.

Our main focus was on translation into mor-
phologically rich languages (MRL), a challenging
question in current state-of-the-art neural machine
translation (NMT) architectures. Indeed, the va-
riety of target word forms in these languages re-
quires the use of an open vocabulary. To tackle this
issue, we have experimented with a factored neu-
ral machine translation system predicting simulta-
neously at each timestep a normalized word and a
fine-grained part-of-speech (section 3). A normal-
ized word (section 5.2) is a specific representation
where we removed part of the morphological con-
tent of the word, keeping only the features that are
relevant to the source language.

Such a factored architecture required a non-
trivial step consisting in reinflecting the MT pre-
dictions, i.e. transforming normalized words and
parts-of-speech into fully inflected words. To this
end, we have experimented with a character-based
language model that is used to select ambigu-
ous word forms returned by a look-up table (sec-
tion 5.5).

Further experiments show the use of an auto-
encoder to initialize the NMT system’s encoder
(section 4.1), which enables a faster convergence
of the parameter and therefore a lower training
time.

Finally, we report experiments performed with
different data filtering procedures (section 4.2) and
their impact on translation quality.

2 Data and Preprocessing

The pre-processing of English data relies on in-
house tools (Déchelotte et al., 2008). All the
Czech data were tokenized and truecased using the
Moses toolkit (Koehn et al., 2007). PoS-tagging
was performed with Morphodita (Straková et al.,
2014). The pre-processing of Latvian was pro-
vided by TILDE.1 Latvian PoS-tags were obtained
with the LU MII Tagger (Paikens et al., 2013). All
the data used to train our systems were provided at
WMT’17.2

For English-to-Czech, the parallel data used
consisted in nearly 20M sentences from a subset
of WMT data relevant to the news domain: News-
commentary, Europarl and specific categories of
the Czeng corpus (news, paraweb, EU, fiction).
Newstest-2015 was used for validation and the
systems are tested on Newstest-2016 and 2017.

All systems were also trained on synthetic par-
allel data (Sennrich et al., 2016a). The Czech

1www.tilde.com
2www.statmt.org/wmt17
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monolingual corpus News-2016 was backtrans-
lated to English using the single best system
provided by the University of Edinburgh from
WMT’16.3 We then added five copies of News-
commentary and the news subcorpus from Czeng,
as well as 5M sentences from the Czeng EU
corpus randomly selected after running modi-
fied Moore-Lewis filtering with XenC (Rousseau,
2013). This resulted in about 14M parallel sen-
tences.

The English-to-Latvian systems used all the
parallel data provided at WMT’17. The DCEP
corpus was filtered with the Microsoft sentence
aligner4 and using modified Moore-Lewis. We
kept the best 1M sentences, which led to a total of
almost 2M parallel sentences. The systems were
validated on 2k sentences held out from the LETA
corpus and we report results on newsdev-2017 and
newstest-2017.

Training was carried on with synthetic parallel
data. We used a backtranslation of the monolin-
gual corpora News-2015 and 2016 provided by the
University of Edinburgh (Moses system). To these
corpora were added 10 copies of the LETA corpus,
as well as 2 copies of Europarl and Rapid.

Bilingual Byte Pair Encoding (BPE) models
(Sennrich et al., 2016b) for each language pair and
system setup were learned on the bibtext (ie. not
synthetic) parallel data used for the MT system.
90k merge operations where performed to obtain
the final vocabularies.

3 System Setup

Results are reported for two NMT systems: Nema-
tus (Sennrich et al., 2017) and NMTPY (Caglayan
et al., 2017).

3.1 NMTPY

Once the data was preprocessed, only sentences of
a maximum length of 50 were kept in the training
data, except for the setup where cluster IDs were
split in normalized words (see § 5). In this case,
we set the maximum length to 100.

All NMTPY systems have an embedding di-
mension of 512 and hidden states of dimension
1024 for both encoder and decoder, which are im-
plemented as GRU units. Dropout is enabled on

3http://data.statmt.org/rsennrich/
wmt16_systems/

4http://research.microsoft.com/apps/
catalog/

source embeddings, encoder states, as well as out-
put layer. When training starts, all parameters are
initialized with Xavier (Glorot and Bengio, 2010).
In order to slightly speed up training on bitext par-
allel data, the learning rate was set to 0.0004, pa-
tience to 30 with validation every 20k updates. On
synthetic data, we finally set the learning rate to
0.0001 and performed validation every 5k updates.
These systems were tuned with Adam optimizer
(Kingma and Ba, 2014) and have been training for
approximately 1 month.

