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Abstract

Word sense disambiguation is necessary in
translation because different word senses
often have different translations. Neural
machine translation models learn differ-
ent senses of words as part of an end-
to-end translation task, and their capabil-
ity to perform word sense disambiguation
has so far not been quantified. We ex-
ploit the fact that neural translation models
can score arbitrary translations to design
a novel cross-lingual word sense disam-
biguation task that is tailored towards eval-
uating neural machine translation models.
We present a test set of 7,200 lexical am-
biguities for German→English, and 6,700
for German→French, and report baseline
results. With 70% of lexical ambiguities
correctly disambiguated, we find that word
sense disambiguation remains a challeng-
ing problem for neural machine transla-
tion, especially for rare word senses. To
improve word sense disambiguation in
neural machine translation, we experiment
with two methods to integrate sense em-
beddings. In a first approach we pass
sense embeddings as additional input to
the neural machine translation system. For
the second experiment, we extract lexical
chains based on sense embeddings from
the document and integrate this informa-
tion into the NMT model. While a base-
line NMT system disambiguates frequent
word senses quite reliably, the annotation
with both sense labels and lexical chains
improves the neural models’ performance
on rare word senses.

1 Introduction

Semantically ambiguous words present a special
challenge to machine translation systems: in or-
der to produce a correct sentence in the target lan-
guage, the system has to decide which meaning
is accurate in the given context. Errors in lexical
choice can lead to wrong or even incomprehensi-
ble translations. However, quantitatively assessing
errors of this type is challenging, since automatic
metrics such as BLEU (Papineni et al., 2002) do
not provide a sufficiently detailed analysis.

Several ways of evaluating lexical choice for
machine translation have been proposed in pre-
vious work. Cross-lingual lexical choice tasks
have been created for the evaluation of word sense
disambiguation (WSD) systems (Mihalcea et al.,
2010; Lefever and Hoste, 2013), and have been ap-
plied to the evaluation of MT systems (Carpuat,
2013). Vickrey et al. (2005) evaluate lexical
choice in a blank-filling task, where the translation
of an ambiguous source word is blanked from the
reference translation, and an MT system is tested
as to whether it can predict it. In all these tasks,
a word-level translation (or set of translations) is
defined as the gold label. A major problem is that
an MT system will be punished for producing a
synonym, paraphrase, or inflected variant of the
predefined gold label. We thus propose a more
constrained task where an MT system has to se-
lect one out of a predefined set of translations.

Neural machine translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015) has recently
emerged as the new state of the art in machine
translation, producing top-ranked systems in re-
cent shared tasks (Luong and Manning, 2015; Sen-
nrich et al., 2016a; Neubig, 2016). The strengths
and weaknesses of NMT have been the subject of
recent research, and previous studies involving hu-
man analysis have consistently found NMT to be
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more fluent than phrase-based SMT (Neubig et al.,
2015; Bojar et al., 2016; Bentivogli et al., 2016),
but results in terms of adequacy are more mixed.
Bentivogli et al. (2016) report improvements in
lexical choice based on HTER matches on the
lemma-level, while Bojar et al. (2016) found no
clear improvement in a direct assessment of ade-
quacy. Neubig et al. (2015) perform an error an-
notation in which the number of lexical choice er-
rors even increases slightly by reranking a syntax-
based statistical machine translation system with
an NMT model.

We aim to allow for a large-scale, reproducible
method of assessing the capability of an NMT
model to perform lexical disambiguation. NMT
systems can not only be used to generate trans-
lations of a source sentence, but also to assign a
probability P (T |S) for any given pair of a source
sentence S and a target sentence T . We use this
feature to create a test set with artificially intro-
duced lexical disambiguation errors. Comparing
the scores of an NMT model on these contrastive
translations to the score of the reference allows us
to assess how well the model can distinguish dif-
ferent senses in ambiguous words.

We have created two test sets for the lan-
guage pairs German-English and German-French
with about 6,500 and 6,700 sentence pairs respec-
tively.1 Based on the performance of state-of-the-
art NMT systems on these test sets, we discuss the
capability of NMT to perform lexical disambigua-
tion.

Furthermore, we present two methods to im-
prove word sense disambiguation in neural ma-
chine translation by allowing the model to learn
sense-specific word embeddings. Both methods
are based on an external word sense disambigua-
tion. While the first method passes sense labels as
additional input to an NMT system, the second is
motivated by the hypothesis that document-level
context is valuable for disambiguation. We model
this context via lexical chains, i.e. sequences of
semantically-similar words in a given text that ex-
press the topic of the segment they cover in a con-
densed form. Our method is inspired by Galley
and McKeown (2003), who present an approach
to build English lexical chains automatically us-
ing WordNet (Miller, 1995) and evaluate its per-
formance on a sense disambiguation task. Instead

1The test set is available from https://github.
com/a-rios/ContraWSD.

of WordNet, we use sense embeddings in order to
determine the similarity between the words in a
document and thus find and annotate the lexical
chains. Experimental results show the potential of
lexical chains at disambiguating word senses.

