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Abstract

Statistical machine translation (SMT) sys-
tems use local cues from n-gram trans-
lation and language models to select the
translation of each source word. Such
systems do not explicitly perform word
sense disambiguation (WSD), although
this would enable them to select transla-
tions depending on the hypothesized sense
of each word. Previous attempts to con-
strain word translations based on the re-
sults of generic WSD systems have suf-
fered from their limited accuracy. We
demonstrate that WSD systems can be
adapted to help SMT, thanks to three key
achievements: (1) we consider a larger
context for WSD than SMT can afford
to consider; (2) we adapt the number of
senses per word to the ones observed in the
training data using clustering-based WSD
with K-means; and (3) we initialize sense-
clustering with definitions or examples ex-
tracted from WordNet. Our WSD system
is competitive, and in combination with a
factored SMT system improves noun and
verb translation from English to Chinese,
Dutch, French, German, and Spanish.

1 Introduction

Selecting the correct translation of polysemous
words remains an important challenge for ma-
chine translation (MT). While some translation
options may be interchangeable, substantially dif-
ferent senses of source words must generally be
rendered by different words in the target language.
In this case, an MT system should identify – im-
plicitly or explicitly – the correct sense conveyed
by each occurrence in order to select the appropri-
ate translation.

Source: And I do really like this shot, be-
cause it shows all the detritus that’s sort
of embedded in the sole of the sneakers.

Baseline SMT: Und ich mag dieses Bild . . .

Online NMT: Und ich mag diesen Schuss
wirklich, . . .

Sense-aware MT: Und ich mag diese Auf-
nahme wirklich, . . .

Reference translation: Ich mag diese Auf-
nahme wirklich, . . .

Figure 1: Example of sense-aware translation that
is closer to a reference translation than a baseline
statistical MT system or an online neural one.

Current statistical or neural MT systems per-
form word sense disambiguation (WSD) implic-
itly, for instance through the n-gram frequency in-
formation stored in the translation and language
models. However, the context taken into account
by an MT system when performing implicit WSD
is limited. For instance, in the case of phrase-
based SMT, it is the order of the language model
(often between 3 and 5) and the length of n-grams
in the phrase table (seldom above 5). In attention-
based neural MT systems, the context extends to
the entire sentence, but is not specifically trained
to be used for WSD.

For instance, Figure 1 shows an English sen-
tence translated into German by a baseline statisti-
cal MT, an online neural MT, and the sense-aware
MT system proposed in this paper. The word shot
is respectively translated as Schuss (gun shot), Bild
(drawing) and Aufnahme (picture) by the online
NMT, the baseline system, and our sense-aware
system. The latter selects a correct sense, which is
identical to the reference translation, while the first
two are incorrect (especially the online NMT).
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WordNet	def./ex.
D0:	[D0_vector]	
D1:	[D1_vector]
…

Labels	for	‘rock’
w0:	cluster	0
w1:	cluster	0
w2:	cluster	1	
…

WordNet	senses for	‘rock’
D0:	a	lump	or	mass	of	hard…
D1: genre	of	popular	music…
…

MT	training	data	with	‘rock’
w0:	…clinging	to	a	rock face…
w1:	…bacteria	off	rock face	
w2:	…like	rock band…
…

MT	training/test	data	with	‘rock’	
w0:	…clinging	to	a	rock|0 face…
w1:	…bacteria	off	rock|0 face	
w2:	…like	rock|1 band…	
…Context	of	‘rock’

w0:	[w0_vector]	
w1:	[w1_vector]
w2:	[w2_vector]
…

Figure 2: Adaptive WSD for MT: vectors from WordNet definitions (or examples) are clustered with
context vectors of each occurrence (here of ‘rock’), resulting in sense labels used as factors for MT.

In this paper, we introduce a sense-aware statis-
tical MT system that performs explicit WSD, and
uses for this task a larger context than is accessi-
ble to state-of-the-art SMT. Our WSD system per-
forms context-dependent clustering of word oc-
currences and is initialized with knowledge from
WordNet, in the form of vector representations of
definitions or examples for each sense. The la-
bels of the resulting clusters are used as abstract
source-side sense labels within a factored phrase-
based SMT system. The stages of our method are
presented in Figure 2, and will be explained in de-
tail in Section 3.