3.2 Nematus

The setup for Nematus is very similar to the one
presented in the previous section. Training was
performed on sentences with the same maximum
length, the same embedding and hidden unit size.
The difference lies in the fact that dropout for Ne-
matus systems was enabled on all layers. The op-
timizer used was Adadelta (Zeiler, 2012) and all
systems had their learning rate set to 0.0001.

4 Experiments

4.1 Parameter initialization

In order to speed up the convergence of the train-
ing procedure we tried to initialize the encoder pa-
rameters with an a priori-trained model, instead of
using random initialization. For the English-to-
Czech translation system, this initial model was
trained to translate from English into English. In
order to do so, the same English corpus was fed
into the neural model on both source and target
side. After few updates according to the BLEU
score on the validation set (which was higher than
99) it was possible to stop the training of this
model and use the encoder parameters for the ini-
tialization of the main NMT system.

4.2 Data Filtering

The English-Czech training data provided at
WMT’17 was very large and some corpora con-
tained a lot of noise. For instance, we noticed sev-
eral duplicate sentences in the Czeng EU paral-
lel corpus and entire paragraphs in it were in lan-
guages other than English-Czech. Therefore, we
decided to experiment with a system not contain-
ing the Czeng EU corpus. However, this lead to a
degradation in terms of BLEI (see Table 1).

In another attempt, instead of removing the EU
corpus, a filtering process was performed to dis-
card the duplicate sentences on both sides. As
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Figure 1: Comparison of different beam-size in
terms of BLEU. The evaluation is performed on
Newstest-2016 and Newstest-2017 English-Czech
filtered data.

shown in Table 1, filtering the data results in an im-
provement in terms of BLEU for Newstest-2017,
which is also consistent with the results we ob-
tained on Newstest-2016 and validation set.

The filtering process was later followed by a
sentence alignment check using the Microsoft sen-
tence aligner. However, no further improvement
was achieved with this method. The filtered-
only data has shown the best performance on both
Newstest-2016 and Newstest-2017 corpora.

Table 1: Comparison of BLEU scores of different
filtering processes for English-to-Czech with Ne-
matus systems. All the systems are evaluated with
the beam search of size 2. The term “basic” is
referred to the data without any filtering or align-
ment. The term discard EU is adopted to refer to
the training without Czeng EU corpus.

data filtering Newstest-2016 Newstest-2017
basic 18.66 15.67
discard EU 18.09 16.07
filt 19.31 16.37
filt+align 18.72 15.91

It is worthwhile to note that the model which
had the best BLEU score performance on the vali-
dation data (Newstest-2015) resulted in the BLEU
scores of 18.43 and 15.81 on Newstest-2016 and
Newstest-2017, respectively.

Figure 1 shows the accuracy wrt. different sizes
of beam during decoding. The model was trained
using the English-Czech filtered data as reported
in the filt row of the Table 1. We observed a sim-

ilar trend on both Newstest-2016 and Newstest-
2017, where the best performance was obtained
with a beam of size 3 for both test sets.

5 Submitted systems

5.1 Factored NMT
Additionally to standard NMTPY systems (base-
lines), our best submissions in terms of BLEU at
WMT’17 consisted in factored NMT systems.

The architecture of such systems was intro-
duced in (Garcı́a-Martı́nez et al., 2016). The spe-
cific setup we have used for the following factored
systems consisted in an architecture that enables
training towards a dual objective: at each timestep
in the output sentence, a word and a PoS-tag are
produced. Each one of these objectives produces a
cost, that is summed in order to compute the gra-
dients to be backpropagated.

The encoder and attention mechanism remain
the same as in the baseline architecture. While
in the baseline a decoder state takes as input the
embedding of the prediction made at the previous
step, a factored NMT decoder unit takes as input a
concatenation of the two previous predictions for
each factor. In this situation, the factored NMT
systems deal with two sets of embeddings on tar-
get side.

Another difference lies in the hidden-to-output
layer. In our setup, we have used an architec-
ture with two different such layers: the first one
takes as input the representation of the previous
prediction of the first factor (word) and the sec-
ond one takes the previous second factor predic-
tion (PoS). Each layer is then passed through a last
feed-forward layer leading to distinct softmax lay-
ers.

While various word representations (Burlot
et al., 2017) can be used in the first factor, our sys-
tem predict at each timestep on the target side a
normalized word and a PoS-tag.

fully infl. norm. words
plain kočky kočka+Noun+7
subword ko- čky ko- čka- Noun+7

Table 2: Different representations of the Czech
word kočky (cats).