2 Contrastive Translations

The test set consists of sentence pairs that contain
at least one ambiguous German word. In order
to produce contrastive translation pairs, we create
an automatically modified version of the reference
translation where we replace the original transla-
tion of a given ambiguous word with the transla-
tion of one of its other meanings. We cluster dif-
ferent translations that overlap in meaning, i.e. that
are (at least sometimes) used interchangeably. We
do not produce any contrastive translations that be-
long to the same cluster as the reference transla-
tion.

As an example, we show the sense clusters that
we consider for two ambiguous German words:

Schlange:
serpent, snake
line, queue

Abzug:
withdrawal, departure rétraction, sortie
trigger gâchette
discount, subtraction déduction, soustraction

Table 1 shows an example of source, reference,
and contrastive sentences.

Our approach is inspired by Sennrich (2017),
who use contrastive translation pairs to evaluate
various error types, including morpho-syntactic
agreement and polarity errors. Apart from focus-
ing on another error type, namely word sense er-
rors, our approach differs in that we pair a human
reference translation not just with one contrastive
example, but a set of contrastive examples, i.e.
a set of incorrect translations of the semantically
ambiguous source word. The model is considered
correct if it scores the human reference translation
higher than all of the contrastive translations. Note
that this evaluation does not directly assess the
translation output of a system, which might be dif-
ferent from the set of translations that are scored,
or the search performance of a system. Instead, its
focus is to identify specific model errors.

3 Lexical Choice Errors

In a first step, we compile a list of German nouns
that have semantically distinct translations in En-
glish and French from the lexical translation tables
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of existing German-English and German-French
phrase-based MT systems, and we clean these lists
manually. We then extract sentence pairs from par-
allel corpora for all ambiguous words in our lists.
Since for most ambiguous words, one or more of
their meanings are relatively rare, a large amount
of parallel text is necessary to extract a sufficiently
balanced number of examples.2

When creating the test set, our goal is to pro-
duce contrastive translations that cannot be eas-
ily identified as wrong based on grammatical or
phonological features. We do not consider ambi-
guities across word classes (Flucht - ’flight, es-
cape’ vs. flucht - ’he/she curses’). Furthermore,
we do not consider German words with different
meanings distinguished by gender (der Leiter (m.)
- ’leader’ vs. die Leiter (f.) - ’ladder’).

Contrastive translations are produced automat-
ically based on a replacement of the target word
with the specified contrastive variants. We en-
sure that contrastive translations match the orig-
inal translation in number; in French, we also
limit replacements to those that match the original
translation in gender, and take into account elision
for vowel-initial words.

We consider both plural and singular forms in
German, but exclude word forms that are unam-
biguous. For instance, the German singular word
Schuld can refer to debt or guilt, however, the plu-
ral form Schulden can only be translated as debts.

Furthermore, we exclude a small number of
cases where the context in either source or tar-
get sentence clearly indicates the meaning: For in-
stance, if the German word Absatz (’heel’, ’sales’,
’paragraph’) is followed by a number, the transla-

2Sentence pairs have been extracted from the following
corpora:

• WMT test and development sets 2006-2016 (de-en) and
2006-2013 (de-fr)

• Crédit Suisse News Corpus https://pub.cl.
uzh.ch/projects/b4c/de/

• corpora from OPUS ((Tiedemann, 2012)):

– Global Voices (http://opus.lingfil.
uu.se/GlobalVoices.php)

– Books (http://opus.lingfil.uu.se/
Books.php)

– EU Bookshop Corpus (http://opus.
lingfil.uu.se/EUbookshop.php)

– OpenSubtitles 2016 (German-French)
(http://opus.lingfil.uu.se/
OpenSubtitles2016.php)

• MultiUN (Ziemski et al., 2016)

tion is in all likelihood ’paragraph’ and contrastive
sentences with ’heel’ or ’sales’ will not present a
challenge for the model.

Following our strategy of focusing on diffi-
cult cases, we oversample the less frequent word
senses for the test set to reduce the performance
of a simple most frequent sense baseline to that
of random guessing. Specifically, we include 100
test instances per word sense, or the total amount
of available sentence pairs if less than 100 were
found in the parallel data.