Our results, presented in Section 5, show first
that our WSD system is competitive on the Se-
mEval 2010 WSD task, but especially that it helps
SMT to increase its BLEU scores and to improve
the translation of polysemous nouns and verbs,
when translating from English into Chinese, Ger-
man, French, Spanish or Dutch, in comparison to
an SMT baseline that is not aware of word senses.

With respect to previous work that used WSD
for MT, discussed in Section 2, we innovate on the
following points:

• we design a sense clustering method with ex-
plicit knowledge (WordNet definitions or ex-
amples) to disambiguate polysemous nouns
and verbs;

• we represent each token by its context vec-
tor, obtained from word2vec word vectors in
a large window surrounding the token;

• we adapt the possible number of senses per
word to the ones observed in the training data
rather than constraining them by the full list
of senses from WordNet;

• we use the abstract sense labels for each ana-
lyzed word as factors in an SMT system.

2 Related Work

Word sense disambiguation aims to identify the
sense of a word appearing in a given context
(Agirre and Edmonds, 2007). Resolving word
sense ambiguities should be useful, in particular,
for lexical choice in MT.

An initial investigation found that an SMT sys-
tem which makes use of off-the-shelf WSD does
not yield significantly better quality translations
than a SMT system not using it (Carpuat and Wu,
2005). However, another study (Vickrey et al.,
2005) reformulated the task of WSD for SMT as
predicting possible target translations rather than
senses of ambiguous source words, and showed
that WSD improved such a simplified word trans-
lation task. Subsequent studies which adopted
this formulation (Cabezas and Resnik, 2005; Chan
et al., 2007; Carpuat and Wu, 2007), successfully
integrated WSD to hierarchical or phrase-based
SMT. These systems yielded slightly better trans-
lations compared to SMT baselines in most cases
(0.15–0.30 BLEU).

Although the WSD reformulation above proved
helpful for SMT, it did not determine whether ac-
tual source-side senses are helpful or not for end-
to-end SMT. Xiong and Zhang (2014) attempted
to answer this question by performing word sense
induction for large scale data. In particular, they
proposed a topic model that automatically learned
sense clusters for words in the source language.
In this way, on the one hand, they avoided using
a pre-specified inventory of word senses as tradi-
tional WSD does, but on the other hand, they cre-
ated the risk of discovering sense clusters which
do not correspond to the common senses of words
needed for MT. Hence, this study left open an im-
portant question, namely whether WSD based on
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semantic resources such as WordNet (Fellbaum,
1998) can be successfully integrated with SMT.

Neale et al. (2016) attempted such an integra-
tion, by using a WSD system based on a sense
graph from WordNet (Agirre and Soroa, 2009).
This system detects the senses of words in con-
text using a random walk algorithm over the sense
graph. The authors used it to specify the senses
of the source words and integrate them as con-
textual features with a MaxEnt-based translation
model for English-Portuguese MT. Similarly, Su
et al. (2015) built a large weighted graph model
of both source and target word dependencies and
integrated them as features to a SMT model. How-
ever, apart from the sense graph, WordNet pro-
vides also textual information such as sense def-
initions and examples, which should be useful for
disambiguating senses, but were not used in the
above studies. Here, we aim to exploit this in-
formation to perform word sense induction from
large scale monolingual data (in a first phase), thus
combining the benefits of semantic ontologies and
word sense induction for WSD.

Several other studies integrated additional infor-
mation from a larger context using factored-based
MT models (Koehn and Hoang, 2007). Birch et al.
(2007) used supertags from a Combinatorial Cat-
egorial Grammar as factors in phrase-based trans-
lation model. Avramidis and Koehn (2008) added
source-side syntactic information for each word
for translating from a morphologically poorer lan-
guage to a richer one (English-Greek). The lev-
els of improvement achieved with factored mod-
els such as the ones above range from 0.15 to 0.50
BLEU points. Here, we also observe improve-
ments in the upper part of this range, and they are
consistent across several language pairs.

