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Abstract

Neural Machine Translation (NMT)
models are often trained on hetero-
geneous mixtures of domains, from
news to parliamentary proceedings,
each with unique distributions and lan-
guage. In this work we show that train-
ing NMT systems on naively mixed
data can degrade performance versus
models fit to each constituent domain.
We demonstrate that this problem can
be circumvented, and propose three
models that do so by jointly learn-
ing domain discrimination and transla-
tion. We demonstrate the efficacy of
these techniques by merging pairs of
domains in three languages: Chinese,
French, and Japanese. After training
on composite data, each approach out-
performs its domain-specific counter-
parts, with a model based on a discrim-
inator network doing so most reliably.
We obtain consistent performance im-
provements and an average increase of
1.1 BLEU.

1 Introduction
Neural Machine Translation (NMT) (Kalch-
brenner and Blunsom, 2013; Sutskever et al.,
2014; Cho et al., 2014) is an end-to-end ap-
proach for automated translation. NMT has
shown impressive results (Bahdanau et al.,
2015; Luong et al., 2015a; Wu et al., 2016)
often surpassing those of phrase-based sys-
tems while addressing shortcomings such as
the need for hand-engineered features.

In many translation settings (e.g. web
translation, assistant translators), input may

∗Equal Contribution.

come from more than one domain. Each do-
main has unique properties that could con-
found models not explicitly fitted to it. Thus,
an important problem is to effectively mix a
diversity of training data in a multi-domain
setting.

Our problem space is as follows: how can
we train a translation model on multi-domain
data to improve test-time performance in each
constituent domain? This setting differs from
the majority of work in domain adaptation,
which explores how models trained on some
source domain can be effectively applied to
outside target domains. This setting is impor-
tant, because previous research has shown that
both standard NMT and adaptation methods
degrade performance on the original source do-
main(s) (Farajian et al., 2017; Haddow and
Koehn, 2012). We seek to prove that this prob-
lem can be overcome, and hypothesize that
leveraging the heterogeneity of composite data
rather than dampening it will allow us to do
so.

To this extent, we propose three new models
for multi-domain machine translation. These
models are based on discriminator networks,
adversarial learning, and target-side domain
tokens. We evaluate on pairs of linguisti-
cally disparate corpora in three translation
tasks (EN-JA, EN-ZH, EN-FR), and observe
that unlike naively training on mixed data (as
per current best practices), the proposed tech-
niques consistently improve translation quality
in each individual setting. The most signifi-
cant of these tasks is EN-JA, where we obtain
state-of-the-art performance in the process of
examining the ASPEC corpus (Nakazawa
et al., 2016) of scientific papers and Sub-
Crawl, a new corpus based on an anonymous
manuscript (Anonymous, 2017). In summary,
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our contributions are as follows:

• We show that mixing data from heteroge-
nous domains leads to suboptimal re-
sults compared to the single-domain set-
ting, and that the more distant these do-
mains are, the more their merger degrades
downstream translation quality.

• We demonstrate that this problem can be
circumvented and propose novel, general-
purpose techniques that do so.

2 Neural Machine Translation

Neural machine translation (Sutskever et al.,
2014) directly models the conditional log prob-
ability log p(y|x) of producing some trans-
lation y = y1, ..., ym of a source sentence
x = x1, ..., xn. It models this probability
through the encoder-decoder framework. In
this approach, an encoder network encodes
the source into a series of vector representa-
tions H = h1, ..., hn. The decoder network
uses this encoding to generate a translation
one target token at a time. At each step, the
decoder casts an attentional distribution over
source encodings (Luong et al., 2015b; Bah-
danau et al., 2014). This allows the model to
focus on parts of the input before producing
each translated token. In this way the decoder
is decomposing the conditional log probability
into

log p(y|x) =

m∑

t=1

log p(yt|y<t, H) (1)

In practice, stacked networks with recurrent
Long Short-Term Memory (LSTM) units are
used for both the encoder and decoder. Such
units can effectively distill structure from se-
quential data (Elman, 1990).

The cross-entropy training objective in
NMT is formulated as,

Lgen =
∑

(x,y)∈D
− log p(y|x) (2)

Where D is a set of (source, target) sequence
pairs (x, y).

Figure 1: The novel mixing paradigms un-
der consideration. Discriminative mixing (A),
adversarial discriminative mixing (B), and
target-side token mixing (C) are depicted.