For German-English, the test set contains 84
word senses, with on average 3.5 contrastive trans-
lations per reference; for German-French, it con-
tains 71 word senses, with an average of 2.2 con-
trastive translations per reference. A full list of
word senses can be found in the appendix.

We include the location of the sentence in the
original corpus in our metadata to allow future ex-
periments with document-level information.3

4 Sense Embeddings in Neural Machine
Translation

In addition to the evaluation of a standard
NMT model on the word sense disambigua-
tion task detailed in the previous section, we
present two experiments on German→English and
German→French to improve lexical choice using
methods from WSD. In a first approach, we com-
pute sense embeddings and include the resulting
sense labels into the NMT model as additional in-
put features (Alexandrescu and Kirchhoff, 2006;
Sennrich and Haddow, 2016). For our second
experiment, instead of adding the labels directly
to the input, we use them to build lexical chains
of similar words in the given document. These
lexical chains contain information about the topic
and/or domain of the document, and we include
them as additional features into our NMT model.

4.1 Sense Embeddings

Sense embeddings are vector representations of
word senses in a vector space, but unlike word em-
beddings, where every word form receives a vector
representation, with sense embeddings we obtain
separate vector representations for each sense of a
given word. To compute the sense embeddings we

3A snapshot of the corpora used to extract the ex-
amples can be found at http://data.statmt.org/
ContraWSD/.
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source: Also nahm ich meinen amerikanischen Reisepass und stellte mich in die Schlange für Extranjeros.
reference: So I took my U.S. passport and got in the line for Extranjeros.

contrastive: So I took my U.S. passport and got in the snake for Extranjeros.
contrastive: So I took my U.S. passport and got in the serpent for Extranjeros.

source: Er hat zwar schnell den Finger am Abzug, aber er ist eben neu.
reference: Il a la gâchette facile mais c’est parce qu’il débute.

contrastive: Il a la soustraction facile mais c’est parce qu’il débute.
contrastive: Il a la déduction facile mais c’est parce qu’il débute.
contrastive: Il a la sortie facile mais c’est parce qu’il débute.
contrastive: Il a la rétraction facile mais c’est parce qu’il débute.

Table 1: Contrastive Translations

use SenseGram4 (Pelevina et al., 2016), which
has been shown to perform as good as stat-of-the-
art unsupervised WSD systems.

The method to learn the sense embeddings
using SenseGram consists of four steps that
we briefly summarise here. First, the method
learns word embeddings using the word2vec
toolkit (Mikolov et al., 2013).5 It then uses these
word embeddings to build a word similarity graph,
where each word is linked to its 200 nearest neigh-
bours. Next, it induces a sense inventory, where
each sense is represented by a cluster of words
(e.g. the sense of table-furniture is represented
with the word cluster desk, bench, dining ta-
ble, surface, and board). The sense inventory of
each word is obtained through clustering the ego-
networks of its related words. Finally, the method
computes the sense embedding of each word sense
by averaging the vectors of the words in the corre-
sponding cluster.

Once the sense embeddings are learned, we la-
bel all content words in the data with their cor-
responding sense and include this information as
additional features.

4.2 Lexical Chains

As described above, SenseGram allows us to dis-
ambiguate a word based on the context in which
it occurs. Based on the disambiguated words,
we can detect the lexical chains, i.e. chains of

4https://github.com/tudarmstadt-lt/
sensegram

5Embeddings for our models were learned on the follow-
ing corpora:

• SdeWaC (Faaß and Eckart, 2013) (∼768M words)

• Common Crawls (∼775M words)

• Europarl (∼47M words)

• News Commentary (∼6M words)

semantically similar words within a given docu-
ment. To compute the semantic similarity between
two word senses, we calculate the cosine similar-
ity between their sense embeddings.6 The closer
to 1.0 the resulting value is, the higher their se-
mantic similarity. To distinguish between simi-
lar and non-similar senses, we set a threshold of
0.85 that we manually picked by looking at how
different values affect the resulting lexical chains:
a lower threshold builds lexical chains contain-
ing sense words that are not sufficiently related,
whereas a higher threshold results in semantically
strong, but possibly incomplete lexical chains that
do not cover all words belonging to the chain.

We use the method proposed by Mascarell
(2017) to detect lexical chains in a document. This
method is inspired by Morris and Hirst (1991)’s
approach, which manually finds lexical chains in
a document using a thesaurus to obtain the simi-
larity between words. As detailed in Section 4.1,
we use sense embeddings instead of a dictionary
to compute the semantic similarity.