3 Adaptive Sense Clustering for SMT

In this section, we describe our adaptive WSD
method and show how we integrate it with SMT,
as represented in Figure 2 above. In a nutshell, we
consider all source words that have more than one
sense (synset) in WordNet, and extract from Word-
Net the definition of each sense and, if available,
the example. We associate to them word embed-
dings built using word2vec. For each occurrence
of these words in the training data, we also build
vectors for their contexts (i.e. neighboring words)
using the same model. All the vectors are passed
to a clustering algorithm, resulting in the labeling

of each occurrence with a cluster number that will
be used as a factor in statistical MT.

Our method answers several limitations of pre-
vious supervised or unsupervised WSD methods.
Supervised methods require data with manually
sense-annotated labels and are therefore often lim-
ited to a small number of word types: for instance,
only 50 nouns and 50 verbs were targeted in Se-
mEval 20101 (Manandhar et al., 2010). On the
contrary, our method does not require labeled texts
for training, and applies to all word types appear-
ing with multiple senses in WordNet.

Unsupervised methods often pre-define the
number of possible senses for each ambiguous
word before clustering the various occurrences ac-
cording to the senses. If these numbers come from
WordNet, the senses may be too fine-grained for
the needs of translation, especially when a spe-
cific domain is targeted. In contrast, as we explain
below, our WSD method initializes a context-
dependent clustering algorithm with information
from WordNet senses for each word (nouns and
verbs), but then adapts the number of clusters to
the observed training data for MT.

3.1 Representing Definitions, Examples and
Contexts of Word Occurrences

For each noun or verb type Wt appearing in the
training data, as identified by the Stanford POS
tagger,2 we extract the senses associated to it
in WordNet3 by using NLTK.4 Specifically, we
extract the set of definitions Dt = {dtj |j =
1, . . . ,mt} and the set of examples of use Et =
{etj |j = 1, . . . , nt}, each of them containing mul-
tiple words. While most of the senses are ac-
companied by a definition, only a smaller subset
also include an example of use, as it appears from
the four last columns of Table 1. Less frequently,
some senses contain examples without definitions.

Each definition dtj and example etj is repre-
sented by a vector, which is the average of the
word embeddings over all the words constitut-
ing them (except stopwords). Formally, these are
~dtj = (

∑
wl∈dtj ~wl)/mt and respectively ~etj =

(
∑

wl∈e′tj ~wl)/nt. While the entire definition dtj
is used to build the vector, we do not consider
all words in the example etj , but limit the sum to

1www.cs.york.ac.uk/semeval2010_WSI
2http://nlp.stanford.edu/software/
3https://wordnet.princeton.edu/
4See www.nltk.org/howto/wordnet.html
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e′tj i.e. we consider only a window of size c cen-
tered around the noun or verb of type Wt (simi-
larly to the window used for context representation
below) to avoid noise from long examples.

All the word vectors ~wl above are word2vec
pre-trained embeddings from Google5 (Mikolov
et al., 2013). If d is the dimensionality of the word
vector space, then all vectors ~wl, ~dtj , and ~etj are
in Rd. Each definition vector ~dtj or example vec-
tor ~etj for a word type Wt will be considered as a
center vector for each sense during the clustering
procedure.

Similarly, each word token wi in a source sen-
tence is represented by the average vector ~ui of the
words in its context, which is defined as a window
of c words centered in wi. The value c of the con-
text size is even, since we calculate the vector ~ui
forwi by averaging vectors from c/2 words before
wi and from c/2 words after it. We stop neverthe-
less at the sentence boundaries, and filter out stop
words before averaging.

We will now explain how to cluster according to
their senses all vectors ~ui for the occurrences wi

of a given word type Wt, using as initial centers
either the definition or the example vectors.

3.2 Clustering Word Occurrences According
to their Senses

We aim to group all occurrences wi of a given
word type Wt into clusters according to the sim-
ilarity of their senses, which we will model as the
similarity of their context vectors. The correctness
of this hypothesis will be supported by the empiri-
cal results. We will modify the k-means algorithm
in several ways to achieve an optimal clustering of
word senses for MT.