5.2 Normalization of Target Morphology
Both Czech and Latvian are morphologically rich
languages, as opposed to the English source. Such
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Newstest-2016 Newstest-2017
BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓

baseline 24.24 57.41 52.81 19.89 54.51 58.29
factored 23.77 57.50 52.53 19.95 54.71 58.30
+ nk-best 24.59 57.95 52.08 20.54 54.99 58.06

Table 3: Scores for English-to-Czech systems
Newsdev-2017 Newstest-2017

BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓
baseline 22.48 57.69 52.83 14.86 52.00 62.57
+ n-best 23.11 58.13 52.21 15.22 52.37 62.08
factored 21.33 57.11 53.56 15.10 52.19 62.52
+ nk-best 24.19 58.72 51.89 16.30 53.18 61.11

Table 4: Scores for English-to-Latvian systems

differences between the source and target lan-
guages leads to difficulties. Indeed, an English
adjective, that is invariable, may be translated into
multiple different word forms corresponding to the
same lemma. Such a variety of forms on the target
side leads to serious sparsity issues and makes the
estimate of reliable translation probabilities hard.

To address this issue, both Czech and Latvian
vocabularies have been normalized. The normal-
ization of a MRL consists in selecting the morpho-
syntactic information that should remain encoded
in a word. This selection is motivated by the fact
that a target word contains more specificities than
its source-side counterpart(s), leading to a lack of
symmetry between both languages. For instance,
when translating from English into Czech, target
nouns mark grammatical case, which is removed
in (Burlot et al., 2016) in order to make Czech
nouns look more like their English translation(s).

Such a normalization is usually performed us-
ing hand-crafted rules and requires expert knowl-
edge for each language pair. In this paper, nor-
malized words are obtained with an automatic
and data-driven method5 introduced in (Burlot and
Yvon, 2017a).

In a nutshell, it performs a clustering of the mor-
phologically rich language by grouping together
words that tend to share the same translation(s) in
English. In order to measure this translation sim-
ilarity and using word alignments, the conditional
entropy of the translation probability distribution
over the English vocabulary is computed for each
word form. The model merges two words when-
ever the resulting aggregate cluster does not lead
to an increase of conditional entropy, which guar-
anties a minimal loss of information during the

5The source code is available at github.com/
franckbrl/bilingual_morph_normalizer

clustering procedure.
The normalization model is delexicalized

and operates at the level of PoS. Each word
is represented as a lemma, a coarse PoS
and a sequence of morphological tags (e.g.
kočka+Noun+Sing+Accusative), therefore a
merge consists in grouping into one cluster two
different tag sequences. As a result of this pro-
cedure, we obtain words represented as a lemma
and a cluster identificator (ID), i.e. a coarse PoS
and an arbitrary integer, like kočka+Noun+7
in Table 2. In this example, the cluster ID
Noun+7 stands for a set of fine-grained PoS, like
{ Sing+Nominative, Sing+Accusative, ... }.

In our setup, the cluster ID was systematically
split from the lemma. BPE segmentation was thus
learned and applied to lemmas. Whenever the fac-
tored NMT system predicts a lemma in the first
factor, it is forced to predict a null PoS in the sec-
ond factor. On the other hand, when a split cluster
ID is predicted, the second factor should output
an actual PoS. This specific treatment of the sec-
ond factor is expected to give the system a better
ability to map a word to a PoS that is relevant to
it, thus avoiding, for instance, the prediction of a
verbal PoS for the Czech noun kočka (cat).

The normalization of the Czech data was trained
on the bibtext parallel data used to train the
MT systems (see § 2), except Czeng fiction and
paraweb subcorpora, which lead to over 10M sen-
tences. As for the normalization of Latvian data it
was trained on the same bitext parallel sentences
used to train the MT systems.

5.3 Reinflection

The factored systems predict at each time step a
normalized word and a PoS-tag, which requires a
non-trivial additional step producing sentences in
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Figure 2: Architecture of the neural reinflection model

a fully inflected language. We refer to this last step
as reinflection.

Given a lexical unit and a PoS-tag, word forms
are retrieved with a dictionary lookup. In the
context of MRL, deterministic mappings from a
lemma and a PoS to a form are very rare. Instead,
the dictionary often proposes several word forms
corresponding to the same lexical unit and mor-
phological analysis.