Given a document as input, our method pro-
cesses sentences and their content words sequen-
tially. For each sentence, it computes the semantic
similarity between the current content word c and
each previous content word c’ in the previous five
sentences, based on the approach by Morris and
Hirst (1991). If c and c’ are semantically similar,
our method proceeds as follows:

• If c and c’ are not part of a chain, create a new
chain with c and c’.

• If c’ is in a chain chi, append c to chi.

6Using sense embeddings instead of word embeddings for
this task ensures that we can recognize similar words even
if they are polysemic and not all of their senses are related.
For instance, mouse and rat are related if mouse refers to the
animal, but not if mouse refers to the computer device.
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• If c and c’ are in two different chains, merge
both chains.

Since every linked word in the chain provides
context for disambiguation, the method creates
as many links as possible between similar words.
Therefore, it also preserves one-transitive links:
ci links to ci+l by transitivity if ci links to ci+k

and ci+k to ci+l, where i<k<l (Morris and Hirst,
1991).

As Morris and Hirst (1991) indicate, words
linked by one-transitive links are semantically re-
lated, but words further apart in the chain might
not be: In their paper, they point to the lexical
chain {cow, sheep, wool, scarf, boots, hat, snow}.
While consecutive words in the chain such as wool
and scarf are semantically related, cow and snow
are not.

To provide the NMT model with the detected
lexical chains in the source, we represent this dis-
course knowledge in the input as a combination
of features. Accordingly, each word in the lex-
ical chain is annotated with its linked words as
factors. For example, if the German word Ab-
satz is linked in the lexical chain to Wirtschaft
(’economy’) and Verkauf (’sale’), it is represented
as Absatz|Wirtschaft|Verkauf. The resulting vector
representation of Absatz is the vector concatena-
tion of each individual feature’s embeddings.

Since all words in the input must have the same
number of factors, each word that is not part of
a lexical chain is annotated with itself as factors.
Similarly, words linked to only one word are an-
notated with the corresponding linked word in the
chain and the word itself.

5 Evaluation

We present an evaluation with two basic neu-
ral MT systems, trained with Nematus (Sennrich
et al., 2017), using byte pair encoding (BPE)
on both source and target side (Sennrich et al.,
2016b). For both the German-English and the
German-French experiments, we train a model on
2.1 million sentence pairs from Europarl (v7) and
News Commentary (v11).7 We use these corpora
because they contain document boundaries, which
is a requirement for the lexical chains experiments.

We present further results for models that use
additional source-side features, a) the sense labels
themselves and b) lexical chains. The feature is

7
http://opus.lingfil.uu.se/News-Commentary11.php

system accuracy
de-en (N = 7243)
NMT baseline 0.7095
NMT sense labels 0.7138
NMT lexical chains 0.7034
human ≈0.96
de-fr (N = 6746)
NMT baseline 0.7023
NMT sense labels 0.6998
NMT lexical chains 0.7083
human ≈0.93

Table 2: Word sense disambiguation accuracy

German Sehen Sie die Muster?
reference Do you see the patterns?
contrastive Do you see the examples?

Table 4: Ambiguous sentence pair

given its own embedding space, and the model can
thus learn sense-specific embeddings. If a word is
segmented into multiple subword units by BPE,
the additional input feature of the word is repeated
for each unit. Vocabulary size for all models is
90,000.

We train the models for a week, using
Adam (Kingma and Ba, 2015) to update the model
parameters on minibatches of the size 80. Every
10,000 minibatches, we validate our model on a
held out development set via BLEU and perplex-
ity. The maximum length of the sentences is 50.
The total size of the embedding layer is 500 for
both the baseline and the system trained with addi-
tional input features, and the dimension of the hid-
den layer is 1024. For the experiments with addi-
tional input features, we divide the embedding size
equally among the features. Conceivably, keeping
the dimensionality of the word embedding con-
stant and adding more parameters for additional
features would result in better performance, but
we wanted to rule out that any performance im-
provements are solely due to an increase in model
size.

To assess a model’s capability to distinguish dif-
ferent meanings of ambiguous words, we let it as-
sign a score to the reference translation and to the
artificially created contrastive translations. If the
score of the reference translation is higher than the
scores of all contrastive translations, this counts as
a correct decision.
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Figure 1: Word sense disambiguation accuracy by word sense frequency in training set (absolute, or
relative to source word frequency).