The original k-means algorithm (MacQueen,
1967) aims to partition a set of items, which
are here tokens w1, w2, . . . , wn of a same word
type Wt, represented through their embeddings
~u1, ~u2, . . . , ~un where ~ui ∈ Rd. The goal of
k-means is to partition (or cluster) them into k
sets S = {S1, S2, . . . , Sk} so as to minimize the
within-cluster sum of squares, as follows:

S = argmin
S

k∑

i=1

∑

~u∈Si

||~u− ~µi||2, (1)

where ~µi is the centroid of each set Si. At the
first iteration, when there are no clusters yet, the

5code.google.com/archive/p/word2vec/

algorithm selects k random points to be the cen-
troids of the k clusters. Then, at each subsequent
iteration t, k-means calculates for each candidate
cluster a new point to be the centroid of the obser-
vations, defined as their average vector, as follows:

~µ t+1
i =

1

|St
i |

∑

~uj∈St
i

~uj (2)

We make the following modifications to the
original k-means algorithm, to make it adaptive to
the word senses observed in the training data.

1. We define the initial number of clusters kt
for each ambiguous word type Wt in the
data as the number of its senses in Word-
Net (but this number may be reduced by the
final re-clustering described below at point
3). Specifically, we run two series of experi-
ments (the results of which will be compared
in Section 5.1.1): one in which each kt is set
to mt, i.e. the number of senses that possess
a definition in WordNet, and another one in
which we consider only senses that are illus-
trated with an example, hence setting each kt
to nt. These settings avoid fixing the number
of clusters kt arbitrarily for each ambiguous
word type.

2. We initialize the centroids of the clusters
to the vectors representing the senses from
WordNet, either using their definition vectors
~dtj in one series of experiments, or their ex-
ample vectors ~etj in the other one. This sec-
ond modification attempts to provide a rea-
sonably accurate starting point for the clus-
tering process.

3. After running the k-means algorithm, we re-
duce the number of clusters for each word
type by merging the clusters which contain
fewer than 10 tokens with the nearest larger
cluster. This is done by calculating the co-
sine similarity between each token vector ~ui
and the centroids of the larger clusters and
assigning the tokens to the closest large clus-
ter. This re-clustering adapts the final number
of clusters to the observed occurrences in the
training data. Indeed, when there are few oc-
currences of a sense for a given ambiguous
word type in the data, the SMT is likely not
able to translate them properly due to the lack
of training samples.
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Finally, after clustering the training data, we use
the centroids to assign each new token from the
test data to a cluster, i.e. an abstract sense label,
by selecting the closest centroid to it in terms of
cosine distance in the embedding space.

3.3 Integration with Machine Translation

Our adaptive WSD system assigns a sense number
for each ambiguous word token in the source-side
of a parallel corpus. To pass this information to
an SMT system, we use a factored phrase-based
translation model (Koehn and Hoang, 2007). The
factored model offers a principled way to supple-
ment words with additional information – such as,
traditionally, part-of-speech tags – without requir-
ing any intervention in the translation tables. The
features are combined in a log-linear way with
those of a standard phrase-based decoder, and the
goal remains to find the most probable target sen-
tence for a given source sentence. To each source
noun or verb token, we add a sense label obtained
from our adaptive WSD system. To all the other
words, we add a NULL label.6 The translation sys-
tem will thus take the source-side sense labels into
consideration during the training and the decoding
processes.

4 Datasets, Preparation and Settings

We evaluate our sense-aware SMT on the UN Cor-
pus7 (Rafalovitch and Dale, 2009) and on the Eu-
roparl Corpus8 (Koehn, 2005). We select 0.5 mil-
lion parallel sentences for each language pair from
Europarl, as shown in Table 1. We also use the
smaller WIT3 Corpus9 (Cettolo et al., 2012), a col-
lection of transcripts of TED talks, to evaluate the
impact of costly model choices, namely the type of
the resource (definition vs. examples), the length
of the context window, and the k-means method
(adaptive vs. original).