A first way to address this ambiguity is to sim-
ply compute unigram frequencies of each word
form, which was done over all the monolingual
data available at WMT’17 for both Czech and Lat-
vian. During a dictionary lookup, ambiguities can
then be solved by taking the most frequent word
form. The downside of this procedure is that it
ignores important information given by the tar-
get monolingual context. For instance, the Czech
preposition s (with) will have different forms ac-
cording to the right-side context: s tebou (with
you), but se mnou (with me). A solution is to let
a word-based system select the right word form
from the dictionary. To this end, k-best hypothesis
from the dictionary are generated. Given a sen-
tence containing lemmas and PoS, we perform a
beam search going through each word and keep-
ing at each step the k-best reinflection hypothesis
according to the unigram model mentioned above.

For Czech word form generation, we used
the Morphodita generator (Straková et al., 2014).
Since we had no such tool for Latvian, all mono-
lingual data available at WMT’17 were automat-

ically tagged using the LU MII Tagger (Paikens
et al., 2013) and we gathered the result in a dictio-
nary. As one could expect, we obtained a large
quantity of word forms (nearly 2.5M), among
which a lot of noise was noticed.

5.4 Experimental Results

The systems we have submitted at WMT’17 are
more specifically the following:

• English-to-Czech baseline: Ensemble of 5
best models.

• English-to-Czech factored: Ensemble of 2
best models with nk-best rescoring using the
single best baseline.

• English-to-Latvian baseline: Ensemble of 3
best models with n-best rescoring using the
single best Nematus system.

• English-to-Latvian factored: Ensemble of 3
best models with nk-best rescoring using the
single best Nematus system.

The results are reported for these systems
in tables 3 and 4, using BLEU, as well as
BEER (Stanojević and Sima’an, 2014) and Char-
acTER (Wang et al., 2016), which have shown a
high correlation with human rankings for MRL
(Bojar et al., 2016).

As mentioned in Section 5.3, k-best hypothesis
from factored systems are rescored using a fully
inflected word-based system. For Czech, we set
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Newstest-2016 Newstest-2017
BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓

unigrams 24.24 57.41 52.81 19.89 54.51 58.29
+ n-best 24.47 57.91 52.16 20.53 54.99 58.05
neural 21.10 56.35 53.35 17.60 53.47 59.34
+ n-best 21.52 56.36 53.52 18.12 53.64 59.21

Table 5: Scores for different English-to-Czech reinflection methods.
Newsdev-2017 Newstest-2017

BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓
unigrams 22.48 57.69 52.83 14.86 52.00 62.57
+ n-best 22.06 57.58 52.92 15.34 52.52 61.98
neural 17.48 55.38 54.82 12.39 50.75 63.85
+ n-best 17.96 55.69 54.43 12.64 50.89 63.62

Table 6: Scores for different English-to-Latvian reinflection methods.

k to 10. For Latvian, the k = 100 best hypothesis
were taken from the dictionary, in order to mitigate
the poor quality of this dictionary by relying more
on the rescoring system. Additionally to the k-best
hypothesis from the dictionary, we also took the
n-best hypothesis from the factored NMT system
(n = 30), which lead to the rescoring of nk-best
hypothesis by an inflected word based system.

The improvement given by the nk-best setups
show the advantage of using a word based model
to select the right word forms instead of relying on
simple unigram frequencies.

5.5 Reinflection Experiments

To address the disadvantages of the reinflection
methods presented in section 5.3, we investigated
a neural reinflection model. The general architec-
ture is presented in figure 2. The model first takes
as input a n-gram centered on the position to rein-
flect. To each position corresponds a lexical unit
and T PoS-tags, which are represented by embed-
dings li and (tni )n=1..T . These are concatenated
into a context representation xi and transformed
into a hidden representation hi = Whiddenxi+b.

The second input is a candidate inflected form
winflected
i . We represent it as the sequence of its

characters, and use a convolutional layer (Santos
and Zadrozny, 2014) to build its vectorial repre-
sentation e

winflected
i

. The product of these two
representations goes through a sigmoid activation
function. We train the model in a supervised way,
by feeding positive and negative examples of in-
flected forms, with labels 1 and 0. At test time,
the model is given all possible inflected forms ob-
tained in the dictionary, and we choose the one ob-
taining the best score.

However, our first results show accuracies under

the performances of the unigram model presented
in section 5.3, for both Czech and Latvian (see Ta-
bles 5 and 6). In future work, we plan to use such
a model with a beam search.