3 Models
We now describe three models we are propos-
ing that leverage the diversity of information
in heterogeneous corpora. They are summa-
rized in Figure 1. We assume dataset D con-
sists of source sequences X, target sequences
Y and domain class labels D that are only
known at training time.

3.1 Discriminative Mixing
In the Discriminative Mixing approach, we
add a discriminator network on top of the
source encoder that takes a single vector en-
coding of the source c as input. This network
maximizes P (d|H), the predicted probability
of the correct domain class label d conditioned
on the hidden states of the encoder H. It does
so by minimizing the negative cross-entropy
loss Ldisc = − log p(d|H). In other words, the
discriminator uses the encoded representation
of the source sequence to predict the correct
domain. Intuitively, this forces the encoder
to encode domain-related information into the
features it generates. We hypothesize that this
information will be useful during the decoding
process.
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The encoder can employ an arbitrary mech-
anism to distill the source into a single-vector
representation c. In this work, we use an at-
tention mechanism over the encoder states H,
followed by a fully connected layer. We set c
to be the attention context, and calculate it
according to Bahdanau et al. (2015):

c =
∑

j

ajhj

a = softmax(â)

âi = vT
a tanh(Wahi)

The discriminator can be an arbitrary neu-
ral network. For this work, we fed c into a fully
connected layer with a tanh nonlinearity, then
passed the result through a softmax to obtain
probabilities for each domain class label.

The discriminator is optimized jointly with
the rest of the Sequence-to-Sequence network.
If Lgen is the standard sequence generator loss
described in Section 2, then the final loss we
are optimizing is the sum of the generator and
discriminator loss L = Lgen + Ldisc.

3.2 Adversarial Discriminative Mixing
We also experiment with an adversarial ap-
proach to domain mixing. This approach is
similar to that of 3.1, except that when back-
propagating from the discriminator network to
the encoder, we reverse the gradients by multi-
plying them by −1. Though the discriminator
is still using ∇Ldisc to update its parameters,
with the inclusion of the reversal layer, we are
implicitly directing the encoder to optimize
with −∇Ldisc. This has the opposite effect
of what we described above. The discrimina-
tor still learns to distinguish between domains,
but the encoder is forced to compute domain-
invariant representations that are not useful to
the discriminator. We hope that such repre-
sentations lead to better generalization across
domains.

Note the connections between this tech-
nique and that of the Generative Adversarial
Network (GAN) paradigm (Goodfellow et al.,
2014). GANs optimize two networks with two
objective functions (one being the negation of
the other) and periodically freeze the param-
eters of each network during training. We are
training a single network without freezing any
of its components. Furthermore, we reverse

gradients in lieu of explicitly defining a sec-
ond, negated loss function. Last, the adver-
sarial parts of this model are trained jointly
with translation in a multitask setting.

Note also that the representations computed
by this model are likely to be applicable to un-
seen, outside domains. However, this setting
is outside the scope of this paper and we leave
its exploration to future work. For our setting,
we hypothesize that the domain-agnostic en-
codings encouraged by the discriminator may
yield improvements in mixed-domain settings
as well.

3.3 Target Token Mixing
A simpler alternative to adding a discrimina-
tor network is to prepend a domain token to
the target sequence. Such a technique can be
readily incorporated into any existing NMT
pipeline and does not require changes to the
model. In particular, we add a single special
vocabulary word such as “domain=subtitles”,
per domain and prepend this token to each
target sequence therein.

The decoder must learn, similar to the more
complex discriminator above, to predict the
correct domain token based on the source rep-
resentation at the first step of decoding. We
hypothesize that this technique has a similar
regularizing effect as adding a discriminator
network. During inference, we remove the first
predicted token corresponding to the domain.

The advantage of this approach verses the
similar techniques discussed in related work
(Section 5) is that in our proposed method,
the model must learn to predict the domain
based on the source sequence alone. It does
not need to know the domain a-priori.

4 Experiments

4.1 Datasets
For the Japanese translation task we eval-
uate our domain mixing techniques on the
standard ASPEC corpus (Nakazawa et al.,
2016) consisting of 3M scientific document
sentence pairs, and the SubCrawl corpus, con-
sisting of 3.2M colloquial sentence pairs har-
vested from freely available subtitle reposito-
ries on the World Wide Web. We use standard
train/dev/test splits (3M, 1.8k, and 1.8k ex-
amples, respectively) and preprocess the data
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using subword units1 (Sennrich et al., 2015) to
learn a shared English-Japanese vocabulary of
size 32,000. To allow for fair comparisons, we
use the same vocabulary and sentence segmen-
tation for all experiments, including single-
domain models.