Before assigning sense labels, we first tokenize
all the texts and identify the parts of speech (POS)
using the Stanford POS tagger10. Then, we fil-
ter out the stopwords and the nouns which are
proper names according to the Stanford Name En-
tity Recognizer10. Furthermore, we convert the

6In practice, these labels are simply appended to the to-
kens in the data following a vertical bar, e.g. ‘rock|1’ or
‘great|NULL’.

7http://www.uncorpora.org/
8http://www.statmt.org/europarl/
9http://wit3.fbk.eu/

10http://nlp.stanford.edu/software/

plural forms of nouns to their singular form and
the verb forms to infinitive using the stemmer and
lemmatizer from NLTK11, which is essential be-
cause WordNet has description entries only for
singular nouns and infinitive form of verbs. The
pre-processed text is used for assigning sense la-
bels to each occurrence of a noun or verb which
has more than one sense in WordNet.

For translation, we train and tune baseline
and factored phrase-based models with Moses12

(Koehn et al., 2007). We also carried out pilot ex-
periments with neural machine translation (NMT).
However, due to the large datasets NMT requires
for training, its performance was below SMT on
the datasets above, and sense labels did not im-
prove it. We thus focus on SMT in what follows,
and leave WSD for NMT for future studies.

We select the optimal model configuration
based on the MT performance, measured with the
traditional BLEU score (Papineni et al., 2002), on
the WIT3 corpus for EN/ZH and EN/DE. Unless
otherwise stated, we use the following settings
in the k-means algorithm, starting from the im-
plementation provided in Scikit-learn (Pedregosa
et al., 2011):

• we use the definition of each sense for initial-
izing the centroids in the adaptive k-means
methods (and compare this later with using
the examples);

• we set kt equal to mt, i.e. the number of
senses of an ambiguous word type Wt;

• the window size for the context surrounding
each occurrence is set to c = 8.

For the evaluation of intrinsic WSD perfor-
mance, we use the V -metric, the F1-metric, and
their average, as used for instance at SemEval
2010 (Manandhar et al., 2010). To measure the
impact of WSD on MT, besides BLEU, we also
measure the actual impact on the nouns and verbs
that appear in WordNet with several senses, by
comparing how many of them are translated as
in the reference translation, by our system vs. the
baseline. For a certain set of tokens in the source
data, we note as Nimproved the number of tokens
which are translated by our system as in the ref-
erence translation, but whose baseline translation
differs from it. Conversely, we note as Ndegraded

the number of tokens which are translated by the
11http://www.nltk.org/
12http://www.statmt.org/moses/
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Training Development Testing Definitions Examples
# lines # tokens # lines # tokens # lines # tokens # nouns # verbs # nouns # verbs

EN/ZH WIT3 150,000 3M 10,000 0.3M 50,000 1M 6,052 2,435 2,049 1,932
UN 500,000 13M 5,000 0.14M 50,000 1.5M 8,165 3,382 2,810 2,716

EN/DE WIT3 140,000 2.8M 5,000 0.16M 50,000 1M 8,308 2,384 3,662 2,042
Europarl 500,000 14M 5,000 0.14M 50,000 1.4M 6,373 3,323 2,608 2,668

EN/FR Europarl ∼ ∼ ∼ ∼ ∼ ∼ 8,279 4,022 2,276 2,054
EN/ES Europarl ∼ ∼ ∼ ∼ ∼ ∼ 8,716 4,048 2,478 2,359
EN/NL Europarl ∼ ∼ ∼ ∼ ∼ ∼ 8,667 4,023 2,439 2,318

Table 1: Statistics of the corpora used for machine translation: ‘∼’ indicates a similar size, though
not identical texts, because the English source texts for the different language pairs from Europarl are
different. Hence, the number of words found in WordNet differ as well.

baseline system as in the reference, but differently
by our system. We will use the normalized coef-
ficient ρ = (Nimproved − Ndegraded)/T , where T
is the total number of tokens, as a metric focusing
explicitly on the words submitted to WSD.13

5 Results

Using the data, settings, and metrics above, we
investigate first the impact of two model choices
on the performance: centroid initialization for k-
means (definition or examples vs. random), and
the length of the context window for each word.
Then, we evaluate our adaptive clustering method
on the WSD task, to estimate its intrinsic quality,
and finally measure WSD+MT performance.