6 Morphology prediction quality

In this section, we attempt to evaluate the improve-
ment of our factored NMT systems over the base-
lines. To this end, we ran the evaluation introduced
in (Burlot and Yvon, 2017b) over all our WMT
submissions.

The evaluation of the morphological compe-
tence of a machine translation system is performed
on an automatically produced test suite. For each
source test sentence from a monolingual corpus
(the base), one (or several) variant(s) are gener-
ated, containing exactly one difference with the
base, focusing on a specific target lexeme of the
base. These variants differ on a feature that is ex-
pressed morphologically in the target, such as the
person, number or tense of a verb; or the number
or case of a noun or an adjective. This artificial test
set is then translated with a machine translation
system. The machine translation system is deemed
correct if the translations of the base and variant
differ in the same way as their respective source.
Another setup focuses on a word in the base sen-
tence and produces variants containing antonyms
and synonyms of this word. The expected trans-
lation is then synonyms and antonyms bearing the
same morphological features as the initial word.

There are three types of contrasts implying dif-
ferent sorts of evaluation:

• A: We check whether the morphological fea-
ture inserted in the source sentence has been
translated (eg. plural number of a noun). Ac-
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verbs pronouns others mean
System past future neg. fem. plur. noun nb. compar.
NMT baseline 92.6% 86.2% 96.0% 91.4% 79.2% 94.6% 76.2% 88.0%
Factored NMT 94.2% 88.0% 95.4% 91.2% 80.0% 96.2% 75.0% 88.6%

Table 7: Sentence pair evaluation for English-to-Czech (A-set).
coordinated verbs coord.n pronouns to nouns prep. mean

System number person tense case gender number case case
NMT baseline 76.6% 77.0% 69.2% 90.4% 90.8% 92.6% 92.2% 95.3% 85.5%
Factored NMT 77.6% 77.4% 70.6% 89.0% 91.4% 90.8% 91.6% 96.1% 85.6%

Table 8: Sentence pair evaluation for English-to-Czech (B-set).
nouns adjectives verbs mean

System case gender number case number person tense negation
NMT baseline .205 .303 .262 .301 .138 .068 .082 .054 .177
Factored NMT .197 .287 .255 .292 .110 .062 .081 .056 .168

Table 9: Sentence group evaluation for English-to-Czech with Entropy (C-set).
verbs pronouns nouns mean

System past future fem. plur. number
NMT baseline 68.8% 84.6% 64.2% 86.8% 73.0% 75.5%
Factored NMT 69.6% 82.8% 62.0% 89.0% 70.6% 74.8%

Table 10: Sentence pair evaluation for English-to-Latvian (A-set).
coordinated verbs coord.n pronouns to nouns prep. mean

System number person tense case gender number case case
NMT baseline 69.2% 57.6% 70.4% 41.8% 40.0% 40.8% 35.8% 54.6% 51.3%
Factored NMT 72.4% 63.4% 73.2% 34.8% 43.0% 42.2% 41.4% 55.5% 53.2%

Table 11: Sentence pair evaluation for English-to-Latvian (B-set).
nouns adjectives verbs mean

System case gender number case number person tense
NMT baseline .255 .616 .610 .644 .139 .221 .134 .374
Factored NMT .233 .587 .582 .612 .117 .182 .113 .346

Table 12: Sentence group evaluation for English-to-Latvian with Entropy (C-set).

curacy for all morphological features is aver-
aged over all sentences. (Tables 7 and 10)

• B: We focus on various agreement phenom-
ena by checking whether a given morpholog-
ical feature is present in both words that need
to agree (eg. case of two nouns). Accuracy is
computed here as well. (Tables 8 and 11)

• C: We test the consistency of morphologi-
cal choices over lexical variation (eg. syn-
onyms and antonyms all having the same
tense) and measure the success based on the
average normalized entropy of morphologi-
cal features in the set of target sentences. (Ta-
bles 9 and 12)

The A-set focuses on the morphological ade-
quacy of the output towards the source sentence,
which does not seem to have improved with fac-
tored NMT systems. The main improvement is re-

lated to the morphological fluency of the output (B
and C-sets), although the contrasts are more visi-
ble for Latvian than for Czech.

7 Conclusions

This paper described LIMSI’s submissions to the
News shared task at WMT2017, consisting in
English-to-Czech and English-to-Latvian systems
that address the issues of translating into a mor-
phologically rich language. Further experiments
reported the benefits obtained with an efficient pa-
rameter initialization procedure, as well as data fil-
tering.
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