To prove its generality, we also evaluate our
techniques on a small set of about 200k/1k/1k
training/dev/test examples of English Chinese
(EN-ZH) and English-French (EN-FR) lan-
guage pairs. For EN-ZH, we use a news com-
mentary corpus from WMT’172 and a 2012
database dump of TED talk subtitles (Tiede-
mann, 2012). For EN-FR, we use professional
translations of European Parliament Proceed-
ings (Koehn, 2005) and a 2016 dump of the
OpenSubtitles database (Lison and Tiede-
mann, 2016).

The premise of evaluating on mixed-domain
data is that the domains undergoing mixing
are in fact disparate. We need to quantifi-
ably measure the disparity therein to obtain
fair, valid, and explainable results. Thus,
we measured the distances between the do-
mains of each language pair with A-distance,
an important part of the upper generalization
bounds for domain adaptation (Ben-David
et al., 2007). Due to the intractability of
computing A-distances, we instead compute a
proxy for A-distance, d̂A, which is given theo-
retical justification in Ben-David et al. (2007)
and used to measure domain distance in Gani
et al. (2015); Glorot et al. (2011). The proxy
A-distance is obtained by measuring the gener-
alization error ϵ of a linear bag-of-words SVM
classifier trained to discriminate between the
two domains, and setting d̂A = 2(1−2ϵ). Note
that by nature of its formulation, d̂A is only
useful in comparative settings, and means lit-
tle in isolation (Ben-David et al., 2007). How-
ever, it has a minimum value of 1, implying
exact domain match, and a maximum of 2,
implying that domains are polar opposites.

4.2 Experimental Protocol

All models are implemented using the Tensor-
flow framework and based on the Sequence-
to-Sequence implementation of Britz et al.

1Using https://github.com/google/sentencepiece
2http://www.statmt.org/wmt17/translation-

task.html

(2017)3. We use a 4-layer bidirectional LSTM
encoder with 512 units, and a 4-layer LSTM
decoder. Recall from Section 3 that we use
Bahdanau-style attention Bahdanau et al.
(2015). Dropout of 0.2 (0.8 keep probability)
is applied to the input of each cell. We opti-
mize using Adam and a learning rate of 0.0001
(Kingma and Ba, 2014; Abadi et al., 2016).
Each model is trained on 8 Nvidia K40m
GPUs with a batch size of 128. The combined
Japanese dataset took approximately a week
to reach convergence.

During training, we save model checkpoints
every hour and choose the best one using the
BLEU score on the validation set. To cal-
culate BLEU scores for the EN-JA task, we
follow the instruction from WAT 4 and use
the KyTea tokenizer (Neubig et al., 2011).
For the EN-FR and EN-ZH tasks, we follow
the WMT ’16 guidlines and tokenize with the
Moses tokenizer.perl script (Koehn et al.,
2007).

4.3 Results
The results of our proxy-A distance experi-
ment are given in Table 1. d̂A is a purely
comparative metric that has little meaning in
isolation (Ben-David et al., 2007), so it is evi-
dent that the EN-JA and EN-ZH domains are
more disparate, while the EN-FR domains are
more similar.

Lanuage Domain 1 Domain 2 d̂A

Japanese ASPEC SubCrawl 1.89
Chinese News TED 1.73
French Europarl OpenSubs 1.23

Table 1: Proxy A-distances (d̂A) for each do-
main pair.

To understand the interactions between
these models and mixed-domain data, we train
and test on ASPEC, SubCrawl, and their con-
catenation. We do the same for the French
and Chinese baselines.

In general, our results support the hypoth-
esis that the naive concatenation of data from
disparate domains can degrade in-domain
translation quality (Table 2). In both the EN-
JA and EN-FR settings, the domains under-
going mixing are disparate enough to degrade

3https://github.com/google/seq2seq
4http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/
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(a) Comparing the mixed-domain
and individual-domain baselines
(BLEUmixed − BLEUindividual)
while varying domain distance.
The more different two domains
are, the more their mixture
degrades performance.

(b) Comparing the proposed dis-
criminator and individual-domain
baseline (BLEUdiscriminator −
BLEUindividual) while varying
domain distance. Compared
to Figure 2a, performance is
less degraded when using the
discriminator.