5.1 Optimal Values of the Parameters
5.1.1 Initialization of Adaptive k-means
We examine first the impact of the initialization
of the sense clusters, on the WIT3 Corpus. In
Table 2, we present the BLEU scores of our
WSD+MT system in two conditions: when the k-
means clusters are initialized with vectors from the
definitions vs. from the examples provided in the
WordNet synsets of ambiguous words. Moreover,
we provide BLEU scores of baseline systems and
oracle ones (i.e. using correct senses as factors),
as well as the ρ score indicating the relative im-
provement of ambiguous words in our system wrt.
the baseline. The use of definitions outperforms
the use of examples, probably because there are
more words with definitions than with examples
in WordNet (twice as many, as shown in Table 1 in
Section 4), but also because definitions may pro-
vide more helpful words to build the initial vec-
tors, as they are more explicit than the examples.

13The values of Nimproved and Ndegraded are obtained
using automatic word alignment. They do not capture, of
course, the absolute correctness of a candidate translation, but
only its identity or not with one reference translation.

All the values of ρ show clear improvements over
the baseline, with up to 4% for DE/EN. As for the
oracle scores, they outperform the baseline by a
factor of 2–3 compared to our system.

Pair Resource BLEU
ρ (%)Baseline Factored Oracle

EN/ZH Definitions 15.23 15.54 16.24 +2.25
Examples 15.41 15.85 +1.60

EN/DE Definitions 19.72 20.23 20.99 +3.96
Examples 19.98 20.45 +2.15

Table 2: Performance of our WSD+MT factored
system for two language pairs from WIT3, with
two initialization conditions for the k-means clus-
ters, i.e. definitions or examples for each sense.

In addition, we compare the two initialization
options above with random initializations of k-
means clusters, in Table 3. To offer a fair compar-
ison, we set the number of clusters, in the case of
random initializations, respectively to the number
of synsets with definitions or examples, for each
word type. Clearly, our adaptive, informed initial-
izations of clusters are beneficial to MT.

Resource k-means initialization
Specific Random

Definitions 15.54 15.34
Examples 15.41 15.27

Table 3: Performance of our WSD+MT factored
system for EN-ZH from WIT3, comparing the two
initialization conditions for the k-means clusters,
i.e. definitions or examples for each sense, with
random initializations.

5.1.2 Length of the Context Window
We investigate the effect of the size of the context
window surrounding each ambiguous token, i.e.
the number of words surrounding it that are con-
sidered for building its vector representation. Fig-
ure 3 displays the BLEU score of our WSD+MT
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System V-score F1-score Average
All Nouns Verbs All Nouns Verbs All Nouns Verbs #clusters

B
as

e. MFS 0 0 0 64.85 57.00 72.70 32.42 29.50 25.40 1.00
Random 4.40 4.60 4.20 32.35 30.60 34.10 18.45 17.60 19.30 4.00
1ClusterPerIns 31.70 35.80 25.60 0.12 0.11 0.12 15.40 17.90 12.90 89.15

To
p

sy
st

em
s

Hermit (Jurgens and Stevens, 2010) 16.20 16.70 15.60 25.55 26.70 24.40 20.85 21.70 20.00 10.78
UoY (Korkontzelos and Manandhar, 2010) 15.70 20.60 8.50 49.80 38.20 66.60 32.75 29.40 37.50 11.54
KSU KDD (Elshamy et al., 2010) 15.70 18.00 12.40 36.90 24.60 54.70 26.30 21.30 33.50 17.50
Duluth-WSI (Pedersen, 2010) 9.00 11.40 5.70 41.10 37.10 46.70 25.05 24.20 26.20 4.15
Duluth-WSI-SVD-Gap (Pedersen, 2010) 0.00 0.00 0.10 63.30 57.00 72.40 31.65 28.50 36.20 1.02
KCDC-PT (Kern et al., 2010) 1.90 1.00 3.10 61.80 56.40 69.70 31.85 28.70 36.40 1.50
KCDC-GD (Kern et al., 2010) 6.90 5.90 8.50 59.20 51.60 70.00 33.05 28.70 39.20 2.78
Duluth-Mix-Gap (Pedersen, 2010) 3.00 2.90 3.00 59.10 54.50 65.80 31.05 29.70 34.40 1.61