de-en de-fr
baseline sense labels lexical chains baseline sense labels lexical chains

frequency senses∗ accuracy accuracy accuracy senses∗ accuracy accuracy accuracy
>10000 2 0.9840 0.9840 0.9840 2 0.9900 0.9900 0.9900
>5000 7 0.9639 0.9534 0.9459 1 1.0000 1.0000 0.9900
>2000 4 0.9386 0.9284 0.9284 3 0.7375 0.7725 0.7150
>1000 6 0.8598 0.8632 0.8427 3 0.9333 0.9367 0.9167
>500 8 0.7410 0.7308 0.7090 6 0.8260 0.8260 0.8361
>200 17 0.7800 0.7734 0.7900 16 0.8444 0.8475 0.8406
>100 9 0.6058 0.6095 0.6156 9 0.7544 0.7456 0.6933
>50 8 0.7899 0.7645 0.7630 6 0.5160 0.5200 0.6420
>20 9 0.4055 0.4521 0.3945 8 0.5276 0.5430 0.5469
0-20 14 0.3127 0.3664 0.3237 17 0.4924 0.4611 0.5156

Table 3: Accuracy of word sense prediction by frequency of word sense in training set (∗ number of senses

in frequency range).

baseline sense labels lexical chains
de-en 17.1 16.9 17.1
de-fr 14.6 14.6 14.7

Table 5: Average BLEU scores on newstest 2009-
2013

As Table 2 shows, both the German→French
and the German→English baseline model achieve
an accuracy of 0.70 on the test set. We also re-
port accuracy of a smaller-scale human evaluation,
in which two human annotators (one per language
pair) were asked to identify the correct translation
for a random sample of the test set (N=100–150).
The annotation was performed purely on sentence-
level, without any document context, and shows
that some ambiguities are even hard for a human
to resolve without context. Consider the sentence
pairs in Table 4 for such an example. We specu-
late that both humans and MT systems should be
able to resolve more ambiguities with wider con-

text. Even with only sentence-level information,
the gap between human and NMT performance is
sizeable, between 23 and 26 percentage points.

An important indicator of how well a word
sense is translated by NMT is its frequency in
the training data. Figure 1 illustrates the relation-
ship between the frequency of a word sense in the
training data (both absolute and relative to the fre-
quency of the source word) and the accuracy the
model achieves on the test set.

There is a high correlation between word sense
frequency and accuracy: for German→English,
Spearman’s ρ is 0.75 for the correlation between
accuracy and absolute frequency, and 0.77 for
the correlation between accuracy and relative fre-
quency. For German→French, ρ is 0.58 for both.
It is unsurprising that the most frequent word sense
is preferred by the model, and that accuracy for it
is high. We hence want to highlight performance
on rarer word senses. Table 3 shows the word
sense accuracy of the NMT models grouped by
frequency classes and the number of senses in each
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class. All models achieve close to 100% accu-
racy on words that occur more than 10,000 times
in the training data. For the rare senses however,
the NMT models are much less reliable: for word
senses seen 0-20 times in training, the baseline ac-
curacy is between 31-49%.

The annotation of the source side with sense
labels improves the accuracy on the test set by
0.43% for German→English, while the lexical
chains does not improve the model on average.
On the other hand for German→French, the lex-
ical chains result in an improvement of 0.6%, but
the annotation with sense labels does not lead to a
better score on the test set on average. As shown
in Table 3, there is little room for improvement for
frequent word senses, and sense labels and lexical
chains show the strongest improvements over the
baseline for the less frequent word senses. Table 5
contains the average BLEU scores on the newstest
2009-2013 test sets.

6 Conclusions

This paper introduces a novel lexical decision task
for the evaluation of NMT models, and presents
test sets for German-English and German-French.
This task allows for the automatic and quantitative
analysis of the ability of NMT models to perform
lexical disambiguation, a phenomenon that has
previously been remarked to be challenging for
NMT. First evaluations with NMT models show
that lexical choice is resolved well for frequent
word senses, but not for infrequent word senses.
Additional experiments to add a) sense labels to
content words and b) topic knowledge in the form
of lexical chains to the NMT model shows that se-
mantic information improves lexical choice espe-
cially for word senses that do not occur frequently
in the training data. We find that the inclusion of
sense labels improves lexical choice on our test
set 0.43% for German→English. Furthermore, we
gain a small increase of 0.6% in accuracy with lex-
ical chains for German→French.

We consider the performance of the baseline
NMT systems respectable, given that the test set
was created to be challenging, and has a strong fo-
cus on difficult cases. Our experiments indicate
that NMT models perform poorly for rare word
senses, and we observe moderate improvements
for these rare word senses by using methods from
WSD to complement the disambiguation capabil-
ity of the main NMT model. Still, the problem is

far from solved, and there is a sizeable difference
of 23-26 percentage points between NMT perfor-
mance and human performance. We hope that the
release of our test set will inspire and support fu-
ture research on the problem of word sense disam-
biguation for machine translation. In our human
experiments, we also found evidence that wider
document context is necessary to solve this task.
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