(c) Comparing the pro-
posed discriminator approach
and mixed-domain baseline
(BLEUdiscriminator − BLEUmixed)
while varying domain distance.
The discriminator always improves
over the baseline, and this is
accentuated when the merged
domains are more distant.

Figure 2: Comparative performance and domain distance. Trends corresponding to a least-
squares fit are indicated with dashed lines.

performance when mixed, and the proposed
techniques recover some of this performance
drop. In the EN-ZH setting, we observe that
even when similar domains are mixed perfor-
mance can drop. Notably, in this setting, the
proposed techniques successfully improve per-
formance over single-domain training.

For a more detailed perspective on
this result, Figure 2a depicts the mixed-
domain/individual-domain performance
differential as a function of domain distance.
The two share a negative association, suggest-
ing that the most distant two domains are,
the more their merger degrades performance.
This degradation is particularly strong in
Japanese due the vast structural differences
between formal and casual language. The
vocabularies, conjugational patterns, and
word attachments all follow different rules in
this case (Hori, 1986).

We then trained and tested our proposed
methods on the same mixed data (Table 2).
Our results generally agree with the hypoth-
esis that the diversity of information in het-
erogeneous data can be leveraged to improve
in-domain translation. Overall, we find that
all of the proposed methods outperform their
respective baselines in most settings, but that
the discriminator appears the most reliable. It
bested its counterparts in 4 of 6 trials, and was

EN-JA Model ASPEC SubCrawl
ASPEC 38.87 3.85
SubCrawl 2.74 16.91
ASPEC + SubCrawl 33.85 14.34
Discriminator 35.01 15.38
Adv. Discriminator 29.87 13.31
Target Token 35.05 14.92

EN-FR Model Europarl OpenSubs
Europarl 34.51 13.36
OpenSubtitles 13.12 15.2
Europarl + OpenSubs 38.26 27.9
Discriminator 39.03 27.91
Adv. Discriminator 38.38 25.67
Target Token 39.1 25.32

EN-ZH Model News TED
News 12.75 3.12
TED 2.79 8.41
News + TED 11.36 6.67
Discriminator 12.88 8.64
Adv. Discriminator 12.15 8.16
Target Token 11.98 7.69

Table 2: BLEU scores for models trained on
various domains and languages (both mixed
and unmixed). Rows correspond to train-
ing domains and columns correspond to test
domains. Note that our single-domain AS-
PEC results are state-of-the-art, indicating the
strength of these baselines.
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the only approach that outperformed both in-
dividually fit and naively mixed baselines in
every trial.

Figure 2c depicts the dynamics of the dis-
criminator approach. More specifically, this
figure shows the discriminator/naive-mixing
performance differential as a function of do-
main distance. The two share a positive asso-
ciation, suggesting that the more distant two
domains are, the more the discriminator helps
performance. This may be because it is easier
to classify distant domains, so the discrimina-
tor can fit the data better and its gradients en-
courage the upstream encoder to include more
useful domain-related structure.

The adversarial discriminator architecture
yielded improvements on the small datasets,
but underperformed on EN-JA. It is possible
that the grammatical differences inherent to
casual and polite domains are such that se-
mantic information was lost in the process of
forcing their encoded distributions to match.
Additionally, adversarial objective functions
are notoriously difficult to optimize on, and
this model was prone to falling into poor local
optimum during training.

The simpler target token approach also
yields improvement over the baselines, just
barely surpassing that of the Discriminator for
ASPEC. This approach has the practical ben-
efit of requiring no architectural changes to an
off-the-shelf NMT system.

Our EN-FR results are particularly interest-
ing. Though the data seem like they should
come from sufficiently distant domains (par-
liament proceedings and subtitles), the do-
mains are actually quite close according to d̂A

(Table 1). Since these domains are so close,
their merger is able to improve baseline per-
formance. Thus, if the source and target do-
main are sufficiently close, then their merger
does indeed help.

Next, we investigated the optimization dy-
namics of these models by examining their
learning curves. Curves for the baselines and
discriminative models trained on EN-JA data
are depicted in Figure 3a. Single-domain
training clearly outperforms mixed training,
and it appears that adding a discriminative
strategy provides additional gains. From Fig-
ure 3b we can see that the discriminator ap-

proach (not reversing gradients), learns to fit
the domain distribution quickly, implying that
the Japanese domains were in fact quite dis-
tant and easily classifiable.