O
ur

s Adaptive k-means + definition 13.65 14.70 12.60 56.70 53.70 59.60 35.20 34.20 36.10 4.45
Adaptive k-means + example 11.35 11.00 11.70 53.25 47.70 58.80 32.28 29.30 35.25 3.58

Table 4: WSD results from the SemEval 2010 shared task in terms of V -score, F1 score and their
average. Our adaptive k-means using definitions (last but one line) outperforms all the other systems on
the average of V and F1, when considering both nouns and verbs, or nouns only.

factored system when varying this size, on EN/ZH
translation in the WIT3 Corpus, along with the
(constant) score of the baseline. The performance
of our system improves with the size of the win-
dow, reaching a peak around 8–10. This result
highlights the importance of a longer context com-
pared to the typical settings of SMT systems,
which generally do not go beyond 6. It also sug-
gests that MT systems which exploit effectively
longer context, as we show here with a sense-
aware factored MT system for ambiguous nouns
and verbs, can significantly improve their lexical
choice and their overall translation quality.

Figure 3: BLEU scores of our WSD+MT factored
system on EN/ZH WIT3 data, along with the base-
line score (constant), when the size of the context
window around each ambiguous token (for build-
ing its context vector) varies from 2 to 14.

5.2 Word Sense Disambiguation Results

We evaluate in this section our WSD system on the
dataset from the SemEval 2010 shared task (Man-

andhar et al., 2010), to assess how competitive it
is, while acknowledging that our system uses ex-
ternal knowledge not available to SemEval partic-
ipants.

Table 4 shows the WSD results in terms of V -
score and F1-score, comparing our method (bot-
tom two lines) with other WSD systems that par-
ticipated in SemEval 2010 (top four systems for
each metric). We add three baselines provided
by the task organizers for comparison: (1) Most
Frequent Sense (MFS), which groups all occur-
rences of a word into one cluster, (2) 1Cluster-
PerInstance, which produces one cluster for each
occurrence of a word, and (3) Random, which ran-
domly assigns an occurrence to 1 out of 4 clus-
ters (4 is the average number of senses from the
ground-truth).

The V-score is biased towards systems generat-
ing a higher number of clusters than the number
of gold standard senses. F1-score measures the
classification performance, i.e. how well a method
assigns two occurrences of a word belonging to
the same gold standard class. Hence, this metric
favors systems that generate fewer clusters (for in-
stance, if all instances were grouped into 1 cluster,
the F1-score would be high). As these two metrics
are biased towards either small or large numbers
of clusters, their average is a useful metric as well.

Table 4 shows that k-means initialized with
definitions achieves high performance and ranks
among the top systems for each metric individu-
ally, outperforming all other systems on the aver-
aged metric (especially over nouns or all words).
Moreover, the adaptive k-means method finds an
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Language pair Corpus BLEU
ρ (%)Baseline Factored Oracle

EN/ZH UN 23.25 23.69 24.44 +2.26
EN/DE Europarl 20.78 21.32 21.95 +1.57
EN/FR Europarl 31.96 32.20 32.98 +1.21
EN/ES Europarl 39.95 40.37 41.06 +1.04
EN/NL Europarl 23.56 23.84 24.79 +1.38

Table 5: BLEU scores of our WSD+MT factored system, with both noun and verb senses, along with
baseline MT and oracle WSD+MT, on five language pairs.