5 Related Work

Our work builds on a recent literature on do-
main adaptation strategies in Neural Machine
Translation. Prior work in this space has pro-
posed two general categories of methods.

The first proposed method is to take mod-
els trained on the source domain and finetune
on target-domain data. Luong and Manning
(2015); Zoph et al. (2016) explores how to im-
prove transfer learning for a low-resource lan-
guage pair by finetuning only parts of the net-
work. Chu et al. (2017) empirically evalu-
ate domain adaptation methods and propose
mixing source and target domain data during
finetuning. Freitag and Al-Onaizan (2016)
explored finetuning using only a small subset
of target domain data. Note that we did not
compare directly against these techniques be-
cause they are intended to transfer knowledge
to a new domain and perform well on only
the target domain. We are concerned with
multi-domain settings, where performance on
all constituent domains is important.

A second strain of “multi-domain” thought
in NMT involves appending a domain indi-
cator token to each source sequence (Kobus
et al., 2016). Similarly, Johnson et al. (2016)
use a token for cross-lingual translation in-
stead of domain identification. This idea was
further refined by Chu et al. (2017), who in-
tegrated source-tokenization into the domain
finetuning paradigm. While it requires no
changes to the NMT architecture, these ap-
proaches are inherently limited because they
stipulate that domain information for unseen
test examples be known. For example, if us-
ing a trained model to translate user-generated
sentences, we do not know the domain a-priori,
and this approach cannot be used.

Apart from the recent progress in do-
main adaptation for NMT, we draw on work
that transfers knowledge between domains in
semisupervised settings. Our strongest influ-
ence is adversarial domain adaptation (Ganin
et al., 2015), where feature distributions in
the source and target domains are matched
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(a) Log perplexity evaluated on the ASPEC valida-
tion set. Single-domain training outperforms com-
bined training. The discriminator and target token
approaches improve over the naive combined data.
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(b) Discriminator training loss over time on the EN-JA
data. The discriminator learns to fit the data almost
perfectly after a few hundred thousand iterations

Figure 3: Training curves for domain mixing and discriminator loss.

with a Domain-Adversarial Neural Network
(DANN). Another approach to this problem is
that of Long et al. (2015), which measures and
minimizes the distance between domain distri-
bution means before training, thereby negat-
ing any unique properties.

There is some overlap between past research
in multi-domain statistical machine transla-
tion (SMT) and the ideas of this paper. (Fara-
jian et al., 2017) compared the efficacy of
phrase-based SMT and NMT on multiple-
domain data, observing similar performance
degradations as us in mixed-domain settings.
However, that study did not seek to under-
stand the issue and offered no explanation,
analysis, or solution to the problem. Another
line of work merged data by only selecting ex-
amples with a propensity for relevance in a
multi-domain setting (Mandal et al., 2008; Ax-
elrod et al., 2011). In a strategy that echos
NMT fine-tuning, Pecina et al. (2012) used
a variety of in-domain development sets to
tune hyperparameters to a generalized setting.
Similar to our domain discriminator network,
Clark et al. (2012) crafted domain-specific fea-
tures that are used by the decoder. How-
ever, some of these systems’ features are down-
stream of binary indicators for domain iden-
tity. This approach, then, faces the same in-
herent limitations as source-tokenization: do-
main knowledge is required for inference. Fur-
thermore, the domain features of this system

are integral to the decoding process, while our
discriminator network is an independent mod-
ule that can be detached during inference.

6 Conclusion

We presented three novel models for apply-
ing Neural Machine Translation to multi-
domain settings, and demonstrated their ef-
ficacy across six domains in three language
pairs, and in the process achieved a new state-
of-the-art in EN-JA translation. Unlike the
naive combining of training data, these mod-
els improve their translational ability on each
constituent domain. Furthermore, these mod-
els are the first of their kind to not require
knowledge of each example’s domain at in-
ference time. All the proposed approaches
outperform the naive combining of training
data, so we advise practitioners to imple-
ment whichever most easily fits into their pre-
existing pipelines, but an approach based on
a discriminator network offered the most reli-
able results.

In future work we hope to explore the dy-
namics of adversarial discriminative training
objectives, which force the model to learn
domain-agnostic features, in the related prob-
lem of adaptation to unseen test-time do-
mains.
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