Language pair Baseline
Factored (Nouns) Factored (Verbs)

nouns nouns + verbs Oracle verbs nouns + verbs OracleBLEU ρ (%) ρ (%) BLEU ρ (%) ρ (%)
EN/ZH 23.25 23.61 +1.78 +1.93 24.05 23.35 +3.30 +3.14 24.17
EN/DE 20.78 21.31 +1.65 +1.48 21.45 21.30 +1.81 +1.79 21.87
EN/FR 31.96 32.08 +0.90 +0.82 32.36 32.15 +2.03 +2.13 32.98
EN/ES 39.95 40.28 +1.05 +0.96 40.59 40.24 +2.08 +1.15 41.06
EN/NL 23.56 23.79 +1.13 +0.87 24.05 23.70 +2.58 +2.71 24.46

Table 6: BLEU scores of our WSD+MT factored system, trained separately on disambiguated nouns vs.
verbs, and tested separately or jointly, along with baseline MT and oracle WSD+MT, on five language
pairs.

average number of senses of 4, which is close
to the ground-truth value provided by SemEval
(4.46). These results show that our method,
despite its simplicity, is effective and provides
competitive performance against prior art, partly
thanks to additional knowledge not available to the
shared task systems.

5.3 Machine Translation Results

Table 5 displays the performance of our factored
MT systems trained with noun and verb senses
on five language pairs by using the dataset men-
tioned in Table 1. Our system performs consis-
tently better than the MT baseline on all pairs, with
the largest improvements achieved on EN/ZH and
EN/DE. To better understand the improvements
over the baseline MT, we also provide the BLEU
score of an oracle system which has access to
the reference translation of the ambiguous words
through the alignment provided by GIZA++. Ac-
cording to the results, our factored MT system
bridges around 40% of the gap between the base-
line MT system and the oracle system on EN/DE
and 30% on EN/ZH.

As shown in Table 6, the translation quality of
our factored MT outperforms the baseline when
trained with either noun senses or verb senses sep-
arately. However, in some cases, our factored MT
system trained with both noun and verb senses per-
forms worse than with noun and verb senses sep-
arately. This may be due to the lack of sufficient
training data to learn reliably using all the addi-

tional factors – as we observed when training on
the smaller WIT3 Corpus.

Lastly, Table 7 shows the confusion matrix for
our factored MT and the baseline MT systems
when comparing the reference translation of nouns
and verbs separately, using GIZA++ alignment. In
particular, the confusion matrix displays the num-
ber of labeled tokens which are translated as in
the reference or not (‘Correct’ vs. ‘Incorrect’). As
we can observe, the number of tokens that our
factored MT system translates correctly while the
baseline MT does not, is two times largers than
the number of tokens that the baseline MT system
finds correctly while our factored MT does not.

6 Conclusion

We presented a sense-aware statistical MT system
which uses a larger context than standard ones,
through an adaptive context-dependent k-means
clustering algorithm for WSD. The algorithm uti-
lizes semantic information from WordNet to iden-
tify the dominant clusters, which correspond to
senses in the source side of a parallel corpus. The
proposed adaptive k-means method is straightfor-
ward, yet it provides competitive WSD perfor-
mance on data from the SemEval 2010 shared
task. For MT, our experiments with five language
pairs show that our sense-aware MT system con-
sistently improves over the baseline. As future
work, we plan to integrate sense information for
ambiguous words to neural MT and investigate
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Factored (Nouns) Factored (Verbs)
nouns nouns + verbs verbs nouns + verbs

Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect
EN/ZH
Baseline

Correct 138,876 4,402 138,264 5,075 37,132 1,166 36,647 1,527
Incorrect 8,454 75,690 9,472 74,541 3,939 41,728 4,149 41,077

EN/DE
Baseline

Correct 91,966 1,473 91,376 2,035 18,370 664 18,214 812
Incorrect 4,268 71,037 4,525 69,931 1,892 47,105 2,029 46,795

Table 7: Detailed confusion matrix of our factored MT system and the baseline MT system with respect
to the reference on the EN/DE pair from Europarl corpus and the EN/ZH from UN corpus.

other effective ways to enable access to longer
context.
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